
Formal Semantics of Model Fields in
Annotation-based Specifications? ??

Bernhard Beckert and Daniel Bruns

Karlsruhe Institute of Technology (KIT), Department of Informatics

Abstract. It is widely recognized that abstraction and modularization
are indispensable for specification of real-world programs. In source-code
level program specification and verification, model fields are a common
means for those goals. However, it remains a challenge to provide a well-
founded formal semantics for the general case in which the abstraction
relation defining a model field is non-functional.

In this paper, we discuss and compare several possibilities for defining
model field semantics, and we give a complete formal semantics for the
general case. Our analysis and the proposed semantics is based on a
generalization of Hilbert’s ε terms.

1 Introduction

Annotation-based specification. Recently, formal specification of programs at
the source-code level has become increasingly popular with a wider community,
where such specifications are used both in safety and security contexts. This
is mainly due to the rise of a specification methodology where the boundaries
between program proper and specification become blurred: specifications are
written as annotations into program source files. The specifications languages
extend the programming language’s syntax, and their semantics is defined on
top of the programming language’s semantics. Particular examples include the
Java Modeling Language (JML) [12] for Java, the ANSI/ISO C Specification
Language (ACSL) [2] for C, and Spec# [1] for C#. This approach bears the clear
advantage of being intuitively understandable to users who are not familiar with
logic. At the same time, however, it has become far more laborious to come up
with a sound semantical foundation.

Model fields. Even if programs are specified at the source-code level, abstrac-
tion and modularization are indispensable for handling real-word programs. For
that purpose, the concept of model fields [9, 14] is widely used. Model fields

? This work was supported by the German National Science Foundation (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties” within priority programme 1496 “Reliably Secure Software Systems – RS3”.

?? This is the authors’ version of the paper for uses defined by § 3 of the Springer-Verlag
copyright terms. The final publication is available at http://link.springer.com.

are abstractions of the program’s memory state given in a syntactically conve-
nient form (as fields in a class). The relation between the concrete state and
the model fields, i.e., the abstraction relation, is specified by so-called represents
clauses. In general, abstraction relations may be non-functional, and they may
refer to entities which are not present in the concrete program (e.g., other model
fields). Model fields are also commonly used to give implementation-independent
specifications of abstract data types. In that case, the requirement specification
only refers to model fields while the abstraction relation is part of the (hidden)
implementation details.

Topic of this paper. There is yet no common understanding of what the seman-
tics of model fields is in the general case. The semantics used by verification
and runtime checking tools as well as the semantics defined in the literature is
restricted to functional represents clauses, to model fields of a primitive type, or
by restricting the syntax of represents clauses. The general case, however, raises
several questions:

– On which memory locations does the value of a model field depend?
– What value is chosen if the represents clause is non-functional?
– Is there aliasing between model fields of a reference type?
– What does an unsatisfiable represents clause mean? Does it lead to an in-

consistent axiom set?
– At what points in time does the value of a memory field change?
– In which cases are represents clauses well-defined? What about recursive

represents clauses?

In this paper, we answer these questions by presenting a well-founded semantics
for model fields in the general case, which is inspired by a generalization of
ε terms. Although we primarily report on the situation in the Java Modeling
Language (JML)—this is the specification language the authors know best—
we expect the principles outlined here to apply to other specification languages
which make use of model fields as well. In particular, the semantics is independent
of any reasoning system. It is parameterized so that it can be instantiated in
different ways in cases where different reasonable answers to the above questions
exist.

Hilbert’s ε terms. The concept of ε terms was first introduced by Hilbert in 1939
as an extension to classical first-order predicate logic [8]. An ε term εx.ϕ(x),
where x is a variable and ϕ is a formula, stands for ‘some domain element such
that ϕ holds (if such exists)’. In general, this informal understanding is the only
restriction on the value of an ε term; however, we will later see that further
useful restrictions may be added. These terms can, for example, be used to
represent instantiations of existentially quantified variables without assigning a
concrete value (i.e., skolemization). The quantifier in ∃x.ϕ(x) can be eliminated
by replacing the formula ∃x.ϕ(x) by ϕ(εx.ϕ(x)).

