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Preface

In 2012, the annual joint workshop of the Fraunhofer Institute of Optronics, Sys-

tem Technologies and Image Exploitation (IOSB) and the Vision and Fusion Labo-

ratory (IES) of the Institute for Anthropomatics, Karlsruhe Institute of Technology

(KIT) has again been hosted by the town of Triberg-Nussbach in Germany.

For a week from July, 22 to 28 the doctoral students of the both institutions deliv-

ered extensive reports on the status of their research and participated in thorough

discussions on topics ranging from computer vision and world modeling to data

fusion and human-machine interaction. Most results and ideas presented at the

workshop are collected in this book in the form of detailed technical reports. This

volume provides thus a comprehensive and up-to-date overview of the research

program of the IES Laboratory and the Fraunhofer IOSB.

The editors thank Yvonne Fischer, Michael Teutsch and the other organizers for

their efforts resulting in a pleasant and inspiring atmosphere throughout the week.

We would also like to thank the doctoral students for writing and reviewing the

technical reports as well as for responding to the comments and the suggestions of

their colleagues.

Prof. Dr.-Ing. Jürgen Beyerer
Alexey Pak, PhD





Contents

Deflectometry in Motion 1

Alexey Pak

Review and Outlook for Texture Analysis Methods 11

Markus Vogelbacher

Utilizing Temporal Information for Object Recognition 27

Michael Teutsch

Greedy Planning 39

Masoud Roschani

Underwater Imaging Model 51

Thomas Stephan

On Adaptive Open-World Modeling 61

Achim Kuwertz

Challenges of Position Coding with Thermal Patterns 75

Sebastian Höfer
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Towards Efficient Deflectometry in Motion

Alexey Pak

Vision and Fusion Laboratory

Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany

alexey.pak@ies.uni-karlsruhe.de

Technical Report IES-2012-01

Abstract:
Despite years of research, the reliable shape reconstruction of highly spec-

ular objects is still a largely unsolved problem, especially for complex ob-
jects or worse-than-ideal observation conditions. In this report, we elaborate
on a novel multi-view specular reconstruction method based on the consis-
tency of normal vector maps (NVMs). In particular, this algorithm is appli-
cable to complex moving objects, where most “standard” techniques fail. We
start by demonstrating how NVMs represent the specular reflection data, then
re-formulate the reconstruction problem in terms of an energy functional to
be optimized. Finally, we suggest an efficient solution of the problem as a
modification of the probabilistic voxel carving approach.

1 Introduction

In the recent years the tools to reconstruct 3D textured surfaces from multiple

views (or video streams) have become powerful enough to enable numerous ap-

plications in industry and research (see e.g. [Liu11] for a review of the current

techniques and applications). Similar solutions for surfaces exhibiting strong spec-

ularity would also have found multiple immediate applications: for instance, car

producers would welcome an objective computer vision-based method to inspect

the finished car bodies as they move through a light tunnel – a task that is presently

done by humans.

However, the approaches that appear in the literature require very demanding mea-

surement conditions or make strong assumptions about the reconstructed surfaces.

In particular, a deflectometric inspection requires that the object is fixed with re-

spect to the camera and the calibrated pattern generator during multiple pattern
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exposures. In addition, one also needs some “regularization”, i.e. external infor-

mation about the location of the surface; the fusion of multiple measurements is

also non-trivial [WMHB09].

Nevertheless, the state-of-the-art deflectometric measurements now compete in ac-

curacy with interferometry [FOKH12] due to extreme sensitivity of specular re-

flection to surface gradient changes. The ultimate solution would combine the

flexibility of triangulation-based methods with the accuracy of deflectometry, pos-

sibly incorporating (but not crucially depending on) any additional information not

contained in the camera images.

An alternative method of fringe reflectometry [HNA11] operates with single shots,

and thus applies also to dynamic scenes. However, the reconstructed surfaces may

only slightly deviate from a plane, and the scene geometry cannot be independently

determined from the reconstruction itself. In addition, the method as described by

Huang et al. is sensitive only to a narrow band of surface feature scales, which

may potentially limit its general applicability.

In another recent work [WASS12], a moving surface is scanned by a laser ray

constrained to a plane. The rays reflected from the surface draw a line on a diffu-

sive screen, which is observed by a camera. The surface is reconstructed from the

shape analysis of that line. While reportedly fast and accurate, this method also

needs regularization, and utilizes in each camera snapshot only a fraction of the

information potentially available in a series of deflectometric images.

Finally, the method of voxel carving based on normal vector consistency [BS03]

enjoys potentially rather broad applicability. The volume containing the recon-

structed object is divided into small regions (voxels), which can be occupied or

empty. The camera images are processed to identify the (distorted) reflections

of the unique point neighbourhoods of the calibrated pattern screen. The found

correspondences then are used to reconstruct possible normal vectors of a surface

under the assumption that it pass through a given voxel; finally, the voxels with

incompatible reconstructed normals are labeled as empty.

While simple to implement, this method has several weak points. First, a suf-

ficiently curved surface may distort the point neighborhoods so strongly that a

reliable detection becomes impossible, and the resulting set of sparse constraints

becomes too small. Second, as the authors of the above reference mention, the

reconstruction accuracy depends sharply on the tolerance for normal vector devi-

ations per voxel. This parameter is set globally and requires careful fine-tuning.

Third, the naive voxel carving implemented in that paper gives no respect to voxel

occlusions that are more than possible for any real-life objects.
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(a) Simulated scene with the studied ob-

ject (specular sphere) at the initial posi-

tion, three cameras (marked with the black

spheres), and the pattern screen.

(b) Images from the three cameras (one

row per camera) corresponding to the

three different object positions (one posi-

tion per column).

Figure 2.1: Sample deflectometric setup with the object, pattern, and the cameras.

Our approach, first suggested in Ref. [Pak12] and further developed in this report,

also employs voxel carving, but builds on a more general consistency condition.

Instead of a single normal vector per voxel, we consider a set of all vectors con-

sistent with multiple observations. The (non-unique) identification of color-coded

pattern areas allows to build such sets without reliance on the fragile neighbor-

hood analysis. Invalid voxels then receive inconsistent observations that lead to

the empty set. The cones of candidate normal vector directions may be stored

as e.g. two-dimensional maps on a unit sphere, and one effectively has to operate

with two-dimensional binary images, as opposed to single vectors as in the method

of Bonfort et al.

2 Normal vector maps

In order to discuss the construction of NVMs, we consider the synthetic scene in

Fig. 2.1(a). We simulate several object positions, and capture (render) images from

the three cameras (marked by black spheres) such as in Fig. 2.1(b). We assume that

the position of the object’s bounding box is available1, and thus each observation

also includes the camera projection parameters, and camera and pattern screen

position and orientation with respect to the object.

1 In a realistic measurement, this information can be obtained by e.g. tracking non-specular mark-

ers applied on or co-moving with the object; another possibility would be to treat these coordinates

probabilistically and determine them by maximizing the likelihood. We postpone the detailed study of

this question to further publications.
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Figure 2.2: Rasterized cube surface as

the parameterization of solid angles as

viewed from the center of the cube.

Figure 2.3: Unfolded normal vector

map. Black pixels mark the allowed,

light gray – the excluded directions.

In order to perform voxel carving, one has to model the observations of small

volumes of space. For simplicity, in all further examples we limit ourselves to

considering the voxels being axis-aligned cuboids (more complex shapes, needed

by complex voxel-carving algorithms, can be treated similarly).

Given a voxel, one first scans the camera pixels where it projects and identifies the

observed pixel colors with those projected by the pattern generator. Discarding the

underexposed (black) and the overexposed (white) pixels, the pattern colors can

most easily be identified in the HSV-space (for hue-saturation-value) by comparing

the hue component. Since the rendered images are anti-aliased, it is also important

to properly attribute the transition pixels with intermediate color values.

The following step is to build the cones of the normal vectors compatible with

the observation. Since the end result is an arbitrarily shaped “fan of rays”, we

parameterize it by rasterizing the complete 4π solid angle on a unit cube surface,

as in Fig. 2.2. Each pixel on each face of the cube corresponds to a narrow cone

originating from the center of the cube, and requires one bit of storage for labeling

it either “allowed” or “excluded”. Given sufficiently high resolution, the inhomo-

geneous density of the covered solid angle per pixel over the planar face is not

important. In our implementation, each cube face contains 64x64 binary pixels

(one bit per pixel), so that the complete net requires 3072 bytes.

In order to visualize the maps of the allowed directions, we unfold the cube surface

into a net and interpret is as a planar image, such as in Fig. 2.3. The example in

that figure displays a single cone of the allowed vectors that is directed primar-

ily downwards (i.e. in the negative z direction), is slightly tilted forward (in the

positive x direction), and does not intersect with the back and the top cube faces.

Let us consider the situation when the voxel color is identified as originating from

some region of the pattern. Having chosen a point �V inside the voxel, and a point
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�P on the corresponding area in the pattern, the reflection condition is

�n ∼
�C − �V∣∣∣�C − �V

∣∣∣ +
�P − �V∣∣∣�P − �V

∣∣∣ ,
where �C is the camera location. We may now add the unit normal vector �n to the

map (i.e. set the corresponding pixel on one of the cube faces to true), and continue

with some other combination of �V and �P .

The above strategy is not extremely efficient and can be improved in multiple ways.

We have implemented algorithms that work efficiently when the pattern contains

a few uniformly filled polygons; depending on the pattern complexity, the final

speedup compared to the above “naive” filling may be O(103 − 104), the details

to be reported in a following publication.

3 Single-voxel simulation

It is easy to see that the bitwise AND-fusion of NVMs for several views leaves

only the directions that satisfy all conditions simultaneously. In Fig. 3.1 we present

a few camera images and the corresponding NVMs, generated by the sequential

AND-fusion for a single voxel. The frame in Fig. 3.1(a) is the first in the se-

quence, and thus the cumulative and the instantaneous NVMs are identical. In

Fig. 3.1(a) and 3.1(b), the voxel image contains pixels of both pattern colors,

which means that the reflected rays may have originated anywhere inside the en-

tire pattern screen. In this case, we only include the normals compatible with the

reflection towards the pattern.

In Fig. 3.1(c), the voxel contains one recognized and some unrecognized colors

(but not the second pattern color); the corresponding pattern areas have to be ex-

cluded from the fully populated NVM. Finally, in Fig. 3.1(d) only unknown colors

are observed. All these situations contribute to the cumulative NVMs, which in the

end (i.e. after the fourth scene) matches quite closely the ground truth (the arrow

endpoint).

A simulation of a single voxel tracked over 200 scenes, where each camera image

has the dimensions of 512 x 384 pixels, takes a few seconds on a laptop PC. The

memory requirements are relatively modest: each NVM occupies 3072 bytes, and

one needs one current and one cumulative NVM per voxel.

The simplest reconstruction as in this example contains multiple opportunities for

parallelization. Each voxel and each scene can be processed independently; color
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(a) (b)

(c) (d)

Figure 3.1: Four subsequent (but not consecutive) steps from the reconstruction

sequence for a single voxel that does enclose real surface. The voxel is denoted on

the camera image with the white outline. In each frame, the upper NVM represents

the instantaneous, the lower – the cumulative limitation of the recovered normal

vectors for the voxel. The arrows indicate the locations of the actual normal (i.e.

the ground truth). Frames (a) and (b) are taken with the first camera (the nearest

to the observer in Fig. 2.1(a)), (c) and (d) – from the second camera (the leftmost

camera in Fig. 2.1(a)).

identification can be done off-line and re-used for different voxels; polygon-filling

and NVM fusion can be run on graphic cards etc.

4 Results of naive voxel carving

As discussed above, a sequence of camera observations in principle contains all the

necessary information to recover the shape and the position of the object. How-

ever, the actual reconstruction results from a limited sequence depend strongly

on the details: the voxel size, the chosen pattern, the camera resolution etc. In

Fig. 4.1(right) we present the final NVMs corresponding to a single layer of vox-

els inside a small volume enclosing the boundary of a sphere (Fig. 4.1, left). The

NVM fusion was performed “naively” as described above, and the volume and

observations were chosen in order to avoid possible occlusions.
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Approximately half of the voxels in the chosen layer lay inside the sphere or on

the surface, the other half is outside. In the ideal situation, only a subset of NVMs

in the upper-left corner of the resulting grid would remain non-empty. In reality,

the remaining cones of normal vectors in the complementary region are narrow but

non-zero, and the exclusion power of NVMs per se happens to be insufficient to

reliably distinguish between the occupied and the empty voxels.

There exists several possible remedies to this situation. First, we may notice that

the camera positions were too close to each other to reliably determine the distance

to the object. A wider stereo base would solve this problem, but it would also give

rise to occlusions. In a naive carving scheme, a voxel’s NVM would then be

affected by the occluded views, resulting in the wrong reconstruction.

Employing a priori information could also improve the result. For example, con-

tinuous objects tend to have similar occupancy values for the adjacent points. Sim-

ilarly, smooth surfaces have strong correlations between the normal vectors at the

close surface locations.

5 Probabilistic voxel carving

In order to merge the specular information with the a priori knowledge, one would

ideally use some sort of a probabilistic framework. The approach that we chose

as a model has been successfully employed in the state-of-the-art voxel carving

tools, reconstructing diffuse objects [Liu11]. Below we re-formulate our problem

following the notation of the above reference and suggest the possible solutions.

Figure 4.1: Right: location of voxelized volume and a “slice” of reconstructed

voxels; left: resulting NVMs reconstructed from a sequence of 200 observations.
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Let us consider a set X = {xi} of voxels, i = 1, ..., N . Each voxel is placed

at position �r = (x, y, z) and features the binary occupancy o ∈ {0, 1} and the

unit normal vector n̂, i.e. xi = (�ri, oi, n̂i). The reconstruction then can be re-

formulated as an optimization problem:

X∗ = argmin
X

E(X), (5.1)

where the energy functional E(X) is

E(X) =
∑
i

Eu(xi) +
∑
i,j

Ep(xi, xj) +
∑
r∈R

ER({x}r). (5.2)

Here the second sum is performed over the pairs of the adjacent voxels, and {x}r
in the last sum denotes the ordered set of voxels traversed by the ray r taken from

the set of all rays R.

The unit energy Eu describes our a priori preference for a specific occu-

pancy/normal vector combination in each point in space. In the simplest form,

it may simply encode the desired fraction of the volume occupied by the object:

Esimple
u (xi) = wu(1− oi).

A more sophisticated function can encode a detailed information such as a CAD-

model or a suitable simple basic shape.

The pairwise energy Ep describes the correlation between the two voxels. If the

normal vector is not taken into consideration, only the correlation between the two

occupancies remains:

Esimple
p (xi, xj) = wp(oi − oj)

2‖�ri − �rj‖−1.

Likewise, a more complicated function would also involve normal-occupancy and

normal-normal interactions.

The a priori terms give the optimization some “guidelines”, and one may discuss

the optimal functional form or the strength coefficients. However, the most in-

teresting term in Eq. (5.2) is the ray energy ER, which we suggest to take as

follows:

ER({x}r) = min
n̂∈NVM(r,�ri)

‖n̂i∗ − n̂‖2. (5.3)

The index i∗ here denotes the first occupied voxel on the ray. For example, given

the voxels on the ray {x}r = (xi1 , ..., xiK ), i∗ is defined as

i∗ =

⎧⎨
⎩

i1, oi1 = 1
i2, oi1 = 0, oi2 = 1
... ...

.
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The minimum in Eq. (5.3) is taken over all normals consistent with the color of the

ray r at the position of the observed voxel �ri∗ , or over the members of the set of

directions allowed by the NVM, denoted as NVM(r, �ri∗). Finding this minimum

itself is an optimization problem, with the minimum energy of zero reached when

the current normal vector is inside the allowed set, and growing quadratically with

the distance to this set otherwise.

The optimization of the complete model in Eq. (5.1) (equivalent to maximum

a posteriori probability inference in a higher-order Markov random field) is a

formidable task, since the search space includes N discrete and 2N continuous

parameters. However, the method of “deep belief propagation” of Ref. [Liu11]

gives a recipe to efficiently compute the messages from the ray factors to vari-

ables, which allows it to successfully find solutions with tens of millions of voxels

(for photo-consistency reconstruction). Our model has a very similar structure and

we expect similar performance benefits also in the (explicitly non-linear) formula-

tion of Eq. (5.2). As of writing this report, the development of the reconstruction

program is still underway.

6 Conclusion

This report summarizes the current status of the suggested method of shape re-

construction from multiple views with the help of NVMs. We outline the basic

ideas behind the algorithm, identify the weaknesses of a naive implementation,

and suggest the mathematical grounds for the general probabilistic framework. As

a solution method, we suggest to use the “deep belief propagation” algorithm that

has been shown to successfully perform in similar problems.
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Abstract:
The description and analysis of textures is a widely discussed topic. Dif-

ferent methods have already been developed but there are still a lot of op-
portunities to develop new approaches. For this reason, in this report at first
an overview of the standard methods for the analysis of textures is given.
Based on that, new ideas and opportunities are presented which extend these
methods but also represent totally new approaches. In the field of structural-
statistical textures the change in the structural arrangement scheme is de-
scribed analogously to the modulation of signals in communications tech-
nology. A basic fundament is the representation of an image signal by a
two-dimensional extended Fourier series whose parameters can be obtained
using unmodulated texture primitives. Another subject is the determination
of parameters in the modeling of textures using AR-models. This estimate
is carried out using the Support Vector Regression (SVR) and, thus, offers
an alternative to the in the field of texture analysis widely used Least-Square
(LS) and Maximum-Likelihood (ML) estimation methods. In the field of op-
tical inspection of textiles an approach will be introduced, which enables the
assessment of tissue properties and the detection of errors. The assessment is
not based on the derivation of features from the methods of texture analysis,
but uses the possibilities of the image acquisition by a variable illumination.

1 Introduction

For the term texture there is no clear definition. The word comes from the Latin

textura and literally means tissue. Textures, e.g., on surfaces, are very familiar to

us from everyday life and often they are described by various adjectives such as
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(a) (b) (c)

Figure 1.1: Examples of texture types: (a) structural, (b) structural-statistical, (c)

statistical.

coarse, fine, grainy, directed, wavy, etc.. Also in image processing the classifica-

tion, segmentation, modeling, and fault detection of textures is an important part

of the inspection and evaluation of surfaces.

As already mentioned, there is no generally accepted definition for texture, but

basically, any two-dimensional structure with certain deterministic or statistical

regularities can be characterized as such. According to this definition, a basic

separation of textures can be made into the following types (Fig. 1.1):

• Structural texture type

• Structural-statistical texture type

• Statistical texture type

A structural texture type can thereby be described by a given elementary sample,

which is also known as texture primitive or texel, arranged at a fixed local arrange-

ment scheme. If the primitive or the arrangement scheme is subject to certain

stochastic variations, we speak of a structural-statistical texture type. If none of

these is recognizable, e.g., the texture is a sample function of a random process,

it is seen as statistical texture type. Basically, it can be stated that in the transi-

tion from the statistical to structural-statistical and to structural texture type the

knowledge about the texture increases.

The various types of texture can be characterized by various methods. The in-

troduction to this standard methods of texture analysis is carried out in Section

2. Section 3 deals with two approaches: the first introduces a way of describ-

ing/modeling structural-statistical texture types and the second offers an alternative

to the existing methods for parameter estimation at autoregressive (AR)-models.
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Another approach to assess semi-finished textile surfaces is part of Section 4. The

tissue properties are assessed and errors are detected by using the properties of the

textured surface even at the image acquisition. A summary and outlook are given

in Section 5.

2 Overview and Insight into the Methods of Texture
Analysis

The separation into different texture types shows the diversity in the evaluation of

textures that must be considered. A single procedure for texture analysis, which

allows an assessment of all the properties of all types of texture, does not exist.

Rather the methods are based on the existing texture type. Below, some classic

texture analysis approaches are presented, which can be divided into the following

categories:

• Statistical methods

• Structural/spectral methods

• Use of special masks

• Texture models

This methods can be used for classification, segmentation, or defect detection.

2.1 Statistical Methods

To represent texture, various properties are determined mainly describing the spa-

tial dependence of the gray values within a particular neighborhood. With these

properties in further steps, e.g., classification can be made.

As the visual perception of a texture by humans are strongly dominated by differ-

ences in the statistics of the first and second order and differences in higher order

statistics are perceived very rarely, histogram properties such as the mean, the vari-

ance, the autocorrelation function, or the edge density are used for the evaluation

of a texture. The measurement of these properties in a particular window which

is slided over a texture can, e.g., enable the segmentation of a texture or the de-

tection of defects by considering the deviations of the properties depending on the

window position.



14 Markus Vogelbacher

Figure 2.1: Displacement d for the determination of the gray level co-occurrence

matrix.

A process which is concerned with the assessment of the neighborhood of a pixel

involves setting up a gray level co-occurrence matrix (GLCM) [HSD73, Bey11].

The gray values of two pixels g1 = g(x) and g2 = g(x + d) are considered, which

have a certain displacement d to each other (Fig. 2.1).

The elements of the GLCM Cd can be determined as follows:

cd,ij = |{x|g(x) = i, g(x + d) = j, ∀x, x + d ∈ Ω}|

The element cd,ij describes the number of pixels x in the domain Ω of the image

with g1 = g(x) = i and g2 = g(x + d) = j. An example of the determination of

such a GLCM is shown in Fig. 2.2.

Since the determination of GLCMs compares values of pixel pairs they belong to

statistics of second order. By normalizing the matrix by

Cnorm
d =

Cd

1TCd1
,

this can be interpreted as estimation for the second order composite likelihood.

(a) (b)

Figure 2.2: Example of the determination of a GLCM with d = (1 0)T : (a)

starting image g(x), (b) co-occurrence matrix Cd (green column corresponds to

the gray value at the point x and orange line corresponds to the gray value at the

point x + d).
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Figure 2.3: Local Binary Pattern: defining the neighborhood m1 to m8 for central

pixel m0.

To use the GLCM to analyse textures, various features such as the Haralick-

features [Har79] can be derived:

• Energy:

1T
[
c2d,ij

]
1

• Entropy:

−
∑
i

∑
j

cd,ij ld(cd,ij)

• Contrast: ∑
i

∑
j

|i− j|a cbd,ij (typically a = 2, b = 1)

• Other features: maximum, homogeneity, inverse difference moment, corre-

lation [Har79].

Another method, which attracts also the comparison of the gray values of a pixel

pair, is called Local Binary Pattern (LBP) [WH89]. The gray values of pixels that

are within a certain distance from a central pixel are considered (Fig. 2.3).

A comparison of gray values delivers a binary encoding for the pixel area. For the

considered neighborhood of Fig. 2.3 the result is:

LBP (m0) =

8∑
i=1

κ(mi)2
i−1, κ(mi) =

{
1, mi ≥ m0

0, else

Evaluating for example histograms of LBPs enables the assessment of a texture.
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(a) (b)

Figure 2.4: (a) Ring and (b) Wedge filter to select specific frequencies in the

periodogram.

2.2 Structural/Spectral Methods

The analysis of structural textures is based on the detection of the texture primitive

and the arrangement scheme. The determination of the primitive or the size of the

primitive can be derived from various properties such as GLCM, the autocorrela-

tion function or using the Renyi entropy [GP03]. In most cases an accurate deter-

mination of the primitive is very difficult. The analysis of the arrangement scheme

can be performed using the periodogram/Fourier transform, so that a determination

of the frequency and the orientation of the texture is possible.

For most analysis, a detailed consideration of a certain frequency range is needed.

This can be achieved by using so called Ring/Wedge filters [RH99], which put the

focus on frequencies between two radii or within a certain angle (Fig. 2.4).

For the detection of structural features other transformations such as the Hough or

Radon transform can be used as well. If the primitive and the arrangement scheme

is known, the texture can be completely recovered from it.

2.3 Use of Special Masks

One way to assess textures is the use of heuristically derived masks. These are in-

cluded in the texture energy measure by Laws [Law80] and can describe properties

such as level, edge, spot, wave, and ripple. In this context, the required convolu-

tion kernels can have different length. As an example the convolution kernels of

length five are listed. The designation of the convolution kernels refers to the first
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letter of each property.

l5 = (1 4 6 4 1)T

e5 = (−1 − 2 0 2 1)T

s5 = (−1 0 2 0 − 1)T

r5 = (1 − 4 6 − 4 1)T

w5 = (1 − 2 6 2 − 1)T

By calculating the dyadic product of two convolution kernels with desired prop-

erties the so called Laws matrices are obtained. The convolution of a gray-scale

image with these Laws matrices and then calculating the resulting image energies

allows the classification of different textures.

2.4 Texture Models

The description of an existing texture by using a model can be tackled by different

approaches. Firstly, a texture can be described by a fractal model. Accordingly, the

texture is treated as a structure that consists of non-overlapping and reduced copies

of itself. The measurement of the self-similarity in concrete the fractal dimension

D =
log(Nr)

log( 1r )

delivers a characteristic of the texture [PGS06]. Nr denotes the number of copies

of the non-overlapping structure reduced by a factor r.

A widely used model for textures is given by Markov Random Fields (MRF). A

statistical dependence of the gray value of a pixel to the gray values of its neigh-

borhood is produced [CJ83]. The choice of the neighborhood is a very important

variable for the quality of the model output.

The autoregressive (AR)-model [MJ92] is an instance of the MRF model. A

detailed description is given in Section 3.
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3 Possible Enhancements of Existing Texture
Analysis Methods

3.1 Texture Modulation

The description or the designation of a model for a structural-statistical texture type

is a hardly studied area in the field of texture analysis. Below, an approach which

interprets the structural-statistical texture as modulation of a structural texture is

presented. The structural texture is modeled by using a two-dimensional Fourier

series. The local changes of the arrangement scheme, which create the structural-

statistical texture, will be considered by a modulation term.

