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2 1. Motivation and outline

In the present doctoral thesis the development of a quantitative phase-
field model for modeling phase transitions in multi-component sytems is
presented. The work is categorized into four main sub-divisions as,

• Exemplary applications of the phase-field method

• Modifications to an existing phase-field model

• Asymptotics

• Validation

To start with, investigations are performed with the aim of modeling
some essential features in the process of solidification using the phase-field
model of H.Garcke and B.Nestler and others [79], for dendritic growth,
binary eutectic, peritectic and ternary eutectic systems. Apart from
being of scientific importance, aiding in the understanding of the physics
of solidification in various phenomena, the studies lay a foundation of
basic knowledge required for the development of a quantitative phase-field
model, highlighting the challenges to be overcome in the development of an
effective model. Following, is the general overview of the overall work.

1.1. Exemplary applications of the
phase-field method

Two studies of interest are presented: (I) Growth in the (Fe-C) peritectic
system, of δ (ferrite(pro-peritectic phase)) and the γ (austenite(peritectic
phase)) [19]. The free energy of the phases were modeled using the ideal
solution model such that the liquidus and solidus slopes along with the
concentrations of the respective phases at the peritectic temperature fit to
the actual phase diagram. The model parameters related to the interface
width and surface excesses were adjusted to derive the surface energy of the
different interfaces presented in literature or the intended value to be set in
the simulations. Although the surface energies of the solid-liquid interfaces
are known quite accurately, the solid-solid surface energies σ̃αδ are unknown.
In this study a range for the solid-solid surface energies is derived on
the basis of the occurence of the engulfing morphology(pro-peritectic
phase engulfing the peritectic phase above the peritectic temperature, and
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vice-versa below the peritectic temperature.) It is noticed that the solid-
solid surface energies, strongly influence this growth morphology at given
supersaturations, enabling the isolation of such a range in the solid-solid
surface energies. In addition, critical nuclei are numerically calculated
through the solution of the Euler-Lagrange equations comprising of the
stationary phase-field and the concentration equations. Through this, the
homogeneous barrier to nucleation is computed for the nucleation of the δ
and γ phases in the liquid at various compositions. As the Fe- concentration
increases, it becomes more favorable to nucleate both phases. Simulations
of nucleation events are performed with stochastic noise coupled with
dendritic growth of the pro-peritectic phase and the sites of nucleations
in the non-uniform concentration field, confirm to the predictions derived
from the calculations of the barrier to nucleation.

(II) The second example used for the investigation of solidification is the
study of ternary eutectics [20]. In particular, special attention is devoted
to configurations during thin-film growth. In contrast to binary eutectics
where the only possibility is αβ . . ., there exists a number of possibilities
for the growth patterns of ternary eutectics in thin-film growth, eg αβγ . . .
αβαγ . . .. A theoretical study is performed of the Jackson-Hunt type for
the various configurations, resulting in expressions of the undercooling as
functions of lamellae spacing for given velocities. Corresponding compar-
isons were made with simulations for a symmetric ternary eutectic system
modeled using ideal free energies. Good aggreement was achieved between
the simulations and theory in the prediction of the spacings at minimum
undercooling and the undercoolings themselves. For large spacings, the
lamellae exhibit oscillatory instabilities. The symmetry elements present
in the different configurations match those of the underlying symmetry
elements of the configuration. Some of these symmetries match those
found previously for binary eutectics. Although some of the symmetry
modes are pertinent with respect to the specially constructed, symmetric
phase diagram, their occurence in real alloys cannot be ruled out without
an examination. An additional instability that was found for configura-
tions other than the simplest configuration αβγ, is that below a particular
lamella spacing, the lamella are unstable towards elimination. The critical
spacing below which this instability occurs, can be well explained on the
basis of the theoretical calculations. Furthermore, simulations of direc-
tional solidification of bulk samples in three dimensions is also performed.
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Two types of morphologies were isolated depending on the concentration
and the symmetry of the phase diagram. For the symmetric phase diagram
at the eutectic temperature, a hexagonal pattern was achieved in the cross-
sectional view, starting from a random configuration. For a slightly asym-
metric phase diagram a semi-regular brick structure is obtained which is
also observed in experiments. While this does not cover all the possibilities,
it certainly presents an outlook into the variety of structures.

1.2. Model modification

On the basis of these two studies, there were two conclusions with respect
to the applicability of the model for the case of phase transformation in
real alloys. With regards to the length scale that can be simulated, it was
noticed that there exists considerable limitations to the grid resolution that
can be used, and in most cases this presents a significant computational
overhead. It has been well established in literature, that when the free
energies are interpolated in the form used in the WBM type models[134],
there exists an additional length-scale coming from the variation of the
grand potential excess across the interface [15, 55, 77, 114]. For systems,
in which this term becomes largely dominant, the surface energy and the
interface thickness loose their independence (surface energy and interface
thickness are usually, two independent parameters in simulations). This
limits, the interface widths to smaller values, and hence the domains
that can be simulated. Consequently, this results in a limitation in the
physical sense, because the processing conditions that can be simulated
with such an approach gets narrower. Additionally, one must pre-calculate
the contribution of the chemical free energy excess to the surface energy,
in order to choose the right simulation parameters. On a more technical
note, it is also diffcult to perform the thin-interface asymptotic analysis
(described later) for such a model, because, the equilibrium properties
scale with the interface thickness. This challenge motivates a change in
the modeling idealogy with the following aims,

• Construction of a model with efficient flexibility in choosing the right
parameters,

• Easy applicability and extendability to any alloy system,
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• Performing of thin-interface asymptotics with universally applicable
results.

In literature, there exists two types of modeling idealogies for deriving a
phase-field model, where the equilibrium properties such as the surface
energies are independent of the free energies of the respective phases. In the
first type, the functional argument is just the concentration field [30], while
in the other [55], the arguments are the concentration fields corresponding
to respective phases in the system, eg: cα, cβ etc. In the case where a single
concentration field is used, the free energy contribution is decomposed into
enthalpic and entropic contributions which are interpolated independently,
such that at equilibrium there is no contribution from the free energies
to the equilibrium phase-field profile, wheras for the case where different
concentration fields are used for the respective phases, the concentration
at a given point is written as an interpolation of the individual phase
concentrations, and the equation is closed with the condition of equilibrium
chemical potential among the phases, or alternatively a known partition
relation among the phase concentrations which enables the determination
of the phase concentrations. These are then utilized in the determination
of the driving force for phase transformation. The common basis for both
methodologies however, is that the driving force for phase transformation
is the difference of the grand potentials of the phases, at the same chemical
potential. Through this construction, it is evident that at equilibrium, there
exists no terms arising from the chemical system, which contribute to the
solution of the equilibrium phase-field profile, implying that the equilibrium
properties such as the interfacial energies can be fixed independently of
the free energy of the respective phases.

With this motivation a new model is derived, starting from a grand
potential functional instead of the free energy functional (previous models)
with the thermodynamic variable as the chemical potential instead of the
concentration field. It is shown that, with this modification it is possible
to get rid of the excess contribution to the interface and the length scale
related to the interface thickness, is then independent of the chemical
system one is simulating. This provides for significant flexibility in the
applicability of the model for different alloy systems. This work bears
co-incidental resemblance to the work by M.Plapp [91]
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1.3. Asymptotics

In performing quantitative simulations, it is essential to acquire knowledge
of the mapping of the model to the respective free boundary problem one is
attempting to solve. To achieve this, we require to perform an asymptotic
analysis. In this context, there are two limits, namely: the sharp interface
limit (interface thicknesses tending to zero) and the thin-interface limit
(interface thickness, remains finite, but small in comparison to the diffusion
length). While the sharp-interface limit is relevant when the simulations
are performed with very small interface thicknesses, the more technically
relevant one is the thin-interface limit, since this allows one to retrieve
the same free boundary problem but with length and time scales that are
computationally accesible.

One of the key parameters, to fix in phase-field simulations, is the relaxation
constant τ which relates to the relaxation of the interface. In most,
mesoscopic simulations however, one is interested, only in the diffusion
controlled growth regime. This implies, that the phase boundaries relax
infinitely fast when imposed with a change in the coupled concentration
field. This is achievable in the framework of a time dependent free boundary
problem in the thin-interface limit previously derived by Karma [48]. The
principal result states, if one derives, the expression for the interface kinetic
coefficient, in the thin-interface limit, there exist parameters such that
vanishing interface kinetics can be achieved. Whereas, in literature we
derive that, this has been performed for the case of the double-well type
potentials, in the present work, the thin interface limit is extended for the
case of double-obstacle potentials.

While this limit makes effective use of thicker interfaces, there are some
assosciated problems. With the use of thicker interfaces, there exist certain
corrections one must include in the asymptotics to simulate the right
free boundary problem [6]. These have been elaborately evaluated for
both solutal and thermal problems, but for normally used double well
potentials. The principal result in the analysis concludes that among the
three thin-interface defects, two of them: surface diffusion and interface
stretching are simultaneously absent, if odd-interpolation polynomials are
used for interpolation of the diffusion constants of the phases and the free
energies. However, such a choice makes it impossible to get rid of the third



1.4. Validation of the model 7

interface defect which is solute trapping. Solute trapping is a chemical
potential jump at the interface resulting from asymmetric diffusivities of
the two phases. Present models use a non-variational approach of using
an anti-trapping current [46], to remove this jump at the interface. This
has however been derived only for potentials of the smooth well type. In
this analysis, the correpsonding expressions for the thin-interface kinetic
coefficient and the expression for the anti-trapping current are derived for
the the case of the double obstacle potential. Following is the summary of
the goals achieved [18]:

• Development of a model based on grand potential functional

• Removal of additional limiting length scale resulting from variation
of grand chemical potential excess at the interface

• Equilibrium properties such as surface tension are independent of
the chemical free energy of the system

• Thin-interface asymptotics for the case the double obstacle potential

• Derivation of the kinetic coefficient in the thin-interface limit

• Derivation of the anti-trapping current for the double obstacle po-
tential and a multi-component system, with vanishing diffusivity in
the solid

1.4. Validation of the model

The model and its modifications are tested for real alloy systems. First, is
the investigation of dendritic growth in the Al-Cu system. Comparisons
are made with the analytical dendritic growth theories (LGK) and good
aggreement is achieved. Among binary and ternary eutectics, the asymp-
totics and the model are tested with respect to theorectical expressions
derived for coupled growth derived previously. In addition, the model is
applied for the case of the Al-Cu-Ag alloy for the modeling of three-phase
eutectic growth. A generalized route for the construction of free energy
data, utilizing the essential information from databases, is constructed.
Using this, some preliminary morphologies in 2D are presented at growth
conditions relevant in directional solidification experiments.
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2.1. Introduction

In the past decades, the phase field method has become an important
tool to describe microstructure evolution during phase transformations.
In particular, considerable advancements have been made in the field
of modeling phase evolution in multi-component systems. The areas of
application though initially limited to solidification have spread to many
a phenomena, involving solid-state diffusion, deformation behavior, heat
treatment, re-crystallization, grain boundary pre-melting, grain coarsening
etc. The phase-field approach’s popularity is due to the elegance with
which it treats moving boundary problems earlier in the regime of sharp
interface methods. The interface representing the boundary between
two mobile phases is replaced with a smoothly varying function called
a phase-field, whose change represents phase evolution. This approach
obviates the necessity to track the interface and hence makes large scale
simulations of microstructure evolution involving complicated geometrical
changes computationally tractable. The application of the phase-field
method starts with the creation of the functional which includes the
material properties involving both the surface properties of the interfaces
in the system and the thermodynamic energy of the bulk phases in the
system. A variational derivative of this functional with respect to any
of the changing phase-field variables, gives us the driving force for the
change. Depending on whether we are treating a pure component or multi-
component system this driving force is a function of just the temperature
or includes the compositions of the different components in the system
also as variables. The source of thermodynamics of the bulk phases, are
derived in a number of ways, starting from ad-hoc methods to creation
of simpler thermodynamic models or the direct use of the well known
Calphad databases.

This review is an attempt to gauge the applications of the phase field
method in simulating the processing situations involving multi-component
materials. Such a review would however be incomplete without a prior
mention of the sequence of developments in the phase field method which
has made such applications possible. In the following, we list some of these
landmark developments and try to put them in context of the final goals
that were achieved.
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2.1.1. Model evolution

The phase field method originated as a branch of continuum theory and
various instances have appeared in literature [14, 35, 39], while the first
formulation of phase field equations to describe solidification can be found
in the works by Langer [63] which were in turn based on the Model C of
Halerpin, Hohenberg [39]. Similar independent models on pure metals were
proposed by Collins and Levine [65], building up to the first large scale
simulations of dendritic growth from pure melts which were performed
by Kobayashi [61]. In these earlier works, the free energy formulations
are ad-hoc, and motivation for the formulation of thermodynamically
consistent models led to evolution equations being derived from a single
Lyaponov type entropy functional, ensuring local maximization of entropy,
[88, 124, 129] for two phase binary alloy systems. Later similar consis-
tent models incorporating a generic formulation for treating multi-phase,
multi-component models were proposed by Nestler and co-workers[33, 79].
However, the first multi-phase models are found in an earlier work by
Steinbach et al. [108], where the free-energy formulation is ad-hoc.

Following the investigations of Caginalp and co-workers, [13] to relate
the phase-field evolution equations to the sharp interface free-boundary
problem along with the analysis of the attempts at quantitative comparison
by Wang and Sekerka [123] and Wheeler et al., [136], makes it quite
clear, that the parameters such as the kinetic coefficient and the capillary
length derived from the sharp interface limit (the interface width going
to zero) leads to quite stringent restrictions on the interface width for
quantitative simulations, which in turn presents immense challenges on
the computational side. Accompanying this problem, is the simulation of
structures at the small interface kinetics limit, i.e., growth structures at
low undercooling. In a time dependent free boundary problems (TDFBP),
apparently it is evident that if one goes by the sharp interface limit, the
kinetic coefficient will remain finite and hence, only simulations with
interface kinetics can be performed. Solutions to this were extended by
Karma [48] through the concept of Thin interface limit where the interface
width remains non-zero, but much smaller compared to the mesoscopic
diffusion length of the problem, which is the most relevant for the problems
with a Stefan boundary condition. Although, the study is for pure metals
where the phase evolution equations is coupled with the temperature field,
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later it is extended to the case of binary alloys, with constant partition
coefficient and diffusivity through combined work with Losert and co-
workers [72]. While this particular formulation is for a particular choice
free energy density, a general procedure for the mapping of any phase-field
model to its sharp interface limit is described in the investigation by
Provatas et al. [28].

Dendritic solidification in the whole range of undercoolings still remains a
challenge. It has been established that if the thin-interface correction is
properly incorporated most phase-field models irrespective of their ther-
modynamic consistency, converge identically with similar computational
costs for a given range of undercoolings. This range is identified as region
where the interface peclet number (ratio of the interface width and the
diffusion length) is small [59]. The convergence of a given phase-field model
depends on the particular formulation, however, all phase-field models
deviate from the intended sharp free boundary problem for higher interface
peclet numbers. Since, at a given undercooling and strength of anisotropy,
the velocity is fixed, the only degree of freedom that remains for adjusting
the interface peclet number is the reduction of the interface width. This
proves to be computationally expensive for large undercoolings (small
diffusion length). For lower undercoolings larger interface widths can be
used, but larger simulation domains are necessary which require efficient
computational algorithms. To this end, adaptive mesh methodologies [94]
and random-walker algorithms [92] prove quite helpful.

In the application of the phase field method, the WBM (Wheeler, Boet-
tinger, McFadden) model [134] and the related formulation of free energy
densities became quite popular. Kim [56] however, showed the existence of
a potential excess, arising from the variation of the grand chemical poten-
tial across the interface at equilibrium, which is also previously illustrated
in the works of WBM. The novelty is, that they show how this excess
from the particular formulation of the free energy restricts the choice of
the interface width for a given surface tension. Since the resolution of
the interface is related to the domain that can be simulated (in a regular
grid structure), this presents serious challenges to the computations that
can be performed. Tiaden etal. [114] propose a solution to this problem
by adopting different concentration fields for the solid and the liquid,
connected to each other through a partition coefficient, which is a function
of velocity. This is also thermodynamically consistent for dilute binary
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alloys. Kim and co-workers [56] provide an extension by also considering
the concentration at a point to be a mixture of concentrations of the solid
and liquid phases, but the individual compositions are corresponding to
the parallel tangent construction between the free energy curves of the
respective phases in contact. Both methods relax the restriction placed
on the choice of interfaced widths. Models following similar lines as Kim,
have also been proposed by Cha et al. [16]. Later, some more related
variational and non-variational methods of getting around this problem
were formulated by Plapp et al. [31, 32] for two phase eutectic solidifica-
tion, without the use of separate concentration fields for the solid and the
liquid.

The second problem is related to the choice of thicker interfaces which
leads to the modification of the Stefan condition. The aggregate of mod-
ifications to the Stefan boundary condition due to the choice of a finite
interface thickness came to be called Thin Interface defects and a rigorous
mathematical description of each of these defects are found in investiga-
tions by Almgren and Mcfadden, [6, 75] for pure melts with asymmetric
diffusivities for the transport of heat, while similar effects are also shown
to exist in alloys [46]. The thin interface defects discussed in these studies
are three in number. Of them, the defect of solute trapping was earlier
discussed in the work by Kim and Ahmad, [1, 55]. In real materials the
diffusivity of the solid is much lower compared to that in the liquid, which
is different from the assumptions by Losert et al. [72]. The asymmetry in
diffusion constants causes the asymptotic limits of the chemical potentials
at the interface, resulting on the liquid and solid side of the interface, to
be different. This difference is a function of velocity and the width of the
interface, causing a chemical potential jump at the interface also called
solute trapping. Although this is a phenomena seen to occur in materi-
als science during rapid solidification, the difficulty arises from the fact
that the magnitude of the solute trapping effect scales with the interface
widths, which being chosen orders of magnitude higher for the phase field
simulations, than that in a real material, gives rise to significant solute
trapping at velocities where it would be negligible in a real alloy. The
second, known as the surface diffusion resulting from the mismatch of
the fluxes on the solid and liquid sides of the interface, and the third is
interface stretching that results because for a solid growing with a convex
interface into the liquid, the source of the solute on the solid side is over a
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smaller area compared to that on the liquid side because of the curvature
of the interface, over a finite thickness. The physical interpretations of
the defects are elaborated in the explanations on quantitative modeling
by [30]. It is illustrated, that the solution to the problems, is related
to the appropriate choice of interpolation polynomials. However, due to
the restriction of the number of interpolation polynomials, it is generally
agreed that all three effects cannot be simultaneously taken care of, while
maintaining reasonable bounds of computational efficiency. Presently
there exists no phase-field model which removes all three effects using a
variational formulation. Therefore, while the problems of surface diffusion
and interface stretching can be corrected through the use of suitable inter-
polation polynomials, the problem of solute trapping is removed using a
non-variational formulation as suggested by Karma et al. [30, 46], by using
an anti-trapping current which is a current of solute from the solid to the
liquid. Another solution, to limit the thin interface defects, is proposed
by Kim et al. [57], where they decouple the solute and the phase-fields,
since the problem of solute trapping arises because of the variation of the
solute field over a larger diffuse area than the interface. The diffusion field
for the solute is limited to suppress the thin interface effects. However, in
practice it is found that in calculations, one needs to use a diffuse length
of the solute field slightly larger than the grid size Δx, which makes the
solute trapping effect still appreciable. Later, the earlier phase-field model
of Kim et al. [56] was extended to multi-component systems,[54], with
the additional removal of the thin interface defects using an anti-trapping
current formulation. Provatas et al. [84] present an extension of the model
of Eschebaria et al. [30] to treat multi-phase binary alloys.

The complete problem of microstructure evolution in material science
normally involves the coupling of the thermal and solute fields. This
coupling is however a challenge in simulations, as the heat and solute
diffusion operate on different time scales with the thermal diffusion being
much faster. Phase field modelling of this coupled phenomena was first
performed by Boettinger and Warren [11], where they ignore the spatial
variation of the temperature field, and the temperature field is computed
from heat balance equation between the imposed heat extraction rate
and the released latent heat. It was found later that this is valid only
for low undercooling [71] where the authors compare the temperature
fields computed by exactly solving the diffusion equations for the internal
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energy, and those from average heat balance equation coupled with the
isothermal model. The model proposed however, has thin interface effects,
which are absent in a later model proposed by Ramirez and Beckermann
[99]. The diffusive time scales for heat and mass transfer are comparable
during rapid solidification of alloys and hence the problem becomes more
tractable. The thermal and solute-field coupling in rapid solidification
problems are treated in the works by Conti et al. [21, 22].

Along with the massive developments to make quantitative simulations
of real materials feasible, model adaptations to treat other phenomena,
like nucleation were proposed by Granazy et al. [37, 115, 131] in solid-
liquid transitions, while in solid state precipitation, similar models were
formulated by Simmons and co-workers [106].

It has long been the aim of the phase field community to treat real materials
and the significant step towards this, comes through the use of free energy
of the different phases, directly from the proven and tested CALPHAD
databases. The first attempts are found in the model adaptations proposed
by [15, 36, 96]. In recent works, the usage of the CALPHAD databases,
and its direct coupling to phase-field solvers has become more frequent
and has spread to a variety of applications, which will be highlighted as
we take an overview in the later sections.

In the following sections, we present the various applications of the phase
field models. In the first section, we list the studies using idealized model
systems constructed for studying the physics of a particular solidification
process, followed by applications where real thermodynamic databases
were used for the simulations in various processes and concluding with
an outlook for the application of the phase field method to different
phenomena and resolving of other research issues.

2.2. Phase-field applied to problem of
solidification

Solidification is the phenomena most extensively studied using the phase-
field method. The types of solidification reactions range from pure metal
solidification, eutectic (liquid on solidifying giving rise to one or more
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solids), peritectic (liquid on reaction with a solid gives another solid)
and monotectic solidification (liquid on solidification gives a solid and
another liquid). Each of these types have been explored by the phase-
field method. In this section, we list down the studies where the central
point is to understand the physics accompanying the evolution process.
Most investigations in this section involve the use of free energy densities
which are created in an ad-hoc manner or are generated through simpler
thermodynamic models which do not influence the final inferences.

2.2.1. Dendritic solidification

Dendritic solidification is ubiquitous in materials science and has long
intrigued materials scientists and physicists, as to what are the param-
eters and conditions, which lead to this instability. Although a lot of
understanding has been gained about the physics of this effect, simulations
or experiments are necessary to characterize the materials response to
processing conditions. In this regard the phase-field simulations come to
be of much use.

Beginning with the first large scale simulation of thermal snow flake
dendrites by Kobayashi [61], parallel attempts at quantitative comparisons
were made by Wheeler et al. [136], where the morphology of dendrite
tip is compared to needle crystal solutions proposed by Ivantsov for pure
Ni dendrites. Along with this, investigation of the operating state of
the dendrite tip and matching with the marginal stability criterion and
the micro-solvabilty theories is also carried out. The first simulations of
solutal dendrites in a Ni-Cu system are found in the studies of Warren
and Boettinger [130] who employ a thermodynamic consistent model for
the investigation. Fig. 2.1 shows an illustrative phase-field simulation
of a three dimensional (3D) Al-Cu dendrite. The thin interface limit for
crystallization of pure materials [48, 50] earlier proposed by Karma for
pure metals and later extended along with Losert and co-workers [72] for
a binary alloy (Succinonitrile-Coumarin), is used for studying the range of
wavelengths for the formation of stable singlets, doublets, and unstable
transient patterns on perturbation of a planar interface. These works
illustrate that one can choose an interface width in the mesoscale range
and still perform phase-field simulations independent of interface kinetics.
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Figure 2.1.: AlCu dendrite simulated using a thermodynamically consistent
phase field method, with fourfold cubic anisotropy. Secondary arms are initiated
through noise. An ideal solution model was assumed for the bulk free energies.
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Thus, quantitative simulations become theoretically possible also in the
range of low undercooling. These studies demonstrated the usefulness of
the method, however, quantitative applications to real materials are only
possible with the introduction of the anti-trapping current [46] along with
solution to the other thin interface defects that arise due to asymmetric
diffusivities in the phases [6]. Parallel to these developments, the phase field
method has been applied to different areas of materials research, such as
solidification of bulk metallic glasses, where it is used for studying dendritic
to globular transitions in ternary Ni60Cu40−xCrx [25]. A morphology
map, showing the change in the microstructure from dendritic to globular
morphology, as a function of the Cr concentration is derived. Concentration
profiles, measured in experiments and computed in phase field simulations
during solidification of multi-component metallic glass composites, are
compared and good agreement is found in the works by Huang et al.
[43] and Nestler et al. [78]. The phase-field method is also used in the
simulation of dendritic solidification in industrial alloys, where higher order
Redlich-Kister polynomials are used by Wang [121] for the description
of the free energies of the hexagonal α − Mg phase and the melts in the
AZ91D Mg rich Al-Mg alloy. Both thermal and solute fields are solved
and a 3D hexagonal anisotropy in the kinetic coefficient and the surface
energy, reproducing stacking of 2D hexagonal plates is proposed.

2.2.2. Eutectic solidification

Eutectic alloys are useful for their low melting properties and also for their
mechanical properties given the structure is uniform at the finest scale.
Hence, a study of these alloys to gain an understanding of the relation
between the processing conditions and the final microstructure is useful
for material scientists. It is also an interesting topic for physicists because
of the number of possible pattern formations. The first phase field model,
enabling the treatment of the transformation of a liquid to two solid phases
was proposed by Karma, [45]. The model uses the concentration field as an
order parameter to distinguish between the solids, similar to the works of
Cahn [14], while a second order parameter is used, in order to distinguish
the solid and the liquid phases. The free energy surface is created in such
a manner that the solid free energy contains two minima symmetrically
placed with respect to the eutectic composition and corresponding to
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the two solid phases in the system. A directional solidification set up is
created, by setting a temperature gradient in the growth direction and the
equations are solved in the moving box frame, which is set at an imposed
velocity. Comparisons of the angle at the triple point are found to be in
good agreement with the predictions derived out of the Young’s condition
in the sharp free boundary problem. The results of the average interface
undercooling and the minimum undercooling spacing match well to the
predictions of the classical Jackson-Hunt Theory. Similar models, with
extensions allowing the free energy density of the solid phases to differ in
their form are proposed by Wheeler et al. [135].

Athough stable coupled growth is commonly observed during eutectic so-
lidification, they also exhibit certain instabilities during growth of thin and
bulk samples. In this context, phase-field models provide a great means to
study the instabilities in the growth patterns of eutectics which is a big
development over the boundary integral method, which is unable to treat
catastrophic changes, like lamella elimination or termination. Stability of
2D eutectic patterns to lamellae elimination is investigated by Akamatsu
and co-workers [4, 5]. Measurements of the average undercooling of the
growth interface from directional solidification experiments of eutectic
Carbontetrabromide-Carbonhexachloride organic alloy in thin film mor-
phology agree well to calculations from simulations. The studies reveal
that configurations of lamellae with average spacing below the minimum
undercooling spacing can also be observed both in experiments and simu-
lations. This is however in contradiction to the result which is obtained,
if we combine the analysis of Langer [62] with Cahn’s earlier hypothesis,
which states that the growth of the lamellae is always normal to the local
solidification front. Langer uses Cahn’s hypothesis in his stability analysis
of lamellar growth, for small amplitude long wavelength perturbations in
the spacing of large arrays of lamellae. The outcome of the analysis is
that configurations with spacings smaller than the minimum undercooling
spacing are unstable and will eventually die out. Akamatsu and co-workers
reason this anomaly in their work by relaxing Cahn’s growth condition
of the local growth velocity being normal to the interface and put forth a
stability analysis, which provides reasoning for the observation.

The presence of a third impurity component in a binary alloy is known to
destabilize a planar two phase eutectic front giving rise to colonies. Plapp
and Karma [93], study this effect of colony formation using the phase field
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method and obtain qualititative comparison with their previous stability
studies. In the simulations, they show the breakdown of a solidification
front comprising of two solids into two phase cells. There was however, no
steady state envelope found and the structure exhibited tip splitting and
cell elimination events until the very end. It is worthwhile to note that
even in these studies of colonies, Cahn’s hypothesis of growth remaining
normal to the solidification front is weakly violated and the authors believe
that this has effects on the stability properties of the eutectic front.

The lamellar eutectic growth regime has been shown to exist in a finite range
of spacings around the minimum undercooling spacing. Beyond a threshold
spacing, the patterns bifurcate to different oscillatory patterns 1-λ-O and 2-
λ-O along with tilted states, and also with mixed instability modes. While
the pure oscillatory modes and the tilted states were studied by Karma and
Sarkissan using a boundary integral method [51] experimental observations
of mixed modes in the presence of capillary anisotropy are found in the
works of Ginibre et al. [34]. The first simulations with a multi-phase, multi-
component field model by Nestler et al. [81], illustrate different oscillatory
patterns in 2D, while illustrations of the 1-λ-O and 2-λ-O modes are
shown in Fig. 2.2. The N order parameter approach is an elegant one

(a) (b)

Figure 2.2.: Illustrative 1-λ-O (a), and 2-λ-O modes seen in binary eutectics.

for treating such multi-phase problems. A systematic investigation of
these instabilities using the phase field method is performed by Kim et
al.[58] and a morphology map is presented based on the composition and
the spacing, while continuing works in 3D showing the possibility of a
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zig-zag instability are found in investigation by Plapp and co-workers
[87, 90]. These morphologies are also seen in experiments [2]. More
recently structures showing shape morphology transition from rods to
lamellar structures, depending on the composition of the liquid are found
in simulations of 3D directional solidification performed by Parisi et al.
[86]. In directional solidification of a eutectic alloy the microstructure that
the system chooses is a function of the composition in the liquid, among
other things. In 3D a number of structures can be found ranging from
rods, to lamellae, in-between structures, with a mixture of two, and also
defect structures such as elongated rods are possible.

2.2.3. Peritectic solidification

Peritectic solidification is an important topic to understand because of
the important materials in industry derived through this process. Most of
the materials are for magnetic and superconducting applications, while a
number of them also are useful for high strength applications, for instance
certain super alloys like Al3Ni. A number of microstructures have been
found to exist during peritectic solidification. Among them, include the
engulfing microstructure, in which the peritectic phase grows over the
pro-peritectic phase in the form of spherical nuclei, or infinite plate. These
structures have been first studied by Tiaden et al. [114] in a Fe-C alloy and
then later by Nestler and Wheeler, [81]. In these studies, the nucleation
events of the peritectic phase are explicitly put, and the question of
nucleation sites is unclear. In a recent study [19], an attempt has been
made to resolve this question. Along with this a prediction has also been
made on the lower bound of the solid-solid surface tension for which the
engulfing microstructure is found to exist.

Researchers have long been trying to understand the phenomena of the
formation of different microstructures such as the island growth, banded
structures, and coupled growth, and although theories have been proposed
on the mechanisms leading to the formation of these structures, no quanti-
tative predictions have been possible. The stability of these morphologies,
namely the island and banded structures is examined using the phase-field
model in the work of Lo et al. [69]. The study reveals that the formation
of island and banded structures occurs in the hypo-peritectic region in
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the absence of convection, which also corresponds well to existing theories.
Below a concentration limit of the solute and when the lateral size is below
a critical value, island structures were found to be stable else banded
structures in 2D are found to evolve.

Coupled growth is another interesting phenomena found in experiments,
which has been studied using a phase field model [26]. The authors find
that coupled growth occurs for select range of parameters and they present
a morphology map showing the regime of coupled growth as a function of
the concentration of the liquid, and the G/V ratio (Thermal Gradient G,
Velocity V). In isothermal solidification coupled growth is always preceded
by the formation of islands giving way to 1-λ-O oscillations, followed
by quasi-steady coupled growth. In non-isothermal situations (with a
temperature gradient), for a given concentration in the liquid, a range
of spacings λmin < λ < λmax exist, between which coupled growth is
achieved. Outside this range, the structure exhibits oscillatory instabilities.
The striking observation is that, coupled growth structures are also found

in regimes where
∂T

∂λ
is less than zero (Where T is the undercooling).

According to Cahn-Jackson-Hunt theories, coupled growth will be unstable
in the region where the undercooling reduces with increase in lamella
spacing. However, as is also found in the case of eutectic coupled growth,
the gradients in spacing can also be relaxed through lateral motion of the
tri-junction points in the presence of a thermal gradient and the growth
envelope is not strictly normal to the local interface shape. The authors
believe that the same mechanism is also qualitatively responsible for the
observation of coupled growth in peritectic solidification i.e. the presence
of a temperature gradient provides a stabilizing force which counteracts
the force, causing the engulfing of a lamella.

2.2.4. Monotectic solidification

Monotectic alloys are characterized by the monotectic reaction at a fixed
temperature where a liquid on solidifying gives another liquid and a solid.
The phase diagrams of these systems, have the property that towards
one side of the invariant point, (hyper monotectic region), there exists
a miscibility gap in the liquid. Phase separating liquids are detrimen-
tal and hence production technologies are normally designed such as to
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avoid this process. The alloys are however useful in applications such as
self-lubrication. To control the phase separation and the solidification
microstructure, one needs to have a proper understanding of the evolution
kinetics and the processing parameters affecting a given morphology. Since
the process of monotectic solidification involves the interaction of two
fluids of differing concentration, a number of physical phenomena resulting
from the coupling of the fluid properties with the diffusion and capillary
effects influence the final microstructure. The first phase field method
used for studying this reaction is by Nestler et al. [82]. Two models are
proposed, differing in the freedom to choose the temperature ranges that
can be treated. One of the models, treats the free energy of the liquid
such that it is non-convex for a given concentration range, hence requires
an energy term proportional to the gradient in the concentration fields in
the functional, to stabilize evolution when concentration of the liquid is
inside the spinodal decomposition regime (phase-separation region). This
is computationally more expensive because the concentration evolution
requires the solution of a bi-harmonic operator in contrast to the laplacian
in case of linear diffusion. The second model decomposes a single free
energy density for the liquid, into two parts, each of which is convex. This
formulation is more suited for the problem of solidification, while it is not
suitable for treating the phenomena of phase decomposition.

The model also includes terms to treat the marangoni effect. This is
formulated by treating the complete capillarity tensor for application in the
flow-field evolution equations. This includes the effect of the concentration
gradients on the surface energy at the interface between fluids, and the
resulting flow, due to a gradient in this term. Good qualitative comparisons
are made with experiments in the directional solidification setup.

Later works by Tegze et al. [112] investigate all the diffusion and hydro-
dynamic effects affecting the droplet distribution sizes in the Al-Bi alloy,
using a regular solution model for describing the free energy of the phase
separating liquid. Figure 2.3 shows exemplary phase seperation of pure
liquid into two separate liquids at two different compositions.
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(a) (b)

Figure 2.3.: Phase seperation at two different compositions of the liquid in
a model Fe-Sn alloy. In (a) the simulation is performed at the monotectic
composition while in (b) a hyper-monotectic composition is employed.(Work
along with co-worker Wang Fei)
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2.2.5. Nucleation

The understanding of the phenomena of nucleation is critical to having a
control on the length scale of microstructure. The process of nucleation
being a stochastic event can be treated in the deterministic framework
of the phase-field method, through two methods: incorporation of noise,
mimicking the thermal and concentration fluctuations in the system or
explicitly depending on a criterion of nucleation derived from the functional.
The phase-field method provides an excellent method for deriving the
properties of the nucleus. The nucleus in this framework, refers to the
phase-field profile which satisfies the Euler-Lagrange Equation under the
constraint of constant chemical potential [37]. The resulting phase profile
is an extremum of the free energy functional. The grand chemical potential
excess with respect to the initial liquid calculated using this profile, is
the barrier to nucleation. Such a theory has been postulated for both
homogeneous and heterogeneous nucleation [131]. These calculations have
been verified also with atomistic calculations. Additionally, variation of
quantities such as the Tolman length (difference between the radius of
the equi-molar surface and the radius of the surface tension) predicted
by the atomistic calculations, have been qualitatively reproduced in the
simulations [109, 115]. Large scale simulations with concurrent nucleation
events have also been performed for systems like Ni-Cu [95] and technically
relevant alloys such as the Al-Ti, where transition from Columnar to Equi-
axed morphologies (CET) is simulated. An exemplary structure obtained
by incorporating noise in the simulation domain is shown in Figure 2.4.

2.2.6. Solid-State

In this subsection we look at phenomena occurring during solid-state
transformations, investigated using the phase-field method. In the survey,
we are going to concentrate especially on a topic which has been of extensive
research interest over the last 15 years namely the processing of Ni-based
super alloys.
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Figure 2.4.: Nucleation structures obtained in a model Al-Cu alloy at two
different composition in the liquid. While a uniformly chaotic structure is
obtained at the eutectic composition in (a), a more regular structure is obtained
at a off-eutectic composition in (b).
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Super Alloys

The term superalloy was first used to refer to the group of alloys for use
in turbine superchargers and aircraft turbine engines that require high
performance at elevated temperatures. Presently, the application of such
alloys has extended also to land-based gas turbines, rocket engines chemical
and petroleum plants. A characteristic feature of these applications, is
that the energy efficiency goes up with temperature. Understandably, the
need arises to maximize the temperature of application. Typically, the
intended temperature of use is up to 90% of the melting temperatures. At
such high temperatures and applied stresses, failure mechanisms such as
creep, hot corrosion etc. operate. This implies, that a material suited for
such application needs to be resistant to such mechanisms of failure for
extended exposure to such conditions. It has been found that alloys of
elements in the Group VIII of the periodic table namely Fe, Ni, Cr, Co
are particularly suited for this purpose. The alloys also involve smaller
additions of carbide formers such as the W, Mo, Ta, Ti, and Al. In all, we
can classify the set of super alloys into three classes namely, Ni-, Fe- and
Co- based alloys.

One of the principal mechanisms of creep is grain boundary sliding. Thus,
it is desirable to have them processed as single crystals (i.e. with no grain
boundaries). With the invention of the efficient directional solidification
techniques it is now possible to process them as single crystals, with the
desired grain selectors. The quality of the alloy however, is related to the
processing conditions and the purity with respect to undesired elements in
the alloy. So one direction of research is to increase the purity of these
alloys resulting as a process of solidification.

Research is also underway to get an understanding of the mechanisms of
creep and deformation in such alloys to better predict the performance of
the microstructure at elevated temperatures and stresses. This would help
in engineering materials with required hardness and strength at these tem-
peratures. There are two hardening mechanisms that are pertinent in such
alloys, one is solid-solution strengthening, achieved with alloying additions
and the other precipitation hardening. Solid-solution strengthening deals
with the toughness, induced by the stresses due to the additional alloying
elements because of the size differences between the solute and the solvent
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atoms. These internal stresses interact with the dislocations and act as
barrier to their movement. However, this is relevant for low temperature
ductility and toughness. The strengthening at higher temperatures occurs
through precipitation hardening. The precipitates interact with the disloca-
tions and pin them, preventing cross slip. One of the ways of strengthening
in polycrystalline super alloys is the use of carbide forming elements which
form carbides of the same crystal structure as the matrix and segregate
to the grain boundary and pin them. The other type of precipitates are
coherent and close chemical compatibility with the matrix. A unique
phenomena associated with these precipitates is the increase of yield stress
with temperature also called the yield stress anomaly. This is related to
the locking of dislocations in Anti Phase Boundaries (APB’s) (interfaces
between possible ordered variants of different orientations), which lie on
non-slip planes in most super alloys. This is a motivation to study the
formation of such boundaries and their interaction with dislocations.

The strength of the alloy is related to the size of the precipitates hence
research is also focussed, on getting an understanding of the coarsening
kinetics of the microstructure as a function of the temperature, the alloying
additions and the processing conditions such as the ageing temperature.

Given the number of experiments required and the high cost for the
processing of these alloys, an optimization of the processing conditions
through an extensive experimental study looks daunting. However, with
simulations the task looks achievable, and promising. In this respect, the
phase-field method through its evolution over the years has become a
potent tool for the treatment of this problem. In the past decade, an
alloy which has been particularly treated is the Ni-Al based super alloys,
which are extensively used for turbine blades. In addition, it also suits
the framework of the phase-field method, since thermodynamic databases
of this alloy are available from CALPHAD along with information for
mobilities from DICTRA databases.

In Nickel based superalloys, the microstructure is made of a disordered
fcc matrix called the γ phase and an ordered γ

′
precipitate phase. The γ

′

phase has the L12 cubic structure which is coherent and of high chemical
compatibility with the matrix. The γ

′
phase is the principal phase respon-

sible for precipitation hardening, and hence has received a lot of attention
over the years. The L12 variants are four in number and hence in a binary
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Ni-Al system, the system can be defined using a concentration field and
three long range order parameters. In earlier works by Khachaturyan
et al. [126] the formation of squared precipitates is already achieved in
simulations, however a major drawback is that the matrix phase and the
precipitates are treated iso-structurally i.e. the four variants do not have
an energy barrier between them. While this is true for certain precipitates
for instance δ

′
precipitate in Al-Li alloys and the matrix, this is not the

case of for the γ
′

precipitate. As a result of the simulations performed
by various authors [8, 103, 125], the conclusion is that the treatment of
this energy of the anti phase boundaries is necessary for retrieving the
anomalous decrease in coarsening rate at higher volume fractions which
is also seen in experiments. The authors define two terms in-phase and
out-of-phase, implying the case when two variants of the same type are
next to each other and the other case when they are not respectively. The
out-of-phase particles on coalescence form Anti-Phase Boundaries (APB’s)
which are for the case of Ni- alloys, twice the energy of the interface
between a variant with the matrix. This being the case, two out-of-phase
particles will never coalesce forming an APB when both are in equilibrium
with the matrix.