In the course of this paper, we will review the discussion on restrictions to
the valuation of ε terms, with a look for analogies in the discussion on model
field semantics.

2

Structure of this paper. In Section 2, we give a short introduction to JML and,
in particular, model fields in JML. We however expect the results presented
here to apply to other specification languages as well. In Section 3, we give
a formal semantics for JML expressions without model fields. Before extending
this semantics to model fields, we review the discussion on semantics of ε terms
and develop an n-ary generalization of ε terms (Section 4). Then, in Section 5,
we present a first approach to model field semantics inspired by ε terms. In
Section 5.1, we discuss some of the desired properties of this approach. We
discuss one deficiency in Section 5.2 and propose a solution in a second, extended
approach based on our generalized ε terms from Section 4.1.

2 The Java Modeling Language

The Java Modeling Language (JML) [12] was conceived to be both easily ac-
cessible to the ‘common programmer’—who might not be skilled in formal
modeling—and “capable of being given a rigorous, formal semantics” [11]. JML
specifications, i.e., primarily method contracts (including frame conditions) and
class invariants, are written in a Java-like expression language as comments in
source files. Due to this advantage, JML has quickly become one of the most pop-
ular specification languages, which is employed in numerous program verification
and runtime checking methods and tools. Despite good intuitive understanding
of JML, there is yet no canonized formal semantics. Some have been presented
before [4–6, 10], including one of the authors’ own. But, semantics of model fields,
in particular, are subject to an ongoing debate.

In addition to plain Java expressions, JML expressions are enriched with
quantification and special constructs, such as \result to access the return value
of a method invocation, or \old to refer to pre-state values of expressions (in a
method’s post-state) as well as quantification over primitive and reference types.

Model fields in JML are declared similarly to regular Java fields, but within
specifications. They may occur as either non-static (i.e., instance) or static fields.
A model field is declared with the additional modifier model. This does not
yet give any information on the value of the field but only type information.
To impose a constraint on the possible values of a model field, a (separate)
represents clause is provided. It comes in two variations: a functional form, in
which a model field points to exactly one value depending on the memory state,
and a relational form, in which it is constrained to values satisfying a boolean
expression. Obviously, the functional form is a special case of the relational form.
The functional form is indicated by the assignment operator =, while a relational
definition is indicated by the keyword \such_that; see Fig. 1 for an example.
Since they are not describing the relationship between two states, represents
clauses are not allowed to contain \old or \result. Otherwise, their syntax is
not restricted. They may, for example, contain references to other model fields.
We will call such references the dependencies of the model field.

3

�
1public class List {

2private int[] theList;

3/*@ model int bound;

4@ model int idxMax;

5@ represents bound \such_that

6@ (\forall int i; 0 <= i &

7@ i < theList.length;

8@ bound >= theList[i]);

9@ represents idxMax \such_that

10@ theList[idxMax] == bound;

11@*/ }�
Fig. 1. Two model fields with non-functional represents clauses. While there are always
multiple possible values for bound, the relation for idxMax may be empty.

3 Semantics of JML Expressions

In this section, we summarize the framework given in [4] to evaluate JML ex-
pressions that do not contain references to model fields. This semantics is then
extended to the case of model fields in Section 5.

We assume that a closed Java program is given that is annotated with JML
specifications. This program provides a type hierarchy, i.e., a partially ordered
set (T ,v) of types, and a universe U . The universe U consists of all semantical
objects which may be referenced in the program. In particular, it includes the
mathematical integers and truth values tt (true) and ff (false). For each reference
type T v Object there is a countably-infinite subset VT ⊂ U which serves as
a reservoir and contains the elements of that type and a special element null;
T ′ @ T implies VT ′ ⊂ VT . When needed, we denote the set of direct instances by
V d
T , with the property V d

T ∩ V d
T ′ = ∅ if T 6= T ′. For a primitive type T , VT and

V d
T are identical and map directly to the corresponding mathematical entities,

e.g., Vint = {z ∈ Z | −231 ≤ z < 231}. We also require that T ⊂ U in order
to allow types (i.e., classes and interfaces) to act as the receiver of a static field
or method. The declared type of a field identified by x is denoted by typeof (x).
Let Id denote the set of valid Java identifiers and Expr the set of syntactically
well-formed JML expressions. See [12, Appendix A] for the complete syntax.