The basis of this idea lies in the communications technology. A signal x(t) =
a0 cos(2πf0t + ϕ0) can be affected by an amplitude (AM) xAM (t) or frequency

modulation (FM) xFM (t). The modulating signal used in this case is denoted by

v(t). AM and FM can be described as follows:

xAM (t) = [a0 + a1v(t)] cos(2πf0t+ ϕ0),

xFM (t) = a0 cos(2πf0t+ΔΩV (t) + ϕ0),

with V (t) =

∫ t

0

v(t′) dt′ and ΔΩ = frequency deviation.

By calculating the analytical signal x+
AM (t) or x+

FM (t) with the Hilbert transform

H{cos(2πf0t)} = sin(2πf0t),

x+
AM (t) = xAM (t) + jH{xAM} = [a0 + a1v(t)] e

j(2πf0t+ϕ0),

x+
FM (t) = xFM (t) + jH{xFM} = a0 e

j(2πf0t+ΔΩV (t)+ϕ0),

and by using the complex envelope

s(t) =
1√
2
x+(t) ej2πf0t,

for x+
AM (t) : |s(t)| = |a0 + a1v(t)| ,

for x+
FM (t) : Im {ln s(t)} = ΔΩV (t) + ϕ0,

the modulating signal can be obtained again. Demodulation is possible, too

[Kam11].

The idea is in the first step to extend the approach to the modulation of any one-

dimensional signal and in the second step for any two-dimensional signal/texture.
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In order to determine the analytical signal the simple correspondence to the Hilbert

transform of sin and cos is still to be exploited.

With the representation of an arbitrary periodic signal by means of a Fourier series

in amplitude-phase-notation a modulation for any one-dimensional signal can be

achieved analogously to a simple cos-signal in the communication technology:

x(t) =
a0
2

+
∞∑

n=1

An cos(n2πf0t− ϕn)

AM: x+
AM (t) = v(t)

[
a0
2

+
∞∑

n=1

An e
j(n2πf0t−ϕn)

]

FM: x+
FM (t) =

a0
2

+
∞∑

n=1

An e
j(n(2πf0t+ΔΩV (t))−ϕn)

a0, An and ϕn describe the Fourier coefficients of the unmodulated signal.

Just like in the one-dimensional space, every two-dimensional periodic signal or

in specific a texture can be expressed by means of a two-dimensional Fourier se-

ries. The creation of the analytical signal can be replaced by the direct use of the

complex 2D Fourier series:

f(x, y) =
∞∑

m=−∞

∞∑
n=−∞

Emn e
j(m2πfxx+n2πfyy),

with fx =
1

Tx
, fy =

1

Ty
, and

Emn =
1

TxTy

∫ Ty

−Ty

∫ Tx

−Tx

e−j(m2πfxx+n2πfyy)f(x, y) dx dy.

By introducing a modulation term, the modulation of a two-dimensional signal

can be described by an extended 2D Fourier series. For example for the frequency

modulation:

fFM (x, y) =

∞∑
m=−∞

∞∑
n=−∞

Emn e
j(m(2πfxx+ΔΩx Vx(x))+n(2πfyy+ΔΩy Vy(y))),

with Vx(x) =

∫ x

0

vx(x
′) dx′, Vy(y) =

∫ y

0

vy(y
′) dy′.

In Fig. 3.1, an example of modeling a 2D-modulated signal is given in which the

modulation of the arrangement scheme is known.
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(a) (b) (c) (d)

Figure 3.1: Application of the extended Fourier series to a texture with a known

modulated arrangement scheme: (a) unmodulated original texture, (b) model of the

extended Fourier series of the unmodulated original texture, (c) modulated original

texture, (d) model of the extended Fourier series of the modulated original texture.

It turns out that this approach can represent structural-statistical textures with

known modulated arrangement scheme. However, the simple demodulation, as

known from the communication technology, is no longer possible. For deriva-

tion of the modulating signal from the model of the extended Fourier series, it is

necessary to find other methods. Such methods may be derived from similar appli-

cations such as the estimation of a time-frequency distribution using the short-time

Fourier transform or the Wavelet transform [LT96], the adjusting of the phase of

the extended Fourier series with the aid of a phase locked loop, or the use of distri-

bution densities for point fields [SS92]. The possible applications of these various

methods must be investigated in further steps. Furthermore, the introduction of

a combined x, y-modulation is necessary, since in the previously considered case

the modulation is divided into separated x- and y-direction (Vx(x) and Vy(y)).

3.2 Alternative Parameter Estimation for AR-Texture Models

AR-models are well-known for the analysis of statistical textures [Bey11]. The

intensity at a discrete location gmn can be modeled as follows:

gmn =
∑

(k,l)∈U

akl gm−k,n−l + emn

= aTγmn + emn,

with a = (...,akl, ...)
T γmn = (..., gm−k,n−l, ...)

T.

U describes the causal environment, |U | the order (number of elements in the

considered environment), akl the weighting factors or AR coefficients, and emn a
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weakly stationary additive white noise

E {emn} = 0, E {emn em+i,n+j} = σ2δ0i δ
0
j .

A causal environment in this context means that for a point (m,n) all points

(m − k, n − l) in front of it are known. As a result, the modeled image can be

determined by recursive implementation of the AR-model. The texture parameters

a and σ allow the modeling and therefore may be regarded as texture features. An

important step in setting up the AR-model represents the parameter estimation of

the AR coefficients. In practice, two main methods are used:

• Least-Square (LS)

• Maximum-Likelihood (ML)

The goal of the estimation using LS is to minimize the variance of the prediction

error emn = gmn − aTγmn. This leads to the following result [JBS09]:

V ar {emn} = V ar
{
gmn − aTγmn

}→ Min

→ â =

(∑
m,n

γmn γ
T
mn

)−1∑
m,n

γmn gmn

The ML estimate iteratively calculates the coefficients with â as iteration start and

delivers better results than the LS estimation [JBS09].

At this point an alternative variant for parameter estimation of AR-texture models

is presented, which is already known from the system technology, namely the es-

timation using Support Vector Regression (SVR) [RAMRdPC+04]. The aim is to

minimize the total error R resulting from the model. The total error R consists of

a loss function ξ(∗) (for upper and lower bound) and a regularization term for the

AR coefficients:

R =
1

2
‖a‖2 + C

N∑
i=1

(ξi + ξ∗i ) N : Number of training data

By introducing the loss function also outliers are allowed similar to the soft margin
approach at Support Vector Machines (SVM). The constant C controls the balance

between the loss function and the regularization term and, thus, the tolerance of

outliers. The loss function can be set up differently, a common approach is the

ε-insensitive loss-function:

ξ(∗) =
{ |emn| , emn ≥ ε
0, else
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The total error R must be minimized under the constraints:

gmn − aTγmn ≤ ε+ ξmn

−gmn + aTγmn ≥ ε+ ξ∗mn

ξ(∗) ≥ 0

This optimization problem under constraints can be solved by using Lagrange

multipliers α(∗). The corresponding Lagrange function is given by:

L(a, α, α∗, η, η∗, ξ, ξ∗) =
1

2
‖a‖2 + C

N∑
i=1

(ξi + ξ∗i )

−
N∑
i=1

αi(−gi + aTγi + ε+ ξi)

−
N∑
i=1

α∗
i (gi − aTγi + ε+ ξ∗i )−

N∑
i=1

(ηiξi + η∗i ξ
∗
i )

In order to optimize, this equation is minimized with respect to a and ξ(∗), i.e.,

∂L

∂a
= 0 and

∂L

∂ξ(∗)
= 0.

The result of the optimization is:

a = −
N∑
i=1

(α∗
i − αi)γi,

gmn = −
N∑
i=1

(α∗
i − αi) 〈γi,γmn〉 ,

with 0 ≤ α
(∗)
i ≤ C.

After the insertion of the result of a to the original equation

L(a, α, α∗, η, η∗, ξ, ξ∗), it can be maximized with respect to the Lagrange

multipliers α(∗):
∂L

∂α(∗) = 0

The α(∗) can be obtained and used for estimating the AR coefficients by inserting

into the equation for a. This procedure has to be applied for various examples
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(a) (b) (c) (d)

Figure 4.1: Example for the investigation of a weave structure by variable light-

ing: (a) perpendicular to weft yarns, (b) not perpendicular to a yarn direction, (c)

perpendicular to warp yarns, (d) transmitted light [VWZ12].

from the field of texture analysis and compared with the results of the classical LS

and ML estimation methods in further work. Another development potential that

has to be examined in this context is the additional introduction of a non-linear

extension as known from the classical SVM [SS02].

4 Procedure for Assessing Semi-Finished Textile
Surfaces

The visual inspection of textiles is an important part of the texture analysis. Vari-

ous methods, also presented in Section 2, are used to allow the assessment of the

quality of the weave structure or the detection of errors. Examples can be found in

[VWZ12].

Also in [VWZ12] an approach is unveiled which goes another way and begins

with the image acquisition. Selecting a suitable illumination strategy allows to

trace back subsequent steps for assessing the weave structure or the detection

of errors to the lighting direction. By taking a series of images, in which the

direction of illumination is varied systematically, a reflection characteristic and,

thus, an orientation can be assigned to each surface location. The application of

such a lighting strategy is based on studies by Lindner, Arigita and Puente León

[LAPL05, LPL06].

Examples of a lighting series for weave structure can be seen in Fig. 4.1. The

result of a segmentation of the warp and weft yarns as well as the detection of

errors in such a series are shown in Fig. 4.2.

The presented weave structure is a structural-statistical texture as desribed in Sec-

tion 1. Both the texture primitive and the arrangement scheme are variable. The
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(a) (b) (c)

Figure 4.2: Evaluation of a lighting series: (a) segmentation result for yarn

spaces (blue), warp (red) and weft threads (green), (b) detection of distortions,

(c) detection of damages [VWZ12].

assessment of the degree of variation is not based on a mathematical description

(Section 3.1), but on the use of optical properties and following further treatment.

5 Conclusion and Outlook

This report provides an introduction to the basics of texture analysis. Although

no universal definition for the term of texture can be given, it was described what

a texture is all about and in what types they can be divided to. Moreover, it was

shown in an overview which different methods can be used to investigate textures.

In addition to the existing methods new approaches were shown that offer on the

one hand the modeling of structural-statistical texture types and on the other an

alternative to the estimation techniques used in the field of AR-models for textures.

The application, the development, and the resulting advantages and disadvantages

of these approaches must be pursued in subsequent studies.

At the end it was shown that texture analysis can not only be carried out by the

analysis of image data, but also by the choice of an appropriate lighting strategy

and the corresponding information. For the inspection of textiles the approach of

using the reflection characteristic has to be further considered.
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Abstract:
Image sequences contain more information than single images due to the

temporal context. There are many potential benefits for the automatic analy-
sis of especially distant moving objects in surveillance videos such as tempo-
ral noise reduction, track-before-detect, estimating motion information of the
camera itself and objects in the scene, or acquiring different appearances of an
object for classification. In this report, example approaches are presented for
utilizing the temporal information to make the detection, segmentation, and
classification of such objects more robust. Using real surveillance datasets,
various algorithms for independent motion detection and moving object seg-
mentation are presented and evaluated. Some ideas for considering temporal
information for object classification are discussed in a conceptual manner.

1 Introduction

Small and mid-sized Unmanned Aerial Vehicles (UAVs) offer great potential for

both wide area surveillance and detailed analysis of objects and regions of interest.

Up to now they have been used for military tasks mainly, but applications for pub-

lic security and safety are becoming more and more popular and helpful. In most

cases, UAVs are equipped with imaging sensors such as visual-optical or infrared

video cameras and, hence, provide observations with temporal context. Potential

applications range from image quality improvement to moving or stationary object

detection and recognition, and up to scene analysis and understanding. However,

implementing these applications is challenging due to sensor noise, sensor motion,

high object distance, or even non-cooperative object behavior. In this report, the
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focus lies on the detection and analysis of moving objects with standard methods

and improving the precision and robustness of these methods by utilizing the tem-

poral information inherent in video data. This approach is well-known for object

tracking, of course, but can be used for detection, segmentation, and classification,

too. Related work will be presented in the respective sections.

The remainder of the report is geared to the standard image processing chain and,

thus, organized as follows: detection is the topic in Section 2, while object seg-

mentation is discussed in Section 3. Some classification concepts are presented in

Section 4 and conclusions are given in Section 5.

2 Detection

The aim of detection is to find specific regions, objects or actions of interest in an

image or video. Each detection algorithm uses specific features, which describe

appearance, action, or behavior. These features must be calculated quickly as the

whole image has to be analyzed if no prior knowledge is used. This may become

time consuming otherwise. In the follow-up, the focus lies on object detection.

One has to distinguish between object detection and recognition. In case of recog-

nition, the object class is also considered within the detection process and, hence,

known after successful detection. This is not the case in pure detection, where

objects are found due to specific features but there is no guarantee that a detection

is the object of interest. In this case, further processing steps are needed either for

better object segmentation or classification.

Popular representatives for object detection are simple or adaptive thresholding if

the object is brighter or darker than the background, Maximally Stable Extremal

Regions (MSER) [MCUP02], Saliency Maps [IKN98], or the detection of motion

in videos either with stable (stationary camera) or dynamic (moving camera) back-

ground. Well-known methods for object recognition are using Haar-features with

AdaBoost (Viola-Jones) [VJ01], local features (SIFT, SURF) [Low04] and Im-

plicit Shape Models (ISM) [JA11], or Histograms of Oriented Gradients (HOGs)

and Sliding Windows [DT05]. Many more methods exist, but the main topic in

this section will be the detection of motion with a moving camera, also called

Independent Motion.

2.1 Independent Motion Detection

Independent Motion Detection is applied to image sequences coming from a mov-

ing camera. This is the case for the considered data in this report, which is coming
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Figure 2.1: Example scene of a busy inner-city street observed by an UAV.

from a small UAV equipped with a visual-optical camera with a Ground Sampling

Distance (GSD) of about 0.34m/pixel. This means that a standard car covers an

area of about 15×5 pixels in the image plane. An example scene with a busy street

observed by such UAV can be seen in Fig. 2.1.

Since for a moving camera the whole scene appears to move, independent mo-

tion is represented by motion vectors or clusters which are not originating from

the stationary background, but from objects like people or cars moving relatively

to the background. This also means that motionless objects will not be detected.

There are two popular approaches to perform image to image registration, which

is the most critical step for camera motion estimation: calculating difference im-

ages [KSS+01, XCSH10] or homographies [PSH+06, CLYL11] between subse-

quent images. In the first one, independent motion appears as clusters, while in the

latter one, independent motion shows up as motion vectors which do not fit to the

estimated homography. Plane+parallax decompositions with multiview geometric

constraints [IA98, YMKC07] do not need to be considered as the evaluation data

in this report was recorded from an UAV in higher altitude of about 400m and a

camera directed perpendicularly to the ground.

Both methods were implemented and tested [HEKS08, HEKS10], but the

homography-based approach was preferred since it worked better and more ro-

bust with the given evaluation data. This basic idea is to detect and track local

image features such as KLT features [ST94] for several subsequent images. One

motion vector is appearing for each tracked feature and the set of these vectors is

used to estimate the homography. This homography estimation works out well if

the stationary background covers most textured parts in the image plane. All out-

lier vectors are assumed to originate from moving objects. One example for this

calculation is displayed in Fig. 2.2 which shows the stationary features in red and

the moving ones in yellow color. The histogram shows the vector absolutes which

correspond to the object velocities. As motion vectors are calculated along more

than two consecutive images, even sub-pixel motion is detected.

In difference images those pixels are labeled which differ from each other from

image to image after successful registration. Blobs of labeled pixels appear af-

ter several consecutive images and can be used for moving object segmenta-

tion [KSS+01, XCSH10, CLYL11, RIS10]. However, the big advantage of using
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Figure 2.2: Example scene with stationary local features in red and moving local

features in yellow. The histogram visualizes the related vector absolutes in pixels.

homographies compared to difference images is that vehicles driving in convoy as

seen in the example scene will not grow together.

3 Segmentation

Independent motion is detected on feature level. To analyze an object, it first has

to be detected as a whole. This is the aim of object segmentation. Common ap-

proaches are clustering of motion pixels in difference images [CLYL11, XCSH10,

KSS+01, RIS10] with optional morphological closing [YSM08], background

modeling [PSH+06], Graph-Cuts [ICS+10], or Active Contour Models [Zha05].

An easy and for many scenes sufficient solution is the clustering of moving local

features based on low spatial distance and similar motion vector direction and

absolute. Problems occur when many different objects fulfill all of these criteria.

This is the case for vehicles driving in convoy for example and leads to under-

segmentation as seen in Fig. 2.3. Big and not well textured vehicles such as the

bus in Fig. 2.3 can even lead to over-segmentation.

Figure 2.3: Clustering (cyan) of independent motion vectors (yellow) with clearly

visible under- and over-segmentation.
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Figure 3.1: The concept of spatio-temporally fused object segmentation.

3.1 Spatio-Temporally Fused Object Segmentation

To handle such problems, more sophisticated segmentation approaches have to be

introduced. In order to avoid model assumptions limiting the generality of the ap-

proach, the only assumptions made are that objects are rectangular and the motion

direction corresponds to the object orientation. Hence, the best fitting bounding

box has to be found. For the identification of object pixels, contour extraction al-

gorithms are implemented. Therefore, methods for gradient magnitude calculation

in combination with a connected-component labeling algorithm are investigated.

Gradients are calculated with a Canny-like algorithm [Kor88], morphological op-

erations [LHS87], and Local Binary Patterns [TB12]. Connected-component la-

beling is preferred to identify contiguous contour segments as other approaches

such as standard watershed segmentation or Graph-Cuts [Bra00] failed due to

partially weak contrast.

For higher robustness, methods for spatio-temporal fusion of these approaches are

investigated. The concept is shown in Fig. 3.1. Regions of interest are provided

by moving local feature clustering (cyan boxes). Temporal fusion of these regions

of interest is applied using the tracked moving local features to generate image

stacks [TK12b]. In these stacks, image to image registration is focusing on the

moving object. Hence, the moving object remains in the same position along the

consecutive images in the stack and the background appears to move. By calcu-

lating the pixel-wise mean gray-value, the background is more and more blurred

and disappears after some time. This is visualized in Fig. 3.2. The original region

of interest and the generated mean images of the related stacks are processed with

the contour extraction algorithms. For the first spatial fusion, the outputs of all

algorithms are written to a common gradient magnitude accumulator image. This
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Figure 3.2: Temporal fusion (image stacking) for two local features tracked along

50 frames [TK12b]. The central vehicle is moving and stacked.

provides a more robust result compared to using only one of the algorithms. Ob-

ject contour pixels are detected by connected-component labeling with adaptive

thresholding [TK12b] in the accumulator image. After morphological closing, a

bounding box is generated around these object pixels using the shape and orienta-

tion assumptions mentioned earlier. Since several regions for the same object are

processed, these results have to be clustered in the second spatial fusion. Finally,

one segment per object is the output of the object segmentation module.

3.2 Experimental Results

One evaluation scene was manually labeled for the exact number, location, and

size of the moving objects. The scene consists of 370 single images with a res-

olution of 687 × 547 pixels. 43 different moving objects appear on a busy inner-

city street with several overtaking maneuvers. The size of a standard vehicle in

the image plane is 15 × 5 pixels. The segmentation performance was evaluated

for completeness and preciseness. Completeness describes the quantity of correct

segmentations in percentage and preciseness the quality in mean pixel errors for

object position and size. Fig. 3.3 shows the results.
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Figure 3.3: Evaluation of completeness (left) and precision (right) of object seg-

mentation using different approaches. Completeness is given in percentage of

correct, under-segmented (US), over-segmented (OS), and missed segmentations,

precision is given in mean pixel error for object position (x, y) and size (w, l).

Completeness is classified for correct, under-segmentation, over-segmentation,

and missed segmentation. Precision is evaluated by the mean errors ex and ey
for the object center, and ew and el for object width and length estimation. Local

feature clustering severely suffers from under-segmentation. This causes a weak

completeness rate and a high mean error for object length estimation. The single

object segmentation approaches significantly improve the results, but none of them

clearly outperforms the others. By spatial fusion (without image stacks) of all three

algorithms, the performance can be enhanced slightly, while the spatio-temporal

fusion shows strong improvement. The benefit of using spatio-temporal segmenta-

tion compared to independent motion clustering is visualized in Fig. 3.4. In addi-

tion to the described object segmentation approaches, object tracking as proposed

in [TK12a] was evaluated and shows the importance of subsequent multi-object

tracking after segmentation. Both completeness and preciseness are improved by

the introduction of tracking.

Figure 3.4: Spatio-temporal segmentation (red boxes) compared to independent

motion clustering (cyan boxes).
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4 Classification

The aim of classification in the context of this report is either to distinguish true

positive detections from false positive detections (object recognition) or to assign

verified detections to preliminary defined object classes such as person or vehicle

(object classification). Both problems can be solved with similar methods. From

detected regions of interests, features are extracted, analyzed, and evaluated. The

features providing the highest separability for a given classification task are com-

bined to a descriptor. Finally, with a set of labeled descriptors (training samples),

machine learning algorithms such as k-Nearest-Neighbor (k-NN) classifier, Bayes

classifier, or Support Vector Machine (SVM) are trained. There is a huge vari-

ety of concepts and implementations for each of these steps as well as different

combinations.

In this section, however, the focus lies on utilizing the temporal context for these

algorithms. This idea is not new since methods such as Recurrent Neural Networks

(RNN) or Hidden Markov Models (HMM) are well-known and established for

modeling and recognizing temporal patterns for activities, behaviors or situations.

Different states and transitions between states are defined to set up those models.

In contrast, no temporal patterns are to be recognized in this report, but temporal

context shall be used to achieve higher robustness and reliability for the mentioned

machine learning algorithms. Object state, perspective, or appearance will not

change or vary significantly during the observation, but even the consideration

and suppression of noise effects along several consecutive images for example can

increase the classification performance.

4.1 Concepts for Temporally Fused Object Classification

The main idea is to apply a temporal information fusion to support object classifi-

cation. This fusion can take place on data, feature, or decision level. It is assumed,

that detection, segmentation, and tracking were successfully performed and image

stacks such as the ones in Fig. 3.2 are available for the temporal fusion.

4.1.1 Temporal Fusion on Data Level

For fusion on data level, only the incoming detected and tracked regions of interest

are considered but no further processing such as feature extraction. With image

stacking, not only the background can be blurred as in Section 3, but also noise

can be suppressed by calculating pixel-wise mean or median along few images.
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Since the objects observed in this report are of very small size in the image plane

due to the high distance, the resolution is rather low. Super-resolution [FREM04]

is an approach using image stacks of moving objects or stationary objects in case

of a moving camera to artificially enhance the resolution for an image region.

After successful registration of several images where the object is not severely

changing its appearance, each object pixel offers redundant information. A new

pixel grid of higher resolution is created and the pixel values are interpolated using

this redundant information. The resulting images are of higher quality due to noise

suppression and are more detailed due to the enhanced resolution [HEKS10].

4.1.2 Temporal Fusion on Feature Level

Fusion on feature level is either the feature-wise fusion along several images to cre-

ate a temporal feature, or the combination of several features along several images

to create a descriptor containing temporal information for the subsequent classifier.

An easy way of introducing temporal information to a feature is calculating its

mean or median value for several consecutive time steps. If the mean pixel

value in a region of interest is, for example, used as feature for example and

its value is affected by noise in the current time step, then calculating its me-

dian value considering the last time steps will improve the classification result.

More sophisticated temporal features are Histograms of Spatiotemporal Gradients

(STHOG) [RCPH12] or Local Binary Pattern (LBP) histograms from three or-

thogonal planes (LBP-TOP) [ZAMP12]. These features typically work best with

a short temporal context of ten or less time steps [RCPH12].

The combination of several features is usually done by concatenating the descrip-

tors of several time steps. This way, a new descriptor of much higher dimen-

sionality is generated containing the temporal information. To avoid the curse of

dimensionality, this fusion has also to be done in short temporal context. With this

temporal descriptor, standard classifiers such as k-NN or SVM can be trained and

are expected to achieve more robust results than without temporal context. In addi-

tion to the high dimensionality of the descriptor, one big drawback is the fixed size

of the descriptor which is mandatory for the application of most parametric classi-

fiers such as SVM. A more flexible way of feature fusion is possible for the Naı̈ve

Bayes classifier. Therefore, the features have to be conditionally independent. This

can be achieved by using Principal Component Analysis (PCA), which results in

pairwise independent features, or by applying Independent Component Analysis

(ICA). It is assumed that each feature has its own probability distribution model.

For the current time step the likelihood of each feature can be calculated. When

using Naı̈ve Bayes, the posterior probability that a sample belonging to a specific
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class is then given by the product of the prior probability and all likelihoods. This

also means that not all features have to be considered: if a feature is of bad quality,

its likelihood can be excluded from the product, which is an easy way for on-line

adaptation of the descriptor. Furthermore, there are posterior probabilities for each

class available after each time step.

4.1.3 Temporal Fusion on Decision Level

For fusion on decision level, not only the classification result of the current time

step but also the results of several time steps in the past are considered to make

a temporally more stable decision. If a SVM in the current time step decides for

class A but decided for class A in two and class B in four out of the last six time

steps, a simple voting approach would decide for class B in the current time step,

too, as the voting result would be 4:3. The main advantage of this method is that

considering a longer history will not affect the runtime in comparison to feature

level fusion. Furthermore, the curse of dimensionality is not a problem as well.

