
hi
gh

 a
va

il
ab

il
it

y
an

d
sc

al
ab

il
it

y
of

 m
ai

nf
ra

me
 e

nv
ir

on
me
nt
s

r.
 v
au
pe
l

robert vaupel

_
of mainframe environments

Robert Vaupel

High Availability and Scalability of Mainframe Environments
using System z and z/OS as example

High Availability and Scalability of
Mainframe Environments using
System z and z/OS as example

by
Robert Vaupel

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2013
Print on Demand

ISBN 978-3-7315-0022-3

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. High Availability . 3
1.3. Scalability . 5

2. z/Architecture 9
2.1. A Little History . 9
2.2. System z CMOS Heritage . 12
2.3. System zEC12 Central Electronic Complex 13
2.4. System zEC12 Components 14
2.5. System z Multi Chip Module 16

2.5.1. Memory . 17
2.5.2. Book . 18
2.5.3. Processor Characterization 18

2.6. System z High Availability Design 19
2.6.1. Transparent CPU Sparing 20
2.6.2. CPU Error Detection for newer System z machines . . 21
2.6.3. Redundant Array of Independent Memory 22

2.7. System z Software and Firmware Layers 25
2.8. Instruction Execution . 27

2.8.1. CISC versus RISC Architecture 27
2.8.2. Register Sets . 30
2.8.3. Program Status Word 31
2.8.4. System z Instructions 33
2.8.5. Decimal Arithmetic 35
2.8.6. Floating Point Arithmetic 37
2.8.7. View of Instruction Execution 40
2.8.8. Super-Scalar Instruction Execution 42
2.8.9. System z10 Microprocessor Pipeline 43
2.8.10. Instruction Re-Ordering 46
2.8.11. Register Renaming 47
2.8.12. Instruction Cracking 49

ii Contents

2.8.13. Out-Of-Order Execution 49
2.8.14. System z196 Microprocessor Core 51
2.8.15. System z196 Instruction Handling 54
2.8.16. System z196 Instruction Optimization 54
2.8.17. System z196 Microprocessor Summary 57

2.9. Interrupts . 57
2.9.1. Enabling and Disabling 59

2.10. Timing Facilities . 60
2.10.1. Time-of-Day Clock 60
2.10.2. Clock Comparator 62
2.10.3. CPU Timer . 62

2.11. Storage Addressing . 63
2.11.1. Address Types . 63
2.11.2. Dynamic Address Translation 64
2.11.3. Large Page Support 66
2.11.4. Storage Protection 66
2.11.5. Prefixing . 67

2.12. Multiprocessing . 68
2.12.1. Atomic Instructions 69

2.13. Input and Output . 70
2.13.1. z196 I/O Infrastructure 71
2.13.2. I/O System Overview 72
2.13.3. I/O Drawer . 74
2.13.4. I/O Operation . 74
2.13.5. Logical Channel Subsystem 76
2.13.6. I/O Configuration . 78

2.14. Logical Partitioning . 78
2.14.1. z/VM . 80
2.14.2. Start Interpretive Execution 81
2.14.3. Logical Processor Management 82
2.14.4. Storage of a Logical Partition 84
2.14.5. Storage of a Virtual Machine under z/VM 85

2.15. Summary . 86

3. z/OS 87
3.1. z/OS Structure . 87
3.2. Address Spaces . 89

3.2.1. Address Space Types and Storage 91
3.2.2. Control Block Areas 93
3.2.3. Storage Protection 94

Contents iii

3.2.4. Address Space Creation 94
3.3. Program Execution . 96

3.3.1. Reentrant Programming 97
3.3.2. Program Recovery 99
3.3.3. Recovery Processing 101

3.4. Program Data Exchange . 102
3.4.1. Data Exchange via Common Storage 103
3.4.2. Data Exchange via Cross Memory 104
3.4.3. Access Registers . 108

3.5. Storage Management . 108
3.5.1. z/OS Storage Managers 109
3.5.2. Managing Storage 110

3.6. z/OS Data Sets . 114
3.6.1. Sequential Data Sets 116
3.6.2. Partitioned Data Sets 117
3.6.3. Allocating a Data Set 118
3.6.4. Virtual Storage Access Method 118
3.6.5. Data Set Organization 119

3.7. Starting z/OS . 119
3.8. Job Entry System . 123
3.9. Time Sharing Option . 124
3.10. Unix System Services . 126
3.11. Summary . 127

4. Dispatching 129
4.1. Dispatching Requirements 129
4.2. z/OS Dispatching . 132

4.2.1. CPU and Storage Management 133
4.2.2. Dispatcher Queue . 134
4.2.3. Dispatching Work 135
4.2.4. Preemption and Time Slicing 137
4.2.5. Interrupt Processing 138
4.2.6. I/O Enablement . 139
4.2.7. CPU Report Example 141

4.3. PR/SM Dispatching . 143
4.3.1. Dispatching Logical Processors 144
4.3.2. LPAR Report Example 147
4.3.3. CEC Utilization Example 149

4.4. Offload Processors . 151
4.4.1. Using zIIPs and zAAPs 152

iv Contents

4.4.2. Processor Pools . 154
4.4.3. LPAR Report Example including Offload Processors . 155

4.5. Example on how z/OS and PR/SM Dispatcher work together . 156
4.5.1. z/OS Serialization 156
4.5.2. z/OS Spin Lock Processing 158

4.6. Limitations of Dispatching 160
4.6.1. Large System Effects 161

4.7. Hiperdispatch . 163
4.7.1. Vertical CPU Management 164
4.7.2. Processor Shares . 165
4.7.3. Example for Unparking Low Processors 167
4.7.4. Hiperdispatch in z/OS 170
4.7.5. Affinity Nodes . 171
4.7.6. Assessment for Parking and Unparking Low Processors 173
4.7.7. Balancing Work . 174
4.7.8. Helper Processing 175
4.7.9. System Work . 177

4.8. Hiperdispatch Analysis . 178
4.8.1. Processor Utilization 178
4.8.2. Cycles per Instruction 179
4.8.3. Hiperdispatch on z196 and zEC12 181

4.9. Summary . 182

5. Workload Management 185
5.1. Workload Management Concepts 185
5.2. Why Workload Management 186
5.3. Workload Management on z/OS 186
5.4. z/OS Workload Management Basics 187

5.4.1. Work Classification 187
5.4.2. Service Class Goals 190
5.4.3. Response Time Goals 191
5.4.4. Execution Velocity Goals 193
5.4.5. Managing Work in z/OS 195
5.4.6. WLM Transaction Management 196
5.4.7. Enclaves . 197
5.4.8. Managing CICS and IMS Transactions 199
5.4.9. Service Definition 201
5.4.10. Service Unit . 202
5.4.11. Goal Achievement 203

Contents v

5.5. z/OS Workload Manager Algorithms 204
5.5.1. Data Sampling . 205
5.5.2. Histories . 207
5.5.3. Data Plots . 209
5.5.4. Policy Adjustment 210
5.5.5. Policy Adjustment Example: Fix MPL Delay 213
5.5.6. Projecting a Change for Accessing a Resource 215
5.5.7. Receiver Value Assessment 216
5.5.8. Net Value Assessment 217
5.5.9. Policy Adjustment Example: Fix CPU Delay 218
5.5.10. Policy Adjustment Example: Time-line for Changes . 221
5.5.11. Test Scenario versus Real Environment 224
5.5.12. Resource Adjustment 226
5.5.13. Timed Algorithms 228
5.5.14. Management Approach and Restrictions 228
5.5.15. Resource Groups . 229
5.5.16. CPU Critical . 231
5.5.17. Storage Critical . 232
5.5.18. Discretionary Goal Management 233

5.6. z/OS Workload Manager Advanced Functions 235
5.6.1. Routing Support . 236
5.6.2. Contention Management 238
5.6.3. Scalable Server Environments 239
5.6.4. WLM Batch Management 242
5.6.5. Workload Scheduling Support 243
5.6.6. Adjusting Resources in a CEC 244
5.6.7. Support for Software Licensing 247
5.6.8. Subsystem Participation 249

5.7. Summary . 250

6. Parallel Sysplex 253
6.1. High Availability Aspects . 254
6.2. Cluster Technologies . 255

6.2.1. Shared-Nothing Cluster 255
6.2.2. Shared-Disk Cluster 256
6.2.3. Shared-Disk and Shared-Memory Cluster 258

6.3. Parallel Sysplex Overview 258
6.4. Sysplex Couple Data Sets . 260
6.5. Coupling Facility . 261

6.5.1. Lock Structure . 261

vi Contents

6.5.2. List Structure . 263
6.5.3. Cache Structure . 264

6.6. Sysplex Setup . 266
6.6.1. XCF Groups . 267
6.6.2. Coupling Facility Duplexing 267

6.7. Parallel Sysplex Configuration 270
6.8. Using IMS as an Example how a Parallel Sysplex is exploited 271
6.9. Parallel Sysplex Exploitation Summary 275
6.10. Business resilience . 276

6.10.1. Continuous Operations 277
6.11. Disaster Recovery Prevention 279

6.11.1. Capacity Backup . 279
6.11.2. Data Mirror Techniques 280

6.12. Peer-to-Peer Remote Copy 281
6.12.1. Latency of Synchronous Copy 282
6.12.2. Hyperswap . 283

6.13. Extended Remote Copy . 285
6.14. Peer-to-Peer Virtual tape Support 286
6.15. Disaster Recovery Scenarios 287

6.15.1. Single Site Workload (Active/Standby) 287
6.15.2. Single Site Failure Scenario 287
6.15.3. Multi Site Workload (Active/Active) 288
6.15.4. Multi Site Failure Scenario 290

6.16. Summary of Business Resilience Concepts 291
6.17. Summary . 292

7. Summary 295

A. Glossary 297

B. Trademarks 311

List of Figures

1.1. Definition of Availability . 5
1.2. Capacity Range of a High-End System z196 6

2.1. History of System z Architecture and z/OS 9
2.2. System z: CMOS Mainframe Heritage 13
2.3. System zEC12 Frames and Blade Extensions 14
2.4. Under the Hood of System zEC12 15
2.5. System zEC12 Cache Level Structure 16
2.6. Transparent CPU Sparing . 20
2.7. CPU Error Detection . 21
2.8. z196 Memory within an MCM 23
2.9. System z Software and Firmware Layers 26
2.10. Percent of Executed Transactions 28
2.11. Transaction Execution Time 29
2.12. Program Status Word in 31-bit Addressing Modes 31
2.13. Program Status Word in 64-bit Addressing Modes 31
2.14. ADD REGISTER Example 35
2.15. MOVE CHARACTER Example 36
2.16. Decimal Arithmetic Data Format 36
2.17. Representation of PI . 38
2.18. Conceptual View of Instruction Execution 40
2.19. Decomposition of Instructions (System z Examples) 40
2.20. Pipeline View of Instruction Execution 41
2.21. Example of Super-Scalar Processing 42
2.22. System z10 Microprocessor Pipeline 44
2.23. Examples of Result Forwarding 45
2.24. Example of Instruction Re-Ordering 47
2.25. Example for Register Renaming 48
2.26. Example for Out-Of-Order Execution 50
2.27. System z196 Microprocessor Core 51
2.28. System z196 Microprocessor Execution Pipeline 52
2.29. Result Forwarding . 53

viii List of Figures

2.30. Instruction Execution on older System z generations 55
2.31. LOAD ON CONDITION (LOCR) Instruction 55
2.32. Optimized instruction sequence by using LOCR 56
2.33. Time of Day Clock . 60
2.34. Time of Day Clock Extended Format 60
2.35. TOD Clock Steering . 61
2.36. System z Dynamic Address Translation 65
2.37. Dynamic Address Translation for Large Pages 66
2.38. Storage Protection . 67
2.39. Prefixing . 68
2.40. Compare And Swap Example 69
2.41. Better Implementation for Compare And Swap 70
2.42. z196 I/O Infrastructure . 73
2.43. System z I/O Flow . 75
2.44. Multiple Sub-Channel Sets 77
2.45. Platform Virtualization on System z 79
2.46. Virtualization with z/VM 5.3 80
2.47. SIE Instruction Flow . 81
2.48. Logical Processor Management 83
2.49. Mapping of Absolute to Physical Storage 84

3.1. z/OS Structure and Stack . 88
3.2. Address Space Structure Structure 90
3.3. Address Space and Storage Types 92
3.4. Prefixed Save Area and Common Storage 93
3.5. Address Space Creation . 95
3.6. Program Execution . 96
3.7. Reentrant programming for 31 bit Programs 98
3.8. Problem Mode Error Recovery Routines 99
3.9. Error Recovery Components 100
3.10. Error Recovery Processing 102
3.11. Data Exchange via Common Storage 104
3.12. Address Space Control Element 105
3.13. Data Exchange via Program Call 106
3.14. Data Exchange via Access Registers and Cross Memory . . . 107
3.15. Real, Virtual and Auxiliary Storage 110
3.16. Page Statistics . 112
3.17. UIC Calculation on current z/OS Systems 113
3.18. Structure of a Direct Access Device and Count Key Data . . . 115
3.19. Structure of a Partitioned Data Set 116

List of Figures ix

3.20. Allocating a z/OS Data Set via ISPF 117
3.21. Data Set Index . 120
3.22. Information to IPL a z/OS System 121
3.23. Steps of Job Execution . 123
3.24. Initializing a TSO Address Space 125
3.25. Unix System Services . 127

4.1. Logical Partitioning supported on System z 130
4.2. Typical Partitioning of a System z CEC 131
4.3. Typical Workload Utilization on z/OS 132
4.4. Address Space States . 133
4.5. Dispatcher Queue . 135
4.6. Dispatching Work . 136
4.7. Time Slicing . 137
4.8. Interrupt Processing . 139
4.9. CPU Enablement for I/O . 140
4.10. CPU Report Example . 142
4.11. History Time Interval per Logical Processor 146
4.12. RMF Partition Data Report Example 148
4.13. Physical Utilization for a CEC with 3 Partitions 150
4.14. Used Share for the CEC with 3 Partitions 150
4.15. Executing Work on 2 Processor Pools 153
4.16. Websphere Transaction Phases 153
4.17. Processor Pools on System z 155
4.18. RMF Partition Data Report with Offload Processors 157
4.19. Two Logical Processors requesting the same spin lock 158
4.20. z/OS and PR/SM Spin Lock Synchronization 159
4.21. Relative Access to Data in Cache Structures for System z196 . 160
4.22. Hiperdispatch Objectives . 163
4.23. Vertical CPU Management with High Demand 164
4.24. Unparking of Low Processors 165
4.25. Vertical CPU Management and Processor Shares 166
4.26. RMF CPU Activity Report Example 168
4.27. R71: Park and Unpark . 169
4.28. R72: Park and Unpark . 169
4.29. Hiperdispatch Processing in z/OS WLM 170
4.30. Affinity Nodes on a z196 System 172
4.31. Assignement of Logical to Physical Processors 173
4.32. Balancing Work . 174
4.33. Unpark Processing for System SYS1 176

x List of Figures

4.34. Helper Processing for Node 1 of SYS1 176
4.35. Hiperdispatch Analysis: Processor Utilization 179
4.36. Hiperdispatch Analysis: Cycles per Instructions per Processor 180

5.1. Conceptual View on z/OS Workload Management 187
5.2. Work Classification Example for Batch Jobs 188
5.3. Example for a Service Class Definition for Batch Work 190
5.4. Response Time Distribution Buckets 192
5.5. Response Time Distribution for a Service Class 193
5.6. WLM Transaction Management 196
5.7. Enclave Processing Model for Websphere 198
5.8. Processing Model for CICS Transactions 200
5.9. WLM Service Definition . 201
5.10. Actual Response Time for a Percentile Response Time Goal . 204
5.11. Data Plots . 209
5.12. Policy Adjustment Process 211
5.13. Swapping Related to MPL In and Out Targets 213
5.14. Plots to Adjust MPL In and Out Targets 214
5.15. Example for Adjusting Dispatch Priorities 220
5.16. Sample Work Execution . 223
5.17. Sample Goal Achievement 224
5.18. CPU Service consumption in a real system 225
5.19. Dispatch Priorities in a real system 225
5.20. Resource Adjustment . 227
5.21. Example for a Resource Group with Maximum Limit 230
5.22. Example for a Service Class with CPU Critical Definition . . 231
5.23. Storage Frames of Service Classes 232
5.24. Paging Rate of Service Classes 233
5.25. Discretionary Goal Management 234
5.26. Routing Support . 236
5.27. Contention Situation . 238
5.28. WLM Queue Management 240
5.29. WLM Batch Management 242
5.30. WLM Supported Workload Scheduling 243
5.31. WLM Policy Adjustment for Weight Changes 245
5.32. Intelligent Resource Director Functions 246
5.33. Group Capping Example . 248

6.1. Total System Capacity of System z compared to IBM H5 . . . 254
6.2. Shared-Nothing Cluster . 255

List of Figures xi

6.3. Shared-Disk Cluster . 256
6.4. Parallel Sysplex . 257
6.5. Coupling Facility Components 259
6.6. Sysplex Couple Data Sets 260
6.7. Lock Structure . 262
6.8. List Structure . 264
6.9. Cache Structure . 265
6.10. Sysplex Setup . 266
6.11. Coupling Facility Duplexing 268
6.12. Original Parallel Sysplex Configuration 269
6.13. Modern Parallel Sysplex Configuration 270
6.14. Information Management System Structure 272
6.15. IMS Parallel Sysplex Exploitation Step 1 273
6.16. IMS Parallel Sysplex Exploitation Step 2 274
6.17. Recovery Objectives . 276
6.18. Requirements on Recovery Objectives 277
6.19. Rolling Upgrades and Service 278
6.20. Capacity Upgrade Options 279
6.21. Peer-to-Peer Remote Copy 281
6.22. I/O Benchmark for Synchronous Copy 282
6.23. Hyperswap . 284
6.24. Extended Remote Copy . 285
6.25. Single Site Workload (Active/Standby) 288
6.26. Single Site Failure Scenario 289
6.27. Multi Site Workload (Active/Active) 289
6.28. Multi Site Workload: I/O Subsystem Failure 290
6.29. Multi Site Workload: Complete Site Failure 291

List of Tables

1.1. Cost of Downtime by Industry 2

2.1. Comparison of Cache Size for System z196 and zEC12 17
2.2. Number of Processing Units per zEC12 Model 19
2.3. RAS Capabilities for RAIM Memory 24
2.4. Halfword Codes for Decimal Format 37
2.5. Floating Point Formats on System z 38
2.6. Decomposing CISC Instructions 48
2.7. Interrupt Locations . 59
2.8. Handling of Virtual Addresses 63

3.1. Abnormal Termination Codes 101
3.2. Sizes of last physically build z/OS DASDs 115

4.1. Example for Processor Shares of three Logical Partitions . . . 144
4.2. PR/SM Dispatching Example 147
4.3. LPAR Configuration Example 149
4.4. Relative Capacity Indicators for System z196 162
4.5. LPAR Definition Example 171
4.6. Nodes of System SYS1 . 175
4.7. Hiperdispatch Analysis: Cycles per Instructions 181
4.8. Hiperdispatch Benefit for System z196 182

5.1. Possible Goals for Workload Types 195
5.2. WLM Data Sample Categories 206
5.3. Data Aging in WLM Histories 207
5.4. Service Class State Sample Matrix 208
5.5. Net Value Decision Matrix 217
5.6. Dispatch Priorities in z/OS 219
5.7. Sample Service Class Definition 222
5.8. Group Capping Definitions 247
5.9. Subsystem Participation with z/OS Workload Management . . 249

xiv List of Tables

6.1. Parallel Sysplex Exploitation 275

Preface

Asking people whether they ever used mainframe computers? The usual an-
swer is No. People are often not aware what a mainframe computer is and
what role it plays in the real world. Good examples are ATM, which book on
mainframe computer. Everybody who uses its money card is accessing main-
frame computer technology. Generally mainframe computing is everywhere
where critical data processing is required. The dominating mainframe comput-
ing platform is IBM System z and its main operating system z/OS.

While mainframe computing is the backbone of industrial and commercial
computing, the answer of many students about the acquaintance with main-
frame computing would not be different to those of usual people. In order
to emphasize the importance of mainframe computing, the KIT together with
the FZI formed an alliance with IBM R&D Germany the Informatics Inno-
vation Center (IIC). The IIC is a platform for cooperation between research,
academic education and industry exchanging knowledge, experience and pro-
viding a higher degree of industry experience for bachelor and master students.
Part of the IIC are lectures about mainframe computing with emphasis on Sys-
tem and z/OS underlining the strength and special capabilities of mainframe
technology.

The present book analyzes why mainframe technology is highly scalable and
how it provides high availability enabling the technology as base for criti-
cal business operations. It gives examples on how scalability must be build
throughout the complete hardware and software stack providing elasticity of
the business. High availability solutions ensure that the business can operate
with any interruptions surviving any kind of possible disaster. The book is the
result of the fruitful cooperation between academy and industry and helps to
strengthen the knowledge of students and everybody involved with computers
about mainframe technology.

I am very happy, that Robert Vaupel, Senior Technical Staff Member of IBM
and Manager of the IIC, contributes to the goal of the IIC so well with this
book. I hope the readers are like me amazed about the remarkable technical
solutions of mainframe computers which are often far looking into the future,

xvi List of Tables

in strong contrast to the reputation of mainframe computing which is often
called legacy technology.

Prof. Dr. Ralf Reussner Director of IIC

Acknowledgments

Many thanks to the following people for their contribution to the project:

Dieter Wellerdiek IBM Systems & Technology Group, zOS WLM/SRM De-
velopment, IBM R & D Böblingen, Germany

Joachim von Buttlar IBM Systems & Technology Group, System z Firmware
Development and Simulation, IBM R & D Böblingen, Germany

Robert R. Rogers IBM Systems & Technology Group, Power & z Systems,
Distinguished Engineer - z/OS Designer/Philosopher, Software Archi-
tect: System z - Core Technologies, IBM Poughkeepsie, USA

1. Introduction

A mainframe computer is what businesses use to host their commercial databases,
transaction servers, and applications that require a greater degree of security
and availability than is commonly found on smaller scale machines. Such com-
puters typically execute hundreds of applications, they connect to thousands of
I/O devices, and serve thousands of users simultaneously. Mainframes can be
best defined by their characteristics:

• To ensure a reliable and predictable execution of transactions

• To store business critical data

1.1. Motivation

The characterization and definition of mainframes also define their most impor-
tant features: RAS. RAS is an abbreviation which stands for reliability, avail-
ability, and serviceability, or optionally scalability, or security. These features
lead to the subject of this course which shows the requirements and efforts to
provide and support computing environments which are highly available at best
without any interruption of the operation and which are highly scalable to sup-
port the requirements of large customer installations. We will use System z R©

and its main operating system z/OS R© as example to describe these features.

The requirements of highly resilient business environments become obvious if
we take a look at cost of unexpected interruptions of business operations caused
by computing failures (see table 1.1). Today’s business operations are highly
dependent on non interruptible operations and even short downtimes can’t be
afforded anymore. Over the last 40 years IBM R© developed the System /360
architecture into a highly resilient and non interruptible computer environment.
As a result 95% of the world’s biggest companies use System z. The highest
usage can be found in the financial industry. Around 97% of all retail banks,
insurance companies and brokerage firms use System z as their main back-end
server environment. 65 to 70% of all relevant data for companies is stored on

2 Introduction

databases on System z. High Availability is one of the most important aspects
for business operations and it goes hand in hand with scalability which defines
the ability of an environment to adapt to changing business needs. System z and
its main operating system z/OS are a perfect example how high availability
and scalability is implemented and which hurdles must be taken to get to an
operational environment which meets the requirement of nearly no downtime
and which is flexible enough to meet capacity requirements for world wide
operating businesses.

Industry Sector Loss per Hour
Financial $8,213,470
Telecommunications $4,611,604
Information Technology $3,316,058
Insurance $2,582,382
Pharmaceuticals $2,058,710
Energy $1,468,798
Transportation $1,463,128
Banking $1,145,129
Chemicals $1,071,404
Consumer Products $989,795
Source: Robert Francis Group 2006: ”Picking the Value of PKI:
Leveraging z/OS for Improving Manageability, Reliability, and
Total Cost of Ownership of PKI and Digital Certificates.”

Table 1.1.: Cost of Downtime by Industry

System z and z/OS are also the best examples to show how High Availability
and Scalability requirements are implemented from hardware, firmware layers,
operating system, to the application layers. They need to be covered at all lay-
ers and also require interaction across the whole operating stack. This course
consists of five segments:

1. Introduces System z hardware and firmware and shows which efforts are
undergone to support scalability for high frequency processors and how
to support dozens of processors in parallel. High availability features are
discussed which enable the System z environment to continue to operate
even if processors, parts of the main memory or complete parts of the
system fail.

2. This segment introduces z/OS which is the main operating system used
to run large transaction environments of System z. The roots of z/OS go

1.2 High Availability 3

40 years back into the past and it is a very good example how legacy
computing technology meets the requirements of the modern business
world.

3. At this point we will focus on the dispatching processes of the System z
Hypervisor as well as the z/OS operating system. The main focus is on
how the different dispatching processes meet the requirements of their
environments, at which points they work together and at which points
they become problematic for system scaling. The second part of this
segment highlights a feature named Hiperdispatch which has been in-
troduced to overcome the scalability limitations of large n-way systems
such as System z.

4. One important aspect of system operation is the supervision and con-
trolling of the work which flows through the system. A well tuned envi-
ronment is crucial for running business applications efficiently and fur-
thermore it is a guarantee to maintain high availability at the application
level. z/OS includes a component named Workload Manager (WLM)
which controls and manages the workload of the system. WLM is the
main component for autonomic performance management and it also in-
cludes capabilities to maintain application availability.

5. The last segment goes beyond the single system. z/OS systems can form
a cluster environment named a Parallel Sysplex R©. The Parallel Sysplex
was originally introduced to overcome limitations of computing speed.
While this is no longer the biggest issue with today’s technology the
Parallel Sysplex is nowadays the base for a continuously operating envi-
ronment on a global scale.

1.2. High Availability

In this section we want to take a look at the terminology around High Avail-
ability. High Availability means a resilient IT infrastructure which allows to
mask individual component failures and which also allows to recover from er-
rors. High Availability is based on an infrastructure which is created of reliable
components. Reliability is the probability of a single component or device to
perform its intended function during a specified period of time under stated
conditions. Mathematically reliability can be expressed as a probability den-
sity function:

4 Introduction

R(t) = Pr[no failure in(0, t]]

= Pr{T > t}

=

∫ ∞
t

f(x) dx

=

{
e−λt for random failures,

1
σ
√
2π

∫
e

1
2 (
T−µ
σ)2 for wear-out failures.

A failure is usually regarded a random phenomenon. For random failures the
exponential function e−λt describes the probability of the failure occurrence.
Another set of failures are wear out problems which typically occur towards the
end of the life-cycle of a device. These failures typically follow a normal dis-
tribution. At the beginning of the life cycle failures may occur which are based
on insufficient tests, design flaws or oversights. Such errors are named infant
mortality failures and they should be avoided by following design, implemen-
tation and testing guidelines. In any case reliability is concerned with the fact
that failures should be avoided and for cases where they can’t be avoided that
the system should be designed to survive them.

For our discussions we are also primarily interested in reliability during the
”useful life period” of a device. The reliability measure is the Mean-Time-
Between-Failures (MTBF):

MTBF = Θ =
1

λ
=
T

r

with λ = failure rate, T = total time, r = number of failures. This is sometimes
also defined as Mean-Time-To-Failures (MTTF) in case the system is replaced
after the failure. The time after the failure occurrence until the system is oper-
ational again is defined as Mean-Time-To-Repair (MTTR). Availability is now
defined as the probability function of the total time the system is up and running
divided by the time the system should be operational, (see also table 1.1):

PA(t) =
MTTF

MTTF +MTTR

Our discussion of System z will start with the components of the system and
techniques to support the claim of the system to provide extraordinary high re-
liability. System z is currently known to provide a reliability of 99.999 % which

1.3 Scalability 5

Up

Down

Start

MTTF MTTR

Time

Figure 1.1.: Definition of Availability

means that the probability for the system to be non operational is less that 31.5
seconds per year. Nevertheless high reliable components are not sufficient to
support the customer demand for a continuously operating environment. We
will also discuss Disaster Recovery techniques and system and environment
layouts which are necessary to achieve a maximum resilient business environ-
ment.

1.3. Scalability

The second feature of a modern business environment which we will discuss
in this course is scalability. Scalability in our context means how the envi-
ronment is able to adjust to different business needs and we will also discuss
techniques and functions which enable the system to provide a stated capacity
and performance. We will encounter that increasing the processor frequency is
not sufficient anymore to provide higher system capacity and we will discuss
the difficulties which occur when an existing environment grows bigger. Scal-
ability will also cover the ability of the system to incremental grow based on
required demand. System and business growth on an application scale can be
achieved in two ways:

1. Horizontally, that means if more application instances are needed more
systems need to be deployed.

2. Vertically, which means that an existing system can grow to support more
instances of the same application as well as to support multiple different
applications.

System z is the best example for an environment which support vertical growth
if needed. We will see that System z and especially z/OS allow to host multiple

6 Introduction

applications at the same time and we will discuss the functions which are re-
quired to ensure a meaningful operation under such conditions. System z can be
upgraded in very small incremental steps. Figure 1.2 shows the capacity range
of high-end z196 systems. The possible system configuration of the z196 7xx
systems encompass a range from 150 to 6140 Million of Service Units (MSU)
which is a measure of system capacity (see [21]). The important factor is that
the high end z196 mainframe can cover a capacity range which allows to scale
40 times from the smallest to the largest system.

z196 High End: Million of Service Units

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

70
1

70
3

70
5

70
7

70
9

71
1

71
3

71
5

71
7

71
9

72
1

72
3

72
5

72
7

72
9

73
1

73
3

73
5

73
7

73
9

74
1

74
3

74
5

74
7

74
9

75
1

75
3

75
5

75
7

75
9

76
1

76
3

76
5

76
7

76
9

77
1

77
3

77
5

77
7

77
9

6140 MSU

150 MSU

Figure 1.2.: Capacity Range of a High-End System z196

In addition low end z196 systems exist which provide further upgrade capa-
bility in the range from 30 to 1000 MSU. The low end systems are available
in 3 configurations: 401 to 415, 501 to 515, and 601 to 615. The first letter
determines the single engine speed and the two following letters the numbers
of available physical processors. This allows installations with smaller capac-
ity requirements to adjust their systems to their needs. If this is not sufficient
another set of smaller systems named z114 are available which cover the ca-
pacity range from 3 to 388 MSU. These systems are available with 26 different
single engine speeds and up to 5 physical engines. The newer zEC12 main-
frame which became available in September 2012 provides the same choice of
models like the earlier versions z10

TM
and z9 R© did.

1.3 Scalability 7

The possibility to grow the systems incrementally and to cover a very wide
capacity range requires that the software from the virtualization layer up to the
middleware which process the end user applications provide the elasticity to
deal with such high differences. Also upgrades and downgrades can be applied
instantaneously and the software layer must react accordingly to them. We will
discuss these functions in detail and we will give examples for the different
layers how it is possible to provide the elasticity so that the capacity can be
used by the end users.

2. z/Architecture

In the segment we will discuss the design of System z and which functions and
techniques are used to support the claims of high availability and scalability.

2.1. A Little History

Since when does System z exist and what where the design decisions to create
such an environment? The roots of System z and z/Architecture are now nearly
50 years back in history to System /360 which has been introduced on April 7th,
1964. System /360 was the first computing architecture. The promise which
was made at that time to the the customer was that all following systems of the
same architecture were compatible to the first systems, meaning that programs
which were created on the first systems will still run on all future environments.

vbgAprilgFJUL
Introductiongof
SzkUXgArchitecture

SymmetricgMulti
Processing

VirtualgMemory

Expanded
Storage

5GBgAddressing

Access
Registers

DataTspaces

CMOS
Technology

Parallel
Sysplex

ULbit
Addressing

SzkUX SzkvX SzkJX zgArchitecture

MVT MVSzkvX MVSzXA MVSzESA OSzkJX zzOSSVS

FixedgStorage
FWgPartitions

orgTasks

AddressgSpaces

MultiplegVirtual
Storage

One
FUMB

VS
Area

5gGB
Virtual

Storage

Expanded
Storage

VirtualgIzO
Fast

Program
Load

DynamicgIzO
Posix

Cluster

Parallel
Sysplex

Workload
Management
UnixgSystem

Services
TCPzIP

Hiperbatch
bbb

Java
Websphere
IEEEgFloat

ULgbit
IRD

Security
GDPS

bbb

MFT

FJUX FJUW FJvX FJvW FJHX FJHW FJJX FJJW 5XXX 5XXW 5XFX

GroupgCapping
zAAPzzIIP

Hiperdispatch
zHybrid
Platform

Performance
Manager

bbb

zEnterprise

Figure 2.1.: History of System z Architecture and z/OS

10 z/Architecture

Why was this necessary? Prior to System /360 different system designs existed.
More important, with every new system a new system design was introduced.
That required the user to re-program nearly everything so that it could run on
the new hardware. This was highly inefficient and therefore IBM introduced
a system architecture with the promise of upward compatibility for all future
environments.

Figure 2.1 shows the major development steps from System /360 to System z
from 1964 to today. The graphic also covers the development of the main op-
erating system of System, z/OS. The name System /360 was created from 360
degree of a circle meaning that this architecture covers all computing aspects
from hardware to operating systems for all IBM computers. System /360 was
also introduced for commercial and technical processing. Aside of compatibil-
ity the focus was also on easy extending the environment by adding additional
processors and I/O units. Thus scalability was a major design point of the sys-
tem architecture.

While System /360 was nearly unchanged during its first years the first ma-
jor enhancement was the introduction of virtual storage and multi processing
in the 1970s. The increasing capacity demand and the necessity of exploiting
the enhanced architecture lead to the development of a common operating sys-
tem: Multiple Virtual Storage (MVS

TM
). MVS is still the base for z/OS today’s

operating system for System z and was introduced in 1974. With the introduc-
tion of MVS, virtual storage and symmetric multi processing an architectural
change from System /360 to /370 was carried out. System/370 still maintained
the compatibility to System /360 but marked a major milestone of advanced
computer technology.

The following years and developments were marked by the hunger for more
system memory. The initial System /360 architecture used 24 bit for addressing
which just allowed to address 16 MB of virtual and physical memory. This
became too small and in the early 1980s the addressing was increased to 2 GB
or 31 bit addresses. The 32nd bit of the address was used to distinguish a 31 bit
from a 24 bit address and we will also later see that both the architecture and
the operating system underwent every effort to maintain compatibility to 24 bit
addressing and programs written on older technology.

Storage was still the main concern during these days. On the one hand main
memory was very expensive on the other hand storage was the limiting factor of
computer technology while processor technology advanced much faster. Many
attempts were made to overcome the limiting factor main memory and one of
such developments were the introduction of expanded storage. Expanded stor-

2.1 A Little History 11

age was a 4KB addressable storage which extended the main memory. While
it was not byte addressable it was not so easy to access the storage by pro-
grams. Thus it was first primarily used as a fast paging device and only later
techniques, like data spaces and Hiperspaces

TM
allowed to use the storage more

directly. Nevertheless in 2001 with the introduction of the System z architec-
ture and the z/OS operating system the addressability was extended to 64 bits
and the limitations of only 2 GB addressable storage were finally removed. At
that time the cost for storage was relative small compared to other elements of
the system and nowadays environments can afford hundredths of GB of main
memory.

But before the change from 31 bit to 64 bit addressing was made another im-
portant development must be noticed. System /360 and its successor /370 was
based on bipolar chip technology. Bipolar chip technology was in the 1980s the
fastest existing chip technology but its manufacturing costs and further more
the cooling problem of the thermal effects of the chip caused a high prob-
lem to future development of the architecture. As a matter of fact System /370
based on bipolar technology reached a scalability limitation at the end of the
1980s which could not be overcome within this technology. In 1994 IBM in-
troduced a completely re-newed generation based on CMOS (complementary
metal-oxide-semiconductor) chip technology. The new generation was named
System/390 R© and the first notice to be made was that the single processor
speed of the new system reached only 28% of the speed of the last bipolar sys-
tem of System /370 while the available system capacity even was shrinking to
only 16%. This was a significant scalability issue and in order to overcome this
limitation a cluster technology the Parallel Sysplex was introduced which al-
lows to couple multiple OS/390 R© and later on z/OS systems via a fast storage
device the coupling facility.

The fourth generation of new System /390 hardware based on CMOS tech-
nology finally reached the capacity and performance of the previous bipolar
System /370 hardware. Nowadays the CMOS technology advanced to perfor-
mance and capacity ratings which are higher than ever before. System z196
with 5.2 GHz frequency is the fastest commercial processor in the industry.
System z is also a wonderful example of a technology which scales since 50
years and which were able to overcome a technological limitation by changing
the base of its chip technology. The first S/360 systems provided a capacity of
roughly 0.005 Million Instructions per Second (MIPS) and a 2817-701 which
is a one way z196 offers a capacity of 1200 MIPS. With the very high increased
in system capacity the focus for scalability changes from providing the mini-
mum capacity as it was in the early 90s to exploiting the available capacity.

12 z/Architecture

We will also see that the introduction of very high clock frequency does not
alone provide a high system capacity and that advanced techniques are neces-
sary to exploit the this technology. On the other hand the focus of the Parallel
Sysplex technology is no longer scalability but high availability and continu-
ous operations of the environment. The Parallel Sysplex technology has been
enhanced to support a Geographically Dispersed Parallel Sysplex

TM
(GDPS R©)

environment and thus providing a resilient business environment on a global
scale.

2.2. System z CMOS Heritage

System z196 is the latest system of the CMOS mainframe heritage started in
1994 which replaced the bipolar technology of the 1980s. Figure 2.2 shows
the development of the processor frequency starting with the fourth generation
of CMOS mainframe processors. We remember that the fourth generation was
the first processor which provided the same capacity and speed than the earlier
bipolar technology. Generation 5 (G5) and 6 introduced IEEE standard binary
floating point and copper technology. System z900 was the first system of the
System z architecture and it introduced full 64 bit architecture.

System z990 also where a milestone in processor technology. It was the first
multi book system and it introduced super-scalar processor pipeline. A signif-
icant advance was made with the change from System z9 to z10. System z10
increased the clock frequency by 2.5 times. This now required significant im-
provements of the System z microprocessor. Enhancements of the super-scalar
pipeline became necessary as well as for the cache topology between the mi-
croprocessor and main memory. Another significant advance in this direction
was made with the System z196 microprocessor which also introduced a new
out-of-order pipeline on System z. It should be noted that this was by far not
the introduction of out of order processing. The last generations of bipolar tech-
nology also already used out of order processing. But the high clock frequency
and using the existing microprocessor technology efficiently now require again
more sophisticated processor design. Until now the advantage of the newest
generation was mostly given by incremental technology advances. In addition
System z196 completes the cache topology which was introduced with Sys-
tem z10. System zEC12 has been released in September 2012 and it is the
newest member of the System z family. The processor frequency increased to
5.5 GHz and the processor has been enhanced for its out-of-order processing.
The following chapters will discuss the System z microprocessor technology

2.3 System zEC12 Central Electronic Complex 13

with examples shown for System z10, z196 and zEC12. The discussion will
focus on the necessary functionality to exploit high processor frequency and to
provide scalability and elasticity on large systems.

0

1000

2000

3000

4000

5000

6000

1997
G4

1998
G5

1999
G6

2000
z900

2003
z990

2005
z9 EC

2008
z10 EC

2010
z196

2012
zEC12

M
H

Z

300
MHz

420
MHz

550
MHz

770
MHz

1.2
GHz

1.7
GHz

4.4
GHz

5.2
GHz

5.5
GHz

Figure 2.2.: System z: CMOS Mainframe Heritage

At this point we also need to introduce a common terminology for a System
z mainframe environment. Such a computing system is named a Central Elec-
tronic Complex (CEC) or Central Processing Complex (CPC).

2.3. System zEC12 Central Electronic
Complex

The term Central Electronic Complex becomes much more clear when we take
a look at the possible expansions for a System zEC12 compared to a classical
mainframe environment. Figure 2.3 shows how a zEC12 may look like. The
classical mainframe consists of two frames, the A and Z frame which will be
discussed later in more detail. In addition Blade Center Extensions named zBX
and enumerated as B, C, D, or E frame can be added to the classical mainframe.

14 z/Architecture

In the first stage this provides a closer integration of application servers running
on Linux and Windows environments to the transaction and database servers
running on the classical mainframe environment. Using zBX extensions also
integrates many manageability aspects on a single console which make com-
plex environments more suitable for large installations. the zBX extensions
were introduced with System z196. The z196 was the first System z which
provided the structure of a classical mainframe and up to 5 zBX extensions.

IBM zEnterprise EC12 (zEC12) IBM zEnterprise BladeCenter Extension (zBX Model 003)

EDCBAZ

Figure 2.3.: System zEC12 Frames and Blade Extensions

In our excursion on High Availability and Scalability we will concentrate on
the classical mainframe environment which is the Z and A frame of the CEC.

2.4. System zEC12 Components

Figure 2.4 shows how the high end System zEC12 looks when the covers are
removed. The depicted system is a water cooled model which is only available
for the largest extension of the largest models H89 and HA1. Water cooling is
optionally, the standard cooling method uses a refrigerator liquid in a closed
circuit cycle. The water cooling models allow the installation to provide addi-
tional cooling which is especially advisable in warmer region.

The A frame of the CEC contains the system processors, I/O cages, optional
battery backup systems and the cooling environment. The HA1 model contains

2.4 System zEC12 Components 15

120 processors of which 101 can be used for customer workloads. The proces-
sors are contained on 4 books. The HA1 as well as the H89 are always made
of 4 books. Smaller models like the H66 consist of 3 books, the H43 of 2 and
the H20 of 1 book. The number denotes the maximum number of processors
which can be used for workloads. The additional processors are utilized for
internal processing or as spares. One book can keep up to 30 processors. The
books also contain the memory cards of the system.