A (system) state s is the union of functions η and σ, which represent the
heap and the stack memory, respectively. η : U × Id → U maps pairs of receiver
objects and field identifiers (these pairs are also called locations) to a value.
σ : Id ∪{this} → U evaluates local variables. For now, we assume both η and σ
to be total functions.1 For a total function f and a partial function p, we use the
notation f ⊕ p to indicate that p overrides f , i.e., (f ⊕ p)(x) = p(x) if x ∈ Id(p)
and f(x) otherwise. We omit ⊕ where the notion is clear.

We define the evaluation function val : S2 × Expr → U that, given a pair
of system states, maps expressions to elements of the universe. The two state

1 This can be achieved through underspecification of otherwise undefined values.

4

parameters represent the state referred to by the \old operator (pre-state) and
the current state (post-state), respectively. Table 1 shows the valuation function
for some exemplary parameters. For a comprehensive definition, the reader is
referred to [4, Appendix A]. For the sake of simplicity, we disregard the fact here
that JML even allows pure methods to have certain side-effects.

field access: val(s0, s1, a.x) = η(val(s0, s1, a), x) where s1 = (η,)
variable: val(s0, s1, x) = σ(x) where s1 = (, σ)
constant: val(s0, s1, true) = tt

identity: val(s0, s1, a == b) =

{
tt val(s0, s1, a) = val(s0, s1, b)
ff otherwise

logical and: val(s0, s1, a && b) =

{
tt val(s0, s1, a) = val(s0, s1, b) = tt
ff otherwise

implication: val(s0, s1, a ==> b) =

{
tt val(s0, s1, a) = ff ∨ val(s0, s1, b) = tt
ff otherwise

quantification: val(s0, s1, (\forall T x; a; b))

=

{
tt ∀y ∈ VT \ null : val(s0{x 7→ y}, s1{x 7→ y}, a ==> b) = tt
ff otherwise

old state: val(s0, s1, \old(a)) = val(s0, s0, a)

Table 1. Valuation function val for some representative expressions where a and b are
expressions and x is an identifier.

4 Semantics of ε Terms

When Hilbert first introduced ε terms, he provided only a vague informal un-
derstanding of their semantics. This has led to some interesting discussions on
a formalization. In this section, we mainly reprise the account given in [7].

A pre-structure of first-order logic with ε terms is a triple S = (U , I,A)
consisting of a domain U , an interpretation I of predicates and functions as in
classical logic, and additionally an ε-valuation function A. The function A maps
a term εx.ϕ and a variable assignment β to a value A(εx.ϕ, β) ∈ U . To gain a
‘more semantical’ ε-valuation, intensional and eventually extensional semantics
have been introduced.

Definition 1. An intensional structure S = (U , I,A) is a pre-structure in
which the valuation of an ε term εx.ϕ only depends on the valuation of free
variables occurring in ϕ, and A points to a value that actually satisfies ϕ if such
a value exists:

– If β1|fv(ϕ) = β2|fv(ϕ) then A(εx.ϕ, β1) = A(εx.ϕ, β2)
(where βi|fv(ϕ) is the restriction of βi to the free variables in ϕ).

– If S, β |= ∃x.ϕ then S, β{x 7→ A(εx.ϕ, β)} |= ϕ.

5

Intensional semantics may still assign different values to syntactically differ-
ent but logically equivalent terms. Extensional structures, on the contrary, are
built on a deterministic (total) choice function on the set of applicable values,
the extension.

Definition 2. The extension Ext of an ε term w.r.t. a structure and an assign-
ment is defined as

Ext(S, β, εx.ϕ) := {u ∈ U | (S, β{x 7→ u}) |= ϕ} .