There are two coarsening mechanisms in such alloys, one is through a
diffusive process called the Ostwald ripening, where the smaller particles
reject atoms and shrink, while the larger particles absorb and grow. While
this mechanism of interface energy minimization is present in all alloys it
is of a longer time scale, than a second mechanism which occurs through
displacive-coalescence mechanism. The displacive-coalescence mechanism
however, occurs only if two precipitates next to each other are in-phase.
With increase in number of particles, the probability of two particles
being in-phase is very small and hence most of them are out-of-phase.
Hence, with increasing volume fraction of particles the coarsening rate
is reduced. Additionally, split microstructures seen in experiments can
also be explained with this mechanism, where the coalescence of in-phase
particles to minimize energy is the driving force for the formation of such
patterns [8]. Incidentally, there appears to be no reason to believe that
the coalescence should occur above some critical size of precipitates as
previously believed, as such a mechanism of coalescence of in-phase particles
is able to explain all observed experimental microstructures. A detailed
study of the coarsening kinetics in the different regimes of volume fractions



30 2. Phase field modeling of multicomponent systems

and particle sizes is present in the work by Vaithyanathan and Chen [117].
Under conditions of stress and high temperature, the precipitates align
themselves parallel to the stress direction in the case of tensile loading and
normal to the direction of tensile loading, for the case of compressive loads.
This phenomena is called rafting or alternatively, directional coarsening. In
experiments, the interrupted stripes of precipitates are observed and here
again it has been verified in simulations [125, 127] that incorporation of
APB interface energies in simulations is necessary to observe discontinuous
aligned set of precipitates, instead of continuous stripes. The former is
also seen in experiments.

It is clear that the degrees of freedom of such a system, are the interfacial
energies, the bulk free energies and the lattice mismatch. In the last decade
the emphasis has been to give more quantitative meaning to simulation
results. In this direction the linking of the simulations to CALPHAD
databases has been useful. The databases provide free energies using the
sub-lattice models. A four sublattice model is used for the case of treating
the variants. The site fraction in the CALPHAD databases can be used
interchangeably as the order parameter in the phase-field setup. This
gives us a continuous free energy in the order parameter/site fraction
and the composition space. The first attempts of linking the databases
are able to retrieve, the time evolution of the precipitate morphologies,
from spherical at small sizes which occurs as a result of minimization of
the surface energy, while as the precipitate becomes large the particles
change the shape to cubical which occurs via minimization of the bulk
elastic energies [141]. The elastic misfit strain energies are in all these
studies treated as some derivative of the Vegard’s law. The only degree of
freedom remaining, is then the interfacial energies. While this quantity is
difficult to get experimentally, models such as the Cluster Variation Models
(CVM) have been used to get an idea of the composition profiles, phase
boundaries and interface energies [119]. The results of such calculations
have been able to give predictions which agree well with experiments.
With the growth of CALPHAD and DICTRA databases in recent years,
simulations of new generation Ni- based super alloys is becoming possible.
Concentration profiles, occurring during heat treatment and temperature
processing in multi-component Ni- base super alloys are calculated by
some groups [60, 120, 132, 140], giving good agreement with experimental
measurements. For the case of non-isothermal treatments such as heat
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treatment one would need to incorporate new precipitated nuclei as the
temperature is reduced. To achieve this, Langevin noise is used by Simmons
et al. [107] and an interesting analysis of the process of aging during heat
treatment is also performed by Wen et al. [133]. Exemplary structures
during aging and ripening are simulated for the alloy Fe-Cu and are shown
in Figure 2.5. While in our discussion we have stated applications of the

(a) (b)

Figure 2.5.: Aging in a Fe-Cu alloy. In (a) is the starting condition, while
(b) shows the state after some particles have co-agulated and some have
ripened.(Work along with co-worker (Rajdip Mukherjee))

phase-field method only for Ni-based alloys, some similar studies have also
been performed for the case of other super alloys such Ti-Al-V [17].

The phenomenon of precipitation is not only interesting in super alloys,
but some common alloys like Fe-C. However, precipitation is not always
useful like in the case of Widmanstätten ferrite which grow as needles.
Knowledge of the conditions which result in these microstructures and
their control, are important for steel alloy design. Phase-field modelling is
applied for studying such structures [70] using CALPHAD databases for
the free energy of the bulk phases.
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2.2.7. Other fields of application

Metal forming is an important process in any processing chain. A control of
the grain structure during high temperature forming decides the resultant
strength of the material. During forming at elevated temperatures one of
the most important processes which occur is re-crystallization. Most of
the last decade this process has been modelled using the combination of
the crystal plasticity method for treating the stresses and strains during
deformation and re-crystallization is solved using the Cellular Automaton
Method [97, 98] which describes specific rules of transformation for a
grain, depending on the stored energy of a grain and the surrounding
grains. While a number of theories have been put forth for describing the
initialization of re-crystallization namely the misorientation or the energy
stored in the grains, the actual criterion is still unclear. The process of
growth after nucleation can however be well accounted for. Grain growth
being a capillary force driven problem, is better suited for treatment by
diffuse-interface methods such as the phase-field method. The application
of this method is however still in its in early stages with first attempts
by Takaki and co-workers [110, 111]. They treat both static and dynamic
re-crystallization. In the treatment of static re-crystallization [111], the
stresses are computed from the crystal plasticity method, which are used to
determine the sub-grain structure. The diameter of the sub-grain structure
is calculated from the balance of the stored energy and that required for the
creation of a new grain boundary. In the case of dynamic re-crystallization
[110] dislocation density varies with time and the authors describe the
evolution of the dislocation density as a function of the strain. The driving
force is a function of stored energy in the form of dislocations and the
criterion for nucleation of a new re-crystallized grain is derived using a
bubble model described in the paper, which gives the critical density of
dislocations required for the nucleation of the new grain. M.Wang and
co-workers [122] simulate re-crystallization in a magnesium alloy AZ31
using the Gibbs free energy from CALPHAD databases. The authors solve
the coupled problem of diffusion and re-crystallization.

Beyond the main streams of developments in solidification and solid-state
transformations, the linking of phase-field models with thermodynamic
and kinetic databases emerged as a powerful hybrid method also in other
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fields of applications. We briefly report on research work in liquid-liquid
phase systems and grain boundary premelting.

A phase-field simulation study in [12] is devoted to investigate the dynamics
and morphologies of spinodal decomposition of two immiscible liquids. The
alloy of consideration is the binary system Bi-Zn, which contains a typical
miscibility gap in the phase diagram. Different morphologies of the phase
separation process are found at different regions of the phase diagram i.e.
at different temperatures and concentrations. Furthermore, the authors
describe a strong dependence of the microstructure on the formulation
of the Gibbs energy, by comparing two different formulations determined
by the CALPHAD method at the same temperature and concentration
condition. A problem seen during continuous casting, namely hot cracking,
is known to originate at the grain boundaries because of liquid films at grain
boundaries. This phenomenon is called grain boundary pre-melting. The
wetting occurs below the solidification temperature and cracks as a result
of these pre-melted areas. A control of the temperature and parameters
affecting the process is quite useful for avoiding material wastage. The
classification of grain boundary pre-melting transitions in Cu-Ag solid
solutions has been the focus of phase-field simulations in [76]. A multiphase-
field model has been composed, with three phase-field parameters to
distinguish two grain states in the presence of a liquid phase. Depending
on the grain boundary energy, the temperature and the grain composition,
a variety of pre-melting evolutions has been observed including (i) dry
grain boundaries, (ii) completely wetted grain boundaries with pre-melted
layers of diverging thickness, (iii) grain boundaries with discontinuities
of the pre-melted layer thickness and (iv) metastable grain boundary
states above the solidus line indicating the possibility of superheating
(respectively supersaturation). The pre-melting behaviour is related to the
disjoining potential combined with thermodynamic properties of the bulk
phases.

2.3. Outlook

Despite the tremendous effort and rapid development in a broad range of
multicomponent modelling applications, there still remains a comprehen-
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sive demand for further understanding of the physical mechanisms behind
structure formation, involving the intensive investigation of the influences
of external fields and processing conditions on the mechanical properties
of materials used in technical applications. The existence of just a ternary
component, e.g. in eutectic systems gives rise to a large diversity of new
morphologies and illustrates the complexity amongst the regularity of na-
ture. The computational study, particularly in 3D, holds a great potential
for new insights into the physics of these materials. In combination with
phase changes and solute diffusion of multiple components, another impor-
tant challenge for future research will be the investigation of the effect of
coupled fields such as fluid flow, stress and strain and plastic deformation.
In all multicomponent modelling applications, the configuration of data
sets and processing conditions will play a key role, essentially requiring the
advancement of multi-scale and hybrid modelling techniques. The large
amount of field variables to be solved as well as the desired large-scale 3D
simulation domains will increasingly ask for employing modern computing
methods including intelligent algorithms, parallelization on high perfor-
mance computing architectures as well as optimized numerical solution
approaches such as multi-grid and homogenization.
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3.1. Introduction

The peritectic reaction L(liquid) + δ (ferrite) → γ (austenite) in Fe-C
system occurs during the solidification of low carbon steels. A peritectic
transformation (solid-solid transformation) and peritectic reaction is also
observed in many other systems like Fe-Ni, Cu-Sn, Ni-Al, Ti-Al. The peri-
tectic reaction in Fe-C is characterized by an appearance of the peritectic
γ-phase that separates the liquid L and the properitectic δ-phase, followed
by growth of γ-phase due to L → γ and δ → γ transformations. Shibata et
al. [105] experimentally observed the peritectic microstructure formations
in the Fe-C system. They also formulated a mechanism for the peritectic
reaction and transformation, based on the analysis of the kinetics of the
phase changes. Various growth models have been proposed by others, to
explain the peritectic reaction and transformation in different solidification
morphologies [89].

In the past two decades, phase-field simulations have become a powerful
tool to describe growth morphologies during complex phase transforma-
tions. The methodology has been used to model eutectic, peritectic and
monotectic reactions, [81, 82]. In particular, the peritectic solidification of
Fe-C was simulated using a multi phase-field approach [113], where the
phase field equations were derived from a free energy functional and carbon
diffusion equation was formulated on the basis of a separate solute diffusion
model. A multi phase-field model was also used to numerically simulate the
peritectic reaction by Lee et al. [64]. In previous work [81], a phase-field
approach was formulated for both, binary eutectic and peritectic alloy
systems. The model incorporated the free energies corresponding to a
specific type or region of a phase diagram, which can be described through
an ideal solution formulation. Due to the great similarity with respect to
the free energies of the phases and accordingly with respect to the con-
struction of the phase diagram, a unique formulation of a phase-field model
was derived, capturing the solidification process in eutectic and peritectic
systems, by setting up suitable values for the latent heats and melting
temperatures. The approach was successfully applied to computations of
various eutectic and peritectic growth structures, related to model alloy
systems. Directional solidification of peritectic alloys, without morpholog-
ical instability was studied using the phase-field method by Plapp et al.
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[69]. The investigation also involved a study on nucleation and its effect
on pattern formation. Phenomena of coupled growth and banded growth
structures were also discussed in [47, 68]. Numerical studies on heteroge-
neous nucleation of the peritectic phase in the ternary system Nd-Fe-B
were performed by Emmerich et al. [29] to examine the morphological
effects on nucleation in 2D.

In this chapter, we investigate different 2D and 3D growth morphologies
during peritectic growth in the Fe-C system using a multi-phase, multi-
component phase-field model. We also investigate the effect of surface
energies and evolving concentration domains on nucleation and growth
behavior. In the next section, we give all the mathematical functions
and dynamical equations of the phase-field model and explain how the
parameters are calibrated. Section 3 is devoted to the discussion of three
broad classes of growth morphologies of the peritectic reaction, containing
a study of the evolution characteristics of each class, depending on the
initial composition in the liquid and solid-solid surface energies. Further,
it is shown how the surface energy affects the nucleation behavior, in
particular of the peritectic phase. Finally we draw conclusions about
the range of the possible solid-solid surface energies for which certain
morphologies which are experimentally observed can also be simulated
and thereafter present an outlook for future work.

Model Description

A thermodynamically consistent phase-field model is used for the present
study of the peritectic reaction in the Fe-C system. The equations are
derived from an entropy functional as follows

S (e, c, φ) =
∫

Ω

(
s (e, c, φ) −

(
εa (φ, ∇φ) +

1
ε

w (φ)
))

dΩ, (3.1)

where e is the internal energy of the system, c = (ci)K
i=1 is a vector of

concentration variables belonging to the K − 1 dimensional plane, K being
the number of components in the system and φ = (φα)N

α=1is a vector of
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phase-field variables that lies in the N − 1 dimensional plane, N being the
number of phases in the system. φ and c fulfil the constraints

K∑
i=1

ci = 1 and
N∑

α=1
φα = 1. (3.2)

ε is the small length scale parameter related to the interface width.
s (e, c, φ) is the bulk entropy density, a (φ, ∇φ) is the gradient entropy
density and w (φ) describes the surface entropy potential of the system
for pure capillary force driven problems.

We use an obstacle type potential for w (φ) of the form,

w (φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16
π2

N,N∑
α,β=1
(α<β)

γαβφαφβ +
N,N,N∑
α,β,δ=1
(α<β<δ)

γαβδφαφβφδ, if φ ∈∑
∞, elsewhere

where
∑

= {φ |∑N
α=1 φα = 1 and φα ≥ 0},

γαβ is the surface entropy density and γαβδ is a term added to maintain
the solution at an αβ interface strictly along the two phase interface.

The gradient entropy density a (φ, ∇φ) can be written as,

a (φ, ∇φ) =

N,N∑
α,β=1
(α<β)

γαβ [ac (qαβ)]2 |qαβ |2,

where qαβ = (φα∇φβ − φβ∇φα) is a normal vector to the αβ interface.
ac (qαβ) describes the form of the surface energy anisotropy of the evolving
phase boundary. For applications to solidification in Fe-C, we use a smooth
cubic anisotropy modelled by the expression,

ac (qαβ) = 1 ∓ δαβ

(
3 − 4

|qαβ |44
|qαβ |4

)
,
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where |qαβ |44=
∑d

i (qαβ)4
i and |qαβ |4=

[∑d
i=1(qαβ)2

i

]2
, d being the number

of dimensions. δαβ is the strength of the anisotropy. Evolution equations
for c and φ are derived from the entropy functional through conservation
laws and phenomenological maximization of entropy, respectively [33, 79].
For an isothermal reaction, the evolution equations for the phase-field
variables read:

ωε∂tφα = ε (∇ · a,∇φα
(φ, ∇φ) − a,φα

(φ, ∇φ)) −
1
ε

w,φα (φ) − f,φα
(T, c, φ)
T

+ Ξα − Λ, (3.3)

where Λ is the Lagrange parameter to maintain the constraint in Eqn.
(3.2), ω is a factor related to the relaxation time constant and Ξα is
the noise in the evolution equation for the α phase. The formulation
contains the notation ∂tφα = ∂φα/∂t for the partial derivative of the
phase-field variable in time. Further, a,∇φα

, a,φα
, w,φα

and f,φα
indicate

the derivatives of the respective entropy density with respect to ∇φα and
φα. The noise function Ξα is such that its amplitude is non-zero only in
the liquid and smoothly goes to zero in the bulk solid. The noise amplitude
distribution is uniform.

The function f(T, c, φ) in Eqn.(3.3) describes the Gibbs free energy as a
summation of all bulk free energy contributions fα(T, c) from the phases
in the system. For the present investigation, we assume an isothermal
condition of the system and use a non-dimensionalized form of the free
energies fα with RTp/vm as the energy density scale, where Tp is the
peritectic temperature, R is the gas constant and vm is the molar volume.
For simplicity sake, we consider the molar volumes of all the components
in all the phases to be equal. We use an ideal solution formulation,

f(T, c, φ) =
K∑

i=1

(
N∑

α=1
ciL

α
i

(T − T α
i )

T α
i

hα (φ)

)
+ T (cilog (ci))

with,

fα(T, c) =
K∑

i=1
ciL

α
i

(T − T α
i )

T α
i

+ T (cilog (ci))
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fl(T, c) = T
K∑

i=1
(cilog (ci)) .

fα(T, c) is the free energy of the α solid phase. The terms Lα
i and T α

i

are the latent heats and the melting temperatures respectively of the ith

component in the α phase. We choose the liquid as the reference state
and hence Lα

i = 0 where α is the index for the liquid phase in the vector
φ. The function hα(φ) interpolates the free energy of the α phase and we
choose it to be of the form hα (φ) = φ2

α (3 − 2φα) in the present analysis.
In general, other interpolation functions could also be formulated and
used which involve other components of the φ vector. The isothermal
non-dimensionalized temperature of the system is denoted by T , the scale
for the temperature being Tp.

The evolution equations for the concentration fields are derived from Eqn.
(3.1) and give,

∂tci = ∇ ·
⎛⎝ K∑

j=1
Mij (c, φ) ∇

(
1
T

∂f(T, c, φ)
∂cj

)⎞⎠
The formulation Lij(c, φ) is capable to describe self and interdiffusion in
multicomponent systems. We use the form,

Mij(c, φ) = Di(φ)ci (δij − cj) .

The diffusion coefficient is formulated as a linear interpolation across
the phases Di(φ) =

∑N
α=1 Dα

i φα, where Dα
i is the non-dimensionalized

diffusivity of the ith component in the α phase. We use Dl = Dl
i to

denote the diffusivity of the components Fe and C in the liquid phase
as the reference, where l denotes the liquid phase. The capillary length
d0 = σ/ (RT/vm) with the surface energy σ, is chosen as the length scale
and d2

0/Dl is the time scale for the simulations.

In the following sections we limit our discussion to N = 3 phases and
K = 2 components; φ = (φδ, φγ , φl) and c = (cF e, cC). The concentration
space is one-dimensional and without loss of generality, we define the Fe
concentration or cF e as the independent concentration variable/field.
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Parameters related to the Fe-C phase diagram

The parameters, latent heats and melting temperatures of the free energy
f(T, c, φ) required to fit the phase diagram of the Fe-C system in the
vicinity of the peritectic temperature are listed in the following two (2 × 2)
matrices.

Lα
i :=

⎛⎝ Fe C
γ 0.76382 4.80548
δ 0.84156 4.80548

⎞⎠
T α

i :=

⎛⎝ Fe C
γ 1.02193 0.81242
δ 1.0244 0.73635

⎞⎠
The parameters are determined such that the compositions of the solid
and liquid phases at the peritectic temperature as well as the slope of the
γ-liquidus close to the peritectic temperature are accurately reproduced.
The phase diagram containing the solidus and liquidus lines, their stable
and metastable extensions are displayed in Fig. 3.1.

Surface energy calculations

The surface energies σ̃δl and σ̃γl of the δ-ferrite/liquid and of the γ-
austenite/liquid phase boundaries are known to be equal. We use the
surface energies in the length scale of the non-dimensionalization. However,
there is an excess contribution from the chemical free energies which needs
to be included, if the interface between the two phases does not strictly
evolve along the co-existence line. We calibrate the surface entropy densities
γδl and γγl such that the final non-dimensional values of the surface energies
are σ̃δl = σ̃γl = 1.0. The excess chemical free energy is calculated using
the following procedure. Each solid phase is allowed to equilibrate with
the liquid forming a planar interface, by setting the temperature of the
system at the peritectic point and the compositions of the solid and
the liquid phases as the equilibrium compositions. The surface energy
excess is calculated including the excess of the grand chemical potential
f (T, c, φ) − μF ecF e of the final equilibrated structure with respect to that
of any of the bulk phases. Since we set the bulk compositions at the
values from the liquidus and solidus lines of the phase diagram, the grand
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Figure 3.1.: Phase diagram of the Fe-C system close to the peritectic reaction
showing stable (solid lines) and metastable solidus and liquidus lines (dashed-
lines). The tie-lines at the temperature T = 1.0 and 0.97 denote the temperature
Tp of the peritectic reaction and the temperature at which the system is under-
cooled and at which the simulations were performed respectively.

chemical potential of the phases at these compositions are equal. The
surface energy excess is given by the relation,

σ̃αl =
∫

X

(
Tpεa (φ, ∇φ) +

Tp

ε
w (φ) + ΔΨ(T, c, φ)

)
dX

with,

ΔΨ(T, c, φ) = f (Tp, c, φ) − fl − μF e(Tp)
(
cF e − cl

F e

)
,

where μF e (Tp) =
∂f (T, c, φ)

∂cF e
is the equilibrium chemical potential that

is established during the equilibration of the planar interface between
the phases. The partial derivative are taken respecting the constraint of
the concentration fields Eqn. (3.2). cF e is the concentration profile that
stabilizes between the phases, where stabilization implies that, both the
concentration and phase-field profiles are stationary. cl

F e is the concen-
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tration of Fe in the bulk liquid. The surface energies of the solid-solid
interfaces are also calculated in a similar manner, the equilibration being
done between the two solid phases. Since the grand chemical potential of
all the three phases γ, δ, l is the same at the peritectic temperature, the
liquid can be used as the reference to calculate the surface energy excess.

3.2. Results and Discussion

The evolution equations for the phase-field and concentration variables are
numerically discretized using an explicit forward in time, finite difference
scheme. The resulting discrete set of equations is solved applying a parallel
solver depending on the MPI (message parsing interface) standard. For this,
the domain is decomposed in one dimension in equal parts for each node
used for the simulation. Due to the fact that the phase-field equation is
only solved in the diffuse interface between two phase fields, the calculation
time of each node can be different. To optimize time and resources, a
dynamics domain decomposition algorithm is used for the redistribution
of layers during runtime depending on the calculation time of each node.
In the present work we consider three types of growth morphologies:

• engulfing of the properitectic δ-phase by the peritectic γ-phase

• primary dendritic growth with nucleation events and

• growth of the γ-phase along a plate substrate.

Table 3.1 summarizes the parameters used for simulating the described
morphologies.
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Table 3.1.: Numerical parameters used for the phase-field simulations.
Nx, Ny, Nz denote the domain dimensions, ΔX denotes the grid spacing, Δt,
the time step width, and ε the interface width

Parameters Dendrite-
2D

Dendrite-
3D

Engulf-
2D

Engulf-
3D

Plate-
2D

Fig.3.6 Fig. 3.7 Fig. 3.2 Fig. 3.5 Fig. 3.9
Nx×Ny×
Nz

1000 ×
1000

500 × 500
× 500

500 ×
500

500 ×
500 ×
500

200 ×
500

ΔX 10 20 10 10 1
Δt 7.5 2.5 5 5 0.08
ε 80 80 80 80 8

3.2.1. Engulfing of the pro-peritectic phase by the
peritectic phase

A growth morphology observed in the Fe-C system is the engulfing mi-
crostructure. Controlled by diffusion in the liquid, the peritectic γ-phase
grows over the properitectic δ-phase until complete engulfment. The
subsequent process is a phase transformation (δ → γ) taking place on
a longer time scale, as it is solely driven by diffusion in the solid. The
phase transition kinetics is dependent on the value of the solid-solid surface
energies and the concentration of the liquid from which the two solids,
the γ- and δ-phase, are evolving. While the solid-liquid surface energies
are known fairly accurately for the γ- and the δ-phases, the solid-solid
surface energy σ̃γδ is unknown. The phase-field simulations are employed
to locate the range of σ̃γδ and to investigate the effect of the concentration
in the liquid on the engulfing behavior of the γ-phase. The parametric
study is conducted at a non-dimensionalized temperature T = 0.97 with
a non-dimensional diffusivity Dl

F e = 1.0 in the liquid and Ds
F e = 0.01 in

the solid. Fig. 3.2 shows the volume change (in 2D: height in non-growth
direction is 1) of the peritectic γ-phase in time for three different initial
Fe concentrations of the liquid, cl

F e = 0.95, 0.96 and 0.97. The points on
the graph are plotted until the properitectic δ-phase is totally engulfed by
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Figure 3.2.: Growth of the peritectic γ-phase during engulfment, for different
concentrations cl

F e of the liquid phase and for a constant surface energy σ̃γδ =
0.33

the peritectic γ-phase. The volume of the γ-phase at a particular time,
increases for higher values of cl

F e. Investigations for different values of the
solid-solid surface energy σ̃γδ, revealed reduction in the rate of engulfment
of the δ-phase with increase in the solid-solid surface energy, for a particular
value of cl

F e. Fig. 3.3 displays the comparison between the rate of volume
change ∂V/∂t of the peritectic and properitectic phase, as a function of
time, for the liquid concentrations cl

F e = 0.95 and cl
F e = 0.97 and for

the surface energy σ̃γδ = 0.33. We see two different types of behaviour
at the two levels of super-saturation. At the lower supersaturation Fig.
3.3a, there is an initial decrease in the shrinking rate of the δ-phase along
with a corresponding decrease in the rate of growth of the γ-phase. This
behaviour ends with the attainment of the minimum in the reduction rate
of the δ-phase beyond which, there is increase in the solidification rate of
the γ-phase. We note that the behaviour of the rates of evolution of the
solid phases are always of opposite nature, which implies, that the solute
transfer at the small-scale, from one solid to the other through the liquid
as the transport medium, is the principal growth limiting process, rather
than the long range diffusion in the liquid. This is because, individually,
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Figure 3.3.: Rate of volume change of the peritectic and properitectic phases
with time for a constant surface energy σ̃γδ = 0.33 and for two different liquid
concentrations (a) cl

F e = 0.95 and (b) cl
F e = 0.97.

each phase is set above the critical size, beyond which growth occurs in the
liquid. When set in a coupled configuration, the growth rate of the γ-phase
is higher, resulting from the larger super-saturation of this phase, as is
evident from the phase diagram. This causes the region local to the δ-phase
to become enriched in C, which reduces the effective super-saturation for
the δ-phase and causes it to shrink. Thus, the δ- phase acts as a sink
of C atoms by melting. To understand the growth process in full detail,
one would need to construct the free boundary problem for the present
configuration and study the analytical solutions, which is not in the scope
of the present chapter. Simulations, however give a reasonable insight
into the growth dynamics. At this concentration, the point of engulfment
of the δ-phase coincides with the disappearance of the phase. This also
shows that, at this value of surface tension, the concentration of the liquid
cl

F e = 0.95 is the minimum requirement to observe this microstructure.
Also, we notice the rate of change of the γ-phase to reduce, after the point
of engulfment, from which we can again infer, that the small scale diffusion
near the triple point, is the prominent growth mode for the γ-phase, during
the process of engulfment. At the higher super-saturation corresponding
to the concentration, cl

F e = 0.97, Fig. 3.3b, we have three growth regimes
possible. In the region (I), before the engulfment of the δ-phase we again
notice opposite nature of change of the growth rates for the solid phases,
as we did for the case of the lower super-saturation. After engulfment
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(region II), the reduction rate of the δ-phase approximately becomes a
constant, while the evolution rate of the γ-phase shifts to a linear curve of
reduced slope. Comparing the growth dynamics in (region II) with the
evolution characteristics after the disappearance of the δ-phase (region III),
shows that the long range diffusion in the liquid is the principal growth
mechanism after the engulfment, as the there is little change in the slope
of the variation in the evolution rate. Based on the parametric studies
evaluating the influence of cl

F e on the engulfing morphology, we analysed
the effect of the surface energy σ̃γδ. Fig. 3.4 compares the dynamics of the
phase transformations for the different surface energies σ̃γδ = 0.33, 0.36,
0.39, 0.42 and 0.45. The points are plotted until one of the γ- or δ-phases
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Figure 3.4.: Volume change of the peritectic γ-phase in time, illustrating the
influence of the surface energy σ̃γδ on the type of morphology and on the growth
rate for two different concentrations (a) cl

F e = 0.95 and (b) cl
F e = 0.97

(Please read the legends in the graphs σ as σ̃)

disappears. For the liquid concentration at cl
F e = 0.95 (Fig. 3.4a), the

peritectic γ-phase engulfs the properitectic phase for σ̃γδ = 0.33, while for
other values of surface energies, the contrary happens. Setting cl

F e=0.97
(Fig. 3.4b), the δ-phase becomes completely embedded for all values of
σ̃γδ. Moving towards higher values of σ̃γδ leads to lesser volume of the
engulfed δ-phase. To conclude: The observation of engulfing morphologies
at this temperature and concentration requires surface energies σ̃γδ in the
considered range. The volume of the γ-phase increases to much larger
values if the liquid concentration changes from cl

F e = 0.95 to higher values,
as in Fig. 3.4b. Engulfing microstructures were also obtained in 3D, as
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exemplarily shown in Fig. 3.5, for simulation data set at a non-dimensional
temperature T = 0.97, cl

F e = 0.96 and σ̃γδ = 0.39.

(a) (b)

Figure 3.5.: Simulation of the process of properitectic phase engulfment in 3D
at (a) an early stage and (b) a late stage of the peritectic reaction.

3.2.2. Primary dendritic growth with nucleation
events

The peritectic reaction and growth of γ-phase on the periphery of a δ-phase
dendrite was investigated by simulations previously in [113]. However,
the location of first nucleation and subsequent growth of γ-phase has not
been the object of consideration so far. We address this issue and perform
2D and 3D phase-field simulations, to determine heterogeneous nucleation
sites and solidifying microstructures, depending on the surface energies σ̃γδ.
As illustrated in Fig. 3.6a, heterogeneous nucleation events of the γ-phase
on top of the dendritic tips occurs for σ̃γδ = 0.39, along with homogeneous
nucleation in the undercooled liquid for the chosen super-saturation. For
higher surface energy σ̃γδ = 0.778, no heterogeneous nucleation on the
dendritic surface can be observed, Fig. 3.6b. Under these conditions, the
two solid phases only nucleate homogeneously in the liquid. According to
Eqn. 3.3, nucleation is effected through uniform noise in the liquid, similar
to the formulation of Granazy et al. [95, 131]. The first nucleation event
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(a) (b)

Figure 3.6.: Phase-field simulations of nucleation in the peritectic Fe-C system
for two different surface energies σ̃γδ = 0.39 and σ̃γδ = 0.778 in comparison. (a)
For the lower value of the solid-solid surface energy, heterogeneous nucleation
can be seen at the dendrite tips, (b) For the higher value, the nuclei are purely
formed homogeneously in the liquid. Color coding; Red: γ- phase, Blue: δ-phase,
Green: Liquid
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occurs at the place in the domain, where the required critical fluctuation
for nucleation is the smallest. The closer cl

F e approaches the value of the
solidus, the smaller is the magnitude of the critical fluctuation, because the
driving force for solidification increases. It follows from classical nucleation
theory that the free energy size of the critical fluctuation varies inversely
to the supersaturation: which increases as we move towards the solidus.
It is important however, to note that the driving force is the difference of
the bulk free energies of the transforming phases. In the case of phase-
field simulations however, we have the possibility of critical nuclei being
sub-solid i.e. consisting of only the interface. At concentrations near
the solidus line the critical nuclei become smaller following the increase
in supersaturation. They loose their bulk properties and importantly
because of lesser volume have a small barrier to nucleation. Close to the
properitectic dendrite, the concentration is enriched in C (deficient in Fe),
compared to the concentration in the liquid far away from the interface.
The concentration around the dendrite is further away from the solidus
of the γ-phase and hence, the critical fluctuation to nucleate the γ-phase
is larger than away from the dendrite. As a result the nucleation events
occur in the liquid phase at a distance from the dendrite. The simulation
results for the higher value of the surface energy σ̃γδ agrees with the drawn
explanation. Heterogeneous nucleation becomes a possibility as σ̃γδ is
reduced. The heterogeneous nucleation appears at the dendrite tip, where
the concentration of the liquid is poorer in C compared to the concave
part of the dendrite. A similar nucleation behaviour can be observed in
a 3D simulation of an evolving δ-dendrite with a cubic crystal symmetry
followed by nucleation of the γ-phase, (Fig. 3.7a and 3.7b). The γ-phase
nucleates on the edges and tips of the dendrite, whereas no nucleation is
observed in the concave regions of higher C concentration, compared to
the tips and edges. The reasoning is the same as in the 2D simulations
discussed above. Fig. 3.7a shows an evolving dendrite with four fold weak
cubic anisotropy. In addition to the images in Fig. 3.7a and Fig. 3.7b
highlighting the regions occupied by the δ- and γ-phases, Fig. 3.7c is the Fe
concentration, mapped on the iso-surface at φδ = 0.5 of the properitectic
dendrite. Comparing Fig. 3.7b and Fig. 3.7c, accentuates the point,
that the nucleation occurs at places where the barrier to nucleation is the
lowest. For the chosen parameter set and noise amplitude, no homogeneous
nucleation occurs.
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(a) (b)

(c)

Figure 3.7.: Phase-field simulation of a dendritic microstructure with four-fold
surface energy anisotropy: (a) final shape of the properitectic phase, (b) hetero-
geneous nucleation at the edges and tips of the dendrite and (c) concentration
of Fe at the dendritic surface for the same time step as in (b).
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We would like to point out that, we do not expect spurious effects like the
stabilization of meta-stable phases due to the reduction in the height of
the surface potential for the interface thickness that we choose. This is
because our driving forces are of very low magnitude in the simulations.
Fig. 3.8a and Fig. 3.8b make this point clear. We calculated the critical
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Figure 3.8.: Calculation of the radius of the critical profiles for homogeneous
nucleation at T=0.97 in a) and barrier to nucleation in b).

phase field profiles of the solid phases in equilibrium with the liquid at
various super-saturations, by solving the Euler-Lagrange equations 𝛿𝑆

𝛿𝜑
= 0

and 𝛿𝑆

𝛿𝑐
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 as in [95, 131]. From this, we calculated the barrier to

homogeneous nucleation Δ𝐺* as the excess grand chemical potential and
inclusive of all the surface excesses, Fig. 3.8b, and the radius of the critical
nucleus Fig. 3.8a, which corresponds to the size of a sharp interface solid,
which equals the volume of the critical nucleus of the particular phase. We
see that, at the concentration of 𝑐𝑙

𝐹 𝑒 = 0.97 we have the critical radius to
be 80 times the capillary length, which shows that the effect of the driving
forces becomes comparable to the capillary forces due to the surface energy
at these sizes. Although we have considered solid-liquid equilibrium, we
expect, the solid-solid transformation energies to be of the same order or
smaller, because of the similarity of the solid-liquid equilibrium among the
𝛿- and 𝛾-phases. To be able to simulate large microstructures then, within
manageable number of grid points, it is necessary to choose the interface
widths of the order we have chosen and as is also customary in the phase
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field method, to use interface widths of the order of the smallest principal
length scale that one is trying to resolve. However, one must take care,
that the model used for this study, does not contain the thin interface
corrections, [46], requisite in large interface simulations for quantitative
results, and hence our kinetics will be off by some order. In light of this,
the results, only qualitatively show the influence of the surface energy and
super-saturation on the kinetics of transformation. However, since we were
able to treat our surface excesses correctly, our thermodynamic predictions
regarding nucleation sites and range of surface energies are reliable.

3.2.3. Growth of the peritectic phase along a plate
substrate

During the peritectic reaction L + δ → γ, the triple junction formed by the
three phases drives the phase transitions. A well-known morphology is the
propagation of the peritectic γ-phase on top of the substrate, consisting of
properitectic δ-phase, Fig. 3.9. The process is liquid-diffusion controlled.

Figure 3.9.: The peritectic γ-solid growth on top of a properitectic δ-substrate.
The dynamics of dissolution is driven by diffusion of solute in the liquid phase.

The concentration of the liquid is chosen such that the δ-phase is in
equilibrium at a non-dimensionalized temperature of 0.97. The large
substrate of the properitectic phase ensures that curvature undercooling
of the solid-liquid interface is negligible.
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3.3. Conclusion

We use a phase-field model to investigate the evolution of different growth
morphologies during the peritectic reaction in the Fe-C system through 2D
and 3D simulations. Predictions of the solid-solid surface energies σ̃γδ are
made based on comparisons between experimental observations, previous
simulations and the current work. We discuss the effect of σ̃γδ on nucleation
behavior. We find heterogeneous nucleation on a primary dendrite, strongly
depending on the solid-solid surface energy. Based on our study, we propose
that the value for σ̃γδ should lie in a range causing the two solids, the γ-
and δ-phase, to form low contact angles < 26◦ (illustration in Fig. 3.10).
Furthermore, we observe heterogeneous nucleation becoming a possibility

Figure 3.10.: Illustration of the angle that the surface tangent at the l−δ interface
close to the triple junction, makes with the horizontal (original substrate).

for such values of σ̃γδ. The main emphasis of our present work is to
understand the role of σ̃γδ on the growth morphologies and on nucleation
sites. Hence other forms of free energy such as from thermodynamic
databases, e.g. CALPHAD, were not used in order to simplify the analysis.
Future work would involve a more rigorous treatment of nucleation behavior
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to predict nucleation sites on evolving substrates and composition domains
based on a careful study of critical nuclei.





Chapter 4

Study of three phase
growth in ternary alloys
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4.1. Introduction

Eutectic alloys are of major industrial importance because of their low
melting points and their interesting mechanical properties. They are also
interesting for physicists because of their ability to form a large variety of
complex patterns, which makes eutectic solidification an excellent model
system for the study of numerous nonlinear phenomena.

In a binary eutectic alloy, two distinct solid phases co-exist with the liquid
at the eutectic point characterized by the eutectic temperature TE and
the eutectic concentration CE. If the global sample concentration is close
to the eutectic concentration, solidification generally results in composite
patterns: alternating lamellae of the two solids, or rods of one solid
immersed in a matrix of the other, grow simultaneously from the liquid.
The fundamental understanding of this pattern-formation process was
established by Jackson and Hunt (JH) [44]. They calculated approximate
solutions for spatially periodic lamellae and rods that grow at constant
velocity v, and established that the average front undercooling, that is,
the difference between the average front temperature and the eutectic
temperature, follows the relation

ΔT = K1vλ +
K2
λ

, (4.1)

where λ is the width of one lamella pair (or the distance between two rod
centers), v is the velocity of the solidification front, and K1 and K2 are
constants whose value depends on the volume fractions of the two solid
phases and various materials parameters [44]. The two contributions in
Eq. (4.1) arise from the redistribution of solute by diffusion through the
liquid and the curvature of the solid-liquid interfaces, respectively.

The front undercooling is minimal for a characteristic spacing

λJH =
√

K2
K1v

. (4.2)

The spacings found in experiments in massive samples are usually dis-
tributed in a narrow range around λJH [116]. However, other spacings
can be reached in directional solidification experiments by imposing a
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solidification velocity that varies with time. In this way, the stability of
steady-state growth can be probed [34]. In agreement with theoretical
expections [73], steady-state growth is stable over a range of spacings that
is limited by the occurrence of dynamic instabilities. For low spacings,
a large-scale lamella (or rod) elimination instability is observed [5]. For
high spacings, the type of instability that can be observed depends on
the sample geometry. For thin samples, various oscillatory instabilities
and a tilt instability can occur, depending on the alloy phase diagram
and the sample concentration. Beyond the onset of these instabilities,
stable tilted patterns as well as oscillatory limit cycles can be observed in
both experiments and simulations [34, 51]. For massive samples, a zig-zag
instability occurs for lamellar eutectics [2, 85], whereas rods exhibit a
shape instability [86].

In summary, pattern formation in binary eutectics is fairly well understood.
However, most materials of practical importance have more than two
components. Therefore, eutectic solidification in multicomponent alloys
has received increasing attention in recent years. A particularly interesting
situation arises in alloy systems that exhibit a ternary eutectic point, at
which four phases (three solids and the liquid) coexist. At such a quadruple
point, three binary “eutectic valleys”, that is, monovariant lines of three-
phase coexistence, meet. The existence of three solid phases implies that
there is a far greater variety of possible structures, even in thin samples.
Indeed, for two solids α and β, an array αβαβ . . . is the only possibility
for a composite pattern in a thin sample; the only remaining degree of
freedom is the spacing. With an additional γ solid, an infinite number
of distinct periodic cycles with different sequences of phases are possible.
The simplest cycles are αβγαβγ . . . and αβαγαβαγ . . . and permutations.
Clearly, cycles of arbitrary length, and even non-periodic configurations
are possible. An interesting question is then which configurations, if any,
will be favored.

In preliminary works, the occurrence of lamellar structures has been
reported in experiments in massive samples [9, 23, 42, 52, 74, 102, 104].
The spatio-temporal evolution in ternary eutectic systems was observed in
thin samples (quasi-2D experiments) in both metallic [101] and organic
systems [139]. In both cases, the simultaneous growth of three distinct
solid phases from the liquid with a (αβαγ), (named ABAC in Ref. [139])
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stacking was observed. Measurements in both cases revealed that λ2v was
approximately constant, in agreement with the JH scaling of Eq. (4.2).

On the theoretical side, models that extend the JH analysis from binary to
ternary eutectics for three different growth morphologies (rods and hexagon,
lamellar, and semi-regular brick structures) were proposed by Himemiya
et al. [41]. The relation between front undercooling and spacing is still of
the form given by Eq. (4.1), with constants K1 and K2 that depend on
the morphology. The differences between the minimal undercoolings for
different morphologies were found to be small. No direct comparison to
experiments was given.

Finally, ternary eutectic growth has also been investigated by phase-field
methods in Refs. [7, 40], who have studied different stacking sequences
formed by α = Ag2Al, β = (α Al) and γ = Al2Cu in the ternary sys-
tem Al-Cu-Ag, while transients in the ternary eutectic solidification of a
transparent In-Bi-Sn alloy were studied both by phase field modeling and
experiments [101].

The purpose of the present chapter is to carry out a more systematic inves-
tigation of lamellar ternary eutectic growth. The main questions we wish
to address are (i) can an extension of the JH theory adequately describe
the properties of ternary lamellar arrays and reveal the differences between
cycles of different stacking sequences, and (ii) what are the instabilities
that can occur in such patterns. To answer these questions, we develop a
generalization of the JH theory to ternary eutectics which is capable of
describing the front undercoolings of periodic lamellar arrays with arbi-
trary stacking sequence. Its predictions are systematically compared to
phase-field simulations. We use a generic thermodynamically consistent
phase-field model [33, 79]. While this model is known to exhibit several
thin-interface effects which limit its accuracy [6, 30, 46, 48, 55], we show
here that we can obtain a very satisfying agreement between theory and
simulations if the solid-liquid interfacial free energy is evaluated numer-
ically. In particular, the minimum-undercooling spacings are accurately
reproduced for all stacking sequences that we have simulated.

The model is then used to systematically investigate the instabilities of
lamellar arrays, in particular for large spacings. We find that, as for binary
eutectics, the symmetry elements of the steady-state array determine the
possible instability modes. Whereas the calculation of a complete stability
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diagram is not feasible due to the large number of independent parameters,
we find and characterize several new instability modes. Besides these
oscillatory modes that are direct analogs of the ones observed in binary
eutectics, we also find a new type of instability which occurs at small
spacings: cycles in which the same phase appears more than once can
undergo an instability during which one of these lamellae is eliminated;
the system therefore transits to a different (simpler) cycle. Furthermore,
we also find that the occurrence of this type of instability can be well
predicted by our generalized JH theory.