Internal
Batteries

Power
Supplies

I/Ohcage

N+1hWaterh
Cooling
Units

Support
Elements

PCIe I/Oh
drawer

ProcessorhBooksh
withhFlexiblehSupporth
ProcessorshAFSPsf,h
PCIe andhHCAhI/Oh
fan-out

PCIe I/Ohinterconnecth
cables
Ethernethcablesh
FSPhcagehcontrollerh
cards

Figure 2.4.: Under the Hood of System zEC12

The Z frame contains the Support Elements (SE) which are used for mainte-
nance. Usually only a system technician has a need to use a support element for
example when the replacement of a part becomes necessary. The management
of the system is usually done from a Hardware Management Console (HMC)
which is connected remotely to the CEC. The Z frame also contains power sup-
plies and additional I/O drawers. It should be noted that the general structure of
the z196 is the same just with a smaller number of total processors. The biggest
z196 has 96 processors of which are 80 can be used for workloads.

16 z/Architecture

2.5. System z Multi Chip Module

384MB eDRAM
Inclusive L4
2 SC Chips

PU Chip
6 Cores

PU Chip
6 Cores

PU Chip
6 Cores

PU Chip
6 Cores

PU Chip
6 Cores

PU Chip
6 Cores

48 MB eDRAM
Inclusive L3

L1

L2

+ + + +

+ + + +

L1

L2

48 MB eDRAM
Inclusive L3

L1

L2

+ + + +

+ + + +

L1

L2

48 MB eDRAM
Inclusive L3

L1

L2

+ + + +

+ + + +

L1

L2

48 MB eDRAM
Inclusive L3

L1

L2

+ + + +

+ + + +

L1

L2

48 MB eDRAM
Inclusive L3

L1

L2

+ + + +

+ + + +

L1

L2

48 MB eDRAM
Inclusive L3

L1

L2

+ + + +

+ + + +

L1

L2

Figure 2.5.: System zEC12 Cache Level Structure

The heart of all System z systems is the Multi Chip Module (MCM). The MCM
contains the processor and storage controller chips. The MCM for z196 and
zEC12 always consist of 6 processor chips with up to 6 physical processor units
for a zEC12 system and 3 or 4 active processor cores for z196. The processor
cores are complemented with a Level 1 cache and an additional Level 2. The
cores of the same processor chip then share a common Level 3 cache and all
processor chips a common Level 4 cache on the same book. Figure 2.5 depicts
the cache hierarchy on one book for the zEC12 system.

The structure for the z196 is the same but the cache sizes have changed. Table
2.1 shows the differences in cache sizes for z196 compared to zEC12. It can
be observed that the L1 cache structure for zEC12 is smaller because of the
higher clock frequency. On the other hand the shared cache structures on the
processor chip and the book have doubled in size. When a processor changes
a data item it is stored through Level 1 and 2 caches into the Level 3 cache.
Data from the Level 3 cache is cast out to the Level 4 cache based on a Last
Recently Used (LRU) algorithm.

2.5 System z Multi Chip Module 17

The 4 level cache hierarchy becomes necessary to reduce the access of data
from main memory. On System z10 a 3 level cache hierarchy was already im-
plemented while earlier systems only contained a 2 level cache hierarchy. In-
troducing this hierarchy and making efficient use of it is a significant factor of
system performance which we will discuss in much more detail when we take
a look at work dispatching across the firmware and operating system layers of
a System z.

Cache z196 zEC12
L1 64KB 128KB (1) 64KB (1)

128KB (2) 96 KB (2)
L2 1.5 MB 1MB (1) and 1 MB (2)
L3 24 MB 48 MB
L4 192 MB 384 MB
Notes: (1) Instruction Cache

(2) Data Cache

Table 2.1.: Comparison of Cache Size for System z196 and zEC12

The processors on each chip are complemented by a Cryptographic Co-pro-
cessor (CoP). The interface to the Storage Control (SC) chip supports a data
transfer rate of 41.6 GB/sec for z196 and 44 GB/sec for zEC12 between mem-
ory and Level 4 cache. Finally the chip has an interface to the to the Host
Channel Adapter (GX) and the memory controllers (MC). The chip area for
z196 is 512.3mm2, consists of 13 layers of metal and 3.5 km of wire. The chip
has 1.4 billion transistors and is made of 45nm of Silicon on Insulator (SOI)
technology.

For a zEC12 the chip area is bigger and has a size of 597mm2 and consists
of 15 layers of metal and 7.68 km of wire. The zEC12 chip has 2.75 billion
transistors and is made of 32nm of Silicon on Insulator (SOI) technology. A
more detailed description of the processor structure, used processor technology
and MCM layout can be found in [17].

2.5.1. Memory

Maximum physical memory size is directly related to the number of books in
the system. Each book may contain up to 960 GB of physical memory, for a

18 z/Architecture

total of 3840 GB (3.75 TB) of installed memory per system.

A System z CEC has more memory installed than ordered. Part of the physi-
cal installed memory is used to implement the redundant array of independent
memory (RAIM) design, resulting on up to 768 GB of available memory per
book and up to 3072 GB (3 TB) per system.

The minimum installed memory is 40 GB per book and the minimum amount
of memory that can be ordered is 32 GB for small machines with up to 256 GB
installed memory and up to 256 GB for large systems with 1776 to 3056 GB
installed memory.

2.5.2. Book

The MCM, DIMMs, together with power supplies, cooling interconnects and
fanout cards are placed in a book. A z196 can have up to 4 books and up to 96
processors and the zEC12 4 books with 120 processors.

2.5.3. Processor Characterization

In each MCM, some PUs may be characterized for customer use. The cha-
racterized PUs may be used for general purpose to run supported operating
systems (as z/OS, z/VM R©, Linux on System z), or specialized to run specific
workloads (as Java, XML services, IPSec, some DB2 workloads) or functions
(as Coupling Facility Control Code).

The maximum number of characterized PUs depends on the System z model.
Some PUs are characterized by the system as standard system assist processors
(SAPs), to run the I/O processing. Also as standard, there are at least two spare
PUs per system, which are used to assume the function of a failed PU. The
remaining installed PUs can be characterized for customer use. The System z
model nomenclature includes a number which represents this maximum num-
ber of PUs that can be characterized for customer use, as shown in table 2.2 for
the zEC12.

System assist processors and spare PUs are required to run the system and to
provide the redundancy against PUs errors. General purpose PUs as well as
special processors are used to run customer workloads. The differentiation is
made for licensing reasons and to provide an environment on System z which
maintains the high investment in technology for legacy workloads as well as

2.6 System z High Availability Design 19

Model Books PUs CPs IFLs zAAPs SAPs Spares
ICFs zIIPs

H20 1 27 0 to 20 0 to 20 0 to 10 4 2
H43 2 54 0 to 43 0 to 43 0 to 21 8 2
H66 3 81 0 to 66 0 to 66 0 to 33 12 2
H89 4 108 0 to 89 0 to 89 0 to 44 16 2
HA1 4 120 0 to 101 0 to 101 0 to 50 16 2

Notes: Number of processors for IFLs, ICFs, zIIPs, and zAAPs is for each type

Table 2.2.: Number of Processing Units per zEC12 Model

to provide the possibility to run specialized functions on System z. Special
purpose processors are:

IFL Integrated Facility for Linux allows to run Linux operating system as
well as z/VM on System z to a lower price point than on regular pur-
pose processors.

zAAP System z Application Assist Processors can be exploited by the z/OS
operating system to run Java code and XML services aside from gen-
eral purpose processors.

zIIP System z Integrated Information Processors are also exploited by z/OS
to execute DB2 and IPsec services. In addition they also allow to exe-
cute the same workloads than zAAPs thus requiring installation to use
only one type of assist processors if needed.

ICF The Integrated Coupling Facility is an assist processor to run the cou-
pling facility control code which is the operating system for common
data connection in a Parallel Sysplex.

2.6. System z High Availability Design

The following section will discuss two methods for achieving high reliability
and availability of System z hardware. The two components used as example
are the System z processor and memory design.

20 z/Architecture

2.6.1. Transparent CPU Sparing

Transparent CPU Sparing is an error detection and correction mechanism which
allows error detection during instruction execution and transparent error cor-
rection if spare processors have been configured to the system. The process is
also called transient error recovery. It was introduced with 5th generation of
CMOS processors and the original design uses two physical execution units on
each core or physical PU (see figure 2.6)

Exec
Unit

Exec
Unit

L1
-

C
ac

he

Comparator

R-Unit

State Registers

CPUID-nn

Exec
Unit

Exec
Unit

L1
-

C
ac

he

Comparator

R-Unit

State Registers

CPU Spare

Clock Chip

SE SAP

CP Clock Stop
Error

Report

Malfunction Alert Interrupt

2

1

Figure 2.6.: Transparent CPU Sparing on System z9

Every Physical Processing Unit (actual Core on a PU chip) contains two ex-
ecution units. Each instruction is fetched concurrently from the L1 cache by
both execution units and processed. The result is compared and if it is equal
processing is resumed with the next instruction. If the result is not equal the in-
struction is executed again to find out whether a temporary error existed. If it is

2.6 System z High Availability Design 21

still not the same an error mark is set. The R-Unit now signals the higher cache
structures that the processing unit is running an error recovery process. The
error recovery process resets all data store activities of the failing instruction.
The CPU is now ready to get out of the configuration. The CPU is stopped
and the CPU clock is stopped too. The error is signaled to the service assist
processor and the service element. One possibility is now that the CPU is just
configured out of the system. In this case the effect for the operating systems
depend on their error recovery. A linux system for example may crash because
a CPU fails. z/OS can mask the CPU and continue to process with the remain-
ing CPUs in case more than 1 CPU is configured for the system. PR/SM

TM
can

also mask the error by dispatching the logical CPs to fewer physical CPs.

Another possibility is to use a spare CPU. This requires that a spare CPU is
configured to the system. The Service Assist Processor activates the spare pro-
cessor and moves all register and cache contents to the new CPU. In addition
the CPU id from the failing CPU is also moved to the spare CPU so that the new
CPU looks identical to the failing CPU. The newly configured CPU can now
immediately start to process the failing instruction again and can seamlessly
and transparently replace the failing CPU.

2.6.2. CPU Error Detection for newer System z
machines

Instruction
Unit

(unchecked)

Instruction
Unit

(unchecked)

Execution
Unit

(unchecked)

Execution
Unit

(unchecked)

Cache
(parity)

Recovery Unit
(ECC on saved

architected state)

Instruction
Unit
(inline

checked)

Execution
Unit
(inline

checked)

Cache
(parity)

Recovery Unit
(ECC on saved

architected state)

z9 Z10, z196 and zEC12

Figure 2.7.: CPU Error Detection and Recovery on System z10, z196 and
zEC12

For System z9 each CPU chip includes two cores. System z10, z196 and zEC12

22 z/Architecture

the CPU chip does not contain the execution units two times. Instead an error-
correcting code (ECC) protected processor state is used inside the recovery unit
(RU) to employ the same reliability features than its predecessors. Thousands
of error checkers (parity, residue, illegal state, hardware redundancy compares,
and so on) are embedded within the microprocessors and system cache hierar-
chy. Every instruction that executes successfully, and without error, updates the
check-pointed state. Any error associated with the execution of an instruction
blocks completion, and its associated state is not check-pointed.

Upon detection of an error within the microprocessor, execution is stopped,
and the core enters a sophisticated recovery sequence. All the core’s non-
architectural facilities are reset, and the hardened architectural facilities are
corrected as needed. Next, the core retries execution, starting at the check-
pointed state. In this way, the microprocessor can recover after any soft failure.
However, if instruction execution continues to fail, a sparing event is initiated
on a spare core, whereby millicode copies the architectural state from the fail-
ing to the spare core. Then, the failing core is removed from and the spare core
is added to the system configuration, and task execution restarts on the spare
core1.

2.6.3. Redundant Array of Independent Memory

The z196 RAIM memory subsystem is a revolutionary, next-generation mem-
ory design that tolerates complete failure of any single DIMM. This design
yields the highest level of memory availability of any System z generation2.

In order to implement RAIM, ’extra’ memory is installed on each book. Each
z196 book can contain up to 960 GB of physical memory, for a total of 3840
GB (3.75 TB) of installed memory per system (with four books). 20% of the
physical installed memory is used to implement the RAIM design, resulting in
up to 768 GB of available memory per book and up to 3072 GB (3 TB) per
system. RAIM, and this additional memory, is provided as a standard feature
of the z196 and zEC12.

Each book has from 10 to 30 DIMMs (depending on how much memory
is installed). The DIMMs are connected through three memory control units
(MCUs), each located on a processor unit on the book. Each MCU uses five
channels, one of them for RAIM implementation, on a 4 +1 (parity) design.
Each channel has one or two chained DIMMs, so a single MCU can have five

1More detailed descriptions can be found in [18] and [20] for z196 and [19] for z10
2The content of this section is based on [23]

2.6 System z High Availability Design 23

or ten DIMMs. The parity of the four data DIMMs is stored and attached to
the fifth memory channel. This data, along with CRC bus protection in each of
the five channels allows for failures in a memory component to be detected and
corrected dynamically.

Figure 2.8.: z196 Memory within an MCM

Figure 2.8 illustrates the memory layout of a fully-configured book. The RAIM
design detects and recovers from DRAM, socket, memory channel, or DIMM
failures. It is loosely similar to a RAID level 3 design. Five memory channels
are involved in any read or write request. (A memory channel is either one
DIMM, or two DIMMs chained together.) Cyclic Redundancy Check (CRC)
data is used on each channel bus to detect and isolate channel errors. On top of
that, RAIM ECC is used to cover the entire end-to-end path from original store
to the DIMMs to the final fetch. During reads, this CRC data is verified again,

24 z/Architecture

allowing for proactive error detection and correction. This allows the recovery
from multiple chip failures that RAIM provides.

DRAM3 and channel marking techniques are employed in the RAIM design,
eliminating the need for DRAM sparing. DRAM marking eliminates the com-
plexity of copying over chip data from one chip to another. Once a chip is
known bad, it is marked as bad to the ECC code and the code automatically
ignores all content from that DRAM. Likewise, a channel mark can be applied
to one failing channel that is deemed to be unreliable. Once a channel mark
is applied to a channel, all data from that channel is effectively ignored, even
if there is another failure in another channel. For DRAM-only failures, data
is corrected using in-line ECC correction. In the event of the detection of a
memory control error with accompanying CRC violations, a 3 tiered recovery
sequence is started; this can result in actions ranging from the dynamic correc-
tion of soft errors, bus data lane sparing, bus clock lane sparing, up to marking
an entire channel bad and causing a service request to be issued.

Marks
New Errors None Single Two Third chip and

chip chips channel mark
None Good Uncorrectable Error
1 chip Service Request
2 chips, same channel Correctable Error Part Replacement
Full channel, CRC errors required

Table 2.3.: RAS Capabilities for RAIM Memory

Table 2.3 shows the type of errors which can be corrected based on RAIM
design. RAS features in detail are:

RAIM ECC
Five-channel ECC which can detect and correct new DRAM failures as
well as most varieties of single channel failures in the memory subsys-
tem.

DRAM chip marking
Up to two DRAM chip marks can be applied per rank in order to ignore
errors from known defective DRAM chips. Unlike DRAM chip sparing,
these marks can be applied without having to replicate any chip data.

3Direct Random Access memory

2.7 System z Software and Firmware Layers 25

Channel marking
Channel marking is the ability to designate one of five RAIM channels
as defective. The channel mark provides 100%correction of the data in
the ignored channel. There are four levels of channel marking: dynamic,
tier3, temporary, and permanent.

CRC Bus Detection
Upstream and Downstream channels are checked using CRC.

Tire 1 reset
Tier 1 recovery quiesces the channels, resets memory channel resources,
and then resends stores that may have been dropped.

Tier 2 data calibration
Tier 2 recovery re-calibrates memory data buses and spares out bad data
lanes.

Tier 3 clock calibration
Tier3 recovery re-calibrates memory clocks and spares out bad clock
lanes. Firmware performs fast scrub to clean-up stale data.

Scrubbing
Scrubbing is the process of periodically reading, correcting, and wri-
ting back memory to correct soft errors. Scrubbing provides chip error
counts which are used to apply DRAM chip and channel marks.

Service Request
A service request is an event which requests a part replacement. Some
examples of memory-related service requests include:

• Permanent, full channel RAIM degrade.

• Overflow of the DRAM mark capabilities within a rank.

• Overflow of bus spare lanes within a channel or cascade.

2.7. System z Software and Firmware Layers

Firmware or Licensed Internal Code (LIC) is the layer between hardware and
software on System z. This layer also includes the virtualization layer, the Log-
ical Partition (LPAR) Hypervisor . This dates back to 1985 when logical par-
titioning was introduced on S/370. All future architectures implement logical
partitioning as part of the firmware layer. On today’s systems logical partition-
ing is always present and activate.

26 z/Architecture

Figure 2.9 shows the software and hardware layers on System z. The firmware
includes two special type of instruction code, the millicode and the i390 code
which both implement certain function of the z/Architecture.

SystemLzLsoftwareL(ESA/390LandLz/Architecture)

Millicode

ProcessorLHardware

LPARLhypervisor

i390Lcode

Figure 2.9.: System z Software and Firmware Layers

Millicode performs the more complex instructions in the System z architecture.
The hardware typically executes many of the logical less complex and high
performance instructions while the more complex instructions are implemented
in millicode. Millicode is written and assembled in a manner very similar to
System z Assembler language code. Functions implemented in millicode are:

• Interrupt handling (program, external, I/O, machine check)

• Virtualization: interpretive execution

• Special RAS (reliability, availability, serviceability) and debug functions

• Reset functions

i390 code runs mostly4 on the System Assist Processor (SAP). Most of its
functions are I/O related involving the channel subsystem. The code performs
complex functions such as

• System initialization and reset

• I/O subsystem

4i390 code can run on all processors but it is mostly executed on the SAP

2.8 Instruction Execution 27

• Concurrent maintenance

• Communication with the Support Element (SE)

• A few instructions

System z firmware resides in the Hardware Storage Area (HSA) of the System
z memory. This storage area has a fixed size of 16 GB. The “True HSA” is 12.5
GB, the LPAR Hypervisor requires 1.5 GB and the remaining 2GB are used for
storage keys. The HSA also keeps the I/O configuration of the CEC. Altogether
System z can have up to 3 TB of storage installed across the 4 books (768 GB
per book). Aside from the HSA the installed memory is assigned to the logical
partitions. Each partition has a certain amount of storage which is defined by
the system administrator. The storage size can also be manually increased or
decreased during runtime.

2.8. Instruction Execution

In this section we will discuss instruction execution on System z. As we al-
ready saw in the previous chapters System z processor architecture has been
enhanced by additional cache levels since System z9. The additional cache
levels became necessary to overcome the speed difference between the System
z micro-processors which increased from 1.7 GHz on System z9 to 5.2 GHz
on System z196. But this is not enough. We will see that instruction execu-
tion becomes more expensive and additional strategies must be used to exploit
the high processor frequency. In addition we will discuss activities to optimize
code execution on System z by enhancing the System z instruction set with
instructions tailored for special purposes.

The base documentation for this chapter was taken from literature in [31], [26],
[19], [18], and [20].

2.8.1. CISC versus RISC Architecture

System z is a Complex Instruction Set Computing (CISC) architecture. This
means that certain instructions perform complex tasks similar to small pro-
grams. The opposite is a Reduced Instruction Set Computing (RISC) archi-
tecture which basically only contains of data fetch and store operations plus
register to register arithmetic operations. Today’s computing architecture in re-
ality do not implement a pure RISC or CISC architecture anymore. For System

28 z/Architecture

z196 we will see that the micro-processors contain RISC execution units and
the many existing CISC instructions are broken down to micro operations for
execution.

Nevertheless System z also contains very basic instructions like RISC instruc-
tions. These are LOAD, STORE, and register to register operations like an Add
Register operation (AR). More interesting is the question how a modern appli-
cation on System z is composed, more of RISC like instructions or more of
complex instructions. In the same context the question appears what influence
on execution time the RISC-like instructions compared to the complex instruc-
tions have.

Figure 2.10 shows the percent of instructions for a Websphere transaction rel-
ative to the cycle time of an Add Register (AR) instruction. This analysis was
performed on a System z990 in 2002 and does no longer depict the instruc-
tion decomposition of today’s Websphere transactions but the general notion
remains the same.

68.8

2

23.7

0.6
3.7

0.1 0.5 0.7
0

10

20

30

40

50

60

70

[i
n

o%
]

<=
oA

R

<=
o2o

xoA
R

<=
o3.

3ox
oA

R

<o
6.

6ox
oA

R

<o
10

ox
oA

R

<o
13

ox
oA

R

<o
16

ox
oA

R

>=
o16

oxo
AR

ExecutedoInstructions

Figure 2.10.: Percent of executed Instructions relative to ADD REGISTER

The Websphere transaction was a very rudimentary transaction which updates
a data base table and uses a set of system services during its execution. The
transaction consisted of 135704 instructions. The instructions are counted by

2.8 Instruction Execution 29

their cycle times and then they are placed in relation to the AR instruction
which is a very basic RISC like instruction on System z. We can observe that
nearly 70% of the instructions are very similar to the AR instruction and do not
require more than 1 cycle for execution. Only about 1.3% of the instructions
require 10 times or more cycles for execution than the very simple instructions.

When we take a look at the time consumption and which instructions contribute
most to the execution time of the Websphere transaction we can observe a dif-
ferent picture. Figure 2.11 shows the percent of execution time of all the in-
structions which we counted similar to the AR instruction or as multiple of the
AR instruction. Now we can observe that the 0.7% of the instructions which re-
quire 16 times the cycle length of the AR instruction contribute for around 19%
of the transaction execution time while the AR like instructions which account
for the majority of the instructions contribute only for 33% of the transaction
execution.

33.4

1.3

27.8

1.3

13.7

0.3
3.2

18.9

0

5

10

15

20

25

30

35

[i
n

t%
]

<=
tA

R

<=
t2t

xtA
R

<=
t3.

3tx
tA

R

<t
6.

6tx
tA

R

<t
10

tx
tA

R

<t
13

tx
tA

R

<t
16

tx
tA

R

>=
t16

txt
AR

TimetconsumptiontoftexecutedtInstructions

Figure 2.11.: Transaction Execution Time relative to the amount of Instructions

The question what is good and bad can’t be simply answered just from this
study. Such studies are performed to understand the mix of instructions used
to perform a certain application or operating system function. Based on the de-
composition it is than possible to either try to reduce very complex instructions

30 z/Architecture

if their use seems unnecessary or to do the opposite to introduce complex in-
structions and to reduce the number of very simple instructions which perform
the same functionality. In the end a RISC instruction set attempts to reduce
the cycle time while a CISC instruction set reduces the number N of executed
instructions in the following equation:

ExecutionT ime =

N∑
k=1

Cycles

Instructions
(k) • CycleT ime (2.1)

2.8.2. Register Sets

System z Architecture has several sets of registers for different purposes:

• General purpose registers are used for address generation, address cal-
culation as well as for integer arithmetic (signed and unsigned). Each
register has 64 bits and is numbered from 0 to 63. System z also sup-
ports ESA/390 mode which is 31 bit addressing mode. In this case only
the low order 32 bits are addressable.

• Program Access registers are used to define the addressing target for
the general purpose register. When the program runs in access register
mode the address contained in the corresponding general purpose regis-
ter refers to a different virtual storage area (address space) than the one
the program is located in.

• Control registers are used by the operating systems to control interrupt
handling, virtual storage, tracing facilities and access to address spaces.
The registers have 64 bits in z architecture mode and for ESA/390 mode
only 32 the low order bits are addressable.

• Floating point registers are used for binary, decimal and hexadecimal
floating point operations. Again these registers also have 64 bits. If ex-
tended precision is required (128bits) register pairs are being used.

• One floating point control register contains IEEE exception masks and
flags and they define the rounding mode. This register has 32 bits.

• Millicode registers are used within the processors to hold intermediate
results and to address data in customer storage and the Hardware System
Area (HSA). These registers can’t be accessed the programs. Millicode
registers are different from general purpose registers and can only be
used by millicode.

2.8 Instruction Execution 31

• The prefix register is used to define the absolute addresses of assigned
storage locations for a CPU. It is again a 32 bit register and only used by
the operating systems.

2.8.3. Program Status Word

0 R 0 0 0 T
I
O Key l M P W A S C C

Prog
Mask 0 0 0 0 0 0 0 0

E
X

0 5 8 12 16 18 20 24 31

A Instruction Address

32 63

Figure 2.12.: Program Status Word in 31-bit Addressing Modes

The Program Status Word (PSW) contains information required for the execu-
tion of the current program, like the instruction address, the addressing mode,
the condition code, interrupt masks, and an indicator of the execution mode.

0 R 0 0 0 T
I
O Key l M P W A S C C

Prog
Mask 0 0 0 0 0 0 0

E
A

E
X

0 5 8 12 16 18 20 24 31

B
A

32 63

0

Instruction Address

64 95

Instruction Address)continued7

96 127

0 0

Figure 2.13.: Program Status Word in 64-bit Addressing Modes

32 z/Architecture

Figure 2.12 shows the PSW format for 31-bit addressing mode and figure 2.13
for 64-bit addressing mode on System z. If the program is running in 24 or 31
bit addressing named ESA/390 architecture mode only 64 bits are used to main-
tain the program status. In z architecture mode 24, 31, and 64 bit addressing
is possible. The addressing mode can change for each new program dispatch
and different processors can run with different addressing modes at the same
time. Also services exist to switch within one program between the addressing
modes.

The meaning of the individual fields are:

• R enable program event recording (PER)

• T enable dynamic address translation (virtual storage)

• IO enable I/O interrupts

• EX enable external interrupts

• Key define storage protection key

• M enable machine checks

• W wait state

• P problem state (0 = supervisor state)

• AS address space

00 = primary space mode

01 = access register mode

10 = secondary space mode

11 = home space mode

• CC condition code

00 = equal

01 = first operand low

02 = first operand high

• Program Mask which interrupts are enabled

– Bit 20: Enable fixed-point overflow exception

– Bit 21: Enable decimal overflow exception

– Bit 22: Enable hex floating-point exponent underflow exception

– Bit 23: Enable hex floating-point significance exception

2.8 Instruction Execution 33

• EA extended addressing (64-bit addressing mode, BA must also be 1)

• BA basic addressing (31-bit addressing mode, 0 = 24-bit addressing
mode)

• Instruction Address is stepped by the length of the current instruction

The significant difference of bit settings between 31 and 64 bit addressing is
bit 31 in 64 bit addressing mode which defines whether 64 bit addressing is
used. For 31 bit addressing bit 32 is the first bit of the instruction address thus
reducing the available address range to 2 GB instead of possible 4 GB. For 64
bit addressing this limitation does not exist.

2.8.4. System z Instructions

The current System z model the z196 contains 1079 instructions. The first Sys-
tem /360 had only 143 instructions but primarily over the last generations the
number of available instructions grew very fast. We will discuss some reasons
for this later on. The following list describes the general instruction types of
System z:

• Load and store instructions which load data to a register and store data
from a register to storage. These instructions support 8, 16, 32, and 64
bit operand lengths.

• Binary arithmetic operations. Instructions like ADD, MULTIPLY, SUB-
TRACT, and DIVIDE. These instructions can be register-to-register in-
structions, and register-storage instructions. The supported operand length
are 16, 32, and 64 bits.

• Shift operations which shift bits from left or right, logically or maintain-
ing signed arithmetic, and rotate bits. These instructions support 32 and
64 bit operand lengths.

• Bitwise logical operations, like AND, OR, EXCLUSIVE OR. Operand
lengths of 8, 16, 32, and 64 bits are supported as well as operands with 1
to 256 bytes. These instructions also support combinations of ROTATE
AND “bitwise” operations.

• Comparison instructions support 16, 32, and 64 bits and signed and un-
signed (logical) arithmetic.

• Branch instructions which support absolute and relative offsets.

34 z/Architecture

• Subroutine linkage which consists of BRANCH instructions, SAVE, and
optionally SET MODE functions.

• Bit testing and counting to test masks and identify special bits.

• Storage-to-storage copy and compare instructions. These instructions
can support short (8 bytes), long, and extended operands which allow
the move and compare of very large data areas. The long and extended
formats are interruptible.

• Conversion from and to packed decimal format

• String processing like string translations and search capabilities

• Conversion between little and big Endian

• Checksum generation

• Sorting, like COMPARE AND FORM CODEWORD, or UPDATE TREE

• Data encryption

• Atomic updates and locking like COMPARE AND SWAP, or LOAD
AND ADD ON CONDITION

We will discuss some of these instructions later. As the list shows different in-
struction formats exist, like register-to-register instructions where both operands
are registers (RR), or register-storage instructions where one operand is a reg-
ister and the other a storage location (RX) or storage-to-storage instructions
where both operands are storage locations. Altogether 45 different instruction
formats exist from which RR, RX, and SS instruction formats are the most
commonly used formats. In the following we will give two simple examples
for a RR and a SS instruction and the notation which is used.

Register-to-Register Format

The first instruction which we will take a look at is the ADD REGISTER in-
struction. It adds the content of two registers. We will use an “at sign” in front
of a two digit number throughout this document to denote a register, for ex-
ample @01, means register 1. This notation is used by some compilers. Other
notions are R1, R01, or just a number to denote a register.

Figure 2.14 shows the simple example where the contents of register 6 and 7
is added together and the result is saved in register 6 which is the first operand
of the operation. This is also common for most instructions that the result is
placed in the first operand or at the location to which the first operand points

2.8 Instruction Execution 35

R2R1OpcodeRRB=BRegister-to-RegisterBOperation

DecimalHexadecimalARB@06,@07

2571=B00B00 0AB0BR7

7982=00B00 1FB2ER6After

2571=00B00 0AB0BR7

5411=00B00 15B23R6Before

Figure 2.14.: ADD REGISTER Example

to.

Storage-to-Storage Format

Our second example is a MOVE CHARACTER between two storage loca-
tions, see figure 2.15. The storage locations are described by base registers
which contain the base address of the storage location. In our example the first
operands base register is register 5 and the address contained in register 5 is
0x1000. The address of the storage locations is then found by adding a dis-
placement to the content of the registers. The location of the first operand is
then found at storage location 0x1018.

The first operand is the target of the operation. Together with the address a
length field is defined which describes how many bytes should be overwritten
with data from the source location which is defined by base register 6 and
a displacement of 5. In our example we use a length of 6 that means that 6
characters are consecutively read from the first storage location and placed at
the target location.

2.8.5. Decimal Arithmetic

One of the most important formats on System z is decimal arithmetic and in-
structions. Decimal arithmetic is used to represent decimal numbers in com-

36 z/Architecture

B2D1B1 D2LOpcodeSS = Storage-to-Storage Operation

404040404040E3D9C5C2D6D940404040

4040E3D9C5C2D6D940D5C9C240C8C3C2

404040404040E3D9C5C2D6D940404040

404040404040404040D5C9C240C8C3C2

1010R5

1000R6

1010R5

1000R6

MVC D1(L,B1), D2(B2)
MVC 8(6,@05), 5(@06)

D1 L

D2

Figure 2.15.: MOVE CHARACTER Example

mercial applications. As we will see later decimal arithmetic is preferred and
even required to avoid rounding problems.

NZNZNZNZNZ

byte

5F4F3F2F1F

NNNNN

N SNNNN

Zoned Format

Packed Format

Figure 2.16.: Decimal Arithmetic Data Format

Two flavors of decimal instruction formats exist: Zoned and Packed decimal
formats (see on figure 2.16). In both formats a decimal digit is encoded by 4
bits of which the bit combinations from 1010 to 1111 are no valid number.
In zoned format the second half word is the zone character. The zoned format
has advantages for printing decimal numbers. Within the system most decimal
numbers are stored in packed decimal format. It requires N times four bits to

2.8 Instruction Execution 37

encode the digits plus an additional half word to encode the sign. Table 2.4
shows the encoding of digits and signs. The rightmost hex value is the sign, A,
C, E, and F mean plus and B, and D minus, for example 0x123C is decimal
+123, and 0x456D is decimal -456.

System z and all of its predecessors support integer arithmetic (+, -, *, /), com-
parison operations, data validation, and conversion to EBCDIC. It is also pos-
sible to implicitly support a decimal digit but this is then interpreted by the
software.

Code Recognized As
(Binary) Digit Sign

0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 Invalid Plus (preferred)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (zone)

Table 2.4.: Halfword Codes for Decimal Format

2.8.6. Floating Point Arithmetic

System /360 already supported a hexadecimal floating point format (HFP). The
radix of the exponent was 16 with a bias of 64 to support numbers bigger
and smaller than 1. With the fifth generation of System /390 introduced in
1998 binary floating point (BFP) is supported. Decimal floating point (DFP) is
supported by the firmware on z systems in 2007 and from 2010 on directly by
the hardware. The decimal floating point is implemented corresponding to the
IEEE standards 754.

38 z/Architecture

Floating Point Number Range Supports
Format Precision Infinity NaN
Hexadecimal ∼ 5.4x10−79 ≤ M ≤∼ 7.2x1075 No No
(HFP)
Binary (BFP) ∼ 4.9x10−324 ≤ M ≤∼ 1.8x10308 Yes Yes
Decimal (DFP) 1x10−398 ≤ M ≤ (1016 − 1)x10369 Yes Yes

Table 2.5.: Floating Point Formats on System z

Table 2.5 shows the number ranges of the three floating point formats supported
on System z. As an example figure 2.17 depicts the representation of the num-
ber PI with a decimal precision of 3.1415927 is shown for binary floating point
(0x40490FDB) and hexadecimal floating point (0x413243F6) on Systemz.

Decimal Floating Point Arithmetic

The example in figure 2.17 shows the problem with binary and hexadecimal
floating point arithmetic. While it is the natural way to depict data in a computer
in binary or hexadecimal formats it is not natural to use this format in most
human based calculations.

S exponent mantissa
0 10000000 10010010000111111011011
4 0 4 9 0 F D B

S exponent mantissa
0 1000001 001100100100001111110110
4 1 3 2 4 3 F 6

Binary Floating Point: Hexadecimal Floating Point:

Figure 2.17.: Representation of PI = ∼3.1415927 in Binary and Hexadecimal
Floating Point Format

As a matter of fact the conversion of decimal based numbers to both binary
and hexadecimal floating point may result in an incorrect value when the data
is converted back to decimal numbers. If we convert the number 0x40490FDB
which is the representation of 3.1415927 back to a real number we obtain
3.1415927410125732 which returns a much higher precision which unfortu-
nately is not correct. The correct precision would be 3.1415926535897932.

Now while this doesn’t seem to be a big problem at a first glance we will use a
much simpler example which may be the result of a real transaction: Assuming

2.8 Instruction Execution 39

a telephone company wants to add a sales tax of 5% to all telephone calls
which were made from hotels which are supported by this telephone company.
A telephone call costs 0.70. The result should be rounded to the nearest cent. In
decimal arithmetic the calculation is simple: 1.05 x 0.70 = 0.735 and rounding
results to 0.74.

When binary double arithmetic is used the situation gets more complicated.
Converting 0.70 to binary double multiplying it with 1.05 and reconverting it to
decimal arithmetic will result to 0.7349999999999999866773237044981215-
1491641998291015625. Now rounding to the nearest cent results to 0.73 in-
stead of 0.74.

The summary of this example shows that binary floating point cannot meet
legal and financial requirement. Results are too imprecise and rounding does
not help. Also errors can easily add up especially if more complex operations
are involved. Thus a big need exists to support decimal floating point arithmetic
on commercial computer systems.

It must also be noticed that 55% of all numerical data in databases are in dec-
imal format and 43% of the remaining numerical data are represented as inte-
gers. This also shows that binary data doesn’t play a high relevance for com-
mercial computing.

Principles of Operations

The external part of the System z architecture is described in Principles of
Operations [31]. There are additional instructions for special purposes which
are not described there. these are for example

• Coupling technology instructions which handle special parts of the data
exchange within a parallel sysplex environment

• Queued-direct I/O which allow direct memory data exchange between
partitions

• Dynamic I/O Configuration related instructions which allow to update
the I/O configuration in the HSA

• Service Call instructions (SCLP) to configure CPUs and memory

• Some instructions for logical partitioning and virtualization

• Instructions related to the CPU measurement facility

40 z/Architecture

2.8.7. View of Instruction Execution

InstructionInstructionInstructionInstruction

time

Figure 2.18.: Conceptual View of Instruction Execution

Programmers think of the execution of their program in the sequence they
wrote them(see figure 2.18). This conceptual view of program execution is not
true in todays computers anymore. The computer decomposes the instruction
into micro parts and the assembly of the parts results in executing the instruc-
tion (see figure 2.19).

ExecuteOinstructionOasOaO“millicode subroutine”
InstructionO

Decode
InstructionO

Fetch

Example:O UPT

SaveO
Result

Execute
Operand2O

Fetch
Operand2O
Address

Operand1O
Fetch

Operand1O
Address

InstructionO
Decode

InstructionO
Fetch

Example:O MVCOD1LLXB1,XD2LB2,

SaveO
Result

Execute
OperandO

Fetch
OperandO
Address

InstructionO
Decode

InstructionO
Fetch

Example:O AO R1XD2LX2XB2,

Figure 2.19.: Decomposition of Instructions (System z Examples)

A simple instruction like adding a storage location to a register consists already
of 6 steps:

1. Fetching the instruction

2. Decoding the instruction

3. Generation of the Operand Address

4. Fetching the Operand

5. Executing the instruction

6. Saving the result

For more complex instructions, more steps are possible. This technique is
named pipelining and by closer looking at it it allows to execute multiple stages

2.8 Instruction Execution 41

of the instructions simultaneously as long there are no dependencies between
these stages.

Putaway
Result

Execute
Operand

Fetch
Operand
Address

Instruction
Decode

Instruction
Fetch

Putaway
Result

Execute
Operand

Fetch
Operand
Address

Instruction
Decode

Instruction
Fetch

Putaway
Result

Execute
Operand

Fetch
Operand
Address

Instruction
Decode

Instruction
Fetch

Putaway
Result

Execute
Operand

Fetch
Operand
Address

Instruction
Decode

Instruction
Fetch

Figure 2.20.: Pipeline View of Instruction Execution

Figure 2.20 shows a simplified picture of executing 4 different instructions in
parallel. Such an instruction pipeline is similar to an older instruction pipeline
of a System z900 system. The real pipelines for z10 or z196 systems are too
complicated to fully depict. This picture assumes 4 instructions of a length of 6
machine cycles. Ideally all instructions can be processed simultaneously with
the result that the machine can complete every machine cycle one instruction.
But in reality that will not happen because it assumes that there are no delays
in the pipeline. Most common reasons for the pipeline to stall and to reject the
execution are:

• Address Generation Interlock (AGI): This results in waiting for a previ-
ous instruction to compute an operand address. On z10 and z196 AGI
bypasses exist which allow the results of Load Address to become avail-
able before saving the result. Also a group of instructions on z10 and
single instructions on z196 can be stalled in the decode/issue unit until
the interlock is resolvable in order to avoid that the pipeline is rejected
later on.

• Operand Store Compare (OSC) requires to wait for a re-fetch of a re-
cently modified operand. The data is unavailable while the store queue
waiting to be updated in L1 cache.

• Instruction Fetch Interlock (IFI) reloads instructions as a result of stores
into the instruction stream. This causes a pipeline flush, clearing the de-
coded instructions and re-fetching of instruction cache line which is very
costly.

42 z/Architecture

• Branch mis-prediction occurs if a branch takes place in another way than
the processor has guessed. Branch prediction logic is very complex on
z10 and z196.

The success of an in-order pipeline depends on its ability to minimize the per-
formance penalties across instruction processing dependencies.

2.8.8. Super-Scalar Instruction Execution

Group seq instruction text
(1)H 01H LLGTH @04,XFORNP31
(2)H 02H LH @04,FW(,@04)

03H STH @04,XFORS
(3)H 04H LGH @05,TOPPTR
(4)H 05H LGH @09,RTTOP(,@05)
(5)H 06H STH @04,RSISIZE(,@09)

07H SLRH @02,@02
(6)H 08H STH @02,RSIPREV(,@09)

09H LGH @02,RDIPTR64
(7)H 10H LHH @08,RDITYPE(,@02)

AddresshGenerationhInterlockhonhregisterh4

AddresshGenerationhInterlockhonhregisterh5
AddresshGenerationhInterlockhonhregisterh9

AddresshGenerationhInterlockhonhregisterh2

AGI seq instruction text seq instruction text
01H LLGTH @04,XFORNP31

<4>H 02H LH @04,FW(,@04)H 03H STH @04,XFORS
04H LGH @05,TOPPTR

<2>H 05H LGH @09,RTTOP(,@05)
<2>H 06H STH @04,RSISIZE(,@09)H 07H SLRH @02,@02

08H STH @02,RSIPREV(,@09)H 09H LGH @02,RDIPTR64
<2>H 10H LHH @08,RDITYPE(,@02)

CodehSequencehforhIn/OrderhExecutionhwithh2hpipelines:h
7hinstructionhgroupshandh10hcycleshAGIhdelay

Figure 2.21.: Example of Super-Scalar Processing

The next step for speeding up instruction execution is to have multiple pipelines
so that groups of instructions can flow through the pipelines. This was done the
first time on System z with the z990 by introducing super-scalar processing.
System z10 has two execution pipelines and the z196 has five of them.

Figure 2.21 shows an excerpt of a program consisting of 10 assembler instruc-
tions. The example shows how the code sequence can be executed with two

2.8 Instruction Execution 43

instruction pipelines. By analyzing the code sequence it is necessary to main-
tain the sequence of the results. An address generating instruction must be
performed before the following instructions which use its results. For example
instruction 01 loads an address into register 4 and the two following instruc-
tions depend on the result of register 4. As a result instruction 01 must be
executed before instructions 02 and 03 while instructions 02 and 03 can be
executed in parallel. As a result instruction 01 is an instruction group (1) as
well as instructions 02 and 03 which form instruction group (2). By analyzing
the sequence of the program we can observe that 7 instruction groups can be
created and that 10 cycles of address generation interlock delays occur.

The bottom of part of figure 2.21 shows that instruction pipelines are unequally
filled. We can see that this example can still be improved and we will discuss
improvements later. Also the instruction sequence is still maintained and it is a
very good example for in order execution by using two instruction pipelines.