An intensional structure S = (U , I,A) with the following property is called an
extensional structure:

– If Ext(S, β, εx.ϕ) = Ext(S, β, εy.ψ) then A(εx.ϕ, β) = A(εy.ψ, β).

Note that extensions may be empty; in that case, A yields an arbitrary ele-
ment of the universe. Extensional semantics are strictly stronger than intensional
semantics, in the sense that they have more valid formulas. Take, for instance,
the formula εx.ϕ

.
= εx.¬¬ϕ. It is valid in any extensional structure, but not in

all intensional structures.

4.1 A generalization of ε terms.

As we will further discuss in Section 5.2, model field specifications—in contrast
to formulae in logic—are highly non-modular as represents clauses may depend
on each other. Therefore, it is not always possible to express the value of a model
field in terms of an ε term. In the following, we introduce the notion of generalized
ε terms, which denote values for non-empty finite sequences of variables instead
of single variables.

Definition 3 (Generalized ε term, syntax). Let x̄ be a non-empty finite
sequence of pairwise distinct variables, let i ∈ N, and let ϕ be a formula.

Then εx̄i.ϕ is a generalized ε term.

Definition 4 (Generalized extension). The generalized extension Ext of a
generalized ε term εx̄i.ϕ w.r.t. a structure and an assignment is defined as

Ext(S, β, ε〈x0, . . . , xn−1〉i.ϕ) :=
{〈u0, . . . , un−1〉 ∈ Un | S, β{xj 7→ uj | 0 ≤ j < n} |= ϕ}

Note that the generalized extension contains n-tuples and is independent of the
index i. We now extend the definition of structures to the case of generalized ε
terms. The conditions imposed on the ε-evaluation function A in the following
definition implies both the requirements made in Definitions 1 and 2, i.e., every
generalised ε structure is extensional:

Definition 5 (Generalized ε term, semantics). A pre-structure
S = (U , I,A) with the following properties is called a generalized ε structure:

6

– (Intensionality) If Ext(S, β, εx̄0.ϕ) 6= ∅ then〈
A(εx̄0.ϕ, β), . . . ,A(εx̄|x̄|−1.ϕ, β)

〉
∈ Ext(S, β, εx̄0.ϕ)

– (Extensionality) If Ext(S, β, εx̄0.ϕ) = Ext(S, β, εȳ0.ψ) then
A(εx̄i.ϕ, β) = A(εȳi.ψ, β) for any i.

5 A Novel Approach to Model Field Semantics

We return to the evaluation of expressions in JML and present a first approach to
model field semantics that is inspired by extensional ε term semantics (without
using ε terms explicitly). As commonly accepted, program references can be
approximately identified with variables in logic, as system states can be identified
with valuations. In a way similar to the ε-valuation function A introduced above,
we define a model field valuation function ε : S×U×Id×Expr → U , which takes
a state, a receiver object, a model field’s identifier, and a constraining expression
(from the represents clause) as parameters. We then build the definition of an
extended valuation function valε for JML expressions on top.

Let us first define the extension, i.e., the set of semantical objects for which
a state s validates a boolean JML expression ϕ with a field identifier x and
receiver object o which simulates a heap location (o, x), in a way reminiscent to
the above definition:

Definition 6 (Extension).

Extε(s, o, x, ϕ) :=
{
u ∈ Vtypeof (x) | valε(s, s{this 7→ o, (o, x) 7→ u}, ϕ) = tt

}
The extension is defined w.r.t. only one state. The reason is that the \old op-
eration may not occur in represents clauses.

An extensional ε-valuation function is independent of the syntactical shape
of the constraining formula but only depends on its extension. It therefore can be
seen as a deterministic choice function χ : 2U → U applied on the extension set.2

This seems plausible—except that in program specification, this is against the
intuitive view that different locations hold values which are independent of each
other. In other words: all model fields with logically equivalent represents clauses
would be ==-equal. Therefore, we introduce (possibly) different choice functions
for different model fields through a weaker version of extensionality and instead
use a family of choice functions that contains a choice function χ(T,i) for each
type T ∈ T and identifier i ∈ Id .