The remainder of the chapter is organized as follows. In Sec. 4.2, we
develop the generalized JH theory for ternary eutectics and calculate the
undercooling-spacing relationships for several simple cycles. In Sec. 4.3,
the phase-field model is outlined and its parameters are related to the
ones of the theory. Sec. 4.4 presents the simulation results concerning
both steady-state growth and its instabilities. In Sec. 4.5, we briefly
discuss questions related to pattern selection and present some preliminary
simulations in three dimensions. Sec. 4.6 concludes the chapter.

4.2. Theory

We consider a ternary alloy system consisting of components A, B and C,
which can form three solid phases α, β, and γ upon solidification from the
liquid l. The concentrations of the components (in molar fractions) are
denoted by cA, cB and cC and fulfill the constraint

cA + cB + cC = 1. (4.3)

This obviously implies that there are only two independent concentration
fields.

As is customary, isothermal sections of the ternary phase diagram can
be conveniently displayed in the Gibbs simplex. We are interested in
alloy systems that exhibit a ternary eutectic point: four-phase coexistence
between three solids and the liquid. The isothermal cross-section at
the ternary eutectic temperature is displayed in Figure 4.1, here for the
particular example of a completely symmetric phase diagram.
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Eutectic Tie-Triangle

Figure 4.1.: Projection of the ternary phase diagram for a model symmetric
ternary eutectic system on the Gibbs simplex. The triangle at the center is the
tie-triangle at the eutectic temperature where four phases α, β, γ, and l are in
equilibrium. The diagram also contains the information on three-phase equilibria.
The liquidus lines corresponding to each of these equilibria (“eutectic valleys”)
are shown by dotted lines which meet at the center of the simplex, which is also
the concentration of the liquid at which all the three solid phases and the liquid
are at equilibrium.
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The concentration of the liquid is located in the center of the simplex
(cA = cB = cC = 1/3), and the three solid phases are located at the
corners of the eutectic tie triangle. For higher temperatures, no four-phase
coexistence is possible, but each pair of solid phases can coexist with the
liquid (three-phase coexistence). Each of these three-phase equilibria is a
eutectic, and the loci of the liquid concentrations at three-phase coexistence
as a function of temperature form three “eutectic valleys” that meet at
the ternary eutectic point. On each of the sides of the simplex (with
the temperature as additional axis), a binary eutectic phase diagram is
found.

The key point for the following analysis is the temperature of solid-liquid
interfaces, which depends on the liquid concentration, the interface cur-
vature, and the interface velocity. The dependence on the concentration
is described by the liquidus surface, which is a two-dimensional surface
over the Gibbs simplex. This surface can hence be characterized by two
independent liquidus slopes at each point. For each phase ν (ν = α, β, γ),
we choose the two liquidus slopes with respect to the minority components.
Thus, for the α phase, the interface temperature is given by the generalized
Gibbs-Thomson relation,

T α
int − TE = mα

B(cB − cE
B) + mα

C(cC − cE
C) − Γακ − vn

μα
int

, (4.4)

where cB and cC are the concentrations in the liquid adjacent to the
interface, cE

B and cE
C their values at the ternary eutectic point, and

mα
B = dTα

dcB

∣∣∣
cC =const

and mα
C = dTα

dcC

∣∣∣
cB=const

the liquidus slopes taken
at the ternary eutectic point. Furthermore, Γα = σ̃αlTE/Lα is the Gibbs-
Thomson coefficient, with σ̃αl the solid-liquid surface tension and Lα the
latent heat of fusion per unit volume, and μα

int is the mobility of the
α-liquid interface. For the typical (slow) growth velocities that can be
attained in directional solidification experiments, the last term, which
represents the kinetic undercooling of the interface, is very small. It will
therefore be neglected in the following. The expression for the other solid
phases are obtained by cyclic permutation of the indices.

In the spirit of the original Jackson-Hunt analysis, for the calculation of
the diffusion field in the liquid, the concentration differences between solid
and liquid phases are assumed to be constant and equal to their values
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at the ternary eutectic point. Since we are interested in ternary coupled
growth, which will take place at temperatures close to TE , this should be
a good approximation. Thus, we define

Δcν
j = cl

j − cν
j with j = A, B, C and ν = α, β, γ.

In this approximation, the Stefan condition at a ν-l interface, which
expresses mass conservation upon solidification, reads

∂ncj = −vn

D
Δcν

j , (4.5)

where ∂ncj denotes the partial derivative of cj in the direction normal
to the interface, vn is the normal velocity of the interface (positive for a
growing solid), and D is the chemical diffusion coefficient, for simplicity
assumed to be equal for all the components.

We consider a general periodic lamellar array with M repeating units
consisting of phases (ν0, ν1, ν2, . . . , νM−1) where each νi represents the
name of one solid phase (α, β, γ) in the sequence, with a repeat distance
(lamellar spacing) λ. The width of the j-th single solid phase region is
(xj − xj−1) λ, with x0 = 0 and xM = 1, and the sum of all the widths
corresponding to any given phase is its volume fraction ην . The eutectic
front is assumed to grow in the z direction with a constant velocity v.

Figure 4.2.: Two examples for periodic lamellar arrays with M = 3 and M = 4
units.
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4.2.1. Concentration fields

First, we consider the diffusion fields of the components A, B, C ahead of
a growing eutectic front. For the calculation of the concentration fields,
the front is supposed to be planar, as in the sketches of Figure 4.2. We
make the following Fourier series expansion for cA and cB

cX =
∞∑

n=−∞
Xneiknx−qnz + c∞

X , X = A, B. (4.6)

The third concentration cC follows from the constraint of Eq. (4.3). In
Eq. (4.6), kn = 2πn/λ are wave numbers and qn can be determined from
the solutions of the stationary diffusion equation

v∂zcX + D∇2cX = 0,

which yields

qn =
v

2D
+
√

k2
n +
( v

2D

)2
.

For all the modes n �= 0, we thus have qn 	 |kn| for small Peclet number
Pe = λ/� 
 1 with � = 2D/vn, which will always be the case for slow
growth. The mode n = 0 describes the concentration boundary layer which
is present at off-eutectic concentrations, and which has a characteristic
length scale of �. To determine the coefficients Xn in the above Fourier
series, we assume the eutectic front to be at the z = 0 position. Using the
Stefan condition in Eq. (4.5) and taking the derivative of cX with respect
to the z-coordinate

∂zcX |z=0 =
∞∑

n=−∞
−qnXneiknx,

integration across one lamella period λ of arbitrary partitioning of phases
gives

qnXnδnmλ =
2
�

M−1∑
j=0

∫ xj+1λ

xjλ

e−ikmxΔc
νj

X dx, (4.7)
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so that the coefficients Xn, n ∈ IN in the series ansatz, Eq. (4.6) follow

Xn =
4

�qnλkn

M−1∑
j=0

Δc
νj

X e−iknλ(xj+1+xj)/2 sin(knλ(xj+1 − xj)/2)

. (4.8)

Applying symmetry arguments for the sinus and cosinus functions, we can
formulate real combinations of these coefficients if we additionally take
the negative summation indices into account. We obtain

Xn+X−n =
8

�qnλkn

M−1∑
j=0

Δc
νj

X cos(knλ(xj+1+xj)/2) sin(knλ(xj+1−xj)/2),

i(Xn−X−n) =
8

�qnλkn

M−1∑
j=0

Δc
νj

X sin(knλ(xj+1+xj)/2) sin(knλ(xj+1−xj)/2).

Herewith, Eq. (4.6) reads:

cX = c∞
X + X0 +

M−1∑
j=0

∞∑
n=1

8
�qnλkn

cos(knλ(xj+1 + xj)/2)×

sin(knλ(xj+1 − xj)/2) cos(knx)+
M−1∑
j=0

∞∑
n=1

8
�qnλkn

sin(knλ(xj+1 + xj)/2) sin(knλ(xj+1 − xj)/2) sin(knx).

The general expression for the mean concentration 〈cX〉m ahead of the
m-th phase of the phase sequence can be calculated to yield

〈cX〉m =
1

(xm+1 − xm)λ

∫ xm+1λ

xmλ

cXdx

= c∞
X + X0 +

1
xm+1 − xm

∞∑
n=1

M−1∑
j=0

{ 16
λ2k2

n�qn
Δc

νj

X

sin[πn(xm+1 − xm)] × sin[πn(xj+1 − xj)] cos[πn(xm+1 + xm − xj+1 − xj)]
}

.

(4.9)
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For a repetitive appearance of a phase ν in the phase sequence, the mean
concentration of component X ahead of this phase follows by taking the
weighted average of all the lamellae of phase ν,

〈cX〉ν =
∑M−1

m=0 〈cX〉m(xm+1 − xm)δνmν∑M−1
m=0 (xm+1 − xm)δνmν

with δνmν =
{

1 for ν = νm

0 for ν �= νm.

4.2.2. Average front temperature

The average front temperature is now found by taking the average of the
Gibbs-Thomson equation along the front, separately for each phase (α, β
and γ):

ΔTν = TE − Tν = −mν
B(〈cB〉ν − cE

B) − mν
C(〈cC〉ν − cE

C) + Γν〈κ〉ν ,

(4.10)

for ν = α, β, γ. Here, 〈κ〉ν is the average curvature of the solid-liquid
interface which can be evaluated by exact geometric relations to be

〈κ〉ν =
∑M−1

m=0 〈κ〉m(xm+1 − xm)δνmν∑M−1
m=0 (xm+1 − xm)δνmν

and
〈κ〉m =

sin θνmνm+1 + sin θνmνm−1

(xm+1 − xm)λ
.

Here, θνmνm−1 are the contact angles that are obtained by applying Young’s
law at the trijunction points. More precisely, θνmνm+1 is the angle, at the
triple point (identified by the intersection of the two solid-liquid interfaces
and the solid-solid one), between the tangent to the νm −l interface and the
horizontal (the x direction). For a triple point with the phases νm, νm+1
and liquid, the two contact angles θνmνm+1 , θνm+1νm

satisfy the following
relations, obtained from Young’s law,

σ̃νm+1l

cos(θνmνm+1)
=

σ̃νml

cos(θνm+1νm)
=

σ̃νmνm+1

sin(θνmνm+1 + θνm+1νm)
.

Note that, in general, θνmνm+1 �= θνm+1νm .
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A short digression is in order to motivate the closure of our system of
equations. Although we have not given the explicit expressions, the
coefficients A0 and B0 can be simply calculated by using Eq.(4.7) with
n = 0. However, to carry out this calculation, the width of each lamella has
to be given. If these widths are chosen consistent with the lever rule, that is,
the cumulated lamellar width of phase ν corresponds to the nominal volume
fraction of phase ν for the given sample concentration c∞

A , c∞
B , and c∞

C , the
use of Eq.(4.7) yields X0 = cE

X −c∞
X (X = A, B, C). However, this result is

incorrect: the concentrations of the solids are not equal to the equilibrium
concentrations at the eutectic temperature because solidification takes
place at a temperature below TE. Therefore, the true volume fractions
depend on the solidification conditions. Their determination would require
a self-consistent calculation which is exceedingly difficult. Therefore, we
will take the same path as Jackson and Hunt in their original paper [44]:
we will assume that the volume fractions of the three phases are fixed by
the lever rule at the eutectic temperature, but we will treat the amplitudes
of the two boundary layers, A0 and B0, as unknowns. As in Ref. [44],
one can expect that the difference to the true solution is of order Pe and
therefore small for slow solidification.

With this assumption, the equations developed above can now be used in
two ways. For isothermal solidification, the temperatures of all interfaces
must be equal to the externally set temperature, and the three equations
ΔTν = ΔT for ν = α, β, γ, can be used to determine the three unknowns
A0, B0 and the velocity v of the solid-liquid front. All of these quantities
will be a function of the lamellar spacing λ. In directional solidification,
the growth velocity in steady state is fixed and equal to the speed with
which the sample is pulled from a hot to a cold region. The third unknown
is now the total front undercooling. In the classic Jackson-Hunt theory
for binary eutectics, the system of equations is closed by the hypothesis
that the average undercoolings of the two phases are equal. This is only
an approximation which is quite accurate for eutectics with comparable
volume fractions of the two solids, but becomes increasingly inaccurate
when the volume fractions are asymmetric [51]. We will use the same
approximation for the ternary case here, and set ΔTα = ΔTβ = ΔTγ = ΔT .
This then leads to expressions for ΔT as a function of the growth speed v
and the lamellar spacing λ.
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4.2.3. Examples

Binary systems

As a benchmark for both our calculations and simulations, we consider
binary eutectic systems with components A and B and with three phases:
α, β, and liquid. Setting x0 = 0, x1 = ηα, x2 = 1, and applying Eq. (4.9)

Figure 4.3.: Sketch of a lamellar structure in a binary eutectic system with
period length M = 2. νi denotes a phase in the sequence (αβ).

gives

〈cX〉α = c∞
X + X0 +

1
ηα

∞∑
n=1

{ 16
λ2k2

n�qn

(
Δcα

X − Δcβ
X

)
sin2(πnηα)

}
(4.11)

∼= c∞
X + X0 +

2λ

ηα�
P(ηα)ΔcX and (4.12)

〈cX〉β = c∞
X + X0 − 2λ

(1 − ηα)�
P(1 − ηα)ΔcX (4.13)
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with kn = 2πn/λ, qn ≈ kn, λ/� 
 1, ΔcX = Δcα
X − Δcβ

X , and the dimen-
sionless function

P(η) =
∞∑

n=1

1
(πn)3 sin2(πnη) (4.14)

which has the properties P(η) = P(1 − η) = P(η − 1).

Furthermore, Eq. (4.10) together with � = 2D/v leads to

ΔTα = −mα
BB0 − λv

ηαD
P(ηα)mα

BΔcB + Γα〈κ〉α,

ΔTβ = −mβ
AA0 − λv

ηβD
P(ηβ)mβ

AΔcA + Γβ〈κ〉β ,

where 〈κ〉α = 2 sin θαβ/(ηαλ) and 〈κ〉β = 2 sin θβα/(ηβλ). In addition, for
a binary alloy B0 = −A0. The unknown A0 and the global front undercool-
ing are determined using the assumption of equal interface undercoolings,
ΔTα = ΔTβ . The result is identical to the one of the Jackson-Hunt
analysis.

Ternary Systems

Next, we study ternary systems with three components (A, B, C) and four
phases (α, β, γ and liquid). We start with the configuration (αβγαβγ . . .),
sketched in Figure 4.4.

We set x0 = 0, x1 = ηα, x2 = ηα + ηβ = 1 − ηγ and x3 = 1 and apply Eq.
(4.9). This yields

〈cX〉α = c∞
X + X0 +

2λ

ηα�

(
P(ηα)Δcα

X + Q(ηα, ηβ)Δcβ
X + Q(ηα, ηγ)Δcγ

X

)
〈cX〉β = c∞

X + X0 +
2λ

ηβ�

(
Q(ηβ , ηα)Δcα

X + P(ηβ)Δcβ
X + Q(ηβ , ηγ)Δcγ

X

)
〈cX〉γ = c∞

X + X0 +
2λ

ηγ�

(
Q(ηγ , ηα)Δcα

X + Q(ηγ , ηβ)Δcβ
X + P(ηγ)Δcγ

X

)
. (4.15)
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Figure 4.4.: Sketch of a ternary stacking order (αβγ) with period length M = 3.

Here, we have used X = A, B, C and P is the function defined in Eq. (4.14),
and

Q(ηνi
, ηνj

) =
∞∑

n=1

1
(πn)3 sin(πnηνi

) sin(πnηνj
) cos[πn(ηνi

+ ηνj
)]

P(ηνi
) and Q(ηνi

, ηνj
) fulfill the properties P(ηνi

) = −Q(ηνi
, −ηνi

) and
Q(ηνi

, ηνj
) = Q(ηνj

, ηνi
).

For simplicity, we now consider a completely symmetric ternary eutectic
configuration: a completely symmetric ternary phase diagram (that is, any
two phases can be exchanged without changing the phase diagram) and
equal phase fractions ηα = ηβ = ηγ = 1

3 , which implies c∞
X = cE

X . As a
consequence, X0 = 0, and Eq. (4.15) simplifies to

〈cA〉α − cE
A =

2λ

ηα�
P(ηα)(Δcα

A − Δcβ
A)

〈cB〉α − cE
B =

λP(ηα)
ηα�

(
Δcα

B − Δcβ
B

)
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〈cC〉α − cE
C =

λP(ηα)
ηα�

(
Δcα

C − Δcγ
C

)
,

for the three components. Since, in this case, all phases have the same
undercooling by symmetry, the front undercooling is simply given by

ΔT = − 2λv

ηαD
P(ηα)mα

BΔcB + Γα〈κ〉α

where 〈κ〉α = 2
ηαλ (sin θαβ +sin θαγ). The terms Δcα

B −Δcβ
B and Δcα

C −Δcγ
C

are identical. For convenience, we write the preceding equation using the
term we already use for the binaries namely ΔcB = Δcα

B − Δcβ
B .

Next, we discuss again a ternary eutectic alloy with three components and
four phases, but now for the phase cycle (αβαγαβ . . .). Furthermore, we

Figure 4.5.: Schematic drawing of a ternary eutectic system with a configuration
(αβαγαβ . . .) of periodic length M = 4.

suppose that the two lamellae of the α phase have equal width ληα/2. The
average concentrations 〈cX〉m are deduced from the general expression in
Eq. 4.9 and read

〈cX〉α = c∞
X + X0 +

2λ
ηα

2 �

(
S(ηα, ηβ)Δcα

X + Q( ηα

2 , ηβ)Δcβ
X + Q( ηα

2 , ηγ)Δcγ
X

)
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〈cX〉β = c∞
X + X0 +

2λ

ηβ�

(
2Q(ηβ , ηα

2 )Δcα
X + P(ηβ)Δcβ

X + R(ηβ , ηγ)Δcγ
X

)
〈cX〉γ = c∞

X + X0 +
2λ

ηγ�

(
2Q(ηγ , ηα

2 )Δcα
X + R(ηγ , ηβ)Δcβ

X + P(ηγ)Δcγ
X

)
,

where X = A, B, C. Furthermore, we have introduced the short nota-
tions

R(ηνi
, ηνj

) =
∞∑

n=1

1
(πn)3 sin(πnηνi

) sin(πnηνj
) cos(πn)

S(ηνi
, ηνj

) =
∞∑

n=1

1
(πn)3 sin2(πnηνi

/2){1 + cos(πn) cos[πn(ηνj
− ηνi

)]}.

From the general formulation of the Gibbs-Thomson equation in Eq. (4.10),
we determine the undercoolings,

ΔTα = −mα
B

(
B0 +

4λ

ηα�

(
S(ηα, ηβ)Δcα

B + Q( ηα

2 , ηβ)Δcβ
B + Q( ηα

2 , ηγ)Δcγ
B

))
+ −mα

C

(
C0 +

4λ

ηα�

(
S(ηα, ηβ)Δcα

C + Q( ηα

2 , ηβ)Δcβ
C + Q( ηα

2 , ηγ)Δcγ
C

))
+ Γα

2 (sin θαβ + sin θαγ)
ηαλ

(4.16)

ΔTβ = −mβ
A

(
A0 +

2λ

ηβ�

(
2Q(ηβ , ηα

2 )Δcα
A + P(ηβ)Δcβ

A + R(ηβ , ηγ)Δcγ
A

))
+ −mβ

C

(
C0 +

2λ

ηβ�

(
2Q(ηβ , ηα

2 )Δcα
C + P(ηβ)Δcβ

C + R(ηβ , ηγ)Δcγ
C

))
+ Γβ

2 sin θβα

ηβλ

ΔTγ = −mγ
A

(
A0 +

2λ

ηγ�

(
2Q(ηγ , ηα

2 )Δcα
A + R(ηγ , ηβ)Δcβ

A + P(ηγ)Δcγ
A

))
+ −mγ

B

(
B0 +

2λ

ηγ�

(
2Q(ηγ , ηα

2 )Δcα
B + R(ηγ , ηβ)Δcβ

B + P(ηγ)Δcγ
B

))
+ Γγ

2 sin θγα

ηγλ
.
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For a symmetric phase diagram (all slopes equal, mνi

X = m) one can
show using the assumption of equal undercooling of all phases that an
expression for the global interface undercooling can be derived as ΔT =
1/3(ΔTα + ΔTβ + ΔTγ) by elimination of the constants A0, B0 and C0
using the relation (A0 + B0 + C0) = 0.

4.2.4. Discussion

A point which merits closer attention is the question which of all the possi-
ble steady-state configurations exhibits the lowest undercooling. Whereas
the general idea that a eutectic system will always select the state of lowest
undercooling is wrong (see Sec. 4.5 below), an information about this
point constitutes nevertheless a useful starting point. Whereas the general
solution to this problem is non-trivial, in the following we present some
partial insights.

Let us, for the sake of discussion, first compute the average total curvature
undercooling ΔTκ of an arbitrary arrangement. Consider a configuration
of period M having Ma lamella of the α phase, Mb lamella of the β phase,
and Mc lamella of the γ phase, where the integers Ma, Mb, and Mc add up
to M. In a system where all the solid-liquid and solid-solid surface tensions
are identical, the total average curvature undercooling ΔT ν

κ of each phase
ν is,

ΔT α
κ = Γα

2 sin θ

λ

Ma

ηα

ΔT β
κ = Γβ

2 sin θ

λ

Mb

ηβ

ΔT γ
κ = Γγ

2 sin θ

λ

Mc

ηγ
.

It is remarkable that the average curvature undercooling is independent of
the individual widths of each lamella, but depends only on the total volume
fraction and the number of lamellae of the specific phase. Furthermore, it is
quite clear from the above examples that the final expression for the global
average interface undercooling can always be written in the same form as
Eq. (4.1). The second term of this expression (that is, the one proportional
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to 1/λ) can be computed for the case where all Gibbs-Thomson coefficients
and liquidus slopes are equal, and reads

K2
λ

=
ΔT α

κ + ΔT β
κ + ΔT γ

κ

3

= Γ
2 sin θ

3λ

(
Ma

ηα
+

Mb

ηβ
+

Mc

ηγ

)
. (4.17)

For the special case of a completely symmetric phase diagram and a sample
at the eutectic composition, Eqn.(4.17) yields

K2
λ

= Γ
2 sin θ

λ
(Ma + Mb + Mc) ,

where we have used the fact that ηα = ηβ = ηγ = 1/3. Using, Ma +

Mb + Mc = M ,
K2
λ

= Γ
2 sin θ

(λ/ M)
. Thus, we see that the magnitude of this

term per unit lamella in an arrangement is the same for all the possible
arrangements, irrespective of the individual widths of the lamella and the
relative positions of the lamellae in a configuration. Moreover, we see that
for a general off-eutectic composition, choosing the number of lamellae in
the ratio ηα : ηβ : ηγ renders the average curvature undercoolings of all the
three phases equal. This condition is, however, relevant only for the special
case of identical solid-solid and solid-liquid surface tensions and equal
liquidus slopes of the phases. For the case when the solid-liquid and solid-
solid surface tensions are unequal, the curvature undercooling is no longer
independent of the arrangement of the lamella in the configuration. Hence,
the problem of determining the minimum undercooling configuration is
complex and no general expression regarding the number, position and
widths of lamellae can be derived.

Another point is worth mentioning. Under the assumption that the volume
fractions of the solid phases are fixed by the lever rule, the width of the
three lamellae in the αβγ cycle is uniquely fixed by the alloy concentration.
However, for the αβαγ cycle, and more generally for any cycle with
M > 3, this is not the case any more because there have to be at least
two lamellae of the same phase in the cycle. Whereas the cumulated
width of these lamellae is fixed by the global concentration, the width
of each individual lamella is not. For example, in the αβαγ cycle at
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the eutectic concentration c∞
A = c∞

B = c∞
C = 1/3, all the configurations

(ξ, 1/3, 1/3 − ξ, 1/3) for 0 < ξ < 1/3 are admissible, where the notation
( · , · , . . .) is a shorthand for the list of the lamella widths xn+1 − xn. The
number ξ is an internal degree of freedom that can be freely chosen by the
system. With our method, the global front undercooling can be calculated
for any value of ξ. For the αβαγ cycle, we found that the configuration
with equal widths of the α phases (ξ = 1/6) was the one with the minimum
average front undercooling. This gives a strong indication that this value
is stable, and that perturbations of ξ around this value should decay with
time. Hence, the analytic expressions given above for the αβαγ cycle,
which are for ξ = 1/6, should be the relevant ones.

4.3. Phase-field model

4.3.1. Model

A thermodynamically consistent phase-field model is used for the present
study [33, 79]. The equations are derived from an entropy functional of
the form

S (e, c, φ) =
∫

Ω

(
s (e, c, φ) −

(
εa (φ, ∇φ) +

1
ε

w (φ)
))

dΩ,(4.18)

where e is the internal energy density, c = (ci)K
i=1 is a vector of concentra-

tion variables, K being the number of components, and φ = (φα)N
α=1 is a

vector of phase-field variables, N being the number of phases present in
the system. φ and c fulfill the constraints

K∑
i=1

ci = 1 and
N∑

α=1
φα = 1, (4.19)

so that these vectors always lie in K − 1- and N − 1-dimensional planes,
respectively. Moreover, ε is the small length scale parameter related to
the interface width, s (e, c, φ) is the bulk entropy density, a (φ, ∇φ) is the
gradient entropy density and w (φ) describes the surface entropy potential
of the system for pure capillary-force-driven problems.
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We use a multi-obstacle potential for w (φ) of the form

w (φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16
π2

N,N∑
α,β=1
(α<β)

σαβφαφβ +
N,N,N∑

α,β,γ=1
(α<β<γ)

σαβγφαφβφγ , if φ ∈∑
∞, elsewhere

(4.20)

where
∑

= {φ |∑N
α=1 φα = 1 and φα ≥ 0}, σαβ is the surface entropy

density and σαβγ is a term added to reduce the presence of unwanted third
or higher order phase at a binary interface (see below for details).

The gradient entropy density a (φ, ∇φ) can be written as

a (φ, ∇φ) =

N,N∑
α,β=1
(α<β)

σαβ [ac (qαβ)]2 |qαβ |2,

where qαβ = (φα∇φβ − φβ∇φα) is a vector normal to the αβ interface.
The function ac (qαβ) describes the form of the anisotropy of the evolving
phase boundary. For the present study, we assume isotropic interfaces,
and hence ac (qαβ) = 1. Evolution equations for c and φ are derived from
the entropy functional through conservation laws and phenomenological
maximization of entropy, respectively [33, 79]. A linearized temperature
field with positive gradient G in the growth direction (z axis) is imposed
and moved forward with a velocity v,

T = T0 + G(z − vt) (4.21)

where T0 is the temperature at z = 0 at time t = 0. The evolution
equations for the phase-field variables read

ωε∂tφα = ε (∇ · a,∇φα
(φ, ∇φ) − a,φα

(φ, ∇φ)) − 1
ε

w,φα
(φ) −

f,φα
(T, c, φ)
T

− Λ, (4.22)
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where Λ is the Lagrange multiplier which maintains the constraint of
Eq. (4.19) for φ, and the constant ω is the relaxation time of the phase
fields. Furthermore, a,∇φα

, a,φα
, w,φα

and f,φα
indicate the derivatives

of the respective entropy densities with respect to ∇φα and φα. The
function f(T, c, φ) in Eq. (4.22) describes the free energy density, and is
related to the entropy density s(T, c, φ), through the relation f(T, c, φ) =
e(T, c, φ)−Ts(T, c, φ), where e(T, c, φ) is the internal energy density. The
free energy density is given by the summation over all bulk free energy
contributions fα(T, c) of the individual phases in the system. We use an
ideal solution model,

f(T, c, φ) =
K∑

i=1

(
Tci ln ci +

N∑
α=1

ciL
α
i

(T − T α
i )

T α
i

hα (φ)

)
, (4.23)

where

fα(T, c) =
K∑

i=1

(
Tci ln ci + ciL

α
i

(T − T α
i )

T α
i

)
(4.24)

is the free energy density of the α solid phase, and

fl(T, c) = T

K∑
i=1

(ci ln (ci)) (4.25)

is the one of the liquid. The parameters Lα
i and T α

i denote the latent
heats and the melting temperatures of the ith component in the α phase,
respectively. We choose the liquid as the reference state, and hence Ll

i = 0.
The function hα(φ) is a weight function which we choose to be of the form
hα (φ) = φ2

α (3 − 2φα). Thus, f = fα for φα = 1. Other interpolation
functions involving other components of the φ vector could also be used,
but here we restrict ourselves to this simple choice.

The evolution equations for the concentration fields are derived from
Eq. (4.18),

∂tci = −∇ ·
⎛⎝Mi0(c, φ)∇ 1

T
+

K∑
j=1

Mij (c, φ) ∇
(

1
T

∂f(T, c, φ)
∂cj

)⎞⎠ .
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By a convenient choice of the mobilities Mij (c, φ), self- and interdiffusion
in multicomponent systems (including off-diagonal terms of the diffusion
matrix) can be modelled. Here, however, we limit ourselves to a diagonal
diffusion matrix with all individual diffusivities being equal, which can be
achieved by choosing

Mij(c, φ) = Di(φ)ci (δij − cj)

Mi0(c, φ) = M0i(c, φ) = −
N∑

α=1

K∑
j=1

Mjihα (φ) Lα
i .

The terms Mi0(c, φ) = M0i(c, φ) are the mobilities for the concentration
current of the component i due to a temperature gradient. The diffusion
coefficient is taken as a linear interpolation between the phases, Di(φ) =∑N

α=1 Dα
i φα, where Dα

i is the non-dimensionalized diffusion coefficient of
the ith component in the α phase, using the liquid diffusivity Dl as the
reference, where the diffusivities of all the components in the liquid phase
are assumed to be equal. In the simulations we assume zero diffusivity
in the solid, and take the effective diffusivity to be Di(φ) = Dlφl. The
quantity d∗ = σ/ (R/vm) is used as the reference length scale in the
simulations, where the molar volume vm is assumed to be independent of
the concentration. Here, σ is one of the surface entropy density parameters
introduced in Eq. (4.20), and the surface entropies of all the phases are
assumed to be equal. The reference time scale is chosen to be t∗ = d∗2/Dl.
The temperature scale is the eutectic temperature corresponding to the
three phase stability regions at the three edges of the concentration simplex
and is denoted by T ∗ while the energy scale is given by RT ∗/vm.

4.3.2. Relation to sharp interface theory

In order to compare our phase-field simulations to the theory outlined in
Sec. 2, we need to relate the parameters of the phase-field model to the
quantities needed as input for the theory. For some, this is straightforward.
For example, all the parameters of the phase diagram (liquidus slopes,
coexistence temperatures etc.) can be deduced from the free energy
densities of Eqs. (4.23)–(4.25) in the standard way. For others, the
correspondence is less immediate. In the following, we will discuss in
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some detail two quantities that are crucial for the theory: the surface free
energies and the latent heats, both needed to calculate the Gibbs-Thomson
coefficients in Eq. (4.4).

The surface free energy σ̃αβ is defined as the interface excess of the
thermodynamic potential density that is equal in two coexisting phases.
For alloys, this is not the free energy, but the grand potential. Indeed, the
equilibrium between two phases is given by K conditions for K components:
K − 1 chemical potentials (because of the constraint of Eq. (4.3), only
K − 1 chemical potentials are independent) as well as f −∑K−1

i=1 μici,
which is the grand potential, have to be equal in both phases. This is the
mathematical expression of the common tangent construction for binary
alloys and the common tangent plane construction for ternary alloys.

The grand potential excess has several contributions. Since f = e − Ts,
we need to consider the entropy excess. Both the gradient term in the
phase fields and the potential w(φ) present in the entropy functional
give a contribution inside the interface. If, along an αβ interface, all the
other phase fields remain exactly equal to zero, then this contribution
can be calculated analytically. However, this is generally not the case:
in the interface, the phase fields φν , ν �= α, β can be different from zero,
which corresponds to an “adsorption” of the other phases. Since the
grand potential excess has to be calculated along the equilibrium profile
of the fields, the presence of extra phases modifies the value of σ̃αβ . The
three-phase terms proportional to σαβγ have been included in the potential
function to reduce (or even eliminate) the additional phases. However, the
total removal of these phases requires to choose high values of σαβγ . Such
high values (>10 times the binary constant σαβ) cause the interface to
become steeper near the regions of triple points and lines in 2D and 3D,
respectively, which is a natural consequence of the fact that the higher
order term affects only the points inside the phase-field simplex where three
phases are present. The thinning of the interfaces leads to undesirable
lattice pinning, which could only be circumvented by a finer discretization.
This, however, would lead to a large increase of the computation times.
Therefore, if computations are to remain feasible, we have to accept the
presence of additional phases in the interfaces.

Furthermore, there is also a contribution due to the chemical part of the
free energy functional. This contribution, identified for the first time in
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Ref. [58], arises from the fact that the concentrations inside the interface
(which are fixed by the condition of constant chemical potentials) do not,
in general, follow the common tangent plane, as illustrated schematically
in Figure 4.6.

Figure 4.6.: Illustration of the existence of an excess interface energy contribution
from the chemical free energy. Upper panel: the concentration inside the
interfacial region does not necessarily follow the common tangent line. Here,
the two convex curves are the free energy densities of the individual phases in
contact, the straight line is the common tangent, and the thick non-monotonous
line is the concentration along a cut through the interface. Lower panel: the
grand chemical potential in the interface differs from the one obtained by a
weighted sum of the bulk phase free energies, where the weighting coefficients
are the interpolating functions of the order parameters.

Therefore, there is a contribution to the surface free energy which is given
by the following expressions. For binary eutectic systems (N = 3 phases,
φ = (φα, φβ , φl); K = 2 components c = (cA, cB)), the vector c is one-
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dimensional and we define the concentration (cA) to be the independent
field c = (cA, 1 − cA). Then, we have

ΔΨ (T, c, φ) = f (T, c, φ) − fl − μA(T )
(
cA − cl

A

)
,

where μA (T ) =
∂f (T, c, φ)

cA
is the chemical potential of component A.

For ternary eutectic systems (N = 4 phases, φ = (φα, φβ , φγ , φl); K = 3
components, c = (cA, cB , cC)), the vector c is two-dimensional and with
the concentrations of A, B as the independent concentration fields, we get
c = (cA, cB , 1 − cA − cB) and the chemical free energy excess becomes,

ΔΨ (T, c, φ) = f (T, c, φ)−fl−(μA(T ))
(
cA − cl

A

)−(μB (T ))
(
cB − cl

B

)
.

The entire surface excess can thus be written as the following

σ̃αl =
∫

x

(
Tεa (φ, ∇φ) +

T

ε
w (φ) + ΔΨ (T, c, φ)

)
dx

where x is the coordinate normal to the interface, and the integral is
taken along the equilibrium profile φ(x), c(x). This integral cannot be
calculated analytically. Therefore, we determine the surface free energy
numerically. To this end, we perform one-dimensional simulations to
determine the equilibrium profiles of concentration and phase fields, and
insert the solution into the above formula to calculate σ̃. For these
simulations, the known bulk values of the concentration fields are used as
boundary conditions. To accurately calculate the surface excesses, it is
important to include the contribution of the adsorbed phases. For this,
the above calculations are performed by letting a small amount of these
phases equilibrate at the interface of the major phases. Since the adsorbed
phases equilibrate with very different concentrations compared to that of
the bulk phases, the domain is chosen large enough such that the chemical
potential change of the bulk phases during equilibration is negligible.

Another important quantity which is required as an input in the theoretical
expressions is the latent heat of fusion Lα of the α phase. We follow the
thermodynamic definition for the latent heat of transformation Lα,

Lα = TE (sl − sα) ,
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with s = −
(

∂f (T, c, φ)
∂T

)
and in particular sl =

K∑
i=1

cl
iln
(
cl

i

)
and sα =

K∑
i=1

cα
i

Lα
i

T α
i

+ cα
i ln (cα

i ) ,

where the concentrations of the phases are taken from the phase diagram
at the eutectic temperature.

Finally, let us give a few comments on the interface mobility μint that
appears in Eq. (4.4). In early works [13], it was shown that an expression
for this mobility in terms of the phase-field parameters can be easily
derived in the sharp-interface limit in which the interface thickness tends
to zero. Later on, Karma and Rappel [48] proposed the thin-interface limit,
in which the interface width remains finite, but much smaller than the
mesoscopic diffusion length of the problem. This limit relaxes some of the
stringent requirements of the sharp-interface method for the achievement of
quantitative simulations. Additionally, this method introduces a correction
term to the original expression for the interface mobility, which makes it
possible to carry out simulations in the vanishing interface kinetics (infinite
interface mobility) regime.

Clearly, such modifications of the interface kinetics are also present in our
model, where they arise both from the presence of adsorbed phases in
the interface and from the structure of the concentration profile through
the interface. Furthermore, it is well known that solute trapping also
occurs in phase-field models of the type used here [1]. Since the interface
profile can only be evaluated numerically, and since several phase-field and
concentration variables need to be taken into account, it is not possible to
evaluate quantitatively the contribution of these effects to the interface
mobility. However, this lack of knowledge does not decisively impair the
present study since we are mainly interested in undercooling versus spacing
curves at a fixed interface velocity. At constant velocity, the absolute value
of the interface undercooling contains an unknown contribution from
the interface kinetics, but the relative comparison between steady states
of different spacings remains meaningful. In addition, even though our
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simulation parameters correspond to higher growth velocities than typical
experiments, it will be seen below that the value of the kinetic undercooling
in our simulations is small. This indicates once more that our comparisons
remain consistent.

4.4. Simulation results

In this section, we compare data extracted from phase-field simulations
with the theory developed in Sec.4.2, for the case of coupled growth of
the solid phases in directional solidification. The simulation setup is
sketched in Figure 4.7. Periodic boundary conditions are used in the

Figure 4.7.: Simulation setup for the phase-field simulations of binary and ternary
eutectic systems. We impose a temperature gradient G along the z direction
and move it with a fixed velocity. The average interface position follows the
isotherms at steady state in case of stable lamellar coupled growth.
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transverse direction, while no-flux boundary conditions are used in the
growth direction. The box width in the transverse direction directly
controls the spacing λ. The box length in the growth direction is chosen
several times larger than the diffusion length. The diffusivity in the solid
is assumed to be zero. A non-dimensional temperature gradient, G is
imposed in the growth direction and moved with a velocity v, such that
the temperature field is given by Eq. (4.21).

The outline of this section is as follows: first, we will briefly sketch how
we extract the front undercooling from the simulation data. Then, this
procedure will be validated by comparisons of the results to analytically
known solutions as well as to data for binary alloys, for which well-
established benchmark results exist. We start the presentation of our
results on ternary eutectics by a detailed discussion of the two simplest
possible cycles, αβγ and αβαγ. We compare the data for undercooling
as a function of spacing to our analytical predictions and determine the
relevant instabilities that limit the range of stable spacings. Finally, we
also discuss the behavior of more complicated cycles, for sequences up to
length M = 6.

4.4.1. Data extraction

At steady state, the interface velocity matches the velocity of the isotherms.
The undercooling of the solid-liquid interface is extracted at this stage by
the following procedure. First, a vertical line of grid points is scanned
until the interface is located. Then, the precise position of the interface is
determined as the position of the level line φα = φβ for an αβ-interface
(and in an analogous way for all the other interfaces). This is done by
calculating the intersection of the phase-field profiles of the corresponding
phases, which are extrapolated to subgrid accuracy by polynomial fits. In
the presence of adsorbed phases at the interface, the two major phases
along the scan line are used for determining the interface point. The major
phases are determined from the maximum values that a particular order
parameter assumes along the scan line. The temperature at a calculated
interface point is then given by Eq. (4.21).

In order to test both our data extraction methods and our calculations of
the surface tensions, we have performed the following consistency check.
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For an alloy with a symmetric phase diagram at the eutectic concentration,
a lamellar front has an equilibrium position when a small temperature
gradient (G = 0.001) is applied to the system at zero growth speed. Since
the concentration in the liquid is uniform for a motionless front, according
to the Gibbs-Thomson relation the interface shapes should just be arcs
of circles. This was indeed the case in our simulations, and the fit of
the interface shapes with circles has allowed us to obtain the interface
curvature and the contact angles with very good precision. The extraction
of the data is illustrated in Figure 4.8.

Figure 4.8.: Procedure to extract the interface points from the simulation data
with sub-grid resolution using higher order interpolation of the phase-field profiles.
For the evaluation of the equilibrium properties, the solid-liquid interface points
of each lamella are fitted with a circle which is then used to measure the radius
of curvature of the particular lamella. We also calculate the triple point angles as
the angles between the tangents to the circles at one of the points of intersection.

We fit the radius and the coordinates of the circle centers. Then, the
angle at the trijunction point θ is deduced from geometrical relations, with

d = a + b and a =
R2

a − R2
b + d2

2d
,

b = d − a

θ = cos−1
(

a

Ra

)
+ cos−1

(
b

Rb

)
.

The meaning of the lengths a and b is given in Figure 4.8.
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4.4.2. Validation: Binary Systems

For comparison with the Δ𝑇 −𝜆 relationship known from Jackson-Hunt(JH)
theory, we create two binary eutectic systems by choosing suitable parame-
ters 𝐿𝛼

𝑖 and 𝑇 𝛼
𝑖 in the free energy density 𝑓 (𝑇, 𝑐, 𝜑). A symmetric binary

eutectic system, shown in Figure 4.9a, is created by

𝐿𝛼
𝑖 =

⎛⎝ 𝐴 𝐵
𝛼 4.0 4.0
𝛽 4.0 4.0

⎞⎠ 𝑇 𝛼
𝑖 =

⎛⎝ 𝐴 𝐵
𝛼 1.0 0.75980
𝛽 0.75980 1.0

⎞⎠ .
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Figure 4.9.: Binary eutectic phase diagrams for a model system with stable
(solid lines) and metastable (light dashed lines) extensions of the solidus and the
liquidus lines, of (a) a symmetric A-B and (b) an unsymmetric C-D system.