This kind of fusion can be applied easily for all kind of classifiers. The combina-

tion of several fusion approaches coming from different fusion levels is possible,

too, and could be a way to combine short term history as used on feature level

and long term history on decision level. However, such concepts are still to be

implemented and evaluated.

5 Conclusion

Utilizing temporal information for video surveillance is a very promising ap-

proach. It is well-known from multi-object tracking that problems appearing in

single images such as occlusions or split and merged object detections can be

solved well with appropriate tracking algorithms and strategies. This idea can

be used for other machine vision tasks, too, such as object detection and seg-

mentation. Several methods were presented and discussed in this report with a

focus on remote surveillance. Some experiments using real UAV surveillance

data showed convincing results. Furthermore, concepts were presented for ob-

ject recognition and classification with temporal context. Future work will include

the implementation and evaluation of these methods using the UAV data.
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Abstract:
During a deflectometric inspection, the size of an object or the complex-

ity of its shape may prevent one from capturing the whole surface with a
single measurement or with uniform resolution. Selecting sensor configura-
tions manually is a tedious task and not trivial for complex shaped surfaces.
We introduce a greedy planning procedure which iteratively finds the next
best sensor configuration with respect to an optimality criterion based on un-
certainty. We show possibilities to decrease the runtime by considering the
locality of the measurement and the sparse representation of the surface.

1 Introduction

Visibility is a general problem of visual inspection tasks. Especially in deflectom-

etry, where the test object is part of the measurement mapping and can only be

observed indirectly. Depending on the size of the pattern generator only small re-

gions of the test object may be observed. E.g. the viewing area on convex shaped

objects decreases with increasing convex curvature because the light rays, when

observed from the camera, expand. Therefore a set of measurements has to be

made and subsequently fused together. The difficulty here is to select appropriate

sensor configurations (i.e. position and orientation of the display and camera) for

the deflectometric sensor. Manually choosing sensor configurations is not trivial

and for complex shaped objects it is a time consuming task.

We investigate an automatic determination of sensor configurations for the deflec-

tometric inspection task. I.e. we assume that a reference surface is given (e.g. in
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Deflectometric Measurement System

Bayesian Estimator

DelayPlanning Component

Gk

pk
pk−1

θk

Figure 1.1: Planning takes place in a loop. At time step k a sensor configuration

θk is chosen based on the current estimation of the surface. This leads to a new

measurement, which in turn is used to update the estimation pk.

form of a CAD model) and the test object has only small deviations from it. Then,

we choose a sequence of sensor configurations, also called a plan, which covers

the whole surface with high accuracy.

The planning procedure is executed in a loop, see Fig. 1.1. In every time step

a local measurement is made and used to update the current estimation of the

surface. We choose a probabilistic representation of the surface because it al-

lows fusing new measurements using Bayesian inference and the consideration of

measurement noise. The updated estimation is used by the planning component

as a basis for choosing the next sensor configuration. For that, an optimization

problem is solved with a criteria of maximizing the information gain of the next

measurement. An optimal planning algorithm would consider the whole planning

horizon. However, due to its complexity, we consider only the information gain of

the next measurement. For this reason the introduced planning procedure is called

greedy. In literature this is also called next best view planning, see for instance

[WDAN07],[DBF09] or [DF09].

The remaining part of the report is divided as follows. In section 2 we briefly

review the deflectometric measurement process and formulate the problem of sur-

face reconstruction from deflectometric measurements with a given reference sur-

face as a regression problem. In section 3 we present the surface representation

and a Bayesian regression model for estimating the surface. The planning proce-

dure is described in section 4 and an accelerated version in section 5. Finally in

section 6 we show the acceleration rate of the fast algorithm compared to the naive

algorithm in a simulation test case. We conclude with a discussion in section 7.
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2 Measurement model

Figure 2.1: This figure shows the inverted deflectometric light path of a ray from

the camera pixel (u, v) to the display (red arrows). A deflectometric measurement

provides a mapping l(u, v) from camera pixel to display points (green arrow).

In this section we briefly introduce the deflectometric measurement model. For a

more detailed description we refer to [Wer11]. We assume that a reference surface

is given (e.g. in form of a CAD model) and the test surface differs slightly from it.

A typical deflectometric setup consists of a specular test object, a camera and an

LCD. The LCD shows a sequence of patterns which encodes every single pixel.

Due to the nonlinear shape of the test object the camera observes deformed images

of the pattern. Through a decoding process (e.g. phase-shift method) a mapping

between camera pixel and LCD pixel can be established. It can further be used to

deduce measured gradients of the surface.

Fig. 2.1 shows a ray path from a camera pixel reflected on the test surface towards

the LCD. If the measurement model is calibrated (i.e. position and orientation of

the camera and LCD as well as the intrinsic parameters of the camera are known)

the direction of the vector s is known. After a measurement the mapping from

camera pixel to LCD pixel in form of the vector l can be determined through the

decoding process. The vector sr of the outgoing ray can be calculated from the

mapping vector l and the vector s. For the measured normal we get the relation

n̂ =
ŝr − ŝ

‖ŝr − ŝ‖ with ŝr =
l − s

‖l − s‖ , (2.1)

where a hat over a vector x means that it is normalized x̂ = x
‖x‖ . Because the

length of s is generally unknown (the intersection point x̃ with the surface is un-

known) only a set of possible normals along the ray can be determined [Bal08].

However, assuming that a reference surface is given, we can use it to approximate
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the length of s. This solely works when the measured surface deviates only slightly

from the reference surface.

Finally we get the gradient of the intersection point x̃ with

gx̃ =

(
n̂1/n̂3

n̂2/n̂3

)
,

where n̂1, n̂2, n̂3 are the components of the normal in Equation (2.1).

Thus, we can formulate the problem of estimating the surface height as a regression

problem. Each measurement provides a set of gradients of specific points of the

surface which serve as the training data.

3 Probabilistic Surface Representation and
Inference

We consider a probabilistic planning approach, therefore we need an estimation

procedure which is able to specify an uncertainty of the estimate. In [RB12] we

formulated the problem as a Gaussian Process Regression problem and then ap-

proximated the Gaussian Process with a parametric model. Here we will derive

the model directly by assuming a parametric model from the beginning.

Before we begin with the derivation of the inference method we have to introduce

some notation. Let X = (x1, . . . , xm) be a sequence of elements and φ(x) an

arbitrary function. Then we define φ(X) := (φ(x1), . . . , φ(xm))T as the column

vector which results by applying φ to every element of x and stacking the results

together. This definition contains also the following cases: If φ(x) ∈ R
d is a

column vector, then φ(X) ∈ R
m·d is a column vector. If φ(x) ∈ R

1×d is a row

vector, then φ(X) ∈ R
m×d is a matrix.

We use a standard Bayesian Linear Regression model and express the surface as a

function of the form

f(x) =
m∑
i=1

αiφi(x), (3.1)

where φi(x) are appropriate basis functions weighted by αi. With the definitions

Φ(x) = (φ1(x), . . . , φm(x)) and α = (αi, . . . , αm)
T

we can also write (3.1) in

matrix-vector form as f(x) = Φ(x)α. The weights are modeled as a random

variables and have a prior distribution

α ∼ N (μα,Σα) .
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Note that we will sometimes refer to the function f itself as a surface and to f(x)
for arbitrary x as function values or surface height values, interchangeably.

Let the training data D = (X ,Q) be given which consists of measured gradient

values Q = (q1, . . . , qn) and corresponding positions X = (x1, . . . , xn). The

measured gradients are assumed to be the surface gradients superimposed with

additive noise:

qi = ∇f(xi) + ρi.

The observation noises ρi ∼ N (0,Σρi
) are considered to be Gaussian and inde-

pendent. The joint distribution of the noise ρ := (ρ1, . . . , ρn)
T is Gaussian with

zero mean and a covariance matrix with block diagonal elements equal to Σρi . We

will denote this covariance matrix with ΣN .

For what follows we introduce the notation f� := f(X �) and gX := ∇f(X ) + ρ.

We aim to calculate the predictive distribution p (f� | X �,D) of unknown values

f� on positions X �. This gives us a distribution over a discretized surface.

The joint distribution of gX and f� is a Gaussian distribution(
f�

gX

)
∼ N

((
Φ(X �)μα

∇Φ(X �)μα

)
,

(
K11 K12

KT
12 K22

))
,

where the individual elements of the covariance matrix are block matrices and

derived as follows:

K11 = Cov {f�, f�}
= Cov {Φ(X �)α,Φ(X �)α}
= Φ(X �)ΣαΦ(X �)T

K22 = Cov {gX ,gX }
= Cov {∇Φ(X )α+ ρ,∇Φ(X )α+ ρ}
= ∇Φ(X )Σα∇Φ(X )T +Cov {ρ, ρ}+ 2Cov {∇Φ(X )α, ρ}︸ ︷︷ ︸

=0

= Φ(X )ΣαΦ(X )T +ΣN

K12 = Cov {f�,gX }
= Cov {Φ(X �)α,∇Φ(X )α+ ρ}
= Φ(X �)Σα∇Φ(X )T +Cov {Φ(X �)α, ρ}︸ ︷︷ ︸

=0
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= Φ(X �)Σα∇Φ(X )T .

The marked terms in the derivation above are zero because it is assumed that the

noise ρ is independent of the weights α. The predictive distribution is obtained

by dividing the joint distribution with p(gX = Q). This is a standard Gaussian

operation and we get the following expressions for the expectation and covariance

matrix of p (f� | X �,D):

μ� = Φ(X �)μα +K12K
−1
22 (Q−∇Φ(X �)μα)

Σ� = K11 −K12K
−1
22 KT

12.

4 Planning

In the previous section it was shown how to estimate a surface given a set of

measurements. Now we consider the automatic selection of sensor configurations.

We want to find a sequence of sensor configurations which is optimal in the fol-

lowing sense. First we define a reward function which measures the goodness

of one measurement. The goodness of a plan is then measured as the sum of

all rewards obtained from all its measurements. Because this optimization is

very sophisticated, we approximate it by only considering the first term, i.e. we

make a greedy approximation. This leads to a recursive computation of the plan.

At time step k sensor configurations θ1:k are already planned and their corre-

sponding measurements D1:k are fused together to yield the predictive distribution

pk(f
�) := p (f� | D1:k). This distribution summarizes approximately all informa-

tion about the measurements. The next sensor configuration is obtained by solving

a greedy optimization problem

θk+1 = argmax
θ∈Ω

g(pk, θ), (4.1)

where g is the reward function. This optimization may still be hard to compute,

because it might have too many local maxima depending on the current estimation

probability pk.

In the first subsection we define the reward function. Its evaluation may take too

long depending on the inference method and the number of pixels on the camera.

Therefore we also discuss possible approximation methods.

In the second subsection we study the parameter space Ω. We choose a

parametrization which considers the reference surface and allows obtaining good
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starting values. Furthermore this parametrization also allows a partial discretiza-

tion of the sensor configuration space which assures not to get stuck in local

maxima.

4.1 Reward Function

One way to obtain the goodness of a sensor configuration θ given an estimation

pk of the surface, we have to first simulate the corresponding deflectometric mea-

surement (this yields gradient data) and than update the estimation to yield a hy-

pothetical next estimation p̃k+1. The variance of this distribution compared with

the variance of the current estimation pk is defined as the reward

g(pk, θ) = Var {pk} −Var {p̃k+1}

and is also called the information gain. This value is always positive because intu-

itively measurements lead to information which always reduce the variance. This

is also known as the ”information never hurts” principle. Generally it is possible

to use other uncertainty criteria than the variance like the entropy of pk, see for

example [WDAN07]. The complexity of a single evaluation of the cost function

depends on the number of camera pixels and evaluation points X �. The evalua-

tion points should be chosen in such a way that the surface is adequately covered.

An approximation of the reward function may be obtained by approximating the

deflectometric simulation. Only a small amount of rays could be traced. This re-

duces the simulation and also the inference effort because less data is given for the

inference step.

4.2 Sensor Configuration Space

The sensor configuration of a deflectometric sensor system consists of the position

and orientation of the camera and the display. Further possible parameters are in-

trinsic camera parameters like focal length and aperture. But we will not consider

them here and assume them to be fixed. With a given reference surface the follow-

ing parametrization of the sensor configuration can be chosen (see also Fig. 4.1

for an illustration):

• The first parameter is a focus point x0, lying on the reference surface. This

point serves a twofold purpose. First we pose the constraint that the optical

axis of the camera intersects this point. Thereby we ensure that the camera

will at least observe one point on the surface. Second we define a frame



46 Masoud Roschani

Figure 4.1: This figure depicts the sensor configuration, i.e. the focus point x0

with the attached frame and the camera as well as the LCD.

on the focus point which characterizes the intrinsic properties of the refer-

ence surface. The remaining parameters will be parametrized relative to the

frame. This allows an invariant positioning of the sensor regarding transla-

tion and rotation of the surface. The frame is chosen such that its x-axis is

the normalized gradient, the z-axis is the normalized normal of the surface

at the focus point and the y-axis is chosen such that it is orthogonal to the

other axis.

• The camera is parametrized by its elevation and azimuth angle and the dis-

tance to the surface regarding the focus point. The remaining free parameter

is a rotation about the optical axis of the camera.

• The position of the display is parametrized by spherical coordinates and its

orientation in Euler coordinates. Compared to the camera the display is

not constrained. This is necessary to ensure that the displayed pattern can

always be captured by the camera.

We will often split the sensor configuration into two parts, i.e. the focus point

component x and the remaining parameters θ̃x ∈ Ω̃ and write θ = (x, θ̃x).

We propose a partial discretization of the sensor configuration space by choosing

the focus point component only from a finite set of points on the surface, see

Fig. 4.2 for an illustration. The optimization in Eq.(4.1) can be reformulated and

solved as a two-layered hierarchical algorithm. In every time step the lower layer

determines the optimal remaining sensor configurations θ̃�x for all focus points by
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x0

Figure 4.2: The sensor configuration set Ω is partially discretized by choosing the

focus point component from a finite set. The figure depicts the focus points as

balls distributed on a grid.

solving θ̃�x = argmaxθ̃∈Ω̃ g(pk, (x, θ̃)). (Note that θ̃�x depends also on the time

step which is dropped here for clarity.) It also yields the optimal information gain

that can be obtained on every focus point for that particular time step. Based on

the solution of the lower layer the higher layer chooses the sensor configuration

with the largest information gain. This procedure is depicted in Algorithm 4.1.

Algorithm 4.1 Naive Greedy Optimization

for all time steps k = 0 . . . T do
for all focus points {xi, i = 1 . . . N} do

gi, θ̃
�
i ← maxθ̃ g(pi, (xi, θ̃))

end for
θk+1 ← (xi, θ̃

�
i ) with maximal gi

pk+1 ← forward simulation and inference with θk+1

end for

5 Speeding up greedy planning

Algorithm 4.1 recalculates the information gain for the focus points in every time

step. This can be very time consuming if the surface is very large. There are two

properties which make it possible to speed up the planning process. The first one

is the already mentioned ”information never hurts” principle which, in our case,

more formally states that we have the following inequality

g(pk, θ) ≥ g(pk+1, θ), ∀θ ∈ Ω. (5.1)
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In words, the information gain of a measurement with any sensor configuration θ
decreases as time goes by. With the above inequality we could use the information

gain from the last time step as an upper bound for the current time step. But only,

when the sensor configuration is constant. However, in our case, we might get

another sensor configuration for the same focus point x at every time step.

The other important property is the fact that for every focus point x we choose the

remaining configuration so that the information gain is maximal, i.e. we have

g(pk, (x, θ̃
�
k)) ≥ g(pk, (x, θ̃)), ∀θ̃ ∈ Ω̃, (5.2)

where θ̃�k is the optimal configuration chosen for focus point x at time step k.

Together we can deduce

g(pk, (x, θ̃
�
k)) ≥ g(pk, (x, θ̃

�
k+1)) ≥ g(pk+1, (x, θ̃

�
k+1)). (5.3)

The first inequality is due to (5.2) and the second inequality due to (5.1). Inequality

(5.3) states that the information gain calculated for the focus point x on time step k
can be used as an upper bound for the successive information gains on x (although

the sensor configuration parameter for a focus point may change at every time

step).

This insight can be used in an optimization algorithm, depicted in Algorithms 5.1

and 5.2. In a first step all information gain values for all points are computed

(Initialization). The algorithm maintains the information gain values as a priority

queue. We differentiate between two types of values: upper bounds, taken from

the previous steps or exact values, calculated with g(p, θ). In every time step we

choose the sensor configuration with the highest value from the queue. If it is an

upper bound we calculate the real value and put it back in the queue. We repeat

this process until a sensor configuration with a correct value is chosen. This sensor

configuration is selected. Afterwards a new information gain is calculated and the

new sensor configuration is put back to the queue.

Algorithm 5.1 Initialization

L ← [ ]
for all focus points {xi, i = 1 . . . N} do

gi, θ̃
�
i ← maxθ̃ g(pk, (xi, θ̃))

L ← (gi, (xi, θ̃
�))

end for
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Algorithm 5.2 Plan Generation

for all time steps k = 0 . . . T do
(g, (x, θ̃�)) ← element with maximal information gain from L
while g is upper bound do

g, θ̃� ← maxθ̃ g(pk, (x, θ̃))

Insert (g, (x, θ̃�)) into L
end while
θk+1 ← (x, θ̃�)
Insert (g, (x, θ̃�)) into L
pk+1 ← forward simulation and inference with θk+1

end for

6 Experiments

We compared the naive optimization method to the optimization method with

bounds in a simulation test case. The test object is a 600mm × 600mm region

extracted from a sphere with radius 1400mm. The camera is modeled as a pin-

hole camera with 640 × 480 pixel. The resolution of the display is 1920 × 1080
pixel. The focus point component of the sensor configuration is discretized to 16
values, which are spaced evenly on a 4 × 4 grid. The total number of planning

steps is 16. Fig. 6.1 shows the resulting statistics of the planning procedure. Fig.

6.1(a) depicts the number of optimizations plotted against the focus points. It can

be seen that the number of optimizations ranges from minimally 2 to maximally 5.

A histogram of the number of optimizations is given in Fig. 6.1(b). For compari-

son, the naive method optimizes all focus points in every planning step. Therefore

it executes 16 optimization per focus point during the whole planning procedure.

The total complexity reduction is up to 3 to 4 times.

7 Discussion

Summarizing, we have shown a greedy planning algorithm which automatically

determines sensor configurations for the next measurement. For this purpose the

information gain, measured as the variance reduction, of the next measurement

is used. We have shown that the information gain calculated for a focus point x
on the surface can be used as an upper bound for the information gain of future

measurements. This can be used to speed up the optimization up to 3 to 4 times.

The greedy algorithm provides a fast broad covering of the surface but does not
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(a) (b)

Figure 6.1: This figure shows the result statistics of the number of optimiza-

tions executed on the focus points during planning. ((a)) shows the number

of optimizations plotted against the focus points, ((b)) shows the corresponding

histogram.

incorporate future measurements. Considering them could improve the total num-

ber of measurements needed to measure the surface. This should be investigated

in future work.
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Abstract:
Optical imaging under water represents an unresolved problem until to-

day. Poor visibility, blurred images and a minor signal-to-noise-ratio are
the consequences of absorption, scattering and marine-snow dominating the
properties of water. In order to inspect underwater infrastructure like dam
walls or offshore wind farms image enhancement or image restoration is cru-
cial. In this technical report a model for underwater light propagation is de-
rived. The presented model has the ability to describe many effects on image
degradation in underwater imaging, e.g. low contrast, brightening, decrease
of signal-to-noise-ratio and color-shift.

1 Introduction

Offshore wind farms, dam walls and other infrastructure facilities underwater are

usually inspected manually by human divers. The disadvantages of this approach

are well known: It is dangerous, expensive, time consuming and does not even al-

low complete assessments. Consequently it is necessary to automate the inspection

under water. This requires imaging sensors that are able to detect the infrastruc-

ture and their inherent defects. Optical imaging sensors benefit other sensors in

one crucial point: The resulting images are intuitive evaluable by the human ob-

server. However, these sensors provide hardly usable results under water. The

high wavelength-dependent light absorption and scattering as well as disturbing

suspended particles produce a decrease in contrast, blurred and noisy images.
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Figure 1.1: These images were captured in a catchment lake. Image quality de-

grades with the distance to the object. Only few meters unter water surface, details

of underwater buildings can be inspected hardly (right image).

1.1 Problems of underwater imaging

The poor visibility under water is mainly caused by absorption, scattering and

particles. Each cause produces specific image degradations.

Absorption The energy of the light field reduces gradually by the water and its

inherent particles. A light beam that is emitted into water decreases contin-

uously. This results in low image intensities, high exposure times and in the

need of intense illumination.

Scattering Light rays are scattered by water and its inherited particles, i.e. they

change their direction stochastically. Two different imaging effects were

caused by scattering. At the one hand light rays were fanned, which results

as blurred images. At the other hand ambient light is scattered into the

direction of the camera. Thus, the contrast decreases with the distance to the

object.

Particles Particles under water are often denoted as marine snow. Parts of scene

objects are covered by such particles. Particles within water diminish the

signal-to-noise-ratio (SNR). For all image restoration tasks the SNR limits

the possible quality of restored images. As a last consequence the density of

particles in water determines the capabilities of optical underwater imaging

systems.
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1.2 Contribution

This technical report presents a derivation of a model for the underwater imaging

process. The derived model is able to describe many image degradation effects

caused by wavelength dependent absorption and scattering. Section 2 gives a short

insight into radiance quantities and mechanisms of light transportation. In section

3 the model is deduced and compared with another model of image processing.

2 Elements of Radiative Transfer

For understanding the derived Model of light transfer and imaging process, some

physical quantities and light interaction mechanisms have to be explained first. The

quantities described here, are in detail the radiant flux, the irradiance, the radiant

intensity and the radiance. Relevant mechanisms of light interaction under water

are absorption, scattering and reflection [Mob94, Ish78, Cha60].

2.1 Radiometry – Quantities

Radiant Flux: The radiant flux Φ is the measure of radiation power passing a

surface. Its unit is Watt [W ]. If the surface equals to a sphere around a light

source, the corresponding radiant flux gives the emitted power of the light

source.

Irradiance: The quantity of irradiance E describes the density of radiant flux Φ
per area element dA. Thus, irradiance can be written as

E =
dΦ

dA
,

with its unit
[
W
m2

]
.

Radiant Intensity: Whereas irradiance is the density of radiated power related

to an area element dA, radiant intensity I is the density of radiated power

related to a solid angle element dω. Therefore, radiant intensity can be

defined as

I =
dΦ

dω

with its unit
[
W
sr

]
, where sr denotes the unit of a solid angle.
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Radiance: Another quantity of radiometry is the radiance. It gives the best asso-

ciation to a single light ray at a certain position in a certain direction. The

radiance L is the area-projection of the density of power coming from an

area element dA radiated into a solid angle element dω.

L =
d2Φ

dA dω cos(θ)
,

where θ denotes the angle of the direction of the light ray referring to the area

element dA. The relation between radiance, irradiance and radiant intensity

can be described by

L =
dI

dA cos(θ)
L =

dE

dω cos(θ)
(2.1)

2.2 Radiometry – Light Interaction Mechanisms

Absorption: Absorption is caused by annihilation of photons of the radiance

beam and conversion of radiant energy to non-radiant energy. The change in

radiance while crossing a volume element due to absorption is proportional

to the incident radiance.

dL = −aL

The proportionality factor a is called absorption coefficient.

Scattering: A photon can be deflected by a particle into directions diverging from

origin direction. This process is called scattering. Scattering of a light ray

with direction r′ into direction r can be defined as

β (r′ → r) =
dI(r)

E (r′) dV
,

where dV denotes a volume element of scattering medium. The quantity

b =

∫
Ω

β(r(ω)) dω (2.2)

is called scattering coefficient. Here r(ω) denotes the direction of light ray

corresponding to the solid angle ω ∈ Ω. The relation between radiance and

scattering can be described by

dI(r) = dV

∫
Ω

L(r′)β(r′ → r(ω)) dω (2.3)
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Reflection: Reflection is the change of direction of a radiant beam on a surface.

The bidirectional reflactance distribution function (BRDF) describes the out-

going radiance L(r) with respect to the ingoing irradiance E(r′). If the sur-

face is lambertian the BRDF is constant with respect to the directions of the

radiant beam, the BRDF is then called reflectance coefficient ρ.

3 Concept

In this section the model of imaging under water will be explained. First of all the

scene and its setup will be described, then the model will be derived.

3.1 Geometric Scene

xxxxx

object surface

d(x)

o

z(x)

Figure 3.1: Illustration of the

geometric scene

In the derived Model of underwater imaging

the scene consists of two different coordinate

systems. The world coordinate system lies in

the three dimensional space R
3 an contains

scene objects as well as the model of the cam-

era. The image plane, subset of R2, contains its

own coordinate system. The camera is mod-

eled as pinhole camera, with the projection

center o. Therefore, the imaging process is a

case of projective transformation.

The coordinate, henceforth referred to as x ∈
R

2, lies in the image plane and denotes the po-

sition of the pixel of camera sensor. xw ∈ R
3

denotes the coordinates of the point x in world coordinates. The sight line corre-

sponding to x is the line in R
3 containing the projection center o and the point xw.