Let T ′ be the type where x is declared. Then, an ε-valuation w.r.t. a choice
function χ(T ′,i) is defined by:

ε(s, o, x, ϕ) := χ(T ′,x) (Extε(s, o, x, ϕ)) .

2 Note that χ is a total function and, in particular, yields an underspecified value χ(∅).

7

In addition to the above mentioned information, we need to extract represen-
tation clauses from the annotated program. Let rep(T, x) denote the represents
clause declared in type T constraining model field x. We are finally able to extend
our definition of val from Sect. 3 to valε to include model field validation:

Definition 7. If x is a model field, then

valε(s0, s1, a.x) := ε(s1, valε(s0, s1, a), x, rep(valε(s0, s1, a), x))

Although extension and valuation are defined mutually recursively, this defini-
tion is well-founded since there is only a finite number of model fields which are
referenced in a single expression.

5.1 Discussion

Frame properties. Framing is an essential means to specify and verify programs
in a modular way. With the following remark, our approach for defining the
semantics of model fields allows framing, i.e., restricting the possible assignments
for fields. This is a purely semantical criterion—without (syntactically) naming
dependencies explicitly.

Assuming a fixed choice function χ and, thus, a fixed valuation ε, there is
only one possible object value for each model field as long as the values of its
concrete dependencies remain unchanged, even if other parts of the state change.

The value for a model field can be observed in any state without additional
care. While some authors [13, 15, 16] define model field semantics only for states
in which the receiver object’s invariant holds, our definition is independent of
the particular semantics of invariants.

Handling undefinedness. Our definition of semantical evaluation of model fields
is independent of how undefinedness in expressions is handled (e.g., division by
zero or null pointer references). In JML—as in Java—an expression ϕ is only
well-defined if its subexpressions are themselves well-defined, namely those which
are relevant in a short-circuit evaluation read from left to right. On the top level,
a boolean expression is considered valid if it is well-defined and yields the value tt.
This can be seen as a non-symmetric, conservative three-valued logic. One could
easily extend this notion of well-definedness to model fields where a reference
expression is well-defined only if there is a non-empty extension.

Applications. Up to now, there exist various tools which use annotation-based
languages as specification input: runtime checkers, static analyzers, and formal
deductive verification tools. As our semantics is independent from any verifica-
tion methodology, we believe that it can be used to check whether those applica-
tions implement model fields in a consistent way. For runtime-checking, however,
it may be necessary to fix a certain choice function which is easy to compute,
e.g., to choose the least element w.r.t. some order.

8

5.2 An improved approach

The above approach works well in most cases—even when a represents clause
contains references to other model fields. However, the evaluation is local to
single model fields in the sense that it only establishes the relations between a
model field and its dependencies. In the case where references are cyclic, the
relation between model fields are ignored. Consider the following two represents
clauses:

represents x \such_that x >= y; represents y \such_that y >= x;

Both are clearly satisfiable, but when evaluated separately, it is not implied that
x and y are assigned the same value. For a sound evaluation in that case, instead
of making a choice from a set of values, we need to make a choice from the set
of valuations conforming with all represents clauses simultaneously. Let Ls be
the (finite) set of model field locations (i.e., pairs of receiver objects/classes and
field identifiers) whose receiver object is created in state s (or has been statically
initialized). Then, the heap extension HExt , as motivated by generalized exten-
sions (Def. 4), can be given as follows. It consists of functions from locations to
values—the same domain as the heap—under which all represents clauses valu-
ate to true. This means that those functions extend the actual heap. Since there
is a valuation for each model field, only one choice function is required.

Definition 8 (Generalized model field valuation). Let χ̄ be a fixed choice
function on UU×Id . Then define heap extension HExt(s) and valuation valε̄:

HExt(s) :=
{
h∈ UU×Id | ∀(o, x) ∈ Ls. valε̄(s, s⊕h⊕{this 7→ o}, rep(o, x)) = tt

}
valε̄(s0, s1, a.x) := (χ̄HExt(s1)) (valε̄(s0, s1, a), x)

The heap extension set may lead to fewer values for a particular model field
when compared with the simple extension defined above. Those belonged to a
partial (local) solution in which not all represents clauses are satisfied simulta-
neously. However, all aspects which we discussed in Sect. 5.1 still apply to this
definition.