To create an asymmetric binary eutectic system, shown in Figure 4.9b, we
choose

𝐿𝛼
𝑖 =

⎛⎝ 𝐶 𝐷
𝛼 5.0 5.0
𝛽 5.0 5.0

⎞⎠ 𝑇 𝛼
𝑖 =

⎛⎝ 𝐶 𝐷
𝛼 0.96 0.80137
𝛽 0.76567 1.0

⎞⎠
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The numbers Lα
i , T α

i are chosen such that the widths of each of the
(lens-shaped) two-phase coexistence regions remain reasonably broad, and
that the approximation of using the values of concentration difference
between the solidus and liquidus

(
Δcl

ν

)
at the eutectic temperature for

the theoretical expressions holds for a good range of undercoolings. This
implies that the value of the Lα

i should not be too small. Conversely, a too
high value is also not desirable since for large values of Lα

i the chemical
contribution to the surface free energy becomes large, which leads to very
steep and narrow interface profiles.

Table 4.1.: Parameters for the sharp-interface theory, with proper calculation
of the surface tension in the phase-field simulations for (a) a symmetric binary
eutectic system with components A and B and (b) for an unsymmetric binary
eutectic system with components C and D

(a)

σ̃αl 1.01146
σ̃βl 1.01146
σ̃αβ 1.23718
θαβ 37.70
θβα 37.70
Lα 4.0
Lβ 4.0

mα
B = mβ

A -0.206975

(b)

σ̃αl 0.97272
σ̃βl 1.07235
σ̃αβ 1.24836
θαβ 33.903
θβα 41.161
Lα 4.686
Lβ 4.711
mα

D -0.13161
mβ

C -0.22138

We perform simulations at two different velocities V = 0.01 and V = 0.02,
with a mesh size Δx = 1.0 and the parameter set ε = 4.0, Dl

A = Dl
B =

Dl
C = Dl

D = 1.0, σαβ = σαl = σβl = 1.0, σαβγ = 10.0. To give an idea of
the order of magnitude of the corresponding dimensional quantities, we
remark that if we assume the melting temperatures to be around 1700K
and the other values to correspond to the Ni-Cu system used in the study
of Warren et al. [128], the length scale d∗ for the case of the binary eutectic
system turns out to be around 0.2 nm and the time scale 0.04 ns.
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The corresponding parameters for the sharp-interface theory are given in
Table 4.1. The comparisons between our numerical results and the analytic
theory are shown in Figs. 4.10a and 4.10b.
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Figure 4.10.: Comparison of ΔT − λ relations resulting from the theoretical
analysis and from the phase-field simulations at two different velocities for
systems; (a) symmetric binary eutectic system (A-B) and (b) unsymmetric
binary eutectic system (C-D).

Consistent differences can be observed in the undercooling values between
our data and the predictions from JH theory for both systems. The
difference in undercoolings is smaller at lower velocities, which hints at
the presence of interface kinetics. We find indeed that when we change
the relaxation constant in the phase-field evolution equation by about 50
%, the difference between the predicted and measured undercoolings is
removed for the case of the considered symmetric binary phase diagram.
This clearly shows that the interface kinetics is not negligible. It seems
difficult, however, to obtain a precise numerical value for its magnitude in
the framework of the present model.

The spacing at minimum undercooling, however, is reproduced to a good
degree of accuracy (error of 5 %), while the minimum undercooling has
a maximum error of 10 %. It should also be noted that the JH theory
only is an approximation for the true front undercooling. Results obtained
both with boundary integral [51] and quantitative phase-field methods [32]
have shown that, whereas the prediction for the minimum undercooling
spacing is excellent, errors of 10 % for the value of the undercooling itself
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are typical. If the JH curve is drawn without taking into account the
additional chemical contributions to the surface tension, a completely
different result is obtained, with minimum undercooling spacings that are
largely different from the simulated ones. We can therefore conclude that
we have captured the principal corrections.

In addition, we have performed equilibrium measurements of the angles
at the trijunction point and of the radius of curvature of the lamellae as
described in the preceding sub-section (4.4.1) for the symmetric eutectic
system. The contact angles differ from the ones predicted by Young’s
equilibrium conditions only by a value of 0.2 degrees. The theoretical
(from the Gibbs-Thomson equation) and measured undercoolings differ in
the third decimal, with an error of 0.1 %.

4.4.3. Ternary Systems: Parameter set

Lα
i =

⎛⎜⎜⎝
A B C

α 1.46964038 1.0 1.0
β 1.0 1.46964038 1.0
γ 1.0 1.0 1.46964038

⎞⎟⎟⎠

T α
i =

⎛⎜⎜⎝
A B C

α 1.5 0.5 0.5
β 0.5 1.5 0.5
γ 0.5 1.0 1.5

⎞⎟⎟⎠ .

We use a symmetric ternary phase diagram. The following matrices list the
parameters Lα

i ,T α
i in the free energy f (T, c, φ) that were used to create

a symmetric ternary eutectic system, shown in Figure 4.1. We perform
simulations with the parameter set ε = 8.0, Δx = 1.0, Dl

A = Dl
B = Dl

C =
1.0, σαγ = σβγ = σγβ = σαl = σβl = σγl = 1.0, σαβl = σαβγ = σαγl =
σβγl = 10.0 and compare with the theoretical expressions using the input
parameters listed in Table 4.2.
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Table 4.2.: Input parameters for the theoretical relations for the ternary eutectic
system

σ̃αl = σ̃βl = σ̃γl 1.194035
σ̃αβ = σ̃αγ = σ̃βγ 1.430923

θαβ = θβα = θγα = θαγ 36.81
Lα = Lβ = Lγ 1.33

mα
B = mα

C -0.91
mβ

A = mβ
C -0.91

mγ
A = mγ

B -0.91

4.4.4. Simple cycles: steady states and oscillatory
instability

We first perform simulations to isolate the regime of stable lamellar growth
for the configuration αβγ. For this regime, we measure the average
interface undercooling and compare it to our theoretical predictions. The
results are shown in Figure 4.11.

The agreement in the undercoolings is much better than for the binary
eutectic systems, with a smaller dependence of undercoolings on the
velocities. Consequently, both the spacing at minimum undercooling (error
4 % for V=0.005 and 6 % for V=0.01) and the minimum undercooling
(error of 1-2 %), match very well with the theoretical relationships, as
shown in Figure 4.11. The equilibrium angles at the triple point also agree
with the ones predicted from Young’s law to within an error of 0.3 degrees,
while the radius of curvature matches that from the Gibbs-Thomson
relationship with negligible error (<0.5 %).

It should be noted that the steady lamellae remain straight, contrary to the
results of Ref. [40], where a spontaneous tilt of the lamellae with respect to
the direction of the temperature gradient was reported. This difference is
due to the different phase diagrams: we are using a completely symmetric
phase diagram and equal surface tensions for all solid-liquid interfaces,
whereas [40] uses the thermophysical data of a real alloy.
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Figure 4.11.: Comparison between theoretical analysis and phase-field simula-
tions at two different velocities for the arrangement (αβγ) of ternary eutectic
solids at V = 0.005 and V = 0.01. The demarcation shows the regions of stable
lamellar growth and the critical spacing beyond which we observe amplified
oscillatory behavior. There is a small region named “Damped Oscillations”,
which is a region where oscillations occur but die down slowly with time.
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Next, we are interested in the stability range of three-phase coupled growth.
From general arguments, we expect a long-wavelength lamella elimination
instability (Eckhaus-type instability) to occur for low spacings, as in binary
eutectics [2]. Here, we will focus on oscillatory instabilities that occur for
large spacings. It is useful to first recall a few facts known about binary
eutectics, where all the instability modes have been classified [34, 51].
Lamellar arrays in binary eutectics are characterized (in the absence of
crystalline anisotropy) by the presence of two mirror symmetry planes that
run in the center of each type of lamellae, as sketched in Figure 4.12(a).
Instabilities can break certain of these symmetries while other symmetry
elements remain intact [24]. In binary eutectics, the oscillatory 1-λ-O
mode is characterized by an in-phase oscillation of the thickness of all α
(and β) lamellae; both mirror symmetry planes remain in the oscillatory
pattern. In contrast, in the 2-λ-O mode, one type of lamellae start to
oscillate laterally, whereas the mirror plane in the other type of lamellae
survives; this leads to a spatial period doubling. Finally, in the tilted
pattern both mirror planes are lost.

It is therefore important to survey the possible symmetry elements in the
ternary case. At first glance, there seems to be no symmetry plane in the
pattern. However, for our specific choice of phase diagram, new symmetry
elements not present in a generic phase diagram exist: mirror symmetry
planes combined with the exchange of two phases. Consider for example
the β phase in the center of Figure 4.12(b): if the system is reflected at its
center, and then the α and γ phases are exchanged, we recover the original
pattern. At the eutectic concentration, there are three such symmetry
planes running in the center of each lamella, and three additional ones
running along the three solid-solid interfaces. Off the eutectic point, two
of these planes survive if any two of the three phases have equal volume
fractions. Guided by these considerations, we can conjecture that there
are two obvious possible instability modes, sketched in Figure 4.13.

In the first, called mode 1 in the following, two symmetry planes survive:
the width of one lamella oscillates, whereas the two other phases form a
“composite lamella” that oscillates in opposition of phase; the interface in
the center of this composite lamella does not oscillate at all and constitutes
one of the symmetry planes. In the second (mode 2), the lateral position
of one of the lamellae oscillates with time, whereas the other two phases
oscillate in opposition of phase to form a “composite lamella” that oscillates
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Figure 4.12.: In a periodic arrangement of lamellae, we can identify certain lines
of symmetry, as shown in (a) for a binary eutectic. Similarly, for the case of
the two simplest configurations, (b) αβγ and (c) αβαγ in a symmetric ternary
eutectic system, such planes of symmetry exist. While in the case of a binary
eutectic, the lines are mirror symmetry axes (shown by dash-dotted lines), in
the special case of a symmetric ternary phase diagram, one can also identify
quasi-mirror lines (dashed lines) where we retrieve the original configuration
after a spatial reflection and an exchange of two phases. Only quasi-mirror lines
exist in the αβγ arrangement, which are shown in (b), while both true- and
quasi-mirror planes exist in the αβαγ arrangement as shown in (c).
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(a) (b)

Figure 4.13.: Guided by the symmetry axes in the αβγ arrangement, one can
expect two possible oscillatory modes at off-eutectic concentrations along the
eutectic groove. The oscillations in (a), which keep all the quasi-mirror planes
intact, are expected to occur at concentrations towards the apex of the simplex
along the eutectic groove. Another possibility, shown in (b) exists in which no
symmetry plane remains, which is expected to occur at a concentration towards
the binary edge of the simplex.

laterally but keeps an almost constant width. There is no symmetry plane
left in this mode.

The stability range of the coupled growth regime of the lamellar arrange-
ment is indicated in Figure 4.11. Steady lamellar growth is stable from
below the minimum undercooling spacing up to a point where an oscillatory
instability occurs. In the region marked “damped oscillations”, oscillatory
motion of the interfaces was noticed, but died out with time. Above a
threshold in spacing, oscillations are amplified. We monitored the modes
that emerged, and found indeed good examples for the two theoretically
expected patterns, shown in Figure 4.14.

Mode 1 is favored for off-eutectic concentrations in which one of the lamellae
is wider than the two others, such as c = (0.32, 0.32, 0.36). Indeed, in
that case the (unstable) steady-state pattern exhibits the same symmetry
planes as the oscillatory pattern. This mode can also appear when one
lamella is smaller than the two others, see Figure 4.14c. We detect mode
2 at the eutectic concentration, see Figure 4.15b. However, a “mixed
mode” can also occur, in which no symmetry plane survives, but the three
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(a) (b) (c)

Figure 4.14.: Oscillatory modes in simulations for the αβγ configuration at the
off-eutectic concentrations c = (0.32, 0.32, 0.36)) in (a), and c = (0.34, 0.34, 0.32)
in (b) and (c). The spacings are λ = 170 in (a) and (c) and λ = 165 in (b).

trijunctions oscillate laterally with phase differences that depend on the
concentration and possibly on the spacing, see Figs. 4.14b and 4.15c.

Let us now turn to the αβαγ cycle. We perform simulations for two
different velocities V = 0.01 and V = 0.005. The comparison of the
measurements with the theoretical analysis for steady-state growth is
shown in Figure 4.16. For the purpose of analysis, predictions from the
theory for both arrangements (αβγ and αβαγ) are also shown. Here again,
the minimum undercooling spacings match those of the theory to a good
degree of accuracy (error 5%, V=0.005). However, the undercooling is
lower than the one predicted by JH-theory, with a discrepancy of 4%
for the case of V = 0.005, Figure 4.16a. For V = 0.01, Figure 4.16b,
simulations were not possible for a sufficient range of λ to determine
the minimum undercooling, because the width of the narrowest lamellae
became comparable to the interface width ε 	 8.0 before the minimum was
reached. However, the general trend of the data follows the predictions of
the theory for both velocities. This was also the case for simulations carried
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Figure 4.15.: The plot shows the trace of the triple points for the αβγ arrange-
ment. The growth direction is compressed in these plots with respect to the
transverse direction in order to better visualize the modes. We get multiple
modes at the eutectic concentration for the same spacing λ = 159, shown in
(a) and (b). In (a) we get back mode 1 while (b) matches well to our pre-
dicted mode 2. A mixed mode (c) is obtained at an off-eutectic concentration
c = (0.34, 0.34, 0.32), at a spacing λ = 165, which is a combination of oscillations
in both the width and lateral spacing.
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Figure 4.16.: Theoretical analysis and phase-field simulations: Comparison
between the arrangements (αβγ) and (αβαγ) for two different velocities (a) V
= 0.005 and (b) V = 0.01. Plots convey information on the stability ranges, and
the onset of oscillatory behavior of the 1-λ-O type.
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out at an off-eutectic concentration c = (0.32, 0.34, 0.34) at a velocity of
V = 0.005, for the same configuration αβαγ.

Concerning the oscillatory instabilities at large spacings, it is useful to
consider again the symmetry elements. For this cycle, there are two real
symmetry planes in the steady-state pattern that run through the centers
of the β and γ lamellae. Note that these symmetries would exist even
for unsymmetric phase diagrams and unequal surface tensions. Therefore,
by analogy with binary eutectics, one may expect oscillatory modes that
simply generalize the 1-λ-O and 2-λ-O modes of binary eutectics, see
Figure 4.17a. Indeed, for our simulations at the eutectic concentration,
we retrieve the 1-λ-O type oscillation, figure 4.18a as in our hypothesis
(figure 4.17a).

(a) (b)

Figure 4.17.: Predictions of oscillatory modes for the αβαγ arrangement, remi-
niscent of the 1-λ-O mode (a) and 2-λ-O mode (b) in binary eutectics.

This oscillatory instability can be quantitatively monitored by following the
lateral positions of the solid-solid interfaces with time. More specifically,
we extract the width of the β phase as a function of the growth distance
z. This is then fitted with a damped sinusoidal wave of the type A0 +
A exp(−Bz) cos((2πz/L) + D). The damping coefficient B is obtained
from a curve fit and plotted as a function of the spacing λ. The onset
of the instability is characterized by the change in sign of the damping
coefficient.
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(a) (b) (c)

Figure 4.18.: Simulations of oscillatory modes of the αβαγ configuration. The
modes in (a) and (b) show resemblance to the 1-λ-O and 2-λ-O oscillatory
modes of binary eutectics, respectively. Additionally, other modes (c) can also
be observed, depending on the initial conditions. While we observe (a) at the
eutectic concentration, (b) and (c) are modes at off-eutectic concentrations
c = (0.32, 0.34, 0.34). The spacings are (a) λ = 201, (b) λ = 174 (c) λ = 210.
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For the off-eutectic concentration we get two modes (figure 4.18). While
(figure 4.18b) corresponds well to our hypothesis to the 2-λ-O type oscilla-
tion (figure 4.17b), we also observe another mode as shown in figure 4.18c,
which combines elements of the two modes: both the width and the lateral
position of the α lamellae oscillate.

4.4.5. Lamella elimination instability

For the αβαγ cycle, there is also a new instability, which occurs for low
spacings. We find that all spacings below the minimum undercooling spac-
ing, as well as some spacings above it, are unstable with respect to lamella
elimination: the system evolves to the αβγ arrangement by eliminating
one of the α lamellae, both at eutectic and off-eutectic concentrations.
The points plotted to the left of the minimum in Figure 4.16b are actually
unstable steady states that can be reached only when the simulation is
started with strictly symmetric initial conditions and the correct volume
fractions of the solid phases.

This instability can actually be well understood using our theoretical
expressions. As already mentioned before, when we consider the cycle
αβαγ at the eutectic concentration with a lamella width configuration
(ξ, 1/3, 1/3 − ξ, 1/3), the global average front undercooling attains a min-
imum for the symmetric pattern ξ = 1/6. However, the global front
undercooling is not the most relevant information for assessing the front
stability. More interesting is the undercooling of an individual lamella,
because this can give information about its evolution. More precisely,
consider the undercooling of one of the α lamellae as a function of ξ. If
the undercooling increases when the lamella gets thinner, then the lamella
will fall further behind the front and will eventually be eliminated. In
contrast, if the undercooling decreases when the lamella gets thinner, then
the lamella will grow ahead of the main front and get larger. A similar
argument has been used by Jackson and Hunt for their explanation of the
long-wavelength elimination instability [44]. It should be pointed out that
the new instability found here is not a long-wavelength instability, since it
can occur even when only one unit cell of the cycle is simulated.

Following the above arguments, we have calculated the growth temperature
of the first α lamella as a function of ξ using the general expressions in
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Eq. 4.16. In Figure 4.19, we plot the variation of ∂ΔT/∂ξ at ξ = 1/6, as a
function of λ. The point at which ∂ΔT/∂ξ becomes positive then indicates
the transition to a stable αβαγ cycle. This criterion is in good agreement
with our simulation results. This argument can also be generalized to
more complicated cycles (see below).
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Figure 4.19.: Plot of ∂ΔT/∂ξ, taken at ξ = 1/6 versus λ for the α1βα2γ cycle,
where ΔT is the undercooling of the α1 lamella and ξ its width (relative to λ),
calculated by our analytical expressions in the volume fraction configuration.
(ξ, 1/3, 1/3 − ξ, 1/3) at V=0.01. The cycle is predicted to be unstable to lamella
elimination if ∂ΔT/∂ξ < 0. The λ at which ∂ΔT/∂ξ changes sign is the critical
point beyond which the αβαγ arrangement is stable with respect to a change to
the sequence αβγ through a lamella elimination.

4.4.6. Longer cycles

Let us now discuss a few more complicated cycles. The simple cycles we
have simulated until now were such that during stable coupled growth the
widths of all the lamellae corresponding to a particular phase were the same.
This changes starting from period M = 5, where the configuration αβαβγ
is the only possibility (up to permutations). If we consider this cycle at
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the eutectic concentration and note the configuration of lamella widths
as (ξ, 1/3 − ξ, 1/3 − ξ, ξ, 1/3) and compute the average front undercooling
by our theoretical expressions, we find that the minimum occurs for ξ
close to 0.12. In addition, for this configuration, the undercooling of any
asymmetric configuration (permutation of widths of lamellae) is higher than
the one considered above. If we rewrite symbolically this configuration as
α1, β2, α2, β1, γ, it is easy to see that this configuration has two symmetry
axes of the same kind as discussed in the preceding subsection: mirror
reflection and exchange of the phases α and β. One of them runs along
the interface between β2 and α2, and the other one in the center of the γ
lamella.

Not surprisingly, our simulation results confirm the importance of this
symmetry. The volume fractions in steady-state growth are close to those
that give the minimum average front undercooling, see Figs. 4.20b and
4.20c. Additionally, we observe oscillations in the width of the largest γ

(a) (b) (c)

Figure 4.20.: Simulations at spacings λ = 135 in (a), λ = 150 in (b) and λ = 180
in (c), starting from an initial configuration of αβαβγ. There is no spacing for
which the αβαβγ develops into a stable lamellar growth front. Smaller spacings
switch to the αβγ arrangement while the larger spacings exhibit oscillatory
instabilities in both the width and the lateral positions of the lamellae.
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phase and oscillations in the widths and the lateral position of the smaller
lamellae of the α and β phases, while the interface between the larger
α and β phase remains straight, such that the combination of all the α
and β lamellae oscillates in width as one “composite lamella”. Thus, the
symmetry elements of the underlying steady state are preserved in the
oscillatory state.

For smaller spacings, this configuration is unstable, and the sequence
changes to the βαγ arrangement as shown in Figure 4.20a by two successive
lamella eliminations. It is noteworthy that we did not find any unstable
sequence which switches to the αβαγ arrangement, which again can be
understood from the presence of the symmetry. Indeed, a symmetrical
evolution would result in a change to a configuration α1β1γ or β2α2γ, but
precludes the change to a configuration of period length M = 4.

Going on to cycles with period M = 6, the first arrangement we consider
is α1β1α2β2α1γ, where we name the lamellae for eventual discussion and
ease in description according to the symmetries. Indeed, this arrangement
has two exact mirror symmetry planes in the center of the α2 and the γ
phases. We find that, if we calculate the average interface undercooling
curves by varying the widths of individual lamella with the constraint of
constant volume fraction, by choosing different ξ, in the width configura-
tion (ξ, 1/6, 1/3 − 2ξ, 1/6, ξ, 1/3), the average undercooling at the growth
interface is minimal for the configuration (1/9, 1/6, 1/9, 1/6, 1/9, 1/3). This
arrangement has the highest undercooling curve among the arrangements
we have considered, shown in Figure 4.21a.

It also has a very narrow range of stability, and we could isolate only one
spacing which exhibits stable growth for λ = 240, Figure 4.22d. Unstable
arrangements near the minimum undercooling spacing evolve to the αβγ
arrangement, Figure 4.22a, while for other unstable configurations we
obtain the arrangements in Figure 4.22b and Figure 4.22c as the stable
growth forms corresponding to λ = 150 and λ = 180 respectively.

Apart from the (trivial) period-doubled arrangement αβγαβγ, another
possibility for M = 6 is αβγαγβ with a volume fraction configuration
(1/6, 1/6, 1/6, 1/6, 1/6, 1/6). Simulations of this arrangement show that
there exists a reasonably large range of stable lamellar growth, and hence
we could make a comparison between simulations and the theory. We
find similar agreement between our measurements and theory as we did
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Figure 4.21.: (a)Synopsis of the theoretical predictions for the undercooling
versus spacing of possible arrangements between period length M = 3 to M =
6, i.e. starting from αβγ to αβγαβγ. (b) Same plot but with the lamellar
repeat distance λ scaled with the period length M. The variation among the
arrangements is purely a result of the variation of the solutal undercooling as
can be infered from the discussion in Sec. 4.2.4.
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(a) (b) (c) (d)

Figure 4.22.: Simulations starting from the arrangement αβαβαγ for spacings
λ = 135 in a), λ = 150 in b), λ = 180 in c) and λ = 240 in d).

previously for the arrangements αβγ and αβαγ. The plot in Figure 4.21
shows the theoretical predictions of all the arrangements we have considered
until now.

4.4.7. Discussion

It should by now have become clear that there exists a large number of
distinct steady-state solution branches, each of which can exhibit specific
instabilities. In addition, the stability thresholds potentially depend on
a large number of parameters: the phase diagram data (liquidus slopes,
coexistence concentration), the surface tensions (assumed identical here),
and the sample concentration. Therefore, the calculation of a complete
stability diagram that would generalize the one for binary eutectics of
Ref. [51] represents a formidable task that is outside the scope of the
present paper. Nevertheless, we can deduce from our simulations a few
guidelines that can be useful for future investigation.

Lamellar steady-state solutions can be grouped into three classes, which
respectively have (I) equal number of lamellae of all three phases (such as
αβγ and αβγαγβ), (II) equal number of lamellae for two phases (such as
αβαγ), and (III) different numbers of lamellae for each phase.

For equal global volume fractions of each phase (as in most of our simu-
lations), class III will have the narrowest stability ranges because of the
simultaneous presence of very large and very thin lamella in the same
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arrangement, which make these patterns prone to both oscillatory and
lamella elimination instabilities.

Any cycle in which a phase appears more than once can transit to another,
simpler one by eliminating one lamella of this phase. This lamella instability
always appears for low spacings below a critical value of the spacing that
depends on the cycle. The possibility of a transition, however, depends
also on the symmetries of the pattern. For instance, the arrangement
αβαβαγ, if unstable, can transform into the αβγ, αβαγ or the αβαβγ
arrangements, while for an arrangement αβαβγ, it is impossible to evolve
into the αβαγ arrangement if the symmetry of the pattern is preserved by
the dynamics.

For large spacings, oscillatory instabilities occur and can lead to the
emergence of saturated oscillatory patterns of various structures. The
symmetries of the steady states seem to determine the structure of these
oscillations, but no thorough survey of all possible nonlinear states was
carried out.

4.5. Some remarks on pattern selection

Up to now, we have investigated various regular periodic patterns and their
instabilities. The question which, if any, of these different arrangements,
is favored for given growth conditions, is still open. From the results
presented above, we can already conclude that this question cannot be
answered solely on the basis of the undercooling-vs-spacing curves. Indeed,
we have shown that by appropriately choosing the initial conditions, any
stable configuration can be reached, regardless of its undercooling. This
is also consistent with experiments and simulations on binary eutectics
[34, 86]. To get some additional insights on what happens in extended
systems, we conducted some simulations of isothermal solidification where
the initial condition was a random lamellar arrangement. More precisely,
we initialize a large system with lamellae of width λ = 25 and choose
a random sequence of phases such that two neighboring lamellae are of
different phases as shown in Figure 4.23a. The global probabilities of all
the phases are 1/3, which corresponds to the eutectic concentration, and
the temperature is set to T = 0.785.
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(a)

(b)

Figure 4.23.: Two snapshots of 2D dynamics in a large system. Isothermal
simulations are started from a random configuration in (a) where the probability
of occurrence of each phase is 1/3, which is also the global concentration in
the liquid. The temperature of the system is T=0.785 and the concentration
of the liquid is the eutectic concentration. A slowly changing pattern with a
non-planar front is achieved. Some lamellae are eliminated, but no new lamellae
are created.

Under isothermal growth conditions, one would expect that, at a given
undercooling, the arrangement with highest local velocity would be the
one that is chosen. However, in order for the front to adopt this pattern, a
rearrangement of the phase sequence is necessary. In our simulations, we
find that lamella elimination was possible (and indeed readily occurred).
In contrast, there is no mechanism for the creation of new lamellae in our
model, since we did not include fluctuations that could lead to nucleation,
and the model has no spinodal decomposition that could lead to the
spontaneous formation of new lamellae, as in Ref. [93]. As a result, some
of the lamellae became very large in our simulations, which led to a
non-planar growth front, as shown in Figure 4.23b. No clearcut periodic
pattern emerged, such that our results remain inconclusive.

We believe that lamella creation is an important mechanism required
for pattern adjustment. In 2D, nucleation is the only possibility for the
creation of new lamellae. In contrast, in 3D, new lamellae can also form by
branching mechanisms without nucleation events, since there are far more
geometrical possibilities for two-phase arrangements [3, 118]. Therefore,
we also conducted a few preliminary simulations in 3D.
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(a) (b) (c)

Figure 4.24.: Cross-sections of patterns obtained in three-dimensional directional
solidification. In each picture, the simulation unit cell is tiled in a 4×4 array to
get a better view of the pattern. The pattern in (a) was started from a random
configuration and evolved to a perfectly hexagonal pattern (at the eutectic
composition for a symmetric phase diagram). At an off-eutectic concentration,
starting with two isolated rods of α and β phase, the result shown in (b) is
one of the possible structures, while with an asymmetric phase diagram at the
eutectic concentration, we get a regular brick structure (c) from a random initial
condition.
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The cross sections of the simulated systems are 150 × 150 grid points for
results in Figs. 4.24(a) and (c), and 90 × 90 grid points for the system
Figure 4.24(b). The longest run took about 7 weeks on 80 processors, for
the simulation of the pattern in Figure 4.24(a). This long simulation time
is due to the fact that the pattern actually takes a long time to settle down
to a steady state; the total solidification distance was of the order of 800
grid points. The other simulations required less time to reach reasonably
steady states. The patterns shown in Figs. 4.24 (a) and (c) start from
random initial conditions (very thin rods of randomly assigned phases),
the former with the symmetric phase diagram used previously, the latter
with a slightly asymmetric phase diagram constructed with the changed
parameters listed below,

Lα
i =

⎛⎜⎜⎝
A B C

α 2.0 1.0 1.0
β 1.0 2.0 1.0
γ 1.0 1.0 2.0

⎞⎟⎟⎠

T α
i =

⎛⎜⎜⎝
A B C

α 1.0 0.59534 0.63461
β 0.59534 1.0 0.63461
γ 0.59534 0.59534 1.0

⎞⎟⎟⎠ .

The picture of Figure 4.24(b) corresponds to a pattern resulting of a
simulation which is started with two isolated rods of α and β in a matrix
of γ, with an off-eutectic concentration of c = (0.3, 0.4, 0.3).

As shown in Figure 4.24, many different steady-state patterns are possible
in 3D. Not surprisingly, the type of pattern seen in the simulations depends
on the concentration and on the phase diagram. Patterns very similar to
Figure 4.24(c) have recently been observed in experiments in the Al-Ag-Cu
ternary system [100]. It should be stressed that our pictures have been
created by repeating the simulation cell four times in each direction in
order to get a clearer view of the pattern. This means that in a larger
system, the patterns might be less regular. Furthermore, we certainly have
not exhausted all possible patterns. A more thorough investigation of
the 3D patterns and their range of stability is left as a subject for future
work.
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4.6. Conclusion and outlook

In this chapter, we have generalized a Jackson-Hunt analysis for arbitrary
periodic lamellar three-phase arrays in thin samples, and used 2D phase-
field simulations to test our predictions for the minimum undercooling
spacings of the various arrangements. For the model used here the value of
the interface kinetic coefficient cannot be determined, which leads to some
incertitude on the values of the undercooling, but this does not influence
our principal findings. When the correct values of the surface free energy
(that take into account additional contributions coming from the chemical
part of the free energy density) are used for the comparisons with the
theory, we find good agreement for the minimum undercooling spacings for
all cycles investigated. Moreover, we find that, as in binary eutectics, all
cycles exhibit oscillatory instabilities for spacings larger than some critical
spacing. The type of oscillatory modes that are possible are determined
by the set of symmetry elements of the underlying steady state.

We have repeatedly made use of symmetry arguments for a classification of
the oscillatory modes. In certain cases, the symmetry is exact and general,
which implies that the corresponding modes should exist for arbitrary
phase diagrams and thus be observable in experiments. For instance,
the mirror symmetry lines in the middle of the α lamellae in the αβαγ
arrangement exist even for non-symmetric phase diagrams and unequal
surface tensions, and hence the corresponding oscillatory patterns and their
symmetries should be universal. In other cases, we have used a symmetry
element which is specific to the phase diagram used in our simulations:
a mirror reflection, followed by an exchange of two phases. For a real
alloy, this symmetry obviously can never be exactly realized because of
asymmetries in the surface tensions, mobilities, and liquidus slopes, and
therefore some of the oscillatory modes found here might not be observable
in experiments. However, their occurrence cannot be completely ruled out
without a detailed survey, and we expect certain characteristics to be quite
robust. For instance, we have repeatedly observed that two neighboring
lamellae of different phases can be interpreted as a “composite lamella”
that exhibits a behavior close to the one of a single lamella in a binary
eutectic pattern. Such behavior could appear even in the absence of special
symmetries, and thus be generic.
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Furthermore, a new type of instability (absent in binary eutectics) was
found, where a cycle transforms into a simpler one by eliminating one
lamella. We interpret this instability, which occurs for small spacings,
through a modified version of our theoretical analysis. It is linked to the
existence of an extra degree of freedom in the pattern if a given phase
appears more than once in the cycle. We have not determined the full
stability diagram that would be the equivalent of the one given in Ref. [51]
for binary eutectics, because of the large number of independent parameters
involved in the ternary problem.

We have made a few attempts to address the question of pattern selection,
with inconclusive results both in 2D and 3D. In 2D, the process of pattern
adjustment was hindered by the absence of a mechanism for lamella
creation, and in 3D the system sizes that could be attained were too small.
Based on the findings for binary eutectics, however, we believe that there
is no pattern selection in the strong sense: for given processing conditions,
the patterns to be found may well depend on the initial conditions and/or
on the history of the system. This implies that the arrangement with
the minimum undercooling may not necessarily be the one that emerges
spontaneously in large-scale simulations or in experiments.

The most interesting direction of research for the future is certainly a
more complete survey of pattern formation in 3D and a comparison to
experimental data. To this end, either the numerical efficiency of our
existing code has to be improved, or a more efficient model that generalizes
the model of Ref. [32] to ternary alloys has to be developed.
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5.1. Introduction

Phase-field modeling is an elegant technique to model a variety of problems
involving phase transitions. Among them, solidification has been a field
where this method has been utilized to quantitatively model a variety of
microstructures involving complicated geometrical changes while evolution,
both for the case of solutal and pure material problems [3, 32, 48, 50, 59,
114, 128, 134]. One of the critical points, one must take care however, is
that to interpret the results of simulations in a manner which is going
to be of physical value, one must have a perfect understanding as to
the relation of the parameters in the equations and the free boundary
problem, one is attempting to solve. This requires one to perform the
asymptotics of the relevant model, which will then allow us to correctly
choose the parameters in the diffuse interface description. To perform the
asymptotics, two possiblities exist. One of them is the sharp interface
limit [13], which describes, the case when the interface width tends to zero.
This limit is relevant when one is performing simulations with very small
interface thicknesses. However, as is often the case, in order to simulate
larger microstructures, one needs to choose interface thicknesses orders
of magnitude larger than the real ones. For such cases, the thin-interface
limit, [48, 50] is more relevant as this allows us to retrieve the same free
boundary, but in an easier computationally accessible manner. A fallout
of this limit is that time independent free boundary problems which are
relevant at low undercoolings can also be treated in a computationally
efficient manner. The principal result is that when the phase evolution
is coupled with that of another field, the response of the phase-field to
a finite change in the coupled field can be made instantaneous in the
thin-interface limit. This particular limit has been worked out for a variety
of models, notably for the case of potentials which are of the smooth well
type. However, the computationally more efficient double obstacle type
potentials have been untreated so far. Hence, in this paper we attempt
to fill this gap and make quantitative simulations possible with the use
of obstacle type potentials. We derive our evolution equations from an
entropy functional. We then reduce a multi-phase field model [33, 79] for
treating two phase solidifications and show its equivalence to the case of
single order parameter models used before, and utilize this to perform the
thin-interface asymptotics. Our principal aim is to derive, the interface
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kinetic coefficient in the thin-interface limit and hence we simplify our
analysis for the case of one dimension evolution. In addition, we treat a
case where the thermal diffusivities of all the phases, and the specific heat
capacities are the same.

5.2. Equivalence

In phase-field literature, there are two types of approaches to define order
parameters. The conventional way is to use a property which varies across
the interface such as density or concentration as the order parameter. The
change in the property denotes the change in the microstructure or the
evolution of the phase. A corollary of this approach is to use a single
order parameter, which varies between two fixed limits corresponding to
values in the bulk phases. While these types of models are well defined
and elegant, a second approach is to define the phase-field variable as
the volume fraction of the phase, which are constrained by the condition
that the sum of the volume fractions of all the phases add up to 1. The
evolution of the phases is efficiently tracked by the change in the volume
fraction of the phases. The physical properties such as the free energy
densities are then averaged among the phases using their volume fractions.
As the number of phases increases, it becomes easier to track the evolution
equations as the change in the volume fractions of the phases. In the
following we show the equivalence of the two approaches, which will be
used thereafter to perform thin-interface asymptotics for single phase pure
material solidification. For the sake of discussion, we start with a free
energy functional without driving forces for a two phase system, The
volume fractions are denoted by φα and φβ , and are constrained by the
condition φα + φβ = 1. The free energy functional reads:

F (φ, ∇φ) =
∫

V

(
σ̃αβε |(φα∇φβ − φβ∇φα)|2 +

16
π2

σ̃αβ

ε
φαφβ

)
dV,

with surface energies σ̃αβ and ε a small length scale parameter related to
the width of the interface and a domain of consideration V . The evolution
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equation for the phase-field vector φ is derived from the minimization of
the free energy given by the following equation for each component,

ταβε
∂φα

∂t
= − δF

δφα
− Λ,

where ταβ is the relaxation constant for the interface and Λ is the Lagrange
parameter for respecting the sum of the volume fractions of the phases as
1. Expanding the variational derivative on the right side of the equation
yields,

ταβε
∂φα

∂t
= σ̃αβε

(
− 2∇ · (φβ (φα∇φβ − φβ∇φα))

− 2∇φβ · (φα∇φβ − φβ∇φα)
)

− 16
π2

σ̃αβ

ε
φβ − Λ

= −4σ̃αβε
(

∇φβ · (φα∇φβ − φβ∇φα) +

1
2

φβ

(
φα∇2φβ − φβ∇2φα

) )− 16
π2

σ̃αβ

ε
φβ − Λ.

Utilizing the properties ∇φα = −∇φβ and φα + φβ = 1 for the case of two
phases gives,

ταβε
∂φα

∂t
= −4σ̃αβε

(
|∇φβ |2 +

1
2

φβ

(∇2φβ

))− 16
π2

σ̃αβ

ε
φβ − Λ,

and the Lagrange parameter Λ as,

Λ = −2σ̃αβε
(|∇φβ |2 + |∇φα|2)− σ̃αβε

(
φβ∇2φβ + φα∇2φα

)−
16
π2

σ̃αβ

2ε
(φβ + φα) .

Including the Lagrange parameter, the evolution equation for a two phase
system transforms to,

ταβε
∂φα

∂t
= σ̃αβε∇2φα − 16

π2
σ̃αβ

2ε
(1 − 2φα) . (5.1)
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Equivalently, the evolution equation for the β phase reads,

ταβε
∂φβ

∂t
= σ̃αβε∇2φβ − 16

π2
σ̃αβ

2ε
(1 − 2φβ) . (5.2)

With the construction of the Lagrange parameter, the sum of the evolu-
tion equations for the two phases is zero. Hence, there exists only one
independent equation in the system and one can choose either to derive
the dynamics of the system of two phases. With no loss of generality, we
choose the evolution equation of the α phase for further discussion and
analysis. The equilibrium condition between two phases is given by the

condition
∂φα

∂t
= 0, which implies,

σ̃αβε∇2φα =
16
π2

σ̃αβ

2ε
(1 − 2φα) .

As we are treating two-phase interfaces, the surface energy σ̃αβ is binary
interface property completely defined by the sharp interface free boundary
problem. However, in the special case when there are adsorbed phases
at the interface, one must compute the surface energy numerically from
the equilibrated profiles of the phases. The treatment however, remains
in principle similar to the case of binary interfaces, where we find the
extremum of the free energy per unit area. The surface energy is defined
as integral of the free-energy functional per-unit area computed using the
phase-field function φα (x) which maximizes the free energy. Equivalently,
this is the solution to the equilibrium phase-field equation in 1D. The
resulting solution of the partial diffusion equation are the equilibrium
phase field profiles which can be substituted back into the functional and
integrated to get the surface energy. In 1D, the equilibrium equation is

multiplied by
∂φα

∂x
, on both sides and integrated from 0 to x. We get,

σ̃αβε

(
dφα

dx

)2
=

16
π2

σ̃αβ

ε
φα (1 − φα) . (5.3)

Equivalently, a similar expression can be formulated for the β phase,

σ̃αβε

(
dφβ

dx

)2
=

16
π2

σ̃αβ

ε
φβ (1 − φβ) .
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The slope of the individual profiles can be derived as,

dφα

dx
= ±1

ε

√
16
π2 φα (1 − φα),

dφβ

dx
= ±1

ε

√
16
π2 φβ (1 − φβ).

The sign of the derivative of each profile of α and the β phases is derived
from the boundary conditions. It depends on the direction from φα = 0
to φα = 1 as x goes from −∞ to +∞ or the other way around. In the
following we choose the signs of the derivatives as,

dφα

dx
= +

1
ε

√
16
π2 φα (1 − φα), (5.4)

dφβ

dx
= −1

ε

√
16
π2 φβ (1 − φβ). (5.5)

Next, we recollect the gradient potential of the form, σ̃αβε|φα∇φβ −
φβ∇φα|2, and substitute the form of the gradients

dφα

dx
, Eqn. (5.4) and

dφβ

dx
, Eqn. (5.5) and using

dφβ

dx
= −dφβ

dx
, we get σ̃αβε|φα∇φβ − φβ∇φα|2

=
16
π2

σ̃αβφα (1 − φα)
ε

and hence the surface energy is given by,

σαβ = 2σ̃αβ

∫
X

16
π2

φα (1 − φα)
ε

dx.

By changing the variables from x to φα and applying the relation in Eqn.
(5.3), the equivalent expression for the surface energy derives,

σαβ = 2σ̃αβ

∫ 1

0

√
(
16
π2 φα (1 − φα))dφα.

The above integral has been constructed in such a way so as to return 1/2
i.e. the reason for the choice of the factor 16/(π2), such that the surface
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energy σαβ is σ̃αβ . The interface thickness can similarly be calculated by
using Eqn. (5.3) and integrated such that,

Λ̃αβ =
∫ 1

0

εdφα√
16
π2 φα (1 − φα))

,

which computes as Λ̃αβ =
π2ε

4
≈ 2.5ε.

One can also use the difference of the two equations i.e Eqn. (5.1) − (5.2)
as the independent equation, describing the evolution of the system as,

ταβε
∂ (φα − φβ)

∂t
= σ̃αβε∇2 (φα − φβ) − 16

π2
σ̃αβ

2ε
(1 − 2φα − (1 − 2φβ)) .

Using φα + φβ = 1, and simplifying we arrive at,

2ταβε
∂φα

∂t
= 2σ̃αβε∇2φα − 16

π2
σ̃αβ

ε
(1 − 2φα) .

This is the same equation we obtain, by starting from a one order parameter
description of the model. Dividing throughout by 2, we get the identical
expression as the evolution equation for the phases, described in Eqn.(5.1)
or Eqn.(5.2). This establishes the equivalence of the method to one-order
parameter models.