If this line intersects object surfaces the intersection point with the least distance

to the camera is denoted as z(x). This point is unambiguous. The set of points

z(x) represents a two dimensional manifold embedded in the three dimensional

space R
3. The distance from the projection center to the imaged object surface is

denoted as d(x) = ‖o− z(x)‖.
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3.2 Radiometric Scene

LLLLLL((((xxxxx))))))
L(λ)
z (x)

E
(λ
) (x
)

Illumination

o

ρ(λ)(x)

Figure 3.2: Illustration of the radio-

metric scene

The irradiation on the surface z(x) is de-

noted by E(λ)(x), where λ is the wave-

length of the irradiance. The surface is

assumed to be lambertian, thus, the re-

flectance properties of the surface can be

described by the reflactance coefficient

ρ(λ).

The spectral surface radiation L
(λ)
z (x) de-

notes the radiation referring to the wave-

length λ at point z(x) with the direction
o−z(x)

‖o−z(x)‖ . The line composed of the sur-

face point z(x) and the direction
o−z(x)

‖o−z(x)‖
is equal to the sight line through xw.

3.3 Derivation of the model

This section describes the derivation of the presented model. It is partitioned into

two parts, the direct component and the indirect component

Direct Component

First of all the direct component of underwater imaging process is described. The

direct component denominates the light ray which came from the surface point

z(x) and reach the image plane at the corresponding image point x without beeing

scattered. The direct component consists of radiance on a surface point z(x) pass-

ing the medium water. During the transition through the column of water it will be

attenuated by absorption and scattered into another direction. This attenuation can

be described by the Beer-Lambert law

L(λ)(x) = L(λ)
z (x) e−c(λ)d(x),

where c(λ) = a(λ)+ b(λ) is the sum of the absorption coefficient and the scattering

coefficient and is assumed to be constant over the field of view. The radiance

L
(λ)
z (x) on the surface point x is caused by the ambiance light near the surface

and the surface inherent reflection coefficient ρ(λ)x.

L(λ)
z (x) = ρ(λ)(x)E(λ)(x)
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Thus, the radiance L(λ)(x) on the image plane caused by the direct component

can be calculated by

L(λ)(x) = ρ(λ)(x)E(λ)(x) e−c(λ)d(x). (3.1)

Indirect Component – Backscattering

The indirect component or backscatter component of underwater imaging is the

part of light, which is scattered by the medium water at a scene point in the field

of view into the direction of projection center o.

τ
dτ

o

xw

dω

z(x)

dV

Figure 3.3: Backscattering of a volume element on sight line

In the following the radiance reaching the image point xw coming from volume

element dV (see figure 3.3) will be discussed. Applying the Beer-Lambert law

leads to

dL(λ)(x) = L(λ)(τ)e−c(λ)τ .

From (2.1) and (2.3) it follows that

dL(λ)(x) = L(λ)(τ)e−c(λ)τ

=
dI(λ)(τ, r)e−c(λ)τ

dA

=
dV
∫
Ω
L(λ)(r′)β(λ)(r′ → r(ω)) dω e−c(λ)τ

dA

= dτ

∫
Ω

L(λ)(r′)β(λ)(r′ → r(ω)) dω e−c(λ)τ

Assuming a spatial constant ambient illumination, this leads with (2.2) to

dL(λ)(x) = b(λ)k(λ)e−c(λ)τ dτ.

Hence, integrating over τ gives the backscattering component

L(λ)(x) =

∫ d(x)

0

b(λ)k(λ)e−c(λ)τ dτ =
b(λ)

c(λ)
k(λ)

(
1− e−c(λ)d(x)

)
. (3.2)
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Radiance Model

Because of linearity of light transportation all light components can be added to

the total radiance on the image plane. Summation of equation (3.1) and (3.2) leads

to the overall radiance Model

L(λ)(x) = ρ(λ)(x)E(λ)(x) e−c(λ)d(x) +
b(λ)

c(λ)
k(λ)

(
1− e−c(λ)d(x)

)
. (3.3)

Imaging Process

Now the imaging process will be regarded. Irradiation incide the camera on sensor

chip at x cause an electric potential on a camera sensor pixel u depending on

the wavelength dependent sensitivity Λ(λ). The potential generated by radiation

is collected over an area A(u) and a time slice [t0, t0 +Δt]. This leads to the

imaging process

g(λ)(u) =

∫ t0+Δt

t0

∫
A(u)

∫
Ω(u)

Λ(λ)L(λ)(xw, r(ω))cos(θ(x, ω)) dω dx dt,

(3.4)

where θ(x, ω) is the angle of incident light beam on the sensor chip surface.

Assuming a pinhole camera model, constant incident radiation on a pixel u and a

static scene over the time interval [t0, t0 +Δt] the equation in (3.4) reduces to

g(λ)(u) ∝ L(λ)(x)cos(θ(x)). (3.5)

Thus, equation (3.3) and (3.5) leads to

g(λ)(u)

cos(θ(x))
∝ ρ(λ)(x)E(λ)(x) e−c(λ)d(x) +

b(λ)

c(λ)
k(λ)

(
1− e−c(λ)d(x)

)
. (3.6)

3.4 Discussion of the Model

In many image processing tasks [HST10, LLW08] the process of imaging is

described with a simple signal model

g(x) = s(x)t(x) + α · (1− t(x)), (3.7)

where s(x) is the signal, t(x) is a function depending on x with t(x) ∈ [0, 1] and

a constant α. Associating the image g(x) from (3.7) with the cosine calibrated

image
g(λ)(u)
cos(θ(x)) from (3.6) both signal models are equal. Hereby, the signal can
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be described as s(x) = ρ(λ)(x)E(λ)(x), t(x) = e−c(λ)d(x) and α = b(λ)

c(λ) k
(λ).

Thus, many mechanisms of image processing, laplacian soft matting for example

[LLW08], can be taken into account for underwater image processing.

Range dependent loss of contrast

The intensity of the signal s(x) decrease exponentially with the distance to the

imaging projection center. Where the backscatter component increase up to a

constant value dependent on the properties of water

lim
d(x)→∞

ρ(λ)(x)E(λ)(x) e−c(λ)d(x) = 0

lim
d(x)→∞

b(λ)

c(λ)
k(λ)

(
1− e−c(λ)d(x)

)
=

b(λ)

c(λ)
k(λ).

This causes a loss of contrast, related to the distance of imaged object surface. As a

consequence signal-to-noise-ratio decrease with the distance to the imaged object.

At the other hand the decrease of signal intensity and the increase of imaged

backscatter component can be used to estimate the distance to the object surface.

On positions x, where the signal is close to zero, only the backscatter component

is imaged. With the knowledge of the water properties, the distance to the object

can be calculated very easily.

3.5 Color-Shift

Another effect on underwater image degradation is the occurring color-shift. In

most underwater images the results are very bluish or greenish. This is caused by

the wavelength dependent absorption a(λ) and scattering coefficient b(λ) of water.

The absorption coefficient of red components of light spectra are quiet higher, than

the absorption coefficients of blue or green components, thus the imaged results

are bluish. In turbid water the absorption of blue components of light are decreased

by algal or mineral particles, and therefore the images are greenish. The deeper

the object, the fewer the red amount of natural light reaches the object surface. As

a consequence of these, artificial lighting will be indispensable at greater depths.

4 Conclusion

In this technical report an imaging model for optical underwater systems was de-

rived. The model bases on physical laws and is able to describe many of the
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phenomena of image degradation of underwater imaging, e.g. color-shift, loss of

contrast, brightening and increasing signal-to-noise-ratio. It is shown, that the

model equals to the model of soft matting and other image models, thus, methods

like laplacian soft matting can be adapted to underwater imaging.

Otherwise, the model can be used for different tasks in image processing, e.g.

image restoration, depth estimation and estimation of water inherent properties.
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Abstract:
In this technical report, details for extending the Object-Oriented World

Model (OOWM) to an open-world modeling approach by adaptive manage-
ment of its background knowledge are proposed. In general, a world model
can serve as a central component in autonomous and cognitive systems for
integrating, storing and disseminating information about an observed envi-
ronment. Thus, a world model creates an abstract, simplified representation
of an observed real-world domain. For allowing high-level information pro-
cessing on a semantic layer, representations of real-world entities can be se-
mantically enriched by domain models. In general, a domain model contains
only a fixed number of a priori defined concepts from a closed world. How-
ever, in many real-life applications, the considered environment is not closed.
For coping with changing environments, a cognitive system must be equipped
with an adaptive world model able to adjust to an observed open environment.
This technical report proposes details on how the OOWM can be extended for
adaptive world modeling by continuously evaluating the quality of its domain
model in comparison to observed information.

1 Introduction

A world model provides a structured way to organize information that is available

about an environment of interest. Such information often is a prerequisite for those

systems and humans that, in some way, have to interact with or operate in that en-

vironment. A world model can support tasks like the generation of operational pic-

tures or the assessment of situations, thus allowing humans to make well-informed

decisions or enable autonomous system like service robots to fulfill their jobs. To
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Figure 1.1: Object-Oriented World Modeling. Real-world entities are observed by

sensors and the acquired observation information gets stored in the World Model

as information objects called representatives. In Background Knowledge, a priori

modeled concept classes for these objects are defined as well as static properties.

support such tasks, a world model has to handle different kinds of information,

like a priori knowledge about static properties of an environment of interest as

well as current data on dynamic properties acquired by sensor observations. All

this information has to be represented in a consistent manner, allowing to update

and fuse established information with new data. A proven solution to this tasks

of managing environmental information is given by the Object-Oriented World

Model (OOWM) [GHB08b], which has been successfully applied in domains like

autonomous systems [BKFB12b] or situation assessment [FB10b].

1.1 Object-Oriented World Modeling

The OOWM is a world model which represents environment information on real-

world entities in an object-oriented way. It constitutes a probabilistic data and

information fusion framework which is able to integrate observation information

from heterogeneous sensing systems with a priori information on a given appli-

cation domain. Designed as an information hub, the OOWM can provide higher

level processing modules, like situation assessment or action planing modules,

with consistently integrated information representing the current state of an ob-

served environment. For handling the different kinds of stored information, the

OOWM consists of the two components depicted in Figure 1.1. The dynamic

modeling part, called the World Model, stores acquired observation information

on the attributes of real-world entities, like their position and size. Observed enti-

ties are represented as sets of observed attributes AR := {A1, A2, . . . , An}, n∈N

called representatives. Each attribute observation Ai ∈ AR is represented by

a probability distribution pAi
(a) describing the degree of belief (DoB) in the
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observed value. For representing discrete attributes, i.e., nominally, ordinally

or absolutely scaled attributes, discrete probability distributions pdA : SA �→
[0, 1] with |SA| ≤ ∞ ,

∑
a∈SA

pdA(a) = 1 , are employed. Continuous attributes,

i.e., interval scaled or ratio scaled attributes, are represented by continuous dis-

tributions pcA : DA ⊆ R �→ [0,∞) with
∫
DA

pcA(a) da = 1, in most cases,

Gaussian mixture distributions. A priori knowledge about the application environ-

ment is modeled in the second OOWM component, the Background Knowledge.

This Background Knowledge results from a manual conceptualization process, in

which each relevant environment entity is modeled as an object-oriented concept

class C characterized by its set of concept attributes AC := {A1, A2, . . . , Am}.

These attributes are again represented by probability distributions pAc
(a). The con-

cept classes in Background Knowledge are organized in hierarchies H of concept

classes capturing the subclass relations of the modeled real-world entities.

1.2 Adaptive World Modeling

The Background Knowledge enables the OOWM to classify observed real-world

entities based on their attribute values, and, if needed, derive additional, yet un-

observed information. For this classification to work, representatives have to be

linked to concept classes, which in case of the OOWM is achieved by a proba-

bilistic classification mechanism associating representatives R to concepts C by a

conditional probability distribution p(C|R). The concepts in Background Knowl-

edge are modeled a priori and manually, and thus, only a limited and closed part of

the application environment can be considered. Yet, during OOWM operation, it is

possible to encounter unmodeled real-world entities, which in consequence, can-

not be classified according to the predefined concept classes. In order to cope with

such circumstances and allow for an open world modeling, an adaptive approach

for managing the information represented in the OOWM Background Knowledge

is necessary. The conception of such an adaptive approach to open world modeling

will be presented in this report. For adaptive modeling, methods for evaluating the

quality of Background Knowledge with respect to the representatives in the World

Model are needed. Besides judging the ability of Background Knowledge to ex-

plain the observed entities, procedures for adjusting Background Knowledge to the

observed world are necessary. In Section 2, an overview of concept learning and

approaches for the automatic generation of concept hierarichies is given and pre-

sented within in common notation formalism. Section 3 extends this formalism the

model evaluation of Background Knowledge and presents an approach to adaptive

open-world modeling for the OOWM as information management problem.
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2 Concept Learning and Taxonomy

In this section, an overview of existing approaches to concept learning and tax-

onomy generation is given. The presented approaches will be compared within

a common formalization. For this purpose, suppose that a number of entities

E = {E1, E2, . . . , Ek} is given, each of which is characterized by observed fea-

tures represented as a subset of attributes from A = {A1, A2, . . . , Am}. One goal

of the presented approaches is to group the entities in E into classes Ci ∈ C with

Ci ⊂ E . Another goal is to find a conceptual description for each created class Ci.

2.1 Learning from Examples and Concept Learning

The task of learning from examples, in contrast to learning from observa-

tions, can in general be described by being given a set of training data

{(Ā1, C
′
1), (Ā2, C

′
2), . . . , (Ān, C

′
n)}, where the Āi = [Ai1 , Ai2 , . . . , Ail ]

T with

Aij ∈ A represent the observable part of the data (here denoted as vector of at-

tributes in the common formalism) and the C
′
i represent a valuation of this data.

If a functional relationship between the Āi- and C
′
i -values is to be discovered,

this task is either called regression (in the statistics domain) or supervised learning

(in the machine learning domain) [Grü07]. The more special case where the C
′
-

values are restricted to some finite set C is called classification, or, in computational

learning theory, concept learning.

The classical approach to concept learning [Mit97] is concerned with learning con-

cept descriptions for predefined classes Ci of entities from E . A concept is re-

garded as a function mapping attribute values Āi of discrete attributes to a boolean

value indicating concept membership. In this case, the set of entities E is defined

by the outer product over the range of the considered attributes in A. Concepts are

described as hypotheses, i.e., the conjunction of restrictions on allowed attribute

values like allowing just one specific, a set of or any value for an attribute.

The task of classical concept learning consists of finding a hypothesis for each

class Ci that matches the training data. This task can be performed as a directed

search in hypotheses space by exploiting a preexisting ordering relation, the so-

called general-to-specific ordering of hypotheses. A hypothesis thereby is more

general than another if its set of allowed instances is a superset to the set of in-

stances belonging to the other hypothesis. Based on this ordering, several concept

learning algorithms have been developed, including the well-known version space

algorithm [Mit79].
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2.2 Numerical Taxonomy

The area of numerical taxonomy [Sok66] is a subfield to the research in taxon-

omy, the science concerning classification in general. It has been successfully em-

ployed in biological taxonomy for extracting and defining groups and hierarchical

relationships of biological organisms based on characteristic features [MS57]. It

was developed as an approach to generating non-subjective classification schemes,

which are based on well-described procedures, for tasks involving large numbers

of features intractable for manual handling.

The basic problem to be solved is the following: given a number of objects, which

are described by discrete characteristic features, a natural grouping of the objects

and a hierarchy of these groups is search for [Sok66]. Natural thereby means that

objects within the same group should be more similar to each other than objects

sorted into different groups - an objective shared with methods for cluster analysis.

Formulated within the common description formalism introduced above, the basic

problem of numerical taxonomy can be stated as follows: given a set of observed

entities E described by discrete attributes Ai ∈A, a structure H for hierarchically

ordering these observations into groups (or classes) Ci ⊂ E is searched for.

The approach taken by numerical taxonomy for solving this problem is presented

next. In a first step, pairwise similarity scores are computed for all entities to be

classified, based on discrete attribute values which represent their respective fea-

tures. For computing the similarity score, several correlation or distance measures

can be employed, which will be examined in detail below. As a result, a similarity

matrix can be plotted. A reordering of the objects at the matrix axes according to

their levels of similarity allows to create a first classification into ’groups’. A more

accurate classification, represented as a dendogram, can be reached by employing

hierarchical clustering algorithms. Several approaches to hierarchical clustering

exist, differing e.g. in design choices like

• how many entities can be contained in a cluster (pairwise vs. variable

grouping [SM58]),

• how the similarity of clusters is calculated based on their contained enti-

ties (single-linkage (minimum distance) vs. average vs. overall linkage

(maximum distance) [Sok66], or

• how the entities contained in a cluster are weighted in similarity calculation

(weighted vs. unweighted calculation) [SM58]).
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The general approach to creating a taxonomy of groups H := (CH
1 , CH

2 , · · · , CH
h )

with either CH
i ⊃ CH

j or CH
i ∩ CH

j = ∅ for i < j, as described in [SM58], con-

stitutes an iterative method which in each iteration creates a new hierarchy level.

Each iteration begins by sorting the pairwise similarities d(Ei, Ej) for all consid-

ered entities in descending order. Then, a cluster is created by joining the two

most similar entities into a group CH and continuously adding to this group those

entities being most similar (in average) to the entities contained in the group. This

goes on as long as adding an entity to the group does not significantly decrease

the average similarity of the group d̄(CH) :=
∑

Ei �=Ej∈CH d(Ei, Ej). If a signif-

icant decrease occurs, no more entities are added to the current group and a new

cluster is created with the two entities being pairwise next most similar, according

to the initial sorting, and filled as just described. An iteration ends when no more

new clusters can be created - this occurs when at least one of the entities of a new

cluster is already contained in another cluster created during this iteration. Which

decrease in overall similarity is considered significant depends on the application

domain and has to be determined empirically.

In the next iteration, each cluster CH
i is represented by a proxy entity subsum-

ing all its contained entities and a new similarity score is calculated for this

representative and all the remaining entities CH
j according to

d(CH
i , CH

j ) =

∑
Ei∈CH

i

∑
Ej∈CH

j
d(Ei, Ej)√

|CH
i |+ 2 · d̄(CH

i ) +
√

|CH
j |+ 2 · d̄(CH

j )
.

In the special case where CH
j is not a group but a single entity, the summand√

|CH
j |+ 2 · d̄(CH

j ) is set to 0. Then the iteration proceeds as described above.

Using a iteration-based grouping method allows for creating clusters that contain

more than two entities (called variable grouping). It furthermore allows to define

a clear notion of level for the resulting hierarchy in contrast to what results from a

pair grouping approach. A well-known special case for pair-based clustering is the

so-called Unweighted Pair Grouping Method with Arithmetic Averages (UPGMA)

[PAM01] method, a kind of agglomerative hierarchical clustering [HTF09].

Besides creating a taxonomy, the main aspect of numerical taxonomy concerns

determining the similarity of entities. Over time, a lot of different similarity scores

for comparing entities based on their attributes have been developed. These mea-

sures can be distinguished by either being pure association measures, which rate

similarity only based on which attributes are defined for entities (ignoring at-

tribute values), or by being correlation or distance measures rating similarity as

the degree of correlation between attribute values or as a distance between the

values. In addition, combined measures exist. Given the sets of attribute values
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Aj = {Aj1 , Aj2 , . . . , Ajnj
} ⊆ A and Ak for the entities Ej and Ek, the similar-

ity d(Ej , Ek) can be for example determined by using one of the following sim-

ilarity scores. [Cha07] analyzes these measures for use with probability density

functions.

1. Association measures:

• Matching Coefficient [SM58]

d(Ej , Ek) =
1

m
· ( | Aj ∩ Ak | + | A \ (Aj∪Ak) |

)
• Sørenson-Dice (e.g. [Maq03])

d(Ej , Ek) =
2 · |Aj ∩ Ak|
|Aj |+ |Ak|

• Tanimoto (e.g. [Maq03])

d(Ej , Ek) =
| Aj ∩ Ak | + | A \ (Aj∪Ak) |
m + | (Aj∪Aj) \ (Aj∩Am) |

2. Correlation measures:

• Product-moment correlation (used in [SM58])

d(Ej , Ek) =
m ·∑ aijaik − ∑ aij

∑
aik√

m ·∑ a2ij − (
∑

aij )
2
√
m ·∑ a2ik − (

∑
aik)

2

3. Distance measures:

• Normalized Euclidean Distance (used in [RS65])

d(Ej , Ek) =
1√
m

·
√ ∑

i=1,...,m

(aij − aik)
2

• Canberra Distance (e.g. [Maq03]):

d(Ej , Ek) =
∑

i=1,...,m

|aij − aik |
|aij | + |aik |

4. Combined Measures:

• General Similarity Coefficient (Gower, cited in [PAM01])

d(Ej , Ek) =
1∑

i=1,...,m δijik
·
∑

i=1,...,m

δijik ·
(
1 − |aij − aik |

|SAi
|
)
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3 Concept Learning as Information Management

After reviewing methods and approaches from literature and related work for rat-

ing the similarity of attributes and entities as well as creating hierarchies in Sec-

tion 2, this section now is concerned with how to put such methods to use adaptive

world modeling. The approach presented below considers extending the OOWM

Background Knowledge by learning new concept definitions as an information

management problem. Within this approach to adaptive management of model

knowledge, several subtasks have to be addressed. One important subtask is the

evaluation of the quality of the knowledge model, reflecting how well OOWM

Background Knowledge is able to represent the entities so far observed in the real

world. If model quality is insufficient, Background Knowledge has to be adjusted

and extended as necessary. Model adjustment and extension are the two other im-

portant subtasks of adaptive world modeling. These subtasks include the creation

of new concept classes as well as adjusting the attributes and attribute values of

existing concepts and their hierarchical organization.

In this report, the main focus for adaptive world modeling will be set on the model

evaluation task dealing with the problem of how to evaluate the quality of OOWM

Background knowledge with respect to the real-world information observed to this

point of time. Since the primary purpose of OOWM Background Knowledge is

to allow a classification of observed entities, i.e., a mapping of representatives

to concept classes, the correspondence of a priori modeled knowledge to repre-

sentatives is a main factor for rating OOWM knowledge quality. In addition to

this classification related correspondence, the complexity of Background Knowl-

edge, reflecting how specific or general the represented knowledge is, constitutes

a second influencing for model evaluation. Thus, the parameters determining the

quality of Background Knowledge in this approach are the set of representatives

R, including all observed attributes AR, as well as the set of concept classes C in

Background Knowledge and the probabilistic association p(C|R) of each repre-

sentative R∈R to a concept C ∈C. For a measure Q(·) rating the overall quality

of OOWM knowledge, all these parameters have to be taken into account.

3.1 Criteria for Model Evaluation and Adaption

When rating the quality of a model for explaining given data, different criteria or

principles can be employed for selecting one model over another, for example the

Bayesian Information Criterion [Sch78]. For implementing a measure of model

quality in adaptive world modeling, an approach based on the principle of Mini-

mum Description Length (MDL, e.g. [Grü07]) was chosen. MDL aims at selecting
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models which allow to represent observed data with a description of minimal en-

coding length by extracting regularities from the data. These regularities, when

formalized into models, can then be used to represent the data in a compressed

way by only describing the deviations of observed data from the model and, ad-

ditionally, the model itself. A simple approach to this principle is crude MDL

as presented by [Grü07]. Here, a two-part term L = L(D|M) + L(M) deter-

mines the description length L of a model M for given data D. The first term

L(D|M) in crude MDL specifies the description length needed to represent the

data D based on the model M , and the second term L(M) specifies the descrip-

tion length of the model. Following this general idea of crude MDL, a measure

for rating the model quality of OOWM Background Knowledge can be designed

according to Q(R, C) = L(R|C) + L(C), where the concepts C in Background

Knowledge constitute the model and the representatives R in the World Model

depict the so far observed real-world data. In this measure, the term L(C) rates the

complexity of OOWM Background Knowledge, and the term L(R|C) specifies

the correspondence of observed representative information to modeled concepts.

Including model complexity in this measure implements a constraint used in many

kinds of classification tasks for preventing the model from overfitting to observed

information data during model adaptation. This allows to maintain the ability of

Background Knowledge for generalizing from observed information.

3.2 A Measure of Model Complexity

As one part of model quality, the complexity of Background Knowledge has to

be measured. The overall complexity of OOWM Background Knowledge L(C)
depends on the complexity of the set of modeled concepts: L(C) :=∑C∈C L(C).
Modeled concepts are rated to be more complex the more specific they are, which

depends on their attributes Ac∈AC : L(C) =
∑

Ac∈AC
L(Ac). A concept is thus

rated more specific the more attributes it is described with and the more specific

the description of each attribute is. As cumulative measure for rating OOWM

Background Knowledge complexity based on the DoB distributions of attributes

L(C) :=
∑
C∈C

∑
Ac∈AC

L (pAc(a))

results. The specificity of DoB distributions L (pAc
(a)) rates the concentration of

features to only certain values of the distribution support. As a specific measure,

Shannon entropy H(·) can be employed for this purpose. For discrete attributes

Ad, the Shannon entropy of the distribution pdA(a) is given by

H(Ad) = −
∑
a∈SA

pdA · log(pdA(a)) .
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As an information-theoretic measure, Shannon entropy is greater the less concen-

trated a distribution is. Assuming a limited support for the DoB distribution, given

by the set SA of attribute values, Shannon entropy H(Ad) can be employed to

rate attribute specificity according to L(Ad) = log(|SA|)−H
(
Ad
)
. This measure

explicitly accounts for the support of an attribute.

Besides discrete attributes, the concepts in Background Knowledge can contain

attributes with continuous DoB distributions pcA(a). For rating the specificity of

such attributes, the differential entropy

h(Ac) := −
∫
DA

pcA(a) · log(pcA(a)) da,

can be employed as a continuous variant of entropy. However, differential en-

tropy in some important properties differs from Shannon entropy, like being scale-

dependent and possible taking negative values. Furthermore, when discretized,

differential entropy does not converge to Shannon entropy in the limit. These

properties are undesired, e.g. when rating ratio-scaled attributes, which can be

given in different units of measurement, as well as making it difficult to calcu-

late the overall complexity of a concept as the sum of its attribute specificities.