2.8.9. System z10 Microprocessor Pipeline

System z10 is a very good example to describe the techniques which we have
discussed to so far. System z10 is a superscalar processor with up to two in-
structions which can be sent through at a given time. System z10 also has a
much higher frequency than all previous processors. A z9 had a frequency of
1.7 GHz while z10 has 4.4 GHz. As a result the z10 has an instruction pipeline
of 14 stages for fixed point instructions (z9 only had 6 stages). Even if the in-
struction set is complex most instructions are RISC like instructions. Restric-
tions on instructions which can be pipelined are for example:

• Either of the two instructions can be a branch instruction but not both

• Instructions which depend on each other can also not executed simulta-
neously as we saw in the previous example.

The second dependency can be mitigated by a technique called operand for-
warding which typically works in cases when an arithmetic instruction depends
on a load or a store on the result on an arithmetic instruction.

Figure 2.22 shows the microprocessor pipeline of a z10 processor. The pipeline
is separated into instruction fetching, instruction decoding and issuing, storage
access through data cache, execution including fixed point and floating point
operations, and results check pointing. The instruction fetch unit (IFU) is de-
signed to deliver instructions far ahead of processor execution along either the
sequential or predicted branch path. The IFU also redirects the instruction fetch

44 z/Architecture

addresses during pipeline flushes, millicode execution entries and exits, and in-
terrupts. The unit incorporates a 64 KB instruction cache and a 2-way 128-entry
Translation Look-aside Buffer (TLB). The IFU incorporates the branch predic-
tion tables which evaluate and keep track of the taken and not taken paths.
Once valid instructions pass from the IFU to the instruction decode unit (IDU)
they enter into the two-wide super-scalar pipeline. Two pipeline cycles D1 and
D2 are used to decode the instruction set needed for instruction grouping and
steering. This and other control information, such as storage access controls
and branch handling, are then fed into an eight deep instruction queue and ad-
dress queue. Two instructions are then brought into the grouping logic (D3)
and three grouping stages G1 to G3 are needed to schedule up to two instruc-
tions into an execution group and to create a pipeline that handles hazard. This
scheme assumes instruction execution to be done with a fixed number of num-
ber of cycles after issue and then involves rejecting and re-issuing instructions
upon the detection of any pipeline hazard or reject condition. All stall condi-
tion like AGI are evaluated in the two first stages G1 and G2 of the grouping
and stage G3 issues the instructions or holds them back.

B4

I4

D1 G3

RF A0

F3

F4

R0 R1 R2 R3 R4

EXRF P1 P2 P3

A1 A2 A3

F5 F6 F7 F8 F9 F10 F11

RF F0 F1 F2

D2 D3 G1 G2

I0

I1

I2

I3

B0

B1

B2

B3

Branch prediction stage

Instruction access stage

Cache access stage

Instruction decode stage

Instruction grouping stage

Operand access/execution stage

Delayed/transmit stage

Writeback stage

Completion stage

Checkpoint stage

Earliest FX result bypass

Earliest float result bypass

Earliest load forwards

Legend

Instruction fetch
pipeline

Instruction decode grouping

BFU pipeline Checkpoint/recovery pipeline

ECCFmt

FmtAGen

Surprise branch

Branch Redirect
Flush

Branch Resolution

Simple fixed point

Simple load

Figure 2.22.: System z10 Microprocessor Pipeline

2.8 Instruction Execution 45

Any issued instruction that requires storage access is processed through one
of the two super-scalar pipes where the D-cache is first accessed (A0 to A2)
and is then followed immediately by fixed point execution. Every pass through
the pipeline can include both load and execute functions. The load/store unit
(LSU) includes a 128 KB D-cache and a 2-way 512 entry TLB. The points
where operand forwarding is possible in the pipeline is from step A3 to A0 and
also from A3 to EX. Also the result from EX can be fed back to the address
generation step A0. The two examples shown in figure 2.23 describe these
result forwarding bypasses:

Example 1 shows that the result of the load instruction (R1) is used in the
execute of the AR instruction

Example 2 shows that the result of the Add instruction (R1) is directly put
away in the write back stage of the Store instruction.

WBEXOFOAIDIF

WBEXOFOAIDIF

WBEXOFOAIDIF

WBEXOFOAIDIF

L @01,0(,@03)

AR @06,@01

A @01,0(,@04)

ST @01,16(,@05)

Example 1:

Example 2:

Figure 2.23.: Examples of Result Forwarding

Most instructions can be executed in the two FXU execution pipes in a single
cycle; some less frequently used instructions, such as control operations, can
be done only in the first pipe. Results are staged through two put-away cycles
P1 and P2 before they are written into the general purpose registers (GPR)
file or the LSU store buffer. The put away delays are added to allow time to
suppress any premature GPR update from the second pipe in case of a branch
miss-prediction in the first pipe. If there are no reject conditions, interruptions,
or branch miss-prediction, the instruction is considered to be complete once all
the results are available (P3).

46 z/Architecture

Instructions executed in the binary floating-point unit (BFU) can be operated
in pipeline mode, while instructions executed in the decimal floating-point unit
(DFU) are non pipelined. During BFU and DFU operations, instruction infor-
mation and operand data (from either the GPR or cache) is staged through the
FXU. The resulting condition code or arithmetic exceptions are also sent back
to the FXU for consolidation (F9/P1 and F10/P2) before instruction completion
(F11/P3).

2.8.10. Instruction Re-Ordering

Figure 2.21 already showed an example how two processor pipelines can be
filled with instructions. We also noticed that the two pipelines were not filled
optimally. By going back to this example we can demonstrate how instruction
re-ordering can improve the program execution.

There are some other effects which need to be noticed too. System z10 in-
creased the clock frequency by 2.5 times compared to System z9. High fre-
quency is great but may also have some negative effects:

• Some instructions can no longer be done in the shorter cycle time and
now take more than one cycle to execute, for example instructions that
involve sign propagation.

• Keeping the pipeline fed with instructions and data is very challenging.

• Some pipeline hazards are more costly. Longer cycles causes more cy-
cles lost on reject/recycle and branch mis-predict.

On System z196 these challenges are addressed by out-of-order execution. The
first step to fill the pipeline more efficiently and to try to reduce address genera-
tion interlocks by re-ordering code sequences. The re-ordering mechanism still
maintains the logically order of dependent instructions but it is now possible
to execute some independent instructions earlier to fill the two pipelines better.
Figure 2.24 uses the same example as in 2.21 but now re-orders the code se-
quence. The bottom part shows the re-ordered sequence which consists of only
5 instruction groups and only 6 cycles of address generation interlock delays.
This re-ordering attempts to execute instructions in parallel which do not have
any dependency on each other. As a result the two instruction pipelines are
much better filled and the execution delays are also significantly decreased.

This re-ordering example conceptually shows how code fragments can be opti-
mized and it is not from a System z196 processor. System z196 uses instruction
re-ordering but the example does not imply that the re-ordering would be close
to what System z196 microprocessors would do.

2.8 Instruction Execution 47

AGI seq instruction text seq instruction text
01V LLGTV @04,XFORNP31

<4>V 02V LV @04,FW(,@04)V 03V STV @04,XFORS
04V LGV @05,TOPPTR

<2>V 05V LGV @09,RTTOP(,@05)
<2>V 06V STV @04,RSISIZE(,@09)V 07V SLRV @02,@02

08V STV @02,RSIPREV(,@09)V 09V LGV @02,RDIPTR64
<2>V 10V LHV @08,RDITYPE(,@02)

AGI seq instruction text seq instruction text
01V LLGTV @04,XFORNP31V 04V LGV @05,TOPPTR

<2>V 05V LGV @09,RTTOP(,@05)V 07V SLRV @02,@02
<2>V 02V LV @04,FW(,@04)V 06V STV @04,RSISIZE(,@09)

08V STV @02,RSIPREV(,@09)V 09V LGV @02,RDIPTR64
<2>V 03V STV @04,XFORSV 10V LHV @08,RDITYPE(,@02)

Original Code Sequence: 7 instruction groups and 10 cycles AGI delay

Reordered Code Sequence: 5 instruction groups and 6 cycles AGI delay

Figure 2.24.: Example of Instruction Re-Ordering

2.8.11. Register Renaming

The next possible improvement can be achieved by using a larger set of inter-
nal registers than external registers which are available for the programs. For
example the code sequence shown in figure 2.25 does not allow that the LOAD
operation in instruction (3) could be executed at the same time or before the
AR instruction from (2) because both use Register 1. With additional internal
registers and mapping of instructions to internal registers it is possible to keep
the value from LOAD operation prior to the AR operation in one register P1
and the result from the second LOAD operation in another internal register P2.
By re-assigning or re-naming the registers it is now possible to either execute
the second LOAD instruction at the same time of any of the other instructions
or potentially even before them.

48 z/Architecture

(1) L @01,0(,@02)
(2) AR @03,@01
(3) L @01,4(,@02)

RFileGPRinst

P2

P1

P1

@01

@01

@01

. . .

(3)

(2)

(1) (1) L P1,0(,@02)
(2) AR @03,P1
(3) L P2,4(,@02)

L P1,0(,@02)
AR @03,P1 L P2,4(,@02)

L P1,0(,@02) L P2,4(,@02)
AR @03,P1

L P2,4(,@02)
L P1,0(,@02)
AR @03,P1

Instruction Register Mapping

Figure 2.25.: Example for Register Renaming

Instruction Example Corresponding RISC
Format Micro Operations
Register-Storage A R1,D2(X2,B2) LOAD REG <- D2(X2,B2)
(RX) ADD R1,REG
Storage-Storage MVC D1(L,B1),D2(B2) LOAD REG <- D2(B2)
(RS) Condition: L ≤ 8 bytes STORE REG -> D1(B1)
Reg-Reg-Storage CS R1,R3,D2(B2) LOAD REG <- D2(B2)
(RS) STORE PRETEST

Function: COMPARE R1,REG
IF R1 == D2(B2) ----- scartch CC
THEN STORE R3 -> D2(B2) STORE R3 -> D2(B2)
ELSE LOAD R1 <- D2(B2)

Table 2.6.: Examples for Decomposing CISC Instructions into RISC Micro-
Operations

2.8 Instruction Execution 49

2.8.12. Instruction Cracking

System z196 is more RISC-like than its predecessors. The technique which
contributes to it is named cracking and it breaks up complex instructions into its
atomic micro operations which can be executed in one processor cycle. Table
2.6 shows 3 examples of typical System z instructions:

• System z has many register-to-storage operations (RX format). Such an
operation can be broken up into two micro operations. The ADD opera-
tion for example into a LOAD data from storage into an internal register,
named REG and then followed by an ADD operation which adds the
content of REG to R1.

• Another example exists for the move character (MVC) operation which
copies data from one storage location to another. If the length value is
less or equal 8 bytes the operation can be executed by a LOAD followed
by a STORE operation.

• More complex is the last example in table 2.6. The operation is named
compare and swap (CS) which is an atomic instruction used to imple-
ment access to locks5. The function of the operation is that the content
of the storage location is compared with the content of R1 and based on
the result either the content of R3 is saved to the storage location or the
content of the location is saved in R1. If the storage location described by
D2(B2) is a lock the instruction allows to set a use indicator into the lock
to prevent other programs from using the protected resource. The instruc-
tion can be cracked into two groups of micro operations: A LOAD of the
content from storage to an internal register and a test whether it is pos-
sible to store anything at the designated location followed by a compare
of the content of the internal register with R1. The second set of micro
operation is a STORE of R3 to the storage location depending on how
the condition code is set from the STORE PRETEST6 or COMPARE.

2.8.13. Out-Of-Order Execution

Figure 2.26 shows a simplistic example of how cracking, renaming, super-
scalar and out-of-order processing work together. The short program segment
adds to number pairs, stores the sum and then copies a short string. A, B, C,

5We will discuss this instruction later again
6STORE PRETEST tests whether storing R3 to the storage location described by D2(B2) is

possible at all. If not the operation is canceled and an exception is generated.

50 z/Architecture

D, E, F, G, and H symbolize storage locations in this example. The RX type
ADD and the SS type MVC instruction are cracked into two micro operations
as shown in the previous example. The next step is to rename R1 dependent on
the instruction where it is used. For the MVC instruction one internal register is
used to keep the content of storage location H. After renaming 5 internal regis-
ters are being used. All inter instruction dependencies between the two number
add pairs are removed. Finally execution groups are created. This depends very
much on how much of the data is already in L1 cache. The upper example as-
sumes that all data is already in L1 cache and the 10 micro operations can be
executed in 4 execution groups. However, if one or more storage operands are
not in L1 data cache, then there are delays in the pipe and the real-time execu-
tion grouping will be different. The lower alternative grouping would result if
none of the operands are in L1 data cache.

Original Cracked Ins. Re-Ordered and Grouped Instructions
Renamed Num. By Numbers

L R1,A L P1,A (1) L P1,A L P2,B (1) (2)
A R1,B L P2,B (2) L P3,D L P4,E AR P2,P1 (5) (6) (3)
ST R1,C AR P2,P1 (3) LG P5,H AR P4,P3 ST P2,C (9) (7) (4)

ST P2,C (4) ST P4,F STG P5,G (8) (A)

L R1,D L P3,D (5)
A R1,E L P4,E (6)
ST R1,F AR P4,P3 (7) L P1,A L P2,B (1) (2)

ST P4,F (8) L P3,D L P4,E (5) (6)
LG P5,H (9)

MVC G(8),H LG P5,H (9) AR P2,P1 AR P4,P3 (3) (7)
STG P5,G (A) ST P2,C ST P4,F STG P5,G (4) (8) (A)

or

Figure 2.26.: Example for Out-Of-Order Execution

This exposes another advantage of super-scalar and out-of-order execution.
The processor can detect earlier that data items need to be loaded into cache
and can launch multiple fetch requests simultaneously. If the instructions were
executed single file and in-order, the program would sequentially experience
a cache delay on each instruction. But with super-scalar and out-of-order pro-
cessing, using the lower grouping, five of the required fetches would be launched
in the first three cycles, and accesses would be substantially overlapped provid-
ing a significant speed-iup of the program.

2.8 Instruction Execution 51

2.8.14. System z196 Microprocessor Core

Figure 2.27 shows the components of a z196 microprocessor. The processing
flow can be roughly divided into two phases: the front-end processing with
branch predicting, instruction fetching and decoding and the instruction or bet-
ter out of order micro operation execution.

The branch prediction runs asynchronously ahead of instruction fetching and
pre-fetches instructions from L2 or higher level caches into the 64KB L1 in-
struction cache. The z196 microprocessor fetches up to 3 CISC instructions per
cycle from the I-Cache for decoding.

Ifetch
6HKBAIG

BranchA
DirectionAXA

TargetA
Prediction =AinstructionAbuffers

IAregs

DecodeSAcrackSAgroupSAmap
Arch1Amapper

UnifiedAmappercompletion

GlobalAcompletionAtable

IssueAQ

AgeAMatrix

DependencyA
Matrix

IssueAQ

AgeAMatrix

DependencyA
Matrix

GRAphysicalAregisters FPRAphysicalAregisters

LSU
PipeA

2

LSU
PipeA

8

FXU
PipeA

2

FXU
PipeA

8 BFU DFU8O8KBADG

InAOrder

Out
Of
Order

LSUA=ALoadXStoreAUnit
FXUA=AFixedAPointAUnit
BFUA=ABinaryAFloatingAPointAUnit
DFUA=ADecimalAFloatingAPointAUnit

BTB

BHTSAPHT

OSC

=ABranchATables

branch

branch

target

direction

Figure 2.27.: System z196 Microprocessor Core

The decoding process also encompasses the cracking, grouping and register
renaming of the instructions. In the next step the dependencies between the
micro operation and instructions are book kept in a dependency matrix. Based
on the age of the micro operations in the pipeline they are being issued for

52 z/Architecture

execution. The issue queue can keep up to 72 micro operations and instructions
in flight. The z196 microprocessor contains 2 fixed point arithmetic instruction
units (FXU), 2 load and store units (LSU) and a binary (BFU) and a decimal
(DFU) floating point execution unit. The issue queue consists of two halves.
One half drives one LSU, one FXU and either the BFU or DFU execution
units. The other half drives the other LSU and FXU. As a result up to 5 micro
operations can be executed per cycle.

The z196 tracks instructions as groups of up to three micro operations. A group
is completed when the previous group has completed and all micro operations
of the next-to-complete group have finished without errors. Up to 1 group can
be completed per cycle. Completion can be stalled for multiple cycles so that
all error checking information can be propagated to the centralized completion
logic. The global completion table keeps track of the groups of instruction to
be completed.

DL

D2

GL

G2

M=

ML

M2 S= SL S2

XF

N=

FPR
RF

GR
RF

EX CC WB Fin

AG Dt Dt FM WB Fin

AG Dt Dt FM WB Fin

STQ

EX CC WB Fin

F= FL F2

FL

F8 WB Fin

F2 WB Fin

NL

N2

N3

R=

RL

R2

R3

R4

3 instructions

3
instructions

decode

group

dispatch

cam

map

queue
write

wake
age

matrix issue register
read

Address
Gen

Format Write
Back

2 LSU

2 FXU

BFU

DFU

ch
ec

kp
oi

nt
co

m
pl

et
io

n

outuofuorderuexecution

IDUu=uInstructionudecodeuunit

ISUu=uInstructionusequencinguunit

RISCuexecutionuunits

Legend

Figure 2.28.: System z196 Microprocessor Execution Pipeline

Figure 2.28 shows the execution pipeline of a z196 microprocessor. Compared
to the System z10 pipeline (see figure 2.22) the pipeline for fixed point arith-

2.8 Instruction Execution 53

metic instructions grows from 14 to 15 to 17 stages. Similar to the z10 mi-
croprocessor results of previous completed instructions can be forwarded. The
dependencies are kept in the dependency matrix.

GR-
RF-

EX CC WB Fin

AG Du Du FM WB Fin

AG Du Du FM WB Fin

STQ

EX CC WB Fin

register
read

Address
Gen

Format Write
Back

2 LSU

2 FXU

Load-Data-Forwarding

Back-to-back-Fixed-Point-Execution

Address-Generation-Interlock

Non-Committed-Store-Result-Forwarding

Legend

Figure 2.29.: Result Forwarding within the System z196 LSU and FXU execu-
tion units

Figure 2.29 shows only the LSU and FXU parts of the pipeline and the possi-
ble result forwards. After a LOAD instruction the result can be forwarded to be
loaded in the next micro operation. Arithmetic operations can forward their re-
sult to follow-on arithmetic instructions, or to resolve address generation inter-
locks. In cases where the execution of instructions is not predictable the results
of an instruction can be kept in a Store Queue (STQ). This helps LOAD opera-
tions which need logically be executed after STORE operations. If the STORE
operation has completed and has placed its result in the STQ the LOAD op-
eration can use the result directly. If the store data is not in the store queue
the LOAD instruction is rejected and re-issued until the store data is either
in the STQ or L1 data cache. A similar Store/Load hazard exists for STORE
operations which depend on the execution of a LOAD instruction (Load data
forwarding). The data from the previous executed instruction is kept in the reg-
ister file (also referred to as load data queue) for the not yet completed micro
operation.

54 z/Architecture

2.8.15. System z196 Instruction Handling

System z196 consists of out-of-order execution units which process RISC like
micro-operations but the System z instruction set is a CISC instruction set.
When we take a look at the 1079 instructions which are currently supported on
System z196 we can characterize them in the following categories:

• 340 instructions are RISC like instructions and can be mapped to a single
micro operation

• 269 instructions can be cracked at issue and decomposed in a LOAD or
STORE and register-to-register operation or LOAD and STORE opera-
tions like the AR and MVC instruction shown in table 2.6.

• 211 additional medium complex instructions are cracked in micro-
operations when they are decoded.

• 219 instructions are more complex and they are executed by millicode
programs.

• 24 instructions are conditionally millicoded and 16 instructions are stor-
age sequencer.

2.8.16. System z196 Instruction Optimization

Compared with System 360 (143 instructions) from 1970 the instruction set has
grown by a large extent. Even System p only supports 700 instructions from
which nearly half are vector related operations. At the end of the excursion to
instructions and how they are optimized on z10 and z196 processors we will
take a look at new instructions which have been introduced for z196 processors
to improve program execution. Considering the C++ code line and its transla-
tion to assembler code by the gnu compiler as shown in figure 2.30 we can
observe that it results in an AGI delay and a possible branch miss prediction,
both reasons to hold up the execution speed in processors with long instruction
pipelines.

Every new System z generation introduces a set of new instructions for opti-
mization reasons. This is one reason for the growth of the instruction set from
143 to 1079 instructions. For this specific example we will take a look at an
instruction which has been introduced for z196. The instruction can be used by

2.8 Instruction Execution 55

forEekE*E9TEkEv*EMTEkdd:E{
…

if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

…
}

9p>[E LRE@I>n@I[R>vasc
9p[2E LRE@I[n@I2 R[vaxmb
E>pIFIBIIII[E LGE@08n9h2en@9]:ERpvak ProblemSEAddress
]A[p9II[E AE @I[n[e@08n9: R[vascE GenerationEInterlock
9.[>E CRE@I[n@I> sc>mc[k]
AhC[IIppE BHRC *+272 ProblemS

BranchEMisprediction
ttt

]I[9CII[E STE@I[n[e@I9n@IC:saveEmc[k]
ahF[FFh.E BRCEAaChI

gcc

Figure 2.30.: Instruction Execution on older System z generations

a compiler to optimize code segments such the one which we are discussing.
This conditional code sequence is often used in programs that the value of a
table entry is modified depending on whether a new computed value is larger
or not. In order to avoid the possible branch miss prediction it is helpful to
load the result for the new table entry only if the previous compare operation
has set a certain condition code. The LOAD ON CONDITION (LOCR) (see
figure 2.31) instruction has been introduced to satisfy this requirement. The
instruction loads the second operand to the location of the first operand if the
Condition Code (CC) meets the condition specified by M3. Otherwise the first
operand is not changed.

R2R1/ / / /M3B9F2
0 16 20 24 28 31

LOCR R1,R2,M3 RRF-c

Figure 2.31.: LOAD ON CONDITION (LOCR) Instruction

With the new instruction the assembler code sequence becomes significantly
shorter. The advantage of the new LOCR instruction is that the pipeline is no

56 z/Architecture

longer flushed on a branch miss prediction thus reducing the execution steps
significantly. In the present example it also resolves an AGI delay and further
reduces the path length (see figure 2.32).

forBakB=BT;BkB<=BM;BkiidB{
…

if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

…
}

gcc

5AAS6SSSB AB @TSbSab@S6d RTS<gsc
T9TAB CRB @STb@TS RT<gmc[k]
B9Fv5STAB LOCRNHEB@STb@TS LoadBRTSBtoBRTBifBbigger
5STSvSS4B STB @STb4ab@Svd saveBmc[k]

Figure 2.32.: Optimized instruction sequence by using LOCR

In figure 2.32 LOCRNHE is used which is an extended mnemonic created
by the High Level Assembler (HLASM) for the LOCR instruction and M3
bit settings of 1100 (not high). HLASM supports extended mnemonics for all
instructions depending on condition flags. It must also be noted that LOCR
is just one example to demonstrate that hardware scalability also depends on
optimizing the instruction set in order to allow compilers to generate more
efficient code sequences.

For z196 new instructions were introduced which address three major areas of
performance improvements:

1. New load, store and arithmetic operations to operate directly on the high
word of a general purpose register. Also new branch and compare in-
structions that operate directly on high words have been added7.

2. A set of new non destructive integer arithmetic instructions which in-
clude shift, add, subtract and logical operations. The traditional instruc-
tion architecture usually consists of two operands of which one keeps the
result after execution. The original value has been destroyed. If software
still requires both operands it must first copy the operand being overwrit-
ten to another register. The new operations eliminate this additional copy
operation which is beneficial for some compilers.

7For details see [24]

2.9 Interrupts 57

3. Finally the LOAD ON COMPARE instructions as discussed in the pre-
vious example.

2.8.17. System z196 Microprocessor Summary

At the end of this section we should summarize what we learned from instruc-
tion execution on System z. With the high improvement on frequency of the
z10 and even more the z196 microprocessor to previous generations a more so-
phisticated microprocessor design became necessary to really exploit the much
higher clock speed. One aspect was the introduction of additional cache lev-
els on z10 and z196 compared to z9 and older generations. In addition z196
introduces out-of-order processing to further improve the execution of instruc-
tion execution and we also have to mention comprehensive branch prediction
methods which we didn’t discuss in detail.

But that is not all. Each generation of System z also attempts to improve the
instruction set compared to older generations. The LOCR instruction is an ex-
ample to introduce an instruction which is very beneficial for program execu-
tion and which is primarily used by compilers. The LOCR instruction is also
a very good example of a CISC instruction which provides significant benefit
even if it seems to be rather complex at a first glance. In later segments we will
see that the microprocessor design is not the only denominating factor to use
the high processor frequency efficiently. This already shows that scalability of
one processor generation to the next is not a simple enhancement of hardware
but it also requires significant advances of the exploiting technologies.

2.9. Interrupts

Interrupts permit the CPU to change state as a result of an external event which
typically comes from outside the system. Interrupts are also the cause how
new program execution is started in the system as a result of the interrupt pro-
cessing. To permit fast response to conditions of high priority and immediate
recognition of the type of condition, interruption conditions are grouped into
six classes: external, input/output, machine check, program, restart, and super-
visor call.

Supervisor calls or SVC interrupts
These interrupts occur when the program issues an SVC to request a
particular system service. An SVC interrupts the program being exe-

58 z/Architecture

cuted and passes control to the supervisor so that it can perform the
service. Programs request these services through macros such as OPEN
(open a file), GETMAIN (obtain storage), or WTO (write a message to
the system operator).

I/O interrupts
These interrupts occur when the channel subsystem signals a change
of status, such as an input/output (I/O) operation completing, an error
occurring, or an I/O device such as a printer has become ready for work.

External interrupts
These interrupts can indicate any of several events, such as a time in-
terval expiring, the operator pressing the interrupt key on the console,
or the processor receiving a signal from another processor.

Restart interrupts
These interrupts occur when the operator selects the restart function
at the console or when a restart SIGP (signal processor) instruction is
received from another processor.

Program interrupts
These interrupts are caused by program errors (for example, the pro-
gram attempts to perform an invalid operation), page faults (the pro-
gram references a page that is not in central storage), or requests to
monitor an event.

Machine check interrupts
These interrupts are caused by machine malfunctions. When an inter-
rupt occurs, the hardware saves pertinent information about the pro-
gram that was interrupted and, if possible, disables the processor for
further interrupts of the same type. The hardware then routes control to
the appropriate interrupt handler routine. The program status word or
PSW is a key resource in this process.

When an interrupt occurs the running program is interrupted and the PSW is
stored and a new PSW which starts the interrupt processing is loaded. No reg-
isters are saved. This is done by software typically the interrupt handler of the
operating systems, see Chapter 3. The six classes of interrupts are distinguished
by the storage location at which the old PSW is stored and the from which the
new PSW is fetched, see figure 2.7. For most classes, the causes are further
identified by an interruption code and, for some classes, by additional informa-
tion placed in permanently assigned real storage locations during the interrup-
tion. For external, program, and supervisor-call interruptions, the interruption

2.9 Interrupts 59

Real Address Content
0x120 - 0x12F Restart old PSW
0x130 - 0x13F External old PSW
0x140 - 0x14F Supervisor-call old PSW
0x150 - 0x15F Program old PSW
0x160 - 0x16F Machine-check old PSW
0x170 - 0x17F IO old PSW
0x1A0 - 0x1AF Restart new PSW
0x1B0 - 0x1BF External new PSW
0x1C0 - 0x1CF Supervisor-call new PSW
0x1D0 - 0x1DF Program new PSW
0x1E0 - 0x1EF Machine-check new PSW
0x1F0 - 0x1FF IO new PSW

Table 2.7.: Interrupt Locations

code consists of 16 bits. For I/O interruptions the interruption code consists of
32 bits, and for machine-check interruptions of 64 bits. The interruption codes
are stored at real address locations.

2.9.1. Enabling and Disabling

By means of mask bits in the current PSW, floating-point-control (FPC) reg-
ister, and control registers, the CPU may be enabled or disabled for all exter-
nal, I/O, and machine-check interruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled for the corresponding class of
interruptions, and those interruptions can occur. When a mask bit is zero, the
CPU is disabled for the corresponding interruptions. The conditions that cause
I/O interruptions remain pending. External interruption conditions either re-
main pending or persist until the cause is removed. Machine-check-interruption
conditions, depending on the type, are ignored, remain pending, or cause the
CPU to enter the check-stop state. When a program interrupt is disabled, it is
ignored and not left pending for later. The result of the operation is indicated
in the cc. Finally IEEE exceptions set flags in the FPC register.

60 z/Architecture

Detailed description for interrupt processing can be found in [31] especially in
chapter 5 and 6.

2.10. Timing Facilities

The timing facilities include three facilities for measuring time: the Time-of-
Day (TOD) clock, the clock comparator, and the CPU timer. A TOD pro-
grammable register is associated with the TOD clock. The TOD clock is shared
by all CPUs. Each CPU has its own clock comparator, CPU timer, and TOD
programmable register.

2.10.1. Time-of-Day Clock

51 64

1 microsecond

0 103

Figure 2.33.: Time of Day Clock

The TOD clock is a 104 bit register. It is a binary counter with the format
shown in figure 2.33. The clock is nominally incremented by adding a one
in bit position 51 which corresponds to one microsecond. In models having a
higher or lower resolution, a different bit position is incremented at a frequency
that the rate of advancing the clock is the same as if a one were added in bit
position 51.

8 1120 127

000 .. 0 TOD Clock
Programmable

Field

Figure 2.34.: Time of Day Clock Extended Format

A value of zero in the TOD clock is defined as January 1st, 1900, 00:00:00
UTC. The clock roughly overflows after 143 years so that the last possible date
before an overflow is September 17th, 2042, 23:53:47 UTC.

2.10 Timing Facilities 61

The instruction STORE CLOCK (STCK) returns the first 64 bits of the Time-
of-day clock and saves them into a 64 bit register. The instruction STORE
CLOCK EXTENDED (STCKE) returns 128 bits for higher resolution.

The extended Time of Day Clock contains a leading byte which is currently 0
and which will be used after September 17th, 2042 to use the TOD clock for
an extended period. The additional 8 bits are good until the year 38400 A.D.
(see figure 2.34). For the extended format the microsecond is represented in bit
position 59 and bit 111 equals a precision of 222× 10−24. The programmable
field is used to generate a unique value and can be set by the instruction SET
CLOCK PROGRAMMABLE FIELD (SCKPF).

TOD Clock Steering

TOD-clock steering provides a means to change the apparent stepping rate of
the TOD clock without changing the physical hardware oscillator which steps
the physical clock. This is accomplished by means of a TOD-offset register
which is added to the physical clock to produce a logical-TOD-clock value.

CurrentfStartfTimef=s{ PhysicalfClockf=Tr{

}

-
CTSfRatef=r{

ABS

=12{f =52{f =44{ CurrentfBasefOffsetf=b{

}

-

TODfOffsetf=d{ }

BMfTODfClockf=Tb{

r>0

r<0

r=0

{64}{64}

{64}

{64}

{64}

{32}

{96}

{64}

dTr Tb

2 r s) -(Tr b d -44

+=

••+=

Figure 2.35.: TOD Clock Steering

62 z/Architecture

Figure 2.35 shows how the Base Machine (BM) TOD Clock is derived from
the Physical Clock (Tr) by adding the TOD Offset (d). The TOD Offset is
calculated from a Base Offset (b) to which the first 64 bits of the result from
the multiplication of the current start time (s) with the steering rate (r). By
using the first 64 bits from the 96 bit result the value is automatically shifted
by 44 bit positions and therefore multiplied with 2−44. The steering is added if
the steering rate is positive and deducted from the base offset if it is negative.
If the steering rate is zero the base offset is directly used as TOD Offset.

The steering rate is calculated from a fine- and gross- steering rate:

Fine-steering rate is used to correct the inaccuracy in the local oscillator,
which is stable over a relatively long period of time. The value normally
is less than the specified tolerance of the local oscillator. The change
occurs infrequently (on the order of once a day to once a week) and is
small.

Gross-steering rate is used as a dynamic correction for all other effects,
the most predominant being to synchronize time with an external time
source or with other clocks in the timing network. The value normally
changes frequently (on the order of once per second to once per minute).

2.10.2. Clock Comparator

Each CPU has a clock comparator which has the same format than the TOD
clock. It is used to set a time value which is compared to the TOD clock. When
the clock comparator is set and the value is less than the value of the TOD
clock an external interrupt is generated.

2.10.3. CPU Timer

Each CPU also has a CPU timer. The CPU timer format is the same as the
format of the TOD clock. Typically a value is set and the CPU timer is stepped
backwards. When the timer expires, meaning it reaches a negative value, the
timer requests an external interrupt. The CPU Timer stops when the CPU is in
check stop state. Some instructions allow to set the CPU timer (SPT) and read
it (STPT, and ECTG).

The CPU timer might step at a different speed that the TOD clock because
it is only decremented when the CPU executes a unit of work. For a virtual
system the logical CPU timer is stepped when the logical CPU is dispatched

2.11 Storage Addressing 63

on a physical CPU. So it is not possible to tell in advance which timer expires
first if the clock comparator is set to TOD clock plus 5 seconds and the CPU
timer is set to 2 seconds.

2.11. Storage Addressing

2.11.1. Address Types

PSW Bits Handling of Addresses
Instruction Logical

5 16 17 DAT Mode Adresses Addresses
0 0 0 Off Real mode Real Real
0 0 1 Off Real mode Real Real
0 1 0 Off Real mode Real Real
0 1 1 Off Real mode Real Real
1 0 0 On Primary-space mode Primary virtual Primary virtual
1 0 1 On Access-register mode Primary virtual AR-specified virtual
1 1 0 On Secondary-space mode Primary virtual Secondary virtual
1 1 1 On Home-space mode Home virtual Home virtual

Table 2.8.: Handling of Virtual Addresses

Three basic types of addresses are recognized: absolute, real, and virtual. The
addresses are distinguished on the basis of the transformations that are applied
to the address during storage access. Address translation converts virtual to
real and prefixing converts real to absolute. In addition to the three basic types,
additional types are defined which are treated as one or another of the three
basic types, depending on the instruction and the current mode, see table 2.8:

Absolute Address is the address assigned to a main-storage location.

Real Address identifies a location in real storage. A real address is con-
verted to an absolute address by means of prefixing.

Virtual Address identifies a location in virtual storage. It is translated by
using dynamic address translation to a real address or directly to an ab-
solute address.

Logical Address specifies the storage-operand addresses for most instruc-

64 z/Architecture

tions. Whether a logical address is treated as a real address or a virtual
address is specified by PSW bits.

Instruction Address is the address used to fetch instructions from storage.
In the same way as for logical addresses it is interpreted as a real or
virtual address depending on the mode setting in the PSW.

Virtual Address Sub-classification is used to determine to which address
space control element the actual instruction or logical addresses refer
to. The address space control element points to an address space which
doesn’t have to be the address space where the program is located in.
System z architecture distinguishes between primary, secondary, home,
and AR specified address spaces. Depending on the mode the address
space control element of CR1 is used for primary address space, CR7
for secondary address space, CR13 for home address space, or the ASCE
specified by an Access Register. In Chapter 3 we will discuss address-
ing modes in more detail when we take a look at data exchange between
address spaces.

2.11.2. Dynamic Address Translation

All operating systems on System z use virtual storage which allows to provide
a much bigger storage to the applications than the storage which is actually in-
stalled. For this purpose the concept of an address space is used which maps the
virtual storage for executable programs. We will discuss later how the address
space mapping looks for z/OS.

The virtual storage is created by multi level lookup tables in storage that de-
scribe the the virtual-to-real address translation. This process is called dynamic
address translation and depicted in figure 2.36.

The 64 bit virtual address consists of 6 parts:

BX The Base index (12 bits) addresses 4096 bytes which make up 1 page

PX The Page Table index (8 bits) address 256 pages (1,048,576 bytes or 1
MB) which make up 1 segment

SX The Segment Table index (11 bits) address 2048 segments (2,147,483,648
bytes or 2 GB)

RSX The Region Second Table index (11 bits) address additional 2048 seg-
ments or regions (4 TB)

2.11 Storage Addressing 65

Figure 2.36.: System z Dynamic Address Translation

RTX The Region Third Table index (11 bits) and now 8 PB8

RFX The Region First Table index (11 bits) up to 16 EB9

The base of the address space is described by the address space control element
which is contained in control registers 1,7, 13, or are described by access regis-
ters. The address space control element provides the pointer to the first region
or segment table. It is obvious by this enumeration that the process of dynamic
address translation is not for free. Therefore it is possible to use only parts of
the region control tables. If only 4 TB are installed on a system which is still the
case for most environments only one region control index is required for ad-
dressing the storage. Another way to speed up the addressing is by Transaction
Look-aside Buffers (TLB) which are contained in L1 storage of the CPUs.

Each CPU has its own TLB. The TLB is filled by hardware automatically as
the program executes. When the DAT tables are changed, the TLB entries are
purged too.

88 Peta Byte
916 Exa Byte

66 z/Architecture

2.11.3. Large Page Support

With the growing size of storage - especially virtual storage -, page tables be-
come huge. One page table entry covers 4KB of data and requires 8 bytes of
storage. This means that the page tables to map 4GB of storage already require
8MB storage. This is a limitation which is addressed by large storage pages. A
large storage page is a 1 MB area and eliminates the need for 256 page table
entries. The segment table entry now references directly to a large page instead
of a page table in this mode (see figure 2.37).

Figure 2.37.: Dynamic Address Translation for Large Pages

2.11.4. Storage Protection

Figure 2.38 depicts the key storage protection mechanism. A storage key is
associated with each 4K-byte block of real storage. The storage key consists of
7 bits: 4 access control bits, a fetch protection bit, a reference bit and a change
bit. The access control bits correspond to the storage key. The meaning of the
storage keys is interpreted by the operating systems. For example in z/OS key
0 to 7 is for privileged users and key 8 to 15 for non privileged users. the fetch
protection bit prevents storage alteration if the Key relation does not exists and
also prevents fetching storage if the PSW key is not 0. The exception is if the P
bit (bit 15 of the PSW) is zero and indicates that the CPU executes in supervisor
state.

2.11 Storage Addressing 67

The other form of storage protection is DAT or page protection. The P bit in
the page table entry can be set to 1 thus indicating that the 4KB page cannot
be altered. This is used, for instance, to implement the POSIX fork() function.
The P bit is also present in the segment table entry to protect an entire segment
from being altered and starting with System z10 also in all region table entries
which prevent storage alteration for large sections of the entire memory.

InstructionKAddress

64kbitKPSW

0 8 15 32

0018

CRFAcc

StorageKKeyK
TforKeachKrealK

frameE

TafterKAddressKTranslationE

Equal?

PSWK
KeyK0?

AccessKOk

NOKAccess

no

yes no

CompareK
Keys

Key P

Figure 2.38.: Storage Protection

2.11.5. Prefixing

The low address range of main memory is used to exchange information be-
tween the system (hardware) and software (operating systems, Hypervisor).
These storage locations are located in the address range 0 to 0x1FFF of real
storage and named assigned storage locations or prefixed save area. Each CPU
now must manage their own information therefore the storage location for each
CPU must be mapped to a different place in absolute storage. This is accom-
plished by using a prefix register for each CPU which specifies this absolute
address. The prefix registers for the CPUs are set by the operating systems.

68 z/Architecture

CPU 0
Prefix = 0

CPU 1
Prefix = 0x2000

CPU 2
Prefix = 0x4000

Absolute storage

0

0x2000

0x4000

0x6000

Real storage Real storage Real storage

Figure 2.39.: Prefixing

The example shown figure 2.39 assumes that the Prefix Register for CPU 2
contains 0x4000. The assigned storage location for CPU2 which is located
at real address 0 to 0x1FFF is now converted to absolute address 0x4000 to
0x5FFF. The prefix register always has the effect that the real storage range of
0 to 0x1FFF and the absolute storage range from the base value of the prefix
register up to this value plus 0x1FFF are swapped. This also allows to go back-
ward from absolute storage and find the real storage locations for the assigned
storage of each CPU.

2.12. Multiprocessing

The multiprocessing facility provides the interconnection of CPUs, including
shared main storage, CPU-to-CPU interconnect, and TOD-clock synchroniza-
tion. The CPU-to-CPU interconnect is done by Signal Processor (SIGP) and
a CPU address which is a unique number in the configuration. SIGP allows
a CPU to modify the state of other CPUs by Starting them when the CPU is
stopped state, by accepting external interrupts and by reporting CPU errors.

2.12 Multiprocessing 69

2.12.1. Atomic Instructions

The second part of multiprocessing is to provide a set of atomic instructions
which are not interruptible and which allow to update atomic variables:

TS TEST AND SET is an old instruction which is primarily used for compati-
bility with System/360. The instruction sets the condition code based on
the value of a storage location and sets the storage location to all ones.

CS COMPARE AND SWAP tests a storage location against a reference value
and modifies it if the location hasn’t changed. the instruction and all of
its companions can be used to implement locks. We already discussed
this instruction from the point of Instruction Cracking in Section 2.8.12.

PLO PERFORM LOCKED OPERATION can be used for complex locking
protocols of up to 8 operands. The instruction only locks against other
PLO locks.

LAA LOAD AND ADD performs an ADD operation and modifies the content
of a storage location. This instruction provides an atomic operation with-
out using a CS instruction to lock the storage location against alterations.
The instruction has been introduced to satisfy the needs of compilers for
example the GCC compiler for the sync fetch and add() built-in op-
erations similar to the optimization discussed for the LOCR instruction
in section 2.8.15. LAA is the basic example for a complete set of instruc-
tions provided with z196, see [31] chapter 7.