5.3. Asymptotic analysis

In the following, we derive the thin interface corrections for the case of a
pure material solidification. We perform the expansions of the phase-field
variable φα and temperature field T as powers of ’p’ which is a small
parameter called the interface Peclet number Pe =

W

(D/V )
, where W is

the interface width and D/V is the diffusion length in the problem. To
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derive the evolution equations, we start from an entropy functional which
is elaborated as,

S =
∫

V

s (e, φ) −
(

εa (φ, ∇φ) +
1
ε

w (φ)
)

dV,

where, e is the internal energy of the system, a is the gradient entropy
density and w is the surface potential density. The evolution equation for
the internal energy can be derived as a conservation law as follows,

∂e

∂t
= −∇ · Je with Je = −M (φ) ∇δS

δe
,

where Je is the flux of the internal energy, and M is mobility related to this

flux. The variational derivative
δS
δe

can be derived as
1
T

. Substituting this
result in the preceding equation, the evolution equation for the internal
energy transforms to,

∂e

∂t
= ∇ ·

(
M (φ) ∇ 1

T

)
.

Applying the relation e = f + TS, where f is the Helmholtz free energy
density of the system, we derive the evolution equation for the temperature
field as,

∂T

∂t
=

∇ ·
(

M (φ) ∇ 1
T

)
−∑N

α=1
∂e

∂φα

∂φα

∂t

−T
∂2f

∂T 2

.

For treating problems close to the melting point Tm, we can derive the free

energy of each phase as
(

Lα (T − T α
m)

T α
m

+ Cα
v (T − T α

m)
)

. It follows, that

the internal energy of each phase can be written as eα = Lα +Cα
v (T − T α

m),
where Cα

v is the volumetric heat capacity at constant volume of the α phase
and Lα is the latent heat of fusion of the α phase. The total internal energy
of the system can be elaborated as e (φ, T ) =

∑N
α=1 eαhα (φ), where hα (φ)

is the interpolation function. We make another simplification, that, for
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the case we have all the Cα
v as equal, we can derive the following evolution

equation for the temperature field,

∂T

∂t
=

∇ ·
(

M (φ) ∇ 1
T

)
+
∑N

α=1 Lα
∂hα (φ)

∂φα

∂φα

∂t

−T
∂2f

∂T 2

,

which, upon employing the thermodynamic relation −T
∂2f

∂T 2 = Cv be-
comes,

∂T

∂t
=

∇ ·
(

M (φ) ∇ 1
T

)
+
∑N

α=1 Lα
∂hα (φ)

∂φα

∂φα

∂t

Cv
.

In the above, we write M (φ) =
∑N

α=1 Mαhα (φα) and assume the free
energies with respect to the liquid as the reference which implies that
the latent heats of fusion Lα are non-zero only for the solid phases. The
evolution equation of the phase-field variables φ = {φα}N

α=1 are derived
from the phenomenological maximization of the entropy functional,

ωαβε
∂φα

∂t
=

δS

δφα
− Λ,

where ωαβ is the constant related to the relaxation of the phase-field,
derived from the entropy functional. We now reduce our system to two
phases, a pure solid α and a pure liquid β. We employ interpolation
functions of the form hα (φ) = hα (φα). Defining the mobility, Mα =
−KαT 2 for each phase α and utilizing the discussion in section 5.2, we
write a single independent evolution equation of the order parameter φα

as follows,

ωαβε
∂φα

∂t
= −4γαβε

(
|∇φβ |2 +

1
2

φβ

(∇2φβ

))− 16
π2

γαβ

ε
φβ

− fα (T )
T

∂hα (φα)
∂φα

− Λ,

Cv
∂T

∂t
= ∇ · (K (φ) ∇T ) + Lα

∂hα (φα)
∂t

,
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where we have written the thermal conductivity as K (φ) =
∑N

α=1 Kαhα (φα).

Further, we used
δs

δφα
= −fα (T )

T

∂hα (φα)
∂φα

. The parameter γαβ denotes

the surface entropy density. For the discussion hereafter, the thermal
conductivities are assumed the same for both phases, given by K. The
Lagrange parameter Λ is expanded as,

Λ = −2γαβε
(|∇φβ |2 + |∇φα|2)− γαβε

(
φβ∇2φβ + φα∇2φα

)−
16
π2

γαβ

2ε
(φβ + φα) − 1

2T

(
fα (T )

∂hα (φα)
∂φα

+ fβ (T )
∂hβ (φβ)

∂φβ

)
,

which upon incorporation in the evolution equation and with the assump-
tion fβ (T ) = 0 (because Lβ = 0) reads as,

ωαβε
∂φα

∂t
= γαβε∇2φα − 16

π2
γαβ

2ε
(1 − 2φα) − 1

2
Lα (T − T α

m)
TT α

m

∂hα (φα)
∂φα

,

(5.6)

Cv
∂T

∂t
= ∇ · (K∇T ) + Lα

∂hα (φα)
∂t

.

Multiplying Eqn. (5.6) by T , we get,

ταβε
∂φα

∂t
= σ̃αβε∇2φα − 16

π2
σ̃αβ

2ε
(1 − 2φα) − 1

2
Lα (T − T α

m)
T α

m

∂hα (φα)
∂φα

,

where ταβ = Tωαβ and σ̃αβ = Tγαβ . We will use this evolution equation
henceforth in the analysis. We next non-dimensionalize the equations
using the diffusion length lc as the length scale and use the time scale l2

c/κ.
Here κ is the thermal diffusivity which is defined as K/Cv. We introduce
a small parameter p = ε/lc and the re-scaled equations are rewritten in
1D as,

τ̃ p2 ∂φα

∂t
= p2 ∂2φα

∂x2 − 16
2π2 (1 − 2φα) − α̃

p

2
T − T α

m

T α
m

∂hα (φα)
∂φα

(5.7)

∂T

∂t
=

∂2T

∂x2 + λ̃
∂hα (φα)

∂t
, (5.8)
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where we have additionally defined the parameters λ̃ =
Lα

Cv
, α̃ =

lc
(σ̃αβ/Lα)

and τ̃ = ταβκ/σ̃αβ . In Eqn. (5.8), the physical situation remains un-
changed if we calculate the temperature changes with respect to the
melting temperature T α

m, such that we can transform the variable to
(T − T α

m). Thereafter, we divide the whole equation by λ̃, giving,

∂u

∂t
=

∂2u

∂x2 +
∂hα (φα)

∂t
,

where u =
T − T α

m

(Lα/Cv)
. With this substitution, and setting g = α̃Lα/(CvT α

m),

we get the following evolution equation for φα,

τ̃ p2 ∂φα

∂t
= p2 ∂2φα

∂x2 − 16
2π2 (1 − 2φα) − gup

2
∂hα (φα)

∂φα
.

Next we transform the equations in the moving frame at steady-state, such
that the total derivative with respect to time vanishes. We get,

− vτ̃p2 ∂φα

∂x
= p2 ∂2φα

∂x2 − 16
2π2 (1 − 2φα) − gup

2
∂hα (φα)

∂φα
, (5.9)

−v
∂u

∂x
=

∂2u

∂x2 − v
∂hα (φα)

∂t
, (5.10)

where the velocity (V ) is measured in the non-dimensional transformed
co-ordinate set as v = V lc/κ. There are two regions in the spatial solutions
of φ and u: The outer region(bulk solid and liquid) where there is slow
change in the variables and an inner region where there is rapid change.
To probe into the inner solutions, we scale our co-ordinate with respect to
the interface Peclet number p, by introducing a scaled co-ordinate system
η = x/p. With this transformation, the evolution equations become,

−τ̃ pv
∂φα

∂η
=

∂2φα

∂η2 − 16
2π2 (1 − 2φα) − gup

2
∂hα (φα)

∂φα
,

−v

p

∂u

∂η
=

1
p2

∂2u

∂x2 − v

p

∂hα (φα)
∂t

.
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The outer and inner solutions are written as expansions of the parameter
p. The outer solutions are denoted as φ̃α = φ̃0

α + pφ̃1
α + p2φ̃2

α . . . and ũ =
ũ0 + pũ1 + p2ũ2 . . ., while the inner solutions are φα = φ0

α + pφ1
α + p2φ2

α . . .

and u = u0 + pu1 + p2u2 . . .. The outer solution is φ̃α = 0, 1 in the bulk
liquid or solid respectively and is stable to any order in p. The outer
solution for the temperature satisfies the diffusion equation,

∂ũ

∂t
=

∂2ũ

∂x2 .

Given this, the matching conditions for φα are trivial while for the u field
the matching conditions are derived by comparing the equations order by
order in p as,

lim
η→±∞ u0 = ũ0

∣∣∣∣± (5.11)

lim
η→±∞ u1 = lim

η→±∞

(
ũ1
∣∣∣∣± + η

∂ũ0

∂x

∣∣∣∣±
)

(5.12)

lim
η→±∞ u2 = lim

η→±∞

(
ũ2
∣∣∣∣± + η

∂ũ1

∂x

∣∣∣∣± +
η2

2
∂2ũ0

∂x2

∣∣∣∣±
)

(5.13)

and, the derivative matching conditions,

lim
η→±∞

∂u0

∂η
= 0 (5.14)

lim
η→±∞

∂u1

∂η
=

∂ũ0

∂x

∣∣∣∣± (5.15)

lim
η→±∞

∂u2

∂η
= lim

η→±∞

(
∂ũ1

∂x

∣∣∣∣± + η
∂2ũ0

∂x2

∣∣∣∣±
)

. (5.16)

Next we proceed to write the evolution equation of φα and u order by order
in p and derive the relevant boundary conditions as solvability conditions.
The phase-field equation at order p0 writes,

∂2φ0
α

∂η2 =
16
2π2
(
1 − 2φ0

α

)
.
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Multiplying with
∂φ0

α

∂x
on both sides and integrating we get,

1
2

(
∂φ0

α

∂η

)2

=
1
2

16
π2 φ0

α

(
1 − φ0

α

)
∂φ0

α

∂η
= ± 4

π

√
φ0

α (1 − φ0
α).

With the boundary conditions φα = 1(solid) at x = −∞ and φα = 0(liquid)
at x = +∞ we have,

∂φ0
α

∂η
= − 4

π

√
φ0

α (1 − φ0
α). (5.17)

The u equation at order 1/p2 is,

∂2u0
∂η2 = 0.

which upon integrating once becomes,

∂u0
∂η

= A1.

From the matching condition in Eqn. (5.14) we obtain limη→±∞ ∂ηu0 = 0,
which implies A1 = 0, which upon subsequent integration reads,

u0 = u0,

with integration constant u0. In order to determine this constant, we
substitute u0 into the phase-field equation at order p1 which gives,

−τ̃ pv
∂φ0

α

∂η
= p

∂2φ1
α

∂η2 +
16
π2 pφ1

α − p
gu0

2
∂h
(
φ0

α

)
∂φα

,

and thereafter simplifies to,

−τ̃ v
∂φ0

α

∂η
=

∂2φ1
α

∂η2 +
16
π2 φ1

α − gu0

2
∂h
(
φ0

α

)
∂φα

.
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Note, the term 16
π2 corresponds to − 16

2π2
∂

∂φα
(1 − 2φα) which is one of

the terms in the expansion of the potential function in increasing orders of
the interface Peclet number p. This can be written for any function of φα,
e.g s (φα) by substituting expansion of φα in orders of p as.

s
(
φ0

α + pφ1
α + p2φ2

α

)
= s
(
φ0

α

)
+ p

∂s
(
φ0

α

)
∂φα

φ1
α + p2 ∂s

(
φ0

α

)
∂φα

φ2
α +

p2

2
∂2s
(
φ0

α

)
∂φ2

α

(
φ1

α

)2
. . . ,

where we limit the above expansion to order p2. Here it is useful to identify
an operator which derives from the phase-field equation at order p0 as
follows,

∂2φ0
α

∂η2 − 16
2π2
(
1 − 2φ0

α

)
= 0.

Differentiating the above once, gives:

∂3φ0
α

∂η3 +
16
π2

∂φ0
α

∂η
= 0.

Written as, (
∂2

∂η2 +
16
π2

)
∂φ0

α

∂η
= 0,

implies that the term in the brackets
∂2

∂η2 +
16
π2 can be defined as a linear

operator denoted by L. We also derive that ∂ηφ0
α is a homogeneous

solution of the operator L. Writing the phase-field equation at order p1

by employing the operator L gives,

Lφ1
α = −τ̃ v

∂φ0
α

∂η
+

gu0

2
∂h
(
φ0

α

)
∂φα

.
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Multiplying both sides with
∂φ0

α

∂η
and integrating we get,

∫ ∞

−∞
Lφ1

α

∂φ0
α

∂η
∂η = −τ̃ v

∫ ∞

−∞

(
∂φ0

α

∂η

)2

∂η +
∫ ∞

−∞

gu0

2
∂h
(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η

The left hand side of this equation can be expanded as,∫ ∞

−∞
Lφ1

α

∂φ0
α

∂η
∂η =

∫ ∞

−∞

∂2φ1
α

∂η2
∂φ0

α

∂η
∂η +

∫ ∞

−∞

16
π2 φ1

α

∂φ0
α

∂η
∂η, (5.18)

which upon partial integration becomes,

=
∂φ1

α

∂η

∂φ0
α

∂η

∣∣∣∣∞
−∞

−
∫ ∞

−∞

∂φ1
α

∂η

∂2φ0
α

∂η2 ∂η

+
16
2π2 φ1

α

(
2φ0

α − 1
)∣∣∣∣∞

−∞
+
∫ ∞

−∞

16
2π2

∂φ1
α

∂η

(
1 − 2φ0

α

)
∂η.

While performing the integrations and substitutions of functions it is nec-
essary to take care that the reference point is at η = 0, where φα = 0.5.
This is because the moving frame is fixed to this point. The two constants
are zero owing to φ1

α → 0 at both extremities along with the derivatives
which implies that the integral simplifies to,∫ ∞

−∞
Lφ1

α

∂φ0
α

∂η
∂η = −

∫ ∞

−∞

(
∂2φ0

α

∂η2 − 16
2π2
(
1 − 2φ0

α

)) ∂φ1
α

∂η
∂η.

The term inside the brackets is the phase-field equation at order p0 and
hence is zero, giving the first solvability condition,

− τ̃ v

∫ ∞

−∞

(
∂φ0

α

∂η

)2

∂η +
∫ ∞

−∞

gu0

2
∂h
(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η = 0. (5.19)

For the obstacle potential and any interpolation polynomial hα (φα) varying
from 0 to 1, the two integrals in the above solvability condition are easily
computed as,∫ ∞

−∞

(
∂φ0

α

∂η

)2

∂η =
∫ 0

1

∂φ0
α

∂η
∂φα =

4
π

∫ 1

0

√
φ0

α (1 − φ0
α)∂φα =

1
2

,
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where we applied Eqn. (5.17). Similarly, by taking the constants out of
the integrations, the second integral in Eqn. (5.19) becomes,∫ ∞

−∞

∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η =

∫ 0

1

∂hα

(
φ0

α

)
∂φα

∂φ0
α = hα (0) − h (1) = −1.

With the evaluated integrals, the solvability condition (5.19) reads,

u0 =
τ̃ v

g
.

Substituting the values for the parameters τ̃ and g in dimensional units
reads,

(T − T α
m) = −ταβV T α

m

Lα
,

= −β
0
V.

Comparing the terms we derived the zeroth order kinetic coefficient in
terms of the phase-field parameters which is also the sharp interface limit
given by,

β
0 =

ταβT α
m

Lα
.

Hence ταβ has the units
Js

m4 . In case of using an entropy functional, β
0 is

a function of the temperature and hence can be written equivalently as,

β
0 =

ωαβTT α
m

Lα
,

where ωαβ has the units
Js

m4K
.

In order to compute the first order correction to the kinetic coefficient, we
write the u equation at order 1/p which reads,

−v
∂u0

∂η
=

∂2u1

∂η2 − v
∂hα

(
φ0

α

)
∂η

.
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From the u equation at order 1/p2 we have the result u0 is constant. Hence,
this does not contribute to the u equation at order 1/p. Integrating the
resulting equation gives,

∂u1

∂η
= vhα

(
φ0

α

)
+ A. (5.20)

Employing matching condition in Eqn.(5.15) we derive,

lim
η→±∞

∂u1

∂η
=

∂ũ0

∂x

∣∣∣∣±,

= A + vhα

(
φ0

α±) .

which can be used to derive the macroscopic gradients of the temperature
field computed from both the bulk sides,

∂ũ0

∂x

∣∣∣∣+ = A, (5.21)

∂ũ0

∂x

∣∣∣∣− = A + v. (5.22)

Subtracting, we at once get the Stefan condition at the lowest order which
is,

v =
∂ũ0

∂x

∣∣∣∣− − ∂ũ0

∂x

∣∣∣∣+.

Integrating Eqn.(5.20) we get the total inner solution at order (1/p) as,

u1 = u1 + v

∫ η

0
hα

(
φ0

α

)
∂η + Aη. (5.23)

The integration constant u1 is computed by inserting the equation for u1
into the phase-field evolution equation at order p2 which reads,

−τ̃ v
∂φ1

α

∂η
=

∂2φ2
α

∂η2 +
16
π2 φ2

α − gu1

2
∂hα (φα)

∂φα
− gu0

2
φ1

α

∂2hα

(
φ0

α

)
∂φα

2 .
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Identifying the operator L the equation can be written in short as,

Lφ2
α = −τ̃ v

∂φ1
α

∂η
+

gu1

2
∂hα

(
φ0

α

)
∂φα

+
gu0

2
φ1

α

∂2hα

(
φ0

α

)
∂φα

2 .

from which the solvability condition for a non-trivial φ0
α implies that the

R.H.S must be orthogonal to ∂ηφ0
α giving,

− τ̃ v

∫ ∞

−∞

∂φ1
α

∂η

∂φ0
α

∂η
∂η +

∫ ∞

−∞

gu1

2
∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η +∫ ∞

−∞

gu0

2
φ1

α

∂2hα

(
φ0

α

)
∂φα

2
∂φ0

α

∂η
∂η = 0.(5.24)

To simplify the preceding solvability condition we need to evaluate the
nature of the integrals. For the first term, we make use of the fact that
φ1

α satisfies the Eqn.(5.18),

Lφ1
α = −τ̃ v

∂φ0
α

∂η
+

gu0

2
∂hα

(
φ0

α

)
∂φα

. (5.25)

The phase-field profile φ0
α is in the case of an obstacle type potential

part of a sinus curve and hence is an odd-function, which implies its

derivative
∂φ0

α

∂η
is even. Similarly, the interpolation function hα

(
φ0

α

)
is an

odd function and hence,
∂hα

(
φ0

α

)
∂φα

is an even function. To realize this, we

use a property of the interpolation function which is the anti-symmetry
with respect to η = 0 or at the position where φα = 1/2 yielding,

hα (φα (η)) − 1
2

=
1
2

− hα (φα (−η)) .

Differentiating both sides with respect to η and using the even property

of
∂φ0

α

∂η
we derive,

∂hα (φα (η))
∂φ0

α

=
∂hα (φα (−η))

∂φ0
α
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implying
∂hα (φα (η))

∂φ0
α

is even. Conversely, differentiating again, we get

that the second derivative
∂2hα (φα (η))

∂φ0
α

2 is odd. Using these properties, we

directly find that the R.H.S of Eqn. (5.25) is even. Combined with the fact

that the operator L is of the form
∂2

∂η2 +
16
π2 , which does not change the

characteristic properties of the R.H.S., we derive that φ1
α is even. Putting

all the arguments together, we directly see that only the second integral
in the solvability condition Eqn. (5.24) survives and simplifies to,∫ ∞

−∞

gu1

2
∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η = 0.

Substituting u1 from Eqn. (5.23) into the solvability condition gives,

gu1

2

∫ ∞

−∞

∂hα

(
φ0

α

)
∂φ0

α

∂φ0
α

∂η
∂η +

g

2
v

∫ ∞

−∞

[∫ η

0
hα

(
φ0

α

)
∂η

]
∂hα

(
φ0

α

)
∂φ0

α

∂φ0
α

∂η
∂η+

g

2

∫ ∞

−∞
Aη

∂hα

(
φ0

α

)
∂φ0

α

∂φ0
α

∂η
∂η = 0.

In the above, the last integral vanishes because η is an odd function, and
the other two functions in the integral are even, rendering the integral as
odd. Thus, the constant u1 can be written as,

gu1

2
(h (0) − h (1)) +

g

2
v

∫ ∞

−∞

[∫ η

0
hα

(
φ0

α

)
∂η

]
∂hα

(
φ0

α

)
∂φ0

α

∂φ0
α

∂η
∂η = 0.

We introduce M̃ such that,

M̃ =
∫ ∞

−∞

[∫ η

0
hα

(
φ0

α

)
∂η

]
∂hα

(
φ0

α

)
∂φ0

α

∂φ0
α

∂η
∂η

and hence,

u1 = M̃v.
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Substituting the expression for u1 in Eqn. (5.23) we obtain,

u1 = M̃v + v

∫ η

0
hα

(
φ0

α

)
∂η + Aη.

Using the condition in Eqn. (5.22), the constant A can be written in two
ways, which are constrained to be equal by the Stefan condition. Upon
substitution, the two formulations can be realized as follows,

u1 = M̃v + v

∫ η

0
hα

(
φ0

α

)
∂η +

(
∂ũ0

∂x

∣∣∣∣+
)

η alternatively (5.26)

u1 = M̃v + v

∫ η

0
hα

(
φ0

α

)
∂η +

(
∂ũ0

∂x

∣∣∣∣−
)

η − vη

= M̃v + v

∫ η

0

(
hα

(
φ0

α

)− 1
)

∂η +

(
∂ũ0

∂x

∣∣∣∣−
)

η. (5.27)

Using the matching condition in Eqn. (5.12) gives

ũ1|±= lim
η→±∞ u1 − η

∂ũ0

∂x

∣∣∣∣±,

thereby, we derive the positive limit by including Eqn. (5.26) and the

negative limit by Eqn. (5.27) for the derivatives
∂ũ0

∂x
as,

ũ1
∣∣∣∣+ = M̃v + v

∫ ∞

0
hα

(
φ0

α

)
∂η

ũ1
∣∣∣∣− = M̃v + v

∫ −∞

0

(
hα

(
φ0

α

)− 1
)

∂η.

Due to the construction of the interpolation functions as anti-symmetric
functions, one can verify that the two integrals

∫∞
0 hα

(
φ0

α

)
∂η and∫ −∞

0
(
hα

(
φ0

α

)− 1
)

∂η are equal and hence the macroscopic value of the
outer solution at first order, ũ1 is unique from both sides. We denote the
integral in the preceding equation as F̃ and hence ũ1 can be written as,
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ũ1 = v
(
M̃ + F̃

)
.

Putting the dimensions back, we have,

˜ΔT 1 = v
Lα

Cv

(
M̃ + F̃

)
Combining the undercoolings at the different orders, we have the total
macroscopic undercooling as,

Δ̃T = ˜ΔT 0 + p˜ΔT 1,

which can equivalently be expressed in terms of the kinetic coefficients
by,

− β̃V = −β̃
0
V + pβ̃

1
V

= −ταβTm

Lα
V + ε

Lα

K
V
(
M̃ + F̃

)
.

Comparing terms, we have,

β̃ = β̃
0 − pβ̃

1

=
ταβTm

Lα
− ε

Lα

K

(
M̃ + F̃

)
(5.28)

For the commonly considered interpolation polynomials being the cubic
and the quartic type polynomial, when used along with the obstacle
potential, the values of F̃ and M̃ are tabulated below,

M̃ F̃
h (φα) = φ2

α (3 − 2φα) 0.063828 0.158741
h (φα) = φ3

α

(
10 − 15φα + 6φ2

α

)
0.052935 0.129288

Eqn. (5.28) is the revolutionary result, first obtained by Karma in [48] and
is known as the thin interface limit. It shows that there is the possibility
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to choose parameters ταβ and interface width parameter ε in a way that
the effective β vanishes and hence simulations at the vanishing interface
kinetics limit can be performed. This can be achieved by manipulating
Eqn. (5.28) as,

ταβ = ε
L2

α

TmK

(
M̃ + F̃

)
. (5.29)

In order to achieve low interface kinetics using the sharp interface limit, the
value of ταβ becomes prohibitively lower and hence the time step reduces to
a computationally unfeasible value. However with the thin interface limit,
one has the benefits of an increased interface width that can be chosen
for the simulation which can recover the sharp interface free boundary
problem along with the condition that the time scales for the simulation
can be enhanced for problems with vanishing interface kinetics.

5.4. Benchmarks

In order to benchmark our calculations, we choose the Ni system for
consideration. The system parameters involve the latent heat of the
system which is given by Lα = 0.30, which is non-dimensionalized using
energy scale as, Cs

vTm = 1.52×106J/m3, where Tm = 1748K is the melting
point of the solid and Cs

v is the specific heat of Ni. The surface entropy
density of the solid-liquid interface is given by γαβ = 0.167 × 10−3J/m2K.
We perform several simulations of the growth of a planar front at a given
non-dimensional temperature given by T = 0.96 (Tm = 1.0), with variation
in the interface widths, affected by changing the parameter ε. The results
plotted in Fig.5.1 show the invariance of the front velocity upon change in
ε. To achieve this, we affect β = 0, through an appropriate choice of the
parameter ταβ , given by the expression in Eqn.(5.29). The existence of
such a range in ε, where the velocity is relatively constant, denotes that
we have been able to effectively eliminate the first order contributions
of the interface width to the interface kinetic coefficient β. The specific
heats and the thermal conductivities of the liquid are close to the solid
and hence the validity of our assumptions used in the calculations remain.
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Figure 5.1.: Velocity of a pure nickel planar front simulated with different ε at a
fixed nondimensional temperature of T=0.96.
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5.5. Concluding remarks

In the present work, we present the thin-interface asymptotics of pure
material solidification for the case of the double obstacle potential. This
work extends the computational simplicity of the obstacle potential to
the regime of quantitative simulations, where the results are invariant
upon change in the interface widths. Further, the derivations enable the
adjustment of simulation parameters for performing vanishing interface
kinetics. In the above analysis, we have assumed the properties of the
thermal conductivity K or the thermal diffusivity as independent of φα

which renders the two limits ũ1
∣∣∣∣+ and ũ1

∣∣∣∣− equal. In the event that the

thermal conductivities are unequal, we arrive at the condition that the
two macroscopic limits are no longer equal. This property is referred to as
"heat trapping“ e.g. [6]. Removal of such effects requires the introduction
of an expression similar to the anti-trapping term for solute diffusion, [46].
While this is derived for the case of one sided diffusivities, the case of
non-vanishing thermal diffusivity needs a treatment similar as in [83].



Chapter 6

Grand potential
formulation and
asymptotics
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6.1. Introduction and model modification

Phase-field modeling has been used for alloy solidification for about a
decade and the principle ideas are fairly well known. However, it is neces-
sary to highlight the importance of certain modifications without which
large scale quantitative microstructure simulations of the order of micro-
meters are not possible. In the present paper we describe a modification
of the multi-phase field model described in [33]. The foundation of this
particular model is the entropy functional written as follows,

S (e, c, φ) =
∫

Ω

(
s (e, c, φ) −

(
εa (φ, ∇φ) +

1
ε

w (φ)
))

dΩ,

where e is the internal energy of the system, and s is the bulk entropy
density and w is the surface potential of the system. c = (c1 . . . cK), is
vector with the compositions of the K components and φ = (φ1 . . . φN )
are the volume fractions of the N phases in the system. An equivalent
form can be defined as a free energy functional at a given temperature
T ,

F (T, c, φ) =
∫

Ω

(
f (T, c, φ) +

(
εã (φ, ∇φ) +

1
ε

w̃ (φ)
))

dΩ.

The uniqueness lies in the usage of the double obstacle potential w (φ) =
{∑N,N

α<β γαβ
16
π2 φαφβ , when (φα, φβ > 0 and φα+φβ = 1) and ∞ elsewhere}

in describing the surface entropy potential where the relations ã (φ, ∇φ) =
Ta (φ, ∇φ) and w̃ (φ) = Tw (φ) are valid. However, if the free energies are
interpolated as in [33, 79], f =

∑N
α=1 fα (T, c, φ) hα (φ), where fα (T, c)

is the bulk free energy density of phase α, and hα (φ) is an interpolation
function for the phase α, two problems exist,
i) The surface energy σ̃αβ of an αβ interface is a function of the chemical
free energy density landscape in the system and
ii) the equilibrium interface width Λ̃αβ becomes far too restrictive for
simulating large scale microstructures.
These restrictions of the model will be highlighted in more detail in the
following discussion. The equilibrium equation in 1D for two phases, α and
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β, where φα + φβ = 1, starting from the interpolation of the free energies
can be written as follows,

γαβε
∂2φα

∂x2 = − 16
π2

γαβ

2ε
(1 − 2φα) − 1

2T

df

dφα
+

1
2T

K−1∑
i=1

μi
dci

dφα
(6.1)

= − 16
π2

γαβ

2ε
(1 − 2φα) − 1

2T

d

dφα

(
f −

K−1∑
i=1

μici

)
,(6.2)

where μ = (μi . . . μK−1) is the vector consisting of the K − 1 equilibrium
chemical potentials of the system at the given system temperature. Eqn.
(6.2) can be used to derive the stationary solution of the phase-field φα,
which can be used to derive expressions for the surface energy of a binary
interface, σ̃αβ and equilibrium interface width Λ̃αβ as,

σ̃αβ = 2Tγαβ

∫ 1

0

√(
16
π2 φα (1 − φα) +

ε

γαβT
(ΔΨ (T, c, φα))

)
dφα (6.3)

Λ̃αβ = ε

∫ 1

0

dφα√(
16
π2 φα (1 − φα) +

ε

γαβT
(ΔΨ (T, c, φα))

) . (6.4)

Here γαβ is a term in the surface entropy density, ε is a factor related to
the length scale of the interface and ΔΨ (T, c, φα) =

(
f −∑K−1

i=1 μici

)
−(

f −∑K−1
i=1 μici

)
φα=0

is the grand chemical potential difference between
values at the interface and that of the bulk phases in equilibrium. At
equilibrium, the terms

(
f −∑K−1

i=1 μici

)
φα=0

and
(

f −∑k−1
i=1 μici

)
φα=1

are equal and Fig. 6.1 plots the variation of the term ΔΨ (T, c, φα). We

clearly see that the term
1
2

d

dφα

(
f −∑K−1

i=1 μici

)
is non-zero across the

interface. The area under the curve is the grand chemical potential excess
at the interface. This contribution affects the equilibrium shape and
properties of the interface. From the above, it is evident that,

• The parameters σ̃αβ and Λ̃αβ cannot be fixed independently of the
grand chemical potential contribution in the form ΔΨ (T, c, φα).
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Figure 6.1.: The grandchemical potential difference varies across the interface
and has a form similar to that of a potential. At equilibrium, the two phases are
at the same grand chemical potential which is seen qualitatively from the graph.
Notice also the asymmetry of the potential around φα = 0.5, which is inherited
from the asymmetry in the chemical free energy states of the two phases.
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• Given the required σ̃αβ and Λ̃αβ the simulation parameters γαβ

and ε can be determined by simultaneously solving the Eqns. (6.3)
and (6.4). Notice, that even though we have one parameter ε, the
resulting interface thicknesses can be different, depending on the
excess ΔΨ (T, c, φα).

For very large chemical excess contributions in the form of ΔΨ (T, c, φα),
the Eqns. (6.3) and (6.4) can be written approximately as,

σ̃αβ = 2
√

Tγαβε

∫ 1

0

√
(ΔΨ (T, c, φα))dφα

Λ̃αβ =
√

Tγαβε

∫ 1

0

dφα√
(ΔΨ (T, c, φα))

.

In this case σ̃αβ and Λ̃αβ are no longer independent. The term
σ̃αβ

Λ̃αβ

becomes just a function of the chemical free energy of the system and
independent of the terms γαβ and ε. This implies that once a value
for σ̃αβ is chosen, the value of Λ̃αβ is fixed, and for certain choices of
σ̃αβ , the Λ̃αβ gets prohibitively lower, which makes simulation of larger
domain structures unfeasible. These relationships have been studied fairly
extensively in the past decade, and two principle solutions have been
suggested [27, 30, 55, 114]. The ideology is to completely avoid any
contribution of the grand chemical potential excess contribution to the
interface excess. This implies, the stationary solution is independent of any
chemical contribution. While this is achieved in the work by [27, 55, 114]
through the use of different concentration fields cα

i in each phase, the same
is affected for dilute alloys, with a single concentration field but through
the use of effective interpolation functions to interpolate the entropy and
enthalpy contributions to the free energy. The common idea is that the
driving force for phase transformation is the grand potential difference
between the phases at the same chemical potential. We motivate a similar
idea from the following discussion.
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6.1.1. Motivation

Consider the phase-field evolution equation in 1D at the lowest order in ε,
which is a parameter related to the interface thickness:

ωαβε
∂φα

∂t
= γαβε

∂2φα

∂x2 − 16
π2

γαβ

2ε
(1 − 2φα) − 1

2T

d

dφα

(
f −

K−1∑
i=1

μici

)
,

where ταβ is the relaxation constant of the interface. This is also the
evolution equation at the sharp-interface limit for this model [134]. The
chemical potential μ = (μ1 . . . μK−1) is constant across the interface in this
limit. For small velocities, the evolution equation in moving co-ordinate
frame in 1D, at steady state velocity V reads,

−V ωαβε
dφα

dx
= γαβε

d2φα

dx2 − 16
π2

γαβ

2ε
(1 − 2φα) − 1

2T

d

dφα

(
f −

K−1∑
i=1

μici

)
.

It is important to note that the moving frame is moving with velocity V
along with the interface which is denoted by the contour line φα = 0.5.
Multiplying with

dφα

dx
on both sides and integrating we get,

− V ωαβε

∫ ∞

−∞

(
dφα

dx

)2
dx =

∫ ∞

−∞
γαβε

d2φα

dx2
dφα

dx
dx−

∫ ∞

−∞

16
π2

γαβ

2ε
(1 − 2φα)

dφα

dx
dx −

∫ ∞

−∞

1
2T

d

dφα

(
f −

K−1∑
i=1

μici

)
dφα

dx
dx.

We denote the integral
∫∞

−∞

(
dφα

dx

)2
dx as (I) and elaborate the other

integrals as follows;

−V ωαβεI =
γαβε

2

(
dφα

dx

)2 ∣∣∣∞
−∞

− 16
π2

γαβ

2ε
φα (1 − φα)

∣∣∣1
0
−

1
2T

(
f −

K−1∑
i=1

μici

)∣∣∣1
0
.
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The first two integrals on the right hand side drop out to zero and so the
velocity of the interface can be written as,

− V ωαβεI =
1

2T

(
f −

K−1∑
i=1

μici

)∣∣∣1
0
, (6.5)

Clearly, the interface mobility is proportional to the difference of the grand
chemical potential of the two phases. Adequately, the driving force for
phase transformation in alloys in the sharp interface limit is the difference
of the grand potentials of the two bulk phases. The evolution equations
drive the system in a direction to reduce the difference of grand potentials
between the bulk phases. This being the case, the motivation arises to
formulate the phase-field model in terms of a grand potential functional
for the case of alloys.

6.1.2. Model modification

We write the grand potential density Ψ, as an interpolation of the individual
grand potential densities Ψα, where Ψα are functions of the chemical
potential μ and temperature T in the system,

Ψ (T, μ, φ) =
N∑

α=1
Ψα (T, μ) hα (φ) with, (6.6)

Ψα (T, μ) = fα (cα (μ) , T ) −
K−1∑
i=1

μic
α
i (μ, T ) .

The concentration cα
i (μ, T ) is an inverse of the function μα

i (c, T ) for every
phase α and component i. From Eqn.(6.6) the following relation can be
derived,

∂Ψ (T, μ, φ)
∂μi

=
N∑

α=1

∂Ψα (T, μ)
∂μi

hα (φ) .



144 6. Grand potential formulation and asymptotics

Since, the grand potential density Ψ (T, μ, φ), is the Legendre transform
of the free energy density of the system f (T, c, φ), and from their coupled

relation
∂Ψ (T, μ, φ)

∂μi
= −ci, it follows that,

ci =
N∑

α=1
cα

i (μ, T ) hα (φ) . (6.7)

The above is the constraint used in [27, 55, 114] to determine the con-
centrations cα

i in the interface along with the condition that the phase
concentrations cα

i are related by the condition of common equilibrium
chemical potential among all the phases. This however derives elegantly
starting from the grand potential functional. It is important to note that
the entire structure rests on the invertibility of the function μα (c, T ). This
would result in a unique grand potential for a given μ.

Since at equilibrium the grand potential of the phases are equal, for a two
phase interface we can write,

Ψ
(
T, μeq

)
= Ψα

(
T, μeq

)
= Ψβ

(
T, μeq

)
.

This implies that at equilibrium the surface energy has no contribution
from the chemical free energy, since the grand chemical potential excess
ΔΨ is zero. The consequence of this is that the surface energy σ̃αβ is
the same as the simulation parameter γαβT . Also, it can be derived that
the equilibrium interface width Λ̃αβ is independent of the chemical free

energy of the system and is related to constant ε by the relation
π2

4
ε for

the obstacle potential. The grand chemical potential difference can be
visualized as in Figure 6.2. A corollary of the above discussion is that the
free energy of a mixture of two phases for alloys is not the interpolation of
the free energies of the respective phases at a given concentration but it is
a mixture of the phases at the respective concentrations at which they are
at thermodynamic equilibrium i.e. at the same chemical potential μ. This
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Figure 6.2.: Illustration of the driving force for phase transformation between
two phases.

can be realized through the reverse Legendre transform of the expression
in Eqn. (6.6), which gives,

f (T, c, φ) =
N∑

α=1
fα (cα (μ, T ) , T ) hα (φα) .

This is the start point of the derivation of the KKS(Kim,Kim, Suzuki)
model [55]. In summary, the principal result is that we write the evolution
equations using the chemical potential μ which is analogous to T for the
case of pure materials. The driving force, which is the difference of free
energies in the case of pure materials translates to the difference of grand
potentials for alloys. Note: Strictly speaking, the grand potential is defined
in terms of the number of particles of the various components written as
F −∑K−1

i=1 μiNi, where F is the free energy of the system of N particles,

and Ni is the number of particles of component i, while μi =
∂F

∂Ni
. In the

discussion on phase-field we require the energy densities of the respective
phases, and hence, the energy of the system is generally divided by the
volume of the system, which for the case of 1 mole of particles would
be Vm, which is the molar volume. Also, the number of particles can be
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written in terms of the concentrations “mole fraction“ through the relation
Ni = ciNo, where No is the Avogadro number. Utilizing this it is easy
to see that Ni

∂F

∂Ni
= Vmci

∂f

∂ci
, where F = fVm and we have assumed

the molar volumes of all particles the same. This implies that the total
grand potential can be written as Vm

(
f −∑K−1

i=1 μici

)
, giving us the grand

potential density as
(

f −∑K−1
i=1 μici

)
. This is the form, which is used in

the entire dissertation.

6.1.3. Evolution equations

The evolution equations for the phase and concentration fields can be
evaluated in the standard way. Phase evolution is determined by the phe-
nomenological minimization of the modified functional which is formulated
as the grand potential functional,

Ω (T, μ, φ) =
∫

Ω

(
Ψ (T, μ, φ) +

(
εã (φ, ∇φ) +

1
ε

w̃ (φ)
))

dΩ.

The concentration fields are obtained by a mass conservation equation for
each of the K − 1 independent concentration variables ci. The evolution
equation for the N phase-field variables can be written as,

τε
∂φα

∂t
= ε

(
∇ · ∂ã (φ, ∇φ)

∂∇φα
− ∂ã (φ, ∇φ)

∂φα

)
− 1

ε

∂w̃ (φ)
∂φα

−
∂Ψ (T, μ, φ)

∂φα
− Λ,

where Λ is the Lagrange parameter to maintain the constraint
∑N

α=1 φα = 1.
a (φ, ∇φ) represents the gradient energy density and has the form,

ã (φ, ∇φ) =

N,N∑
α,β=1
(α<β)

σ̃αβ [ac (qαβ)]2 |qαβ |2,
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where qαβ = (φα∇φβ − φβ∇φα) is a normal vector to the αβ interface.
ac (qαβ) describes the form of the anisotropy of the evolving phase boundary.
The double obstacle potential w̃ (φ) which was also previously described
in [33, 79] can be written as,

w̃ (φ) =
16
π2

N,N∑
α,β=1
(α<β)

σ̃αβφαφβ ,

where σ̃αβ is the surface energy . The parameter τ is written as
∑N,N

α<β ταβφαφβ∑N,N
α<β φαφβ

,

where ταβ is the relaxation constant of the αβ interface. The evolution
equation for the concentration fields can be derived as,

∂ci

∂t
= ∇ ·

⎛⎝K−1∑
j=1

Mij (φ) ∇μj

⎞⎠ . (6.8)

Here, Mij (φ) is the mobility of the interface, where the individual phase
mobilities are interpolated as,

Mij (φ) =
N−1∑
α=1

Mα
ijgα (φ) ,

where each of the Mα
ij is defined using the expression,

Mα
ij = Dα

ij

∂cα
i (μ, T )
∂μj

.

The function gα (φ) interpolates the mobilities and is in general not same as
hα (φ) which interpolates the grand potentials. Dα

ij are the interdiffusivities
in each phase α. Both the evolution equations require the information
about the chemical potential μ. Two possibilities exist to determine the
unknown chemical potential μ.

• The chemical potential μ can be derived from the constraint relation
(6.7). The K − 1 independent components μi are determined by
simultaneously solving the K − 1 constraints for each of the K − 1
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independent concentration variables ci, from the given values of ci

and φα at a given grid point. A Newton iteration scheme can be
used for solving the system of equations,

{
μn+1

i

}
= {μn

i } −
[

N∑
α=1

hα (φ)
∂cα

i (μn, T )
∂μj

]−1

ij

×
{

ci −
N∑

α=1
cα

i (μn, T ) hα (φ)

}
, (6.9)

where {} represents a vector while [] denotes a matrix. This is
precisely the approach in the KKS model [55]. However, there is a
substantial difference, in that we propose to solve directly for the
thermodynamic variable μ, which relate the phase concentrations
cα

i , instead of solving for phase concentrations themselves. This is
possible because the concentrations cα

i (μ, T ) are written as explicit
functions of the thermodynamic variable μ. The method also bears
similarity to the method of [27, 114], where a partition relation is
used to close the relationship between the phase concentrations.