To overcome these limitations, a quantization of continuous distributions can be

employed, based on defining a least decirnalbe quantum (LDQ) of information for

each attribute [BB12]. The LDQ of an attribute thereby characterizes the level

of precision at which attribute values are to be distinguished. For a continuous at-

tribute Ac, the quantized entropy H(Ac,ΔA) for the LDQ ΔA is calculated by first

discretizing the domain of Ac into bins of size ΔA and assigning each bin the prob-

ability mass portion of pcA(a) located within its extent. As result, a discrete attribute

AΔ with distribution pdAΔ(a) is obtained, which in turn can be used as a basis for

calculating Shannon entropy to rate the quantized entropy H(Ac,ΔA) := H(AΔ)
of the continuous attribute Ac. For rating the specificity of continuous attributes,

limits for the attribute domain have to be given in order to calculate the number of

bins resulting from the discretization of the attribute domain DA.

3.3 A Measure for Model Correspondence

Besides the complexity of OOWM Background Knowledge, the correspondence

L(R|C) of modeled concepts C and so far observed information, stored as repre-

sentatives R in the World Model, forms the second part of the proposed MDL-

based quality measure. This correspondence reflects the fact that the better ob-

served information can be explained by modeled concepts, the less description ef-

fort is necessary to store observation information. Therefore, the correspondence
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rating depicts the necessary description length. If a representative R matches a

concept class C in Background Knowledge, it can be described through this con-

cept. If not, it has to be described by using the best matching concept and, in

addition, its differences to the concept. An appropriate correspondence measure

can thus be given by

L(R|C) :=
∑
R∈R

∑
C∈C

p(C|R) · L(R|C) ,

which calculates the expected overall correspondence based on the matching of

all currently stored representatives R with all concepts C, weighted by their as-

sociation probability p(C|R). The matching L(R|C) can be rated based on the

attributes of a representative R according to

L(R|C) =
∑

Ar∈AR

wAcr
· L(Ar|Acr ) with Acr = Ā(Ar) ∈ AC

being the concept attribute corresponding to the observed attribute Ar, and wAcr

denoting a weighting factor that can differ for individual attributes. For ground-

ing this approach, a measure for the description quality L(Ar|Acr ) of a concept

attribute Acr for an observation attribute Ar must be specified. In the MDL-

approach taken, this measure should reflect how much additional information is

necessary for representing the observed attribute on the basis of the concept at-

tribute. For example, a deterministic observation value could be regarded as well

represented if it lies within the bulk mass of a concept distribution. If it does not,

its distance, e.g. to the mean, could be used to quantify the amount of additional

description needed for representing the attribute. In case of the OOWM, where

attribute values as described stochastically by DoB distributions, the attribute cor-

respondence L(Ar|Acr ) must constitute a function suitable for comparing prob-

ability distributions. If, in addition, LDQ quantization as presented above is em-

ployed, only discrete DoB distributions pdA(a) have to compared. For this purpose,

information-theoretic measures like the Kullback Leibler divergence

DKL(Ar||Acr ) =
∑
a∈Ar

pdAr
(a) · log

(
pdAr

(a)

pdAc
(a)

)

as well as cross entropy

H(Ar, Acr ) = −
∑
a∈Ar

pdAr
(a) · log

(
pdAc

(a)
)

can be employed. In addition, the probabilistic versions (e.g. [Cha07]) of the dis-

tance measures presented in Section 2 can be applied as well as a discrete overlap
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measure

Lo(Ar, Acr ) =
∑
a∈Ar

lo(a) ≤ 1

using a value-based comparison of DoB distributions according to

lo(a) :=

⎧⎨
⎩0 , if pdAr

(a) ≤ pdAc
(a)∣∣ pdAr

(a)− pdAc
(a)
∣∣ , otherwise .

For attribute correspondence, a measure should ideally assign a value close to

zero to each observed attribute which is largely located within the bulk probability

mass of its corresponding concept attribute. In turn, the assigned value should be

the higher, the more apart the two probability masses lie.

4 Conclusion

This technical report proposes a conceptual approach to adaptive open-world mod-

eling, which allows a world model like the OOWM to extend its a priori modeled

Background Knowledge as needed for representing information on observed real-

world objects. When applied in practice, the OOWM is likely to encounter entities

during operation which cannot be represented by a necessary limited, a priori de-

signed Background Knowledge. To cope with this limitation, an adaptive approach

able to manage the knowledge for representing an application domain is needed.

This approach has to adjust and extend Background Knowledge in accordance

with the entities the OOWM has observed so far. As the basis of such an adaptive

approach, the OOWM must be able to judge and evaluate how well suited its cur-

rent Background Knowledge is for representing all observed real-world entities. A

framework for evaluating model quality of Background Knowledge based on the

Minimum Description Length principle was presented in this report. In this frame-

work, model evaluation is based on quantitatively comparing attributes of entities

and concepts. Related work concerning numerically evaluating the similarity of

entities as well as the construction of entity hierarchies based on their similarity

was presented.

Future work will concern an evaluation and a proof of concept for the presented

framework by means of suitable examples. First results will be published in

[KB13]. In addition, conceptions for the tasks of adjusting and extending exist-

ing concept classes have to be established as well as an approach to managing the

hierarchy of concepts.
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Abstract:
Various surface inspection methods in computer vision rely on structured

lighting techniques for position encoding. While these methods benefit from
the rapid development in display technology and are well advanced in the vis-
ible spectrum, available technology is scarce outside the visible spectrum and
narrows down to special applications. Choosing the right part of the spec-
trum for a computer vision task is a system design parameter which allows to
emphasize or suppress specific optical properties of a material.

This technical report will highlight the challenges of applying structured
lighting techniques to the thermal infrared spectrum, which is primarily the
creation of the appropriate patterns in this spectrum. Apart from the familiar
effects in the visible spectrum, properties like self-emission, thermal diffu-
sivity and differing optical characteristics have to be taken into consideration
and demand for adaptations of the existing techniques.

1 Introduction

Inspection, measurement and reconstruction of surface geometries is one of the

most important fields in computer vision. Besides techniques based on range sen-

sors, triangulation by stereo vision is the most common method for determining

a 3D-position. Triangulation in stereo vision requires a surface to be acquired by

multiple cameras and to find corresponding points in the images to calculate their

3D-position. This requires a setup where the position of the cameras is calibrated

beforehand. Difficulties arise if the surface under inspection doesn’t show enough

features, thus making it difficult to find correspondences between the camera im-

ages. Coded structured light techniques circumvent this problem by replacing one
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of the cameras with a projector which projects a code pattern on the surface. The

code pattern or a sequence of patterns assigns each position in the projected image

an unique code and enables for an easy way to identify a position in the camera im-

ages. All surfaces exhibiting an at least partial diffuse reflection can be inspected

this way.

In contrast to the coded light techniques described above, the focus in this technical

report is on applications of the deflectometric inspection method. Deflectometry is

especially suitable for the inspection of specular surfaces. While it uses the same

coding techniques as structured lighting, in deflectometry the patterns are not pro-

jected onto the surface. Instead the camera observes the reflection of these pattern

on the surface under inspection. After decoding and evaluating the code patterns it

is possible to reconstruct the inspected surface, if the geometry of camera and dis-

played pattern is calibrated beforehand and some preconditions are met [Wer11].

The reason to choose deflectometry to demonstrate the use of thermal patterns for

position coding is the fact that the long wavelength thermal infrared spectrum is

beneficial for the application in deflectometry, but we will elaborate on that in the

next chapter.

We will start in the first chapter with characterizing the differing optical properties

which come along with the long wavelength infrared spectrum and outline some

essentials of infrared imaging. In the next chapter we will proceed to the con-

straints imposed by the spectrum and technology on the coded pattern generation

and interpretation. We will conclude in chapter four.

2 Infrared Spectrum

Considering an application for deflectometric inspection there are two wavelength-

dependent effects, which would favor the long wavelength of the thermal infrared

spectrum. We will outline the nature and achievable benefits of these effects in

the first section. Additionally, we will go into particulars about the differences

in camera technology one has to bear in mind when implementing coded light

techniques in the thermal infrared spectrum.

2.1 Benefits of longer wavelengths

First of all there are the wavelength-dependent differences in absorptivity, trans-

missivity, and reflectivity of materials themselves. While these effects are also
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Figure 2.1: Reflectance of different metals as a function of wavelength. With

increasing wavelength most metals become nearly fully reflective. (Source:

[Dan10])

used in the visible spectrum for optimizing a machine vision process, the differ-

ences are a lot more distinctive in the thermal infrared spectrum due to the con-

siderably higher wavelengths. This change in optical properties is most beneficial

for metallic surfaces. Especially their reflectivity increases significantly for longer

wavelength and whereas polished metals already exhibit good reflectivity in the

visible spectrum they become nearly perfect mirrors in the thermal infrared spec-

trum [Dan10] (Fig. 2.1). A better reflectivity obviously benefits the deflectometric

inspection and a lot of workpieces exhibit raw metal surfaces before finishing or

lacquering.

Another interfering optical property for the deflectometric inspection is the trans-

parency of a material. If on transparent materials the wanted reflection is overlaid

by the background and multiple reflexions the decoding of the patterns can fail.

In this case the use of the thermal infrared spectrum can be of use as well, since

materials like glass or several transparent synthetic materials lose their transparent

properties in this spectrum and become opaque 2.2. This effect, which can also be

attributed to the wavelength-dependency of optical properties, enables transparent

materials for deflectometric inspection.

Moreover, another effect leads to a further increase in reflectivity, as the scattering

of light on rough surfaces is also wavelength-dependent. On a rough surface this

effect is caused by its microstructure which is in the same order of magnitude as

the wavelength of the light. The ratio between the amount of the specular reflection
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(a) (b)

Figure 2.2: Images of a glass lens in the visible light spectrum between 400 −
700 nm (a) and in the thermal infrared spectrum between 8 − 14 μm (b). In the

visible spectrum the stripe pattern in the background is seen multiple times because

of internal reflections, while the thermal spectrum shows only the reflection on the

surface.

R compared to the amount R0 at a perfectly smooth surface can be described by:

R

R0
= e−(4πσ)2/λ2

+ c
σ4

λ4
, (2.1)

where σ denotes the mean square roughness of the surface, λ the wavelength of

the incident light and c is a constant dependent on the surface inclination and angle

of acceptance of the measuring sensor [BP61, HK05]. This indicates a significant

increase in reflectivity for longer wavelengths. Figure 2.3 illustrates this effect by

plotting the ratio R/R0 as a function of the surfaces mean square roughness σ
using a simplified version of Eq.(2.1), where the influence of sensor characteristic

and surface inclination is omitted:

R

R0
= e−(4πσ)2/λ2

.

It is shown that by using light of the far infrared spectrum (8 − 14μm) one can

obtain a specular reflection on surfaces with a mean square roughness one magni-

tude higher as it would be possible in the visible spectrum. This range of surface

roughness comes within the limits exhibited by many machined materials, which

makes the application of thermal infrared deflectometry viable for materials in

early production stages.

All in all enables the thermal infrared spectrum the deflectometric inspection of

many materials which are difficult to inspect in the visible spectrum, if at all

(a) (b)
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Figure 2.3: Ratio of the reflectances R/R0 as a function of σ, the mean square

roughness of the surface. The blue plot stands for the visible spectrum and the

red plot for the LWIR spectrum (8 − 14μm). The longer wavelength shows a

significant increase in reflectivity for the same surface roughness.

possible. A drawback of the longer wavelength is a loss in resolution when re-

solving small structures. But this limitation is of no consequence considering the

low resolution of thermal infrared cameras compared with cameras for the visible

spectrum.

2.2 Cameras for the long wavelength infrared spectrum

The thermal infrared spectrum can be divided into three spectral bands, whose

boundaries are defined by atmospheric windows. Only in these bands is the at-

mospheric absorption low enough to allow infrared radiation to pass. There is the

NIR band, adjacent to the visible spectrum, the MWIR band from 3−5μm and the

LWIR band from 8 − 14μm. As there is no broadband sensor technology which

covers all spectral bands at once, a camera with a specific sensor for each band

is necessary [Bud10, Dan10]. The most common camera technology are systems

based on microbolometers. These are basically sensors with single thermistor-

based pixels and are generally less expensive and easier to handle as comparable

sensor technologies. A drawback of microbolometer sensors is their fixed integra-

tion time due to their design, so the length of exposure can not be adjusted as it is
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common for conventional cameras. This has to be considered when implementing

systems with coded patterns for the thermal infrared spectrum.

Thermal infrared cameras usually provide a gray-scale-image where the intensity

of a pixel indicates the apparent temperature integrated over the field of view of

the single pixel. It is important to note, that this is only an apparent temperature,

as the camera internally calculates the real temperature Ttrue from the measured

exitance Mmaesured based on the Stefan-Boltzmann law:

Mmaesured = σT 4
rad = εσTtrue ⇒ T 4

true =
Trad

4
√
ε
,

with the Stefan-Boltzmann-constant σ. For that the emissivity ε has to be known,

as the camera can only observe the apparent temperature Trad which is the product

of real temperature Ttrue and emissivity ε. This dependency can be exploited to

create specific gray values in a thermal infrared image. While keeping a pattern

at a constant temperature, the apparent temperature can be modulated by creating

patterns from materials with different emissivity. Another method is to use the

spatial coverage with emissive material for modulating the apparent temperature.

As a single camera pixel integrates over structures below its resolution, a fine

grained structured pattern below this resolution can be used to achieve this effect.

This effect is known as dithering and for example used for gray-scale-images in

newspapers where only one color is used for the print.

3 Pattern Codification

Conventional code patterns can be defined as two-dimensional images with a cer-

tain structure so that a set of pixels are easily distinguishable by means of a lo-

cal coding strategy. There are numerous of these coding strategies with different

approaches to enable a unique identification of positions in a pattern. A compre-

hensive survey is given in [SPB04]. They also establish a categorization of all

strategies into three basic classes based on the way the code is build (Fig. 3.1):

• Direct coding,

• Spatial neighborhood,

• Time-multiplexing.

We will pick up on this categorization and go into detail on each category, the

differences between them and their usability for the thermal infrared spectrum.
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(a) (b) (c)

Figure 3.1: Examples for different categories of coding techniques: (a) color pat-

tern for direct coding of the position, (b) resulting pattern of a De Bruijn graph, (c)

binary pattern sequence of a time-multiplexing method (Source: [SPB04]).

Direct coding describes coding techniques, where the entire information for a

unique identification of a pixel1 is represented in it. In the visible spectrum this

is usually realized by encoding employing color or gray values. Its advantage is

its simplicity, which allows to capture the whole code with a single image. But

its disadvantages often prevent its practical application. First of all the color or

gray value observed by the camera also depends on the color of the surface where

it is reflected or projected on. To compensate for the influence of the surface, a

reference image is necessary, which diminishes the advantage to capture the code

in a single image. Moreover, the distinction of color or gray values is very sensitive

to noise, what further narrows its usability.

Considering the use of direct coding for the thermal spectrum, one at first misses

the availability of colors for this spectrum. Colors would have to be especially

compounded from materials which exhibit a distinctive characteristic for each of

the infrared spectral bands. Furthermore, multi-spectral cameras for the thermal

infrared are scarce and considerably more expensive compared with cameras for

a single spectral band. Hence, color coding in thermal infrared spectrum is, de-

spite being possible, no attractive option. Using gray values for encoding is in

comparison a lot more viable encoding strategy. Patterns can be printed with a

material with high thermal emissivity onto a support material with low emissivity,

e.g. copper. Different gray values can be realized via dithering, thus an apparent

gray value can be modulated by the ratio of emissive to non-emissive surface area.

If the dithering-pattern is small compared to the cameras resolution, a homoge-

neous distribution of gray values can be achieved this way (Fig. 3.2). But even

if an application realizes direct coding in the thermal spectrum via gray-values

1We will consistently use the term pixel for a display point, even though most thermal display

technologies do not have quantized image points as monitors or projectors do.
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(a) (b)

Figure 3.2: Examples for a static code pattern for the thermal infrared spectrum

on a printed copper board (a). The imprinted color reveals its temperature due to

its high emissivity, while the bare copper exhibit near zero emissivity. By modu-

lating the ratio of areas with high and low emissivity by the use of dithering, even

gray values can be produced in the thermal image (b) while the whole pattern has

actually the same temperature.

or colors, it still has to face the intrinsic disadvantages of this coding technique:

noise-sensitivity and dependency on the spectral surface characteristics.

Spatial neighborhood categorizes all encoding techniques which use a single

unique pattern for encoding. The codeword for each pixel is contained in the

neighborhood of its surrounding pixels and the features usually consist of their

intensity and color. Every possible combination of surroundings for a pixel oc-

curs only once in the pattern, thus every position can be uniquely identified. As

these methods require a certain amount of pixels to compose a neighborhood, they

trade off lateral resolution against speed. For the lower resolution they gain the

possibility to capture the code in a single image. However, difficulties arise if the

neighborhood cannot be identified. Especially in an application in deflectometry

the code patterns often get heavily distorted, depending on the curvature of the

surface under test. Such scaling, inverting and distortion of the pattern results in

decoding errors if the algorithm does not fail completely.

If we take into account the use of spatial neighborhood methods in the thermal

infrared spectrum, the use of a single static code pattern is particularly beneficial.

As for the direct coding technique, the same restrictions to the use of color apply.

Therefore, spacial neighborhood methods with static gray oder binary patterns are

well-suited for the application in thermal infrared spectrum. But considering an
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application for deflectometric inspection, spatial neighborhood methods are in-

trinsically unsuited due to their susceptibility to pattern distortions, despite their

general suitability for realizing thermal code patterns. Moreover, it is less attrac-

tive to sacrifice lateral resolution for the coding method when using thermal cam-

eras, as the available sensor resolutions are way below the resolutions available for

cameras in the visible spectrum.

Time-multiplexing is the last and most common category of encoding tech-

niques. Techniques of this category distribute the code over a series of images,

which are successively displayed or projected. In this way they trade off the time

necessary to capture a whole code sequence for a high accuracy and robustness. As

each pixel obtains its own code, the full resolution of the display can be used and

there are usually no dependencies between neighboring pixels. Therefore, time-

multiplexing techniques are, up to a certain degree, resistant towards distortions

of their code patterns. Commonly used codes are binary codes (e.g. Gray-codes)

phase-shift-codes and their combinations. For deflectometric inspections phase-

shift-codes have become prevalent. They have the advantage to be insusceptible

towards blurring of the code pattern, which is significant in deflectometry, as the

camera is mostly focused onto the surface under inspection and the pattern in the

reflection is out of focus. As the name already implies, phase-shift-codes evaluate

the phase signal of a pattern sequence. The most common method is to use a sinu-

soidal pattern shifted multiple times and calculate the position of each pixel in this

pattern by the intensity values captured for the pixel [Wer11]. Following this, the

ambiguity of the phase signal has to be resolved, as the sine pattern repeats itself

and therefore offers multiple solutions for the positions. This is usually done by

capturing a second phase-shift-sequence with a different wavelength for the pat-

tern and, what is more, the whole procedure has to be repeated horizontally and

vertically as the pattern only encodes one dimension.

Despite their good suitability for the deflectometric inspection, is it challenging to

implement time-multiplexing codes for the thermal infrared spectrum. A single

static image of the pattern, which are mostly binary or gray-value images, can eas-

ily produced with techniques described above. But to produce a complete sequence

the pattern has to be exchanged, which requires a complex mechanical mechanism,

or has to be created dynamically by an thermal display. The main challenge in cre-

ating a dynamic display is the controlled transfer of heat to create specific patterns.

There is no technology like displays or LEDs for the thermal infrared spectrum,

which can instantly be switched on and off and available micro-mirror-technology

is not applicable to wavelength far beyond the visible spectrum. The only available

projector technology is military test equipment and not available for civil uses.



84 Sebastian Höfer

4 Conclusion

This technical report has given a brief overview over the benefits, which motivate

the application of deflectometry to the thermal infrared spectrum. From this appli-

cation arises the question, what position coding techniques are best suited for this

task. An assessment of the practicability for the implementation of the different

techniques was given, while focusing on an application in thermal infrared deflec-

tometry. In conclusion, the thermal infrared spectrum shows promising results for

a inspection of materials yet unamenable to deflectometry, with time-multiplexing

as the best suited coding technique. Nonetheless, the lack of available thermal dis-

play technology demands for further development in this area, before a practical

implementation is possible.
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Abstract:
Gaze analysis gives us detailed information on the visual attention of a

person. Further insights into the world of thought can be revealed and the
information can contribute to interest or intention deduction. That is why eye
tracking is extremely interesting for a variety of applications and different
research fields. Especially due to the usage of mobile unobtrusive eye track-
ers, experimental setups can stay closer to reality and eye tracking becomes
possible in settings where one didn’t imagine it to be realisable years ago.
But still, commercial off-the-shelf eye trackers do neither enable for 3D gaze
point computation nor have solutions for fully automated gaze analysis in en-
vironments with real 3D objects. In this article we show which information
mobile eye trackers need to deliver to make 3D gaze point computation on
real 3D objects in known environments possible. We also demonstrate how
this has been achieved for the Dikablis Wireless eye tracking system. We fur-
ther show real time processing of 3D gaze points for fixation determination
and an accuracy test to evaluate the developed algorithms.

1 Introduction

Gaze analysis is performed to find out about the visual attention of a user. Here the

following questions are of interest: What are the visually most interesting objects

in the scene? How often do special objects attract visual attention? In which order

are objects looked at? How intensively is a certain area inspected? The answers to

these questions make it possible to rearrange products in stores, change the layout

of user interfaces or adverts, analyse how people look at pictures, when they are

doing sports and analyse the gaze behaviour of people under stress in military

applications. Due to the usage of mobile eye trackers, people are not restricted in
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their movements any more compared to settings with stationary eye trackers, where

the head of the subject has to stay in some virtual head box to enable head tracking.

With mobile eye trackers people can move around freely, since the eye tracker

is worn as some type of glasses. This makes experimental setups more realistic

and enables gaze not only for analysis purposes but also for implicit and explicit

interaction in mobile applications or multi large-scale display environments where

mice and keyboard are not suitable. There, implicit interaction takes place when

the system observes a user freely viewing the environment. Gaze analysis is then

used to assist the user for example by providing meaningful information on one

of the displays. Furthermore eye tracking can be used for explicit interaction, e.g.

when buttons appearing on a distant display can be selected by dwell time.

In this paper we describe what is necessary for realising fully automated gaze

analysis in environments with 3D objects. We show in section 2.1 how the Dikablis

Wireless eye tracking system has been used to compute 3D gaze points. Section

2.2 describes how a 3D scan path is analysed for eye movements and section 2.3

presents a methodology for evaluating algorithms for eye movement computation

as well as results of a conducted accuracy test.

2 Gaze estimation in 3D environments

Gaze analysis generally consists of the following three sub-tasks:

• Eye tracking

• Gaze movement computation

• Fixation path analysis

First, the eye has to be tracked and the line-of-sight to be estimated. Gaze points

on complex 3D objects can only be computed with the line-of-sight. Knowing

the line-of-sight, its intersection with a 3D model of the environment results in

the 3D gaze point. The sequence of gaze points is further analysed for eye move-

ments, since raw gaze points do not necessarily refer to what a person is visually

processing. Only during fixations the visual perception of the environment takes

place. The eye movement path can then be analysed for visual attention using

different metrics as proposed by Goldberg and Helfman [GH10]. The following

sections will concentrate on gaze point and gaze movement computation in 3D

environments.
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2.1 The Dikablis Wireless eye tracking system

The Dikablis Wireless1 is a monocular eye tracker using an active sensor with an

infrared diode to observe the left eye of a person. Additionally a scene camera is

attached to capture the scene in front of the test person. A picture of the Dikablis

Wireless can be found in Figure 2.1(a). Both, scene and eye camera, can be rotated

to adjust the eye tracker to different head shapes. Together with the eye tracker the

person wears a battery and a sender clipped to a belt or worn in a waistcoat. The

images of the scene and eye camera are transmitted wireless to the eye tracking

notebook where they are processed. The eye tracking and a live tracking mecha-

nism, which tracks markers attached to the scene, is performed. The latter allows

the referencing of gaze data to the scene. This process is described in the next

section.

(a) Dikablis Wireless system (b) Marker of Dikablis life tracking module

Figure 2.1: The Dikablis eye tracker and an example of a marker used for

calibration and gaze computation with its virtual 2D plane.

2.1.1 Line-of-sight computation

The eye has different axes as can be seen in Figure 2.2. The optical axis is the

line intersecting the centre of rotation of the eye, the nodal point of the eye and the

pupil centre. The line-of-sight - or visual axis - is the line intersecting the centre

of the fovea and the nodal point of the eye. The visual axis is the one of interest

because its intersection with the environment results in the actual gaze point. For

1http://www.ergoneers.com/de/products/dlab-dikablis/overview.html
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more information on how eye trackers can compute the line-of-sight, we refer to

Guestrin and Eizenman [GE06].

Figure 2.2: Structure of the human eye and visualisation of the optical and visual

axis.

Unfortunately the Dikablis Wireless eye tracking software and most other equiv-

alents from other companies do not provide the eye position and the line-of-sight

vector. However, the Dikablis software contains a live tracking module which de-

tects different markers in the images of the scene camera. One example of such

a marker can be found in Figure 2.1(b). Sixteen different types of markers are

available and can be placed anywhere in the environment.