LHI @01,-1 create lock (0xFFFFFFFF)
LOOP LHI @00,0 create expected lock (0)

CS @00,@01,LOCK if LOCK = 0,

* store R1 into LOCK
BRNZ LOOP didnt get the lock, try again

*
DONE ... proceed

...
LOCK DS F full word

Figure 2.40.: Compare And Swap Example

For using an instruction like CS in a multiprocessing environment it is neces-
sary to take a closer look how the instruction operates and which problems may

70 z/Architecture

take place. Consider the example for the COMPARE AND SWAP instruction
shown in figure 2.40. The CS instruction tests the value of LOCK which is
a storage location against the value in register 0 and if both are equal it saves
register 1 to the location of LOCK indicating that the LOCK has been obtained.

LHI @01,-1 create lock (0xFFFFFFFF)
LHI @00,0 create expected lock (0)

LOOP CS @00,@01,LOCK if LOCK = 0,

* store R1 into LOCK
BRZ DONE we got the lock

* else, load LOCK into R0
TEST LT @00,LOCK try again (simple fetch)

BRNZ TEST still locked
BRU LOOP no longer locked,

* try CS again

*
DONE ... proceed

...
LOCK DS F full word

Figure 2.41.: Better Implementation for Compare And Swap considering High
Frequency Locks

The difficulty is that the CS instruction locks the cache line exclusively before
the test. If the lock is now held by another CPU, the cache line will bounce
back and forth between the CPU owning the lock and the CPU requesting the
lock. A better solution is shown in figure 2.41 if there is a higher likelihood
that the requesting CPU might not be able to acquire the lock immediately. In
this case it is better to to do a trial fetch first after the first attempt of getting
the lock failed. The additional instructions of the second implementation cause
much less overhead than the cache flushes caused by the requesting CPU.

2.13. Input and Output

System z uses dedicated I/O processors (System Assist Processors and Chan-
nels) to perform Input and Output to peripheral devices. These processors exe-
cute their own instructions named Channel Command Words (CCW). System z

2.13 Input and Output 71

does not use memory mapped I/O which in contrast to Channels maps memory
across system and device memory.

By using dedicated I/O processors the standard CPUs are free to execute in par-
allel and do not have to communicate with the I/O devices. The whole attach-
ment to the system handling the I/O is named the I/O or Channel subsystem.

2.13.1. z196 I/O Infrastructure

The z196 supports two different types of internal I/O infrastructure10:

• InfiniBand-based infrastructure for I/O cages and I/O drawers

• PCIe-based infrastructure for PCIe I/O drawers with new form factor
drawer and I/O features.

Infiniband

The InfiniBand specification defines the raw bandwidth of one lane (referred
to as 1x) connection at 2.5 Gbps. Two additional lane widths are specified,
referred to as 4x and 12x, as multipliers of the base link width.

Similar to Fibre Channel, PCI Express, Serial ATA, and many other contem-
porary interconnects, InfiniBand is a point-to-point, bidirectional serial link
intended for the connection of processors with high-speed peripherals, such as
disks. InfiniBand supports various signaling rates and, as with PCI Express,
links can be bonded together for additional bandwidth.

The serial connection’s signalling rate is 2.5 Gbps on one lane in each direction,
per physical connection. Currently, InfiniBand also supports 5 Gbps or 10 Gbps
signaling rates, respectively.

PCIe

PCIe11 is a serial bus with embedded clock and uses 8b/10b encoding, where
every eight bits are encoded into a 10-bit symbol that is then decoded at the
receiver. Thus, the bus needs to transfer 10 bits to send 8 bits of actual usable
data. A PCIe bus generation 2 single lane can transfer 5 Gbps of raw data

10A detailed description can be found in [17] and for PCIe in [25]
11Peripheral Component Interconnect Express

72 z/Architecture

(duplex connection), which is 10 Gbps of raw data. From these 10 Gbps, only
8 Gbps are actual data (payload). Therefore an x16 (16 lanes) PCIe gen2 bus
transfers 160 Gbps encoded, which is 128 Gbps of uncoded data (payload).
This is 20 GBps raw data and 16 GBps of encoded data.

The new measuring unit for transfer rates for PCIe is GT/s (Giga Transfers per
second) which refers to the raw data (even though only 80% of this transfer is
actual payload data). The translation between GT/s to GBps is: 5 GT/s equals
20 GBps or 1 GT/s equals 4 GBps. The 16 lanes of the PCIe bus are virtual
lanes, always consisting of one transmit and one receive lane. Each of these
lanes consist of two physical copper wires. The physical method used to trans-
mit signals is a differential bus, which means that the signal is encoded into the
different voltage levels between two wires (as opposed to one voltage level on
one wire in comparison to the ground signal). Therefore, each of the 16 PCIe
lanes uses actually four copper wires for the signal transmissions.

2.13.2. I/O System Overview

The I/O subsystem design is architectured to provide great flexibility, high
availability, and excellent performance characteristics, such as:

High bandwidth
The z196 uses PCIe as new internal interconnect protocol to drive PCIe
I/O drawers. The I/O bus infrastructure data rate increases up to 8GBps.
The z196 uses InfiniBand as the internal interconnect protocol to drive
I/O cages and I/O drawers and CPC to CPC connection. InfiniBand
supports I/O bus infrastructure data rate up to 6 GBps.

Connectivity options
The z196 can be connected to an extensive range of interfaces such as
ESCON, FICON/Fibre Channel Protocol for storage area network con-
nectivity, 10 Gigabit Ethernet, Gigabit Ethernet, and 1000BASE-T Eth-
ernet for local area network connectivity. For CPC to CPC connection
z196 uses Parallel Sysplex InfiniBand (IFB) or ISC-3 coupling links.

Concurrent I/O upgrade
You can concurrently add I/O cards to the server if an unused I/O slot
position is available.

Concurrent I/O drawer upgrade
Additional I/O and PCIe I/O drawers can be installed concurrently with-
out pre-planning.

2.13 Input and Output 73

Dynamic I/O configuration
Dynamic I/O configuration supports the dynamic addition, removal, or
modification of channel path, control units, and I/O devices without a
planned outage.

Pluggable optics
The FICON Express8, FICON Express8S and FICON Express4 fea-
tures have Small Form Factor Pluggable (SFP) optics to permit each
channel to be individually serviced in the event of a fiber optic mod-
ule failure. The traffic on the other channels on the same feature can
continue to flow if a channel requires servicing.

Concurrent I/O card maintenance
Every I/O card plugged in an I/O cage, I/O drawer or PCIe I/O drawer
supports concurrent card replacement in case of a repair action.

Memory

SC1, SC2, FBC

PU PU PU

PU PU PU

PCIe (8x)

Memory

SC1, SC2, FBC

PU PU PU

PU PU PU

PCIe (8x)

Memory

SC1, SC2, FBC

PU PU PU

PU PU PU

HCA2 (8x)

Memory

SC1, SC2, FBC

PU PU PU

PU PU PU

HCA2 (8x)

Book 1 Book 2 Book 3 Book 4

Channels

16GBps
mSTI

Ports

2GBps
mSTI

2GBps6mSTI

IFB-MPIFB-MPIFB-MPIFB-MP
PCIe

Switch
PCIe

Switch
PCIe

Switch
PCIe

Switch

FICON Express8 OSA-Express3FICON Express8S OSA-Express4S

86GBps 66GBps

46GBps PCIe
Gen26x86

Figure 2.42.: z196 I/O Infrastructure

74 z/Architecture

2.13.3. I/O Drawer

The I/O drawer is five EIA units12 high and supports up to eight I/O feature
cards. Each I/O drawer supports two I/O domains (A and B) for a total of eight
I/O card slots. Each I/O domain uses an IFB-MP card in the I/O drawer and a
copper cable to connect to a Host Channel Adapter (HCA) fanout in the CPC
cage. The link between the HCA in the CPC and the IFB-MP in the I/O drawer
supports a link rate of up to 6 GBps.

The PCIe I/O drawer attaches to the processor node via a PCIe bus and uses
PCIe as the infrastructure bus within the drawer. The PCIe I/O bus infrastruc-
ture data rate is up to 8GBps. PCIe switch ASICs (Application-Specific Inte-
grated Circuit) are used to fanout the host bus from the processor node to the
individual I/O cards.

Figure 2.42 illustrates the IFB connection from the CPC cage to an I/O cage
and an I/O drawer, and the PCIe connection from the CPC cage to an PCIe I/O
drawer.

2.13.4. I/O Operation

The I/O subsystem consists of channels or channel paths which are indepen-
dent processors that control the data transfer between main storage and device.
The Channel Command Words specify the command code, for example Read,
Write, Control, or Sense, the data address in absolute storage, a count field and
several flag bits for example for command chaining. The data source in mem-
ory is pinned by the operating systems for the duration of the I/O operation.
Also the operating system translates all virtual buffer addresses to absolute ad-
dresses.

The next component is the control unit. The control unit is the interface to
the device. In older System /360, /370, or /390 environments the control unit
controlled a number of real CKD or ECKD13 Direct Access Storage Devices
(DASD). Today the format of System z devices are emulated and the control
unit is a like a separate processor complex with LBA devices attached to it on
which the ECKD format is emulated.

A device is represented at least twice: By a device or Unit Control Structure in
the operating system and by a sub-channel in the I/O subsystem.
12EIA stands for Electronic Industry Alliance and is the measurement unit for I/O and processor

racks
13(Extended)Count Key Data

2.13 Input and Output 75

Application

Program

AccessUMethod

I5OUDriver I5OUSupervisor

IOSB

Channel
Subsystem

IOSB

IOQ

UCB
7666A

UCB
7666B

UCB
76669

EXCP

wait

ECB

CCW
CCW

S5C
T8FE

S5C
T8FD

S5C
T8FB

Device
7666A

T

7 8

4

S5C
T8FCSSCH

ORB
LPM

CCW
CCW

5

6
TSCH

IRB

7 I5OUInterrupt
post

8

9

T6

Figure 2.43.: System z I/O Flow

Figure 2.43 illustrates the I/O Flow from an operating system, z/OS in this case,
to the device and the data transfer back to the memory of the operating system.
The main I/O component in z/OS which interacts with the Channel Subsystem
is the I/O Supervisor:

1. Application program issues Open macro and tells system which dataset it
wants to access. OPEN tests access rights and locks dataset access. Now
the application program can use PUT, GET, READ, or WRITE macros
to access the dataset.

2. The access method create the channel program which contains of a se-
quence of channel command words. It also implements data buffering
and synchronization and is able to re-initiate the I/O operation in case of
an error.

3. The access method calls the I/O driver (usually EXCP) in order to move
the data. The I/O driver translates the virtual addresses of the channel
program into real addresses. For that reason the I/O driver enters super-
visor state. Also the I/O driver can reserve pages in real storage to which
the channel subsystem can copy data to or from.

4. The I/O Supervisor is called and the channel program is started. The
channel program is queued to a Unit Control Block which represents the
device in the system. If the UCB is already in use by another channel

76 z/Architecture

program the current program is queued. Otherwise a start sub-channel
command is issued to give the channel program to the Channel Subsys-
tem. In any case the processor is given up now and the dispatcher can
schedule a different program to execute.

5. A SAP (Service Assist Processor) executes the Start Subchannel and se-
lects a channel to access the control unit and the device. The SAP and
the channels use the control structures of the microcode which are the
sub-channels and which are the device representation within the channel
subsystem. For each device a sub-channel exists and resides in a hard-
ware area designated for the hardware. The channels now executes the
channel program and supervises the movement of data. The first channel
initiates the data transfer to the I/O device. When data is transferred back
to the system or a completion is send a different channel can execute it
and controls the data transfer backwards.

6. The channel signals the SAP when the I/O Operation is completed. The
SAP initiates the I/O Interrupt to the operating system.

7. A I/O supervisor routine executes the I/O interrupt and resumes the wait-
ing task which initiated the I/O operation. Then the control is handed
over to the dispatcher.

8. Eventually the dispatcher selects the originating task for execution which
resumes the access method.

9. The access method checks the result of the I/O operation and provides
its status back to the originating application program.

10. The application resumes its processing.

2.13.5. Logical Channel Subsystem

Channel paths are combined in logical channel subsystems. A logical chan-
nel subsystem can support up to 256 channels per Logical Partition and up
to 65280 devices or sub channels14. Channels can be shared by logical parti-
tions by using the Extended Multi Image Facility (EMIF). The introduction of
EMIF was an important step to use channels more efficiently and also to allow
to configure more channels to a logical partition for redundancy reasons.

System z currently supports 1 to 4 logical channel subsystems (LCSS). This
Multiple Channel subsystems (MCSS) allow much larger configurations and

14256 out of 65536 sub-channels are reserved for internal use

2.13 Input and Output 77

can be efficiently used to consolidate multiple older systems on a new bigger
CEC without changing the complete I/O configurations.

64512 sub-channels per LCSS are not much. Especially because the last physi-
cally build DASDs were only able to store 2.8 GB and 9.6 GB. Meanwhile the
size restriction for devices has been resolved but the number of sub-channels
was still a problem especially when Parallel Access Volumes (PAV) devices
were introduced.

PAV devices make use of the fact that I/Os from different applications or logical
partitions typically access different files or data sets on a device but for a single
sub-channel only 1 I/O request can be executed at once. The solution is to
introduce alias addresses for devices and allow to execute multiple I/Os to the
same device in parallel. In seldom cases the I/Os might try to access the same
extent in the same data set but even this is not a problem if the data set extent is
in cache storage of the storage controller for read operations. As a result PAV
devices speed up the I/O to the subsystem significantly.

Logical Channel Subsystem

Partitions sharing the LSS

Subchannels

Channels

Base Alias

SS-0
63.75K

SS-1
64K

Logical Channel Subsystem

Partitions sharing the LSS

Subchannels

Channels

Base Alias

SS-0
63.75K

SS-1
64K

Base4Devices

Alias4Devices

Figure 2.44.: Multiple Sub-Channel Sets for Base and Alias Device Addresses

PAV devices also underwent an evolution. The first implementation used static
alias addresses which were fixed assigned to hot volumes. The second was to
dynamically manage the alias addresses based on workload demand, impor-
tance and goal achievement. This was especially done for z/OS I/Os by intro-

78 z/Architecture

ducing PAV management support for the z/OS Workload Manager. Finally the
current implementation uses a dynamic assignment which just assigns an alias
for an existing second or third I/O to the same volume and then release the
alias back to an unused pool. The current implementation is the most dynamic
evolution and allows the smallest number of alias addresses. Nevertheless all
of these implementations use sub-channels which then can’t be used for real
device addresses anymore.

The solution are multiple sub-channel sets (MSS) per logical subsystem, see
figure 2.44. At the moment 2 sub-cahhenl sets are supported with 65280 sub-
channels in set 0 and 65535 sub-channels in set 1. These sub-channel sets are
exploited by z/OS to access alias addresses of parallel access volumes and they
are also exploited to assign sub-channels to mirror devices for techniques like
Peer-to-Peer Remote Copy (PPRC) for building a fault tolerant z/OS cluster
which is named Global Dispersed Parallel Sysplex (GDPS).

2.13.6. I/O Configuration

The I/O configuration for the hardware is defined in an I/O configuration data
set (IOCDS). The I/O configuration encompasses the whole system, all their
devices, cards, and connections. A component named Hardware Configuration
Definition (HCD) is the software front-end to it. It allows to add, delete, and
change I/O configurations dynamically by activating new I/O configurations.
HCD keeps the software and hardware configuration in an I/O Definition File
(IODF) from which the IOCDS for the hardware is derived. The I/O config-
uration is also loaded in the HSA. With Dynamic I/O configuration the I/O
definition in the HSA is dynamically changed. The second part of the IODF is
operating system specific, for example the Unit Control Blocks (UCB) which
correspond on z/OS to the hardware sub-channels are generated from it.

2.14. Logical Partitioning

Logical Partitioning and virtualization allows to run more than 1 operating sys-
tem on the physical hardware at the same time. On System z two flavors exist:

1. Logical partitioning or LPAR which is part of the microcode (LIC =
Licensed Internal Code)

2. z/VM is a multiple virtual machine manager which allows to execute a

2.14 Logical Partitioning 79

nearly unlimited amount of virtual guests. z/VM needs to be installed in
a partition like any other operating system.

EMIF

Memory

LCPs LCPs

PCPs

Channels

LPAR A LPAR B

PR/SM

Hardware

Figure 2.45.: Platform Virtualization on System z

Logical partitioning on System z separates the operating systems from the un-
derlying hardware and is managed by the Processor Resource and System Man-
agement (PR/SM). The main resources: memory, I/O channels and processors
are made available to the logical partitions in the following way (see also figure
2.45):

• The system memory is partitioned between the logical partitions. That
means each partition owns a separated part of the memory. It is possi-
ble to exchange data in speed but this is always isolated by the use of
protocols. For example Queued Direct I/O allows to move data from one
partition to the other but it uses a TCP/IP protocol.

• I/O channels and access to I/O devices can be dedicated or more effi-
ciently be shared between partitions. Sharing of I/O channels is possible
with a feature named Extended Multiple Image Facility (EMIF).

• Processors can be dedicated to a partition but then the processor is only

80 z/Architecture

available to one partition. More interesting is the case of sharing the pro-
cessors between the partitions. This is especially of interest to discuss
the necessary intersections between the operating system and virtualiza-
tion layer especially with respect where it limits scalability on high end
servers in chapter 4

2.14.1. z/VM

LPAR

zGVM

Linux

Memory

IGOEandENetwork

Linux

Real
Resources

CPU

Virtual
Resources

zGOSzGVSELinux

ConfigureEvirtualEmachines
withEzGVM4uniqueEfacilities

UpEtoE3.6EchannelEpaths

AddEvirtualECPUs
non4disruptivelyE2upEtoE6T5

UpEtoE3.6EGB6

UpEtoE83ECPUs6

SimulateEresources
notEinEtheELPAR

OptimizeEvirtualEserversEwith
dedicatedErealEresources

UpEtoE8ETB6E2inEaggregate5

6EzGVMEV.)8Emaximums

Figure 2.46.: Virtualization with z/VM 5.3

Virtual Machine (z/VM) is an operating system which provides an execution
environment for other operating systems. The z/VM Control Program (CP) cre-
ates a virtual machine for each user. Each virtual machine has its own address
space starting at address 0. This is virtual storage which is subject to paging.
It is possible to define the architecture mode (ESA/390 or z/Architecture) for
each virtual machine separately. CP can now virtualize or dedicate resources
for the virtual guests:

Processors
can be simulated or dedicated. It is even possible to simulate more vir-
tual processors than the hardware supports.

Storage
Virtual storage is controlled by the VM Resource Manager. It is also

2.14 Logical Partitioning 81

possible to dedicate storage from the partition to a virtual machine guest
which might be required for performance critical guests.

I/ Configuration
is simulated for each virtual machine. The configuration may consist
of dedicated devices, for example consoles, and shared devices, for ex-
ample mini-disks which are partitions on disks and assigned to virtual
machines or printers aka spooling devices.

Communication Paths
encompass channel-to-channel adapters which are shared between vir-
tual machines, inter-user communication (IUCV) and virtual LANs.

2.14.2. Start Interpretive Execution

LogicalGCPU

Program
Instruction

Stream

PhysicalGCPU

InstructionGExecutionGUnit

PR…SMWLPAR

PR…SMWLPAR

SIE
DispatchGGuest

“establishG
architecture”

Application
Instructions

HighGFrequency
ControlGInstructions

ThatGrequireG
“emulation”

modifications

LowGFrequency
ControlGInstructions

ThatGrequireG
“emulation”

modifications

HW

.

.

.

MSCH

.

.

TSCH

SSCH

.

.

.

Add

Store

Load

Firmware

HighGperformG
instructionG

interpretationG
handling

SIE
ReWdispatchG

Guest

SIEGSTATE
Description

SIEG
Assist

MSCHG
etcG…

InterceptionG
GuestGleavesG

SIE

LOADwGSTOREwGADDwG
MOVEwGetc

SSCHwGTSCHwGetcG…

InstructionG
InterpretationGControls

Instructions

Figure 2.47.: SIE Instruction Flow

Both PR/SM and z/VM use the Start Interpretive Execution (SIE) instruction
to establish the architecture for the logical partitions. In the literature the vir-
tualization layer is often called host (instance issuing the SIE instruction) and
the partitions which run the operating systems guests (programs running un-
der SIE). With the SIE instruction on System z it is possible to provide each

82 z/Architecture

guest its own architecture. The input to the SIE instruction is a state descriptor
of the logical partition which encompasses for example the PSW, the registers
and the CPU timers. On System z it is possible to run z/VM which is also a
virtualization layer under PR/SM. With this configuration it is possible to have
two levels of nesting for the SIE instruction (SIE under SIE).

When PR/SM issues the SIE instruction for a partition it loads the partition
registers and state information. The guest then starts to execute instructions.
Most of the instructions are interpreted directly by the hardware. Only few
instructions require to end SIE and run a hardware emulation program. On SIE
exit the host handles an interception or an interrupt:

• On an interception for example an instruction which requires emula-
tion the host updates the state descriptor, sets an interception code in the
state descriptor and resumes after the interception has been processed.
Interceptions are guest interrupts which programmable.

• On a host interrupt for example an external, I/O interrupt, a translation
exception, or the time slice ends (timer interrupt) the control is returned
to the host and no interception code is stored

The SIE instruction15 was introduced with System /370 Extended Architecture
(XA) in the early 1980s. It was invented based on experiences with VM/370 on
S/370 which completely used Trap and Emulate to virtualize other operating
systems. The SIE instruction which is supported by the hardware now provides
a much better performance. The SIE instruction is not documented in Principles
of Operations (see [31]) and is partially documented in [6] and [7]. Since then
many updates occurred.

2.14.3. Logical Processor Management

A partition can either have shared or dedicated processors. This the concept for
the System z logical partition manager and this is not a must. We will see in
chapter 4 that also on System z one exception exists where a special partition
can use both dedicated and shared processors. Also it should be mentioned
that prior to System z competitors also built hardware for S/370 and S/390
architecture. The concept of logical partitioning existed at that time already
and both Hitachi and Amdahl the two main competitors supported so called
L-shape partitions which could use dedicated and shared processors.

Partitions with dedicated processors own the physical processor to 100%. The

15On Intel based systems the VMX instruction provides a similar functionality

2.14 Logical Partitioning 83

physical processor is not available to any other partition. Partitions with shared
processors compete for the shared physical processors. By definition a partition
cannot have more logical processors than physical processors which are active
on the box. The only exception exists when a physical processor is malfunc-
tioning and must be configured off-line and no spare processor can take over
the function of the physical processor. In such cases partitions may have more
logical than physical processors.

Hardware:7Physical7Processors

Logical7Partitions

Scheduler

Shared7Processors D
ed

ic
a

te
d

P
ro

ce
ss

o
rsLogical7Processors

LPAR7A
Weight7=7300
LCPs =73

LPAR7B
Weight7=7700
LCPs =74

LPAR7C
DED
CP=1

Figure 2.48.: Logical Processor Management

Each partition which uses shared processors also has a weight defined. The
weight defines the share of the physical processor pool which is guaranteed
to the partition assuming the number of logical processors is high enough to
support this share. PR/SM now dispatches the logical processors on the shared
physical processors. It uses a time slicing algorithms and determines the prior-
ity of logical processors based on the partition share and the time the logical
processors have used their share. We will discuss this in more detail on the
following pages.

When a logical processor is dispatched on a shared physical processor it is
possible to complete the dispatch cycle in one of two modes:

Weight Completion = Yes
A logical processor must complete its guaranteed share even if the wait

84 z/Architecture

state PSW is loaded. This option is a CEC (Central Electronic Com-
plex) wide control and effects all partitions. It guarantees that all parti-
tions have always their share available to it but it doesnt allow partitions
to use more than its share.

Weight Completion = No
(standard mode of operation) If the logical processor loads the WAIT
State PSW the SIE is exited and the control is returned to PR/SM to dis-
patch another logical processor. Nearly all installations use this mode
of operation because it allows to effectively use the available capacity
of the CEC.

A detailed discussion about the dispatching for PR/SM and z/OS follows in
chapter 4.

LPAR343(new)

Hardware3System3Area
(HSA)

Hardware3System3Area
(HSA)

Possible3from3a3deactivated3LPAR

New3partition3contiguously3created3after3LPAR3

LPAR3Hypervisor LPAR3Hypervisor

LPAR31

LPAR33

LPAR31

LPAR33

Figure 2.49.: Mapping of Absolute to Physical Storage

2.14.4. Storage of a Logical Partition

The storage assigned to a logical partition is called a zone. The zone origin is
the host absolute address where the zone starts. This is zone address zero. The
zone limit is the host absolute address where the zone ends. Origin and limit
pairs are associated with a zone number (LPAR number).

The absolute storage of an LPAR must be contiguous. Activating and deactivat-

2.14 Logical Partitioning 85

ing LPARs leads to fragmentation of storage. From both a scalability and avail-
ability point of view the question comes up how unused storage can be assigned
to a single LPAR? The result is another mapping of storage, see also section
2.11.1. For this purpose the absolute storage is mapped to physical storage and
the absolute storage is defined larger than the available physical storage, for
example twice as big, see figure 2.49. If a partition has been deactivated some
parts of the absolute storage becomes de-fragmented. A new LPAR 4 is now
created contiguously after LPAR 3 in absolute storage. With the mapping it is
now possible to map it to unused areas in physical storage and therefore avoid
that certain amounts of LPAR activations and de-activations make it impossible
to run the CEC without restart.

2.14.5. Storage of a Virtual Machine under z/VM

z/VM provides a more sophisticated level of virtualization than LPAR which
has its main focus on efficient platform virtualization. z/VM even supports SIE
under SIE by interpreting of the SIE instruction by z/VM. This allows in theory
an arbitrary number of nesting levels. It is useful for testing new z/VM versions
on existing z/VM versions.

A more realistic scenario is a guest operating system under z/VM which runs
in a logical partition. The primary address space created by z/VM describes the
virtual machine’s absolute storage. The ASCE is contained in CR1 of the host
which is z/VM.

The virtual machine now may use its own virtual storage which requires two
DAT translations. The translations are all done in hardware without shadow
tables:

1. Guest-2 (the hosted OS) virtual to guest-2 absolute

2. Guest-1 (z/VM) virtual which is the guest-2 absolute address to guest-1
absolute

Scenario

We assume an application runs in the operating system hosted under z/VM.
This operating system is named guest-2. z/VM is hosted under LPAR and z/VM
is guest-1. The LPAR is managed by the LPAR hypervisor which is the host:

Step 1 The application uses a virtual address (guest-2 virtual) which is trans-
lated to a guest-2 real address by using the operating system’s DAT

86 z/Architecture

tables. Then the guest-2 real address is translated to guest-2 absolute
address by using the operating system’s prefix register, see section
2.11.1.

Step 2 The resulting guest-2 absolute address is taken to be guest-1 virtual
address. It is translated to guest-1 real address using z/VM’s DAT
tables. Then by using the z/VM’s prefix register the guest-1 absolute
address is generated.

Step 3 The guest-1 absolute address is now translated to the host absolute
address by adding the LPAR’s zone origin. It is also checked against
the LPAR’s zone limit to ensure that it is in the valid addressing range.

Step 4 Finally the absolute storage address is translated to a physical address
where the data item or instruction can actually be found.

2.15. Summary

At the end of our excursion to System z hardware we observed that System z
currently provides the fastest commercial computer system. But this is not the
denominating factor which of System z importance in the industry. The value
of System z is defined by its RAS criteria from which we explicitly emphasize
High Availability and Scalability.

From a ”High Availability” point of view we learned that redundancy and error
detection mechanisms are built in across all hardware components. Two good
examples are CPU error detection and sparing as well as the introduction of
RAIM to protect the storage against chip and channel errors. The principle is
always to keep the system running and thus maintain the business operations.

For ”Scalability” we have the same emphasis. The main example besides many
others in this chapter is to use the high processor frequency as efficient as
possible. The use of four cache levels grants this requirement as well as the
exploitation of an out-of-order design for the z196 microprocessor shows that
many functions have been introduced under this aspect. We will see that this is
a good start but not everything and that additional techniques must be deployed
before an application can really exploit the hardware efficiently.

3. z/OS

In this chapter we will discuss the main features of z/OS operating system
which is the main operating system for transaction processing and to host
database on System z. z/OS evolved from MVS which was introduced in 1974
(see figure 2.1). MVS provided virtual storage for all users and applications
and thus allowed to fence applications against each other. By looking at the
structure of the address spaces we will discuss the attempts which were made
to scale the environment by preserving the compatibility of earlier architectural
developments. Thus z/OS is a perfect example how a modern operating system
maintains their roots and compatibility to its earliest days. We will further dis-
cuss in this chapter how program execution works on z/OS, how programs can
be protected against errors, and how data can be exchanged between address
spaces. We will take a look at the changes for controlling the operating sys-
tem storage which is another good example to show the required changes for
supporting scalability from a 2 GB to a 16 PB environment. Finally we will
introduce the main subsystems and how the system is internally structured and
how the system can be customized.

3.1. z/OS Structure

Figure 3.1 depicts the structure of z/OS and the z/OS stack.

z/OS basically is structured in three parts:

Basic Control Program
(BCP) encompasses the major operating system functions like: Super-
visor/Dispatcher, Console Services, Recovery, Storage Management,
Unix System Services, IPL, Resource and Workload Management, and
Sysplex Communication. These are mainly core services and on its own
not sufficient to run user programs or applications.

Base elements
encompass all functions which are required to establish a complete run-
time environment. These encompass functions like system installation,

88 z/OS

RSM
VSM
ASM

SUPER
VISOR

CONSOLE RTM
IOS

EXCP
HCD

GRS
SRM
WLM

XCF
XES

SMF RRS IPL

DFSMS JES
TSO
ISPF
REXX

SMPdE
Communication

Server
3TCPdIPy
VTAM

NFS
DFS
DCE

CRYPTO
Services

USS
LE

HLASM
grgrg

DFSMS JES, SDSF RMF
RACF
Security
Features

grgrg

Sysplex

BasicrControl Program

Baser
Elements

Optionalr3PricedyrFeatures

DB: CICS IMS WAS MQ

SolutionsdApplications:rCustomerxrVendorsxrIBM

Middleware

Figure 3.1.: z/OS Structure and Stack

I/O storage management (DFSMS), UNIX system shell services, the
Job Entry System, Time Sharing Option (TSO), and the language envi-
ronments. The job entry system for example is crucial to execute pro-
grams on z/OS. But an installation has a choice to select one of two job
entry systems: JES2 or JES3. Therefore this function is not part of the
BCP but a required add on to it.

Optional Features
cover functions which are recommended but either not required or which
can be exchanged by vendor components. Resource Measurement Fa-
cility (as reporting and monitoring product), and Security features are
examples for such functions.

The middleware and major subsystems complete the operating system stack
on top of these functions. These are functions which provide runtime envi-
ronments to execute huge numbers of customer transactions with the guaran-
teeing the qualities required for consistent database management aspects. On
z/OS the main classical subsystems are Customer Information Control Sys-
tem (CICS R©) and Information Management System (IMS

TM
) which are two

transaction monitors with integrated database capabilities. Currently the most

3.2 Address Spaces 89

important database is DB/2 which can be used by those transaction monitors
and also by applications running on other platforms. Newer middleware devel-
opments encompass Message Queueing systems and Websphere R© Application
Server to enable Java applications on System z platform. Also vendor subsys-
tems like SAP, Oracle, and SAS can be found on z/OS systems.

z/OS in Numbers

z/OS (BCP+Base Elements+Optional Features) is more than 100 Million Lines
of Codes. In order to develop this code another 750 million lines of test code
and tooling is required. Altogether more than 850 million lines of code need to
be maintained for just the operating system without the middleware.

The Basic Control Program is more than 40% of the executable lines of codes
as well as number of parts. The second biggest part are UNIX System Services
(USS) which provide a full UNIX runtime environment based on ISO standard
POSIX 1003.1. So it can be said that z/OS provides two faces: a classical run-
time environment and a UNIX environment and combines the functionality of
two operating systems.

3.2. Address Spaces

The address space is the basic concept of z/OS and MVS. The ability to pro-
vide each user with its own virtual storage map gave the first operating system
its name: Multiple Virtual Storage (MVS). Address spaces provide a virtual
storage map and provide the runtime environment for the user programs. The
term user just means everybody or everything which wants to use z/OS or MVS
system resources. This can be an external user, a batch program but also a com-
plete transaction monitor which executes multiple tasks at the same time. So
the address also provides all structures to execute programs and access data.

Figure 3.2 shows that the address space grew in size over time. Initially MVS
was designed as a 24 bit operating system which allowed to address only 16MB
of storage. When this became too small the architecture was extended to 32
bit of which the highest bit was used to identify 24 bit addresses from 31 bit
addresses. Therefore it was then possible to address 2 GB of storage. z/OS
finally introduced 64 bit addressing mode which now allows to address 18EB
of storage at least theoretically.

Figure 3.2 also shows that the virtual storage is divided in private areas (gray)

90 z/OS

which are exclusively for the programs of the address space and common areas
(white). The common areas are the same across all address spaces and describe
shared virtual storage areas.

16MB

2GB

Prefixed Save(Area

CSA

PLPA(/(MLPA(/(FLPA

SQA

Nucleus
Extended Nuclues

Extended SQA
Extended LPA(UPLPA(/(MLPA(/(FLPAK

Extended CSA

High(Shared

System(Area

Private(Area

LSQA(/(SWA(/(AUK

Extended Private(Area

High(Private

High(Private
18EB

Figure 3.2.: Address Space Structure Structure

The meaning of the common area sections is:

Prefixed Save Area:
This is a fixed storage area which also has a fixed real to virtual storage
mapping. It contains the basic anchors of the data structures for the
z/OS system and it is established and used by the IPL process.

Link Pack Areas:
PLPA, FLPA and MLPA are common storage areas in which programs
can be pre loaded which are often used in the system. Programs in such
areas are similar to dynamic link libraries of other operating systems
and they reside in storage to avoid too many reloads from disks. Such
programs also need to be coded reentrant to that multiple users can use
them at the same time.

3.2 Address Spaces 91

CSA and SQA:
Common System Area and System Queue Area contain system struc-
tures and can be used to share memory between applications and oper-
ating system components.

Nucleus:
contains the operating system modules which also need to be in storage.

With the extension of the 24 bit addresses to 31 bit all of the common areas
except the prefixed save area were extended to 31 bit too. Because the common
areas were the highest addresses of the original architecture they were now
mirrored and the extended common areas are the low 31 bit addresses. As a
result the private storage areas consist of two areas above and below 16MB
line.

With the introduction of 64 bit addresses another High Shared area is defined
above the 2GB line. This area relates to the SQA and CSA areas and is used to
keep common and shared storage elements. All other areas above the 2GB line
are for local application data.

3.2.1. Address Space Types and Storage

Address Spaces provide all the control structures to execute programs and to
access data. Figure 3.2 shows that address spaces evolved over time and that the
addressing concept was finally extended to 64 bit addressing. But this wasnt a
straight development. First the addressing range was extended from 24 bit ad-
dressing to 31 bit addressing. When it became obvious that 31 bit addressing
was not sufficient efforts were made to provide more virtual storage to ap-
plications without extending the 31 bit addressing mode. This was done by
introducing two additional space concepts which were just established to keep
data (see figure 3.3):

Data Spaces: are spaces primarily for operating system and prioritized tasks
and functions to keep additional amounts of storage.

Hiperspaces: are spaces which offer services to also allow middleware and
applications to keep memory objects in storage.

Data Spaces and Hiperspaces are virtual storage structures. The available mem-
ory with 31 bit addressing allows to address 2 GB of memory. This also became
a short resource. In order to overcome this limitation expanded storage was in-
troduced. Expanded storage extended the main memory. The biggest difference
was that in Expanded Storage only pages and no bytes could be addressed. Be-

92 z/OS

AddressHSpace

PSW,HRegister

Programs

Data

Data
Objects

MainHMemory
orHCentralHStorage
ByteHaddressable

ExpandedHStorage
PageHaddressable

DataHSpaces Hiperspaces

Figure 3.3.: Address Space and Storage Types

cause of this limitation Expanded Storage established as a fast paging device.
Especially functions like TSO could make very efficient use of it. For TSO
users typically only require very short periods of time when they are active in
storage. Most of the time the user does editing in the buffer in its terminal or
terminal emulation buffer and only when the user presses the ENTER button
a request is sent to the system. At that time the user now needs fast access to
system resources and storage. On the other hand the processing usually doesn’t
require much time and after the processing a relative long period starts again
where the user is inactive or idle from the point of the system. With expanded
storage it is now possible to page or swap the TSO memory fast out of main
memory which is a constrained resource with 31 bit addressing and page or
swap it fast in again when it is needed. This structure of 2 GB main memory
and up to 16 GB of expanded storage allowed to run systems with thousands
of TSO users together with Batch and huge transaction systems before 64 bit
addressing was introduced.

It should be mentioned that expanded storage also had a disadvantage besides
the fact that its extension to the 2 GB main memory was limited because it
was also limited to 16 GB. The disadvantage was that a page which needs to
be migrated from expanded storage to auxiliary storage, the paging devices,

3.2 Address Spaces 93

needs first to be brought back to main memory before it can be sent to auxil-
iary storage and thus amplifying storage constraints. Nevertheless it is a good
example to provide a scalability solution which also solved storage constraints
for a period of 16 years. Hiperspaces finally made use of expanded storage
also for applications and operating system components. Today Hiperspaces are
mapped to main memory above 2 GB.

3.2.2. Control Block Areas

UCBA

ASCBH

CVT

Prefixed Save Area (PSA)

Common Storage

ASCB

UCB

Figure 3.4.: Prefixed Save Area and Common Storage

The common storage area namely the CSA and SQA (also ECSA and ESQA)
are used for z/OS control structures. The main table of z/OS is the Commu-
nications Vector Table (CVT). It contains the anchor to all operating system
components and data structures which need to be accessed by different compo-
nents. As an example of such structures are the Address Space Control Blocks
(ASCB) which represent the address spaces of the system. An ASCB needs
to be accessed by multiple operating system components and therefore needs
to reside in a common storage area. Another example are Unit Control Blocks

94 z/OS

(UCB) which represent the devices of the system (see figure 3.4). The commu-
nications vector table is anchored in the Prefixed save Area at the fixed address
X10.

3.2.3. Storage Protection

In order to access these control structures the program must run in supervisor
state and use storage protection key 0. Storage protection key is available only
to operating system programs. The storage keys 1 to 7 are reserved for major
z/OS subsystems and key 8 is for user programs. A detailed description of stor-
age protection can be found in chapter ??. Supervisor State is similar of kernel
mode of other operating systems and again applies to the operating system. A
usual application runs in problem state and then it is not possible to execute
operating system tasks. So it is possible to compile and link programs to allow
them to switch to supervisor state. The programs need also to be placed in an
authorized program library. The concept of authorized libraries (APF) is a key
concept because it allows an installation to control which programs can use cer-
tain system services and especially which programs can switch to supervisor
state and change their storage access keys.

3.2.4. Address Space Creation

Address Spaces can be created in one of three ways in the system:

1. Through a START, MOUNT, or LOGON command

2. During system initialization.

3. From a program by using the assembler interface ASCRE (address space
create)

Address spaces are created by the MASTER address space and initialized by
the Job Entry System. The only exception is during system initialization. In
this case the MASTER address space which is the first address space of the
system also initializes the address space. The initialization steps are shown in
figure3.5:

• First the virtual storage area is created. This encompasses the control
tables to enable addressing. At the same time the first task is created
and anchored in the address space control block (ASCB). The task is
represented by a task control block (TCB) which resides in an operating

3.2 Address Spaces 95

system area of the private storage of the address space (LSQA, see page
7 and 8). This step is named Memory Create.

RCT

STC

Init

J/S

ASSYS1.PROCLIB

//STCNEUp…

MemorypCreateSTARTpSTCNEU

Program

Interpreter

Device
Allocation

FunctionpofpJobpEntrypSystemsp
andpMasterpScheduler

Conversion

Load

*

*

*

*

RegionpControlpTask

StartedpTaskpControl

INITpTaskp– Interpreterp

Job/SteppTask

Figure 3.5.: Address Space Creation

• The Region Control Task creates two subtasks:

– Started Task Control (STC) controls the conversion of the start pro-
cedure. The start procedure is located in a library and tells the sys-
tem which devices and data sets need to be allocated, whether the
address spaces requires special libraries and which program should
be started initially. A start procedure is a batch job fragment and
it is required for every address space creation. The STC task also
receives the job id and links to the INIT task on completion.

– INIT task interprets the start procedure and allocates devices and
datasets. Finally it attaches the Job Step Task and loads the program
which should be executed.

• The Job Step task executes the program. Now it is possible to attach
other subtasks and also to load multiple programs which can be executed
in parallel.

96 z/OS

Batch Jobs

For batch jobs address spaces are pre-started. These pre-started address spaces
are named initiators and they are pre-initialized up to the INIT task. For a batch
job the STC and INIT tasks control the conversion and interpretation of the job
which is similar to the process for start procedures and then allocate the data
sets and devices needed by the batch job. Finally the Job Step task is created
to execute the program referred to in the batch job. When the job completes
the job step task is detached and the device allocations are reversed so that the
initiator can be used for another batch job.

3.3. Program Execution

Programs which run in an address space are executed under the control of a
Task. The Region Control and Job/Step tasks are examples for special tasks.
A task is represented in the system by a Task Control Block (TCB) (see figure
3.6).

Address2Space

TCB

RBRB

Program

Load
LOAD
LINK
ATTACH
nnn

SRB

SVC

Libraries

LINKLIB
1n SYS1nLINKLIB
2n USERnLINKLIB
3n SYS3nPROGLIB
4n …

JOBLIB
1n MYnPROGLIB
2n USERnLINKLIB
3n SYS1nLINKLIB

STEPLIB
1n MYnSPECnPROGLIB
2n MYnBASEnLINKLIB

Systemuwide

Current2Job2or2Procedure

Current2Job2Step

Figure 3.6.: Program Execution

There are not only application programs in the system which need to execute.
Very often it is necessary to execute a system function. System functions cover
all kind of activities which require special authorities in the system and which

3.3 Program Execution 97

need to be performed by application programs as well, for example obtaining
and freeing storage for private use. One of the most common ways to call a
system function is by issuing a Supervisor Call (SVC). The Supervisor Call
also loads a program and executes the requested function and returns to the
caller. Because these supervisor call are relative short service requests they are
treated differently then the execution of a user, application or regular program.