• Alternatively explicit evolution equations for all the K − 1 indepen-
dent chemical potentials, can be formulated by inserting the con-
straint equation (6.7) into the evolution equation for the concentra-
tion field, Eqn. (6.8). For a two phase binary alloy i.e. (φα + φβ = 1)
and cA + cB = 1, the evolution equation can be written down as
follows,(

∂cα (μ, T )
∂μ

hα (φ) +
∂cβ (μ, T )

∂μ
(1 − hα (φ))

)
∂μ

∂t
=

∇.

((
Dαgα (φ)

∂cα (μ, T )
∂μ

+ Dβ (1 − gα (φ))
∂cβ (μ, T )

∂μ

)
∇μ

)
−

(
cα (μ, T ) − cβ (μ, T )

) ∂hα (φ)
∂t

,

where cα,β (μ) are the phase concentrations as functions of the in-
dependent chemical potential μ. Dα, Dβ are the independent inter-
diffusivities in the two respective phases. It is noteworthy that this
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equation looks very similar to the evolution equation of the tem-
perature field in pure materials. The last term on the right hand
side cα (μ, T ) − cβ (μ, T ) corresponds to a source term for rejection
of mass at the interface during growth, which is analogous to the
release of latent heat in pure material solidification. For a general,
multi-phase, multi-component system, the evolution equations for
the components of the chemical potential μ can be written in matrix
form by,

{
∂μi

∂t

}
=

[
N∑

α=1
hα (φ)

∂cα
i (μ, T )
∂μj

]−1

ij

×⎧⎨⎩∇ ·
K−1∑
j=1

Mij (φ) ∇μj −
N∑
α

cα
i (μ, T )

∂hα (φ)
∂t

⎫⎬⎭ . (6.10)

The above derivation bears a lot of resemblance to the recent derivation by
M.Plapp [91]. It is worth to comment on how the two methods compare
in the computational complexity. For this, it is first essential to identify
the similarity of the approaches, as can be seen by comparing Eqn. (6.9)
and (6.10) as follows. Consider the case when Eqn. 6.9 is written for the
case of binary which reads,

μn+1 = μn +
c −∑N

α=1 cα (μn, T ) hα (φ)∑N
α=1

∂cα (μn, T )
∂μ

hα (φ)
, (6.11)

where we intend to calculate the μ for the next time step (t + 1), μn

being the start guess for the iteration which satisfies the equation c −∑N
α=1 cα (μn, T ) hα (φ) = 0 for the values of c = co and φ = φo at the

time step t. Expanding the second term on the R.H.S in the Eqn. 6.11 for
small change in time δt, we can write,

μn+1 − μn =
co −∑N

α=1 cα (μn, T ) hα (φo)∑N
α=1

∂cα (μn, T )
∂μ

hα (φo)
+
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δt

⎛⎜⎜⎝
∂c

∂t
−∑N

α=1 cα (μn, T )
∂hα (φo)

∂t∑N
α=1

∂cα (μn, T )
∂μ

hα (φo)

⎞⎟⎟⎠+ O
(
δt2) .

Note, additional terms arise out of the linear expansion, but we simplify
using the fact that c0 −∑N

α=1 cα (μn, T ) hα

(
φ0) = 0. Using the same fact,

the preceding equation simplifies to,

μn+1 − μn

δt
=

⎛⎜⎜⎝
∂c

∂t
−∑N

α=1 cα (μn, T )
∂hα (φo)

∂t∑N
α=1

∂cα (μn, T )
∂μ

hα (φo)

⎞⎟⎟⎠+ O (δt) ,

which in the region of small enough δt implies convergence is achieved in
one iteration and hence can be written as,

∂μ

∂t
=

⎛⎜⎜⎝∇ · (M∇μ) −∑N
α=1 cα (μn, T )

∂hα (φo)
∂t∑N

α=1
∂cα (μn, T )

∂μ
hα (φo)

⎞⎟⎟⎠ .

The derived equation is identical to the binary variant of Eqn. 6.10. It is
not surprising to see the similarity since we are essentially solving for the
same variable μ and the difference is, while Eqn. (6.9) is an implicit type
of calculation scheme of the chemical potential, the other, Eqn. (6.10)
describes an explicit computation. It would be interesting to compare the
performance and accuracy of both methods.

6.2. Asymptotic analysis

In this section we perform the asymptotic analysis of the phase-field model
for a two phase binary alloy solidification with the assumption of one-sided
diffusion in the liquid and vanishing diffusivity in the solid. Our aim is
to derive the expressions for the kinetic coefficient in the thin interface
limit for the case of solute diffusion by performing an asymptotic analysis
unto second-order in the phase-field and for this purpose the analysis in
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1D suffices. The asymptotic analysis is applied to the presented model
ensuring no free energy excess at the interface. For simplicity, we treat
here a two phase binary alloy. Hence, the chemical potential μ will be
written as μ, since there exists only one independent chemical potential. At
the onset, we express the grand potentials Ψα (T, μ) as a linear expansion
about the equilibrium chemical potential μeq,

Ψα (T, μ) = Ψα (T, μeq) +
∂Ψα (T, μ)

∂μ

∣∣∣
μeq

(μ − μeq) .

The driving force ΔF α is then:

ΔF α = (Ψα (T, μ) − Ψβ (T, μ))
∂hα (φ)

∂φα

=
(

∂Ψα (T, μ)
∂μ

∣∣∣
μeq

− ∂Ψβ (T, μ)
∂μ

∣∣∣
μeq

)
(μ − μeq)

∂hα (φ)
∂φα

,

= − (cα (μeq, T ) − cβ (μeq, T )
)

(μ − μeq)
∂hα (φ)

∂φα
,

implying the evolution equation for the phase-field for a two phase system
can be written as follows,

ταβε2 ∂φα

∂t
= ε2σ̃αβ

∂2φα

∂x2 − 16
2π2 σ̃αβ (1 − 2φα)

+
1
2

ε
(
cα (μeq, T ) − cβ (μeq, T )

)
(μ − μeq)

∂hα (φα)
∂φα

. (6.12)

Notice, we have reduced a system of two dependent equations to one
independent equation, by incorporating the Lagrange multiplier formalism.
Also, the interpolation function hα (φ), is now for the two phase system just
a function of φα. Hence, for the forthcoming derivations, we will omit the
vector notation. The interpolation functions satisfy the property, hα (φα) =
1 − hβ (φβ). Further, we consider small deviations from equilibrium which
is generally a suitable assumption for most cases of solidification. For
larger driving forces, such as in rapid solidification, this assumption of
linearization of the driving forces will no longer hold. For the case, where
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we have Dα 
 Dβ , the evolution equation for the chemical potential of a
binary system reads,(

∂cα (μ, T )
∂μ

hα (φα) +
∂cβ (μ, T )

∂μ
(1 − hα (φα))

)
∂μ

∂t
=

∇ ·
((

Dβ (1 − gα (φα))
∂cβ (μ, T )

∂μ

)
∇μ

)
−(cα (μ, T ) − cβ (μ, T )

) ∂hα (φα)
∂t

,

(6.13)

We non-dimensionalize the system of equations Eqn.(6.12) and Eqn.(6.13)
by choosing the length scale do =

σ̃αβ

f∗ , where f∗ is the energy scale of

the system, the time scale t∗ =
d2

0
Dβ

with Dβ being the diffusivity in the

liquid and replace ταβ with non-dimensionalized parameter ζ as
Dβταβ

σ̃αβ
.

The non-dimensional phase-field equation yields with the described scaling
parameters,

ζε2 ∂φα

∂t
= ε2 ∂2φα

∂x2 − 16
2π2 (1 − 2φα)

+
1
2

ε
(
cα (μeq, T ) − cβ (μeq, T )

)
(μ − μeq)

∂hα (φα)
∂φα

,

while the non-dimensionalized chemical potential equation can be written
as,(

∂cα (μ, T )
∂μ

hα (φα) +
∂cβ (μ, T )

∂μ
(1 − hα (φα))

)
∂μ

∂t
=

∇ ·
(

(1 − gα (φα))
∂cβ (μ, T )

∂μ
∇μ

)
− (cα (μ, T ) − cβ (μ, T )

) ∂hα (φα)
∂t

.

For our further analysis, we choose the chemical potential equation for
the asymptotic expansions. For the case of one-sided diffusion, it has been
shown in various previous works [6, 46], that there exists a thin-interface
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defect called solute trapping when simulations are performed with interface
thicknesses, orders of magnitude larger than those of a real interface. The
methodology proposed to correct this effect, is the incorporation of an
antitrapping current in the evolution equation of the chemical potential.
While such expressions have been derived for double well type potentials
[30, 46, 54], the case of the double obstacle potential is untreated so-far.
We complete this gap by deriving the thin-interface limit of the model
for a double obstacle potential and formulating an expression of the anti-
trapping current jat for the case of one-sided diffusion. We follow the
formulations described in literature and incorporate the anti-trapping
term, as an additional flux of solute from the solid to the liquid in the
normal direction to the interface. The modified evolution equation for the
chemical potential along with the antitrapping term is,(

∂cα (μ, T )
∂μ

hα (φα) +
∂cβ (μ, T )

∂μ
(1 − hα (φα))

)
∂μ

∂t
=

∇ ·
(

(1 − gα (φα))
∂cβ (μ, T )

∂μ
∇μ − jat

)
− (cα (μ, T ) − cβ (μ, T )

) ∂hα (φα)
∂t

.

To make sure, that the anti-trapping current appears in the first-order
correction to the chemical potential we formulate the anti-trapping current
of the following form,

jat = s (φα) ε
(
cβ (μ, T ) − cα (μ, T )

) ∂φα

∂t

qαβ

|qαβ | ,

where, s (φα) is a function, such that the chemical potential jump vanishes
at the interface. qαβ is the normal vector to the interface, given as
(φα∇φβ − φβ∇φα). To see this, use φα = φβ, for the case of a binary
interface between the α and the β interface. Then the vector qαβ reduces to
φα∇ (φβ − φα). Since the gradient of the scalar field (φβ − φα) is normal
to any contour (φβ − φα) = const, we have ∇ (φβ − φα) normal to the
contour (φβ − φα) = 0 which defines the binary interface.
For the case of only two phases, it can be shown that the expression of
the anti-trapping current can be reduced to,

jat = −s (φα) ε
(
cβ (μ, T ) − cα (μ, T )

) ∂φα

∂t

∇φα

|∇φα| .
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Note, all terms in the above equation are used in the non-dimensional
form, so ε is the non-dimensional parameter related to the interface width
and t is the non-dimensional time. Writing the phase-field and chemical
potential evolution equations in one dimension, we have

ζε2 ∂φα

∂t
= ε2 ∂2φα

∂x2 − 16
2π2 (1 − 2φα) +

1
2

ε
(
cα (μeq, T ) − cβ (μeq, T )

)
(μ − μeq)

∂hα (φα)
∂φα

.

(
∂cα (μ, T )

∂μ
hα (φα) +

∂cβ (μ, T )
∂μ

(1 − hα (φα))
)

∂μ

∂t
=

∂

∂x

(
(1 − gα (φα))

∂cβ (μ, T )
∂μ

∂μ

∂x
− s (φα) ε

(
cβ (μ, T ) − cα (μ, T )

) ∂φα

∂t

)
−

(
cα (μ, T ) − cβ (μ, T )

) ∂hα (φα)
∂t

,

which on transformation to the moving frame (fixed to φα = 0.5) be-
comes,

−ζvε2 ∂φα

∂x
= ε2 ∂2φα

∂x2 − 16
2π2 (1 − 2φα) +

1
2

ε
(
cα (μeq, T ) − cβ (μeq, T )

)
(μ − μeq)

∂hα (φα)
∂φα

.

−
(

∂cα (μ, T )
∂μ

hα (φα) +
∂cβ (μ, T )

∂μ
(1 − hα (φα))

)
v

∂μ

∂x
=

∂

∂x

(
(1 − gα (φα))

∂cβ (μ, T )
∂μ

∂μ

∂x
+ vs (φα) ε

(
cβ (μ, T ) − cα (μ, T )

) ∂φα

∂x

)
+

v
(
cα (μ, T ) − cβ (μ, T )

) ∂hα (φα)
∂x

,

where v is the non-dimensional velocity scaled as
V d0
Dβ

. To perform the
asymptotic analysis, the region of evolution is divided into three parts.
The “inner“ region where there is rapid variation of the phase-field φα
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and chemical potential μ, and two ”outer” regions which denote regions
where there is little change in the phase-field φα. To probe into the inner
solutions, we scale the co-ordinate with the parameter ε by introducing a
scaling parameter η =

x

ε
. With this scaling, the equations rewrite to,

−ζvε
∂φα

∂η
=

∂2φα

∂η2 − 16
2π2 (1 − 2φα) +

1
2

ε
(
cα (μeq, T ) − cβ (μeq, T )

)
(μ − μeq)

∂hα (φα)
∂φα

.

−
(

∂cα (μ, T )
∂μ

hα (φα) +
∂cβ (μ, T )

∂μ
(1 − hα (φα))

)
v

ε

∂μ

∂η
=

1
ε2

∂

∂η

(
(1 − gα (φα))

∂cβ (μ, T )
∂μ

∂μ

∂η

)
+

1
ε

∂

∂η

(
vs (φα)

(
cβ (μ, T ) − cα (μ, T )

) ∂φα

∂η

)
+

v

ε

(
cα (μ, T ) − cβ (μ, T )

) ∂hα (φα)
∂η

.

The strategy is to write each of the outer and inner solutions as powers
of the scaling parameter ε and match the outer and inner solutions order
by order. The outer solutions are denoted by μ̃ and φ̃α and are expanded
by, φ̃α = φ̃0

α + εφ̃1
α + ε2φ̃2

α and μ̃ = μ̃0 + εμ̃1 + ε2μ̃2. The inner solutions
similarly writes, φα = φ0

α + εφ1
α + ε2φ2

α and μ = μ0 + εμ1 + ε2μ2. The
matching conditions between the outer and the inner solutions can be
written by expanding each of the outer functions μ̃0, μ̃1, μ̃2 as an expansion
around x = 0, i.e x = (0 + ηε) and equating them to the corresponding
values of the inner solution: So all the derivatives are computed at the
position x = 0, marking the interface, at φα = 0.5.

lim
η→±∞ μ0 = μ̃0|± (6.14)

lim
η→±∞ μ1 = lim

η→±∞

(
μ̃1|±+η

∂μ̃0

∂x

∣∣∣∣±
)

(6.15)
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lim
η→±∞ μ2 = lim

η→±∞

(
μ̃2|±+η

∂μ̃1

∂x

∣∣∣∣± +
η2

2
∂2μ̃0

∂x2

∣∣∣∣±
)

(6.16)

and, the derivative matching conditions:

lim
η→±∞

∂μ0

∂η
= 0 (6.17)

lim
η→±∞

∂μ1

∂η
=

∂μ̃0

∂x

∣∣∣∣± (6.18)

lim
η→±∞

∂μ2

∂η
= lim

η→±∞

(
∂μ̃1

∂x

∣∣∣∣± + η
∂2μ̃0

∂x2

∣∣∣∣±
)

. (6.19)

The matching conditions for the phase-field are trivial, as the phase-field is
constant in the bulk on both sides. Hence the outer solution in the phase-
field is non-zero only for the lowest order. Now we solve the phase-field
and chemical potential equations order by order and derive the various
boundary conditions for the chemical potential as solvability conditions.

6.2.1. Sharp interface limit

The phase-field equation at zero order in ε reads,

∂2φ0
α

∂η2 − 16
2π2
(
1 − 2φ0

α

)
= 0.

Integrating yields,
∂φ0

α

∂η
= − 4

π

√
φ0

α (1 − φ0
α), where the sign results from

the boundary conditions, limη→+∞ φ0
α = 0 and limη→−∞ φ0

α = 1. The
lowest order chemical potential equation at order 1/ε2 is,

1
ε2

∂

∂η

((
1 − gα

(
φ0

α

)) ∂cβ
(
μ0, T

)
∂μ

∂μ0

∂η

)
= 0.
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Integrating, the above equation once we get,

(
1 − gα

(
φ0

α

)) ∂cβ
(
μ0, T

)
∂μ

∂μ0

∂η
= A1. (6.20)

We observe limη→∞ gα

(
φ0

α

)
= 0 and the factor

∂cβ
(
μ0, T

)
∂μ

is non-zero.

Using the matching condition in Eqn. (6.17), we derive that A1 is zero.
Inserting A1 = 0 into Eqn. (6.20) and integrating once we get the follow-
ing,

μ0 = μ0.

μ0 is an integration constant. To fix the value, we insert this constant in
the phase-field equation at order ε that reads,

− ζv
∂φ0

α

∂η
=

∂2φ1
α

∂η2 +
16
π2 φ1

α +
1
2
(
cα (μeq, T ) − cβ (μeq, T )

) (
μ0 − μeq

) ∂hα

(
φ0

α

)
∂φα

.

For brevity we determine the constant (μ0 − μeq) from the solvability
condition. It is useful to identify an useful operator which derives from
the phase-field equation at zeroth order as follows,

∂2φ0
α

∂η2 − 16
2π2
(
1 − 2φ0

α

)
= 0.

Differentiating, the above equation and re-arranging we get,(
∂2

∂η2 +
16
π2

)
∂φ0

α

∂η
= 0. (6.21)

The term in the brackets
∂2

∂η2 +
16
π2 is a linear operator and we define this

as L. Using this linear operator, the phase-field equation at order ε is,

Lφ1
α = −ζv

∂φ0
α

∂η
− 1

2
(
cα (μeq, T ) − cβ (μeq, T )

) (
μ0 − μeq

) ∂hα

(
φ0

α

)
∂φα

.
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From Eqn. (6.21), we see that
∂φ0

α

∂η
is a homogeneous solution of the

operator L, hence the solvability condition for a non-trivial φ1
α reads,∫ ∞

−∞
−ζv

(
∂φ0

α

∂η

)2

∂η =∫ ∞

−∞

1
2
(
cα (μeq, T ) − cβ (μeq, T )

) (
μ0 − μeq

) ∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η.

Making use of the integrals
∫∞

−∞

(
∂φ0

α

∂η

)2

∂η =
1
2

, and
∫∞

−∞
∂hα

(
φ0

α

)
∂φα

∂η =

−1, the equation simplifies to

(
μ0 − μeq

)
=

−ζv

(cβ (μeq, T ) − cα (μeq, T ))
(6.22)

This is the departure from the equilibrium chemical potential in the sharp
interface limit.

6.2.2. Thin interface limit

For, the thin interface correction we solve the chemical potential equation
at the next order at 1/ε,

−
(

∂cα
(
μ0, T

)
∂μ

hα

(
φ0

α

)
+

∂cβ
(
μ0, T

)
∂μ

(
1 − hα

(
φ0

α

))) v

ε

∂μ0

∂η
=

1
ε

∂

∂η

((
1 − gα

(
φ0

α

)) ∂cβ
(
μ0, T

)
∂μ

∂μ1

∂η

)
+

1
ε

∂

∂η

(
vs
(
φ0

α

) (
cβ
(
μ0, T

)− cα
(
μ0, T

)) ∂φ0
α

∂η

)
+

v

ε

(
cα
(
μ0, T

)− cβ
(
μ0, T

)) ∂hα

(
φ0

α

)
∂η

. (6.23)
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Note, at order 1/ε, there are additional terms. However we make use of
the fact that μ0 is constant and hence all its derivatives vanish, so that
Eqn. (6.23) simplifies to,

∂

∂η

((
1 − gα

(
φ0

α

)) ∂cβ
(
μ0, T

)
∂μ

∂μ1

∂η

)
=

− v
∂

∂η

(
s
(
φ0

α

) (
cβ
(
μ0, T

)− cα
(
μ0, T

)) ∂φ0
α

∂η

)
+

v
(
cβ
(
μ0, T

)− cα
(
μ0, T

)) ∂hα

(
φ0

α

)
∂η

.

Integrating this once we get,((
1 − gα

(
φ0

α

)) ∂cβ
(
μ0, T

)
∂μ

∂μ1

∂η

)
=

− v

(
s
(
φ0

α

) (
cβ
(
μ0, T

)− cα
(
μ0, T

)) ∂φ0
α

∂η

)
+

v
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
hα

(
φ0

α

)
+ A2.

To fix A2 we take limη−>−∞ which gives, (1 − gα (φα)) → 0,
∂cβ
(
μ0, T

)
∂μ

is a positive constant,
∂φ0

α

∂η
→ 0 and hα

(
φ0

α

)→ 1. Therefore, the value of

A2 =
− v
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
. Substituting this in the above equation and

re-arranging we get,

∂μ1

∂η
=

v
(
cβ
(
μ0, T

)− cα
(
μ0, T

))(
hα

(
φ0

α

)− 1 − s
(
φ0

α

) ∂φ0
α

∂η

)
∂cβ
(
μ0, T

)
∂μ

(1 − gα (φ0
α))

.
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For brevity we denote the expression
hα

(
φ0

α

)− 1 − s
(
φ0

α

) ∂φ0
α

∂η

(1 − gα (φ0
α))

as r
(
φ0

α

)
.

Substituting this in the preceding equation and integrating we get,

μ1 = μ1 +
v
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

∫ η

0
r
(
φ0

α

)
∂η. (6.24)

To obtain the integration constant μ1, we write the phase-field equation
at order ε2,

− ζvε2 ∂φ1
α

∂η
= ε2 ∂2φ2

α

∂η2 +

ε2 16
π2 φ2

α +
1
2

ε2φ1
α

(
cα (μeq, T ) − cβ (μeq, T )

) (
μ0 − μeq

) ∂2hα

(
φ0

α

)
∂φ2

α

+

1
2

ε2 (cα (μeq, T ) − cβ (μeq, T )
)

μ1 ∂hα

(
φ0

α

)
∂φα

or,

Lφ2
α = −ζv

∂φ1
α

∂η

− 1
2
(
cα (μeq, T ) − cβ (μeq, T )

) [
φ1

α

(
μ0 − μeq

) ∂2hα

(
φ0

α

)
∂φ2

α

+ μ1 ∂hα

(
φ0

α

)
∂φα

]
.

The solvability condition for a non-trivial φ2
α can be derived as,

−
∫ ∞

−∞
ζv

∂φ1
α

∂η

∂φ0
α

∂η
∂η−∫ ∞

−∞

1
2

φ1
α

(
cα (μeq, T ) − cβ (μeq, T )

) (
μ0 − μeq

) ∂2hα

(
φ0

α

)
∂φ2

α

∂φ0
α

∂η
∂η−∫ ∞

−∞

1
2
(
cα (μeq, T ) − cβ (μeq, T )

)
μ1 ∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η = 0. (6.25)
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To see the nature of the first integral, we make use of the fact that φ1
α

satisfies the phase-field equation at order ε which reads,

Lφ1
α = −ζv

∂φ0
α

∂η
− 1

2
(
cα (μeq, T ) − cβ (μeq, T )

) (
μ0 − μeq

) ∂hα

(
φ0

α

)
∂φα

.(6.26)

The phase-field profile φ0
α is part of a sinus curve and hence is an odd-

function, which implies its derivative
∂φ0

α

∂η
is even. Similarly, the interpola-

tion function hα

(
φ0

α

)
is an odd function and hence the function

∂hα

(
φ0

α

)
∂φα

is an even function. In order to realize this, we utilize the anti-symmetric
property of the interpolation function with respect to the η = 0, and
equivalently where φα = 1/2,

hα

(
φ0

α (η)
)− 1

2
=

1
2

− hα

(
φ0

α (−η)
)

.

Differentiating both sides with respect to η and using the even property

of
∂φ0

α

∂η
we derive,

∂hα (φα (η))
∂φα

=
∂hα (φα (−η))

∂φα
,

which proves
∂hα (φα (η))

∂φα
is even. Conversely, differentiating again implies

the second derivative
∂2hα (φα (η))

∂φ0
α

2 is odd. Using these properties we

directly find that the R.H.S of equation Eqn. (6.26) is even. Combined

with the fact that the operator L is of the form
∂2

∂η2 +
16
π2 , which does not

modify the characteristics of the R.H.S, we derive that φ1
α is even. Putting

all the arguments together results in the implication that only the second
integral with the term μ1 in the solvability condition Eqn. (6.25) does not
vanish and the solvability condition simplifies to,∫ ∞

−∞

1
2
(
cα (μeq, T ) − cβ (μeq, T )

)
μ1 ∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η = 0.
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Inserting Eqn.(6.24) for μ1 into the above solvability condition, we derive
an equation for μ1 given by,

μ1 =
v
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

∫ ∞

−∞

[∫ η

0
r
(
φ0

α

)
∂η

]
∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
∂η︸ ︷︷ ︸

:=M̃

.

With the short hand notation M̃ we can write,

μ1 =
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

v

(
M̃ +

∫ η

0
r
(
φ0

α

)
∂η

)
.

The thin-interface limit which denotes the macroscopic chemical potential
at first order μ̃1 can be derived by using the limη→±∞ and the matching
condition in Eqn. (6.18) and giving,

lim
η→±∞

∂μ1

∂η
=

∂μ̃0

∂x

∣∣∣∣±
=
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

vr
(
φ0

α±) ,

where φ0
α± denotes the value of φ0

α at the respective bulk sides. Employing
the matching condition given by Eqn.(6.15) we have,

μ̃1|± = lim
η→±∞

(
μ1 − η

∂μ̃0

∂x

∣∣∣∣±
)

=
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

v
(
M̃ + F̃ ±) , (6.27)

where we define F̃ |± as follows,

F̃ ± =
∫ ±∞

0

(
r
(
φ0

α

)− r
(
φ0

α±)) ∂η.
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We realize that the limits on both sides(solid and liquid) do not match if
F̃ + �= F̃ − which gives rise to a chemical potential jump at the interface.
To remove this jump one must now, devise a way to make the following
condition true, ∫ ∞

0

(
r
(
φ0

α

)
+ 1
)

∂η =
∫ −∞

0
r
(
φ0

α

)
∂η,

where we have made use of the fact that
∂φ0

α

∂η
is zero at η → ±∞ and

hα

(
φ0

α

)− 1 → 0 at η = −∞ and h
(
φ0

α

)
= 0 at η = +∞. We notice, that

these are properties directly related to our interpolation function hα

(
φ0

α

)
.

We intend to retrieve the same properties (implying r (φα) = h (φα) − 1),
which is a reasonable choice, then we get s

(
φ0

α

)
as,

s
(
φ0

α

)
= −gα

(
φ0

α

) (
1 − h

(
φ0

α

))
∂φ0

α

∂η

. (6.28)

With this modification we define F̃ := F̃ + (= F̃ −) and the macroscopic
chemical potential μ̃1 at first order in Eqn. (6.27) yields,

μ̃1|± = lim
η→±∞

(
μ1 − η

∂μ̃0

∂x

∣∣∣∣±
)

=
(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

v
(
M̃ + F̃

)
.

and the chemical potential until the first order in ε writes μ̃|± = μ0 +εμ̃1|±,
which upon subtracting μeq from both sides becomes,

μ̃|± − μeq =
(
μ0 − μeq

)
+ ε

(
cβ
(
μ0, T

)− cα
(
μ0, T

))
∂cβ
(
μ0, T

)
∂μ

v
(
M̃ + F̃

)
.
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Putting all physical properties in their respective dimensions, we get,

μ̃|± − μeq =
(
μ0 − μeq

)
+ ε

(
cβ
(
μ0, T

)− cα
(
μ0, T

))
(Dβ)

∂cβ
(
μ0, T

)
∂μ

V
(
M̃ + F̃

)
, (6.29)

where ε is hereafter, in dimensions of length.

6.2.3. Kinetic coefficient and the antitrapping
current

To relate the total departure from equilibrium at first order in ε given
in Eqn. (6.29) it is customary to write the modified temperature of the
interface T due to the Gibbs-Thomson effect written as,

T = Tm − |mβ |cβ
i − Γκ − βV, (6.30)

where T and cβ
i are the interfacial temperatures and the concentrations

of the liquid, while mβ is the slope of the liquidus and Tm is the melting
point of the pure component. β is the kinetic coefficient and Γ is the
Gibbs-Thomson coefficient. Then T can be written as follows:

T = Tm − |mβ |cβ (μeq, T ) . (6.31)

With this, the Gibbs-Thompson equation is modified as,

(Tm − |mβ |cβ
i ) − (Tm − |mβ |cβ (μeq, T )) = Γκ + βV (6.32)

The first bracketed term on the left hand side is the modified melting point
of the interface due to constitutional undercooling because of the shift
of interfacial concentration cβ

i with respect to the equilibrium liquidus
concentration at this temperature cβ (μeq, T ). The second bracketed term
is the temperature of solidification. Their difference is nothing but the
equivalent undercooling ΔT , which matches the Gibbs-Thomson equation
of a pure material. Since we are here treating only one dimensional
problems, curvature undercooling drops out and the effective undercooling
reads,

ΔT = mβ

(
cβ (μeq, T ) − ci

)
= βV. (6.33)
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In order to relate the undercooling at the interface, Δ̃T which is the
macroscopic undercooling at first order, to the deviation of the macroscopic
chemical potential from equilibrium in the thin-interface limit, we multiply

Eqn. (6.29) by mβ
∂cβ (μeq, T )

∂μ
such that the left hand side of the equation

is nothing but mβ

(
cβ

i − cβ (μeq, T )
)

and alternatively −Δ̃T . With this
modification, the total Eqn. (6.29) becomes,

−Δ̃T |± = mβ
∂cβ (μeq, T )

∂μ

[ (
μ0 − μeq

)
+

ε

(
cβ
(
μ0, T

)− cα
(
μ0, T

))
(Dβ)

∂cβ
(
μ0, T

)
∂μ

V
(
M̃ + F̃

) ]
. (6.34)

Using the result obtained in Eqn. (6.22), inserting the appropriate di-
mensions and substituting the relation between the undercooling and the
kinetic coefficient, (Δ̃T |± = β̃|±V ) we derive the equation of the kinetic
coefficient (β̃|± = β̃) as,

β̃ =
mβ

∂cβ (μeq, T )
∂μ

(cβ (μeq, T ) − cα (μeq, T ))
×⎡⎢⎢⎣ταβ − ε

(
cβ
(
μ0, T

)− cα
(
μ0, T

)) (
cβ (μeq, T ) − cα (μeq, T )

)
(Dβ)

∂cβ
(
μ0, T

)
∂μ

(
M̃ + F̃

)⎤⎥⎥⎦ .

(6.35)

Now we make the approximation(
cβ
(
μ0, T

)− cα
(
μ0, T

)) ≈ (cβ (μeq, T ) − cα (μeq, T )
)
, which is valid for
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small driving forces. Utilizing the approximation, the expression for the
kinetic coefficient until the first order becomes,

β̃ =
mβ

∂cβ (μeq, T )
∂μ

(cβ (μeq, T ) − cα (μeq, T ))

⎡⎢⎢⎣ταβ − ε

(
cβ (μeq, T ) − cα (μeq, T )

)2
(Dβ)

∂cβ
(
μ0, T

)
∂μ

(
M̃ + F̃

)⎤⎥⎥⎦
(6.36)

An alternative form can also be written using some basic thermody-

namics relating
∂cβ (μeq, T )

∂μ
with the latent heat of transformation Lα

using the Clausius-Clapeyron equation for alloys which writes
dμeq

∂T
=

∂μeq

∂cβ

dcβ (μeq, T )
dT

=
Lα

T (cβ (μeq, T ) − cα (μeq, T ))
. Using mβ =

dcβ (μeq, T )
dT

,

we derive,
mβ

∂cβ (μeq, T )
∂μ

(cβ (μeq, T ) − cα (μeq, T ))
=

T

Lα
. This gives an equivalent form

for the kinetic coefficient as,

β̃ =
T

Lα

⎡⎢⎢⎣ταβ − ε

(
cβ (μeq, T ) − cα (μeq, T )

)2
(Dβ)

∂cβ
(
μ0, T

)
∂μ

(
M̃ + F̃

)⎤⎥⎥⎦ . (6.37)

From this it is easy to see, that to perform simulations with vanishing
interface kinetic coefficient

(
β̃ = 0

)
, one can choose the relaxation constant

ταβ according to the relation,

ταβ = ε

(
cβ (μeq, T ) − cα (μeq, T )

)2
(Dβ)

∂cβ
(
μ0, T

)
∂μ

(
M̃ + F̃

)
. (6.38)

For the typical interpolation polynomials of cubic and quartic type poly-
nomial, when used in combination with the obstacle potential, the values
of F̃ and M̃ are tabulated below,



6.2. Asymptotic analysis 167

M̃ F̃
h (φα) = φ2

α (3 − 2φα) 0.063828 0.158741
h (φα) = φ3

α

(
10 − 15φα + 6φ2

α

)
0.052935 0.129288

Finally, the anti-trapping current along with the derived s
(
φ0

α

)
in Eqn.

(6.28) is given by,

jat = −πε

4
gα

(
φ0

α

) (
1 − hα

(
φ0

α

))√
φ0

α (1 − φ0
α)

(cβ
(
μ0, T

)− cα
(
μ0, T

)
)
∂φα

∂t

∇φα

|∇φα| .

(6.39)

It in interesting to see the similarity between the equations Eqn. (6.38)
and Eqn. (5.29), used for deriving vanishing interface kinetics for the
case of solute diffusion and pure thermal diffusion respectively. The
similarity can be appreciated if we compare the evolution equations for
the temperature field and the chemical potential. The rejection of solute
cβ (μeq, T ) − cα (μeq, T ) is analogous to the rejection of latent heat Lα.
Correspondingly, the mobility in the case of the thermal diffusion is K,

while it is Dβ ∂cβ

∂μ
for the case of solute diffusion. The resemblance is not

surprising since, both are diffusion equations, involving phase change at
the interface.

6.2.4. Effect of curvature and anisotropy

With the above analysis, we derive the expressions for the relaxation
constant and the antitrapping current, which are dependent on the chemical
potential at the zeroth order, μ0. While in one dimensional problems, its
value depends on the local normal velocity and can be determined by the
Eqn. (6.22), in the presence of curvature, the Gibbs-Thomson condition is
modified through the contribution of the term proportional to σκ which
modifies the sharp interface limit for isotropic surface energies, given in
Eqn.(6.22) in dimensional units as,

(
μ0 − μeq

)
=

ταβV

(cα (μeq, T ) − cβ (μeq, T ))
+

σκ

cα (μeq, T ) − cβ (μeq, T )
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The preceding equation can be derived by considering the extra term
arising from writing the laplacian in curvilinear co-ordinates represented
using the curvature κ and the arc length as in [30, 50]. The value of the
chemical potential μ0 derived through the preceding expression, is difficult
to utilize in the expressions derived for the kinetic coefficient and the
anti-trapping current, since the values of the curvature and the velocity
are not known a priori. A work around this problem would be to use

the approximation,
∂cβ
(
μ0, T

)
∂μ

≈ ∂cβ (μeq, T )
∂μ

which is valid for small

departures from equilibrium relevant for most phase transition problems
occurring at lower undercoolings in the absence of appreciable interface
kinetics. The same approximation can also be applied for the the rejection,
cα
(
μ0, T

)−cβ
(
μ0, T

)
appearing in both the expressions for the relaxation

constant and the anti-trapping current, which varies little from its value
at at the equilibrium chemical potential for lower undercoolings.

For larger departures from equilibrium we propose to dynamically evalu-
ate the expressions for the relaxation constant ταβ and the anti-trapping
current. To do this we need the chemical potential in the sharp inter-
face limit which is the average value across the interface. Since this is
computationally time consuming to evaluate, we use the local chemical
potential for the dynamic computation of the above mentioned quantities.
This introduces an error of order O(ε2) and higher for the anti-trapping
which can be realized by expanding the term cβ

(
μ0, T

)−cα
(
μ0, T

)
around

the local chemical potential μ. The highest order correction would be

proportional to
(

∂cβ

∂μ
− ∂cα

∂μ

)(
μ0 − μ

)
, where μ0 − μ is at highest order

proportional to O(ε) rendering the leading order correction due to this
implementation of the antitrapping current proportional to O(ε2). A
similar result can be derived for the case of the relaxation constant ταβ .
Since, in the thin-interface limit, we only claim to derive the relations
with accuracy of order O(ε), this scheme should be certainly acceptable.
Another point worth mentioning regards the treatment of anisotropy in ki-
netics. While using Eqn.(6.38), problems with vanishing interface kinetics
in isotropic situations can be treated, in order to achieve interface evolu-
tion with non-vanishing interface kinetics in the case of isotropic system,
would require the back calculation of the relaxation constant through the
Eqn.(6.37). The more realistic situation of anisotropy in surface energy
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and kinetics can be treated through a modification of Eqn.(6.38). We
follow a route suggested in [48, 50] of a simple derivation, by writing the
equations of motion for the normal direction but excluding curvature. The
anisotropy in the surface energy is affected by writing the gradient energy
contribution as γ0ac (n)2 |qαβ |2, where n is the unit normal vector to the
interface defined as

qαβ

|qαβ | and ac (n) describes the anisotropy in the surface

energy. A similar function ταβ (n) is used for tailoring the anisotropy in
the kinetic coefficient. The major modification in the asymptotics through
this calculation, is the transformation of the gradient in the phase-field

profile at leading order which becomes,
∂φ0

α

∂η
= − 1

ac (n)
4
π

√
φ0

α (1 − φ0
α).

Incorporating this result in the asymptotics, yields the following expression
for the kinetic coefficient,

β̃ (n) =
T

Lα

⎡⎢⎢⎣ταβ (n)
ac (n)

− εac (n)
(
cβ (μeq, T ) − cα (μeq, T )

)2
(Dβ)

∂cβ
(
μ0, T

)
∂μ

(M + F )

⎤⎥⎥⎦ .

(6.40)

To achieve vanishing interface kinetics in all directions we can choose,
ταβ (n) as τ0

αβa2
c (n), where τ0

αβ is derived from the expression in Eqn.(6.38).
The case of anisotropy in kinetics would however require a more careful
evaluation of the functions. Lastly, we would like to recall that a lineariza-
tion of the grand potential around the equilibrium chemical potential was
used for deriving the asymptotics. This is valid for small departures from
equilibrium in phase transitions occurring at low undercoolings, where
interface kinetics is absent and small. For certain situations at very high
undercoolings and in the presence of strong kinetics, there might arise
a situation where this linearization does not hold. This depends on the
nature of the grand potentials and the magnitude of departure from equi-
librium. The linearization is however only a simplification which can be
easily relaxed resulting in the modification of the sharp interface limit for
isotropic surface energies through the relation,

Ψβ

(
T, μ0)− Ψα

(
T, μ0) = σκ + ταβV. (6.41)
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The derivation of the deviation of the chemical potential however, depends
on the nature of the grand potentials, where expansions of the grand
potentials, until first or second order in the term μ0 − μeq might be
necessary. The expression for the chemical potential at first order remains
unchanged. However no general rule exists for estimating the validity of the
linearization used in the asymptotics and the departure from equilibrium
must be used to estimate the difference between the linearized and the
original grand potential description, before reaching a conclusion.

6.2.5. Multicomponents and multiphases

One must note that although, the present study has been performed for
the case of two-phase alloy solidification, this is not a limitation and the
analysis can be easily generalized similar to earlier works [30]. For example:
the anti-trapping current for the case of multi-phase, multi-component
alloy solidification, where all the solid phases have zero diffusivities can be
obtained by averaging each of the individual fluxes for each component i
given by,

(
jα�l

at

)
i

= −πε

4
gα

(
φ0

α

) (
1 − hα

(
φ0

α

))√
φ0

α (1 − φ0
α)

(
cβ

i

(
μ0, T

)− cα
i

(
μ0, T

)) ∂φα

∂t

∇φα

|∇φα| ,

and summing up all the fluxes projected along the normal to the liquid
phase-field contour as,

(jat)i =
N∑

α=1

(
jα�l

at

)
i

(
− ∇φα

|∇φα| · ∇φl

|∇φl|
)

.

Other possibilities also exist, and the generalized normal vector qαl can
itself be used for the projection. Similarly, the relaxation constant for
a vanishing interface kinetics for the phase transitions from α to β for
more than two components can be obtained as an extension of our present
analysis, where the expression for the case of isotropic surface energies can
be easily seen as a modification of Eqn.(6.38). We modify Eqn.(6.29) and
derive the corresponding expression for two-phase multi-component system
of K independent components, by solving for the system of equations for
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each of the components of the vector μ, at first order in ε. The expression
is given by,

{
μ̃i|± − μi

eq

}
=
{

μ0
i − μi

eq

}
+ εV

(
M̃ + F̃

) [
Dβ

ij

∂cβ
j

∂μi

]{
cβ

i

(
μ0, T

)− cα
i

(
μ0, T

)}
Note, in the above notation [] represents a matrix while {} represents a

vector. Multiplying, throughout with

[
∂Ψβ

(
T, μeq

)
∂μi

− ∂Ψα
(
T, μeq

)
∂μi

]
=[

cα
i

(
μeq, T

)− cβ
i

(
μeq, T

)]
, we derive,[

cα
i

(
μeq, T

)− cβ
i

(
μeq, T

)] {
μ̃i|± − μi

eq

}
=[

cα
i

(
μeq, T

)− cβ
i

(
μeq, T

)] {
μ0

i − μi
eq

}
+

εV
(
M̃ + F̃

) [
cα

i

(
μeq, T

)− cβ
i

(
μeq, T

)] [
Dβ

ij

∂cβ
j

∂μi

]{
cβ

i

(
μ0, T

)− cα
i

(
μ0, T

)}
.

The first term on the right hand side of the preceding equation is given
by the sharp interface limit ταβV , and to derive vanishing kinetics, the
left hand side of the equation should vanish, which gives the following
relation for the case of isotropic free energies in the case of multi-component
systems:

ταβ =

ε
[
cβ

i

(
μeq, T

)− cα
i

(
μeq, T

)]
1×K

[
Dβ

ij

∂cβ
i

(
μ0, T

)
∂μj

]−1

K×K

×{
cβ

j

(
μ0, T

)− cα
j

(
μ0, T

)}
K×1

× (M̃ + F̃ ), (6.42)

K being the number of independent components in the system. A similar
expression can be seen in the work by Kim et al.[54].
From the above discussion we have all the corrections that we need for
performing quantitative simulations. The corrections to the Stefan con-
dition at higher orders, that are the interface stretching and the surface
diffusion, vanish when anti-symmetric functions are used to interpolate
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the phase diffusivities, gα (φα) and hα (φα) for the grand potentials which
are applied from results derived in previous literature [30, 46].