Each of the markers spans a virtual 2D plane in the 3D space with an x- and y-

coordinate. For example the coordinates (1,0) describe the upper right corner of the

black square of the marker visualised in Figure 16, the coordinates (1,1) resemble

the lower right corner. The virtual 2D plane rotates with the marker. This means

the 6 degrees-of-freedom for the marker’s virtual 2D plane are determined by the

marker’s position and rotation in the 3D space. The live data sent over TCP/IP by

the eye tracking software contains the intersections of the line-of-sight, computed

by the Dikablis eye tracking software, with the virtual 2D plane of each marker

detected in the image of the scene camera. If a marker is attached to a wall, the

marker’s virtual 2D plane coincides with the wall’s surface and an intersection of

the line-of-sight with a marker’s virtual plane can be interpreted as the gaze point.

If the scene is not only a wall but a complex 3D scene with objects whose surface

is different from a 2D plane, gaze computation using the Dikablis Wireless system

becomes more difficult. Assuming that the markers are distributed equally over

the scene somewhere between the objects, e.g. by using stands, and the position

and rotation of the markers is known, the intersections of the line-of-sight with

the detected marker’s virtual planes can be used to reconstruct the line-of-sight.
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Together with the calibration of the scene camera and an estimation of the eye

position relative to the scene camera, one intersection is enough to compute the

line-of-sight.

2.1.2 3D gaze point computation

For the computation of a gaze point at a special point of time the eye position, the

direction vector of the line-of-sight and a 3D model of the environment must be

available. We have manually created 3D models of different test environments and

developed software for importing the well-known OBJ data format. This allows

for having a 3D mesh of triangles which can be intersected with the line-of-sight.

The intersection in viewing direction closest to the eye is the wanted gaze point.

Knowing the information of the eye position, the line-of-sight and the gaze point,

eye movements can be computed. This is described in the following section.

2.2 Eye movement computation

To understand the visual perception of a scene, the two most important eye move-

ment types have to be considered: fixations and saccades. Fixations are the dwells

during which the gaze almost remains still and saccades describe the ballistic, rapid

eye movements between fixations. Visual perception of the environment is only

occurring during fixations [Tob10], when the field of view is imaged on the retina

by the optical system of the eye.

Scan paths of raw gaze points computed by the above described procedure do not

necessarily refer to what a person was attending, because gaze points are also mea-

sured during saccades when no visual processing takes place. The process of hu-

man visual perception takes place during fixations, when the gaze almost remains

still. This is why fixations are of much higher interest for attention detection than

raw gaze points. The ballistic jumps between fixations called saccades also tell us

something about the visual behaviour of a person. Since fixations and saccades are

recommended measures for user monitoring and the basis of further gaze analysis,

the next sections describe how we use two widely known algorithms for detect-

ing fixations and saccades from 3D gaze data: Velocity-Threshold Identification

(I-VT) and Dispersion-Threshold Identification (I-DT) [SG00].

2.2.1 Velocity-Threshold Identification (I-VT) in 3D

The I-VT is a fast and easily to implement algorithm. It is based on point-to-point

velocities given in pixels/s or ◦/s. If 2D gaze positions are given, as provided
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by normal eye trackers, the velocity is the spatial distance from one pixel to the

other multiplied by the frequency the eye tracker is delivering the data. When two

consecutive 3D gaze points, a last one and an older one, and the position of the eye

corresponding to the last gaze point are given, two visual axis from the eye to the

two gaze points can be computed as well as the angle included by these lines. This

angle multiplied by the frequency of the eye tracker results in the angular velocity.

After the actual spatial or angular velocity has been computed, the I-VT uses a

spatial threshold to compare this velocity to. If the actual velocity is greater than

this threshold, the last gaze point is assigned to a saccade otherwise to a fixation.

As long as points are assigned to a fixation the new fixation centre is computed as

the mass value of the gaze points belonging to the fixation. Optionally the I-VT

can be extended by a temporal threshold that describes the minimal duration for

fixations which is according to Rötting [Röt01] or Goldberg and Schryver [GS95]

around 100 ms. The advantage of using the 3D version of the I-VT is that its

threshold is independent of the distance between eye and gaze points.

2.2.2 Dispersion-Threshold Identification (I-DT)

The computation of the I-DT is based on the computation of the span of a set of

points. The necessary condition for a fixation is that the duration between the first

and last gaze point of a considered set is greater than a minimal temporal threshold

for fixations. This is the same condition as also described before for the I-VT. In

Figure 2.3 you see the computation of the span for a rectangle. This rectangle is

created as the bounding box of the considered 2D gaze points.

Figure 2.3: Computation of the span for I-DT.

The span is compared to a spatial threshold. If it is equal or smaller than the

threshold, further gaze points are added to the set of considered gaze points. If

it is greater, the temporal duration of the set is compared to the above described

temporal threshold. If this duration is not smaller, the set of points is marked to be

a fixation. The oldest gaze point is then removed from the set and the computation

starts from the beginning.

When 3D gaze points are provided, the span is to be computed by angles between

the visual axes to include the distance from the eye to the gaze points into the
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computation. Our adaption of the I-DT to its 3D version involves the creation of a

plane E as visualised in Figure 2.4. Therefore the mass centre of all 3D gaze points

m (green) is computed and used as point of support for E (grey). The vector from

m to the eye e, e−m, is used as normal for the plane E (red line), which can be

defined, assuming the x-y-plane of the 3D world coordinate system is horizontal,

by

E :

⎛
⎝x
y
z

⎞
⎠ = m+ s · r1 + t · r2, x, y, z, s, t ∈ R

with

r1 · (e−m) = 0

r2 · (e−m) = 0

r1 · (0, 0, 1)T = 0

r1 · r2 = 0

These equations ensure that r1 and r2 are orthogonal to each other, span E and

r1 is parallel to the x-y-plane. Afterwards the lines from the eye to each gaze

point are intersected with E and each intersection bi (black) is transformed into

the 2D coordinate system of E as shown in Figure 2.5, resulting in coordinates

b1 = (s1, t1)
T , . . . ,bB = (sB , tB)

T with B being the number of intersections.

Figure 2.4: Visualisation of the construction of plane E.
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Figure 2.5: Visualisation of the intersections in plane E and of the resulting

bounding box.

In the 2D coordinate system of E it is possible to compute the points p1E to p4E

as follows:

p1E = ((x1 + x2)/2, y2)
T

p2E = (x2, (y1 + y2)/2)
T

p3E = ((x1 + x2)/2, y1)
T

p4E = (x1, (y1 + y2)/2)
T

with 0 < i ≤ B and

x1 := min
i

si, x2 := max
i

si, y1 := min
i

ti, y2 := max
i

ti.

The points p1E to p4E are then transformed back into the 3D space to yield the

world points p1W to p4W . The span d is computed with

d = ∠(p3W − e,p1W − e) + ∠(p2W − e,p4W − e)

as the sum of the two angles between the vectors from the eye to p3W and p1W

as well as to p2W and p4W . By computing the span using angles, the threshold

for the span becomes independent of the distance between eye and gaze points.

The remaining computation of our 3D I-DT adaption is equivalent to the steps of

the 2D I-DT version.

In the following section a methodology for evaluation eye movement algorithms

is presented.
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2.3 Methodology for gaze movement evaluation

In Komogortsev et al. [KJKG10] the authors describe a way for evaluating the ac-

curacy of computed gaze movements. This procedure was also used to test the

developed gaze movement computation algorithms and refine their parametrisa-

tion described in section 2.2. Therefore a tool for generating fixation stimuli was

developed. It has the capability to show small coloured points on displays con-

nected to a computer for a specified duration of time. Around ten test persons have

been equipped with the eye tracker and instructed to look at the visualised points

while the scan path was recorded. The positions of the visualised points can be

used to compute ground-truth gaze points and these can afterwards be compared

to the recorded scan path using different scores. An image of the scene can be

seen in Figure 2.6(a). The shown frame was captured by the scene camera of the

head mounted eye tracker. Detected markers (see section 2.1) are coloured with a

bounding box and the gaze point projected into the image of the scene camera is

visualised as a red dot. Close to the red dot a white dot can be seen. This white dot

is the fixation stimulus - the point to be looked at. It can be seen that there is an

offset between the red gaze point and the fixation stimulus. This is because the eye

tracker was calibrated on the vertical monitor and the gaze overlay (red dot) com-

puted by the eye tracker is only accurate in the calibration plane. In Figure 2.6(b)

this is shown: The fixation stimulus is occluded by the visualised gaze point.

(a) Gaze on primary monitor (b) Gaze on secondary monitor

Figure 2.6: Images of the scene camera overlaid with marker detections (squares)

and gaze point (red).
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2.3.1 Qualitative and quantitative scores

The scores used for evaluation are some of the scores developed by Komogortsev

et al. [KJKG10]. Two important scores are the Average number of fixations (ANF)

and the Average fixation duration (AFD). The ground truth for the ANF and AFD

depends on the number of visualised fixation stimuli and the duration each stimu-

lus was shown. Therefore the ground truth can be estimated. Two other important

scores are the Fixation quantitative score (FQnS) and Fixation qualitative score
(FQlS). The FQnS describes the percentage of time in which computed fixations

are close to presented stimuli and is computed as follows:

FQnS =
correct fixation gaze points

total duration · data rate

The data rate is the frequency the used eye tracker delivers data, e.g. with 60 Hz.

The duration of a recorded scan path is the total duration. Gaze points assigned to

computed fixations which are close to the corresponding stimuli are summed up

in the correct fixation gaze points. Due to the definition a high FQnS is desirable.

In reality an FQnS of 100 % is not possible because of the spatial difference of

a visualised stimulus disappearing and reappearing at another position. The test

person first has to realise this jump in the peripheral field of view, then has to

compute a saccade to be able to fixate the new stimulus and then has to perform

this saccade. This takes around 200 ms plus the saccade duration. According to

Komogortsev et al. [KJKG10], where each stimulus was shown for 1.5 s, a FQnS >
70% is considered to be a good result.

In comparison, the FQlS only takes into account the times when fixations are com-

puted by the algorithm. Let fi be the position of the i-th computed fixation with

0 ≤ i ≤ I; Ji the number of single gaze points assigned to fixation i; gji,t the

position of a single gaze point computed at time t and having been assigned to fix-

ation i as gaze point number ji with 0 ≤ ji ≤ Ji; st be the position of the fixation

stimulus shown at time t and et be the position of the eye at time t. The FQlS is

then computed by:

FQlS =

I∑
i=0

Ji∑
j=0

∠(fi − et, st − et)

Hence, the FQlS describes the accuracy of the computed fixations. Due to this def-

inition a low FQlS is desirable, why the best value for the FQlS would be 0◦. This

would mean that each classified fixation perfectly matched the presented stimulus.
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A good fixation classification algorithm therefore should produce an FQnS above

70 % (when stimulus duration is 1500 ms) and a very low FQlS near to 0◦. Evi-

dently the last value also depends on the eye tracker itself and the quality of the

calibration. The used eye tracker has an accuracy of around 0.5◦. This means that

with a good calibration, values of around 1.5◦-2.5◦ would still be considered very

good results.

2.4 Evaluation of experiments concerning fixation computation

In the following sections the evaluation of the previously described algorithms is

presented. The I-VT in the original version and the version enhanced with the

threshold for a minimal duration for fixations are tested with thresholds between

5◦/s and 150◦/s in steps of 5◦/s. The third algorithm tested is the I-DT where

thresholds between 0.02◦ and 1.94◦ in steps of 0.06◦ are chosen. To visualise the

results, the ranges tested where mapped to the same scale by using range factors.

2.4.1 Average number of fixations (ANF)

15 points were shown for 1.5 s to 2.5 s during each experiment. It can further be as-

sumed that the stimulus was earliest looked at 300 ms after it changed its position.

Each point was fixated for about 1.2 s to 2.2 s. It is very likely that persons blinked

during longer visualisation times for single points. Due to that some of the algo-

rithms split one fixation into two or even more fixations although the same stimulus

was looked at. Therefore the resulting number of fixations ranges between 15 and

approx. 25 fixations. The results for the classification algorithms can be seen in

Figure 2.7 where it is observable that both I-VT versions can compute an average

number of fixations between 15 and 25 fixations. The I-DT algorithm computes

too high values for the ANF.

2.4.2 Average fixation duration (AFD)

As described above the average duration a fixation stimulus was visualised for was

around 2 s, but it was looked at in average for around 1.7 s. Again, when looking

at Figure 2.8, it can be seen that both I-VT versions produce this value for a range

factor between 17 and 19. The I-DT algorithm computes a lot of fixations as seen

by the ANF. This is also observable for the AFD since very short fixations are

computed.
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Figure 2.7: Results for the average number of fixations (ANF)

Figure 2.8: Results for the average fixation duration (AFD)

2.4.3 Fixation quantitative score (FQnS)

As visualised in Figure 2.9 the FQnS reaches a value of 70 % for both I-VT al-

gorithms. Values above 85 % are practically not possible since we need around

300 ms to fixate a new stimulus point which were shown in average for around

2 s. Both I-VT versions reach a value of 70 %, which is considered as good in
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Figure 2.9: Results for the fixation quantitative score (FQnS)

[KJKG10]. The I-DT algorithm gets closer to 70 % for the higher range factors

and might be getting even closer, but the range was limited for the evaluation.

This is going to be repeated with higher scale factors in future evaluations.

2.4.4 Fixation qualitative score (FQlS)

The values for the FQlS given in Figure 2.10, all reside in between 3.4◦ and 4.3◦

which is not a good result concerning accuracy. This can be explained by several

factors. First the live tracking of the markers and the online calibration are still

work in progress and therefore were not used during the experiments. Hence the

head position was nearly fixed during the experiments and the position of the left

eye was measured. Since the heads of the participants could still slightly move the

line-of-sight computation was not as accurate as if an online calibration using the

detected markers would promise to be. Additionally the results were averaged over

all participants and the eye tracking accuracy and calibration can be very different

according to different persons due to worn glasses or make-up. Nevertheless, for

some persons an average FQlS of 1.9◦ could be reached.

It can be concluded that the original I-VT and the slightly enhanced I-VT algo-

rithms with thresholds mapped by range factors between 17 and 19 can be used

for accurate fixation detection which is one of the most important issues for the

detection of visual attention.
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Figure 2.10: Results for the fixation qualitative (FQlS)

3 Conclusion

The more unobtrusive mobile eye trackers become, the more the demand for

gaze analysis in different applications will grow. Gaze analysis will also be used

in human-computer interaction to assist people when performing different tasks.

Therefore it is necessary to provide a framework covering all the steps needed for

automated gaze analysis in complex environments. In this article we have shown

the steps that have to be performed and what data we need from eye trackers to

realise fully automated gaze analysis. The presented adaptions of the fixation de-

termination algorithms are real-time capable and show good accuracy under cer-

tain conditions with the used mobile eye tracker. Future work will concentrate on

connecting different mobile eye trackers to the existing framework and realise im-

portant requirements of gaze analysis, e.g. 3D area-of-interest definition and gaze

metric computation.
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Abstract:
Simplified, a chromatic confocal triangulation CCT sensor encodes differ-

ent surface heights by different wavelengths. A height is measured by deter-
mining the corresponding wavelength of the optical signal. The CCT sensor
concept solves this task using a multispectral camera, which is a camera with
multiple channels, each characterized by a different optical filter. To mea-
sure the wavelength with high precision, these filters need to be optimized.
For this purpose a physical model is introduced, which describes the mul-
tispectral camera. Based on this model, merit functions are developed that
cover two aspects: increased resolution and statistical uniqueness of a mea-
surement. These merit functions can be used in a next step to optimize a set
of filters.

1 Introduction

This article is about how to optimize optical filters for a CCT sensor, which is a

new type of 3D sensor [TB12]. Optimized optical filters play a key role in the CCT

concept, because they mainly determine the measurement resolution. Figure 1.1

illustrates the principle optical setup of a CCT sensor. A polychromatic source is

split up into monochromatic light, each wavelength focused on a different height.

In combination with a surface, the optics assure that only light of the currently fo-

cused wavelength can reach the camera sensor (depicted as green light path). For

this article this is an important detail, because the optical signal on the camera is

known. The optical signal is assumed as a gaussian like shaped spectrum with a
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Figure 1.1: On the right, prototype of a CCT sensor. On the left, principle optical

setup of a CCT sensor with highlighted RGB line scan sensor. Important detail:

Only the green illustrated wavelength can reach the RGB sensor.

FWHM1 of a few nanometers. With this assumption, only the center wavelength

is unknown and shifts according the current surface height respectively. This sit-

uation simplifies the task of the multichannel camera sensor, which is reduced to

measure the center wavelength of the optical signal. The principle idea is depicted

in Fig. 1.2. Each signal with defined center wavelength causes a unique color co-

ordinate g(λ0). After an acquisition, the original surface height is deduced from

the measured color coordinates. Optimal optical filters will be able to measure the

center wavelength with high precision. The special feature of the proposed opti-

mization approach is to optimize all optical filters simultaneously. A multispectral

camera implicit span a multidimensional color space, which will be used to define

optimality.

The abstract is organized as follows: In section 2 a physical model is derived that

explains the camera acquisition process. In section 3 this model is used to define

merit functions for optimization calculations. The optimization itself is not part of

this report. Section 4 concludes with an outlook to future work.

2 Modeling of the Camera Sensor

2.1 Noiseless Forward Model

The objective of this section is to derive a mathematical model which explains a

measured grey value vector g = (g1, . . . , gn)

 as a function of the optical signal

1Full width at half maximum
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f1(λ) f2(λ) f3(λ)

s(λ0) (radiance)

λ

λ

g1

g2

g(λ0) → h0

g(λ1) → h1

g(λ2) → h2

g(λ3) → h3

g(λ4) → h4

λ0 λ1 λ2 λ3 λ4

color space

filter
signal

transmission

Figure 1.2: Measuring principle: A multichannel camera with optical filters

(f1, f2, f3) acquires a spectrum s(λ0, λ) which is centered around λ0. Each center

wavelength λ0 causes a unique grey value vector g(λ0) in color space. After an

acquisition the center wavelength can be deduced from the color coordinate g(λ0).
(partly taken form [TB12])

s(λ). The signal describes the spectral distribution of light s(λ − λ0), which is

shifted towards a center wavelength λ0 (cp. Fig. 1.2). According to the optical

setup of the CCT sensor, this center wavelength λ0 is directly related to a certain

height.

The grey values of the multichannel camera are connected to four integrals which

describe the image acquisition process of a camera without regard to noise:

g ∝
∫
T

∫
A

∫
Λ

∫
Ω

q(λ)f(λ,p, α)s(λ)dΩdλdAdT . (2.1)

In detail an integration over the time T , the pixel area A, the wavelength range of

the camera Λ, and the solid angle of the grating Ω. The filter vector f(λ,p, α) =
(f1, . . . , fn)


 consists of optical transmission characteristics of each camera chan-

nel. These transmission properties depend on the wavelength λ, the incidence

angle α, and a parameter vector p. The parameter vector p determines the op-

tical behavior of the filters and will be optimized later on (e.g. p describes the

layer thicknesses of a thin film interference filter). The camera sensitivity or quan-

tum efficiency q(λ) has a spectral impact, too. Finally, the optical signal s(λ) as

radiance with spectral dependence is taken into account.

Using two assumptions, the model (2.1) can be simplified and extended. First of

all, the solid angle describes a cone with a perpendicular main axis to the filters.
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In this case, the solid angle can be expressed as:

Ω = 2π(1− cos(α))

∂Ω

∂α
= 2π sin(α)

Second, all variables have no time dependence. Using these assumptions the

camera model gets to:

g ∝
∫
Λ

(∫ αmax

0

f(λ,p, α)2π sin(α)dα

)
q(λ)s(λ)dλ ApixelTint. (2.2)

Equation (2.2) describes the dependence of g(λ) on λ and explains a grey value

vector for a given signal. However, the change of g(λ0) as a function of a shifted

center wavelength is of interest. An analytical model can be derived with the as-

sumption, that the shape of the spectral distribution of s(λ) keeps constant during

a change of the central wavelength λ0. Then the model can be expressed as:

g(λ0) ∝
∫
Λ

(∫ αmax

0

f(λ,p, α)2π sin(α) dα

)
q(λ)s(λ− λ0) dλ

=

(
s(λ) ∗

∫ αmax

0

q(λ)f(λ,p, α)2π sin(α) dα

)
(λ0), (2.3)

what is namely the noiseless forward model, which is used to explain the

measuring process of the camera.

2.2 Analytical Derivation of the Noiseless Model

During optimization it is necessary to evaluate partial derivations of the merit func-

tion. In principle, this can be done numerically or analytically, in which analytical

derivations lead to higher precision and faster computations [FT92]. For this rea-

son, analytical derivations of the noiseless forward model (2.3) are performed in

this section.

∂g(λ0,p)

∂λ0
=

(
∂s(λ)

∂λ
∗
(
q(λ)

∫
Ω

f(λ,p, α)2π sin(α)dα

))
(λ0)

∂g(λ0,p)

∂pk
=

(
s(λ) ∗ ∂

∂pk

(
q(λ)

∫
Ω

f(λ,p, α)2π sin(α)dα

))
(λ0)

=

(
s(λ) ∗

(
q(λ)

∫
Ω

∂f(λ,p, α)

∂pk
2π sin(α)dα

))
(λ0)

∂2g(λ0,p)

∂λ0∂pk
=

(
∂s(λ)

∂λ
∗
(
q(λ)

∫
Ω

∂f(λ,p, α)

∂pk
2π sin(α)dα

))
(λ0),
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with parameter vector p = (p1, . . . , pk, . . . , pm). The filter vector f(p, λ, α) =
(f1, · · · , fn) contains n filters and each filter can have an arbitrary number of pa-

rameters pk ∈ p. In the case of thin film filters, each parameter specifies a thick-

ness of a thin film layer. The corresponding refractive index is given by the peri-

odic change of high and low refractive indices. For thin film filters the analytical

derivative ∂f
∂pk

can be further specified [LM08],[FT92].

Up to here, one aspect of the signal processing used in the CCT sensor was not dis-

cussed. A change of a grey value vector should indicate a change of λ0. However,

g will change due to changes in intensity of s(λ), too (e.g. caused by changes in

reflectance of the measured surface). To avoid this behavior, the grey value vec-

tors are intensity normed by additional signal processing. Instead of measuring

absolute values, relative grey values are used. An overview of possible algorithms

can be found in [MJ12], however, the concrete implementation has no effect to

the optimization process. In the same paper [MJ12] it is shown, that changes in

g1

g2

g

0
0

∂gI
∂λ0

∂g
∂λ0

∂gC
∂λ0

Figure 2.1: Vectorial decomposition of grey value changes caused by intensity

and chromaticity changes. A detailed discussion can be found in [MJ12].

intensity are always towards the origin of the color space. This fact is used in the

following to subtract vectorial changes of ∂g
∂λ0

towards the origin. The result:

∂gC(λ0,p)

∂λ0
=

∂g(λ0,p)

∂λ0
− ∂gI(λ0,p)

∂λ0
(2.4)

=
∂g

∂λ0
−
(

∂g
∂λ0

)

g

g
g
g,
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is invariant to changes due to intensity changes. The index gC indicates that only

changes in chromaticity are of interest. The calculation of:

∂2gC

∂λ0∂pk
=

∂2g

∂λ0∂pk
− ∂

∂pk

⎛
⎜⎝
(

∂g
∂λ0

)

g

g
g
g

⎞
⎟⎠

=
∂2g

∂λ0∂pk
−

⎛
⎜⎝
(

∂g
∂λ0

)

g

g
g

⎞
⎟⎠ ∂g

∂pk

−

⎛
⎜⎜⎝
(((

∂2g
∂λ0∂pk

)

g +

(
∂g
∂λ0

)

∂g
∂pk

)
g
g

)
−
(((

∂g
∂λ0

)

g

)
2
(

∂g
∂pk

)

g

)
(g
g)2

⎞
⎟⎟⎠g

is straight forward.

2.3 Noisy Extention of the Model

In this section the forward model (2.3) is extended in terms of noise. The idea to

measure the wavelength λ0 by its grey value vector g(λ0) requires implicit, that

each central wavelength λ0 has a unique grey value vector. This situation gets even

worse, when g is modeled as random variable. To evaluate the uniqueness of two

separate grey value vectors the probability of a false classification will be regarded

in section 3.2. In high dimensional spaces the probability of false classification

can either be approximated or calculated numerically[DHS01]. To avoid heavy

numerical integrations an approximation is used. For this reason, a relatively rough

noise model is sufficient, namely the assumption of normal like distributed noise.

Fortunately, according to [J0̈5] all influences that contribute to noise in a camera

can be regarded as normal like distributed.

E{g(λ0)} = g(λ0)

Σ(g(λ0)) =

⎛
⎜⎝σ2(g1(λ0)) · · · 0

...
. . .

...

0 · · · σ2(gn(λ0))

⎞
⎟⎠

with g(λ0) = (g1(λ0), · · · , gn(λ0))



and σ2(g) = σ2
dark +Kg(λ0)
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Each camera channel is assumed as uncorrelated and the computation of the

variance 2.3 is proposed in [J0̈5]. The factor K depends on the chosen camera.

3 Merit functions for Filter Optimization

An optimization process requires a merit function MF : Rm → R which defines

optimality. During the optimization

argmin
p

MF,

the filter parameters p = (p1, . . . , pm)
 are adjusted to minimize MF, inter-

preted as costs. The optimality is defined in the multidimensional color space

that is spanned implicitly by the multichannel camera, each channel featured by a

separate optical filter. This approach allows to evaluate all filters simultaneously.