Instead of creating a task structure a Service Request Block (SRB) is created
for the Supervisor Call. The SRB enables some special features for example
that it gets executed before all other tasks which are similar to the calling task.
Also most Supervisor Calls are non preemptable and therefore execute rather
fast in the system.

Programs are loaded from system libraries. System libraries are concatenated
in a search concatenation. For example the standard libraries of the system
which are available to any user program are concatenated as LINKLIB. A start
procedure or batch job can now define its own library concatenations by defin-
ing its own STEPLIB or JOBLIB.

3.3.1. Reentrant Programming

Reentrant programming is required to invoke programs which are used by mul-
tiple callers at the same time and which are loaded only once into common stor-
age. The link pack areas of common storage are reserved for such programs.
The example in figure 3.7 shows the data areas and register conventions used
for standard linkage to a reentrant program in 31 bit addressing mode. The
convention for 64 bit addressing is similar.

The example starts with the caller which already has a save area created. Before
the caller calls the new program it follows the following conventions:

• Register 1 points to the parameters which are required by the calling
program

• Register 13 points to the caller save area

• Register 14 will receive the return address within the caller’s program
when the BASR (or BALR) instruction is executed. That means the cur-
rent content of R14 is destroyed.

• The entry point address is loaded to to register 15

98 z/OS

• The BALR (or BASR) instruction1 branches to program 15 and before
that saves the return address (the address where the instruction pointer
will point to after the current instruction has been executed in R14)

Caller

Rc) parameter
Rcw) save)area
Rc8) entry)point)
Rch) Return)address
…
L) c8’=VNPGMY
BALR)ch’c8
…

NextCsaveCarea2

GPR143

GPR0

…

GPR12

5

…

17

GPR154

PreviousCsaveCarea1

ProductCspecificC(LE)0

CallerCSaveCArea

PGM) CSECT
PGM) AMODE) wc
PGM) RMODE)ANY

STM) ch’ck’ckNcwY) Save)Caller)Registers)in)Caller’s)Save)Area
LR) ck’c8) Set)up)Program)Base)Register
USING) PGM’ck
GETMAIN)RU’LV=*k) Obtain)reentrant)save)area
ST) cw’hNcY) Save)caller’s)save)are)in)my)backward)chain
ST) c’FNcwY) Save)my)save)Area)in)caller)forward)chain
LR) cw’c) Put)my)save)area)address)in)Rcw

2) END)OF)ENTRY)CODE
2) PROGRAM)CODE)COMES)HERE)
2) EXIT)CODE

LR) c’cw) Copy)my)save)area)back)to)Rc
L) cw’hNcwY) Restore)Caller’s)save)area
FREEMAIN)RU’A=NcY’LV=*k) Free)my)reentrant)save)area
SLR) c8’c8) Set)return)code)Nof)zeroY
L) ch’ckN’cwY) Restore)Caller’s)register)ch
LM) k’ck’kFNcwY) Restore)Caller’s)registers
BR) ch) Return)to)caller
END)

PGMCSaveCArea

1

2

3

4

NextCsaveCarea2

GPR143

GPR0

…

GPR12

5

…

17

GPR154

PreviousCsaveCarea1

ProductCspecificC(LE)0

Figure 3.7.: Reentrant programming for 31 bit Programs

Then the new program (PGM) receives control. In our example the new pro-
gram runs in address mode of 31 bit (AMODE 31) and can reside anywhere in
virtual storage below the 2GB line (RMODE ANY). The following steps are
important at entry of the new program:

1. The registers of the caller are saved to the caller’s save (beginning at
word 3, offset 12). Notice that word 3 (offset 12) of the callers save area
now points to the return address of the caller’s program

2. The caller loads the entry point address in register 12 and uses register
12 as base register to address all further code sequences. If the caller
provided parameters in register 1 this parameter pointer must now be
saved too (not shown) before PGM allocates its own save area which
is required to call another reentrant program. The GETMAIN macro is

1BALR = Branch and Link, BASR = Branch and Save, see Appendix ??

3.3 Program Execution 99

used to allocate the save area and the address of the save area is placed
in register.

3. PGM saves the caller’s save area in the previous pointer of its own save
area.

4. Finally it saves its save area address in the next pointer of the caller’s save
area. The two save areas now point to each other. Finally the address of
PGM save area is stored in R13. R13 is typically not used during program
execution.

At the exit the steps 1. to 4. are reversed and the save area of PGM is freed
before the program returns to the caller (BR 14). Notice that only registers 0
to 12 are restored. Register 14 has been fetched from the save area to set the
return address for the branch instruction correctly and register 15 is used as
return and reason code.

3.3.2. Program Recovery

TCB

ERR2
Routine

ERR1
Routine

ESTAE ERR1

ESTAE ERR2

Program

Figure 3.8.: Problem Mode Error Recovery Routines

One critical aspect of z/OS especially with respect to High Availability is error
recovery. A lot of effort is undertaken for all kind of system routines to pro-
tect the system against failures. The same is the case for the major subsystems
and middleware and is also offered for application programs. The motivation
is simple: If a standalone programs abends usually not much damage is cre-
ated but if a server program terminates by error this can immediately affect

100 z/OS

hundredths of end users. Therefore error recovery is essential for server appli-
cations and the underlying operating system which process hundredths or even
thousandths of users simultaneously. The overall idea for all error recovery is
to process the error and to continue processing of at least not affected parallel
tasks as much as possible. In addition it is necessary to capture diagnostic in-
formation which will later allow the development and service organization to
analyze the problem and solve it

Error recovery distinguishes between Problem state and Supervisor state pro-
grams. Problem state programs have limited access to system resources (re-
strictions concerning storage access and program invocation). The error re-
covey must be within the same scope. A problem state program typically sets
up an ESTAE (Extended Specified Task Abnormal Exit) which is called by the
Recovery Termination Manager if a program ends abnormally. An ESTAE rou-
tine always maintains the scope of the application program. Supervisor State
programs have usually access to everything. The corresponding error recovery
routine is an FRR (Functional Recovery Routine). This type of recovery rou-
tine an enabled unlock task which protects code that is not disabled, locked and
in system mode.

Program
FLIH

Recovery
Termination

Manager

ESTAEsFRRsESPIE

System Mode Task Mode

Figure 3.9.: Error Recovery Components

Error recovery as well as program interruption in general is handled in two
steps: Step 1: is the First Level Interrupt Handler. This usually saves the pro-
gram registers. Usually there is no error recovery at this point. Nevertheless for
special cases it is possible to invoke an error recovery exit already at this point
(Extended Specified Program Interruption Exit (ESPIE)). Step 2: the Recov-
ery Termination Manager (RTM) calls the routine which handles the program
interruption and this can be an error recovery routine in case of an abnormal
software interrupt.

3.3 Program Execution 101

Figure 3.8 shows the stacking of error recovery routines for problem mode
programs protecting code parts and figure 3.9 the various versions of error
recovery routines for supervisor and problem state programs.

Table 3.1 depicts typically ABEND codes and their meanings. Typically, a pro-
gram gets control, performs its function, and terminates normally (via SVC 3,
EXIT). However, there are ways a program can terminate abnormally: Program
checks, System and application detected errors resulting in ABEND macro
calls, and Program Checks like Application logic error, System-detected soft-
ware errors (incorrect value specified to a system service), and Hardware-
detected errors.

ABEND Code Description
0C1 (Privileged) Operation exception
0C2 Invalid instruction, read to not closed file, invalid subroutine call, ...
0C4-4 Protection exception: Invalid Storage Key
0C4-10 Segment Table translation exception (storage not obtained)
0C4-11 Page Table translation exception (storage not obtained)
0C5 Addressing exception: storage location not available in configuration
0C7 Various data exceptions
0C9 Fixed point divide exception

Table 3.1.: Abnormal Termination Codes

3.3.3. Recovery Processing

Figure 3.10 setup of an error recovery routine and the instrumentation which
can be done to protect special code areas. It is not unusual that a program might
expect that an abnormal termination may occur during certain parts of its pro-
cessing. If this is the case it is standard practice to set footprints which will
allow an error recovery routine to handle various types of errors depending on
where they occur during processing. The recovery routine is usually appended
to the main program and its initialization is also usually the first program activ-
ity. During mainline processing the program might now turn on various foot-
prints to signal the error recovery routine the state where the program ended
abnormally. Such footprints can influence whether and to which extent the er-
ror recovery routine collects diagnostic data (writing error logs and initiating
dumps). A special diagnose area (System Diagnostic Work Area (SDWA)) is
set up and passed to the error recovery routine. The error recovery routine can

102 z/OS

Mainline
• InitializesRecovery

.s.s.
• MainsFunction

.s.s.
Setsfootprint

RETRY:
.s.s.
Removesfootprint
.s.s.

• DeletesRecovery
• Returnstoscallersors

exit

RecoverysRoutine
• Performssrecoverys

actions
• ReturnstosRTMs

hSETRPg

RecoverysRequest
• Recordsentryspointsofs

recoverysroutine
• Return

ABENDshandling
• CreatesSDWA
• CallsRecoverys

Routine

• HandlesReturns
Request

• Retry
• Percolate

Program RecoverysTerminationsManager

Figure 3.10.: Error Recovery Processing

set information in this area which then controls the follow on activities per-
formed by the recovery termination manager. This can result in writing dumps
and error logs or suppressing them. It is possible to return to a retry address or
to continue with the next higher level of error recovery (percolate).

3.4. Program Data Exchange

So far we looked at address spaces, how programs are being executed and pro-
tected against errors. One very important aspect is how data can be exchanged
between address spaces. The address space concept provides high level of iso-
lation between different users of the operating system. Except for system or
authorized programs it is not possible to access common storage easily. There-
fore data exchange is not that simple between different address spaces.

Three classical techniques to exchange data have been developed in MVS and
z/OS and with the introduction of UNIX system services also shared mem-
ory objects were introduced which can be protected through semaphores to
share data between programs running in different address spaces. The latter

3.4 Program Data Exchange 103

technique is available through UNIX system service calls. In the following we
want to take a closer look at the three classical techniques to exchange data:

• via common storage

• via cross memory

• by directly addressing data of other address or data spaces.

3.4.1. Data Exchange via Common Storage

The start situation is that program A running in address space A wants to copy
data into address space B so that this data can be used by programs of address
space B.

Steps, see figure 3.11:

1. Program A copies the data into common storage. It must be noted that
program A needs to obtain the permission (key=0) to copy the data to
common storage.

2. Program A now schedules an SRB to Address Space B. It must be noted
that this is a push solution where program A initiates the data transfer. At
the end of this step the program is interrupted and the dispatcher receives
control.

3. When the SRB is dispatched it is then able to copy the data from common
storage to local storage for address space B.

This technique has one advantage. At the time when program A wants to pro-
vide the data to address space B it doesnt know whether address space B is
swapped in. By scheduling the SRB to address space B the address space is
automatically swapped in in case it wasnt. On the other hand this technique
also has disadvantages: Common storage is a limited resource and therefore
cant be used to exchange large amounts of data. Also scheduling an SRB for
this purpose costs CPU cycles and therefore induces overhead for the copy or
move activity.

Programming Notes

The z/OS Assembler Services provide a service SCHEDULE which allows to
schedule a program as an SRB to a target address space. The identification of

104 z/OS

the target address space is done via an Address Space Token (STOKEN) which
can also be obtained via an assembler service.

TCB

Data Data

Program A

Common Storage

Data

SRB

Address Space A Address Space B

Figure 3.11.: Data Exchange via Common Storage

Above we discussed the way that program A initiates the data exchange to
an arbitrary address space to which no other connection exists. If the address
spaces are already connected in some way and know about each other it is
possible to initiate the data transfer through other ways. For example z/OS also
allows to setup event lists on which one address space can wait and which can
be triggered by the initiating address space. But this requires that both address
spaces are related to each other.

3.4.2. Data Exchange via Cross Memory

The cross memory method is very efficient for cases where a system component
or middleware offers services to application programs. By using the service
it is very often necessary to pass input data to the service or to pass result

3.4 Program Data Exchange 105

information back to the caller when the service activity is completed. This can
be quite substantial amounts of data for example for storing or retrieving data
in a database. The service provider can now provide his service routines as
Program Calls. This is an architectural interface which creates a program call
table and the corresponding assembler instruction (PC) can invoke the service
routine by its program call number.

Accessing Address Space

For invoking a program call and using cross memory services it is important
to understand how address spaces can be accessed on System z The System z
architecture uses an ASCE to describe an address space. The ASCE provides
access to the primary region or segment table origin of the address space and it
is the anchor point for address translation, see section 2.11.2. The layout of the
ASCE is depicted in figure 3.12.

Primary2Region-Table2or2Segment-Table2Origin

0 31

0
Primary2Region-Table2or2

Segment-Table2Origin2(continued)
G2 P2 S2 X2 R2 DT2 TL

32 52 54 60 63

Figure 3.12.: Address Space Control Element

The ASCE is contained in control registers 1, 7, or 13 depending to which
address space it refers to:

1. Home is always the address space from which the original activity was
started. This always remains the same address space even if consecutive
activities change the following address spaces. The ASCE of the home
address space is contained in CR13. The home address space is important
in a consecutive address space switching sequence to find the original
point where the sequence has started.

2. Primary is the address space where the current program is executing. Its
ASCE is contained in CR1.

3. Secondary the address space to which the executing program can easily
get access to. This can be the target address space for copy operations
and its ASCE can be contained in CR7.

106 z/OS

The architecture (see [31]) provides an explicit assembler instruction SSAR
to set the secondary address space to CR7 and also to clear the value which
means set it back to the primary address space number. CR7 is also modified by
other assembler instructions which can be used to transfer the program control
between address spaces, like PROGRAM TRANSFER, PROGRAM RETURN
and PROGRAM CALL. For detailed description see [31].

Program Calls

Data Data

Program A

Program Call
Table

Authorized
Library

TCB TCB

Program

MVCP

MVCS

PrimaryHome
Secondary

Address Space A Address Space B

Figure 3.13.: Data Exchange via Program Call

Figure 3.13 shows the data exchange via Program Call and Cross Memory. The
technique is very efficient for system components and middleware components
which provide application interfaces (API) which can be used by programs to
obtain a service. How program call tables can be established is described in
detail in [31]:

3.4 Program Data Exchange 107

1. Program A calls a service through a PC which is offered by a system
component or middleware. The Home AS remains address space A. The
primary (**) address space now becomes address space B which belongs
to the system component. The calling address space A is now also treated
as secondary address space in this constellation.

2. Home, primary, and secondary address spaces are now accessible for the
service routine through its control registers. Also the assembler instruc-
tion MVCP (Move Character to Primary) moves data from the secondary
to the primary address space without any additional setup.

3. MVCS (Move Character to Secondary) is the corresponding instruction
which allows the service routine to copy result data back to the target
address space.

Address Space A

Data Data

Program A

MVCP

MVCS

SecondaryHome
Primary

Control Register 7

TCB

GPR 1

AR 4

GPR 4
Data

B

Address Space B

Figure 3.14.: Data Exchange via Access Registers and Cross Memory

This example assumes a space switching PC call. For a non space switching PC
call the service routine would execute in address space A and address space A
would remain the primary AS. But in our example we want easily access data

108 z/OS

in both address spaces which results in implementing the service as a space
switching PC call.

3.4.3. Access Registers

Figure 3.14 shows a technique similar to the previous but without having a ser-
vice call. This technique was introduced when data spaces were implemented
for OS/390 because now the need increased to move data between different
spaces. The technique is again primarily used by system components and mid-
dleware which require to keep high amounts of data in virtual storage.

The program which wants to copy the data to the other space does this di-
rectly and therefore needs the address space number of the target address or
data space. With the address space identification token (ASIT) the calling pro-
gram is able to modify control register 7 to define the secondary address space
(SSAR (Set Secondary Address Space) instruction (1). Now the program can
copy data from the secondary to the primary address space (2) with the MVCP
instruction and backwards (3) with the MVCS instruction.

Another possibility is to address data in the target address space directly (4)
without using the instructions MVCP and MVCS which make use of control
register 7. For this purpose a program can use access register mode. For each
general purpose register in the system an access register exists. In access regis-
ter mode the access register must contain an ALET (Access List Entry Token).
In AR mode the content of the access register is used to resolve an address of
the general purpose register in the target address space which is denoted by the
ALET (see also section 2.8.2 and [31]).

3.5. Storage Management

As we already discussed in section 2.11.2 the address spaces together own
much more virtual storage than real storage or memory is installed on the sys-
tem. As a result the operating system must decide which portions of virtual
storage are moved into real storage and are immediately accessible and which
portions are moved out to external storage devices. The portions which are
moved between the different storage areas described in figure 3.15 are 4 KB
blocks which are named pages when their virtual storage representation is re-
ferred to, frames when they reside in real storage and slots when they are on
external devices. The external devices are page or swap data sets and generally

3.5 Storage Management 109

referred to as auxiliary storage. With large page support a page can also be 1
MB in size.

3.5.1. z/OS Storage Managers

Central storage frames and auxiliary storage slots, and the virtual storage pages
that they support, are managed by separate components of z/OS. These com-
ponents2 are known as the real storage manager, the auxiliary storage manager,
and the virtual storage manager.

Real Storage Manager
(RSM) keeps track of the contents of central storage. It manages the
paging activities such as page-in, page-out, and page stealing and helps
with swapping an address space in or out. RSM also performs page
fixing, which is marking pages as unavailable for stealing.

Auxiliary storage manager
(ASM) uses the system’s page data sets to keep track of auxiliary stor-
age slots. Specifically:

• Slots for virtual storage pages that are not in central storage frames

• Slots for pages that do not occupy frames but, because the frame’s
contents have not been changed, the slots are still valid.

When a page-in or page-out is required, ASM works with RSM to lo-
cate the proper central storage frames and auxiliary storage slots.

Virtual storage manager
(VSM) responds to requests to obtain and free virtual storage. VSM
also manages storage allocation for any program that must run in real,
rather than virtual storage. Real storage is allocated to code and data
when they are loaded in virtual storage. As they run, programs can
request more storage by means of a system service, such as the GET-
MAIN macro. Programs can release storage with the FREEMAIN macro.
VSM keeps track of the map of virtual storage for each address space.
In so doing, it sees an address space as a collection of 256 subpools,
which are logically related areas of virtual storage identified by the
numbers 0 to 255. Being logically related means the storage areas within
a subpool share characteristics such as:

• Storage protect key

2Extracted from [36]

110 z/OS

• Whether they are fetch protected, pageable, or swappable

• Where they must reside in virtual storage (above or below 16
megabytes)

• Whether they can be shared by more than one task

Some subpools (numbers 128 to 255) are predefined by use by system
programs. Subpool 252, for example, is for programs from authorized
libraries. Others (numbered 0 to 127) are defined by user programs.

1
1
1

1

2
2

Page data set

Virtual Storage

Real Storage

Address Space A

Address Space B

1
1

1

2 2

Frames

Slots

Pages

1
2

Figure 3.15.: Real, Virtual and Auxiliary Storage

3.5.2. Managing Storage

For managing storage and how and why it evolved over time we must first take
a look at storage sizes. For System /390 only 2 GB of real storage and up to
16GB of expanded storage could be installed. Meanwhile it is possible to to

3.5 Storage Management 111

install up to 3 TB of real memory. Even if no z/OS system really uses that
much storage, it can easily use storage sizes of 128 GB or more.

Managing storage for the operating system means to determine which pages
should stay in real storage and which should be sent to expanded storage and
auxiliary storage on System /390 and to auxiliary storage only on System z.
Virtual storage is part of the address spaces therefore managing storage can be
achieved in two ways 3:

1. By swapping a complete address space out of storage. That means all
pages and control structures except those which are required to bring the
address space back into storage are sent to auxiliary storage. Swapping
is the most drastic way for freeing up storage. On System z an address
space could be logically and physically be swapped out. We will discuss
this in more detail in chapter 5 when we take a look at the correspond-
ing management algorithms. It must also be mentioned that because of
the huge storage sizes which are available on today’s systems physically
swapping is no longer be done.

2. By paging pages to auxiliary storage. Paging requires to understand which
pages are more often needed than others in order to avoid that a page
which just got swapped out will be swapped back in immediately. Paging
is also a good example how storage algorithms must adapt to a growing
system. We will see that System /360 to System /390 developed very so-
phisticated storage measurements which became problematic when the
memory size grew to 10 or 20 times of the memory being available for
31 bit addressing.

Classical Storage Management

The classical method of managing storage counts how often and frequent pages
are referenced. The measurements are taken by a system component named
System Resource Manager (SRM) which is predecessor and today part of the
z/OS Workload Manager. The hardware provides for each page information
for the access authority, whether the page is write protected (F), whether it
has been referenced (R) or modified (C). We already discussed the access bits
which are used for storage protection in section 2.11.4.

Figure 3.16 shows the usage of the reference and change bit for managing stor-
age. When ever a page is referenced, the reference bit (R) is set to ’1’. When

3see also section 4.2.1 for Address Space States for CPU and Storage Management

112 z/OS

Access F R C

Page 4711 …
UIC4711= 122
UIC4711= 123
UIC4711= 0
…

=0

<>0

Figure 3.16.: Page Statistics

the page is changed the change bit (C) is set to ’1’. SRM4 continuously mon-
itored all pages and counts for each page whether it has been accessed or not.
If the reference or change bit is set a counter named the Unreferenced Inter-
val Count (UIC) which exists for each page of an address space was set to ’0’
and when the flags are zero the counter was incremented. The highest original
value of the counter was 256 because it it was an 8 bit field. For later versions
the sampling frequency has been decreased and the counter could reach a value
of 2560 at maximum.

Paging means that the RSM must steal pages from address spaces which are
swapped into the system. In addition RSM maintains a queue of unused pages
named the available frame queue. As long as little activity exist in the sys-
tem enough unreferenced pages are queued off the Available Frame Queue but
when contention starts, the number of frames available to resolve immediate
storage requests shrinks. If it falls below a threshold paging starts and RSM
must decide which pages it can take first. For this reason the pages are queued
by their UIC in Last Recently Used (LRU) order for each address space and
the address spaces by their highest UIC. Stealing pages now obtains pages first
from address spaces with a high UIC. The overall UIC for the system was also
a good indicator how much contention existed on the memory subsystem.

Scaling Problems

The classical method for managing storage is very precise and works quiet
well for systems with 31 bit addressing. A similar technique was developed for
managing pages in expanded storage but also expanded storage only consisted
of 16 GB. The classical technique showed scalability problems when the in-

4System Resource Manager is part of the operating systems and monitors and manages resource
access

3.5 Storage Management 113

stalled memory grew with 64 bit addressing to 10 to 20 times of its original
size of 2 GB. Especially if address spaces need to be swapped in it is neces-
sary to steal pages from address spaces in storage for the address space which is
swapped in. The address spaces now have very long page queues and searching
through all these queues, finding the best pages to be paged out and updating
the UICs became very expensive and could last multiple seconds. This causes
significant reduction in system throughput and thus requires a different method
which might not be as precise as the original memory management technique
but better adapted to large memory sizes.

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

UIC = 100

UIC = 200

UIC = 300

UIC = 300

UIC = 100

UIC = 200

current

Figure 3.17.: UIC Calculation on current z/OS Systems

114 z/OS

New Storage Management

Figure 3.17 depicts the new storage management. It introduces a new way to
calculate the UIC. The storage is split into segments depending on the amount
of storage installed for the z/OS system. SRM and RSM calculate a UIC for
each logical segment. The UIC is calculated by moving a cursor through the
storage. Every segment UIC segment UIC represents the time in seconds the
cursor spent in the other logical segments and in the current segment. Pages
are simply stolen from the segment with the highest UIC if the reference bit is
turned off. The system calculates three UICs:

MinimumUIC = Minimum(Segment0, Segment1, ..., Segmentn)
(3.1)

MaximumUIC = Maximum(Segment0, Segment1, ..., Segmentn)
(3.2)

CurrentUIC =
1

n
•

n∑
k=1

Segmentk (3.3)

The new storage management is not as precise as the old technique was but
it is much better suited for large memory sizes. It is also a good example that
very accurate book keeping might be necessary if a resource is very constraint
and more relaxed algorithms are sufficient if enough resources are available.
The newer storage management algorithms are important to remember because
they resolve a scalability concern for z/OS growing beyond the limits of 31 bit
addressing.

3.6. z/OS Data Sets

On z/OS files are called data sets. The reason for this is that the construct which
is used to store data on a disk or tape may consist of multiple single files.

Disks on z/OS are named Direct Access Storage Device (DASD). The I/O ar-
chitecture is a record oriented architecture as opposed to I/O architectures on
UNIX or Windows systems which are byte oriented. Therefore data sets are
typically structured files and not just sequences of bytes. The I/O architecture
is also named Extended Count Key Data (ECKD) architecture which refers to
the way data sets are structured on a DASD. A data stream usually consists of
a data count, a data key and the data record (see figure 3.18).

3.6 z/OS Data Sets 115

DASD Bytes/Track Tracks/Cylinder Cylinder/Volume Bytes/Volume
3380 47476 15 885-2655 630-1890 MB
3390 56664 15 1113-3339 946-2838 MB
9345 46456 15 1440-2156 1000-1500 MB

Table 3.2.: Sizes of last physically build z/OS DASDs

Cylinder

Track 1..15

3390 Mod 3/9

C K Data

Data Record:

...

Address: cchhr

C K Data

Figure 3.18.: Structure of a Direct Access Device and Count Key Data

116 z/OS

DASDs in the original way do not exist anymore. Today a DASD just exists
as a logical volume which is mapped to standard disks in a storage controller.
The last physical DASDs were 3390 Model 3, Model 9 and 9345. Such DASDs
consisted of tracks and cylinders. A track is a single disc and a 3390 consisted
of 15 tracks per cylinder. The cylinder refers to the read write position of the
head on the track. A 3390 and also the preceding model 3380 had 15 read write
heads each and were able to save between 630MB and 2.6 GB (see table 3.2).
Today logical volumes can meanwhile get to nearly any size of capacity. But
this required many changes to the architecture.

Another architectural specialty is that z/OS allows for 216 = 65536 device
addresses. The simple reason for this is that a device address is made of a 2
byte word. Again something which cant be changed in the system anymore.
To overcome this limitations the device addresses are now pooled in multiple
sub-channel sets, see section 2.13.5.

3.6.1. Sequential Data Sets

z/OS data sets are a collection of multiple files. The basic data sets are sequen-
tial or partitioned data sets. A sequential data set consists of one file which
is organized in multiple records. A sequential data set can have a fixed record
size up to 32768 bytes. The records can be blocked or unblocked. Also variable
record lengths are possible.

Entry for
Member A

Entry for
Member B

Entry for
Member C

Entry for
Member K

Member K

Member C

Member B Member K

Member K

Member A Available Area

Space from
deleted Member

Directory Records

Figure 3.19.: Structure of a Partitioned Data Set

3.6 z/OS Data Sets 117

3.6.2. Partitioned Data Sets

A partitioned data set (PDS) consists of an index and multiple members (see
figure 3.19). The directory blocks define the size of the index and thus the num-
ber of members which can be allocated. The index contains a reference to the
member of the data set. If a member is changed the old member is deleted and
a new version is appended at the end. This will lead over time to a situation that
a partitioned data set is full while there is still a lot of unused space in the data
set. If that is the case the data set must be compressed. With PDSE (Partition
data Set Extended) this is no longer necessary and the garbage collection runs
automatically.

Menu RefList Utilities Help

Allocate New Data Set
Command ===>

Data Set Name . . . : VAUPEL.SAMPLE.CLIST

Management class . . . NOMIG (Blank for default management class)
Storage class STANDARD (Blank for default storage class)
Volume serial LABEL0 (Blank for system default volume) **
Device type (Generic unit or device address) **
Data class (Blank for default data class)
Space units MEGABYTE (BLKS, TRKS, CYLS, KB, MB, BYTES

or RECORDS)
Average record unit (M, K, or U)
Primary quantity . . 3 (In above units)
Secondary quantity 10 (In above units)
Directory blocks . . 100 (Zero for sequential data set) *
Record format FB
Record length 80
Block size 6160
Data set name type PDS (LIBRARY, HFS, PDS, LARGE, BASIC, *

EXTREQ, EXTPREF or blank)
Extended Attributes (NO, OPT or blank)
Expiration date . . . (YY/MM/DD, YYYY/MM/DD
Enter "/" to select option YY.DDD, YYYY.DDD in Julian form

Allocate Multiple Volumes DDDD for retention period in days
or blank)

Figure 3.20.: Allocating a z/OS Data Set via ISPF

While it seems pretty old fashioned to allocate data sets with a fixed size and
also sometimes with a fixed block length it is very efficient to use such data sets
by application programs especially batch programs. It must be understood that

118 z/OS

z/OS is not primarily an operating system for an on-line user but an operating
system to process multiple applications simultaneously as efficient as possible
and also to access external data as fast as possible.

3.6.3. Allocating a Data Set

Figure 3.20 shows the ISPF (Interactive Programming Facility) screen to allo-
cate a data set. In this example a partitioned data set is created. When a data set
is allocated it is necessary to specify the record length, whether it is blocked
or unblocked and the space of the dataset. The space of the dataset can be de-
fined in a classical way as multiples of cylinders, tracks or blocks or in a newer
version as bytes, KB or MB. In our example we must specify directory blocks
because this data set should contain multiple members. For a sequential data
set we would define 0 in this field which distinguishes the allocation process
for a sequential and a partitioned data set.

3.6.4. Virtual Storage Access Method

The most important data set type for application usage is Virtual Storage Ac-
cess Method (VSAM). The most important subtypes are:

Key Sequenced Data Set
(KSDS) are sorted by an ascending key. A KSDS data set is organized
in control intervals (CI) which consists of records (R1, .., Rn), Free
Space (FS), Record Definition Files (RDF2, , RDFn) and the Control
Interval Definition Field (CIDF). The CI is the smallest data unit which
is carried between disk and main memory. CIs are organized in Control
Areas and the are split when the free space is not sufficient to save new
logical records.

Entry Sequenced Data Set
(ESDS) is a data set organization where the records are sequentially
created. A record is never deleted but invalidated. Also a key exists to
access specific records but the access is always sequentially.

Relative Record Data Set
(RRDS) consists of a pre-defined number of of formatted data records.
The records can be accessed by a sequence number. A formatted entry
may or may not contain data.

3.7 Starting z/OS 119

Variable RRDS
(VRRDS) can have variable length records. Because of that it is no
longer possible to pre-define the records. So a VRRDS is really orga-
nized like a KSDS with the record number as key.

Linear Data Set
(LDS) consists of byte streams of 4KB records.

ESDS, RRDS, and VRRDS are specialized data sets for sequential processing.
The most important data set is the KSDS which allows to implement data bases.
The first data bases on MVS were all implemented based on KSDS data sets.
A KSDS also always consists of 2 files: an index file and a data file. A KSDS
as well as the other VSAM data sets can be allocated via storage management
utilities.

Another set of data sets are available for UNIX System Services. There are
basically two UNIX file systems on z/OS: HFS and zFS. They are internally
mapped to linear data sets (and earlier to partitioned data sets).

3.6.5. Data Set Organization

Data sets on z/OS can consist of up to 44 characters with qualifiers of up to
eight characters which are separated by dots. The highest level qualifier (HLQ)
has an entry in the master catalog of the system with a pointer to its user cata-
log which contains entries for all data sets of this qualifier. Typically each TSO
(Time Sharing Option) user has a high level qualifier but the system adminis-
trators can also create high level qualifiers which can be accessed by multiple
applications. The system usually has the high level qualifier SYS1.

The user catalogs then contain a list of all data sets which belong to this HLQ.
For each data set a reference to the DASD on which it is located exist. On
the DASD the data set is also listed in the Volume Table of Content (VTOC)
with the address where it is located on the disk. Data sets can also span across
multiple DASDs.

3.7. Starting z/OS

Starting z/OS from disk and loading it into main memory is named Initial Pro-
gram Load (IPL). As a preparation the microcode of the physical system must
be initialized already. This step is named Initial Microcode Load (IML). The

120 z/OS

Aw Z

AbB
AbBbAPPL

AbBbX

VTOC

datawset

MasterwCatalog
• Userw Userwcatalog
• UserwEAliasRw User

UserwEICFRwCatalog
• User

• Listwofwdatasetswwithw
volumes

DASDwEVolume=wVOLSERR
• VTOC

• PhysicalwAddresswofw
datawset

• Datawsets

Master
Catalog

VTOC

datawset

ZbDAT
…

ICF
Catalog

ICFw=wIntegratedwCatalogwFacility
VTOCw=wVolumewTablewofwContent
VOLSERw=wVolumewandwSerialwNumber
DASDw=wDirectwAccesswStoragewDevice

Figure 3.21.: Data Set Index

operating system initialization (IPL) is initiated either from the Hardware Sup-
port Element (SE) or the Hardware Management Console (HMC).

The figure 3.22 shows the informatiuon required to start a z/OS system. The
LOADPARM is set on the HMC and the address of the disk on which the
operating system programs are located. In the example above this disk has the
address 705 and it is named SYSRES (system resident disk). The LOADPARM
parameter consists of the following information:

• The address of the disk where the I/O definition is stored. z/OS requires
a pre-defined I/O definition which needs to be generated prior to the IPL.
The I/O definition contains definitions for each I/O device and it is the
base for the operating system to create the internal control structures.
The I/O definition is stored in an IODF (I/O Definition File) and the data
set name is SYS1.IODF. The address in the example above is 206.

• The suffix of the initialization file. The initialization file contains refer-
ences to all attributes of the operating system. The file is contained in
a partitioned data set SYS1.IPLPARM on the SYSRES volume and al-
ways has the prefix LOAD with a two digit suffix. The LOADxx member
defines which configuration attributes are loaded

3.7 Starting z/OS 121

AltNucIMSILOADxxIODF5cuuu

LOADPARM

02065 015 M5 1

SYS1.IODF

Device5
Address

0206

IODF 01 SYS1 MVSVM
SYSCAT WLMLIB1 SYS1.CATALOG
SYSPARM 01
SYSPLEX WLMPLEX
IEASYM (01,L)

SYS1.IPLPARM
LOAD01

SYSRES

705 SYS1.PARMLIB
IEASYS01
IEASYM01
COMMNDxx
CONSOLxx
LNKLSTxx
LPALSTxx
IEAAPFxx

SYS1.NUCLEUS
RIMs
IEANUC01
IEANUC05

SYS1.LPALIST

link.library

SYS1.CATALOG

WLMLIB1
lpa.library

SYS1.LINKLIST

Figure 3.22.: Information to IPL a z/OS System

• In case an alternate nucleus should be started the LOADPARM allows to
specify the suffix of the alternate nucleus. The IMSI value is no practical
importance.

The LOADxx members now defines the first level of information required to
start the system:

• The IODF line defines the IODF suffix (01), the high level qualifier
of the IODF data set (SYS1) and the name of the system to be started
(MVSVM). The IODF data set resides on the disk defined at the IODF
address of 206. This shows the full flexibility of the system start which
allows to define multiple configurations and then describe the actual con-
figuration by composing them based on different aspects. This flexibility
is available to all parts of the system definition for every aspect.

• The SYSCAT row names the primary system catalog data set and the
Volume Label on which it resides.

• The SYSPARM row now points to the main member IEASYSxx of the
SYS1.PARMLIB. This is the main parameter library for all z/OS system
components. The suffix now points to the main member which then has
refernces to all other members of the system.

122 z/OS

• The SYSPLEX line defines the name of the cluster in which the z/OS
system is started.

• The IEASYM line defines similar to the SYSPARM line the suffix of the
member which defines generic values for system generation. These are
variables which can then be used in other system definitions.

SYS1.PARMLIB is the main parameter data set of z/OS. As mentioned be-
fore every system component has its own parameter members in this data set.
For example the CONSOLxx member defines the consoles of the system, and
the COMMNDxx member system commands which need to be executed at
a certain point of the IPL process. Other important members are LNKLSTxx
and LPALSTxx which describe the default library concatenation for executable
programs and programs which can be loaded permanently in the LPA areas of
common storage (See Program Execution).

The IPL process can be separated in 3 steps:

Step 1 Initialization

• Only 1 processor is enabled

• Load of I/O Configuration

• Load of Resource Initialization Modules (RIM) which create sys-
tem control structures

• Load of nucleus

• Start of master address space

Start 2 System Start

• Activate all processors

• Switch to master console, Step 1 only showed a limited NIP (Nu-
cleus Initialization) console

• Start of system address spaces. Many system functions have their
own address spaces which are started and initialized by the master
address space

• Start of Job Entry System. Now z/OS BCP (Basic Control Pro-
gram) is completely initialized and ready

Start 3 Start of Subsystems and Applications

3.8 Job Entry System 123

3.8. Job Entry System

Input Conversion Processing Output Hardcopy Purge

Job

ConversionU
Queue

ProcessingU
Queue

Output
Queue

HardcopyU
QueueU

Purge
Queue

JobUControlULanguageU(JCL)

InputUdataU(SYSIN)

JCL

SYSIN SYSOUT

Other
Outputs

SPOOL

SPOOLU=USimultaneousUPeripheralUOperationsUOnline

Figure 3.23.: Steps of Job Execution

We already discussed that the Job Entry System is necessary to create address
spaces in the system but the main functionality is controlling the program ex-
ecution of batch work: Accepting the Job Control Statements Providing the
resources for the job to run (data sets, devices) Controlling job execution with
the possibility to define check point at which the job execution can be resumed
if necessary Buffering of data in and output. This process is named spooling.
Freeing the resources after program execution

Figure 3.23 depicts the steps of job execution:

Input JES accepts the control statements from a card reader. There are no
physical card readers anymore therefore program which functions as
a card reader is named Internal Reader. Internal readers are defined
by the system programmers and they are initialized at start of JES.
Starting an address space also uses an internal reader which receives
the control statements from SYS1.PROCLIB.

Conversion
translates the control statements and provides error checking. If the
control statements are correct they are placed on the spool dataset.

124 z/OS

Processing
A batch job is selected from a processing queue by an initiator (see
Creation of Address Spaces). Batch jobs are defined to classes and
initiators are started for each class. With this technique an installa-
tion can control how many jobs of a certain class are being executed.
By using Workload Manager Batch Management it is also possible
that the installation delegates the starting and stopping of initiators
to the z/OS internal function Workload Manager. A job can only be
executed if it can access to all required resources (data sets, tapes,
disks). In a multi system environment it is also possible to define that
a job should only be executed on a certain system if for example cer-
tain resources (like a data base for example) is only available on that
system.

Output The output which is generetaed during job conversion and execution
is saved in a virtual data set which is passed to the JES output queue.

Hardcopy
After end of execution the virtual output data set is passed to a printer.
Usually there is no physical print step anymore and the hardcopy out-
put is just placed in another virtual data set.

Purge Also after end of execution the virtual data sets can be purged in order
to free the spool space.

3.9. Time Sharing Option

The classical interface for interactive users is TSO/E (Time Sharing Option/-
Extended). Similar to a UNIX shell it allows access to resources of the system
and provides editors and command interpreters.. TSO is a line and page ori-
ented user interface. In order to use it efficiently a menu oriented interface
ISPF (Interactive System Productivity Facility) can be started when the TSO
environment has been established.

Two command interpreters are provided on TSO: CLIST which is an abbrevi-
ation for Command-List. This is the original interpretative language for com-
bining multiple commands together. With REXX (Restructured Extended Ex-
ecutor) a modern command interpreter exists which provides powerful string
manipulation capabilities. Figure 3.24 shows how a TSO user is embedded
in the MVS system and how a TSO user address space is created and how
a connection to the terminal is established. Today there are no real terminals
available anymore instead a terminal emulation runs on a workstation.

3.9 Time Sharing Option 125

VTAM

TCAS

RACF

Master JES

TSO User

TMP ISPF

REXX

1

2

3

4

5 6

7

8

Figure 3.24.: Initializing a TSO Address Space

The steps for initializing a TSO address space as shown in figure 3.24 are
described below:

1. User Requests LOGON

2. VTAM passes LOGON to TSO Control Address Space (TCAS)

3. TCAS verifies the request with RACF R© (Resource Access and Control
Facility)

4. If successful TCAS passes request to MASTER address space

5. MASTER creates the TSO user address space

6. INIT task initializes the address space with JES

7. Connection established between Terminal Monitor Program (TMP) and
end user thru VTAM

8. User can start ISPF, use command languages (e.g. REXX, access devices
and edit and submit jobs, etc)

A detailed description on TSO and how it can be used is available in [4].

126 z/OS

3.10. Unix System Services

UNIX System Services are part of the operating system and it is about 35%
of the code base of z/OS. USS follows POSIX standard 1003.2 and the XPG/4
proting rules of the X/OPEN Group. The kernel is integrated in the basic con-
trol program and the kernel functions can be used by any process of the z/OS
system. For end users three possibilities exist to use UNIX functions:

1. UNIX Shell: A user can connect to z/OS via telnet or rlogin and start
directly a UNIX shell.

2. A special IShell exists which provides an ISPF interface to use UNIX
System Services

3. UNIX functions can also be directly invoked from ISPF and TSO.

Figure 3.25 shows how UNIX System Services are integrated in z/OS. The ab-
breviation internally is OMVS because USS was former named Open MVS.
Member BPXPRMxx is the parameter member for UNIX system services in
SYS1.PARMLIB. It defines the start procedure of the USS kernel address space
(usually OMVS), the name of the root file system and the file system organi-
zation. Other important address spaces are BPXONIT which is PID(1) and it
is the mother process of /etc/rc. All orphaned processes are assigned to it for
garbage collection.

A new UNIX process is usually created by a fork() or spawn() operation. In
z/OS this would mostly result in creating a new address space. In order to re-
duce the startup overhead for new address spaces UNIX address spaces are also
pre-started similar to initiators for batch jobs. These address spaces are named
BPXAS and they are pre started by the z/OS Workload Manager component.