�
1public class LinkedList {

2private /*@ nullable @*/ LinkedList next;

3private Object contents;

4/*@ model int index;

5@ represents index \such_that

6@ next == null || index < next.index; @*/

7}�
Fig. 2. Non-functional represents clause: index of a linked list.

9

Example 1. Figure 2 shows an implementation of a linked list. In JML, it is
necessary to add the modifier nullable to the next list element because as the
default all object references must not point to null unless declared explicitly.

The represents clause of the model field index guarantees that the list is
actually acyclic as its value needs to be strictly less than index of the next
element. Let us determine the value of this.index in a state s = (η, σ) where

σ(this) = ll0, η(ll0, next) = ll1, η(ll1, next) = ll2, η(ll2, next) = null

and ll0, ll1, ll2 ∈ VLinkedList are the only objects created in s. From this it follows
that L(s) = {(ll0, index), (ll1, index), (ll2, index)}. Then

HExt(s) =
{
h ∈ (Vint)

U×Id | h(ll0, index) < h(ll1, index) < h(ll2, index)
}
,

which is clearly not empty and some function can be chosen.

6 Related Work

Even though JML is designed to be interchangeably used with various speci-
fication and program analysis techniques, the issue of handling model fields is
still subject to an on-going debate. There are several approaches to integrate
model fields into verification. There, semantics are mostly implict in the respec-
tive methodology or calculus. A preliminary version of the semantics in this work
has also appeared in [4, Sect. 3.1.5].

Substitution-based Approaches. Breunesse and Poll [3] present a semantics us-
ing substitutions in expressions. The clear advantage of this technique is that no
additional evaluation rules are needed. Given a model field x of type T with a rep-
resents clause ψ and a JML expression ϕ which contains x, the following transfor-
mation is applied: ϕ ; (\forall T x; ψ; ϕ) && (\exists T x; true; ψ)

In the result, ϕ appears as the body of a quantifier expression with the model
field x as the quantified variable. This transformation is done for every model
field declared in the program. The resulting expression asserts both that ϕ holds
if the represents clause ψ is true as well as the existence of a value that satisfies ψ.

However, this approach is syntactically restricted since the order in which an
expression is transformed does matter. Moreover, model fields may depend on
each other, so if ψ contains a reference to another model field y, the scope of
quantification of y has to include ψ. Thus, the semantics of model fields is only
well-defined if there exists a linear ordering of dependencies and an upper bound
on their length.

Concrete Instantiations. There are two approaches by Leino and Müller [13] and
Tafat et al. [15], respectively, based on ownership methodology, which is used
in Spec# and ACSL among other languages. Model field values are stored on
the heap, like concrete or ghost fields. In contrast to JML, they are defined not
to change their value instantaneously when the locations change on which they

10

depend, but at given program points, namely upon invoking the special pack
operation on its owner.

In these works, represents clauses are not allowed to contain calls to pure
methods, and references to other model fields only in a few restricted cases.
It is not clear whether there are restrictions on the chosen values in case the
represents clause is not functional. Thus it may be possible, according to this
definition, that the value of a model field spontaneously changes upon packing
even though all dependencies retain their values.

Axiomatic Semantics. Weiß [16] presents a dynamic logic with explicit heap
objects. Model fields are translated to function symbols. Represents clauses are
introduced through logical axioms. As a simple solution to avoid an inconsistent
axiom set, they are guarded by an existentially quantified assumption, which
guarantees that the single represents clause is satisfiable. Mutually recursive
represents clauses may, however, give rise to inconsistent axiom sets.