The purpose of optimization is to increase measurement resolution by optimized

filters. However, this is constraint by the additional condition of unique mapping

between a grey value vector g(h0) ↔ h0 and the corresponding height. The merit

function of section 3.1 can only be used to increase measurement resolution. In

contrast, the merit function of section 3.2 only optimizes the uniqueness. Finally,

in section 3.3 a merit function is proposed that covers both aspects simultaneously.

The CCT sensor is a 3D measurement system and the uncertainty of a measure-

ment system is as high as its worst working point. That is why minimax op-

timization is of general interest, because the maximum costs, which define the

sensor performance, need to be minimized. However, minimax optimization in

thin film synthesis is avoided due to the complicated way of optimization [FT92]

(p.106). Alternatively, the maximum operator can be approximated using the

infinite p-norm:

max
i=1,...,l

|MFi| = lim
p→∞ ‖MF‖p = lim

p→∞

(
l∑

i=1

|MFi|p
) 1

p

This dependence is used with slight changes. First of all, the finite sum is re-

placed by an integral and the exponent 1
p is neglected because it is only scaling

the result of the sum. In praxis, the infinity limes of p will be set to quite low

values. Due to fast increasing behavior of exponential functions, this is a sufficient

approximation:

min
p

max
λ0

MF ≈ min
p

∫ λmax

λmin

MF(p, λ0)
q dλ0, with 0 < q � ∞
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θin

θdiff

l

h(λ0)

Figure 3.1: Relationship between height h(λ0) and center wavelength λ0 using

the grating equation.

This approximation of the maximum operator has the advantage, that the merit

function is differentiable [FT92] (p. 107).

Another CCT senor specific aspect must be taken into account. The relation be-

tween measured height h0 and center wavelength of the signal λ0 is nonlinear (cp.

Fig. 3.1). A weighting function w(λ0) is necessary to increase the costs for wave-

lengths that are encoding the height with less vertical resolution. This function is

obtained according to the following considerations:

g(h0) = g(λ0(h0))

∂g

∂h0
=

∂g

∂λ0

∂λ0

∂h0
=

∂g

∂λ0

(
∂h0

∂λ0

)−1

.

To express everything as a function of λ0 is beneficial, because the previous results

of section 2 can directly be reused. The relationship of h0(λ0) can be obtained by

using the grating equation [Loe97]:

sin θdiff = sin θin +m
λ

d
, with m = 0,±1,±2, . . . ,

with incident angle θin, diffracted angle θdiff, order of diffraction m, and grating

period d. According to a geometric setup of figure 3.1, the relationship between

height h0(λ0) and center wavelength λ0 is given by:

h(λ0) = l tan

(
arcsin

(
sin θin +m

λ0

d

))
,
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with a distance l (grating surface to measurement plane). A change in wavelength

causes a change in height according to:

∂h(λ0)

∂λ0
=

1

cos2(arcsin(sin θin +mλ0

d ))

1√
1− (sin θin +mλ0

d )2

lm

d
,

where the fraction lm
d can be neglected, because constant factors don’t affect merit

functions. Finally the following weight function is defined, which has high values

in the case of a low sensitivity:

w(λ0) = cos2
(
arcsin

(
sin θin +m

λ0

d

))√
1−
(
sin θin +m

λ0

d

)2

∝
(
∂h(λ0)

∂λ0

)−1

3.1 Merit Function to Rate Measurement Sensitivity

Measurement sensitivity in this section is defined as the change of the grey value

vector due to a change in wavelength λ0. According to figure 2.1, only changes are

of interest, that are not caused by intensity changes. In this argumentation equation

(2.4), as derivative of the chromaticity portion in color space, can directly be used:

MF1 = −min
λ0

∥∥∥∥w(λ0)
−1 ∂gC(p, λ0)

∂λ0

∥∥∥∥2
2

. (3.1)

The minimum operator takes into account, that only the worst case is optimized.

In this case the working point λ0 with lowest sensitivity. Because the worst case

is indicated by minimal values, the weighting function w(λ0) is inverted and MF1

is negative, to be maximized during optimization. Furthermore, an exponent of 2

is chosen which simplifies derivations of MF (‖u‖2 =
√
u
u and ‖u‖22 = u
u

which is easier to derivate). Finally, the euclidean norm ‖.‖2 is used to valuate all

weighted partial derivations of gC.

Alternatively, without minimum operator, the merit function can be defined as:

MF2 =

∫
Λ

∥∥∥∥w(λ0)
−1 ∂gC(p, λ0)

∂λ0

∥∥∥∥−2q

2

dλ0, with 0 < q � ∞.

Consider the minus sign in the exponent, which is necessary to approximate the

minimum operator of equation (3.1).
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3.2 Merit Function to Rate Uniqueness

Each multidimensional color coordinate can encode a unique surface height and it

is not allowed to assign two or more surface heights to one color coordinate g(λ0).
This is even worse in respect of noise. Regarding two adjacent grey values gi and

gj there will be made a false assignment with a certain probability Perror. The

objective of this section is to derive a probability for false classification and use

this expression to design a merit function. Optimization with such a merit func-

tion will reduce the probability of false classification. In Section 2.3 a noisy grey

value vector was modeled as random variable with the assumption of a normal

like distribution. This model can be used to calculate the probability Perror(gi,gj).
According to [DHS01] (p. 46) it is not possible to express this probability analyti-

cally. Instead, the use of an approximation of an upper bound, namely the Chernoff
Bound or Bhattacharyya Bound is proposed. For our purpose the Bhattacharyya
Bound is sufficient and most suited due to its analytical closed form. The upper

bound of the false classification probability of two adjacent grey value vectors can

be approximated by [DHS01]:

Perror(g1,g2) ≤ 1

2
e−k , with (3.2)

k =
1

8
(μ2 − μ1)



(
Σ1 +Σ2

2

)−1

(μ2 − μ1) +
1

2
ln

det
(
Σ1+Σ2

2

)
√
detΣ1 + detΣ2

,

with the assumption of equal probabilities of occurrence P (gi) = P (gj) = 0.5.

To use equation (3.2) in a merit function it is necessary to establish a mechanism

to rate an error probability with respect to the distance � λ = λj − λi. It is

obvious that adjacent grey value vectors (� λ → 0) will have a maximum possible

error probability Perror(gi,gj) = 0.5. The easiest way to avoid this behavior is a

distinction by cases:

Perror(g1,g2) ≤
{

1
2e

−k

0 if |λj − λi| <� λneighbor

(3.3)

As merit function, just the maximum false classification probability of equation

(3.3) is of interest:

MF3 = max
λi,λj

{Perror(gi,gj)}

However, the distinction of cases in (3.3) is, on the one hand, not differentiable at

the point |λj−λi| =� λneighbor, on the other hand, the chosen boundary � λneighbor

is quite heuristic. The idea is to chose � λneighbor as high as noisy adjacent grey

value vectors don’t affect the optimization.
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3.3 Merit Function to Rate Measurement Uncertainty

Again, equation (3.2) is used to approximate the false classification probability, if

two grey value vectors have an overlapping probability density. Ignoring all other

grey value vectors beside gi and gj , the assignment gi → λi will be perfect with

a probability of U . However, according to Perror(gi,gj) = (1 − U) this assign-

ment will fail. The caused error � λij = |λj − λi| is regarded as measurement

uncertainty. The worst case of the solution set SU :

SU = {λi, λj ∈ Λ, Perror(λi, λj) = 1− U},

is the maximum uncertainty � λi,j , which characterizes the CCT senor. This can

be optimized using the merit function:

MF4 = Perror(argmax
�λi,j

SU ).

The costs are defined as the probability of false classification for two grey value

vectors with maximum distance � λi,j and Perror(� λi,j) = 1 − U . This

merit function covers both optimality criteria, measurement sensitivity and unique-

ness of a measurement. However, due to the maximum operator, the uniqueness

property is dominant.

4 Conclusion

A model for the multispectral camera of the CCT sensor is presented. It is used to

develop merit functions that can be used to optimize the measurement resolution

and measurement uncertainty. The model makes a few assumptions, which require

further investigations. Especially, the assumption of a signal with constant shape

is quite strict and a series of measurements needs to clarify, if it needs to be relaxed

again.

To evaluate the performance of the proposed merit functions extensive optimiza-

tion calculations are necessary. However, the optimization requires an additional

over all strategy, which needs to be developed first. E.g. lokal minima should be

handled with an adapted needle method, [LM08][FT92]. Further more, it must be

investigated if both optimization criteria (resolution and uniqueness) should be op-

timized simultaneous or successive. Finally, optimization results should be com-

pared with a global optimum, obtained by a complete search. Due to the amount

of optimization aspects, it is not possible to discuss the proposed merit functions

on its own.
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Abstract:
Mathematically, many non-trivial processes involving thermal or fluid

transfer can be described as distributed parameter systems. The evolution of
a system is governed by partial differential equations (PDE), constrained by
some boundary conditions. A computer simulation of such an Initial Bound-
ary Value Problem (IBVP) allows one to predict the state of the system at
different moments in time, and the comparison between the model and ob-
servations fixes the model parameters. However, both the prediction and the
measurement of a real process are prone to multiple types of uncertainties. In
this report we present a concept of the inverse uncertainty quantification for
a distributed parameter system, useful for identification and quantification of
the model uncertainties. First, we build a stochastic model of different types
of uncertainties. Next, we perform the sensitivity analysis in order to under-
stand their effects on the model and the measurements. Finally, we apply the
Bayesian inference in order to solve the ill-posed inverse problem of extract-
ing the model parameters and their errors. We illustrate the method with the
example of parameter calibration for a glass forming model.

1 Introduction

The computer simulation based on mathematical models now permeates every

branch of natural science and engineering disciplines. These mathematical models

are derived from physical laws in form of some mathematical equations, which

predict the observed values. Since all models are some abstraction of reality, there

are always some deviations between the predicted values and the measurements.
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These deviations are due to the lack of knowledge and the inherent variability,

which can be seen as uncertainties in the model. Uncertainty quantification is

the science of quantitative characterization of the uncertainties by using some

mathematical tools. For example, the parameter uncertainties in the model can

be expressed in terms of some probabilistic model. The model parameters are

understood as random variables and the uncertainty is the property of associated

probability distribution over their values.

One research topic in the field of uncertainty quantification is the propagation of

uncertainty (or propagation of error) which focuses on the influence of the para-

metric variability on the outputs. The goal is to evaluate the reliability of the model

outputs or assess the probability distribution over the outputs. Sensitivity analy-

sis is the study of the effects of parameter variation on system responses. Some

sources distinguish these two terms in the way that the sensitivity analysis focuses

on apportioned quantification of the impact from different inputs on the predicted

model, while the uncertainty analysis describes the entire set of possible outcomes

and generally makes no distinction between the different sources of uncertainties.

Another research direction is assessing the cause of the uncertainty given some

experimental measurement, or the so called inverse uncertainty quantification. It

identifies the cause of the output uncertainty and assesses the uncertainty of the

source. The goal of the inverse uncertainty quantification is to estimate or calibrate

the value of uncertain or unknown parameters of the model, which is also called

parameter calibration or parameter estimation. The other goal is the estimation of

the discrepancy between the experiment and the mathematical model called bias
correction.

In this technical report we explain the general concept of the inverse uncertainty

quantification for a distributed parameter system (DPS). Mathematically DPS is

formulated in terms of Partial Differential Equations (PDEs). The general concept

of statistical inverse problem for a linear DPS has been discussed in [Ja12]. The

concept is extended in term of inverse uncertainty quantification. We demonstrate

the inverse uncertainty quantification of a DPS by applying the method to the real

industrial glass forming process to calibrate the parameters in the glass forming

model.

This paper is organized as follows. In Sec. 2, the background for the uncertainty

quantification for the forward as well as for the inverse problem is presented.

Sec. 3 shows the application of uncertainty quantification with Bayesian approach

to the glass forming process. Conclusions and the directions of future works are

presented in Sec. 4.
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2 Uncertainty quantification of distributed
parameter systems

The word ‘uncertainty’ is widely used in many contexts from science and engi-

neering to policy and management. Each field has its own definition and typol-

ogy of uncertainties based on its purposes as can be seen in various references.

However, there is no commonly accepted understanding of the terminology and

typology of uncertainties. Accepting the modeller’s point of view, we assume

the general definition of uncertainty from [WHR+05] as it being any deviation
from the unachievable ideal of completely deterministic knowledge of the relevant
system.

In this technical report the emphasis is on the uncertainty in the DPSs, where the

spatio-temporal variability plays an important role. Such systems are common

e.g. in biotechnology, chemical engineering, advanced process engineering and

manufacturing. A distributed system can be mathematically modeled as an Initial

Boundary Value Problem (IBVP) consisting of a Partial Differential Equation or a

system of PDEs, Initial Condition (IC) and Boundary Condition. This IBVP can

be formulated in general form as⎧⎪⎨
⎪⎩

D (x(r, t)|θ) = s(r, t) (2.1a)

Dt (x(r, t = 0)) = h(r) (2.1b)

Dr (x(r ∈ ∂Ω, t)) = b(t) (2.1c)

where x(r, t) denotes the system state at time t at position r = [x, y, z]T ∈ Ω.

The inhomogeneous term s(r, t), the system state and its derivatives with respect

to time and space are related in (2.1a) by means of some differential operator D.

The dynamic behavior and the distributed properties of the system depend on the

parameters of the operator, collectively denoted with the vector θ.

In Eq. (2.1b) the operator Dt denotes a differential operator with respect to time.

The function h(r) describes the state x(r, t) at the entire space r ∈ [x, y, z]T

at the initial moment in time (t = 0). Similarly the Dr in Eq. (2.1c) denotes a

differential operator with respect to r. The function b(t) describes the state x(r, t)
at the boundary of the area r ∈ ∂Ω for any time t.

The solution of the IBVP is the entire distribution of the state x(r, t). From the

system theory point of view only some values can be observed, e.g. sensor mea-

surement at some points at some sampled moments in time. These observed val-

ues are defined as the system response or the system output. The mathematical
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interpretation of the system response is the operator R entering the output equation

ym = R (x(r, t)) (2.2)

2.1 Sources of uncertainty

The uncertainties are generally categorized as such due to the lack of knowledge or

the inherent variability. Furthermore, many authors attempt to further categorize

them (e.g. see [KO00], [LvBS+05] and [KD09]). Specifically for the DPS of Eq.

(2.1) and (2.2) we categorize the source of uncertainty as:

• Uncertainties in the model structure
A model is an abstraction of the system of interest. Partial differential equa-

tions (2.1a) contain some necessary assumptions. In addition, in order to

keep the model computable, many simplifications such as linearization of

nonlinear models are necessary. Sometimes the system of interest is so com-

plex that no exact structure of models is available. Therefore, the model

structure uncertainty always exists, even if all parameters in the model are

exactly known. This model structure uncertainty is related to the operator D
in the equation (2.1a).

• Parameter uncertainties
The parameter vector θ in the Eq. (2.1a) determines the behavior of the state

and the model outputs. Often it is difficult to determine the exact values

of these parameters, especially in distributed parameter system, where the

parameters could be inhomogeneous in the spatial domain Ω.

• Boundary and Initial condition uncertainties
The system of interest has to be separate from its environment. The identi-

fication of the system boundaries is not a simple task in general. Interaction

between the external excitations and the system state at the boundary is often

neglected. Both the system boundary in the spatial and in the time domain

and the initial state of the model are difficult to measure or determine ex-

actly. This leads to the uncertainty in the boundary condition and the initial

condition in Eq. (2.1b) and (2.1c).

• Measurement inaccuracies
The noise is alway present in measurements, which leads to variability of

experimental measurement. There exist also the systematic error. This leads

to the uncertainties of the measurement process in the model output Eq.

(2.2).
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• Algorithmic uncertainties
The IBVP is usually solved with numerical methods such as Finite Element

Method (FEM) implemented in a computer. Due to numerical approxi-

mations, the solution of the model may have discrepancies from the true

values.

2.2 Forward and inverse uncertainty quantification

The uncertainty quantification is attaching a measure to the uncertainties. It tries

to determine how likely certain outcomes are if some aspects of the system are

not exactly known. The uncertainty can be described using different mathematical

tools (see, e.g. [Mat07]); such as:

• worst-case scenarios

• methods base on fuzzy theory

• evidence theory

• stochastic theory

In this technical report the uncertainties are only expressed with stochastic models.

All quantities in the model are understood as random variables with the associated

probability distributions. Our aim is to identify the probabilistic distributions of

uncertainties. According to the Eq. (2.2), the forward uncertainty quantification
is finding the probability distribution of the output ym from the known probability

distribution of x and other uncertainties in the model. There is a wide variety of

uncertainty propagation methods (for a review see e.g. [LC09]).

In case of the inverse uncertainty quantification, unknown probability distribution

of uncertainties in the model are assessed given some experimental measurements.

The general formulation is as follows:

ye(x) = ym(x,θ) + d(x) + ε,

where d(x) denotes the discrepancy function and ε denotes the measurement er-

ror. The estimation of the discrepancy function d(x) is called bias correction. The

estimation of the parameters θ of the model is called parameter calibration (or

parameter estimation in some references). These estimations can be done in the

Bayesian framework. In this report we discuss the parameter calibration of a dis-

tributed parameter system. For the parameter calibration without bias correction

we have

ye(x) = ym(x,θ) + ε (2.3)
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Estimation of the parameters with uncertainty is equivalent to the estimation of

their distributions. Statistical approach for an inverse problem and accordingly pa-

rameter estimation under Bayesian framework is presented and discussed in many

sources e.g. [KS05], [Jin06], [Lie09] and [NRHP10].

The Bayesian inference combines information from the measurements and the un-

derlying assumptions in the forward model in form of a posterior probability distri-

bution. A posterior probability distribution of a parameter πpost(θ) is proportional

to the product of the prior probability distribution of parameter πpr(θ) and the

likelihood function π(y|θ):

πpost(θ) ∝ πpr(θ) · π(y|θ)

Provided a prior distribution πpr, the posterior distribution πpost can be com-

puted by using Markov Chain Monte Carlo (MCMC). This posterior distribution

πpost(θ) provides the values of the parameters, and their uncertainties.

3 Uncertainty quantification of glass forming model

In this technical report we consider the model of the industrial glass forming pro-

cess [JaBB11]. This is a complex rheological forming process producing glass

rods used to preform optical fibers. The figure 3.1 shows the communication flow

between the controller and the process. In the controller the model of the process

is implemented in order to predict the measurement values. However there are of-

ten deviation between the real measurements and the predicted values. In order to

adjust the predicted values, the concept of the uncertainty quantification is adopted

to calibrate the model parameters, which is discussed in this section.

3.1 Glass forming model

The process setup is visualized in the figure 3.1. The cylinder is fed with a low

velocity vf in an oven where it is heated to its forming temperature. Below the

oven the tube is pulled with a higher velocity vp resulting in thin glass rods (resp.

tubes). The process is strongly nonlinear in particular due to the impact of radiation

and nonlinear material parameter laws (temperature dependence of the specific

heat, effective heat transfer coefficient and the viscosity). In addition, the forming

process involves a wide temperature range and large deformations.

Assuming that glass at a high temperature behaves as a Newtonian fluid, the glass

flow with free surface can be described with Navier-Stokes equations. Under the



Inverse uncertainty quantification of distributed parameter system 119

Figure 3.1: Industrial glass drawing process

thin layer flow assumption (which means that the wall thickness or diameter of

glass tube is small compared to the length along the axis), the system can be

simplified to 3 equations, called Trouton model [Loc02].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A

∂t
+

∂wA

∂z
= 0, (3.1a)

∂

∂z

(
3μ(T )A

∂w

∂z

)
= −ρgA, (3.1b)

AρCp(T )

(
∂T

∂t
+ w

∂T

∂z

)
− ∂

∂z

(
Aλ(T )

∂T

∂z

)
= 2πRSr, (3.1c)

Sr = εσB

(
T 4
oven(z)− T 4(z)

)
. (3.1d)

These A(z, t) denotes the cross section area of the glass rod, w(z, t) is the ve-

locity in z-direction, T (z, t) is the temperature of the glass, μ(T ) is the dynamic

viscosity, Cp(T ) is the specific heat capacity, λ(T ) stands for the effective heat

transfer coefficient (which accounts for the radiative heat transfer in a simple way),

Toven(z) is the oven temperature, ρ the density of the glass, g the free fall acceler-

ation, ε is the emissivity of the glass and σB the Stefan-Boltzmann constant. Eq.

(3.1a) represents the mass balance, Eq. (3.1b) the momentum balance and Eq.

(3.1c) is the one-dimensional heat transfer equation.
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Figure 3.2: The stationary solution of glass forming process and the illustration of

sensors

All three PDEs and their boundary and initial conditions are solved with finite el-

ement method. In this report we consider only the stationary case, i.e. the deriva-

tive term with respect to time t in the equations (3.1) vanishes. Hence the solu-

tions of IBVP are the distributions A(z), w(z) and T (z) shown in figure 3.2. In

real process the measurements are only made at some sensors positions zsen, de-

noted in figure 3.2 with circles. The measurements with the magenta marks act

as a boundary condition, because they represent the parameters of the actuators.

The measurement data are compared with the simulation output at the red circle

positions.

3.2 Uncertainties in the glass forming model

Because of the lack of knowledge and the model assumptions, there are many

uncertainties in the glass forming model, such as the material parameters (Cp, k,
and μ), oven temperature profile Toven(z), etc. In this report we focus on the

material properties parametrized empirically as

Cp(T ) = a1 + a2 · (T [◦C]− a3)

λ(T ) = b1 + b2 · (T [K])b3 (3.2)

log10 μ(T ) = c1 + c2 · tanh(c3 · T [◦C]− c4)

In this report we assume that the Eq. (3.2) is exact, and consider only the uncer-

tainties of the parameter values. The parameters are modeled as random variables
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and collected in the parameter vector θ:

θ =
[
a1, a2, a3, b1, b2, b3, c1, c2, c3, c4

]

The parameter vector θ has 10 dimensions, which is large enough to remember

about the curse of dimensionality. Thus we will use the sensitivity analysis to

capture only the parameters which have more influence on the model, in order to

make the computation feasible.

3.3 Analysis of model sensitivity to the material parameters

Calibrating all 10 parameters in vector θ at once is an unfeasible task. Each pa-

rameter has a certain influence on the model. First we identify only the parameter

having the most influence on the model using sensitivity analysis as presented in

[JaBB11]. Using the method from that paper to the glass forming model in the

last section, we get the sensitivity values for entire domain. Considering only the

values at sensor position we obtain the values in percent in the table 3.1. It can be

seen that the parameters a2, b3, and c3 have more effect compared to other param-

eters. Therefore we start the calibration with these three parameters as discussed

in the following section.

a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 

 0.01% 7.26% 0.00% -0.03% -0.13% -3.91% -0.52% 0.36% 0.52% 0.00% 

 -0.01% 5.97% 0.00% 0.42% 0.01% 0.32% 0.00% 0.00% 0.00% 0.00% 

 0.00% -1.79% 0.00% 0.01% 0.03% 0.84% 2.53% -1.52% -2.59% 0.02% 

where  is the parameter in  

Table 3.1: Sensitivity of values the at sensor positions with respect to parameter

values

3.4 Parameter calibration

In this section, we attempt to find the best possible values of the parameters θ =(
b3 a2 c3

)

and their uncertainties by matching to the measurement data. Under

the stochastic approach it means that we try to estimate the unknown probabilistic

distribution over the random variable θ.
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In order to use Bayesian inference as discussed in section 2, we have to fix the

forward model of glass forming process, the likelihood function π(ye|θ) and the

priori distribution πpr(θ).

The glass model Eq. (3.1) and its boundary condition are implemented with the

FEM. It is used as forward model, and the solution determines the measurement

vector ym (θ) =
[
Tg Tcyl Do Du

]

(see Fig. 3.2) for given each parameter

vector θ. Under the assumption of additive white noise with a standard deviation

σ of measurements according to the Eq. (2.3), the likelihood function is formulated

as follows:

π(y|θ) = exp

(
− 1

2σ2
‖ym(θ)− ye‖2

)

Under the assumption that the parameters should lay in some specific interval,

the prior distribution of the parameters can be assumed as a uniform distribu-

tion. With the likelihood function and the assumed prior distribution, the posterior

distribution over the parameters is:

πpost(θ) = π(θ|ye) =
πpr(θ)π(ye|θ)∫
π(ye|θ)π(θ)dθ

The posterior distribution can be computed using Markov Chain Monte Carlo
(MCMC) Method. Based on a Markov chain, the target distribution (or the pos-

terior distribution in our case) is sampled and the state of the chain at stationary

state is used as a sample of desired distribution. The resulting chain of the mate-

rial parameter vector θ is shown in Fig. 3.3(a). The sample of the chain is plotted

in in form of histograms scatter plot as shown in Fig. 3.3(b). These histograms

represent the posterior distribution of the parameters.

Together with the scatter plot we can identify the stochastic dependencies of these

three parameters. This is the advantage of parameter estimation with the statistical

approach over the deterministic approach, which provides only one optimal point

solution of parameters not the distribution of parameter. The distribution selects

the most probable set of parameters θ for glass forming model, which is matched to

the given measurement ym. The result can be interpreted, that with the parameters

from the distribution the glass model will provide ym, which is alike ye within

standard deviation σ.

Without the prior distribution πpr(θ), this parameter estimation method is equiva-

lent to the Maximum Likelihood method. The prior distribution is normally used to

regularize by ill-posed problem. One can see the effects of restricting the values of
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Figure 3.3: The posterior distribution of model parameters after the calibration

parameters b3 and a2 in Fig. 3.3(b). These restrictions correspond to the specific

intervals, which are assumed as uniform distribution in a prior distribution.