Unix System Services5 is today a significant part of z/OS which accounts for
more than 1/3 of the operating system. A set of shell environments allow the
end user to logon to USS either through a telnet, rlogin or directly from an
ISPF session. USS also builds on top of the language environment which pro-
vides C++ and Java language on z/OS, it is integrated with TCP/IP and security

5Unix System Services was formerly named Open MVS and abbreviated as OMVS. These terms
still exist inside the system

3.11 Summary 127

services and supports multiple file systems. In figure 3.25 we saw that the file
system type for the root file system is HFS which means Hierarchical File Sys-
tem. In addition another file system named zFS and Network file systems can
be used from USS.

BPXAS

BPXAS

BPXAS

BPXAS

BPXAS

SYS1.PARMLIB
IEASYSxx
OMVS=nn

BPXPRMnn
Startup_Proc=OMVS
…
ROOTFILESYSTEMs‘OMVS.ROOTf’
TYPEsHFSf

OMVS

kernel

BPXONIT

PID=1

BPXAS
INIT
Process
forksf
spawnsf

OMVS.ROOT SYS1.PROCLIB

OMVS
BPXOINIT
BPXAS

WLM

Figure 3.25.: Unix System Services

3.11. Summary

At this point we complete our overview of z/OS. We can observe that z/OS
combines both: the heritage of a mature operating system with constructs going
back to the 1970s and adaptations and enhancements which provide a a very
flexible, powerful and efficient system.

Two major functions were not discussed and because they are very important
for both scalability and high availability we will discuss them extensively in
the two following chapters: Dispatching and Workload Management.

4. Dispatching

All operating systems on System z run in a virtualized environment. This al-
ways requires two dispatching processes for the executing work, one of the
operating system which assigns a logical processor to the unit of work and
one of the virtualization layer which assigns a physical processor to the logi-
cal processor. In this course segment we will discuss the dispatching processes
for z/OS and PR/SM. We will further discuss how they act together and which
parts became problematic for allowing an environment with many physical and
logical processors to scale and to exploit the high processor frequency of Sys-
tem z10 and z196.

For System z10 the processor frequency grew by a factor of 2.5 compared to
the previous System z models. We already discuss in section 2.5 that more
cache structures were required to accommodate the speed difference between
memory and the processor. But this is not enough. The complete section 2.8
discusses techniques to speed up the execution within the processor and how it
is possible to reduce cache accesses. We will now see that the two separate dis-
patching processes are also problematic for gaining maximum performance out
of the system. The solution is a new modified and combined dispatching mech-
anism named Hiperdispatch which synchronizes the activities of the PR/SM
and the z/OS dispatcher to also provide high efficient execution on System z10
and z196.

4.1. Dispatching Requirements

We discussed virtualization and how it is supported in the hardware already
in section 2.14. Now we want to take a look what requirements exist for dis-
patching in the virtualization layer of the hardware, the Process Resource and
Systems Manager (PR/SM) and the z/OS operating system.

Figure 4.1 depicts a possible virtualized environment on System z. The graphic
assumes that many different virtualized operating systems and potential further
virtualization layers are running on System z. This is possible and it needs to be

130 Dispatching

considered that up to 60 LPARs may run on a System z CEC. That also means
that many small can share the computing hardware. It is also independent of
the number of active physical processors on the systems. But more often large
installations divide the CEC in few partitions with some very big z/OS systems.
Very often 2 or 3 big partitions share the CEC together with some number of
smaller systems for test and maintenance. Figure ?? shows such a typical LPAR
environment which can be found in large customer installations. The graphic
shows a CEC with four partitions, one very large systems and 3 smaller LPARs.

In addition a z/OS system may support more than 1 processor type. z/OS allows
to run processors on which Java workload and processors on which service
oriented work can be offloaded from regular processors. This is primarily done
for cost effectiveness but needs to be considered too.

SystemYzYServer

CP1 CP2 CP3 CP4 zIIP1 zIIP2 zAAP1 ICF1 IFL1 IFL2 IFL3 IFL4

LPAR LPAR LPARLPAR LPAR

zgVM zgVM

z
g
V
S
E

z
g
V
S
E

z
g
O
S

L
I
N
U
X

C
O
U
P
L
I
N
G

F
A
C
I
L
I
T
Y

zgOS

C
I
C
S

I
M
S

D
B
2

W
A
S

JAVA

L
I
N
U
X

L
I
N
U
X

L
I
N
U
X

L
I
N
U
X

L
I
N
U
X

StandardYProcessors OffloadYProcessors LinuxYEngines

Figure 4.1.: Logical Partitioning supported on System z

Typically many different applications share the same z/OS system. Figure 4.3
takes a look into the large partition named SYS1 which is shown in figure
4.2. The graphic shows a two day period of the system and we can observe
many different applications as well as changing utilization requirements over
time. During the night time different types of batch jobs use up to 100% of the

4.1 Dispatching Requirements 131

system resources and during day time On-line Transaction Processing work
together with DB2 are the dominating workloads.

CEC Utilization

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

00
:0
5:
00

01
:2
5:
00

02
:4
5:
00

04
:0
5:
00

05
:3
5:
00

06
:5
5:
00

08
:1
5:
00

09
:3
5:
01

10
:5
5:
00

12
:1
5:
00

13
:3
5:
00

14
:5
5:
00

16
:1
5:
00

17
:3
5:
00

18
:5
5:
00

20
:1
5:
00

21
:3
5:
00

22
:5
5:
00

00
:1
5:
00

01
:3
5:
00

02
:5
5:
00

04
:1
5:
00

05
:3
5:
00

06
:5
5:
00

08
:1
5:
00

09
:3
5:
01

10
:5
5:
00

12
:1
5:
00

13
:3
5:
00

14
:5
5:
00

16
:1
5:
00

17
:3
5:
00

18
:5
5:
00

20
:1
5:
00

21
:3
5:
00

22
:5
5:
00

[%
]

SYS1

Figure 4.2.: Typical Partitioning of a System z CEC

This is a difference of z/OS to other operating systems which typically host
mostly a single middleware or application and it is based on history. In the
1970s and 1980s business hosted all of their applications on the mainframe. As
a result the mainframe and especially the predecessors of z/OS developed tech-
niques which allowed them to host applications with very different resource
and runtime requirements. An example of such techniques is the possibility to
assign different dispatching priorities to different types of work. This allows to
distinguish short running OLTP work from long running batch jobs which do
not have the same short response time objectives. In the end these requirements
led to the development of z/OS Workload Manager (see chapter 5) which as-
sured that the access to system resources is oriented towards business goals and
reflects changing workload usage of the system.

PR/SM needs to ensure that the partitions can share the system resources effi-
ciently and guarantees that a defined amount of resources is always available
to the partitions as well as allowing the partitions to use unused resources. We
will discuss both dispatching processes of PR/SM and z/OS in detail and how
they interact with each other.

132 Dispatching

CPU Utilization

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

00
:0

0:
00

01
:2

0:
00

02
:4

0:
00

04
:0

0:
00

05
:3

0:
00

06
:5

0:
00

08
:1

0:
00

09
:3

0:
01

10
:5

0:
00

12
:1

0:
00

13
:3

0:
00

14
:5

0:
00

16
:1

0:
00

17
:3

0:
00

18
:5

0:
00

20
:1

0:
00

21
:3

0:
00

22
:5

0:
00

00
:1

0:
00

01
:3

0:
00

02
:5

0:
00

04
:1

0:
00

05
:3

0:
00

06
:5

0:
00

08
:1

0:
00

09
:3

0:
01

10
:5

0:
00

12
:1

0:
00

13
:3

0:
00

14
:5

0:
00

16
:1

0:
00

17
:3

0:
00

18
:5

0:
00

20
:1

0:
00

21
:3

0:
00

22
:5

0:
00

[%
]

OLTP

BATCH

DB2iandiotheriApplicationsi

Figure 4.3.: Typical Workload Utilization on z/OS

4.2. z/OS Dispatching

Before we start to look into dispatching we want to take a look on the work
which executes on z/OS and how z/OS differentiates these types of work. Ba-
sically we can distinguish work in 4 categories:

• Address spaces of which z/OS does not know much. Address spaces are
just in the system and request access to CPU and other resources.

• On-line users, like TSO or UNIX System Services users. The corre-
sponding address spaces are instrumented and whenever the user presses
the ENTER button the address space signals the system that a transac-
tion begins which ends when the result of the command is returned to
the output device (terminal) of the user.

• For Batch or APPC (Advanced Program to Program Communication)
a new transaction starts when the address space selects the batch job
or receives the communication task and it ends when the batch job or
communications tasks are finished.

• Finally On-line Transaction Processing which is recognized in two ways:

4.2 z/OS Dispatching 133

1. As address spaces, also named application regions. These are the
processes which receive the work requests and process them.

2. The individual work requests. They are not automatically visible
to the operating system but the operating system provides applica-
tion interfaces which allow the OLTP manager to inform it when a
transaction starts and when it completes. A more detailed discus-
sion on how transactions are recognized and managed follows in
chapter 5.

As a summary we must notice that z/OS runs very short living on-line requests
in parallel to potentially very long running batch jobs. We can also observe that
everything which is more than just an address space requires instrumentation
and therefore requires cooperation of the z/OS subsystem, or the middleware
with the operating system.

4.2.1. CPU and Storage Management

IN-READYGQueue

WAITGQueue

OUTGQueue

INGQueue

LSWGQueue

PhysicallyG
Swapped

Logically
Swapped

GetGReady

GetGReady

Swap-In

Figure 4.4.: Address Space States

The next step is to take a brief look in the intersection between storage and
CPU management. It is only meaningful to dispatch a unit of work if the cor-

134 Dispatching

responding address space is in storage so that it is possible to access at least
its major tables and minimum working set. In order to understand the state of
address spaces a simple state machine exists which tells the system about an
address space state and what has to be done next.

• If an address space is on the IN-Queue and gets ready the TCBs and
SRBs which want to process data can be placed on the System Work
Unit Queue of the dispatcher. All address spaces which are on the IN-
Queue and which have ready TCBs or SRBs are logically placed on the
IN-READY-Queue which represents all address spaces which currently
execute or request execution. The IN-READY-Queue is just a logical
queue.

• If an address space gets swapped out it can be swapped out in two ways:

– It can be physically swapped out and is then placed on the WAIT-
Queue. A physical swapped address space is just represented by
its major control block in the system and all working set pages
are moved to the page and swap datasets. In todays environments
address spaces are no longer physically swapped out but the state
still exists. The main reason is that the main memory is so big that
it is not necessary to completely move all pages of an address space
to disk (see section 3.5).

– If the address space is logically swapped out the in storage parts are
trimmed but some pages remain in storage to resume the address
space faster.

• An address space is moved to the OUT-Queue when it is either physically
or logically swapped out and a work unit (TCB or SRB) signals that it
needs to run. The next step is to swap the address space in, place it on the
IN-Queue and the ready TCB or SRB on the System Work Unit Queue.

4.2.2. Dispatcher Queue

All work elements which need to run on a processor are anchored on the Sys-
tem Work Unit Queue1. Each work element is represented by a Work Element
Block (WEB) and the order on the System Work Unit Queue is defined by the
major and minor priority of the TCB or SRB. The minor priority just describes
a graduation within the priorities for an address space. The major priority is

1More than one work unit queue exist in z/OS but for the moment we will simplify this to only
one work unit queue

4.2 z/OS Dispatching 135

calculated by z/OS Workload Manager (WLM) based on service goals defined
by the installation. Work units are queued by dispatch priority. The graphic
also shows enclaves to which we also referred on the page What is Work?. An
enclave encapsulates a TCB or SRB and thus allows to give the unit of work
a different dispatch priority than the address space to which it belongs to. All
other TCBs and SRBs have the major dispatch priority of the address space. In
chapter 5 we will discuss how the system calculates dispatch priorities for the
work.

DP=228
EnclaveU00B

ASCBU22
DP=246

DP=228
EnclaveU00A

ASCBU20
DP=244

TCB
1

Min=70

TCB
2

Min=80

ASCBU21
DP=232

TCB
1

Min=80

TCB
1

Min=80

TCB
2

Min=80

ASCBU23
DP=244

TCB
1

Min=80

SRB
1

Min=70

SRB
1

Min=00

INUREADYQQueue

DispatcherQQueue
ySystemQWorkQUnitQQueuem

WEB

ASCBU20
TCB1

DP=244
Min=70

WEB

ASCBU20
TCB2

DP=244
Min=80

WEB

ASCBU20
SRB1

DP=244
Min=00

WEB

ASCBU21
SRB1

DP=244
Min=80

WEB

ASCBU22
TCB1

DP=246
Min=80

WEB

ASCBU23
TCB1

DP=244
Min=80

WEB

Encl00A
TCB2

DP=228
Min=80

WEB

Encl00B
SRB1

DP=228
Min=70

Select

Figure 4.5.: Dispatcher Queue

4.2.3. Dispatching Work

The dispatcher is the central function in the system which will always run on a
processor after an interrupt has occurred or the processor was waken up. Figure
4.6 depicts steps of work processing:

1. The First Level Interrupt Handler (FLIH) is loaded after an interrupt or
when a unit of work ends. It saves the program state and registers and

136 Dispatching

DP=F6

DP=F2

DP=E8

3

5
SIGP

6

FLIH

SLIH
Dispatcher

WaitingfCPs

WaitfStatefPSW
UnitfoffWorkfPSW

0000000000000001

0000000000000E07

0000000000001111

xxxxxxxx00008D07

4

1

2

OnlinefCPs

Figure 4.6.: Dispatching Work

then selects the necessary action to process the interrupt (Second Level
Interrupt Handler (SLIH) see section 3.3.2).

2. At the end always the dispatcher gets control.

3. The dispatcher examines the System Work Units Queue. One of its tasks
is to provide some queue maintenance which runs prior to the next dis-
patches.

4. Another important task is to observe how long the dispatcher queue is
and how the elements have to wait on it. If this exceeds certain thresh-
olds the dispatcher examines whether it can wake up Waiting processors.
Processor masks provide the information which processors are on-line
and which processors are waiting. If the current processor which exe-
cutes the dispatcher decides that it should wake up another processor it
examines this masks and if it finds a waiting processor it sends a Signal
Processor (SIGP) to wake up the processor.

5. Finally the dispatcher selects the next unit of work from the dispatcher
queue. If no units of work are on the queue anymore goes into an enabled
WAIT state. This means the processor mask flips on that the processor is
waiting and a WAIT-State-PSW (Program Status Word) is loaded.

As a summary we can remember that the tasks of the dispatcher are

4.2 z/OS Dispatching 137

• To select a work unit to run on a processor

• To load state information

• To control how long a work unit runs

• To save state information

• To load a no-work wait PSW if no work is ready to run

4.2.4. Preemption and Time Slicing

DP=E8

DP=DC

DP=DCMinor

Major Time Slice

DP=DC

DP=DC

DP=DE

DP=E8DP=E8

DP=DE

Case 1
Minor Time Slice not completed

Case 2
Minor Time Slice completed

Minor

Minor Minor Minor

Figure 4.7.: Time Slicing

How long a work unit runs is today determined by time slices. The z/OS dis-
patcher is a reduced preemption dispatcher and the time slices define how long
a unit of work run at a minimum and at a maximum on the processor. Older
versions of the MVS and OS/390 dispatcher were full preemption or partially
full preemption dispatchers.

Full preemption means that the currently running unit of work is always inter-
rupted when a new unit of work with higher dispatch priority is ready to run.
A reduced preemption dispatcher defines two time slices, see figure 4.7:

Case 1 The minor time slice defines the minimum time a unit of work can

138 Dispatching

always stay on the processor before it must leave it because a higher
prioritized unit of work is ready to run.

Case 2 If the minor time slice has expired already then the unit of work can
be interrupted at any time when a higher unit of work wants to pro-
cess.

A partially full preemption dispatcher observes the units of work and depend-
ing on pre-defined conditions it changes workloads from reduced to full pre-
emption. Such conditions may favor work which may require high responsive-
ness. Such an observation technique was implemented for the MVS dispatcher
when the dispatching algorithms was moved away from a full preemption dis-
patcher. On current systems even this is not really efficient anymore and it is
the best to let all work units run in reduced preemption mode which favors
system throughput. Only for system tasks it is sometimes advantageous if they
can immediately interrupt all other units of work.

The Major Time Slice defines the amount of time a unit of work can run at
a maximum before the dispatcher examines the work unit queue whether an
equal prioritized unit of work is waiting to run. If that is the case the current
unit of work is paused and placed back to the dispatcher queue. The major
time slice is a multiple of the minor time slices and in z/OS environments on
a z196 in the range of multiple hundredths of milliseconds. Minor time slices
are between two to ten times smaller than the major time slice(see figure 4.7).

4.2.5. Interrupt Processing

An interrupt is an event that alters the sequence in which the processor executes
instructions. An interrupt might be planned (specifically requested by the cur-
rently running program) or unplanned (caused by an event that might or might
not be related to the currently running program). z/OS reacts on the six types
of interrupts as described in section 2.9.

Figure 4.8 shows the flow of interrupt processing.

1. When an interrupt occurs the system state, and Program Status Word are
saved.

2. The First Level Interrupt Handler then saves the registers (STM, MVC)
and selects the service routine or interrupt handler to process the specific
interrupt.

3. The new PSW and state to process the interrupt is loaded.

4.2 z/OS Dispatching 139

PSA

I3O

MachineLCheck

ProgramLCheck

SVC

External

RestartL

I3O

MachineLCheck

ProgramLCheck

SVC

External

RestartL

Old New

FLIHL
Disabled

STM
MVC

z3OSLServiceL
RoutinesL (SLIH)

DispatcherL

LOCK
LCTL
LM
LPSW

5

0

7 8

5

4444444444444E47

xxxxxxxx44448D47

xxxxxxxx44448D47

Figure 4.8.: Interrupt Processing

4. There is one major interrupt handler for each of the six interrupt types
which can occur. In the section 3.3.2 we looked at this processing when
a program check occurs and discussed the invocation of error handling
routines which are setup by the application or a system routine.

5. At the end of the interrupt processing the dispatcher becomes control,
selects a unit work, locks it and loads its new Program Status Word.

4.2.6. I/O Enablement

The last function we want to take a look at is I/O processing. Most of the
I/O request is processed directly by the I/O channel and the System Assist
Processor, see section 2.13.4 but when the I/O is completed the I/O must get
back to a regular processor. An I/O interrupt is an interrupt which will always
interrupt the running process therefore it is not wise to enable all processors
of a multi processor environment for I/Os. It is much better to limit the I/O
interrupt processing to as few processors as possible. In order to achieve this
the I/O interrupt rate and how many I/Os are processed as a result of a Test
Pending Interrupt (TPI) are observed. A TPI is always issued at the end of every

140 Dispatching

interrupt processing by the dispatcher therefore it is a good indicator whether
I/O interrupts wait for execution. An installation now has the possibility to
specify thresholds at which point a new processor is enabled for I/O processing
(see figure 4.9).

I/OxInterrupt
FLIHx

SLIH
z/OSxServicexRoutinextox

processxI/OxInterrupt

Atxthexend
TPI

TestxPendingxInterruptIfxI/Oxpending

HighxThreshold:xifxexceededxenablex
anotherxCPxforxI/O

CountxwxofxI/Osx
processedxbasedxonxTPI

LowxThreshold:xifxbelowxdisablexCPx
toxprocessxI/Os

Figure 4.9.: CPU Enablement for I/O

This function conceptually belongs to the z/OS dispatcher but like processor
WAIT processing and adjusting of time slices it is not performed by the dis-
patcher. The reason is that these functions require a permanent data collec-
tion and that is not done by the dispatcher. In z/OS another function called
the System Resource Manager (SRM) executes such functions on behalf of
the dispatcher and provides the results in control areas so that the dispatcher
can react on them. The System Resource Manager is since 1995 part of the
z/OS Workload Manager and we will discuss these functions in more detail

4.2 z/OS Dispatching 141

in chapter 5. The parameter CPENABLE defined in member IEAOPTxx of
SYS1.PARMLIB for the System Resource Manager specifies the low and high
thresholds for enabling and disabling I/O processors.

4.2.7. CPU Report Example

At the end of this section we want to take a look how the information which
we just discussed is presented to the installation. The standard monitoring
and reporting program of IBM to present such data is Resource Measurement
Facility

TM
(RMF

TM
). RMF provides various reports. Performance analysts typ-

ically use RMF Postprocessor reports for detailed analysis to understand the
behavior of past events and to tune the operating system.

The example in figure 4.10 shows a CPU Activity report from RMF. The CPU
Activity report displays the MVS view of the logical processors being used on
the system. The depicted system is a small partition with 4 logical processors.
The report shows information for a 5 minute time interval. The reporting length
can be adjusted between 1 minute and 1 hour and is typically 15 minutes for
most installations. All 4 processors were on-line during the reporting period.
The columns LPAR Busy and MVS Busy show how the logical processors are
being used by z/OS (MVS Busy) and how often they were dispatched on a
physical processor of the z System (LPAR Busy). We can observe that on all
processors during this 5 minute period for more than 98% of the time work
has been processed. On the other hand only for 53% of the time the logical
processors were really dispatched on a physical processor (LPAR Busy). When
we look at the ”LOG PROC SHARE %” column we can observe that each
processor has a share of 32.6% for using a physical processor. As a result the
partition exceeded its share by more than 20%. We will take a closer look at the
dispatching process of PR/SM to understand how, why, and when a partition
can use more than its share.

Finally processor number 1 is highlighted. When we take a look at the I/O
rate column we can observe that more than 93% of all I/Os were executed on
this processor. So this is the I/O enabled processor of the system. The instal-
lation uses the default setting for enabling I/O interrupts processors: CPEN-
ABLE(10,30) which means that a new processor is enabled for I/O when the
rate of handling I/Os via Test Pending Interrupt (TPI) exceeds 30%. A proces-
sor is disabled when it falls below 10%2. During this interval only 25% of the

2One processor is always enabled for I/O interrupts.

142 Dispatching

1
W

C
W
P
W
U
W
A
W
C
W
T
W
I
W
V
W
I
W
T
W
Y
W

z
/
O
S
W
V
1
R
9
W

S
Y
S
T
E
M
W
I
D
W
S
M
P
A
W

S
T
A
R
T
W
1
0
/
2
7
/
2
0
0
8
-
2
0
.
5
0
.
0
0
W

R
P
T
W
V
E
R
S
I
O
N
W
V
1
R
9
W
R
M
F
W

E
N
D
W

1
0
/
2
7
/
2
0
0
8
-
2
0
.
5
5
.
0
0
W

C
Y
C
L
E
W
1
.
0
0
0
W
S
E
C
O
N
D
S
W

-
C
P
U
W
2
0
9
7
W

M
O
D
E
L
W
7
0
4
W

H
/
W
W
M
O
D
E
L
W

E
4
0
W
S
E
Q
U
E
N
C
E
W
C
O
D
E
W
0
0
0
0
0
0
0
0
0
0
0
2
6
1
0
F
W

H
I
P
E
R
D
I
S
P
A
T
C
H
=
N
O
W

0
-
-
-
C
P
U
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
I
M
E
W
K
W
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
O
G
W
P
R
O
C
W

-
-
I
/
O
W
I
N
T
E
R
R
U
P
T
S
-
-

N
U
M
W
T
Y
P
E
W

O
N
L
I
N
E
W

L
P
A
R
W
B
U
S
Y
W

M
V
S
W
B
U
S
Y
W

P
A
R
K
E
D
W

S
H
A
R
E

K
W

R
A
T
E
W

K
W
V
I
A
W
T
P
I
W

0
W

C
P
W

1
0
0
.
0
0
W

5
3
.
4
2
W

9
8
.
9
5
W

-
-
-
-
-
-

3
2
.
6
W

1
6
.
4
6
W

6
1
.
2
4
W

1
W

C
P
W

1
0
0
.
0
0
W

5
3
.
4
2
W

9
8
.
6
9
W

-
-
-
-
-
-

3
2
.
6
W

5
2
8
6
W

2
5
.
1
5
W

2
W

C
P
W

1
0
0
.
0
0
W

5
3
.
4
0
W

9
8
.
6
3
W

-
-
-
-
-
-

3
2
.
6
W

1
9
.
6
9
W

5
5
.
7
0
W

3
W

C
P
W

1
0
0
.
0
0
W

5
3
.
4
2
W

9
8
.
9
3
W

-
-
-
-
-
-

3
2
.
6
W

3
3
0
.
1
W

1
6
.
9
3
W

T
O
T
A
L
/
A
V
E
R
A
G
E
W

5
3
.
4
1
W

9
8
.
8
0
W

1
3
0
.
4

5
6
5
2
W

2
4
.
8
8
W

Figure 4.10.: CPU Report Example

4.3 PR/SM Dispatching 143

I/Os were processed after executing a TPI instruction and therefore it is not
required to enable another processor for I/O.

RMF is not the only reporting function available for z/OS. Many other soft-
ware vendors provide similar reporting functions. Performance monitoring and
reporting is also an important business because performance reports are crucial
to run a system efficiently.

4.3. PR/SM Dispatching

The first decision for defining a partition is whether the partition should share
the physical processors with other partitions or whether it should use dedicated
processors. On System z a partition can only use either shared or dedicated
processors with one exception. We will later see that a special partition can use
both dedicated and shared processors. Also it should be mentioned that prior to
System z competitors also built hardware for S/370 and S/390 architecture. The
concept of logical partitioning existed at that time already and both Hitachi and
Amdahl the two main competitors supported so call L-shaped partitions which
could use dedicated and shared processors.

Partitions with dedicated processors own the physical processor to 100%. The
physical processor is not available to any other partition. Partitions with shared
processors compete for the shared physical processors. By definition a partition
cannot have more logical processors than physical processors which are active
on the box. The only exception exists when a physical processor is malfunc-
tioning and must be configured off-line and no spare processor can take over
the function of the physical processor. In such cases partitions may have more
logical than physical processors.

Each partition which uses shared processors also has a weight defined. The
weight defines the share of the physical processor pool which is guaranteed to
the partition assuming the number of logical processors is high enough to sup-
port this share. PR/SM dispatches the logical processors on the shared phys-
ical processors. It uses a time slicing algorithms and determines the priority
of logical processors based on the partition share and the time the logical pro-
cessors have used their share. A system layout with 3 partitions of which two
use shared physical processors and one has a dedicated processor is shown in
figure 2.48 and figure 4.1 which depicts a more complex environment which
also includes offload processors.

When a logical processor is dispatched on a shared physical processor it is

144 Dispatching

possible to complete the dispatch cycle in one of two modes:

Weight Completion = Yes A logical processor must complete its guaran-
teed share even if the wait state PSW is loaded. This option is a CEC
(Central Electronic Complex) wide control and effects all partitions. It
guarantees that all partitions have always their share available to it but it
doesn’t allow partitions to use more than its share.

Weight Completion = No (standard mode of operation): If the logical pro-
cessor loads the WAIT State PSW the SIE is exited and the control is
returned to PR/SM to dispatch another logical processor. Nearly all in-
stallations use this mode of operation because it allows to effectively use
the available capacity of the CEC.

4.3.1. Dispatching Logical Processors

Metric Physical LPAR A LPAR B LPAR C
or Total

Processors 4 4 3 2

Weight 1000 500 300 200

Weight/LCP 125 100 100

Percent Logical to
Physical Processor 50.0% 22.5% 10.0%

3.6% of Share 4.5 3.6 3.6

Resulting Weight Range 120.5-129.5 96.4-103.6 96.4-103.6

Resulting Utilization Range 48.2-51.8 28.9-31.1 19.3-20.7

Table 4.1.: Example for Processor Shares of three Logical Partitions

Table 4.1 shows a very simple partitioning example with 3 partitions. The CEC
has 3 shared physical processors (PCPs). Each PCP supports 25% of the total
capacity of the CEC. The weights and number of logical processors (LCP) for
the 3 partitions are chosen with the following criteria:

• The weight should represent how much capacity the partition can always
use from the CEC

• The logical processors should at least support the partitions weight

• At least 2 logical processors should always be defined. There are ex-

4.3 PR/SM Dispatching 145

ceptions for partitions which run really low utilizations or which are not
critical for an installation

• The number of logical processors should also assure that the time slice
of a logical processor does not become too small

• The number of logical processors should also allow the partition to use
more capacity than its guaranteed share

PR/SM guarantees that a processor meets its share within 3.6% precision. The
share of each logical processor depends on the partition share and the num-
ber of logical processors of the partitions. The resulting weight range for each
processor and based on this the resulting utilization range for each partition is
calculated in the table above. The following basic equations for determining
the share of logical processors are used:

Weight per LCP =
Weight(LPAR)

Online LCPs(LPAR)

LCP% per PCP =
Weight(LPAR)
Total Weight

• PCPs Online
LCPs Online

Total Weight =

N∑
LPAR=1

Weight(LPAR)

Res. Weight Range = Weight per LCP±Weight per LCP • 3.6%

Res. Util. Range = Res. Weight Range • Online LCPs(LPAR)
Total Weight

The example in table 4.1 also shows that the logical processors (LCPs) can’t
be mapped 1 to 1 to physical processors (PCPs). This is no surprise because
the example has 7 LCPs defined by only 4 PCPs. PR/SM will always try to
re-dispatch a LCP on the same PCP but the example already shows that this is
not always possible. We will discuss this problem in more detail when we look
at limitations of the existing dispatching processes.

PR/SM calculates the time slice based on the number of partitions, logical and
physical processors of the CEC (see figure 4.11). The resulting value is then
capped in the range from 12.5 to 25 ms. For each logical processor PR/SM
keeps a history table of 32 entries of cumulative dispatch time. For each time a
logical processor has been dispatched the effective dispatch time is filled in the
current entry of the history table. The sum of all entries is the Total Effective
Dispatch Time. The Total Effective Dispatch Time now determines the priority
of a logical processor for the next dispatch interval. A lower value results in a
higher dispatch priority.

146 Dispatching

latest oldest

current

History3Table3per3Logical3Processor

Each3entry3up3to350ms
cumulative3Effective3Dispatch3Time

History3Time3Interval:3323entries

Figure 4.11.: History Time Interval per Logical Processor

The effective dispatch time is the dispatched time multiplied by an expansion
factor. The expansion factor is calculated from the number of logical proces-
sors and the weight of the partition, the sum of all weights and the number of
shared physical processors. The effect is that a partition with a small share and
higher logical processor number also gets a higher expansion factor and there-
fore accumulates more effective dispatch time for the same amount of absolute
dispatch time and thus will probably less often dispatched than a partition with
a high processor share:

Expansion Factor =
Total Weights

LCP Weight • # of Shared PCPs

=
Total Weights • # of LPAR LCPs
LPAR Weight • # of Shared PCPs

Effective Time = Effective Time
+Dispatched Time • Expansion Factor

Total Effective History =

current∑
i=oldest

Effective Time Interval(i)

As an example we will use the partitions from table 4.1. Table 4.2 shows the
resulting effective dispatch time for 10 ms dispatch time. Based on the con-
figuration the expansion factor for LPAR A is the smallest because it has the
highest weight definition. The processors for LPAR B and C have the same
expansion factors and therefore also accumulate the same amount of effective
time for the 10 ms dispatch time. This shows a positive effect of defining only
2 logical processors for partition C instead of 3. For 3 logical processors for
partition C the expansion factor would be smaller because the weight of parti-
tion C is smaller. On the other hand with 2 LCPs partition C can use only up

4.3 PR/SM Dispatching 147

Metric Physical LPAR A LPAR B LPAR C
or Total

Processors 4 4 3 2

Weight 1000 500 300 200

Weight/LCP 125 100 100

Expansion Factor 2.0 2.5 2.5

Dispatch Time [ms] 10 10 10

Effective Time [ms] 20 25 25

Table 4.2.: PR/SM Dispatching Example

to 50% of the CEC if the other partitions only have little demand while with 3
LCPs it could use 75% of the total CEC capacity.

4.3.2. LPAR Report Example

We will take a look how the information of logical partitions is presented to an
installation. We will use the same example for the z/OS system SMPA when
we discussed z/OS dispatching. Figure 4.123 shows a part of the RMF Partition
Data Report which is printed together with the CPU Activity report shown in
figure 4.10.

The report shows the partition information. System SMPA runs in a partition
with the name LPARA03. Please note that SMPA is the short name of the
z/OS system and LPARA03 the name defined on the Hardware Management
Console (HMC) for the partition. The CEC has 4 physical shared processors.
In the column Number of Physical Processors we can also see other processor
types and we will discuss them in the following sections. Altogether there are
9 logical partitions defined on the CEC which share the 4 regular physical
processors. Column WGT shows the weight definitions for each partition. The
total weight for all partitions is 2198.

On the CPU Activity report we observed that SMPA logical processors use
53.4% of the physical processors and that they were entitled to use 32.6%
of them. For SMPA (or LPARA03 respectively) the logical processor usage
matches the physical processor usage because 4 logical processors are defined
for this partition. For partitions which have fewer logical processors defined

3Some report columns have been deleted for presentation purposes

148 Dispatching

1
4

P
4
A
4
R
4
T
4
I
4
T
4
I
4
O
4
N
4

D
4
A
4
T
4
A
4

R
4
E
4
P
4
O
4
R
4
T
4

z
/
O
S
4
V
1
R
9
4

S
Y
S
T
E
M
4
I
D
4
S
M
P
A
4

S
T
A
R
T

1
0
/
2
7
/
2
0
0
8
-
2
0
.
5
0
.
0
0
4

I
N
T
E
R
V
A
L
4
0
0
0
.
0
4
.
5
9
4

R
P
T
4
V
E
R
S
I
O
N
4
V
1
R
9
4
R
M
F
4

E
N
D
4

1
0
/
2
7
/
2
0
0
8
-
2
0
.
5
5
.
0
0
4

C
Y
C
L
E
4
1
.
0
0
0
4
S
E
C
O
N
D
S
4

-
M
V
S
4
P
A
R
T
I
T
I
O
N
4
N
A
M
E
4

L
P
A
R
A
0
3
4

N
U
M
B
E
R
4
O
F
4
P
H
Y
S
I
C
A
L
4
P
R
O
C
E
S
S
O
R
S
4

1
2
4

G
R
O
U
P
4
N
A
M
E
4

P
R
O
D
4

I
M
A
G
E
4
C
A
P
A
C
I
T
Y
4

4
0
1
4

C
P
4

4
4

L
I
M
I
T
4

4
0
1
4

N
U
M
B
E
R
4
O
F
4
C
O
N
F
I
G
U
R
E
D
4
P
A
R
T
I
T
I
O
N
S
4

2
3
4

A
A
P
4

2
4

W
A
I
T
4
C
O
M
P
L
E
T
I
O
N
4

N
O
4

I
F
L
4

4
4

D
I
S
P
A
T
C
H
4
I
N
T
E
R
V
A
L
4

D
Y
N
A
M
I
C
4

I
C
F
4

0
4

I
I
P
4

2
4

-
-
-
-
-
-
-
-
-
-

P
A
R
T
I
T
I
O
N
4
D
A
T
A
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A
V
E
R
A
G
E
4
P
R
O
C
E
S
S
O
R
4
U
T
I
L
I
Z
A
T
I
O
N
4
P
E
R
C
E
N
T
4
-
-

0
4

-
-
-
-
M
S
U
-
-
-
-

-
C
A
P
P
I
N
G
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-

P
H
Y
S
I
C
A
L
4
P
R
O
C
E
S
S
O
R
S
4
-
-
-

N
A
M
E
4

S
4

W
G
T
4

D
E
F
4

A
C
T
4

D
E
F
4

W
L
M
6
4

N
U
M
4

T
Y
P
E
4

T
O
T
A
L
4

T
O
T
A
L

L
P
A
R
4
M
G
M
T
4

E
F
F
E
C
T
I
V
E
4

T
O
T
A
L

0
L
P
A
R
A
0
3
4

A
4

7
1
8
4

0
4

2
1
4
4

N
O
4

0
.
0
4

4
.
0
4

C
P
4

0
0
.
1
0
.
4
0
.
4
6
1
4

5
3
.
4
1
4

0
.
1
6
4

5
3
.
2
6
4

5
3
.
4
1
4

L
P
A
R
A
0
1
4

A
4

1
1
6
4

0
4

2
1
4

N
O
4

0
.
0
4

2
.
0
4

C
P
4

0
0
.
0
1
.
0
3
.
8
7
5
4

1
0
.
6
5
4

0
.
1
4
4

5
.
1
9
4

5
.
3
3
4

L
P
A
R
A
0
2
4

A
4

2
2
2
4

0
4

3
5
4

N
O
4

0
.
0
4

2
.
0
4

C
P
4

0
0
.
0
1
.
4
4
.
9
7
4
4

1
7
.
5
1
4

0
.
1
1
4

8
.
6
4
4

8
.
7
5
4

L
P
A
R
A
0
4
4

A
4

3
9
0
4

0
4

6
8
4

N
O
4

0
.
0
4

2
.
1
4

C
P
4

0
0
.
0
3
.
2
4
.
6
0
3
4

3
3
.
2
4
4

0
.
1
4
4

1
6
.
9
3
4

1
7
.
0
6
4

L
P
A
R
A
0
6
4

A
4

2
2
8
4

0
4

1
7
4

N
O
4

0
.
0
4

1
.
0
4

C
P
4

0
0
.
0
0
.
5
0
.
1
0
5
4

1
6
.
7
1
4

0
.
0
5
4

4
.
1
3
4

4
.
1
8
4

L
P
A
R
A
0
7
4

A
4

2
2
4
4

0
4

2
1
4

N
O
4

0
.
0
4

2
.
0
4

C
P
4

0
0
.
0
1
.
0
1
.
7
4
9
4

1
0
.
3
0
4

0
.
1
3
4

5
.
0
2
4

5
.
1
5
4

L
P
A
R
A
1
F
4

A
4

1
0
0
4

0
4

4
4

N
O
4

0
.
0
4

1
4

C
P
4

0
0
.
0
0
.
1
1
.
5
8
3
4

3
.
8
6
4

0
.
0
6
4

0
.
9
1
4

0
.
9
7
4

L
P
A
R
A
1
1
4

A
4

9
8
4

0
4

4
4

N
O
4

0
.
0
4

1
.
0
4

C
P
4

0
0
.
0
0
.
1
3
.
2
3
3
4

4
.
4
1
4

0
.
0
3
4

1
.
0
7
4

1
.
1
0
4

L
P
A
R
A
1
3
4

A
4

1
0
2
4

0
4

3
4

N
O
4

0
.
0
4

1
.
0
4

C
P
4

0
0
.
0
0
.
1
0
.
2
2
6
4

3
.
4
1
4

0
.
0
3
4

0
.
8
2
4

0
.
8
5
4

*
P
H
Y
S
I
C
A
L
*
4

0
0
.
0
0
.
2
6
.
1
5
1
4

2
.
1
8
4

2
.
1
8

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

T
O
T
A
L
4

0
0
.
1
9
.
4
6
.
9
6
5
4

3
.
0
2
4

9
5
.
9
7
4

9
8
.
9
9
4

R
eport C

olum
ns D

eleted

Figure 4.12.: RMF Partition Data Report Example

4.3 PR/SM Dispatching 149

then physical processors exist, the physical processor usage is the LCP per
PCP fraction of the logical processor usage (see LPARA01 for example).

We can also observe that the CEC is really busy because the Total Utilization
for all partitions is 98.99%. The report also shows how much of the dispatch
time is used for managing the partitions. The column LPAR MGMT shows the
time which can be directly attributed to the partitions and *PHYSICAL* shows
the processing time of PR/SM.

4.3.3. CEC Utilization Example

LPAR Logical Weight Percent Maximum
Processors Share Share

SYP1 5 700 61% 100%

SYT1 5 300 26% 100%

SYW1 3 150 13% 60%

Table 4.3.: LPAR Configuration Example

The previous example showed a CEC with 99% utilization and also that some
of the partitions, like LPARA03, used more than their guaranteed share. Table
4.3 shows a small CEC with only 3 partitions for a 9 hour period from 8:00 to
17:00. This is a typical ”Day” or ”Prime” shift period for an installation with
on-line transaction processing as the dominating workload on the system. The
CEC has a main z/OS partition with OLTP workload and a second partition for
development and testing purposes.

Figure 4.13 shows the physical processor utilization of the 3 partitions and in
dark gray the system overhead for PR/SM management. Figure 4.14 shows
the used share of all partitions. We can observe that the maintenance partition
SYW1 usually doesnt use much of its share. We can also see that SYT1 tries
to get as much CPU cycles as possible. Most of the time it exceeds its share
whenever SYP1 does not require all of its capacity. During the morning peak
hours we can also see that real contention exists on the CEC. At that time SYP1
and SYT1 are around 100% of their share and the CEC is at 100% busy.

150 Dispatching

CEC Auslastung

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

08
:0

0:
00

08
:3

0:
00

09
:0

0:
00

09
:3

0:
00

10
:0

0:
00

10
:3

0:
00

11
:0

0:
00

11
:3

0:
00

12
:0

0:
00

12
:3

0:
00

13
:0

0:
00

13
:3

0:
00

14
:0

0:
00

14
:3

0:
00

15
:0

0:
00

15
:3

0:
00

16
:0

0:
00

16
:3

0:
00

[%
]

SYW1

SYT1

SYP1

Figure 4.13.: Physical Utilization for a CEC with 3 Partitions

Usage of Partition Share

0

20

40

60

80

100

120

140

160

180

200

08
:0

0:
00

08
:3

0:
00

09
:0

0:
00

09
:3

0:
00

10
:0

0:
00

10
:3

0:
00

11
:0

0:
00

11
:3

0:
00

12
:0

0:
00

12
:3

0:
00

13
:0

0:
00

13
:3

0:
00

14
:0

0:
00

14
:3

0:
00

15
:0

0:
00

15
:3

0:
00

16
:0

0:
00

16
:3

0:
00

[%
]

SYP1

SYT1

SYW1

Figure 4.14.: Used Share for the CEC with 3 Partitions

4.4 Offload Processors 151

4.4. Offload Processors

A general purpose processing platform supports a wide range of applications
but it may not support all types of applications with the same efficiency. Rea-
sons for offloading work to special purpose processing platforms are

• The special purpose platform is designed to run the special application
with the highest possible efficiency. Examples for such cases are systems
especially designed to run JAVA work or to process XML messages. Dat-
apower is an example for offloading XML messages. If an XML message
needs to be processed within a Websphere transaction the message is
offloaded to a special network device which is rack module of a ZBX
extension to a zEnterprise. Another example is Smart Analytics Opti-
mizer which is a database acceleration rack module to perform business
analysis tasks.