Frame Conditions. Much of the above is dedicated to how model fields gain their
values. Another important property is to specify when a model field’s value
does not change, known as a frame condition. To this end, Weiß introduces
contracts for model fields [16], similar to frame conditions on methods, which
have to be respected by implementing represents clauses. Here, the argument
of a frame condition is an expression of type \locset (‘set of locations’) which
is dynamically valuated. This approach, known as dynamic frames theory, is
particularly useful when the concrete fields on which a model field depends are
not known on the abstract level.

7 Conclusion and Outlook

In this paper, we have presented a semantics for model fields in annotation-
based specification languages. The first version is strongly inspired by the no-
tion of ε terms as introduced by Hilbert. We have demonstrated the connection
between those two concepts—one from an established theory and one as a cur-
rent challenge in formal methods in software engineering. While this semantics
exposes a ‘good behavior’ in most cases, the general case requires a different
methodology. This second version covers the complete expression sub-language
of JML.

To the best of our knowledge this is the first contribution in which model
fields are described in all their extent and in an application-independent way.
This means that the results can be applied to any verification paradigm. It also
provides the basis to independently give a definition of well-definedness.

Model fields are a powerful instrument in code-level specification which hides
behind the familiar syntactical guise. However, it is debatable whether there is
a real demand for non-functional relations. Commonly, within the technique of
abstraction, there are several concrete entities which are related to one abstract
representation. In the vast majority of instances, there is always a sensible func-
tional representation. In Fig. 2 for instance, we have seen an example where the

11

represents clause exposes a kind of weakly functional behavior, while it would
not do any harm to overspecify the relation and provide values to any case which
is yet left undefined.

References

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: an overview. In Gilles Barthe et al., editors, Construction and Analysis of
Safe, Secure and Interoperable Smart devices, volume 3362 of LNCS, pages 49–69.
Springer, 2005.

2. Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification
Language, Version 1.5, 2010.

3. Cees-Bart Breunesse and Erik Poll. Verifying JML specifications with model fields.
In Formal Techniques for Java-like Programs (FTfJP), number 408 in Technical
Report, ETH Zurich, pages 51–60, July 2003.

4. Daniel Bruns. Formal semantics for the Java Modeling Language. Diploma thesis,
Universität Karlsruhe, 2009.

5. Ádám Darvas and Peter Müller. Formal encoding of JML level 0 specifications in
JIVE. Technical Report 559, ETH Zürich, 2007.

6. Christian Engel. A translation from JML to JavaDL. Studienarbeit, Fakultät für
Informatik, Universität Karlsruhe, February 2005.

7. Martin Giese and Wolfgang Ahrendt. Hilbert’s ε-terms in automated theorem
proving. In Neil V. Murray, editor, Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX’99), volume 1617 of LNCS, pages 171–185.
Springer, 1999.

8. David Hilbert and Paul Bernays. Grundlagen der Mathematik, volume II. Springer,
1939.

9. C. Anthony R. Hoare. Proof of correctness of data representations. Acta Infor-
matica, 1:271–281, 1972.

10. Bart Jacobs and Erik Poll. A logic for the Java Modeling Language (JML). Tech-
nical Report CSI-R0018, University of Nijmegen, Computing Science Institute,
November 2000.

11. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, March 2006.

12. Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M. Zimmerman.
JML Reference Manual, July 13, 2011.

13. K. Rustan M. Leino and Peter Müller. A verification methodology for model fields.
In Peter Sestoft, editor, European Symposium on Programming (ESOP), volume
3924 of Lecture Notes in Computer Science, pages 115–130. Springer, March 2006.

14. K. Rustan M. Leino and Greg Nelson. Data abstraction and information hid-
ing. ACM Transactions on Programming Languages and Systems, 24(5):491–553,
September 2002.

15. Asma Tafat, Sylvain Boulmé, and Claude Marché. A refinment methodology
for object-oriented programs. In Bernhard Beckert and Claude Marché, editors,
First International Conference on Formal Verification of Object-Oriented Software
(FoVeOOS 2010), volume 6528 of Lecture Notes in Computer Science, pages 153–
167. Springer, January 2011.

12

16. Benjamin Weiß. Deductive Verification of Object-Oriented Software — Dynamic
Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute
of Technology, January 2011.

13