As an example, some set of parameters from the posterior distribution is used

to simulate the glass forming model. The simulation results are shown in Fig.

3.4. The red circle mark show the output values at sensor position, which are

ym (θ) =
[
Tg Tcyl Do Du

]

. There is a little deviation between the curves

but the output values at sensor positions are tolerably identical. For all parameter

configurations from scatter plot the deviations between the measurement and the

simulation output values at sensor position are always smaller than the accuracy σ
of the measurement system.
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Figure 3.4: Simulation results with parameters from the posterior distribution
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4 Conclusion

The deviation between the model prediction and the measurements is unavoidable

since it is impossible to possess the complete knowledge of the reality and encode

it into the model. The stochastic approach to quantify the model uncertainty is

a powerful tool to quantify this ignorance. The dimension of parameter space

can be reduced with the sensitivity analysis thus rendering the stochastic approach

feasible. In this paper, we apply these techniques to glass forming model in order

to calibrate its parameters. The inverse uncertainty quantification provides not just

the optimal values of the parameters but the complete probability distributions,

which are instrument in improving model’s quality. Similar approach may be used

to study the uncertainties of the boundary condition, the source term or even the

structure of the equation, which will be our future research topics.
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Abstract:
The perception of defects on specular surfaces is highly dependent on the

curvature of the surface and the environment which is reflected in the sur-
face. Flaws can be perceived as disturbances in the curvature. This report
gives an overview of methods for multiscale detection and classification of
these disturbances caused by defects on the surface. The defects range from
large-scale deviations with minimal height like dents or waves to point-like
defects like painting defects. For obtaining the geometric data of the surface,
deflectometric methods are used. To characterize the surface and to detect de-
viations from the desired characteristics of the surface several methods based
on the wavelet transform are shown and compared with methods in spatial
space.

1 Introduction

Specular surfaces are ubiquitous in contemporary design. You can find them on

home appliances like toasters, fridges, and washing machines, on furniture, en-

tertainment devices like mobile phones or televisions, vehicles especially on car

bodies and many more. In these applications the perception of the surface by a

human is of prime importance. There are also cases in which functional aspects

are in focus, like rearview mirrors in a car, telescope mirrors, or solar mirrors. In

both cases it is not the height of the surface that determines its properties but rather

its first derivative. Defects disturb this first derivative and are therefore perceptible

or interfere with the functionality. Once a defect is large enough to be resolved

it disturbs the aesthetical or functional quality the more the larger its gradient is.
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But depending on the application even small gradients can be disturbing, when

their extension is large enough. Hence it is important to capture all defects ranging

from small to large and assess their severity for the application. Examples men-

tioned are defects of minimal height like waves or dents and point-like defects like

painting defects as blistering. A third application field is the defect detection on

technical surfaces. In this case the goal of the inspection may differ from the pre-

viously mentioned applications. Thus technical surfaces may be inspected using

deflectometry and definitly need to be treated in a multiscale manner but they are

not object of this study.

In order to make a comprehensive quality inspection effective, two requirements

must be met:

1. A measuring system is necessary that can acquire the relevant geometric

characteristics of the surface.

2. An evaluation methodology is required which is able to capture and distin-

guish different classes of surface properties and defects from the acquired

surface data.

Methods based on deflectometry and wavelets are presented that address this prob-

lem. Using deflectometric methods to obtain geometric data from the surface, it is

possible to meet the requirement of high angular resolution. The problems arising

in the measurement of specular surfaces and an explanation of the concept can be

found in Section 2. Furthermore, in Section 2.2 methods are shown, that circum-

vent the deflectometric registration and allow using just a single shot of the surface

for defect detection.

To characterize the surface and to detect deviations from the desired characteris-

tics of the surface, methods based on the wavelet transform are introduced. An

introduction to wavelets is given in Section 3. Known approaches for the surface

characterization and defect detection use mainly features in the spatial domain of

the measurement data, e.g., the amplitude of local shape deviations or the am-

plitude of gradients. Otherwise, features in the frequency domain are used, e.g.,

for the global assessment of surface roughness. An overview to related work is

given in Section 1.1. In contrast, the wavelet transform is a suitable tool to eval-

uate signal characteristics that extend on both, the spatial domain as well as the

spatial frequency domain. For this purpose suitable base wavelets, with features

that match the characteristics of typical surface defects, are identified. After using

these wavelets for wavelet analysis, methods are introduced to evaluate the wavelet

coefficients in the scale space of the wavelet transform in order to detect and clas-

sify defects. The feature extraction and classification is described in Section 4.
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The methods are designed twofold, first the defects have to be localized on the

surface and second they have to be separated into classes.

1.1 Related Work

Depending on the reflectance of the surface, the necessary measurement accuracy

and the area of the surface that has to be measured, there are different measure-

ment systems availabe. In this work deflectometry is used to obtain gradient and

height information about the surface. Other approaches with completely different

measurement systems are related due to similar inspection methods. As this report

does not focus on the measurement system some of these approaches are listed

below. It has to be considered that the characteristics of deflectometry are high

angular precision and a broad range of resolutions.

There are several methods for optical defect detection and classification in spatial

space. Nozoe et al. [NSI98] observe the scattering of a laser to inspect silicon

wafers. The difficulty in this approach is the high background noise in the mea-

surements made with a laser scanner. For inspection of magnetic disks, Wahl et

al. [WSW83] use interferometric measurements. They look for deviations in the

interferogram which allows a first assessment of the surface. Especially for the

detection of cracks on mechanical parts of a helicopter Fargione et al. [FGPR98]

used a microscope to acquire images. For the detection of the cracks a neural net-

work was trained. Another approach by Shima et al. [SKKE86] is to evaluate the

gray-level histogram for subareas of the image to find defects. Again Zheng et

al. [ZKN02] used a gray-level camera image of a surface and a ring shaped light

source to find all kinds of topological defects on metallic surfaces. Therefore, they

use a combination of morphological operations and genetic algorithms to learn and

detect defects.

In the field of surface metrology wavelets have already been used to describe the

statistical properties of the surface, especially surface roughness. While wavelets

are used instead of the Fourier transform due to the non-stationary properties of the

stastical processes, the studies of Josso et al. [JBL02] and Lee at al. [LZCM98]

are not interested in localized properties.

Advanced classification methods and multiscale features like wavelet analysis have

been used to find defects on surfaces in the recent years. Zhang et al. [ZDL+11]

used the wavelet transform for a smoothing of images taken from a specular sur-

face. The classification is done by a Support Vector Machine (SVM) and based on

features taken from spectral measures calculated from a Fourier transform. Ghorai

et al. [GMGD12] compared a SVM and Vector-Valued Regularized Kernel Func-

tion Approximation (VVRKFA) classifier with features extracted from a discrete
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Figure 2.1: Principle of the deflectometric registration from [Wer11].

wavelet transform (DWT) with Haar, Daubechies, Bior and multi-wavelets. They

separate the image into small square regions and use the DWT to calculate the

energy in each scale which in turn is used to classify each region. Jiang and Blunt

[JB04, JSW08] used a stationary wavelet transform (SWT) in combination with

complex biorthogonal wavelets. This increased redundancy leads to a better shift

and rotation invariance on surface topographies. Li [Li09] used a DWT as prepro-

cessing to highlight defects and a SVM to classify regions based on a blob analysis

with several extracted features like the area or compactness of the blobs. For im-

age acquisition they use a dark field setup. Rosenboom et al. [RKJ11] investigated

the use of the wavelet transform with several wavelet families for defect detection

on deflectometric measurements.

2 Deflectometry

The problems from inspecting specular surfaces differ from the problems on dif-

fuse surfaces. First of all, you can’t project any patterns onto the surface and

observe them directly. Deflectometric methods are applicable because they use the

specularity of the surface. Furthermore, the objective for the inspection depends

on the application. If the objective is to find defects that are disturbing for a human,

the perception of a human have to be considered. Since the surface itself is mostly

visible by its reflection of the surrounding area, the optical aberrations caused by

the surface are more perceptible than the surface itself. The virtual image of the

surrounding area, which is visible in the specular surface, is determined by its

shape or more precisely by its curvature. These curvature information is included

in the normal field of the surface. A measurement system as depicted in Fig. 2.1

consisting of a camera with image plane I , a specular surface S as test object, and

a screen L is used. A sequence of patterns uniquely coding each point on a screen

is observed over the specular surface with a camera. Using these observations, ge-

ometric information about the light path from the camera to the screen is obtained
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in the so-called deflectometric registration, which implies information about the

specular surface:

l : PI �→ PL, l[u, v] = (xL, yL).

As result of a deflectometric measurement, the deflectometric registration itself

can be used as non-metric measurement to characterize the surface and to detect

defects, since it can be seen as gradient field of the surface and corresponds to

the human perception of specular surfaces. Alternatively the surface can be recon-

structed, such that a real metric geometric representation of the surface is available

and can be used for the inspection. But without knowledge of the distance be-

tween the camera and the surface the reconstuction is impossible. Balzer [Bal08]

proposes two approaches to obtain additional regularizing information of the sur-

face that lead to a unique reconstruction. The field was extensivly researched in

the past ten years, see [HAN00, LKKH05, SCP05, BSG06, LBRB08, WMHB09,

BHWB10].

2.1 Application and Types of Defects

Due to the multiscale nature of the deflectometric principle, it is possible to inspect

surfaces ranging from microscopic to macroscopic level. The trade-off one has to

make is the lower lateral and angular resolution when inspecting larger areas with

the same equipment. The surface material may be made of anything specular or

glossy like metal, plastic or glass. A less specular surface with more diffuse reflec-

tion lowers the contrast on the screen and therefrom a loss of angular resolution.

One way to circumvent this problem is to use a different type of light. For example

in the infrared spectrum some materials like brushed aluminum become specular.

Generating thermal infrared patterns suitable for deflectometry is challanging, but

first approaches have been proposed by Höfer et al. [HWB12]. As deflectometry

is applicable to a wide range of materials, there are many practical applications:

• functional surfaces like mirrors

• technical surfaces like cylinder liners in engines

• aesthetic surfaces like car bodies or home appliances

The surface can be characterized globally i.e. by roughness measures or locally

by a segmentation of defects. Sometimes it is important to know the location of

defects. With this knowledge it is possible to repair the defects locally. For large

surfaces like lacquered car bodies this reduces the costs. The following list shows

some possible defects on painted surfaces.
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• large defects like bumps, dents and waves

• small defects like blistering, corrosion, inclusions, runs and scratches

• texture defects like adhesion loss, bleeding, cracking and orange peel

The defects can be classified further by their shape, origin, or perceptibility.

2.2 One-shot Deflectometry

Most of the defects are already visible in a single image taken with the described

setting above and a structured pattern on the screen. They are visible by defor-

mations of the pattern. Detecting those deformations is more complicated for an

inspection system than for a human observer. One way to detect those deforma-

tions is to suppress the pattern from the screen in the deformed image of the same

pattern. Assuming the pattern on the screen is a chessboard pattern, see left image

of Fig. 2.2, it can be mathematically described by a one-dimensional grid f using

the Dirac delta function δ

f(x) =

∞∑
m=−∞

δ(x+ 2m) + δ(x− 2m− 1),

in two directions x and y convolved with a rectangle function Π:

f(x, y) = (f(x)f(y)) ∗ (Π(x)Π(y)).

The Fourier transform of f(x, y) is given by

F (fx, fy) =
1

fxfyπ2
e

i(fx+fy)

2 sin(fx+2sfx) sin(fy+2sfy).

In the frequency domain the pattern is clearly visible, as seen in the right image of

Fig. 2.2. As the pattern projected onto the screen is known, the frequency spectrum

of this pattern can be used to suppress it in the camera images. Everything that is

left over disturbed the original pattern and can therefore be assumed as defect.

3 Wavelets

The wavelet transform is similar to the Fourier transform, as it represents signals in

frequency domain. But the Fourier transform is a global transform, meaning that
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Figure 2.2: Chessboard pattern in spatial and frequency space.

a local change in the signal affects the whole frequency domain. This is because

periodically oscillating trigonometric functions with infinite support are used as

base functions. Contrary, the wavelet transform uses small wavelets with finite

support both in spatial and in frequency space. This results in a good localization in

both spaces. Something similar is achieved with short time Fourier transform with

a fixed width window function that is multiplied with the trigonometric functions.

Because the size of this window is independent of location and frequency, for

short windows in spatial space the localization in frequency space is poor and vice

versa for long windows in spatial space. Wavelets have no fixed window length

and therefore have a good localization depending for each frequency band. The

idea behind the wavelet transform is clear when looking at the calculation of the

continuous wavelet transform (CWT). It is defined as the inner product of a signal

f(x) with a wavelet ψ in different scalings s and translations t:

F (s, u) := W{f(x)} =< f, ψs,u >, with ψs,u(x) =
1√
s

(
x− u

s

)
. (3.1)

In practice the discrete wavelet transform (DWT) is used instead. Additional re-

quirements to the wavelet function assure only dyadic scales and integer translation

have to be considered. By defining a scaling function φ, the signal f(x) can be

approximated in different scales s:

as[u] =

∫ ∞

−∞
f(x)

1√
2s

φ

(
x− 2su

2s

)
dx, (s, u) ∈ Z

2.

The scaling function has low-pass characteristics, which results in a loss of high-

frequency information of f(x) with increasing scale. Furthermore, it is required

that the scaling function is orthogonal to the wavelet function, which allows the

multiresolution analysis. The wavelet function, which has high-pass characteris-

tics, codes the details that are lost from one dyadic approximation to the next. For

an efficient calculation of the approximations and details, instead of the scaling

and wavelet function, filter banks are used. Starting with an approximation of the
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signal in scale s (wavelet crime: a0[x] := f [x]), the next coarser approximation

is calculated with low-pass h. The details are calculated with a high-pass filter g.

Multidimensional functions are calculated separately in each dimension, resulting

in one approximation space and three detail spaces for the 2-dimensional signal

f(x, y):

as+1[u, v] =

∞∑
m=−∞

h[m− 2u]

∞∑
n=−∞

h[n− 2v]as[m,n], (3.2a)

ds+1,1[u, v] =

∞∑
m=−∞

h[m− 2u]

∞∑
n=−∞

g[n− 2v]as[m,n], (3.2b)

ds+1,2[u, v] =

∞∑
m=−∞

g[m− 2u]

∞∑
n=−∞

h[n− 2v]as[m,n], (3.2c)

ds+1,3[u, v] =

∞∑
m=−∞

g[m− 2u]

∞∑
n=−∞

g[n− 2v]as[m,n]. (3.2d)

One more difference between the wavelet and the Fourier transform is the freedom

of choice for the base functions. It is possible to choose a wavelet out of existing

families of wavelet functions with special properties or to define a new wavelet.

A good overview over the theory and application of wavelets is given by Mallat

[Mal09].

Altough the DWT allows a perfect reconstruction of the signal, there has one great

disadvantage. By subsampling the signal from one scale to another, more and more

information about the signal is lost. This results in a transformation, that depends

on the translation of the signal. When the same signal is translated by t the whole

scale space may change. It is not translation invariant. By leaving out the subsam-

pling, the undecimated or stationary wavelet transform (SWT) circumvents this

problem by introducing additional redundancy. This results in increased memory

requirements and increased computational efforts. Nevertheless, the translation

invariance is indispensable for the proposed methods.

3.1 Biorthogonal Wavelet

An interesting family of wavelets are the biorthogonal wavelets. They have two

instead of one wavelet and scaling function. By defining a separate wavelet

for analysis and synthesis, the strict requirement for orthogonality is weakened

by a requirement for biorthogonality, which allows new degrees of freedom.

The biorthogonality requirement < ψs,u, ψ̃s′,u′ >= δs,s′δu,u′ assures perfect
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Figure 3.1: Biorthogonal wavelet with five vanishing moments and corresponding

scaling function.

reconstruction when using an analysis wavelet ψ and a synthesis wavelet ψ̃:

f =
∑
s,u

< f, ψs,u > ψs′,u′ =
∑
s,u

< f, ψs′,u′ > ψs,u.

The biorthogonal spline wavelet for analysis with five vanishing moments and the

corresponding scaling function are shown in Fig. 3.1. It is symmetric around 0.5
which results in a good localization spatial space over all scales. Furthermore, it is

orthogonal to polynomials of fourth order due to the analysis wavelet having five

vanishing moments. The advantage of this is the nonappearance of coefficients

in detail space for curves or surfaces which can be represented by polynomials

up to fourth degree. The support length (number of nonzero filter coefficients)

of the low-pass is 12, the high-pass has a support length of 4. Let Vs be the

approximation and Ws the detail space in the scale s spanned by the wavelet

and the scaling function. From the orthogonality of the scaling and the wavelet

function it follows that the detail space is orthogonal to the approximation space1:

Vs−1 = Ws ⊕Vs.

The orthogonality of two detail spaces in different scales follows as well. Fur-

thermore, each quadratic intergrable real function can be reconstructed completely

from the detail spaces up to scale S and additionaly the approximation space in

the scale S:

L2(R) = VS ⊕
S∑

s=−∞
Ws.

1The operator ⊕ denoted the direct sum.
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3.2 Correlating Wavelet

Instead of suppressing surface properties, which results in a sparse feature space,

one can use wavelets that correlate with the defect classes. The idea is to learn

properties of the defects in spatial space and adapt wavelets that match these

average properties.

4 Classification

In this section methods to extract features for defect classification in spatial space

as well as in scale space are shown. Then parametric and non-parametric classi-

fication methods are proposed. Finally covariances within the feature space are

investigated.

4.1 Features in Spatial Space

Regarding the image of the surface as signal, defects on the surface g are often

high frequency components. A common way to identify them is to amplify these

high frequencies. This is similar to an edge filter and can be done by differentiating

or high-pass filtering the image.

Linear High-pass A common way to obtain a high-pass filter is to use a low-

pass filter, like a gaussian filter with zero mean and variance σ and subtract the

result from the original data.

fgauss(g) = g − g �

(
1√

2π · σ · e− x2

2σ2

)
.

Non-linear Band-pass Morphological operators can be used to implement a

non-linear band-pass filter. Louban [Lou09] presented two morphological filters

to emphasize defects on surfaces. Using simple opening ◦ and closing • operators,

an appropiate mask S the Rauh-filter can be implemented:

frauh(g) =
1

2
∗ (g ◦ S + g • S)− g.

A similar filter is the Christo-filter using two masks. Using mask S1 for

eliminating noise and mask S2 for eliminating defects the filter is defined as:

fchristo(g) = g ◦ S1 − g ◦ S2.
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Figure 4.1: Comparison of filters (c)-(j) in spatial space to amplify defects in

distorted signal (b) of signal (a).

Spline Approximation Another way to amplify the defects is to estimate the

surface using a spline model. This model should be adjusted to fit the curvature

of the surface but not of the defects. It can be regarded as low-pass. Hence the

defects are amplified when subtracting this approximated surface g̃ from the data.

fspline(g) = g − g̃

Wavelet Approximation A common way using the wavelet transform as band-

pass filter is to reconstruct the signal using only scale space coefficients of one

specific scale. The following Eq. (4.1) is the inverse of the continous wavelet

transform as in Eq. (3.1) for one scale s0:

fs0
wavelet(g) =

1

Cψ
√
s0

∫ ∞

−∞
ψs0,u < g, ψs0,u > du. (4.1)

Comparison Each of the filters in spatial space is highly depend on its

parametrization. A graphical comparison using a distorted sinus signal with 3
defects is given in Fig. 4.1. For the wavelet approximation the biorthogonal spline

wavelet from Fig 3.1 was used.

4.2 Features in Scale Space

First, a good set of features is needed to describe the surface defects by means

of the scale space information. Provided that the coefficients in each scale of the

wavelet transform correspond to the data point at the same location, it is possible
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Figure 4.2: The feature vector contains each detail coefficient (horizontal, vertical

and diagonal) of the (discrete, stationary) wavelet transform in several scales.

to describe this data point with only the coefficents at the same location. While

it is necessary to consider regions of image data in spatial space, each coefficient

in scale space is carrying information about the points around it. The size of this

surrounding is dependent on the scale.

Depending on the type of wavelet transform, one has to assure the coefficients

position at one point match the position of the underlying data point in spatial

space. For the calculation of the wavelet transform, see Eq. (3.2), this means, both

filter functions have to be symmetric: h(x) = h(−x), g(x) = g(−x).

Using the discrete wavelet transform, the number of coefficients decreases as the

scale increases. In contrary in the stationary wavelet transform no subsampling is

made, see Section 3. This results in the same number of coefficients in each scale.

As a result even coefficients in coarser scales describe only one point in spatial

space and any translation directly transfers into scale space without changing the

amplitude of coefficients.

For the detection and classification scale and translation invariant features are re-

quired. Rotation invariance is less important as long as no isotropic defect struc-

tures have to be considered. Another important property feature is the invariance

against curved surfaces. When using the detail coefficients of a biorthogonal

wavelet and the stationary wavelet transform, the required invariances are met.

Hence the wavelet transform has to be calculated in n scales and the horizontal,

vertical and diagonal coefficients have to be selected for each point (see Fig. 4.2)
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and in both directions of the deflectometric registration xL and yL:

dxL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dxL
1,1

dxL
1,2

dxL
1,3
...

dxL
n,1

dxL
n,2

dxL
n,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, dyL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dyL

1,1

dyL

1,2

dyL

1,3
...

dyL

n,1

dyL

n,2

dyL

n,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, d =

(
dxL

dyL

)
.

4.3 Parametric Classification

For the classification a maximum a posteriori decision is made for each point

(m,n) on the surface with feature vector d(m,n) separately:

argmax
i

p(d|μi, σi).

Tests have shown, that the coefficients can often be assumed as Laplace distributed

[ZLGH12]. In consequence the likelihood for class i, represented by the parameter

vectors μi, σi is modelled as univariate Laplace distribution:

p(d|μi, σi) =
∏
j

1

σi,j

√
2π

exp

(
−1

2

|di,j − μi,j |
σ2
i,j

)
.

Note that this approach is rather simple, because no covariances between the fea-

tures have to be learned (Naive Bayes). In practice the product of likelihoods is

replaced by a sum of log-likelihoods:

p(d|μi, σi) =
∑
j

log
(
σi,j

√
2π
)

2

|di,j − μi,j |
σ2
i,j

.

The parameters μi and σi for the classes bump, pimple and error-free are learned

with a training set for each class. The prior is choosen as beeing uniformely

distributed, but this could be adapted in practice. If additional prior information

p(μi, σi) is available and necessary a maximum a posteriori decision can be made

using Bayes rule:

argmax
c

p(μi, σi|d) = p(d|μi, σi)p(μi, σi)

p(d)
.
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Figure 4.3: Covariance matrix plots of feature vectors for three classes.

Prior information may be given by an expert, e.g., if only certain classes are pos-

sible. Another reason to include prior information is to connect adjacent points

on the surface, e.g., it is unlikely that in the middle of a small defect some points

belong to a larger defect class.

4.4 Non-Parametric Classification

The approach from the section above can be used with a non-parametric Support

Vector Machine (SVM), see [CV95], to determine the likelihood of the feature

vectors. For the discrimination of more than two classes, the SVM has to be ex-

tended. Chang and Lin [CL11] describe an extension of the SVM to separate

multiple classes and additionaly gives probability estimates for each class. Again

it is possible to include prior information.

4.5 Investigation of the Feature Space

The orthogonality of the features can be shown theoretically [Mal09, ZLGH12].

By using biorthogonal wavelets this orthogonality is lost. Furthermore, while the

orthogonality can be shown theoretically this doesn’t have to imply statistical in-

dependence of the features. Fig. 4.3 shows the covariances between all features

in the feature vector d. While variances on the main diagonals are strongly ap-

pearing, the covariances are present enough to falsify the conjecture of statistical

independence. As the two directions xL and yL of the deflectometric registration

are not statistical independent, strong covariances between dxL and dyL are visi-

ble. Hence the covariances within the defect classes 4.3(b) and 4.3(c) are greater

than within the feature vectors of error-free regions.
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5 Conclusion

This technical report gives an overview of methods for defect detection and clas-

sification on specular surfaces. Next to the deflectometric registration, a method

was shown to extract information from a single image. The wavelet transform and

the family of biorthogonal wavelets was introduced and some important properties

were given. Then methods to extract features in spatial as well as in scale space

were presented that can be used for the classification. Finally parametric and non-

parametric approaches to classify these feature vectors were given and statistical

dependencies within the scale space were investigated.

Results of the parametric approach were shown in [ZLGH12] using biorthogonal

spline wavelets. Results of the parametric approach using optimized wavelets will

be published soon. Results of the non-parametric approach and a use-oriented

comparison of important wavelets will be published soon.

Summarizing the wavelet-based approach features a number of advantages against

methods in spatial space:

• The classification and defect detection in scale space is easier, since relevant

information on surface characteristics and defects is spread on relatively few

large coefficients.

• Due to the multiscale nature of the wavelet transform, the detection of both

large-scale and small-scale properties is simplified.

• The freedom to choose appropriate wavelets, makes it possible to suppress

undesired properties, like the shape of the underlying surface, already in the

transformation and not only in the classification step.

This work is financed by Baden-Württemberg Stiftung.
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modeling of specular surfaces. In Vision, Modeling and Visualization 2005 - Proceedings.

Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2005.

[Lou09] Roman Louban. Edge detection. In Image Processing of Edge and Surface Defects.

Springer Berlin Heidelberg, 2009.

[LZCM98] S-H. Lee, H. Zahouani, R. Caterini, and T. G. Mathia. Morphological characterisation of

engineered surfaces by wavelet transform. International Journal of Machine Tools and
Manufacture, 38:581–589, 1998.
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