• The specialized architecture allows to process work at a much cheaper
price for an installation. This is the main reason for using System z in-
ternal offload techniques. This has two flavors:

– Integrated Facility for Linux (IFL) and Integrated Coupling Facility
(ICF) are System z processers which run a specialized microcode to
only allow either the execution of z/VM and Linux systems or the
Coupling Facility Control Code. The specialized microcode allows
to provide an execution environment on System z especially for
Linux applications which is price performance competitive to other
platforms. A coupling facility is a part of the infrastructure and
therefore running coupling facilities with reduced or no costs is
similar to the fact that installations also need to run firmware in
order to host their applications.

– Application Assist Processors (zAAP) and Integrated Information
Processors (zIIP) are not intended to host own operating systems.
They can be defined as assist processors to z/OS allowing z/OS to
offload either JAVA or DB/2 work for price performance reason.
This option became necessary because z/OS hosts many different
applications and it is especially effective to run all these applica-
tions on the same image. This allows to reduce network as well as
cluster connections and still provides the most efficient way to run
most workloads.

It should be noted that the primary reason for introducing different flavored
processors is price performance but it also allows System z installation to scale

152 Dispatching

their environments while using newer technologies like JAVA, and modern
database facilities. Another offload mechanism which is not discussed is cryp-
tographic processing. Cryptographic processing is performed by cryptographic
co-processors or offloaded to special attached processors.

4.4.1. Using zIIPs and zAAPs

The next step is to examine how System z and z/OS handle different types of
processors and how this effects dispatching. PR/SM creates separate processor
pools for offload processors. Figure 4.15 shows how execution units move be-
tween regular and offload processors. z/OS uses up to two additional processor
pools for offload processing:

• Application Assist Processors (zAAP) which are primarily to execute
Java work and some XML related work

• Integrated Information Processors (zIIP) which were introduced to pro-
cess DB2 related work but which can also process all kind of offload
eligible workloads including Java and XML related work if zAAPs are
not installed on the CEC.

z/OS defines Work Unit Queues for each processor type. We already saw that
work is schedule on the System Work Unit Queue (SWUQ) which is accessed
by all general purpose processors. It is also the case that work always first
arrives on the SWUQ first and a general purpose processor will first select the
unit of work (1).

• Different possibilities exist to tell the dispatcher that it should switch the
work to an offload processor (2): The entry of a special code segment can
be instrumented and tell the operating system that the following instruc-
tions are allowed to be executed on an offload processor. This solution is
used when JAVA processing starts. The dispatcher then puts the unit of
work not back to work unit queue for general processors but places it to
the work unit queue for zAAPs.

• After a predefined execution time the unit of work is placed on the work
unit queue for zIIPs. Alternatively it is also possible to run some units of
work completely on zIIPs and others completely on regular processors.
In both cases a certain percentage of work should be able to run on the
offload processor (2).

At some point the unit of work must return to the regular processor. Either if
a system call is processed which isnt supported on the offload processor (3)

4.4 Offload Processors 153

1

1

2

2

21

3

33

3
3

4

4

4

4

4

4

(1) (2)

(3) (4)

Regular processor Offload processor

Figure 4.15.: Executing Work on 2 Processor Pools

BCP

WAS

Java

DB2

Other

Web
Transaction

Processing Time

zAAP Processing

Figure 4.16.: Websphere Transaction Phases

154 Dispatching

or if the time interval the work should run on the offload processor is expired
(3). Finally we have to discuss what happens if too few offload processors are
configured on the system or the amount of work which can run on the of-
fload processors is too much. In that case the general purpose processors need
to have the ability to also select work from the Alternate Work Unit Queues
(AWUQ) (4). But they will not start with that until the z/OS dispatcher ob-
serves a bottleneck. The z/OS dispatcher will then enable regular processors
individually to select work from the AWUQ. The general purpose processors
which are enabled as helper processors will then test dispatch priority order
whether it should select work from the SWUQ or AWUQ. The help processing
automatically ends when the general purpose processor sets the WAIT State
PSW.

Figure 4.16 shows how a sample Websphere transaction is executed on reg-
ular CPs and zAAPs. First the operating system gets control (BCP) which
dispatches the Websphere Application Server. Some part of the processing is
executed by infrastructure code of Websphere (turquoise) before the real appli-
cation code written in Java (blue) gets control and the work can be processed
on a zAAP. DB2 (red) requests and Java native interface calls (yellow) require
to switch back from the zAAP to a regular processor. Finally the transaction
completes and BCP gets control to end the processing.

4.4.2. Processor Pools

PR/SM creates separate processor pools for regular CPs, zIIPs, zAAPs, IFLs,
and ICFs, see example in figure 4.17. That means a z/OS partition can have
up to three weight definitions one for regular CPs, one for zIIPs and one for
zAAPs. Also different numbers of these processor types can be defined to z/OS
partitions. The only restriction is that it is not possible to define more zIIPs or
more zAAPs to z/OS then regular processors have been defined. IFLs can be
used by Linux systems and also by z/VM because Linux is most often hosted
as a guest operating system under z/VM.

A specialty exists for Coupling Facilities. Coupling Facilities can use ICFs but
they can also use at the same time regular processors. The idea is to define
regular processors as an overflow mechanism for coupling facilities in case the
traffic to the cluster data storage is that high that it requires more processing
power then the available ICF processors can provide. Also coupling facility
partitions can use dedicated and shared processors. The shared processors are
only used if the dedicated processors are not sufficient to execute the requests

4.4 Offload Processors 155

Regular CPs zIIPs zAAP ICFs IFLs

z/OS z/OS CF CF Linux

Figure 4.17.: Processor Pools on System z

in the coupling facility. We will discuss coupling facilities in detail in chapter
6.

Finally the number of regular processors, plus offload processors, IFLs, ICFs,
System Assist Processors and Spare processors cannot exceed the maximum
number of processors installed across all books of the z system.

4.4.3. LPAR Report Example including Offload
Processors

We can now complete our example from section 4.3.2: The reporting example
for the z/OS system SMPA and the CEC on which it is hosted. We already
observed that AAP, IFL, and IIP processors exist on the CEC. Figure 4.184

shows the complete list of partitions across all processor pools:

• System SMPA which runs in partition LPARA03 uses regular processors
and also zIIPs.

• Partition LPARA02 even uses all three types of processors which can
be configured to z/OS. The example above shows that the three pools
are distinct and that different weight definitions for the partition exist for
each pool. As a result we can observe that LPARA02 has a share of 10%

4Some rows and columns have been deleted for presentation purposes

156 Dispatching

of the regular processor pool, 22% of the zIIP pool and even 67% of the
zAAP pool. LPARA02 can use up to 50% of the regular processor pool
because it has 2 regular CPs defined out of 4 installed regular CPs on the
CEC. For the zAAP and zIIP pool it can theoretically use up to 100%
of the installed CPU resources because it has each 2 offload processors
defined out of 2 installed offload processors.

• LPARA09 runs on the IFLs. From this report we can’t determine which
operating system is running in this partition but it is most likely z/VM
with Linux guests.

4.5. Example on how z/OS and PR/SM
Dispatcher work together

Up to this point we discussed the different dispatching technologies for z/OS
and PR/SM. We can summarize that both are very efficient with respect to their
objectives: running many different applications in parallel on z/OS and hosting
multiple operating systems with as little as possible overhead on System z. We
also found out that multiple processor pools exist on System z, primarily for
price competitiveness but also for scalability reasons.

Now it is necessary to take a look how the two dispatching algorithms work
together. As an example we will take a side step to serialization and locking
on z/OS and then discuss what happens when a processor has to wait for com-
pletion of a lock request on another processor and how z/OS and PR/SM can
work efficiently together for such cases.

4.5.1. z/OS Serialization

The basic instruction for serialization in z/OS is Compare and Swap. This is an
atomic instruction which can’t be interrupted, see section 2.12. It compares two
values with each other and if they are equal it stores the content of a third value
in the location of the first. This technique is used to implement most locking
functions especially spin locks. A spin lock means that the requester processes
the lock obtain instructions as long as it gets the lock. Then it processes the
critical path and releases the lock again. Another possibility is a suspend lock.
In this case the requester asks for the lock and if it is not available the requester
is suspended. A lock manager will resume the requester when the lock becomes

4.5 Example on how z/OS and PR/SM Dispatcher work together 157
1
4

P
4
A
4
R
4
T
4
I
4
T
4
I
4
O
4
N
4

D
4
A
4
T
4
A
4

R
4
E
4
P
4
O
4
R

T
4

z
/
O
S
4
V
1
R
9
4

S
Y
S
T
E
M
4
I
D
4
S
M
P
A
4

S
T
A
R
T
4
1
0
/
2
7
/
2
0
0
8
-
2
0
.
5
0
.
0
0
4

I
N
T
E
R
V
A
L
4
0
0
0
.
0
4
.
5
9
4

R
P
T
4
V
E
R
S
I
O
N
4
V
1
R
9
4
R
M
F
4

E
N
D
4

1
0
/
2
7
/
2
0
0
8
-
2
0
.
5
5
.
0
0
4

C
Y
C
L
E
4
1
.
0
0
0
4
S
E
C
O
N
D
S
4

-
M
V
S
4
P
A
R
T
I
T
I
O
N
4
N
A
M
E
4

L
P
A
R
A
0
3
4

N
U
M
B
E
R
4
O
F
4
P
H
Y
S
I
C
A
L
4
P
R
O
C
E
S
S
O
R
S
4

1
2
4

G
R
O
U
P
4
N
A
M
E
4

P
R
O
D
4

I
M
A
G
E
4
C
A
P
A
C
I
T
Y
4

4
0
1
4

C
P
4

4
4

L
I
M
I
T
4

4
0
1
4

N
U
M
B
E
R
4
O
F
4
C
O
N
F
I
G
U
R
E
D
4
P
A
R
T
I
T
I
O
N
S
4

2
3
4

A
A
P
4

2
4

W
A
I
T
4
C
O
M
P
L
E
T
I
O
N
4

N
O
4

I
F
L
4

4
4

D
I
S
P
A
T
C
H
4
I
N
T
E
R
V
A
L
4

D
Y
N
A
M
I
C
4

I
C
F
4

0
4

I
I
P
4

2
4

-
-
-
-
-
-
-
-
-
-

P
A
R
T
I
T
I
O
N
4
D
A
T
A
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

A
V
E
R
A
G
E
4
P
R
O
C
E
S
S
O
R
4
U
T
I
L
I
Z
A
T
I
O
N
4
P
E
R
C
E
N
T
-
-

0
4

-
-
-
-
M
S
U
-
-
-
-

-
C
A
P
P
I
N
G
-
-

P
R
O
C
E
S
S
O
R
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
H
Y
S
I
C
A
L
4
P
R
O
C
E
S
S
O
R
S
4
-
-
-

N
A
M
E
4

S
4

W
G
T
4

D
E
F
4

A
C
T
4

D
E
F
4

W
L
M
6
4

N
U
M
4

T
Y
P
E
4

T
O
T
A
L
4

T
O
T
A
L
4

L
P
A
R
4
M
G
M
T
4

E
F
F
E
C
T
I
V
E
4

T
O
T
A
L

0
L
P
A
R
A
0
3
4

A
4

7
1
8
4

0
4

2
1
4
4

N
O
4

0
.
0
4

4
.
0
4

C
P
4

0
0
.
1
0
.
4
0
.
4
6
1
4

5
3
.
4
1
4

0
.
1
6
4

5
3
.
2
6
4

5
3
.
4
1
4

L
P
A
R
A
0
1
4

A
4

1
1
6
4

0
4

2
1
4

N
O
4

0
.
0
4

2
.
0
4

C
P
4

0
0
.
0
1
.
0
3
.
8
7
5
4

1
0
.
6
5
4

0
.
1
4
4

5
.
1
9
4

5
.
3
3
4

L
P
A
R
A
0
2
4

A
4

2
2
2
4

0
4

3
5
4

N
O
4

0
.
0
4

2
.
0
4

C
P
4

0
0
.
0
1
.
4
4
.
9
7
4
4

1
7
.
5
1
4

0
.
1
1
4

8
.
6
4
4

8
.
7
5
4

.

.

.

R
o
w
s

d
e
l
e
t
e
d

.

.

.

L
P
A
R
A
1
3
4

A
4

1
0
2
4

0
4

3
4

N
O
4

0
.
0
4

1
.
0
4

C
P
4

0
0
.
0
0
.
1
0
.
2
2
6
4

3
.
4
1
4

0
.
0
3
4

0
.
8
2
4

0
.
8
5
4

*
P
H
Y
S
I
C
A
L
*
4

0
0
.
0
0
.
2
6
.
1
5
1
4

2
.
1
8
4

2
.
1
8

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

T
O
T
A
L
4

0
0
.
1
9
.
4
6
.
9
6
5
4

3
.
0
2
4

9
5
.
9
7
4

9
8
.
9
9
4

-
L
P
A
R
A
0
2
4

A
4

4
0
0
4

2
4

A
A
P
4

0
0
.
0
0
.
0
1
.
5
0
3
4

0
.
2
5
4

0
.
0
0
4

0
.
2
5
4

0
.
2
5

L
P
A
R
A
0
6
4

A
4

2
0
0
4

2
4

A
A
P
4

0
0
.
0
0
.
0
0
.
6
1
7
4

0
.
1
0
4

0
.
0
0
4

0
.
1
0
4

0
.
1
0

*
P
H
Y
S
I
C
A
L
*
4

0
0
.
0
0
.
0
0
.
0
7
1
4

0
.
0
1
4

0
.
0
1

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

T
O
T
A
L
4

0
0
.
0
0
.
0
2
.
1
9
2
4

0
.
0
2
4

0
.
3
5
4

0
.
3
7
4

-
.

.

.

I
F
L

S
e
c
t
i
o
n

d
e
l
e
t
e
d

.

.

.

-
L
P
A
R
A
0
3
4

A
4

4
0
0
4

2
4

I
I
P
4

0
0
.
0
0
.
0
2
.
4
5
5
4

0
.
4
1
4

0
.
0
0
4

0
.
4
1
4

0
.
4
1

L
P
A
R
A
0
2
4

A
4

4
0
0
4

2
4

I
I
P
4

0
0
.
0
0
.
2
3
.
7
8
9
4

3
.
9
7
4

0
.
0
4
4

3
.
9
3
4

3
.
9
7
4

.

.

.

R
o
w
s

d
e
l
e
t
e
d

.

.

.

L
P
A
R
A
0
7
4

A
4

4
0
0
4

2
4

I
I
P
4

0
0
.
0
0
.
2
3
.
7
6
7
4

3
.
9
6
4

0
.
0
5
4

3
.
9
2
4

3
.
9
6
4

*
P
H
Y
S
I
C
A
L
*
4

0
0
.
0
0
.
0
1
.
4
7
3
4

0
.
2
5
4

0
.
2
5

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

T
O
T
A
L
4

0
0
.
0
1
.
0
8
.
9
7
7
4

0
.
3
9
4

1
1
.
1
1
4

1
1
.
5
1
4

R
ep

or
t C

ol
um

ns
 D

el
et

ed

Figure 4.18.: RMF Partition Data Report with Offload Processors

158 Dispatching

…
LCP61 LCP63

CPU6LOCK CPU6LOCK

LOCK

Common6
Data6Area

Task6A

…
Obtain CPU LOCK

Obtain data Area
LOCK

…
Update Data Area

…

Release6Data6Area6
Lock

Task6B

…
Obtain CPU LOCK

Request data
Area LOCK

Spin until Obtain
successful

…
Update6Data6Area

…

Release6Data6Area6
Lock

2

3

4

1 5

6

7

Figure 4.19.: Two Logical Processors requesting the same spin lock

available again. The advantage of a suspend lock is that the processor is not
occupied but the disadvantage is that it takes too many instructions to obtain
the lock. Also it always requires a lock manager as a referee. Therefore within
the operating system most locks especially all really resource critical locks
are implemented as spin locks.

4.5.2. z/OS Spin Lock Processing

Figure 4.19 shows an example where two logical processors request the same
spin lock in z/OS:

1. The dispatcher dispatches a system task on LCP1

2. The system task first obtains the CPU lock of the processor because it
doesn’t want to get interrupted

3. The task wants to update a common data area which is also protected by
a lock and requests and obtains the system resource lock

4. Then it starts to update the common data area

4.5 Example on how z/OS and PR/SM Dispatcher work together 159

5. Little later task B is dispatched on LCP3

6. Task B also wants to access the same common data area and it performs
the same steps as tasks A: To obtain the CPU lock of the logical proces-
sor it is running on.

7. Requesting the system resource lock to update the same common data
area. Because the lock is held by tasks A, task B starts to spin and con-
tinuously runs through the same instructions to wait until the lock is
released and can be obtained by B.

LCPr1 LCPr3

CPUrLOCK CPUrLOCK

TaskrA TaskrB

LOCK

owns

PR/SM

LCP 1

LCPr3

PCPr7

LCP 3 … Dispatcher
Queue

Dispatcher

Figure 4.20.: z/OS and PR/SM Spin Lock Synchronization

When the dispatcher gets control it periodically tests whether spin lock pro-
cessing is running. Eventually it recognizes that the task is in a spin loop and it
also recognizes which processor is holding the lock. The z/OS dispatcher and
PR/SM can communicate and the z/OS dispatcher is able to find out whether
LCP1 is really processing, meaning that it is dispatched by PR/SM on a phys-
ical processor. If that is the case the dispatcher returns control to the spinning
task which continues to request the lock.

The other case is that the dispatcher finds out that LCP1 is not running meaning
that it is not dispatched by PR/SM on a physical processor. Locking the logical
processor does not guarantee that the logical processors is really dispatched on
a physical processor. In this case the situation is very unfortunate. It does not
only hamper the current partition in completing its tasks it also effects other
partitions because LCP3 is dispatched on a physical processor (otherwise the
z/OS dispatcher couldn’t find out that no progress takes place).

160 Dispatching

The z/OS dispatcher sends a signal to PR/SM to inform PR/SM that the cur-
rently dispatched LCP3 can’t complete its processing because it is waiting on
the completion of LCP1, see figure 4.20. PR/SM takes the logical CP off the
physical processor and queues it back to its dispatcher queue behind LCP1
of the partition which sends the signal. Now it is possible for other LCPs or
other partitions to use physical processors. Once LCP1 is re-dispatched a great
chance exists too that the critical path processing will end soon so that task B
can obtain the system resource lock and complete its processing.

At this point we can summarize that interaction between the operating system
and the virtualization layer is desired to speed up the processing within the par-
tition but also to increase the throughput across all partitions on the hardware.

4.6. Limitations of Dispatching

CP

CP

L1

L1

L2

L2

L4
M

ai
n

M
em

or
y

Book

1 124

CP L1 L2

77

Remote

L4L3

Chip

CP L1 L2

32

Figure 4.21.: Relative Access to Data in Cache Structures for System z196

At first question we have to take a look again how big System z is. A System
z starting with z10 can have up to 77 physical processors which are distributed
across 4 books and System z196 has up to 96 and the zEC12 up to 120 pro-
cessors. 64 processors on z10, 80 on z196, and 101 on zEC12 can be used
for production work. On such systems it is possible to host up to 60 logical
partitions or very few big partitions may use all of the physical processors. Es-
pecially z/OS is designed to run multiple workloads concurrently and z/OS is
also able to use dozens of logical and physical processors. The discussion of

4.6 Limitations of Dispatching 161

the z/OS dispatcher showed that it is possible for for work to get selected from
any logical processor. This can mean that a unit of work which was selected on
a processor on book 1 is the next time selected on a different processor on a dif-
ferent book. This shows us that it is possible that work crosses the boundaries
of chips and books and that the access to data depends heavily where it resides
and on which logical and physical processor the work is being dispatched.

Figure 4.21 shows the book structure and relative latencies for accessing data
in different cache structures on System z196. System z196 as well as its pre-
decessor z10 and successor zEC12 have such high clock frequencies that it
is necessary to deploy multiple cache hierarchies to reduce the access time to
data. Another reason is that the high clock frequencies shrink the level 1 caches
which allow to access data within 1 cycle. As a result another cache which al-
lows to access data in 4 cycles (L2) is placed very close to the core and starting
with z196 a shared cache for all cores on the same chip (L3). Finally all cores
on the same book share a common Level 4 (L4) cache.

The access times shown in figure 4.21 are relative access times, not exact cycle
times. For a z10 they are slightly better because the clock frequency of the z10
is lower and for a zEC12 slightly worse. On the other hand the zEC12 has big-
ger caches as listed in table 2.1. By looking at these access times and especially
we can observe that it is very expensive to fetch data from a remote book or
even the memory which is even more expensive. It becomes obvious that the
performance of the systems can be optimized if work can be kept locally on the
same book or on the same chip. The best situation would be if it is possible to
re-dispatch a logical processor always on the same physical processor so that
it can find its local L1 or L2 cache content with a high probability. That’s the
base and motivation for Hiperdispatch which exactly tries to achieve that units
of work are re-dispatched on a small subset of processors so that the cache con-
tent which was once loaded doesn’t require expensive re-fetches from remote
cache structures or even main memory.

4.6.1. Large System Effects

Before we want to discuss Hiperdispatch in detail we will take a look at Large
System Effects. Table 4.4 shows examples of Relative Capacity Indicators for
z196 systems. The data is based on the Large System Performance Reference
(see [22]) which is a benchmark executed by IBM for all System z processors.
The benchmark encompasses different workloads and different system config-
urations. It also utilizes the CEC to 90% load. The result are curves which

162 Dispatching

show the capacity change depending on workload and configuration. The typi-
cally or most likely scenario for a customer is captured with the Average RCI.
The High RCI depicts the worst case and the Low RCI the best case. We can
observe the following:

• Adding another physical processor does not linearly increase the capac-
ity. This is no surprise because we can expect additional overhead. For
example cross cache invalidations and locking will reduce the effect of
a linear increase. Nevertheless we can see that the effect is not that bad.
The 50 way system is only 5.39% below the ideal curve when we in-
crease the capacity by 20 processors from a 30 way system. Adding one
processor for systems with less than 10 processors shows a capacity re-
duction of less than 2% and for systems with more than 30 processors of
less than 1%.

• On the other hand we can also observe that the spread between the best
and the worst case becomes bigger when we run a system with more
processors. While a 1 way only shows a spread of 4% it is already by
27% for a 30 way system. This increases the planning uncertainty and
makes a system more prone to workload and configuration effects while
the number of processors increases.

Processors Low Average High Spred: Low/High
1 Way 2.02 2.03 1.94 4.12%

10 Way 17.86 16.51 15 19.07 %
30 Way 46.4 40.35 36.6 26.78%
50 way 72.09 61.86 55.97 28.80%

Table 4.4.: Relative Capacity Indicators for System z196

These observations which can be based on measurements are another good
motivation to improve the dispatching in order to get high scalability for large
n-way systems.

All these measurements are executed on systems with Hiperdispatch active.
Without Hiperdispatch the RCI increase would be worse as well as the spread
between High and Low RCI. At the end of our discussion we will discuss the
benefit for using Hiperdispatch for selected installations.

4.7 Hiperdispatch 163

4.7. Hiperdispatch

Based on the observations and analysis of the z architecture we derive the fol-
lowing design objectives for Hiperdispatch (see figure 4.22):

PR/SM Keep logical processors as long as possible running on the same phys-
ical processor. Also try to re-dispatch a logical processor always to the
same physical processor whenever possible. The technique which is de-
veloped by PR/SM is named ”Vertical CPU Management”.

z/OS Do not allow that work can be dispatched freely on every logical pro-
cessor. Instead try to group work together and try to re-dispatch it only
on a subset of logical processors. This technique is named ”Dispatcher
Affinity” because it creates affinities of work to a subset of logical pro-
cessors. Hiperdispatch now is the combination of dispatcher affinity in
z/OS and vertical CPU management in PR/SM.

CP CP CP CP CP CP CP CP CP CP CP CP CP … … …

Book1 Book2

LCP LCP LCP LCP LCP LCP LCP

LPAR – z/OS

. . .
PR/SM1

2

Figure 4.22.: Hiperdispatch Objectives

The first question which may arise is why it isn’t possible to assign work just
to one logical processor. This is done on other platforms which also have the
difficulty to scale out across many processors. The answer is simple: z/OS runs
very diverse workloads. These workloads have very different requirements on
responsiveness and CPU access. Also z/OS provides a comprehensive mech-
anism to calculate dispatch priorities for the work (see chapter 5). Other plat-

164 Dispatching

forms are mostly dedicated to a single type workload with very similar resource
requirements. Therefore z/OS and PR/SM need to develop a different technique
to address the need of more localized CPU access.

4.7.1. Vertical CPU Management

We will start with a simple example. Lets assume we have a CEC with two
partitions: LPAR A and LPAR B. There are 5 PCPs on the CEC and each
LPAR has 5 LCPs. LPAR A has a weight defined of 350 and LPAR B a weight
of 150. Based on these definitions the guaranteed capacity for LPAR A results
to 3.5 PCPs and for LPAR B to 1.5 PCPs.

LPAR BLPAR A

PCP 0

High
A

High
A

Med
A

Low
A

High
A

PCP 1 PCP 2 PCP 3 PCP 4

High
B

Med
B

Low
B

Low
B

Low
B

High
A

High
A

High
A

High
B

Med
A

Med
B

Figure 4.23.: Vertical CPU Management with High Demand

The idea is to use this capacity as efficiently as possible. Therefore we assign 3
of the 5 LCPs for LPAR A to a fixed PCPs and give them a share of 100%. That
means whenever one of these LCPs has demand it is always re-dispatched on
the same PCP. These logical processors also have the highest shar in the con-
figuration and therefore they can always displace logical processors from other
partitions from their physical processors. These logical processors are named
Vertical High Processors (VH or High). For LPAR B the calculation results to
1 vertical high processor. Both partitions have a guaranteed share of 50% for
another PCP. A processor with a share of less than 100% is named Vertical
Medium Processor (VM or Medium). Each partition gets one vertical medium
processor in the current example. We cannot assign a fixed PCP to these pro-
cessors but can let them compete for the unused PCPs. If both partitions have
high demand there is only one unused PCP and the two Medium processors
from both partitions will compete for it, see figure 4.23.

4.7 Hiperdispatch 165

LPAR BLPAR A

PCP 0

High
A

High
A

Med
A

Low
A

High
A

PCP 1 PCP 2 PCP 3 PCP 4

High
B

Med
B

Low
B

Low
B

Low
B

High
A

High
A

Low
B

High
B

Med
A

Med
B

Wait State PSW

Figure 4.24.: Unparking of Low Processors

Finally both partitions have additional logical processors which are not covered
by the guaranteed share of the configuration. These LCPs are named Vertical
Low Processors (VL or Low) and they have no initial share of the PCP pool.
Also they are not used and placed in a parked state. That means no work is
being dispatched on them. But they are required if one partition has high de-
mand and can use CPU resources which are not used by the other partition. For
example if LPAR A loads a WAIT State PSW on any of its high processors it
means that no work is available for it and not all processor resources are being
used. Now it would be possible for LPAR B to use these resources if there is
enough demand. LPAR B can then un-park one or multiple of its vertical low
processors and dispatch work on them. The vertical low processors can now
use the unused physical processor resources of LPAR A until LPAR A receives
more work and the high processors start to execute work again, see figure 4.24.

4.7.2. Processor Shares

We already discussed that a vertical high processor has 100% share of a physi-
cal processor and that it is re-dispatched always to the same physical processor.
The share for the vertical medium processor is the fraction of this calculation.
The share of vertical medium processors is also used as share for unparked low
processors. That means all unparked low and the medium processors depend on
the same share fraction. If this fraction is smaller than 50% of a high processor
than it is too small to allow multiple unparked low processors to compete for
processing resources. Under this circumstance a high processor is converted
to a medium processor. Both medium processors now get now get half of the

166 Dispatching

share which in sum is above 100%. Figure 4.25. shows how the share of one
medium processor is divided between the medium processor and an unparked
low processor.

Physical-Processor

High-Logical-Processor-(LCP)
Always-100%-Share

Medium-Logical-Processor
And-ALL-Low-LCPs parked
n%-Share

Medium-Logical-Processor
And-1-Low-LCP-un-parked
n/2 %-Share

Un-Parked-Low-LCP
n/2 %-Share

Figure 4.25.: Vertical CPU Management and Processor Shares

The processor share calculation for low and medium processors divides the
total share of the medium processors by the sum of all medium and unparked
low processors:

Share of VM and unparked VL processors =
n∑

VM +
∑

Unparked VL
%

The share of the medium processors is used to fuel the unparked low proces-
sors and the share of VM and VL processors gets smaller when more VLs are
unparked. The LPAR Share is calculated as:

Share of LPAR(i) =
Weight of LPAR(i)∑n
j=1 Weight of LPAR(j)

4.7 Hiperdispatch 167

Based on the LPAR Share the Number N of VH processors and the share M of
the VM processor is calculated by:

Phys. Proc. Share of LPAR(i) = Share of LPAR(i) • Total Number of PCPs
= N.M

A VH is converted to a VM if M < 50% and N, and M change to NNEW and
MNEW :

NNEW = N − 1;MNEW =
1 +M

2

MNEW is the share for each of the two VMs.

4.7.3. Example for Unparking Low Processors

Figure 4.26 shows a RMF CPU Activity Report for a Partition which runs
HIPERDISPATCH=YES. The z/OS system named R71 has a physical proces-
sor share of 5.32 PCPs on a CEC with 16 PCPs. The partition is defined with 16
logical processors and based on the previous discussion this results in 4 VHs,
2 VMs and 10 VLs for R71. The processor share of each VM is 66.4% as long
as no VL is unparked.

The RMF reporting interval for this report is 1 minute and we can observe that
up to 2 VL processors were unparked. The processor share for the 2 VM and 1
unparked VL is 44.3% for each shared processor and when 2 VLs are unparked
33.2%.

There were two partitions on the CEC:

R71 has a physical processor share of 5.32 PCPs. This partition is depicted in
figure 4.26 and 4.27. The partition is very highly utilized for the complete
test run. Figure 4.27 shows all logical processors of partition R71, the
park and unpark activity of the low processors and the MVS Busy value.

R72 has a physical processor share of 10.67 PCPs resulting to 10 VH, 1 VM
and 5 VL processors. The partition and its park and unpark activity is
depicted in figure 4.28.

Both graphics depict the MVS utilization or MVS Busy value. This value tells
how much demand exist on the systems. We can observe that partition R71 has
a very high demand and always tries to unpark low processors. Partition R72
has high and varying demand which is always lower than 100%. Usually par-
tition R72 can process the work with the existing number of high and medium
processors and we only see two short unpark activities. We can also notice that

168 Dispatching

1
W

C
W
P
W
U
W

A
W
C
W
T
W
I
W
V
W
I
W
T
W
Y

z
/
O
S
W
V
1
R
9
W

S
Y
S
T
E
M
W
I
D
W
R
7
1
W

D
A
T
E
W
0
1
/
2
8
/
2
0
0
9
W

I
N
T
E
R
V
A
L
W
0
0
.
5
9
.
7
5
3

T
I
M
E
W
1
1
.
0
2
.
0
0
W

C
Y
C
L
E
W
1
.
0
0
0
W
S
E
C
O
N
D
S

-
C
P
U
W

2
0
9
7
W

M
O
D
E
L
W

7
1
6
W

H
/
W
W
M
O
D
E
L
W
E
2
6
W

S
E
Q
U
E
N
C
E
W
C
O
D
E
W
0
0
0
0
0
0
0
0
0
0
0
A
7
3
A
2
W

H
I
P
E
R
D
I
S
P
A
T
C
H
=
Y
E
S

0
-
-
-
C
P
U
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
I
M
E
W
B
W
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
O
G
W
P
R
O
C
W

-
-
I
/
O
W
I
N
T
E
R
R
U
P
T
S
-
-

N
U
M
W

T
Y
P
E
W

O
N
L
I
N
E
W

L
P
A
R
W
B
U
S
Y
W

M
V
S
W
B
U
S
Y
W

P
A
R
K
E
D
W

S
H
A
R
E

B
W

R
A
T
E
W

B
W
V
I
A
W
T
P
I

0
W

C
P
W

1
0
0
.
0
0
W

9
9
.
5
0
W

1
0
0
.
0
W

0
.
0
0
W

1
0
0
.
0

2
9
.
4
0
W

0
.
0
0

1
W

C
P
W

1
0
0
.
0
0
W

9
9
.
8
8
W

1
0
0
.
0
W

0
.
0
0
W

1
0
0
.
0

1
8
.
1
4
W

0
.
0
0

2
W

C
P
W

1
0
0
.
0
0
W

9
9
.
8
3
W

1
0
0
.
0
W

0
.
0
0
W

1
0
0
.
0

3
1
.
7
1
W

0
.
0
0

3
W

C
P
W

1
0
0
.
0
0
W

9
9
.
7
8
W

1
0
0
.
0
W

0
.
0
0
W

1
0
0
.
0

1
6
.
8
2
W

0
.
0
0

4
W

C
P
W

1
0
0
.
0
0
W

7
2
.
2
4
W

1
0
0
.
0
W

0
.
0
0
W

6
6
.
4

0
.
0
0
W

0
.
0
0

5
W

C
P
W

1
0
0
.
0
0
W

7
2
.
3
0
W

1
0
0
.
0
W

0
.
0
0
W

6
6
.
4

0
.
0
0
W

0
.
0
0

6
W

C
P
W

1
0
0
.
0
0
W

3
5
.
1
6
W

1
0
0
.
0
W

4
6
.
1
4
W

0
.
0

0
.
0
0
W

0
.
0
0

7
W

C
P
W

1
0
0
.
0
0
W

5
2
.
2
2
W

1
0
0
.
0
W

2
4
.
0
6
W

0
.
0

0
.
0
0
W

0
.
0
0

8
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

9
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

A
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

B
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

C
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

D
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

E
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

F
W

C
P
W

1
0
0
.
0
0
W

0
.
0
0
W

-
-
-
-
-

1
0
0
.
0
0
W

0
.
0
W

0
.
0
0
W

0
.
0
0

T
O
T
A
L
/
A
V
E
R
A
G
E
W

3
9
.
4
3
W

1
0
0
.
0
W

5
3
2
.
8

9
6
.
0
8
W

0
.
0
0

Figure 4.26.: RMF CPU Activity Report Example

4.7 Hiperdispatch 169

Hiperdispatch: Park and Unpark Activity

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10
:5

6:
02

10
:5

6:
24

10
:5

6:
46

10
:5

7:
08

10
:5

7:
30

10
:5

7:
52

10
:5

8:
14

10
:5

8:
36

10
:5

8:
58

10
:5

9:
20

10
:5

9:
42

11
:0

0:
04

11
:0

0:
26

11
:0

0:
48

11
:0

1:
10

11
:0

1:
32

11
:0

1:
54

11
:0

2:
16

11
:0

2:
38

11
:0

3:
00

11
:0

3:
22

11
:0

3:
44

11
:0

4:
06

11
:0

4:
28

11
:0

4:
50

11
:0

5:
12

11
:0

5:
34

11
:0

5:
56

11
:0

6:
18

11
:0

6:
40

11
:0

7:
02

11
:0

7:
24

11
:0

7:
46

[#
 o

f
P

ro
ce

ss
o

rs
]

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

[%
 U

ti
liz

at
io

n
]

HighVProcessors MediumVProcessors Un-ParkedVProcessors ParkedVProcessors MVSVBusyV

Figure 4.27.: R71: Park and Unpark

Hiperdispatch: Park and Unpark Activity

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10
:5

6:
01

10
:5

6:
23

10
:5

6:
45

10
:5

7:
07

10
:5

7:
29

10
:5

7:
51

10
:5

8:
13

10
:5

8:
35

10
:5

8:
57

10
:5

9:
19

10
:5

9:
41

11
:0

0:
03

11
:0

0:
25

11
:0

0:
47

11
:0

1:
09

11
:0

1:
31

11
:0

1:
53

11
:0

2:
15

11
:0

2:
37

11
:0

2:
59

11
:0

3:
21

11
:0

3:
43

11
:0

4:
05

11
:0

4:
27

11
:0

4:
49

11
:0

5:
11

11
:0

5:
33

11
:0

5:
55

11
:0

6:
17

11
:0

6:
39

11
:0

7:
01

11
:0

7:
23

11
:0

7:
45

[#
 o

f
P

ro
ce

ss
o

rs
]

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

[%
 U

ti
liz

at
io

n
]

HighVProcessors MediumVProcessors Un-ParkedVProcessors ParkedVProcessors MVSVBusyV

Figure 4.28.: R72: Park and Unpark

170 Dispatching

R71 must sometimes park all of its low processors. These periods get together
with higher demand periods on R72 so that the low processors of R71 can’t be
efficiently used. The parking and unparking takes place every 2 seconds and it
is controlled by the z/OS component Workload Manager. The following pages
will now discuss the implementation of Hiperdispatch in z/OS.

4.7.4. Hiperdispatch in z/OS

Topology?
has?changed

Build?Nodes
Create?Helperlists

Balance?Work?to?
nodes

Every?2s

HD=OFF?
HD=ON

HD=OFF?Horizontal?Mode

Assess?CPU?
demand

)Unwpark low?
processors

Yes

Yes

Yes

No

No

No

Figure 4.29.: Hiperdispatch Processing in z/OS WLM

Hiperdispatch is implemented in z/OS across the two operating system com-
ponents Workload Manager (WLM) and z/OS Dispatcher. WLM usually deals
with workloads, the user defined performance objectives for such workloads
and the resource demand of these workloads. It also deals with how resources
are utilized. Because WLM knows which workloads and work units execute in
the system it is suited to control how the work is distributed across processors.

4.7 Hiperdispatch 171

For Hiperdispatch WLM performs the following functions every 2 seconds, see
figure 4.29:

• It tests whether the configuration has changed from HD=OFF to HD=ON
or whether Hiperdispatch has been turned off completely (HD=OFF).
In the latter case Hiperdispatch is not used and all work is queued to
a single Work Unit Queue for each processor type. Also all LCPs are
treated equally by PR/SM.

• WLM obtains configuration information from PR/SM if Hiperdispatch
has been turned on (HD=ON) or if the topology has been changed. This
configuration information tells WLM about the polarization (High, Medium,
or Low) of every logical CP and on which chip and book the logical pro-
cessor is located. Based on this information WLM creates affinity nodes
and helper lists. Each affinity node has a work unit queue.

• Then WLM assesses the demand of the partition and how effective the
medium and low processors are running. Based on this information it
either parks or unparks low processors.

• Finally the work is distributed across the affinity nodes. After this step
each unit of work in the z/OS system has an affinity to one or multiple
affinity nodes depending on how many processor types are used by z/OS.

4.7.5. Affinity Nodes

The easiest way to explain how affinity nodes are created is by using a real
example. The configuration depicted in table 4.5 shows a CEC with 20 regular
physical processors, 1 zIIP and 4 partitions. The CEC is a z196 with 2 books.

Number Weight
Partition of logical Weight expressed zIIPs

processors in processors
SYS1 20 595 11.9 1
SYS2 9 200 4 1
SYS3 9 155 3.1 1
SYS4 2 50 1 0

Table 4.5.: LPAR Definition Example

172 Dispatching

The big partition SYS1 has a share of 59.5% of the regular physical resources
which results in 11.9 physical processors. WLM now attempts to create affinity
nodes with a minimum of 3 vertical high processors. As a result SYS1 gets 11
high, 1 medium and 8 low processors. In addition one medium is created for
the zIIP. Based on this results WLM creates 3 nodes with 3 to 4 high processors
each. Then the medium and low processors are distributed across the affinity
nodes based on their initial placement on books and chips.

VHVHVHVH

VHVHVH

VHVHVHVH

VLVL

VLVL

VHVHVH

VHVH

VM

VLVM VLVLVL

VLVM

VM

VM

VLVM VLVLVLVM

VLVM VLVLVL

S
Y
S
1

S
Y
S
2

S
Y
S
3

S
Y
S
4

B
oo

k1
B
oo

k2

C
h
ip
1

C
h
ip
2

C
h
ip
3

C
h
ip
4

C
h
ip
5

C
h
ip
6

C
h
ip
5

C
h
ip
6

Node1

Node2

Node3

Node4

Node1

Node2

Node1

Node2

Node1

Figure 4.30.: Affinity Nodes on a z196 System

PR/SM assigns a high processors to a physical processor. This assignment is
fixed and not changed as long as the whole configuration does not change.
PR/SM also assigns physical processors to medium and low processors but it
can’t be guaranteed that this assignment doesn’t change. Nevertheless WLM
uses this information to add the remaining processors to the affinity nodes. For
such a big partition and a CEC which consists of two books it is very likely that
big partitions span multiple books. WLM tries to minimize the nodes which
have processors from multiple books and usually adds processors from differ-
ent book just to one affinity node. On the other hand low processors which are
located on the same book are added alternating to nodes with high processors
of the same book.

4.7 Hiperdispatch 173

VH(SYS1) VH(SYS1)
VH(SYS1)
VH(SYS1)
VH(SYS1)

VH(SYS1)
VH(SYS1)
VH(SYS1)

VL(SYS1)
VL(SYS1)

VL(SYS1)
VL(SYS1)

VH(SYS1)
VH(SYS1)
VH(SYS1)

VL(SYS1)
VL(SYS1)

VL(SYS1)
VL(SYS1)

VM(SYS1)

VM(SYS1)

VH(SYS2)
VH(SYS2)
VH(SYS2)VM(SYS2)

VL(SYS2) VL(SYS2) VL(SYS2)
VL(SYS2)

VM(SYS2)

VH(SYS3)
VH(SYS3)

VM(SYS3)
VM(SYS3)

VL(SYS3)
VL(SYS3)

VL(SYS3)
VL(SYS3)

VM(SYS3)

Chip1 Chip2 Chip3

Chip4 Chip5 Chip6 Chip5 Chip6

Book 1 Book 2

VL(SYS4)

VM(SYS4)

Figure 4.31.: Assignement of Logical to Physical Processors

Figure 4.30 shows the LPAR layout and the affinity nodes created in each
LPAR. For the two books the physical processors are depicted. There are 21
physical processors in the configuration of which most are located on Book 1.
Five of the physical processors are on Book 2 on chips 5 and 6. Figure 4.31
shows the assignment of logical processors to the chips on each book. This
information determines that Node 1 of partition SYS1 in figure 4.30 gets all
the VL and the VM processor which are assigned to the second book. The VL
processors which are assigned to Node 1 and 2 are all located on Book 1 like
the VH processors of these nodes. In addition to the regular processors the par-
titions SYS1, SYS2, and SYS3 each have a logical zIIP and one physical zIIP
is located on Chip 1 of Book1.