6.3. Conclusions

We present a multi phase-field model based on the grand potential func-
tional. This modification enables to effectively decouple the bulk and
interface contributions which in turn allows to upscale the length of simula-
tions. This formulation is consistent with existing quantitative phase-field
models and places it in a common framework starting from a grand poten-
tial functional. We perform an asymptotic analysis of the derived model
and obtain the thin-interface limit for the kinetic coefficient and an expres-
sion for the anti-trapping current for the special case of double obstacle type
potentials. It is noteworthy to mention that, computationally, the obstacle
type potentials are more efficient because the interface is finitely defined.
Hence, computations of the gradient terms can be finitely limited to a fixed
number of points in the interface. This computationally efficiency was
offset until now because there was were no existing thin-interface limit and
no expressions for the anti-trapping current for these type of potentials.
This precluded the possibility of performing any quantitative simulations
for the case of alloys. However, with the present thin interface asymptotics
this can now be realized. With such modifications, quantitative simulations
of multi-phase, multi-component systems at larger scales have become
computationally feasible.



Chapter 7

Generalized construction
of parabolic free energies



174 7. Generalized construction of parabolic free energies

7.1. Introduction

Phase-field modeling has become a fairly versatile technique for the treat-
ment of problems involving phase transitions. In particular, problems in
solidification involving multi-component alloys, are fairly elegantly treated.
A key ingredient while performing phase-field simulations for the case of
phase-transformation in alloys are the description for free-energies of the
respective phases. While thermodynamic databases such as CALPHAD
provide the necessary information, it is often convenient to construct
simpler descriptions in the region of interest, in order to perform computa-
tionally efficient simulations. With this motivation, we take a brief survey
of the available solution models and the relevant simplified constructions
that are possible while retrieving the correct physics. It is important to
note that although, the free energies provided by the CALPHAD databases
are Gibbs- free energies, the same can be used for phase-field simulations
where the conditions are at constant pressure and constant system volume.
In such cases, the Gibbs-free energies and the Helmholtz- free energies
which are required for phase-field simulations differ only by an integration
constant.

7.2. Solution models for binary alloys

The solution models, that are normally used for fitting to the various
binary alloys, fall into three categories,

• Ideal solution models

• Regular solution models

• Sub-regular solution models

An ideal solution model can be characterized when, there exists no atomic
interactions and the excess enthalpy of mixing and excess mixing entropy
are zero. The corresponding expression can be exemplary written in the
following form for a binary alloy as,

Gα = cAG0
A + cBG0

B + RT (cA ln (cA) + cB ln (cB)) ,
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where G0
A and G0

B are the reference free energies of the components A, B
with the crystal structure of phase α. The next extension, is the case,
where, there exists an interaction between the two atoms of different type
and the corresponding interaction energy is denoted by the term ΩAB.
However, the interaction is symmetric. The enthalpy of mixing is non-zero,
but there exists no excess entropy of mixing. The regular binary solution
model is given by,

Gα = cAG0
A + cBG0

B + ΩABcAcB + RT (cA ln (cA) + cB ln (cB)) .

The final step in the generalization, is of course where the interaction
parameter is not symmetric with respect to the two atomic species, but is
a function of the concentration. This is sub-regular solution model written
as,

Gα = cAG0
A + cBG0

B + (cAΩAB + cBΩBA) cAcB+
RT (cA ln (cA) + cB ln (cB)) .

In general all of the above models, can be treated as special cases of
the Redlich-Kister Polynomials. While higher order descriptions are also
possible, it is often desirable to limit these descriptions until the sub-regular
type, such that the eventual construction of ternary and multi-component
systems is less complex. However, in relation to phase-field models, one
does not require, the information of the free energies in the whole range
of concentrations, as the departure from equilibrium is in most cases in a
very small range. In the following discussion, we look into the properties
that are required, in order to derive a minimalistic construction of the free
energy data while deriving the right physics.

7.3. Basic thermodynamics

When performing phase-field simulations, one of the most important
requirements is the correct coupling of the phase-field evolution to the
concentration equation, namely the relation between the driving force and
the surface tension through the Gibbs-Thomson equation. For the case
of alloys, it is derived in the following discussion, by equating the driving
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force for phase transformation(grand potential difference), to the capillary
force given by,

ΔΨ = σ̃αβκ,

where ΔΨ is the driving force for phase transition from α to β written as,
Ψβ − Ψα. σ̃αβ is the surface tension of the interface between the phases α
and β. We can relate the difference in the grand potentials to the shift
in the chemical potentials from equilibrium through a linear expansion of
the grand potentials about the equilibrium chemical potentials giving,(

∂Ψβ

∂μ
− ∂Ψα

∂μ

)
Δμ = σ̃αβκ,

where Δμ is μ − μeq, μeq being the equilibrium chemical potential. Using

the thermodynamic relation
∂Ψ
∂μ

= −c, we derive,

(
cα − cβ

)
Δμ = σ̃αβκ.

Next we expand μ about the equilibrium compositions of either phase, to

derive Δμ =
∂μ

∂c

(
cβ − cβ

eq

)
=

∂2fβ

∂c2 Δcβ , which upon substitution in the
Gibbs-Thomson condition derives,

Δcβ =
σ̃αβκ

∂2fβ

∂c2 (cα − cβ)

From the above discussion, it is clear that the shift in the equilibrium
concentrations varies inversely as the second derivative of the free energy
with respect to the concentration and the magnitude of rejection of solute.
Hence, in order to arrive at the correct Gibbs-Thomson effect the evaluation

of
∂2fβ

∂c2 and the right solute rejection:
(
cα − cβ

)
, from the constructed free

energies is important. To establish this, the simplest free energies one can
construct are indeed, second order polynomials. In the following, we derive
the methodology for the construction of free energy density descriptions for
binary alloys, and then extend it for the case multi- component alloys.
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7.4. Description of binary alloys with
parabolic type
free energies

We start the construction of free energies of the respective phases with the
following type of expression for the free energies,

fα (T, c) = Aα(T )c2 + Bα(T )c + Eα(T ),

where the coefficients Aα (T ), Bα (T ) and Eα (T ) are functions of temper-
ature T. Our aim is to fit a simplified form for the free energies utilizing
the data obtained from the CALPHAD databases for the specific system.

We can determine the terms Aα (T ) as
∂2fα

∂c2 |ceq ≡ 1
Vm

∂2Gα

∂c2 |ceq , com-
puted at the equilibrium concentration of the phase at the temperature T,
where Gα(T, c) is the free energy function obtained from the CALPHAD

database. Next we derive the chemical potential μeq =
1

Vm

∂Gα

∂c
|ceq from

the database and compute Bα (T ) by equating the first derivative of the
constructed free energies to the chemical potential from the database
giving,

Bα (T ) = μeq − 2Aα (T ) ceq.

The only term left out is E (T ), which is fitted by equating it to the grand
potential at the concentration ceq given by,

Eα (T ) = Ψeq − Aα (T ) c2
eq,

where Ψeq =
1

Vm
(Gα (T, ceq) − μeqc). With these equations we can ade-

quately fit, all the coefficients in the constructed free energy at the given
temperature T. For a non-isothermal description it is essential to derive
the equations in the neighborhood of the temperature one is simulating
and perform a fitting in the temperature space. In most cases, a linear
temperature fit suffices.
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7.4.1. Mobilities for diffusion

To derive the mobilities, we require the second derivatives of the free
energies with respect to the concentration. This can be realized through
the following diffusion equation for a binary alloy written as follows,

∂cα

∂t
= ∇ · (Mα∇μ) ,

where Mα is defined as D
∂cα

∂μ
. From the free energy expression one can

derive, the concentration as a function of the chemical potential as,

cα (μ) =
(μ − Bα (T ))

2Aα (T )
.

Using the relation cα (μ), one can derive the relation
∂cα

∂μ
=

1
2Aα (T )

and

hence the mobility Mα.

7.5. Extension to the case of ternary
alloys(three components)

The extension of the parabolic free energy formulation for the case of
ternary alloys is relatively straight forward. We write the free energies of
the respective phases in the following form,

fα (cA, cB , cC , T ) = Aα (T ) c2
A + Bα (T ) c2

B + Cα (T ) c2
C+

Oα (T ) cA + P α (T ) cB + Qα (T ) ,

where Aα, Bα, Cα are the components and cA, cB , cC their respective
concentrations. To determine the coefficients of the polynomial, we follow
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the same route as before for the binary alloy, by first writing the second
derivatives with respect to composition as,

∂2fα

∂c2
A

= 2 (Aα (T ) + Cα (T )) ≡ 1
Vm

∂2Gα

∂c2
A

∂2fα

∂c2
B

= 2 (Bα (T ) + Cα (T )) ≡ 1
Vm

∂2Gα

∂c2
B

∂2fα

∂cAcB
=

∂2fα

∂cBcA
= 2Cα (T ) ≡ 1

Vm

∂2Gα

∂cAcB
.

Through the above equations, we can fix the coefficients Aα (T ) , Bα (T )
and Cα (T ). To derive the coefficients Oα (T ) and P α (T ) we write the
two independent equilibrium chemical potentials as,

μA = 2Aα (T ) cA − 2Cα (T ) cC + Oα (T ) ≡ 1
Vm

(
∂Gα

∂cA

)
cB

μB = 2Bα (T ) cB − 2Cα (T ) cC + P α (T ) ≡ 1
Vm

(
∂Gα

∂cB

)
cA

.

With the above equations all the terms in the polynomial can be fixed ex-
cept the term Qα (T ), which is be determined, by equating the grand poten-
tial at the equilibrium concentrations at the given temperature, to the value
obtained from the database given as Ψeq =

1
Vm

(Gα (cA, cB .cC , T ) − μAcA − μBcB).
The coefficients Aα through P α can be written as,

Cα (T ) =
1

2Vm

∂2Gα

∂cAcB

Aα (T ) =
1

2Vm

∂2Gα

∂c2
A

− Cα (T )

Bα (T ) =
1

2Vm

∂2Gα

∂c2
B

− Cα (T )

Oα (T ) = μA − 2Aα (T ) cA + 2Cα (T ) cC

P α (T ) = μB − 2Bα (T ) cB + 2Cα (T ) cC .
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The concentrations cA (μA, μB , T ) and cB (μA, μB , T ) can be derived by
inverting the expressions for the chemical potential simultaneously, and
the corresponding expressions are,

cα
A (μA, μB , T ) =

μA − Oα (T ) + 2Cα (T )
2Cα (T )

− μB − P α (T ) + 2Cα (T )
2 (Bα (T ) + Cα (T ))

Aα (T ) + Cα (T )
Cα (T )

− Cα (T )
Bα (T ) + Cα (T )

cα
B (μA, μB , T ) =

μA − Oα (T ) + 2Cα (T )
2 (Aα (T ) + Cα (T ))

− μB − P α (T ) + 2Cα (T )
2Cα (T )

Cα (T )
Aα (T ) + Cα (T )

− Bα (T ) + Cα (T )
Cα (T )

.

To derive the mobilities we need the matrix,⎡⎢⎢⎣
∂cα

A

∂μA

∂cα
A

∂μB

∂cα
B

∂μA

∂cα
B

∂μB

⎤⎥⎥⎦ ,

which is inverse of the matrix,⎡⎢⎢⎢⎣
∂2fα

∂c2
A

∂2fα

∂cA∂cB

∂2fα

∂cB∂cA

∂2fα

∂c2
B

⎤⎥⎥⎥⎦ .

The inverse matrix can be evaluated as follows,

1
2 [Aα (T ) Bα (T ) + Bα (T ) Cα (T ) + Cα (T ) Aα (T )]

×[
(Bα (T ) + Cα (T )) −Cα (T )
−Cα (T ) (Aα (T ) + Cα (T ))

]
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7.6. General description for the case of
multicomponent alloys

To generalize the procedure for the determination of the free energies to
multi-component systems we start with K − 1 parabolas for each of the
K − 1 independent components which are chosen arbitrarily and write the
general form as follows,

fα (c, T ) =
K−1∑
i=1

Aα
i (T ) c2

i +
K−1∑

j=1,k=1
j<k

Bα
jk (T ) cjck +

K−1∑
i=1

Oα
i (T ) ci + Qα (T ) .

The coefficients Bα
jk (T ) are determined by equating to terms of the matrix,

1
Vm

[
∂

∂cj

(
∂Gα

∂ck

)]
j! �=k

which are computed using the information of the

free energies from the databases. Similarly coefficients Aα
i (T ) are evaluated

by using the relation, Aα
i (T ) =

1
Vm

[
∂

∂ci

(
∂Gα

∂ci

)]
. The remaining coeffi-

cients Oα
i (T ) are derived by equating the chemical potentials using the re-

lation, Oα
i (T ) = μd

i −2Aα
i (T ) (cα

i )d−∑j=1
j �=i

Bij (T )
(
cα

j

)
d
. The last term in

the expansion is the coefficient Qα (T ) which is fixed by equating the grand
potential to the value in the database,

1
Vm

(
Gα (c, T ) −∑K−1

i=1 μd
i (cα

i )d

)
,

where we have denoted the chemical potentials and the concentrations,
used for fitting the coefficients for the free energy as μd

i and (cα
i )d respec-

tively. The subscript “d“ is short for ”determining values”. The values
of the phase concentrations as functions of the chemical potential are
linearized around these chosen values of concentration and chemical poten-
tial. The mobility matrix is derived from the fitted free energy function

by inverting the matrix given by Vm

[
∂

∂cα
i

(
∂Gα

∂cj

)]−1
, which we denote

as the matrix
[

∂cα
i

∂μj

]
. The concentrations cα

i (μ, T ) can be written as

{cα
i (μ, T )} =

{
(cα

i )d

}
+
[

∂cα
i

∂μj

]{
μi − μd

i

}
.
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7.7. Derivation of chemical potential

For the phase-field model using the grand potential formalism it is nec-
essary to derive the chemical potential μi, given the phase-field and the
concentration fields at a given point. The expression for the chemical
potential can be derived using the general expression for each of the concen-
tration fields as, ci =

∑N
α=1 cα

i hα (φ). Inserting the phase concentrations
cα

i (μ, T ) as functions of μ we derive,

{ci} =
N∑

α=1
{(cα

i )}d hα (φ) +

[
N∑

α=1
hα (φ)

∂cα
i

∂μj

]{
μi − μd

i

}
,

which can be re-arranged to derive the components of the vector μ as,

{
μi − μd

i

}
=

[
N∑

α=1
hα (φ)

∂cα
i

∂μj

]−1{
ci −

N∑
α=1

(cα
i )d hα (φ)

}
.

Note the calculation of the vector components is possible in this fashion

because the components of the matrix
[

∂ci

∂μj

]
are independent of μ, being

functions only of temperature T for this special method of construction of
free energies.

7.8. Application for the case of AlCuAg
ternary alloy

We obtain the information about the free energies of the phases α-FCC,
θ and the γ-Hcp phases from the database created by Witusiewicz et
al [137, 138]. The energies are fitted around the eutectic temperature
TE using parabolic free energy forms. The respective coefficients are
then linearly fitted as functions of temperature. (Details are given in the
following chapter).

Utilizing the free energies, the grand potential formulation is used to derive
the evolution equations for the phase-field and concentration or chemical
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potential field. Exemplary structures are portrayed, showing the growth
of lamellae in a given temperature field. Contrary to binary eutectics, we
find the growth front to be highly non-planar and the velocities of the
three phases to be very different. The occurrence of coupled growth is
not only a function of the undercooling but also of the lamellar spacing
and the imposed velocity. We find that the possibility of coupled growth
increases with decreased velocities and increased temperature gradients.

7.9. Conclusions

We present a simplified construction of free energies for phase-field simu-
lations using information from CALPHAD databases. The construction
allows for computationally simpler functions to be used, while retaining
the physics of the problem. One must note, that the fitting methods
adopted here, involves deriving the free energy data by linearizing about
chosen concentrations. Depending on the deviations from equilibrium, one
must adapt the fitting procedure, to avoid large deviations from reality.
In general, simulations mimicking experimental conditions, result in small
deviations of the phase concentrations from their equilibrium values. This
allows one to use the described procedure, to fit the energies around the
equilibrium compositions of the co-existing phases. Far from equilibrium,
would require dynamic adaptation of the fitted data derived out of the
local shifts in the equilibrium concentrations. Considering the simplified
nature of the fitting procedure, it is certainly possible to perform it even
during run-time when required.
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In this chapter we present test cases, where the modified model based on
the grand potential formulation, is utilized for the simulation of dendritic
and eutectic microstructures. For the case of dendritic growth, we consider
the Al-Cu alloy, while for ternary eutectic growth, we utilize the model
ternary eutectic system, created before for comparison with theoretical
analysis of coupled growth. Additionally we model the Al-Cu-Ag alloy for
some preliminary studies. We show exemplary structures, found generally
during solidification in each of the forthcoming sections.

8.1. Dendritic growth

The phase stability regions in the Al-Cu phase diagram containing the
α-Al and the liquid phase, respectively, are confined by nearly linear phase
stability lines corresponding to slopes of 45.3K/wt% and 2.6K/wt%, for
solidus and liquidus respectively. The phase diagram was modeled using
the ideal solution formulation, where the free energy density, fα (T, c) with
c=cAl is described as:

fα (T, c) = f∗
(

cLα
Al

(T − T α
Al)

T α
Al

+ (1 − c)Lα
Cu

(T − T α
Cu)

T α
Cu

+

T (c ln c + (1 − c) ln (1 − c))
)

(8.1)

where the reference temperature for nondimensionalizing is chosen to be the
melting temperature of pure Al. The parameters Lα

i and T α
i are tabulated

in Table 8.1, The Gibbs-Thomson coefficient Γαl is 2.48 10−7K/m [38],

Table 8.1.: Free energy parameters
Lα

i Cu Al
α 8.45 5.30

liquid 0.0 0.0

T α
i Cu Al
α 0.42273 1.0

liquid X X

and energy scale f∗ is calculated from the Gibbs-Thomson coefficient
and the given surface tension. The modeled phase diagram is plotted in
Fig.8.1. With this choice of free energies, the functions cα/l (μ, T ) can be



8.1. Dendritic growth 187

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

T
em

pe
ra

tu
re

 (
N

on
di

m
en

si
on

al
)

Concentration of Al in mole fraction

Solidus
Liquidus

Figure 8.1.: Phase stability region between the α− solid and liquid modeled
using ideal free energies

determined in the following manner:

cα (μ, T ) =

exp

⎡⎢⎢⎣μ −
(

Lα
Cu

(T − T α
Cu)

T α
Cu

− Lα
Al

(T − T α
Al)

T α
Al

)
f∗T

⎤⎥⎥⎦

1 + exp

⎡⎢⎢⎣μ −
(

Lα
Cu

(T − T α
Cu)

T α
Cu

− Lα
Al

(T − T α
Al)

T α
Al

)
f∗T

⎤⎥⎥⎦

cl (μ, T ) =
exp
[

μ

f∗T

]
1 + exp

[
μ

f∗T

] .

Notice that we have written cα (μ, T ) and cl (μ, T ) as functions of a unique
μ, as required by the grand potential formulation.
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8.1.1. Kinetics of diffusion and phase
transformations

The diffusion coefficients were set to Dα = 3 · 10−13m2/s in the solid phase
and Dl = 3 · 10−9m2/s in the liquid. The anti-trapping current is defined
as a flux from the solid to the liquid side across the αl interface as,

(jat) = −πε

4
hα (φ) (1 − hα (φ))√

φ0
α (1 − φ0

α)
(cl (μ, T ) − cα (μ, T ))

∂φα

∂t

∇φα

|∇φα| ,

where φ0
α is the leading order solution of the phase-field equation, which is

also the equilibrium phase-field profile. With the anti-trapping current,
the diffusion equation is modified as follows:

∂c

∂t
= ∇ · (M (φ) ∇μ − (jat)) .

The kinetics of phase transformation in experiments at the micro-scale,
occurs on a time scale that is orders of magnitude larger than the one
given by the atomistic relaxation. Hence, for such cases the time-scale of
interface relaxation is irrelevant. Therefore, it is desirable to have infinite
mobility for phase-field evolution, which implies that the response of the
phase-field, to a change in the coupled field is instantaneous. To achieve
this in the phase-field methodology, a thin interface analysis needs to be
performed, as demonstrated first by Karma [46]. We use such an analysis
for the case of an obstacle potential presented in earlier chapters and
in [18]. The results of the analysis give the choice of the relaxation time
constant ω for the case of binary alloy as,

ω = ε

(
cl (μeq, T ) − cα (μeq, T )

) (
cl
(
μ0, T

)− cα
(
μ0, T

))
T (Dl)

∂cl
(
μ0.T

)
∂μ

(
M̃ + F̃

)
(8.2)

With this choice, we obtain β =
1

μα
int

= 0, where μα
int is the kinetic

coefficient of the α, l interface. M̃ and F̃ are solvability integrals depending
on the choice of the potential w (φ) and on the interpolation functions
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Table 8.2.: Values of the solvability integrals for the employed interpolation
polynomials

Potential M̃ F̃
hα (φ) = φ2

α (3 − 2φα) 0.063828 0.158741
hα (φ) = φ3

α

(
10 − 15φα + 6φ2

α

)
0.052935 0.129288

hα (φ). For the obstacle potential, the values of the solvability integrals,
corresponding to the two interpolation polynomials in use, are listed
in Table 8.2. μ0 for the case of binary alloys denotes the macroscopic
chemical potential at the interface, in the sharp interface limit. The kinetic
coefficient can be computed both for finite and infinite phase-field interface
mobility. For our computations, we set the vanishing interface kinetics in
all directions. Our simulations are performed with smooth cubic anisotropy
of the form,

ac (qαβ) = 1 ± δαβ

(
3 − 4

|qαβ |44
|qαβ |4

)
,

where |qαβ |44=
∑d

i (qαβ)4
i and |qαβ |4=

[∑d
i=1(qαβ)2

i

]2
, d being the number

of dimensions. δαβ is the strength of the anisotropy, which is set to 0.0097
for the chosen alloy of Al-4wt%Cu [67]. To have vanishing interface kinetics
in all directions, we employ the strategy illustrated in the earlier chapter
on Grand potential formulation and asymptotics, where we utilize the
expression for the kinetic coefficient given by Eqn. (6.40) and set the
relaxation constant as a function of the normal vector qαβ given by,

ω (qαβ) = ω0a2
c (qαβ) ,

where ω0 is computed using the relation in Eqn. (8.2). This gives the
kinetic coefficient as a function of the normal vector n =

qαβ

|qαβ | as,

β̃ (n) =
T

Lα
ac (n)

⎡⎢⎢⎣ω0 − ε

(
cβ (μeq, T ) − cα (μeq, T )

)2
T (Dβ)

∂cβ
(
μ0, T

)
∂μ

(M + F )

⎤⎥⎥⎦ .
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The term inside the brackets in the preceding equation vanishes by the
choice of ω0 and hence renders the effective kinetic coefficient, zero in all
directions. The same technique is adopted in the work by [50].

The simulation setup involves a free dendrite growing into an uniformly
undercooled melt. Utilizing the symmetry of the surface energy anisotropy,
we simulate one quadrant of the dendrite. The first benchmark involves
the proof of invariance of the dendrite tip velocities with varying inter-
face widths. For this, we set the nondimensional bulk temperature at
T=0.9843, where the melting temperature of the chosen alloy composition
Al-1.732At%, is T=0.99. Fig. 8.2 plots the dendrite tip velocities upon
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Figure 8.2.: Plot of the dendrite tip velocities simulated at a temperature of
T = 0.9843. We selectively plot points corresponding to a simulation, to show
the convergence of the velocities. We span a range where ε varies by a factor 4
and achieve convergence in the velocities. The simulation with the ε = 112.5
has run the least in nondimensional time (1.5 108), but long enough to confirm
convergence of the velocities.

change in the interface widths which confirms our calculations, that their
exists a range in interface widths for which the interface velocities are
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invariant. Above the maximum considered ε, the interface becomes unsta-
ble and the asymptotics seems to breakdown and we supposes this occurs
because errors of order O

(
ε2) become appreciable. Fig. 8.3, displays the

chemical potential along a linear section at the dendrite tip in the growing
direction, along with the equilibrium chemical potential and the theoretical
chemical potential derived from the Gibbs-Thomson condition considering
only the effect of curvature. The results show good agreement, confirming
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Figure 8.3.: Chemical potential plot along a linear section at the dendrite tip
in the growing direction, superimposed with the lines showing the equilibrium
chemical potential and the theoretically predicted chemical potential obtained
by considering the shift because of Gibbs-Thomson effect due to curvature.
The curvature used in the calculation, is measure at the dendrite tip from
the simulation. σθθ represent the second derivative of the surface tension as a
function of the polar angle, and the sum σ + σθθ represents the stiffness of the
interface.

the asymptotic expressions and the applicability of the developed model.
The contours of the chemical potential and the phase-profiles in a section
of the domain showing the growing dendrite is portrayed in Fig. 8.4.
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Figure 8.4.: Isolevel φα = 0.5 denoting the binary interface between the solid
and the liquid at various times is shown in (a), while the contours of the chemical
potential at a particular instant during evolution is displayed in (b). Values of
some of the contours of the respective nondimensionalized chemical potential
are superimposed on the plot. The simulations correspond to the case when
ε = 300.



8.1. Dendritic growth 193

8.1.2. Comparison with the LGK

In order to verify our model, we test the dendrite tip and velocities against
the analytical LGK theory [66]. An important parameter required for the
matching, is the calculation of σ∗ which is the stability parameter used
for determining the velocity and radius at the dendrite tip. While σ∗ is
expected to be in the order of 0.025 in three-dimensional systems [66],
realistic physical values vary with the anisotropy of the solid-liquid interface.
Two possibilities exist to determine the value of σ∗. The first is to derive
it from micro-solvability theory [10]. The second is to employ techniques
such as phase field simulations, where the dendrite tip radii and the
corresponding velocities are a result of the dynamic minimization of the
grand potential difference, and the σ∗ is an output of the simulation [49, 50].

We adopt the second technique, and compute the value of σ∗ as
2Dld0
V R2

from the steady state tip velocity V and tip radius R from the simulation.

Here d0 is the capillary length, defined as
Γ

m (ΔC)
, where Γ is the Gibbs-

Thomson coefficient, ΔC the magnitude of solute rejection at the interface,
and m the slope of the liquidus line. We obtain a value which gives a best fit
for all considered undercoolings. The stability parameter σ∗ was computed
as 0.169 in 2D simulations, as an average value from the undercoolings
considered. The comparison is plotted in Fig.8.5. The simulations at each
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Figure 8.5.: Comparison of the velocity and radius at the dendrite tip as a
function of the bulk undercooling.
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undercooling was performed with interface widths which are in the range,
where the results are invariant of this parameter. One must note that
while the LGK theory gives good predictions, there can often arise a case
where there is a variation. These arise because of the mismatch between
the assumptions in the dendritic shape made in the LGK analysis and
those occurring in the simulations. In the next section, we simulate some
exemplary structures during solidification for this alloy.

8.1.3. Exemplary structures

Equi-axed dendritic growth occurs when the undercooling in the melt is
high enough such that there exists no directionality in the local thermal
gradients. Fig.8.6 shows dendrites at different undercoolings. Cellular

(a) (b)

Figure 8.6.: Equiaxed dendrites simulated at undercooling of 30K in (a) and
28K in (b) an alloy composition of 0.017382 at% Cu.

growth into a undercooled melt was simulated for two situations. In the
first case shown in, Fig. 8.7a, the orientation of anisotropy is aligned in
the direction of growth, while in Fig. 8.7b, the dendrites are rotated 30
degrees with respect to the growth direction. In 8.7c, the simulations are
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performed with a temperature gradient in the growth direction of value
6000K/m shifted, with a velocity of 0.05m/s along the growth axis.

(a) (b) (c)

Figure 8.7.: Cellular growth structures in 2D. In (a) the orientation of the
anisotropy is aligned with the growth direction while in (b) the crystal orientation
is rotated 30 degrees with respect to the growth direction, and in (c), the
simulation is performed with a temperature gradient aligned in the growth
direction.

8.2. Eutectic growth

8.2.1. Comparison with theoretical expressions

We use the model ternary eutectic system used for the investigation
in earlier chapters for comparison with analytical expressions derived
according to theoretical calculations of the Jackson-Hunt type. The phase
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concentrations as functions of the chemical potential required for the
construction of the grand- potentials are given by,

cα
i (μ, T ) =

exp
(

μi/T −
(

Lα
i

(T − T α
i )

TT α
i

− LC
(T − T α

C )
TT α

C

))
1 +
∑K−1

j=1 exp

(
μj/T −

(
Lα

j

(
T − T α

j

)
TT α

j

− LC
(T − T α

C )
TT α

C

))
(8.3)

Utilizing the construction, we verify the equilibrium properties, by measur-
ing the triple point angles for a stationary solidification interface as shown
in, Fig.8.8. It is noteworthy however, that the angles are now retrieved,

Figure 8.8.: Triple junction at the critical undercooling where the solidification
front is stationary. The whole binary junction of either solid-liquid interfaces
are fitted with circles and the angle at the triple point is measured between the
tangents to the circles at the intersection point of the circles

just by setting the required surface energies of the respective interfaces as
the simulation parameter γαβT , unlike the calibration required with the
free-energy model. Also, the third phase contribution is markedly reduced
and can be completely removed with a value of γαβδ = (10 − 15)γαβ . This
was not possible in the case of the model with the free energies, where
much higher values where required, resulting in unwanted modification in
the area around the triple point. This is illustrated by the individual phase-
profiles plotted in Figs.8.9 and 8.10 In addition, we compare the αβγ and
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(a) (b)

(c) (d)

Figure 8.9.: Individual phase-profiles obtained from simulations with the grand
potential model depicting no third phase adsorption at any of the interfaces,
with a value of the higher order potential γαβδ = 10γαβ . The red border, plots
the contour of the phase-field from 0 to 1.
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(a) (b)

(c) (d)

Figure 8.10.: Corresponding phase-profiles obtained from simulations with the
model based on a free energy functional depicting third phase adsorption at
all of the interfaces, with a value of the higher order potential γαβδ = 10γαβ .
Higher, values of γαβδ results in the distortion of the triple-point regions.
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the αβαγ configurations with the theoretical expressions for undercooling
as functions of spacing at given velocities. We achieve similar agreement as
before with the the free energy model as shown in, Fig.8.11, but this time
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Figure 8.11.: Comparison of analytical theories with simulations for two con-
figurations αβγ in (a) and αβαγ in (b). Figure(a) shows the fit of the sim-

ulation points with the function ΔT = ΔTmin

2

(
λ

λmin
+ λmin

λ

)
, which gives

ΔTmin = 0.0612 for (ΔTJH = 0.0648) with an error of 6 %, and similarly an
error in λmin = 1.0052(λJH = 1.02) of 1.8 %.

the interface kinetics was removed, using the derived expressions for the
kinetic coefficient obtained from the asymptotic analysis. The expression
of the relaxation coefficient, to achieve vanishing interface kinetics for the
case of ternary eutectics is derived through an extension of the expressions
for the case of binary alloys, as given in Eqn. (6.42) written as:

ωαl =
M̃ + F̃

T

[(cl
A (μ, T ) − cα

A (μ, T )
)2

D
∂cl

A

∂μA

+

2
(
cl

A (μ, T ) − cα
A (μ, T )

) (
cl

B (μ, T ) − cα
B (μ, T )

)
D

∂cl
A

∂μB

+
(
cl

B (μ, T ) − cα
B (μ, T )

)2
D

∂cl
B

∂μB

]
,

where M̃ and F̃ are the solvability integrals derived in the earlier chapters,
and tabulated in Table. 8.2, while the diffusivities in the liquid are assumed
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to be the same for both components A and B. For the case of αβαγ the
average undercoolings are lower than the predicted one. This is also what
we achieved with the model derived from the free energy functional. The
reason for the deviation can be explained through the observation, that we
do not have a planar growth front, as is the assumption in the theoretical
analysis. This is also coupled with the fact that the front undercoolings of
the different lamellae are not the same which implies that the assumption
of an isothermal growth front is not exact.

In addition, for the simulation of more phases it was essential to con-
struct right interpolation functions. For this we corrected our third order
interpolation polynomial in the following manner:

hα (φ) = φ2
α (3 − 2φα) + 2φα

N∑
β �=α
γ �=α

φβφγ .

Other corrected polynomials are listed in the appendix C.

8.2.2. Effect of solid-solid anisotropy

The model system is then used to investigate the role of solid-solid
anisotropy in oscillatory mode selection. For this we selected two configu-
rations αβγ and αβαγ. From the analysis performed in the chapter on the
ternary eutectics we used symmetry arguments to characterize the different
oscillatory modes. In the presence of solid-solid anisotropy it is possible
to manipulate the symmetry elements in the configuration, and our aim
lies in relating the symmetry elements in the simulated microstructures,
to those of the initial configuration, modified by solid-solid anisotropy.
We choose the different permutations that are possible in modifying the
symmetries. For instance, in the αβγ there exist three possibilities, where
either one, two or all three solid-solid interfaces are anisotropic, while in
the case of αβαγ, only two possibilities exist, which is either the αβ or
the αγ is anisotropic or both. Each of the permutations possesses different
symmetry elements, where we impose smooth-cubic anisotropy oriented
in the growth direction for the intended solid-solid interfaces. For the
case of αβγ, the simulated modes are listed in Fig.8.12. The symmetry
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(a) (b) (c) (d)

Figure 8.12.: Possible oscillatory modes achieved for the different combinations of
anisotropic solid-solid interfaces. In (a)(λ = 115) and (c)(λ = 120) two interfaces
are anisotropic while in (b)(λ = 120), all three interfaces are anisotropic. (d)
shows the characteristic mode achieved in (c) in enlarged form



202 8. Validation

elements in the configuration are reproduced in the oscillatory modes and
we have all the possibilities as in the case of the isotropic surface energies.
However, we have certain modifications such as in Figs. 8.12c and 8.12d,
where the configuration with the absence of any symmetry plane has a
stacking of the three respective phases along a plane which is tilted with
respect to the growth axis. However, if the symmetry axes containing
the anisotropic interface remains aligned with the growth direction, the
configurations with the respective symmetry elements are retrieved. In the
case of the configuration αβαγ, the possibilities are plotted in Fig.8.13.
As was discussed before, there exist two ways to manipulate the symmetry
elements of the configuration αβαγ through the solid-solid anisotropies.
While the 2-λ-O mode is retrieved in every constructed configuration,
which can be reasoned based on the loss of the symmetry plane passing
through the α phase and hence the resultant oscillatory mode shares the
same symmetry elements as that of the starting configuration. However,
we observe a modified mode in the presence of solid-solid anisotropy as in
Fig.8.13a.

8.2.3. Ternary eutectic AlCuAg

Free Energies and surface data

We construct free energies using information from the CALPHAD data
base for the Al-Cu-Ag system provided by [137, 138]. The free energies
are fitted to simplified parabolic type free energies using the methodology
described in the preceding chapter, around the eutectic temperature. The
coefficients of the polynomial are fitted linearly with respect to temperature
around the eutectic point.

The phases at equilibrium are FCC-α, Al2Cu-θ and (HCP)-Ag2Al γ phase.
With the thermodynamic information in the database, the volume fractions
of the respective solid phases at equilibrium are ηα = 0.55, ηθ = 0.29 and
ηγ = 0.16.

To derive information about the surface energies, we utilize experimental
data provided for the measured equilibrium angles given in [41, 53] and we
assume the surface energies of the α− liquid interface as 0.3 J/m2. This
fixes the interfacial energies of all the interfaces.
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(a) (b) (c)

Figure 8.13.: Characteristic modes achieved for the different permutations of
the anisotropic solid-solid interfaces. In (a) and(c) one interface is ansitropic
while in (b) both possible solid-solid interfaces are anisotropic.
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Simulations

Preliminary structures are simulated in 2D. We find that αβαγ configura-
tion is one of the stable configurations. Noteworthy, is that the growth
interface is not planar, and the different phase interfaces are not isother-
mal. The structures are grown at very low speeds of (2 μm/s) used in
solidification, with a temperature gradient of 13.33 K/mm. Fig.8.14 shows
the simulated structures and the undercooling as a function of the spacing,
where the undercooling is averaged over the entire solid-liquid interface.

(a) (b)

(c)
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Figure 8.14.: Preliminary simulations of Al-Cu-Ag ternary eutectic alloy, showing
proof of concept for the generalized construction of parabolic free energies for
multi-component systems. The figure shows the αβαγ configuration at three
different lamella spacings in (a) 4.8μm,(b) 5.1μm and in (c) 5.4μm. The front
undercoolings after 0.35s of solidification time, are plotted in (d).
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Figure 8.15.: Phase-profiles of the three solid phases at various instances during
growth. From the left the phases are 𝛼(𝐹 𝐶𝐶), 𝛾(𝐻𝐶𝑃 ) and 𝜃 respectively.

8.3. Free energy functional vs Grand
potential functional

In this section, we present a short discussion on the range of applicability of
the models derived from the grand potential and the free energy functional.
The comparison is with respect to the computational efficiency in simulating
a range of undercoolings for both models and the asymptotics. To start
with, we write the evolution equation for the phase-field variables for a
system of two phases and two components, starting from the free energy
functional,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝑇𝛾𝛼𝛽𝜀

𝜕2𝜑𝛼

𝜕𝑥2 − 𝑇𝛾𝛼𝛽

𝜀

16
2𝜋2 (1 − 2𝜑𝛼) − 1

2
𝑑𝑓

𝑑𝜑𝛼
+ 1

2
𝜕𝑓

𝜕𝑐

𝑑𝑐

𝑑𝜑𝛼
.
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Noting, that for this formulation based on the free energy functional,

μ =
∂f

∂c
, the equation can be manipulated as,

ταβε2 ∂φα

∂t
=

Tγαβε2 ∂2φα

∂x2 − {Tγαβ
16
2π2 (1 − 2φα) +

ε

2
d

dφα
(f − μeqc)} +

ε

2
(μ − μeq)

dc

dφα
.

At equilibrium, μ = μeq, the second bracketed term has the form of a
potential and when εf∗ is of the same order or larger than γαβ , where f∗ is
the energy scale, the potential scales with the length scale of the interface
upon change in ε. In the sharp interface limit, the chemical potential at the
leading order is constant across the interface, rendering the sharp interface
limit for one dimensional evolution, as derived in Eqn.(6.5). We would
derive a similar sharp interface limit with the grand potential functional
in the absence of curvature. Note however, the effective potential in the
case of the free energy functional scales with the interface width. This
contribution leads to the modification of the surface energies and hence
in the presence of curvature, the limits will differ. Additionally there is a
deviation in the phase-field profile at leading order which is modified due
to the presence of the grand potential excess as,

∂φα

∂x
= −1

ε

√
16
π2 φα (1 − φα) +

ε

Tγαβ

(
(f − μeqc) − (f − μeqc)bulk

)
(8.4)

in contrast to
∂φα

∂x
= − 4

επ

√
φα (1 − φα) for the case of the grand potential

functional. This modifies, the effective kinetic coefficient applicable for
both models. Therefore, to perform comparative simulations with the two
models, the first challenge is to set the surface energies at leading order
in the two models equivalent. The next, is to derive the desired interface
widths to perform efficient simulations and finally to set the same kinetic
coefficients for both models.

For the sake of discussion, consider the system Al-Cu created earlier in the
chapter. While, in the case of the grand potential functional the interface

width depends directly on the parameter ε, through the relation
π2ε

4
= 2.5ε,
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and the surface energy is the same as the simulation parameter Tγαβ ; for
the case of the free energy functional an expression for the interface width
and surface energy at leading order can be derived as in Eqn.(6.3,6.4).
Solving these equations simultaneously, we can derive the simulation
parameters γαβ and ε, to derive the surface energies σ̃αβ and Λ̃αβ for the
given free energy functional. Whereas, this is possible for certain choices
of ε, such as displayed in Fig. 8.16a, beyond a critical ε, there exists no
unique solution, when the contribution to the potential from the grand
potential excess, becomes dominant over that from the potential term
Tγαβφα (1 − φα). The solution is then achieved for a range of γαβ and ε,
derived through the overlap of the isolevels of the σ̃αβ and the resulting Λ̃αβ ,
which is fixed upon choosing the isolevel for the surface energy, Fig.8.16b.
The computational efforts can be compared between the two models by
estimating the interface widths used, when the same ε is chosen for both the
models. At the temperature T=0.988, Fig.8.17 displays the contours of a
freely growing dendrite at a temperature of T = 0.988 (Tm=0.99) simulated
using the grand potential formulation with ε = 1688. Corresponding to
this ε, the interface width is Λ̃αβ = 430 for the case of the free energy
functional, Fig.8.16b. To have an interface resolution of 10 cells, would
result in a grid resolution of Δx = 43 when simulations are performed
using a regular grid. In contrast, for the case with a grand potential
functional, we have used Δx = 500 for the simulation of the dendrite
displayed in Fig.8.17, keeping the same interface resolution and conditions,
which implies the computational effort increases 10d times (d denoting
the dimension), when using the free energy functional. The situation is
more favorable for the free energy functional at the higher undercooling at
T = 0.9843 (smaller tip radii), as can be seen from Fig.8.16a, where the
interface width for the case the free energy case results in 164 compared to
a value of 281.5 for the grand potential functional at the same ε = 112.5.
This is however, not the largest interface width that can be employed
at this undercooling and much larger interface widths can be used for
the case of the grand potential functional as was seen in Fig.8.2, while
the interface widths that can be employed, when a free energy functional
is used, gets limited to a smaller range. In summary, we conclude that
at higher undercoolings(finer microstructures), the models based on the
free energy functional and the grand potential functionals come closer.
However at lower velocities or at lower undercoolings, the grid resolution
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Figure 8.16.: (Please read σ as σ̃ and Λ as Λ̃). Defined contour level of the
surface energy σ̃ and the interface width Λ̃ plotted as a function of the simulation
parameters γαβ and ε. In (a), the contours are calculated for the temperature
T = 0.9843 while in (b) they are for a temperature of T = 0.988. The contours
of the interface width are calculated from the defined level for the surface energy
and the value of the ε used in the simulation. All terms are dimensionless in the
graphs.
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Figure 8.17.: Phase-field contours of a free growing equi-axed dendrite, with
ε = 1688 at a temperature of T=0.988 (Tm = 0.99) with the grand potential
formulation.

can be scaled up significantly using the grand potential functional which
is however not a possibility using the free energy functional.

The comparison of the two models, is incomplete, without the discussion
on the interface kinetics. As we have derived, larger interface widths can
be employed for simulating the case of lower undercoolings with the grand
potential functional. For such cases, the thin-interface limit is appropriate,
and in this limit, the parameters can be chosen in such a manner, that
interface kinetics vanishes which is relevant at lower undercoolings. To
perform a similar asymptotics, for the free energy functional seems daunting
and less useful because of the following reasoning. We recall that while
performing the thin-interface asymptotics of the grand potential functional
we have repeatedly used the anti-symmetric properties (odd functions)
of the leading order phase-field profile φ0

α(x), which reduced the terms
contributing to the first order correction to the chemical potential. However,
with the free energy functional, the leading order solution is modified
due to the grand potential excess and is derived using the Eqn.(8.4).
Fig.8.18 compares the profiles in both cases, which shows slight asymmetry
about the φα = 0.5 line, in the case of the free energy functional. The
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Figure 8.18.: Comparison of the leading order solution of the phase-field in the
case of the grand potential functional and the free energy functional. The profiles
have been superimposed and the vertical line representing the position of the
binary interface is drawn for comparison.

magnitude of the asymmetry depends on the nature of the grand potential
excess and scales with the interface widths. This asymmetry would rule
out any general simplification of the solvability integrals appearing in
the asymptotic analysis. Secondly, all solvability integrals depend on
the leading order solution, which change with the interface widths, the
temperature and the system one is simulating, thus certainly hindering, the
universal applicability of the analysis. Lastly, due to the limitation of the
interface widths, the thin interface limit is less applicable and performing
simulations with vanishing interface kinetics is computationally expensive
as the sharp interface and thin interface limits coincide for smaller interface
widths.

To conclude the grand potential formulation offers significant flexibility in
comparison to the free energy functionals because the range of applicability
of the phase-field model is improved significantly without a correspond-
ing increase in computational overhead and additionally, a thin-interface
asymptotics with universal applicability can be performed.
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8.4. Conclusions

We validate a newly derived model based on the grand potential functional.
We test the asymptotics through comparison with analytical expressions
for the growth of dendritic and eutectic growth morphologies and achieve
reasonable agreement. With the derived model, simulation of large scale
microstructures is definitely a possibility and the simulated dendritic
structures look promising in this context.

One must note that the real gain with the modified model, is the range
of undercoolings that can be spanned with numerical efficiency. For
example, at higher undercoolings, the diffusion length is small which would
need smaller grid resolution. This condition is apparently favorable when
starting from a free energy functional, since the resultant small equilibrium
interface thickness in the presence of high grand potential excess, can be
resolved without enormous computational overhead. However, as we reduce
the undercooling, the diffusion length becomes larger and one intends to
use higher interface thicknesses to numerically resolve the microstructures.
This flexibility is present, when one starts to derive from the grand potential
model, while it becomes significantly expensive computationally, to resolve
the same microstructure with the free energy functional(derived through
the interpolation of the free energy densities of the phases as functions of
the local concentration).

With regards to the asymptotics, the results obtained from the thin-
interface asymptotics of model based on the grand potential functional, such
as the antitrapping current and the expression for the interface coefficient
are universally applicable for all undercoolings. Conversely, for the case
of the model with the free energy functionals, the equilibrium properties
related to the interface such as the surface energies and the interface
thicknesses and the interface profiles at lowest order, are dependent on the
undercooling. This implies that, expressions for the kinetic coefficients and
the anti-trapping currents, if derived, would depend on the undercooling
and hence, the solvability integrals would need to be re-calculated, given
the undercooling one desires to simulate. In addition, the calibration of
the simulation parameters to retrieve the desired surface tensions needs to
be repeated for any change in the processing condition, which becomes
highly cumbersome.
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In summary, it is clear that, with the switch in the modeling ideology
from the free energy functionals to a grand potential functional, one gains
numerical flexibility and significant reduction in computational effort.

8.5. Outlook

The road is clear for the application of an efficient model for the study
of various phenomena occurring during phase transformations in real al-
loys. For instance, in solidification the method can be applied for the
investigation of dendritic and cellular growth, fragmentation, selection of
dendritic and cell spacing and the cellular to dendritic transitions. Multi-
phase phase-transformations, involving eutectic, peritectic and monotectic
solidification, in binary, ternary and higher systems are of interest. For in-
stance, understanding pattern formation, in ternary eutectic systems under
the influence of changes in the liquid compositions, imposed temperature
gradients and velocities, during 3D microstructure evolution are some of
the primary questions. In solid- state, the model can be tailored to treat
stoichiometric compounds, such as the cementite phase in Fe-C alloy and
studies of eutectoid coupled growth involving the growth of the cementite
and ferrite from austenite, is a topic that can be attended. In addition,
structural evolution during ripening of precipitates in different materials
can also be treated fairly elegantly. In summary, the scope of applicability
of the phase-field model has certainly increased with the suggested modifi-
cations. With additional developments in computational techniques such
as 3D parallelization, adaptive mesh refinement techniques, large domain
structures are certainly in the realm of the phase-field method.

While these are marked improvements, one must however, be aware of
the limitations and assumptions that are present in the derivations and
the limits of applicability of the model. For instance, the treatment of
coupled fields such as temperature and concentration/chemical potential,
require attention, as these involve the coupling of fields which evolve at
different time and length scales. Similarly, including elastic, flow, magnetic
and electric fields, although make the description more realistic, the cross-
coupling between fields would need to be performed, keeping the required
free boundary problem in mind. These are complex questions and certainly
a challenge for the future.
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In the context of the phase-field method, there often arises the question as
to how one can determine the model parameters given a free energy model.
In this short discussion we look into this topic, considering ideal solution
models for deriving simple isomorphous, eutectic and peritectic systems.

A.1. Eutectics

Consider a binary eutectic system, with defined eutectic temperature
TE , volume fractions of the solid phases given by ηα and ηβ and the
melting temperatures of the components A and B given by T α

A and T β
B

respectively where α is rich in A, and β is the B-rich phase. We assume
the non-dimensional free energies to be of the form:

fα (T, c) = cLα
A

(T − T α
A)

T α
A

+ (1 − c)Lα
B

(T − T α
B)

T α
B

+ T (c ln c + (1 − c) ln (1 − c)) .

To determine the free energy parameters Lα
A, Lα

B , Lβ
A, Lβ

B and the corre-
sponding temperatures given by T α

A , T α
B , T β

A, T β
B , we write the equilibrium

equations relevant at the eutectic temperature which are,

Lα
A

(T − T α
A)

T α
A

+ T ln cα = T ln cl

Lα
B

(T − T α
B)

T α
B

+ T ln(1 − cα) = T ln(1 − cl)

Lβ
A

(
T − T β

A

)
T β

A

+ T ln cβ = T ln cl

Lβ
B

(
T − T β

B

)
T β

B

+ T ln(1 − cβ) = T ln(1 − cl).

Since, we have eight unknowns and four equations, we require to make
some assumptions. The values of T α

A and T β
B are generally known, and

hence the number of unknowns are reduced to six. One can make use of
the assumption Lα

A = Lα
B and Lβ

A = Lβ
B , which then reduces the required

number of unknowns such that the equations can be solved to determine
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the free energy parameters. One can also derive the slopes of the liquidus
and solidus of both phases and use them as the missing equations for the
eight unknowns. The equations for the slopes of the liquidus of the α
phase are as follows,

dT

dcl
=

T 2
(

cα

cl
− (1 − cα)

(1 − cl)

)
(cαLα

A + (1 − cα)Lα
B)

,

and similarly for the solidus, which can be written as,

dT

dcα
=

T 2

(
cl

cα
−
(
1 − cl

)
(1 − cα)

)
(clLα

A + (1 − cl)Lα
B)

.

Notice however, if we do not make any assumptions, we have the required
number of equations for the number of unknowns. This implies, that we
could end up with a solution for the terms T α

A and T β
B which differ from

reality. This is not problem though, since our data for the phase diagram
is fitted accurately around the eutectic temperature, which suffices for
simulations relevant for eutectics. The problem can however be tackled by
considering temperature dependent terms Lα

i , which however makes the
system of equations not closed. The discussion on this is however, out of
the scope of the present chapter.

A.2. Peritectics

The discussion on the peritectics also stays very much the same as the
eutectics. The only difference is, here only of the temperatures T A

α is
generally known. Depending, on the range of undercoolings one intends
to simulate, this might be an important parameter to fit and the set of
equilibrium equations along with the slopes of the corresponding solidus
and liquidus can be solved around the peritectic temperature for all the
unknowns.
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A.3. Isomorphous

If one is interested in fitting only two-phase equilibrium it can be done
similarly by writing down the phase equilibrium equations around the
temperature of interest. The slopes of the liquidus and solidus give the
required equations for the relevant number of unknowns.

A.4. Energy Scale

In the above discussion, only the data relevant to the phase-diagram are
fitted. However, in order to derive the relevant coupling to the Gibbs-
Thomson equation, it is important to set the energy scale of the system
such that the right Gibbs-Thomson equations can be derived. This is

easily done, by righting down the latent heat as f∗T

(
∂fα

∂T
− ∂f l

∂T

)
and

then using the relation of the Gibbs-Thomson coefficient as Γ =
σ̃αlT

L
.

This fixes a unique energy scale for the system which is no problem for
the case of a two-phase equilibrium. However, if one treats three phase
equilibria, this constraint implies, that the Gibbs-Thomson coefficients of
the respective solid phases must obey a relationship among them given
by,

σ̃αl(
∂fα

∂T
− ∂f l

∂T

)
Γα

=
σ̃βl(

∂fβ

∂T
− ∂f l

∂T

)
Γβ

.

While this might hold for many systems, for others the ideal solution model
needs to be modified with temperature dependent terms Lα

i .

Along with the energy scale the free energy of each phase becomes,

fα (c, T ) = f∗
(

cLα
A

(T − T α
A)

T α
A

+

(1 − c)Lα
B

(T − T α
B)

T α
B

+ T (c ln c + (1 − c) ln (1 − c))
)

.
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In the phase-field context, it sometimes becomes important to calculate the
critical nucleus in a given concentration of the liquid at given temperature.
For critical nuclei, beyond a size, the phase fractions go to 1 in the bulk,
which can be determined from the Gibbs-Thomson condition ΔT = Γκ.
While this is possible for the case of isotropic surface energies, the more
general case of anisotropic surface energies is non-trivial. Also, the case
of sub-critical nuclei cannot be treated with this method. To do this
we derive a algorithm to compute the critical phase and concentration
profiles, given a volume of nucleus. We utilize the concept of the “Volume
Preserved Method”, which is highlighted in Fig.B.1. The method can be

Figure B.1.: Procedure to calculate the critical nucleus by solving the Euler-
Lagrange equations

very easily understood through this diagram, where the chemical and the
capillary forces are shown as two opposing forces in evolution. The volume
of the evolving particle is preserved by imposing the resultant of these
two opposing forces with the direction reversed. This is realized through
the construction of an artificial term Fα = χα, where χα is determined
through the condition

∫
φα = const, α denoting the phase whose volume

is preserved. For appropriate details one can refer to the article [80]. The
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Figure B.2.: Procedure to calculate the critical nucleus by solving the Euler-
Lagrange equations

method is used to derive the algorithm for determining the homogeneous
critical nucleus potrayed in Fig.B.2. The aim lies in determining the
critical concentration of the liquid given a volume of the phase α between
the phase-stability lines of the phases α and the liquid phase. We start
by the preserving the given volume of the solid while solving for the
concentration profiles until the chemical potential gradient goes to zero
with constant(Dirichlet) boundary conditions in all directions. At this
time we determine the "Volume preservation force, χα". For the second
iteration, we decide to modify the concentration in the liquid as 0.5(ceq

l +cl)
or 0.5(ceq

s + cl) depending on whether the sign of χα is positive or negative
respectively. For the iterations henceforth, we may make the decision of
the modification of concentrations based on two previous iterations. There
exist two possibilities: 1)if the χn

α and χn−1
α are of the same sign, then the

next estimate of the concentration cl is made by a linearly extrapolating
the relation between χα vs cl to zero. 2) If however, the signs of χα from
two previous iterations are opposite sign we perform a bisection and use
this as the next estimate of the critical liquid concentration. This iteration
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process is continued until the term χα goes to zero. The obtained solution

satisfies the Euler-Lagrange equation representing
dφα

dt
= 0 and

dc

dt
= 0.

Figure B.3 displays results of nucleation during growth. Nucleation is
imposed through stochastic noise in the bulk liquid in a Al-Cu alloy
modeled using ideal free energies. The eutectic consists of two phases
α−Al rich and β−Cu rich. The barrier to nucleation for each phase
are computed as a function of the critical composition in the liquid, by
evaluating the grand potential excess with respect to the uniform initial
liquid from the calculated critical solutions which are solutions to the
Euler-Lagrange equations. We see that for the β− phase the barrier to
nucleation reduces as the concentration of Cu increases and vice-versa
for the α− phase for which the barrier to nucleation increases with the
increase in concentration of Cu. In the simulation domain, the dendrite
growth occurs in a super-saturated liquid wih low concentration of Cu,
and on imposition of noise the nucleation of the phase α− phase occurs in
the far-field liquid. This corroborates well with the barrier to nucleation
calculations, as the barrier to nucleation is lower for lower concentrations
of Cu. As dendrite arms appear, the liquid entrapped in between the
dendrite arms become eneriched in Cu, and the β phase is seen to nucleate.
This observation also qualitatively matches the inferences from the barrier
to nucleation calculations.
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Figure B.3.: Nucleation of α nuclei in the bulk liquid and inter-dendritic eutectic
phase in between the dendritic arms
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Phase field modeling has spread to the solution of a variety of problems.
The solution methodology is lucrative because it does not need the tracking
of evolving interfaces. The basis of the phase field theory lies in treating
each evolving phase with an order parameter and describing its evolution
on the basis of minimization of energy or the maximization of entropy
of the whole system. The evolution of the order parameters are coupled
with the evolution of other fields which are for example the concentration
and the temperature. One of the components required for the description
of the energy or the entropy density, is that either of these quantities be
decribed in the whole phase space. This is done by the use of interpolation
functions which interpolate between the values in the bulk phases. Thus
for e.g we have

F = Fαhα (φ) + Fβhβ (φ) + Fγhγ (φ) . . .

where Fα, Fβ , Fγ are the bulk properties of the α, β and the γ phases
respectively. The functions hα, hβ and hγ are the functions interpolating
the bulk properties of the respective phases. The vector φ belongs to the
N-1 dimensional space

N∑
i

φi = 1 (C.1)

φ = (φα, φβ , φγ . . .), N being the number of phases in the system. This
results from treating the order parameters as volume fractions of the phases
in the system. It can be seen in the above description that the interpolation
functions are averaging functions for the bulk properties of the system,
with weights depending on where one is in the phase space. Thus, it is
natural to have the sum of the weights or the sum of the interpolation
functions to add up to 1. One of the topics extensively studied using the
phase field methodolgy is solidification of solid phase from a liquid phase,
and two interpolation functions have been widely used for this purpose,

hα (φ) = φ2
α (3 − 2φα) (C.2)

hα (φ) = φ3
α

(
10 − 15φα + 6φ2

α

)
(C.3)

The above functions satisfy the summation property for two phases, but
fail to do so as the number of phases increases in number. So there is a
need for finding correct interpolation functions when modeling more than
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two phases. In the following paper we suggest ways of correcting such
interpolation functions for use in the case of more than two phases.

C.1. The correction to the third order
polynomial

The cubic third order polynomial for two phases (φα, φβ) can be created
very easily in the following manner.

(φα + φβ)3 = φ3
α + φ3

β + 3φ2
αφβ + 3φ2

βφα

We now separate the R.H.S into two symmetric parts and call each of
them an interpolation function. There are two possible ways to choose the
symmetric functions, we choose the one which gives a function that has
the lowest order of φν in hν (φ) greater than equal to 2, i.e

hα (φ) = φ3
α + 3φ2

αφβ

hβ (φ) = φ3
β + 3φ2

βφα

. The choice is due to the following reason. We want to have(
∂hν (φ)

∂φν

)
φα+φβ=1

=
∂hν (φ)

∂φν
− 1

N

N∑
k

∂hν (φ)
∂φk

=0, at φν = 0, 1. The L.H.S of the above equation is the deriviative with
respect to φν with the constraint eqn C.1. Now using the constraint
φα + φβ = 1, we have the interpolation functions which were described
before eqn C.2. We also have that hν (φ) = 0, 1 respectively for any point
in the phase space with φν = 0, 1 respectively. The above deriviation
shows that the summation over all the cubic interpolation functions of
the above form, at any point in the phase space equals 1 only in the case
of two phases. We propose a correction to the interpolation function by
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doing the same procedure for more than two phases. We first do it for
three phases and extend it to more than three phases.

(φα + φβ + φγ)3 = φ3
α + φ3

β + φ3
γ + 3φ2

α (φβ + φγ) +
3φ2

β (φα + φγ) + 3φ2
γ (φα + φβ) + 6φαφβφγ

Again we try to find three symmetric terms in the above sum, at all points
trying to have hν (φ) with the highest power of φν . We find that in this
case the lowest order possible has to be linear in φν for hν (φ). So using the
sum constraint for the phases, the interpolation functions can be written
in the following form,

hα (φ) = φ2
α (3 − 2φα) + 2φαφβφγ

hβ (φ) = φ2
β (3 − 2φβ) + 2φαφβφγ

hγ (φ) = φ2
γ (3 − 2φγ) + 2φαφβφγ

The above procedure can be repeated for N phases and we would have the
following function.

hν (φ) = φ2
ν (3 − 2φν) + 2φν

⎛⎝ ∑
β<γ(β,γ �=ν)

φβφγ

⎞⎠

C.2. The correction to the fifth order
polynomial

The correction to fifth order polynomial follows in the same manner as in
the case of the cubic polynomial. We try to derive a polynomial using the
above procedure for three phases,

(φα + φβ + φγ)5 = φ5
α + φ5

β + φ5
γ + 5φ4

α (1 − φα) + 5φ4
β (1 − φβ) +

5φ4
γ (1 − φγ) + 10φ3

α (1 − φα)2 + 10φ3
β (1 − φβ)2 + 10φ3

γ (1 − φγ)2
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+ 30φαφ2
βφ2

γ + 30φβφ2
αφ2

γ + 30φγφ2
αφ2

β

Now we divide the sum into three parts in such a way that the least power
of φν in hν (φ) is 2. This results in the following interpolation functions,

hα (φ) = φ5
α + 5φ4

α (1 − φα) + 10φ3
α (1 − φα)2 + 15φ2

αφγφβ (φβ + φγ)

hβ (φ) = φ5
β + 5φ4

β (1 − φβ) + 10φ3
β (1 − φβ)2 + 15φ2

βφγφα (φα + φγ)

hγ (φ) = φ5
γ + 5φ4

γ (1 − φγ) + 10φ3
γ (1 − φγ)2 + 15φ2

γφαφβ (φα + φβ)

We simplify the terms in the following manner

φαφβ =

(
(φα + φβ)2 − (φα − φβ)2

)
4

=

(
(1 − φγ)2 − (φα − φβ)2

)
4

φαφγ =

(
(φγ + φα)2 − (φγ − φα)2

)
4

=

(
(1 − φβ)2 − (φγ − φα)2

)
4

φγφβ =

(
(φγ + φβ)2 − (φγ − φβ)2

)
4

=

(
(1 − φα)2 − (φγ − φβ)2

)
4

Substituting in the above interpolation functions we have,

hα (φ) = φ5
α + 5φ4

α (1 − φα) + 10φ3
α (1 − φα)2 +

15
4

φ2
α (1 − φα)3 −

15
4

φ2
α (1 − φα) (φγ − φβ)2

hβ (φ) = φ5
β + 5φ4

β (1 − φβ) + 10φ3
β (1 − φβ)2 +

15
4

φ2
β (1 − φβ)3 −

15
4

φ2
β (1 − φβ) (φα − φγ)2

hγ (φ) = φ5
γ + 5φ4

γ (1 − φγ) + 10φ3
γ (1 − φγ)2 +

15
4

φ2
γ (1 − φγ)3 −

15
4

φ2
γ (1 − φγ) (φα − φβ)2

The above are the interpolation functions suggested by Plapp et al. [32].
Extending the analysis for four phase space(φα, φβ , φγ , φδ) and repeating
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the same procedure as above we get the following form for the interpolation
functions,

hα (φ) = φ5
α + 5φ4

α (1 − φα) + 10φ3
α (1 − φα)2 +

15φ2
α (φγφβ (φβ + φγ) + φγφδ (φγ + φδ) + φβφγ (φβ + φγ)) +

60φ2
αφβφγφδ

hβ (φ) = φ5
β + 5φ4

β (1 − φβ) + 10φ3
β (1 − φβ)2 +

15φ2
β (φαφγ (φα + φγ) + φγφδ (φγ + φδ) + φαφδ (φα + φδ)) +

60φ2
βφαφγφδ

hγ (φ) = φ5
γ + 5φ4

γ (1 − φγ) + 10φ3
γ (1 − φγ)2 +

15φ2
γ (φαφβ (φα + φβ) + φαφδ (φα + φδ) + φβφδ (φβ + φδ)) +

60φ2
γφαφβφδ

hδ (φ) = φ5
δ + 5φ4

δ (1 − φδ) + 10φ3
δ (1 − φδ)2 +

15φ2
δ (φαφβ (φα + φβ) + φαφγ (φα + φγ) + φβφγ (φβ + φγ)) +

60φ2
δφαφβφδ

The above expressions can be simplified in the following manner,

hα (φ) = φ5
α + 5φ4

α (1 − φα) + 10φ3
α (1 − φα)2 +

15φ2
α (1 − φα) (φγφβ + φγφδ + φβφγ) + 15φ2

αφβφγφδ

hβ (φ) = φ5
β + 5φ4

β (1 − φβ) + 10φ3
β (1 − φβ)2 +

15φ2
β (1 − φβ) (φγφα + φγφδ + φαφδ) + 15φ2

βφαφγφδ

hγ (φ) = φ5
γ + 5φ4

γ (1 − φγ) + 10φ3
γ (1 − φγ)2 +

15φ2
γ (1 − φγ) (φαφβ + φβφδ + φαφδ) + 15φ2

γφαφβφδ

hδ (φ) = φ5
δ + 5φ4

δ (1 − φδ) + 10φ3
δ (1 − φδ)2 +

15φ2
δ (1 − φδ) (φαφβ + φαφγ + φγφβ) + 15φ2

δφαφβφγ

Writing the following terms in a analogous manner we get,

(φγφβ + φγφδ + φβφγ) =
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(
2 (φβ + φγ + φδ)2 − (φβ − φγ)2 − (φγ − φδ)2 − (φβ − φδ)2

)
6

=

(
2 (1 − φα)2 − (φβ − φγ)2 − (φγ − φδ)2 − (φβ − φδ)2

)
6

(φγφα + φγφδ + φαφδ) =(
2 (φα + φγ + φδ)2 − (φα − φγ)2 − (φγ − φδ)2 − (φα − φδ)2

)
6

=

(
2 (1 − φβ)2 − (φα − φγ)2 − (φγ − φδ)2 − (φβ − φδ)2

)
6

(φαφβ + φβφδ + φαφδ) =(
2 (φα + φβ + φδ)2 − (φα − φβ)2 − (φβ − φδ)2 − (φα − φδ)2

)
6

=

(
2 (1 − φγ)2 − (φα − φβ)2 − (φβ − φδ)2 − (φγ − φδ)2

)
6

(φαφβ + φαφγ + φγφβ) =(
2 (φα + φβ + φγ)2 − (φα − φβ)2 − (φβ − φγ)2 − (φα − φγ)2

)
6

=

(
2 (1 − φδ)2 − (φα − φβ)2 − (φβ − φγ)2 − (φα − φγ)2

)
6

Substituting in the interpolation functions, the functions can be written
as the following,

hν (φ) = φ5
ν + 5φ4

ν (1 − φν) + 10φ3
ν (1 − φν)2 + 5φ2

ν (1 − φν)3 −
5
2

φ2
ν (1 − φν)

⎛⎝ ∑
β<γ,β,γ �=ν

(φβ − φγ)2

⎞⎠
+ 15φ2

νφβφγφδ ∀ν, (β, γ, δ �= ν)
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The process when done for five phases gives the following form of the
interpolation function,

hν (φ) = φ5
ν + 5φ4

ν (1 − φν) + 10φ3
ν (1 − φν)2 +

45
8

φ2
ν (1 − φν)3 −

15
8

φ2
ν (1 − φν)

⎛⎝ ∑
β<γ,β,γ �=ν

(φβ − φγ)2

⎞⎠
+ 15φ2

ν

⎛⎝ ∑
β<γ<δ,β,δ,γ �=ν

φβφγφδ

⎞⎠+ 24φνφαφβφγφδ

∀ν, (α, β, γ, δ �= ν)

The process can now be generalized for N phases, and the interpolation
function looks like,

hν (φ) = φ5
ν

(
6 − 15 (N − 2)

2 (N − 1)

)
+ φ4

ν

(
−15 +

45 (N − 2)
2 (N − 1)

)
+

φ3
ν

⎛⎝10 +
15

2 (N − 1)

⎛⎝ ∑
β<γ(β,γ �=ν)

(φβ − φγ)2

⎞⎠− 45
2

N − 2
N − 1

⎞⎠+

φ2
ν

(15 (N − 2)
2 (N − 1)

− 15
2 (N − 1)

⎛⎝ ∑
β<γ(β,γ �=ν)

(φβ − φγ)2

⎞⎠+

15

⎛⎝ ∑
β<γ<δ(δ,β,γ �=ν)

φδφβφγ

⎞⎠)+ 24φν

⎛⎝ ∑
β<γ<δ<α(α,δ,β,γ �=ν)

φδφβφγφα

⎞⎠
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Performing quantitative simulations requires one to have to control over
the simulation parameters and the resulting physical quantities they rep-
resent. To achieve this a throrough knowledge of the phase-field model
and asymptotics is essential. In this chapter, we look into the selection of
simulation parameters γαβ and ε when setting the surface energies σ̃αβ

and interface width Λ̃αβ for the case when the phase-field model with a
free-energy functional is used. To start with one can derive the quantities
σ̃αβ and Λ̃αβ given the free energy landscape in the following manner:

σ̃αβ = 2γαβT

∫ 1

0

√
16
π2 φα (1 − φα) +

ε

γαβT
ΔΨ (T, c, φ)dφα (D.1)

Λ̃αβ = ε

∫ 1

0

dφα√
16
π2 φα (1 − φα) +

ε

γαβT
ΔΨ (T, c, φ)

, (D.2)

where ΔΨ (T, c, φ) is the grand potential excess across the interface between
two bulk phases at equilibrium given as,

(
f (T, c, φ) −∑K−1

i=1 μici

)
−(

f (T, c, φ) −∑K−1
i=1 μici

)
φα=0

. To determine the simulation parameters
γαβ the two Eqns. D.1 and D.2, need to be solved simultaneosly.
While this is possible for the case where when the grand potential excess is
small D.1a, in other cases there exist infinite solutions for γαβ and ε along
the intersecting isolines for σ̃αβ = K1 and Λ̃ = K2, where K1, K2 are
required surface energies and the interface widths desired in the simulations
D.1b. One must note, that in this case, once, the surface tension is fixed,
there exists only one interface width Λ̃αβ and hence is no longer a degree
of freedom. In the case of of multi-phases, the surface energies and the
interface widths of all the interfaces cannot be fixed independently with
just one parameter ε. In such cases, it makes sense to resolve, the smallest
interface with the required number of grid points. With this value of ε, the
parameter γαβ of the other interfaces can be derived using the expression
of the surface energy D.1.
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Figure D.1.: Two possibilities that might arise when treating real systems. In
(a), the simulation parameters γαβ and ε can be fixed uniquely, the solution
given by the intersection of the isolines σ̃αβ = const and Λ̃ = const. When the
magnitude of the grand potential excess goes higher, there no longer exists a
unique solution as in (b) and a range of solutions exists which is given by the
overlap of the required isolines of σ̃αβ and Λ̃αβ .

D.1. Example

Consider a binary eutectic system of three phases modeled with idealized
free energies of the form,

fα (T, c) =

cLα (T − T α
A)

T α
A

+ (1 − c) Lα
B

(
T − T B

)
T B

α

+ T (c ln c + (1 − c) ln (1 − c))

with the parameters for the free energy Lα
i given as, Lα

A = Lα
B = Lβ

A =
Lβ

B = 5.0, T α
i given as, T α

A = T β
B = 1.0 and T α

B = T β
A = 0.72318. With

these values, the simulation parameters of the solid-solid interface are
derived as γαβ = 0.285224 and ε = 6.3252, to retrieve a surface energy
σ̃αβ = 1.0 and Λ̃αβ = 10.0. For the other interfaces, we derive the surface
energies σ̃αl = σ̃βl = 1.0 using the value for ε = 6.3252 and calculating,
γαl = γβl = 0.7254328. The system of three phases are set at the critical

undercooling given by ΔT = Γαlκ = Γβlκ, where κ =
2 sin θ

λ
and λ is
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half the box-width that one is simulating. The angles at equilibrium are
measured by fitting circles as shown below, and were calculated as 120.33,

Figure D.2.: Circle fit of the both solid-liquid interfaces at equilibrium, when
the system is set at the critical undercooling

which compares well to the theoretical prediction given by the Young’s
equilibrium condition.
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The anti-trapping current is derived to be of the form,

jat = −πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

∇φα

|∇φα| . (E.1)

where gα (φα) and hα (φα) are interpolation functions interpolating the
diffisivities and the grand potentials respectively. The anti-trapping current
enters the diffusion equation in the following form,

∂c

∂t
= ∇ · (M (T, c, φ) ∇μ − jat) . (E.2)

The aim with the dicretization is to have all quantities computed at grid-
point i, j, k with second order accuracy in space. For this, gradients of the
chemical potential are computed with second order accuracy at off-grid
positions shifted by half the cell-size in each direction. Similarly, the values
of M (T, c, φ) are determined at the off-grid positions by averaging the
values of the neighboring cells in each direction. A description of this is
given below,

M (T, c, φ) ∇xμi,j,k =
1
2

(
M
(
T i,j,k, ci,j,k, φi,j,k

)
+

M
(
T i+1,j,k, ci+1,j,k, φi+1,j,k

) )(μi+1,j,k − μi,j,k
)

Δx

M (T, c, φ) ∇yμi,j,k =
1
2

(
M
(
, T i,j,k, ci,j,k, φi,j,k

)
+

M
(
T i,j+1,k, ci,j+1,k, φi,j+1,k

) )(μi,j+1,k − μi,j,k
)

Δy

M (T, c, φ) ∇zμi,j,k =
1
2

(
M
(
, T i,j,k, ci,j,k, φi,j,k

)
+

M
(
T i,j,k+1, ci,j,k+1, φi,j,k+1) )(μi,j,k+1 − μi,j,k

)
Δz

.

With this the gradients in each direction are second-order accurate at
offset grid positions, given by (i + 1/2, j, k) , (i, j + 1/2, k) , (i, j, k + 1/2)
in directions x, y, z respectively.
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Similarly, we require the anti-trapping current at the off-grid positions,
hence we perform the following discretization,

(jx
at)

i+
1
2

,j,k

=

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i+

1
2

,j,k

×
(∇xφα)

i+
1
2

,j,k

|∇φα|i+1/2,j,k

(jy
at)

i,j+
1
2

,k

=

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j+

1
2

,k

×
(∇yφα)

i,j+
1
2

,k

|∇φα|i,j+1/2,k

(jz
at)

i,j,k+
1
2

=

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j,k+

1
2

×
(∇zφα)

i,j,k+
1
2

|∇φα|i,j,k+1/2
.

Next we elaborate each of the terms in the expressions.[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i+1/2,j,k

=

1
2

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j,k

+

1
2

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i+1,j,k

.

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j+1/2,k

=
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1
2

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j,k

+

1
2

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j+1,k

.

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j,k+1/2

=

1
2

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j,k

+

1
2

[
−πε

4
gα (φα) (1 − hα (φα))√

φα (1 − φα)
(cβ (μ, T ) − cα (μ, T ))

∂φα

∂t

]
i,j,k+1

.

The gradients are derived at the off-grid position as,

(∇xφα)i+1/2,j,k =
(φα)i+1,j,k − (φα)i,j,k

Δx

(∇yφα)i,j+1/2,k =
(φα)i,j+1,k − (φα)i,j,k

Δy

(∇zφα)i,j,k+1/2 =
(φα)i,j,k+1 − (φα)i,j,k

Δz
.

Finally we need to discretize the magnitude of the gradients at the respec-
tive off grid positions, which is done as follows,

|∇φα|(i+1/2,j,k) =
√

(∇xφα)2
i+1/2,j,k + (∇yφα)2

i+1/2,j,k + (∇zφα)2
i+1/2,j,k

The gradient (∇xφα)i+1/2,j,k at the position is already given before, while
the gradients in the other directions are derived as follows,

(∇yφα)i+1/2,j,k =
1
2

(
(∇yφα)i,j,k + (∇yφα)i+1,j,k

)
(∇yφα)i,j,k =

(
(φα)i,j+1,k − (φα)i,j−1,k

)
2Δy
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(∇yφα)i+1,j,k =

(
(φα)i+1,j+1,k − (φα)i+1,j−1,k

)
2Δy

(∇zφα)i+1/2,j,k =
1
2

(
(∇zφα)i,j,k + (∇zφα)i+1,j,k

)
(∇zφα)i,j,k =

(
(φα)i,j,k+1 − (φα)i,j,k−1

)
2Δz

(∇yφα)i+1,j,k =

(
(φα)i+1,j,k+1 − (φα)i+1,j,k−1

)
2Δz

.

Similarly, the vector-norms at the other offset grid positions can be deter-
mined.

|∇φα|(i,j+1/2,k) =
√

(∇xφα)2
i,j+1/2,k + (∇yφα)2

i,j+1/2,k + (∇zφα)2
i,j+1/2,k

The gradient (∇yφα)i,j+1/2,k is given before. The other gradients are
derived as,

(∇xφα)i,j+1/2,k =
1
2

(
(∇xφα)i,j,k + (∇xφα)i,j+1,k

)
.

(∇xφα)i,j,k =

(
(φα)i+1,j,k − (φα)i−1,j,k

)
2Δx

(∇xφα)i,j+1,k =

(
(φα)i+1,j+1,k − (φα)i−1,j+1,k

)
2Δx

(∇zφα)i,j+1/2,k =
1
2

(
(∇zφα)i,j,k + (∇zφα)i,j+1,k

)
.

(∇zφα)i,j,k =

(
(φα)i,j,k+1 − (φα)i,j,k−1

)
2Δz

(∇zφα)i,j+1,k =

(
(φα)i,j+1,k+1 − (φα)i,j+1,k−1

)
2Δz

.

Finally, the norm on the offset grid position in the z-direction given by

|∇φα|(i,j,k+1/2) =
√

(∇xφα)2
i,j,k+1/2 + (∇yφα)2

i,j,k+1/2 + (∇zφα)2
i,j,k+1/2.
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The gradient in the z-direction (∇zφα)i,j,k+1/2 is given before while the
gradient in the other directions can be derived as,

(∇xφα)i,j,k+1/2 =
1
2

(
(∇xφα)i,j,k + (∇xφα)i,j,k+1

)
(∇xφα)i,j,k =

(
(φα)i+1,j,k − (φα)i−1,j,k

)
2Δx

(∇xφα)i,j,k+1 =

(
(φα)i+1,j,k+1 − (φα)i−1,j,k+1

)
2Δx

(∇yφα)i,j,k+1/2 =
1
2

(
(∇yφα)i,j,k + (∇yφα)i,j,k+1

)
(∇yφα)i,j,k =

(
(φα)i,j+1,k − (φα)i,j−1,k

)
2Δy

(∇yφα)i,j,k+1 =

(
(φα)i,j+1,k+1 − (φα)i,j−1,k+1

)
2Δy

.

E.1. Parallelization

In this section, we discuss the terms transferred for parallelization in
the z-direction. While all terms, related to the gradients in the phase-
field variable φ are completely calculated with the imposition of a single
boundary layer for each worker, which contains the information about
the values of the φα from the neighboring worker, we require additional

transfer variables
∂φα

∂t
, for the anti-trapping current. We calculate this

term by the following expression:

∂φα

∂t
≈ φn+1

α − φn
α

Δt
.

To understand, how this can be done correctly and effectively, it is essential
to have a look at the calculation procedure in the domain. For the original
(without the anti-trapping current), we use three buffer layers(gradient
layers) for efficient utilization of the memory resources. This suffices
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since we use the nearest neighbor and second nearest neighbors for the
dicretization of all the gradients. This is done as follows: For all points in
a layer, we calculate one-sided gradients in the positive direction. Then
the layers are swapped such that the next layer gradients are calculated.
After this we have the relevant gradients in the z− direction, that we need
to compute the divergence as:

∇ · (∇φα)i,j,k =
∇i,j,k

z φα − ∇i,j,k−1
z φα

Δz
,

where ∇i,j,k−1
z contains the gradient in the earlier layer (z-1). With the

divergence calculations, we are in a position to calculate all the terms
required for the evolution of the φα equation.

For the antitrapping term however, we need terms related to
∂φα

∂t
at the

off-grid positions. And we have seen in the discretization this is done
through averaging the values of the cell of calculation and next neighbor
cell in the direction. This requires that we have the φα update of the
present cell and the next cell in the positive direction before we calculate
the update for the c field. Hence, this requires that c calculation be one
step behind that of the phase-field such that all terms related to the
φα are from the time-step (n+1). The μ however is from the time step
(n-1), which is consistent with the mass-conservation being satisfied at
time-step (n-1). To achieve this whole thing entirely, requires that we
increase the number of gradient layers by 1 and we structure our gradient
layers naming them -1,0,1,2. While the calculation of φα uses the gradient
layers 0,1,2, the calculation of the concentration field is one step behind,
and consequently one swap behind the phase-field and therefore comprises
of -1,0,1. This now enables the computation in the parallelization direction
to be of the same type as the other directions.

Mobilities

The mobilities M (φ, c, T ) are also required at the off-grid positions which
are computed similarly by averaging the cell value and that of the neighbour
cell. Since, the concentration is one iteration behind, we utilize the φn+1

α

for the computation of M (T, c, φ).
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MPI exchange

In the present parallelization scheme, we divide the domain in slices, parallel
to the z−direction and the present dicretization scheme requires that we

have the
∂φα

∂t
at the boundary cells when we compute the antitrapping flux

term for the boundary cells in the z− direction. This is however impossible
in the normal calculation scheme, since the update of the boundary cells is
only after the complete calculation of the whole slice. To achieve this we
do the following: For the the last boundary cell, we calculate the change in
φα from the neighboring worker, and store it in array for future calculation,
before the start of the iteration for the entire slice. Note, this calculation
does not modify the φα values, but only computes the change in φα. For

eg: For the cell Nz − 1, we compute the
∂φα

∂t
of the layer z = 1 from the

next worker, and similarly the change of φα for z = 0 from
∂φα

∂t
of the the

layer Nz − 2 from the previous layer. The exchange of variables and the
movement of the extended gradient layer can be seen in Figure E.1. This
requires however, that we update the φα values of the boundary before
the c calculation. This is performed through a manual update using the
change in φα values received from the neigboring workers. This update is
essential both for the correct calculation of the mobilities and the correct
calculation of the antitrapping current.
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Layer 0

First Inner domain
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phase-field in Layer 1
and concentration in Layer0

Transfer of change in phase-
field done before iteration 

Transfer of change in phase-field after first 
layer is calculated

Figure E.1.: Modifications implemented, namely the increase of the gradient
layers and the extra transfer variable "the change of the phase-field".
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F.1. List of symbols

Symbol Description Units
σαβ , γαβ Surface entropy J/m2K
σ̃αβ , σαβ Surface energy J/m2

ταβ , τ Mobility(Phase-field(Free Energy
Functional))

Js/m4

ωαβ , ω Mobility(Phase-field(Entropy Func-
tional))

Js/m4K

f bulk free energy density J/m3

s bulk entropy density J/m3K
Ψ grand potential density J/m3

S Entropy Functional J/K
F Free Energy Functional J
Ω Grand Potential Functional J
τ̃ Non-dimensional mobility(free en-

ergy)
-

ζ Non-dimensional mobility(grand
potential)

-

Λ Lagrange Parameter J/m3K

Λ̃αβ Interface Thickness m
Mij Mobilities(Concentration Equa-

tion)
Km3/J

M̃, F̃ Solvability Integrals -
Vm Molar Volume 1/m3

R Gas Constant J/K
T Temperature K
u Non-dimensional undercooling -
Cv Heat capacity J/m3K
K Thermal Conductivity J/msK
κ Thermal Diffusivity m2/s
Lα Latent heat J/m3

λ Lamellar spacing m

λ̃ Temperature Scale K
α̃ Scaled Length(Diffusion Length-

/Length scale)
-
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p Interface Peclet number -
g Interpolation function, non-

dimensional parameter
-

h Interpolation function -
D Diffusivity m2/s
Ξα Noise Amplitude(Phase-field) -
r Function of φ -
s Function of φ -
Γ Gibbs-Thomson Coefficient Km
μ Chemical potential J/m3

μint Kinetic coefficient m/sK

β 1/μint Ks/m
P, Q, R, S Trignometric functions -
α, β, γ, δ Phase indices -
i, j, k, A, B Component Indices -
ε Parameter relating to

length(dimensional/non-
dimensional)

m/-

c, φ Phase and component vectors -
V Velocity m/s
v Non-dimensional velocity -
lc Diffusion Length(D/V) m
do Capillary length m
m Slopes of Liquidus/Solius K
t time in simulations s
kn Wave number 1/m
a gradient entropy function J/m2K
ã gradient energy function J/m2

w entropy potential J/m2K
w̃ energy potential J/m2





Appendix G

Acknowledgements





253

I would like to acknowledge the funding agencies: i)CCMSE (Center
for Materials Science and Engineering) funded by the state of Baden-
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