Finally a separate node is created for the zIIPs on each partition which has a
logical zIIP. The logical zIIPs are all assigned to the same physical zIIP on
Chip 1 on Book 1.

4.7.6. Assessment for Parking and Unparking Low
Processors

Unparking of a low processors depends on the demand of the partition and
whether it is possible to efficiently execute the processor. The worst scenario

174 Dispatching

is that too many low processors are unparked all with very little share and
they can’t be dispatched anymore because processors with higher shares from
other partitions occupy the physical processors. So if both conditions men-
tioned above are fulfilled a low processor is unparked. This does not depend on
a special threshold because additional factors are considered, for example how
busy the CEC is. If the CEC is not highly utilized it is possible to unpark low
processors already at lower demand levels. Therefore the threshold to unpark a
low processor is dynamically adjusted based various factors.

Parking a low processor is the opposite activity. It is primarily driven by the sit-
uation that WLM observes low processors not getting enough access to physi-
cal processors or if they are just no longer needed. Again this is also dynami-
cally adjusted and the various conditions change on environmental conditions.

4.7.7. Balancing Work

UnitLofLWorkLHUoW)

NodeLAnchors

ForLregularLCPs

ForLzIIPs

ForLzAAPs

UoW Capacities

ForLregularLCPs

ForLzIIPs

ForLzAAPs

UoW Priority

UoW Balancing
Criteria

WLM
Balancer

regularLCPs
nodeL1

2 3

1 3

1 2

5

regularLCPs
nodeL2

regularLCPs
nodeL3

zAAP
nodeL4

zAAP
nodeL5

zIIP
nodeL6

1 23

5 2 13

1 2 3

Nodes HelperLNodes

Figure 4.32.: Balancing Work

The main task of WLM for Hiperdispatch is to balance the work across the
existing affinity nodes. Balancing the work attempts to distribute the work by

4.7 Hiperdispatch 175

dispatch priority as well as by CPU consumption. This should avoid that on one
node only high important work is executing while on another node only high
CPU consuming work executes. Each unit of work is described by its dispatch
priority and the capacity it has used on general purpose CPs, zIIPs and zAAPs.
For zIIPs and zAAPs separate nodes are created in the same way as for regular
CPs. The balancing algorithm then distributes all units of work across the three
CPU resources so that each unit of work receives a location for a regular CP
node, a zIIP node and a zAAP node5, see figure 4.32.

The second step is to define helper nodes. So far we discussed that WLM un-
parks low processors and evaluates these conditions every 2 seconds. But 2
seconds is a very long time interval. It can’t be avoided that a node might
get overloaded before WLM can react to it. For this purpose helper lists tell
the dispatcher from which node it should enable processors to help the over-
loaded node. We discussed helper processing already for the case when zIIPs
or zAAPs were not able to process all the work which should be offloaded.
The technique being used here is the same with the simple restriction that only
regular CP nodes can help zIIP and zAAP nodes.

4.7.8. Helper Processing

Node Type Processors Book Helper Nodes
High Medium Low Crossing left most first

Node 1 CP 4 1 4 Yes Node 2 Node 3
Node 2 CP 4 0 2 No Node 3 Node 1
Node 3 CP 3 0 0 No Node 2 Node 1
Node 4 zIIP 0 1 0 No Node 1 Node 2 Node 3

Table 4.6.: Nodes of System SYS1

Table 4.6 shows the helper nodes defined for the sample configuration shown
in figure 4.30. We remember that Node 2 and Node 3 were fully contained on
Book 1 while Node 1 has its medium and low processors located on Book 2.
The helper lists now try to define the preferred helper nodes for a node also on
the same book and if possible no book crossing node. That results in Node 2
and 3 being the preferred helper nodes. Node 1 is the helper node for the zIIP
node and it is listed as second best choice for Node 2 and 3.

5Assuming zIIPs and zAAPs are installed.

176 Dispatching

Hiperdispatch: Park and Unpark

0

2

4

6

8

10

12

14

16

18

20

09
:5

0:
01

09
:5

0:
39

09
:5

1:
17

09
:5

1:
55

09
:5

2:
33

09
:5

3:
11

09
:5

3:
49

09
:5

4:
27

09
:5

5:
05

09
:5

5:
43

09
:5

6:
21

09
:5

6:
59

09
:5

7:
37

09
:5

8:
15

09
:5

8:
53

09
:5

9:
31

10
:0

0:
09

10
:0

0:
47

10
:0

1:
25

10
:0

2:
03

10
:0

2:
41

10
:0

3:
19

10
:0

3:
57

10
:0

4:
35

10
:0

5:
13

10
:0

5:
51

10
:0

6:
29

10
:0

7:
07

10
:0

7:
45

10
:0

8:
23

10
:0

9:
01

10
:0

9:
39

[#
 o

f
p

ro
ce

ss
o

rs
]

HighLProcessors MediumLProcessors UnparkedLLowLProcessors ParkedLLowLProcessors

1 2 2

Figure 4.33.: Unpark Processing for System SYS1

Hiperdispatch: Percent of Native and Foreign Consumption for Node
1

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

09
:5

0:
01

09
:5

0:
39

09
:5

1:
17

09
:5

1:
55

09
:5

2:
33

09
:5

3:
11

09
:5

3:
49

09
:5

4:
27

09
:5

5:
05

09
:5

5:
43

09
:5

6:
21

09
:5

6:
59

09
:5

7:
37

09
:5

8:
15

09
:5

8:
53

09
:5

9:
31

10
:0

0:
09

10
:0

0:
47

10
:0

1:
25

10
:0

2:
03

10
:0

2:
41

10
:0

3:
19

10
:0

3:
57

10
:0

4:
35

10
:0

5:
13

10
:0

5:
51

10
:0

6:
29

10
:0

7:
07

10
:0

7:
45

10
:0

8:
23

10
:0

9:
01

10
:0

9:
39

[%
 o

f
w

o
rk

 e
xe

cu
te

d
]

%gNativegofgTotalgConsumption %gForeigngofgTotalgConsumption

1 2 2

Figure 4.34.: Helper Processing for Node 1 of SYS1

4.7 Hiperdispatch 177

Figure 4.33 shows the park and unpark activity for system SYS1 in the 20
minute time frame around 10 o’clock. Figure 4.34 focuses on Node 1. The
dark gray shaded area is the percentage of work being executed on a helper
processor that means not on Node 1. We can observe that helper processing
always takes place at least to a small extent. If the helper processing is less
than 5 to 10% then we have little unpark activity. Node overload conditions
were very temporarily and resolved quickly. For more than 10% helper pro-
cessing the conditions remain longer and eventually WLM reacts and unparks
low processors. Helper processing is requested by the z/OS dispatcher when
the dispatching queue for the node is too long. The dispatcher first asks one
logical processor from the preferred helper node to also select work from the
overloaded node. If that is not sufficient another processor is being asked and
so forth. Also only high processors are used as helper processors.

The correlation of unpark and helper processing is annotated by bullets 1 and 2
in figures 4.33 and 4.34. Bullet 1 shows that little unpark activity takes places
when the helper processing is also small. Bulltes 2 show high helper processing
followed by high unpark processing.

4.7.9. System Work

Finally we have to take a look at the kind of work which is being processed
in a system. So far we primarily took a look at end user related work from a
Hiperdispatch perspective. Nodes are built to guarantee that long running and
CPU intensive work does not land on just one node and also not only high
important transaction oriented work. We also took a look what can be done
to ensure that an overload situation of a node resolves quickly. With helper
nodes are an immediate solution and unparking of low processors is a long
term reaction of the system. There is still some type of work which requires
special consideration, that is system work.

System requests are typically very short running work units. Many of them
execute at very high dispatch priority. Putting such requests on a node work
queue can potentially result in keeping up system work from completing fast
enough. So we need another solution for it. For this reason a special work
unit queue is created outside of the node topology. System work is placed on
this work queue and one high processor of each node is dedicated to always
check this queue before it selects work from its local node work queue. In the
example of the installation depicted in figure 4.30 we can observe 3 nodes. One
high processor of each node will check the high performance work queue. If

178 Dispatching

that is not sufficient other processors of the nodes can be enabled as additional
help processors.

4.8. Hiperdispatch Analysis

At the end of this chapter we will examine of how much performance improve-
ment can be achieved with Hiperdispatch. At this point we should remember
that Hiperdispatch was introduced to allow scalability of large systems across
many physical processors. The design point is to help large partitions and large
CECs. For the comparison we will examine an installation similar to the previ-
ous example discussed in section 4.7.4. The CEC in this example is a z10 with
20 regular processors and 1 zIIP. There are 3 partitions on the CEC and we take
a look at the biggest partition which also has 3 nodes defined for regular pro-
cessors and 1 small node for the zIIP. For our analysis we compare three days
with Hiperdispatch turned ON (HD=ON) and three days with Hiperdispatch
turned OFF (HD=OFF).

We use data from the day time of the system between 08:00 to 16:00. During
this period Online Transaction (OLTP) work is running. OLTP work is much
more critical then batch work which runs mostly during the night. Also most
installations are interested in bets performance for their OLTP workload.

4.8.1. Processor Utilization

Figure 4.35 shows the Partition Utilization (LPAR Busy) for the time frame
from 08:00 to 16:00 by processor for each day. At this point we can already rec-
ognize a significant difference between Hiperdispatch ON versus OFF. When
Hiperdispatch is turned OFF all processors are equal. Hiperdispatch turned
OFF is depicted by the gray shades lines in the graphic. Usually the system
is not always 100% busy and logical processors load the WAIT State PSW.
The z/OS dispatcher tries to put processors with higher numbers more often
into a wait. As a result we can observe a curved line for the processor utiliza-
tion with processors with a high number entering more often a WAIT state than
processors with low numbers.

For Hiperdispatch On the graph is very different: We observe a similar behavior
for the high processors within the nodes. The utilization drops from the lowest
to the highest processor with the difference that the second processor is always
a little higher utilized than the first processor. The reason is that the second

4.8 Hiperdispatch Analysis 179

Utilization for Each Logical Processor

0

10

20

30

40

50

60

70

80

90

100

PRC)
0-

CP)
PRC)

1-
CP)

PRC)
2-

CP)
PRC)

3-
CP)

PRC)
4-

CP)
PRC)

5-
CP)

PRC)
6-

CP)
PRC)

7-
CP)

PRC)
8-

CP)
PRC)

9-
CP)

PRC) 1
0-

CP)
PRC) 1

1-
CP)

PRC) 1
2-

CP)
PRC) 1

3-
CP)

PRC) 1
4-

CP)
PRC) 1

5-
CP)

PRC) 1
6-

CP)
PRC) 1

7-
CP)

PRC) 1
8-

CP)
PRC) 1

9-
CP)

PRC) 2
0-

CP)
PRC) 2

1-
zII

P

[%
 U

ti
liz

at
io

n
]

HD=ON)Day)1 HD=ON)Day)2 HD=ON)Day)3 HD=OFF)Day)4 HD=OFF)Day)5 HD=OFF)Day)6

Node)1)kfor)HD=ONm Node)2)kfor)HD=ONm Node)3)kfor)HD=ONm

Low)Processors)which)are
parked)most)of)the)time
kfor)HD=ONm

Figure 4.35.: Hiperdispatch Analysis: Processor Utilization

processor of each node is always enabled to select system work from the system
work unit queue which is not part of the node topology. The utilization drops
for the medium processors and the low processors which are most of the time
in a park state show very little utilization.

4.8.2. Cycles per Instruction

For analyzing whether Hiperdispatch improves the performance of the system
we will analyze the Cycles per Instructions (CPI) which are required to process
the work. The CPI has two components and we will examine both of them:

1. The CPI depends very much on the workload which is processed and the
architecture. This values should be the same for the same system running
the same workload and it can highly vary between different workload
mixes and different systems. We name this value CPI from instruction
complexity.

2. The cycles per instructions need to resolve L1 cache misses. This is
something we would expect can be addressed better with Hiperdispatch
ON because we expect that fewer Cache reloads are required and data

180 Dispatching

Cycles per Instruction

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

PRCr
0-

CPr
PRCr

1-
CPr

PRCr
2-

CPr
PRCr

3-
CPr

PRCr
4-

CPr
PRCr

5-
CPr

PRCr
6-

CPr
PRCr

7-
CPr

PRCr
8-

CPr
PRCr

9-
CPr

PRCr 1
0-

CPr
PRCr 1

1-
CPr

PRCr 1
2-

CPr
PRCr 1

3-
CPr

PRCr 1
4-

CPr
PRCr 1

5-
CPr

PRCr 1
6-

CPr
PRCr 1

7-
CPr

PRCr 1
8-

CPr
PRCr 1

9-
CPr

PRCr 2
0-

CPr
PRCr 2

1-
zII

P

[C
yc

le
s

p
er

 In
st

ru
ct

io
n

s]

HD=ONrDayr1 HD=ONrDayr2 HD=ONrDayr3 HD=OFFrDayr4 HD=OFFrDayr5 HD=OFFrDayr6

Noder1r(forrHD=ON) Noder2r(forrHD=ON) Noder3r(forrHD=ON)

Figure 4.36.: Hiperdispatch Analysis: Cycles per Instructions per Processor

which is not in the L1 cache can at least be found with higher probability
in a near by cache structure. This value is named CPI from finite cache
and memory system.

Figure 4.36 shows the sum of both components. We can observe:

HD=OFF The CPI is pretty similar between the processors. Higher processor
numbers show a slightly higher CPI. The reason is that those processors
enter more often a wait state and therefore need to acquire cache content
more often than the processors which are less often in a wait state.

HD=ON The CPI is smaller as for HD=OFF. That’s what we hoped to see. We
also observe that 3 processors make an exception. These are the proces-
sors which select the system work. Such work requests are much smaller
and have a tendency to encounter more cache misses.

Table 4.7 summarizes the results of the comparison. The average CPI values for
the time frame from 8:00 to 16:00 shows smaller values for HD=ON compared
to HD=OFF. The differences ranges from 6 to 14% on a day by day comparison
with an average improvement of 9% improvement for HD=ON compared to
HD=OFF.

4.8 Hiperdispatch Analysis 181

Day CPI CPI from
instruction complexity finite cache/memory

Day 1 HD=ON 7.54 3.68 3.86

Day 2 HD=ON 7.62 3.69 3.93

Day 3 HD=ON 7.44 3.69 3.75

Day 4 HD=OFF 8.21 3.76 4.45

Day 5 HD=OFF 8.50 3.73 4.77

Day 6 HD=OFF 8.13 3.70 4.43

Table 4.7.: Hiperdispatch Analysis: Cycles per Instructions

We already discussed that we can observe two different components for the
Cycles per Instruction and table 4.7 also lists the CPI components. As expected
the instruction complexity only varies slightly between the days. The difference
between the Hiperdispatch ON to OFF days is about 2%. On the other hand the
CPI from finite cache and memory shows the difference between Hiperdispatch
ON and Hiperdispatch OFF. The values for Hiperdispatch OFF are between 13
and 27% higher compared to Hiperdispatch ON.

The summary of this analysis is that Hiperdispatch on a large partition of a
z10 system gives around 9% better throughput compared to not enabling this
function. At this point we have to mention again that the results highly depend
on the partition topology and workload characteristics.

4.8.3. Hiperdispatch on z196 and zEC12

The comparison was performed on a z10 system. A z196 provides an additional
cache structure and the expectation is that the results or benefits are at least
similar to z10. In fact z196 shows advantage for smaller configurations. Book
crossing of large partitions on a z10 is the most disturbing effect for system
performance. For smaller partitions the positive effect of Hiperdispatch dimin-
ishes. Especially on systems with many logical partitions which only have a
small share of the physical configuration the effect is small to non existent.

On z196 the additional cache structure allows to create positive effects already
within a book. Table 4.8 summarizes the results for z196 models. Again for
very small partitions which have a smaller share than 1.5 physical processors
no positive effect can be expected. But significant enhancements can be seen

182 Dispatching

Share of the partition Number of physical CPs+zIIPs+zAAPs
assumes 1.5 logical to physical ratio ≤16 17-32 33-64 65-80

0 ≤ share in processors < 1.5 0% 0% 0% 0%

1.5 ≤ share in processors < 3 2-5% 3-6% 3-6% 3-6%

3 ≤ share in processors < 6 4-8% 5-9% 6-10% 6-10%

6 ≤ share in processors < 12 5-11% 7-13% 8-14% 8-16%

12 ≤ share in processors < 24 - 8-16% 10-18% 11-21%

24 ≤ share in processors < 48 - - 11-21% 12-24%

48 ≤ share in processors < 80 - - - 14-26%

Table 4.8.: Hiperdispatch Benefit for System z196

already for installations with partitions with a share in the range from 3 to 6
physical processors.

On a zEC12 the L3 and L4 cache sizes have doubled compared to a z196. Even
with up to 6 processors per chip the cache size is significantly increased for
zEC12 processors. This again will result in a positive effect so that Hiperdis-
patch inevitable function for the newest System z generation. IBM took this
into account and with z/OS version 1 release 13 Hiperdispatch is the default
setting for System z mainframes.

4.9. Summary

Hiperdispatch deviates from Symmetric Multi Processing (SMP) in a way that
it defines a significance for logical processors and based on this significance
allows them to compete differently for the physical processors. In addition
Hiperdispatch groups logical processors in nodes and thus attempts to reduce
the probability that work is re-dispatch across all possible logical processors.
This has both positive and negative effects from which the positive effects are
stronger.

Pure SMP systems also have two significant disadvantages:

1. The work can run everywhere as discussed and thus reduces the cache
value, especially for large systems with many logical processors

2. Even if the work is dispatched in z/OS (or the operating system in gen-

4.9 Summary 183

eral) it is not said that it is running. Dispatcher delays of the virtualization
layer are not shown at the operating system level and even if the work
seems to process (logically) it might still have to wait because the logical
processors have to compete for physical resources.

Hiperdispatch addresses these concerns and provides better throughput for the
work executing on the systems. So it is highly dependent on the size of the
system. Table 4.8 shows the value of Hiperdispatch depending on the partition
and CEC size for System z196. Also Hiperdispatch is a very new development
on z/OS and its development is not at the end. System z10 was the first attempt
and the results shown in the example are already very encouraging that a way
has been found to grow and scale systems across many logical and physical
processors.

5. Workload Management

Workload Management is a discipline which tries to ensure that different types
of work can execute efficiently at the same point in time. MVS was the first op-
erating system which developed a System Resource Manager (SRM) allowing
an installation to define resource access for the work running on the system.
This has been further developed to a goal oriented approach which now allows
an installation to define objectives for the work to the system and the system at-
tempts to meet these objectives. The component is now named z/OS Workload
manager (WLM) with SRM as an integral part. We already saw in chapter 4
and section 3.5 that WLM and SRM play important roles for Hiperdispatch and
Storage Management on z/OS. In this chapter we will take a closer look at the
core functionality of WLM and we will discuss how the function is important
for scalability and high availability of the operating system and platform.

5.1. Workload Management Concepts

Industry wide two concepts of workload management components exist.

1. Entitlement based workload or resource management classifies work into
groups and then assigns fixed shares to the groups. That means that the
work of a certain group always has the same dispatch priority when it
gets dispatched. It has access to fix amount or at least a guaranteed
amount of memory resources and so on. It might also be possible that
work exceeds its shares but as soon as competition starts the workload
management component will re-enforce the specified access rights. Ex-
amples for such components are the System Resource Manager (SRM)
of MVS which was first implemented in 1974. Another example is the
AIX Workload manager which also works mainly with static shares.

2. Goal based workload or resource management. The main difference here
is that no shares are defined for the work which is classified to groups
or service classes. Instead the installation defines goals which is simi-
lar a service level agreement which an installation defines with its end

186 Workload Management

users. The system will then calculate actual resource shares based on the
goal definitions and adjusts them based on changing demand. Examples
for such functions are the z/OS Workload Manager component which
has been introduced in 1994. Another example is the HP-UX Workload
Manager component which uses similar techniques.

5.2. Why Workload Management

First we need to ask the question why and to which extend a workload manage-
ment function is really required. A mainframe environment like z/OS has the
characteristic that many different workloads execute at the same point in time.
Figure ?? in chapter 4 shows the physical utilization of a z/OS system from a
customer installation over a 3 day period. We can observe that many different
workloads like On-line Transaction Processing (OLTP), database processing
(DB2), customer written applications, Time Sharing users (TSO) and Batch
run on the system at the same time and at different times in one partition and
also in multiple partitions. Workload Management is now the attempt to op-
timize the throughput, to satisfy the end user goals for the work on a single
system, across a cluster and across a CEC.

The primary motivation for Workload Management is based for easier man-
agement of work in a complex environment. We will find out that this encom-
passes many features which support the scalability of the environment as well
the availability of the system and the workloads. In section 4.7 we already dis-
cussed WLM’s role for Hiperdispatch which is a crucial element for supporting
scalability in a large n-way environment.

5.3. Workload Management on z/OS

Figure 5.1 depicts how WLM is integrated in the systems. The installation clas-
sifies the work into service classes and defines performance objectives or goals
for it. The Workload Manager component (WLM) will use these goal defini-
tions to calculate the access to system resources based on actual demand and
work competition on the system. A very important aspect needs to be men-
tioned at this point: A workload management component on its own can do
little to really understand what is happening on the system. Therefore a very
important aspect is the coordination and communication with the main soft-
ware components which execute on the system, mainly the subsystems and

5.4 z/OS Workload Management Basics 187

WLMWLM

ServiceDPolicy
ServiceDClasses

• CICSVDImp=uVDzg3<gRd(s
• DDFVDImp=dVD)g3<gR(s
• TSOVDPer=uVDImp=fVDzg3<us
• TSOVDPer=dVDImp=bVD)g3<fs
• BatchVDImp=(VExVel=ug Goals

Reporting

communicate

assign remove

determineD
goalD

achievement

GoalDorientedDapproach
DifferentDclassesDofDservice
ClassificationDrules
ImportanceDbasedDgoalDattainment
SubsystemsDparticipate

Sysplex Management

IntelligentDResourceDDirector

BasicDResources
tCPUVDMemoryVDInOh

RecognizeDworkDonD
transactionDlevel

RoutingDSupport

ServerDandDBatchD
Management

Figure 5.1.: Conceptual View on z/OS Workload Management

middleware. We will find out that this aspect is really the primary strength
of the Workload Management implementation on z/OS which distinguishes it
from other platforms most.

5.4. z/OS Workload Management Basics

In order to understand Workload Management on z/OS we will first take a look
what an installation needs to do to setup a service definition which tells WLM
how to manage the work on the system. In this context we also have to under-
stand what types of work can be distinguished on the system and how trans-
actions are recognized and managed. Finally the installation must understand
how WLM presents results and how the installation can determine whether its
definitions are meaningful and whether they can be achieved.

5.4.1. Work Classification

The first step an installation must perform is to group work into classes with
similar attributes. Work Classification is done based on subsystem types. A
subsystem in this context is an operating system component or a program prod-

188 Workload Management

Subsystem-Type Xref Notes Options Help

Modify Rules for the Subsystem Type Row 1 to 5 of 5
Command ===> __ Scroll ===> PAGE

Subsystem Type . : JES Fold qualifier names? Y (Y or N)
Description . . . WLM Batch Rules

Action codes: A=After C=Copy M=Move I=Insert rule
B=Before D=Delete row R=Repeat IS=Insert Sub-rule

More ===>
--------Qualifier-------- -------Class--------

Action Type Name Start Service Report
DEFAULTS: BTCHDEF RDEFBTCH

____ 1 TN %%COPY%% ___ BTCHHIGH RDEFCOPY
____ 1 TN DDEB* ___ BTCHHIGH RDEFDDEB
____ 1 TN TSOS* ___ BTCHHIGH RDEFTSOS
____ 1 TC X ___ BTCHCRIT RDEFCRIT
____ 1 TNG JESSTD ___ BTCHNORM RDEFNORM

****************************** BOTTOM OF DATA ***************************

Figure 5.2.: Work Classification Example for Batch Jobs

uct which creates work in the system. This can be Started Task Control (STC)
which is responsible for creating address spaces and which is a part of the op-
erating system. Other important subsystems are the Job Entry Systems (JES2
or JES3) which create batch jobs and Time Sharing Option (TSO) for online
users. While STC together with the MASTER address space is responsible for
creating an address space, the work which is scheduled as batch jobs is more
abstract already. The individual batch job receives a classification based on
attributes which are meaningful for the operator, like the Job Class, the Job
Name, or the identification of the TSO user which submitted the job. The job
is not automatically put into execution state but first resides as an entry on the
JES spool data set. Nevertheless after the classification into a service class the
job can already be managed and its retention time in the system already starts
to count. After classifying the work WLM starts to understand the new work
entity and then it is able to measure its retention time and to manage it.

Nearly all major middleware components support WLM, like CICS, IMS, DB2,
and also non IBM middleware like Oracle and SAP. Units of work for these
middleware typically don’t result in creating a new address space. The units
of work are typically passed through the existing middleware address spaces.
WLM provides a set of application interfaces which allow to encapsulate the

5.4 z/OS Workload Management Basics 189

transactions and which allow the middleware to tell WLM when the transaction
starts and when it ends.

Figure 5.2 shows an example for Batch Job classifications. The subsystem type
is JES which applies to both job entry systems JES2 and JES3. Both job entry
systems support the same attributes, for example TN which is the ”Transac-
tion Name” meaning the name Batch job. Various other parameters are also
supported and the value of TN can have a different semantic for different sub-
systems, for example the TN classification parameter is used for the method
name on Websphere transactions or used for parameters from CICS commands
for the CICS subsystem.

Work classification assigns the units of work to a service class and optionally
to a report class. A report class is for fine granular reporting purposes and not
used for managing the work. In addition some subsystems require that a default
service class is defined which is used if none of the specified classification
parameters meet the input data defined in the WLM service definition. For
subsystems which do not require a default service class WLM assigns a service
class on its own. For this reason three pre-defined service classes exist:

• SYSTEM is reserved for system work. System work is recognized by
certain start attributes. This service class has a fixed dispatch and I/O
priorities which are the highest in the system. It is no target for dynamic
Workload Management.

• SYSSTC can be used by an installation for work which behaves similar
to system tasks. For example lock managers require fast access to CPU
resources but typically they do not consume much CPU. The installations
are encouraged to define such work to SYSSTC. SYSSTC is also the
default service class for all other Started Tasks in the system which have
no matching classification rule. But installations are encouraged to define
a default service class for subsystem STC to avoid that too much work
is classified to SYSSTC and thus runs at a too high dispatch priority
outside of the management scope of WLM.

• SYSOTHER is the default service class for everything else except for
Started Tasks. This service class has no goals and installations are en-
couraged to ensure that no work is classified to this service class.

A detailed description of work classification can be found in [32] and [33].

190 Workload Management

Service-Class Xref Notes Options Help

Modify a Service Class Row 1 to 3 of 3
Command ===> ___

Service Class Name : BTCHDEF
Description Default Batch
Workload Name BATCH (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

-- Period -- ------------------- Goal -------------------
Action # Duration Imp. Description
__ _ _________ _ __
__ 1 20000 4 Execution velocity of 10
__ 2 _________ _ Discretionary

**************************** Bottom of data *****************************

Figure 5.3.: Example for a Service Class Definition for Batch Work

5.4.2. Service Class Goals

The next step for the installation is to define goals for the service classes. These
goals consist of two aspects:

1. How important the work is. This is required to tell WLM which work
requires more attention especially when system resources become tight.
WLM will always take care that work with higher importance is able to
meet its objectives and if necessary reduces the resource access of lower
important work. This doesn’t mean that high important work could be
throttled in order to help lower important work. This again depends on
whether it is meeting its objectives or not. The importance levels are 1 for
highest and 5 for lowest. The system work, the service classes SYSTEM
and SYSSTC, have better resource access than the managed work in
importance levels 1 to 5. Also a level below importance 5 exists which
is named Discretionary, meaning that no specific goal is defined.

2. The performance expectation or the performance objective for the work.
This expresses what the installation expects how the work should per-
form on the system and it is expressed as a response time or a through-
put oriented value. The performance objective must consider the ability

5.4 z/OS Workload Management Basics 191

of the system to execute the work and it must consider the behavior of
the work. That means it is not possible to define a goal that work should
complete within one second if the runtime characteristics of the work
requires at least 2 seconds processing time.

To summarize these aspects it is important for the installation to create a clear
picture which work is more important for the business than other work and
it requires that the system administrators do understand the basic execution
characteristics of the work. The service class is the entity which is used by
WLM to manage the work of the system.

Figure 5.3 shows an example for a service class definition for Batch work. The
service class is named BATCHMD and it is associated with a workload named
Batch. The workload association is just a grouping mechanism. A resource
group can be associated with the service class and an attribute CPU Critical
can be specified for it. We will discuss this later when we discuss how an
installation can minimize the dynamic management capabilities of z/OS WLM.

The service class BATCHMD has two periods. Up to 8 periods can be defined.
Periods are another definition which can be used for certain type of work. A
period defines for how long a service goal should be used for a unit of work.
The idea is that it is sometimes unpredictable how long work will execute.
The best example are TSO users or Batch work. Most TSO users probably
just do editing which does not require a lot of system resources. Therefore a
TSO users may have a very high importance level and very tight goal defini-
tions. But some TSO users may execute a command list or even a long running
foreground program. Using the high importance or stringent goal definition for
those users would be very unfortunate for the system. Therefore periods define
an aging mechanism which tells WLM at what point lower important goals
should be applied. The period length is defined as multiple of service units. We
will discuss the concept of service units at the end of this section.

5.4.3. Response Time Goals

A response time goal can be used for a service class if the execution or retention
time of the work can be measured in the system. Measuring the response time
is a task which the subsystem or middleware component must perform. z/OS
Workload Manager provides a set of interfaces and constructs which allows
these components to encapsulate their units of work and enables the measure-
ment. If these conditions are met it is possible to define either an average or
percentile response time goal. The average response time goal assumes that the

192 Workload Management

units of work complete on average within the defined time period. This really
requires uniformly behaving work because very few long running units of work
can skew the goal achievement and therefore put a big burden on managing the
work in the service class.

A percentile response time goal is better suited to manage work which also
shows some execution time variations which is the case for most work on a
computer system. The percentile response time goal is defined as a certain
percentage of the completing transactions which must end within the defined
time period. In order to measure this a distribution is defined around the goal
value from 50% of the goal definition to 5 times of the goal definition and one
bucket for all transactions which need longer to complete.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

<0.5 1.025 2 2.5 5 >5

bucket width = 0.075 x response time goal = 0.5 x resp. time goal

Figure 5.4.: Response Time Distribution Buckets

Figure 5.4 shows the bucket definitions for a response time distribution. The
buckets are created in the following way:

• One bucket is defined to capture all transactions which require less than
50% of the time of the goal definition

• Between half the goal to two times the goal 21 equidistant buckets are
defined.

• Seven more coarse grain buckets are defined to capture the longer run-
ning transactions.

• One bucket is defined to capture all transactions which need more than 5
times of the defined goal to complete.

5.4 z/OS Workload Management Basics 193

bucket number =


1 if rt ≤ 0.5 × goal
1 + rt−(goal/2)

1.5×(goal/20) 0.5 × goal < rt ≤ 2 × goal

21 + rt−2×goal
(goal/2) 2 × goal < rt ≤ 5 × goal

28 rt > 5 × goal

Figure 5.5 shows a sample response time distribution for a service class. The
distribution is always generated for all service classes with a response time
goal. The distribution is created for a specified time period which depends
on the number of ending and running transactions. The running or in-flight
transactions are also captured in order to make sure that long running and not
ending transactions are used for managing the service class too.

ServicekClasskTransactions

141

2

108

23
10710

1 1
11

83

13
1 2 0 0 0 3

13
2 0 0 0 0 0 1 0 3

0

20

40

60

80

100

120

140

160

0
.5

0
0

0
.5

7
5

0
.6

5
0

0
.7

2
5

0
.8

0
0

0
.8

7
5

0
.9

5
0

1
.0

2
5

1
.1

0
0

1
.1

7
5

1
.2

5
0

1
.3

2
5

1
.4

0
0

1
.4

7
5

1
.5

5
0

1
.6

2
5

1
.7

0
0

1
.7

7
5

1
.8

5
0

1
.9

2
5

2
.0

0
0

2
.5

0
0

3
.0

0
0

3
.5

0
0

4
.0

0
0

4
.5

0
0

5
.0

0
0

5
.0

0
0

ResponsekTimekBuckets

[f
ko

fk
T

ra
n

sa
ct

io
n

s]

0

10

20

30

40

50

60

70

80

90

100

[%
ko

fk
al

lk
T

ra
n

sa
ct

io
n

s]

Goal
Bucket

<

<

Figure 5.5.: Response Time Distribution for a Service Class

5.4.4. Execution Velocity Goals

It is not always possible to measure the response time of work in the system.
For example for most address spaces this is not meaningful. An address space

194 Workload Management

is created at a certain point in time and lives for an unpredictable time period
in the system. Also for certain batch work which consists of very long running
jobs a response time goal is not suited. In order to capture this work and provide
manageability WLM looks at the times when the work can execute and when
it must wait in the system. This can best be done by examine the execution
phase of work and when it requests a resource. If it must wait for the resource
a ”delay state” is counted for the execution unit and when it can use it a ”using
state”. This also requires that the system constantly observes all work and all
managed resources in the system. In z/OS this is done every 250 millisecond
and one of 4 four states is counted for each execution unit in the system:

Idle The execution unit is doing nothing and does not request any resource

Using The execution unit is using a managed resource like the CPU or an
I/O device. Using CPU means the execution unit (a TCB or SRB) is
dispatched and executing on the processor. Using an I/O device means
that the execution unit waits on the completion of a related I/O request
and the I/O request is not delayed in the I/O subsystem.

Delay The execution unit is waiting on a managed resource, like CPU, I/O
or memory. It should be noted that memory only shows up as a delay
state because all work always uses some amount of memory it is just
the question whether this is enough.

Other or Unknown
Means that the system can’t determine the exact state of the execution
unit. This is mostly the case because the execution unit is delayed by
a resource which is not under the control of the system, for example a
subsystem lock.

Measuring the system can be correlated to a traffic system with cameras tak-
ing snapshots in defined time intervals at the crossing points of the traffic. If a
vehicle passes a crossing point a ”using state” is counted and if it must wait a
”delay state”. The speed of the work in the system can now be defined as the
quotient of all measured using states to all managed states in the system (with-
out Idle and Other). This speed is named ”Execution Velocity” in z/OS and it
is a measure for the throughput of work1. It is also used as a goal definition for
the installation to define a performance objective for work which is not suited
for response time goals:

Execution Velocity = 100× Total Using States
Total (Using + Delay) States

1A velocity is normally a directed speed but in z/OS it is just used synonymous for speed

5.4 z/OS Workload Management Basics 195

5.4.5. Managing Work in z/OS

In section 4.2 we discussed which types of work can be distinguished in a z/OS
system. At this point we want to take a look how these workload types can be
managed.

Started TSO Batch On-line Transaction Processing
Criteria Tasks OMVS APPC CICS/IMS WAS, DB2,

and all others
Unit of Work Unknown Press ENTER Begin of Job informed by Enclave create
Begin/End Terminal Out End of Job subsystem Enclave delete
Duration Indefinite short medium very short short

medium long medium
Management using and by response by response by response by response

delay time time and time time and
states using/delay using/delay

states states

Table 5.1.: Possible Goals for Workload Types

Table 5.1 lists the workload types which we already introduced in section 4.2.
Furthermore the table lists whether z/OS Workload Manager is able to recog-
nize the begin and end of individual work requests as units of work or whether
those requests are unknown. z/OS WLM can manage the requests if it is able
to recognize their begin and end. Then it is possible to measure the response
time of the unit of work or transaction2.

We can distinguish between work which is instrumented and those which isn’t.
Started tasks are typically not instrumented and they can only be managed with
the help of execution states and towards an execution velocity goal. TSO and
OMVS users are instrumented by the system. Whenever the user presses the
ENTER button a signal is sent to the System Resource Manager3 which tells
the system that a new transaction has started. When the result is returned to
the terminal another signal is sent which informs of the end of the transaction.
For batch or APPC work the Job Entry System and the Advanced Program to
Program Communication (APPC) Service send the signals when a new work
unit starts its processing and also signal when the processing is completed.

2The term transaction is often used instead of unit of work or work request
3SRM is part of WLM

196 Workload Management

More complex is the situation for transactions of databases and transaction
monitoring systems. A transaction monitoring system controls the flow of many
end user transactions at the same time. Those requests are typically very short
running. The transaction monitor guarantees access to resources like databases
which complies the requirements of atomicity, consistency, isolation and dura-
bility.

The transactions are often executed in one or multiple address spaces which
manage a set of TCBs or SRBs. The TCBs and SRBs are assigned to the in-
coming work requests. WLM developed a set of application interfaces allow-
ing the transaction monitoring systems and databases to inform WLM when a
work request starts and when it is completed. At this point we distinguish for
On-line Transaction Processing (OLTP) work between CICS and IMS and all
other types. This is based on the instrumentation which is used by these trans-
action monitors. We will shortly discuss the concepts and their implications on
managing work in a z/OS system.

5.4.6. WLM Transaction Management

Work Manager
Control Region

Work Consumer
Application Regions

Database Server

Work Request

Database Calls

Database

Figure 5.6.: WLM Transaction Management

WLM manages the performance characteristics of transactions. A general model
for transactions executing in the system is shown in figure 5.6. Typically trans-
actions are short running requests which get into the system through a network
connection. A control region, or daemon receives the requests, validates them
and sends them for execution to an application processing region. The applica-
tion processing region starts a program on behalf of the transaction and usually

5.4 z/OS Workload Management Basics 197

the transaction accesses a data base on z/OS. This is one model. It is also possi-
ble that only one address space does everything and it is possible that multiple
application server address spaces are involved. A transaction can also go out-
side the system again but the simple mode shown in figure 5.6 captures the
behavior which can most often found for CICS, IMS, Websphere and DB2
transactions.

The terminology transaction usually refers to its quality attributes, like atom-
icity, consistency, isolation, and durability. From a WLM point of view these
attributes are not visible and for managing the performance characteristics of
requests it is not important whether such attributes apply or not. Therefore the
term ”Business Unit of Work” (BUoW) is often used instead of transaction.

5.4.7. Enclaves

An Enclave is a mechanism to group execution units (TCB, SRB) across ad-
dress spaces. This allows to classify transactions or business units of work in-
dependent from the address spaces to which the TCBs or SRBs belong to. This
also allows to apply different goals for the service classes of the enclaves and
therefore to manage the enclaves as separate entities in the system. Because en-
claves encapsulate individual business units of work they also allow to report
those business units of work through on-line or historical monitoring products.

Figure 5.7 shows one processing model for enclaves as it is used by Websphere
transactions. The Websphere Ciontrol regions, named Work Manager Address
Space A, receives the requests from the network, validates them and classifies
them by creating an enclave to WLM. Together with creating the enclave the
work unit attributes are passed to WLM which compares them to the installa-
tion definitions and associates the enclave with a service class. Finally WLM
passes an enclave token back to the control region.

The control region passes the request to a server region. This is done by exploit-
ing a queuing mechanism which is provided by WLM which we will discuss
later. A TCB in the server manager address space B eventually selects the re-
quest and then joins the enclave. By joining the enclave the TCB is logically
moved to the enclave because from now on the performance objectives of the
enclave service class apply to it and no longer the performance objectives of the
address space service class. The TCB loads a program to process the work re-
quest and at the end leaves the enclave. the enclave will finally be deleted either
from the server manager or the originating work manager. The work manager
which created the enclave is also the enclave owner.

198 Workload Management

Enclaves allow to apply performance characteristics which are typically not
as stringent as the performance objectives of the address spaces of the mid-
dleware. the address spaces are part of the infrastructure and they typically
require fast access to system resources while the enclaves represent the pro-
duction work which should follow rules of a service level agreement. Enclaves
allow to individually manage transactions therefore it is also possible to cre-
ate different service classes for different types of work requests, for example
work coming from ATM machines might require preferential service to work
requests coming from a banking counter.

ServiceJClass

WLM

Enclave

WorkJManager
AddressJSpaceJA

ServerJManager
AddressJSpaceJB

CREATE

PASS

…

TCB
SELECT

ClassificationJinformation

TCB

token

owner

JOIN

processing

LEAVE

token

token token

Figure 5.7.: Enclave Processing Model for Websphere

Finally it must be mentioned that the depicted model only applies to Web-
sphere. DB2 Distributed Data Facility (DDF) which also uses enclaves exten-
sively uses a different model. Instead of passing the work request to a server
address spaces, DDF creates a special SRB to process it. DDF now uses two
different types of enclaves:

1. Short living enclaves which encapsulate just one transaction or user re-
quest. This is similar to how Websphere uses enclaves.

5.4 z/OS Workload Management Basics 199

2. Long living enclaves. In this case only a certain number of enclaves is
created in the system and never deleted. New requests are associated
with an enclave and at the end dis-associated from them but the enclave
is never deleted. In this case the enclave represents many transactions
and it is for example not possible to use response time goals for them
because the begin and end of them is not defined.

DB2 Stored Procedures also use enclaves and their processing model is more
like the model for Websphere but their are still gradual differences. Other prod-
ucts and components again use either short or long living enclaves with their
own processing model.

5.4.8. Managing CICS and IMS Transactions

Another method exists for managing CICS and IMS transactions. This method
does not encapsulate the individual work requests it rather counts the types
of work requests used in each execution address space and it also provides a
tracking mechanism for execution states.

The general flow is similar to the previous example discussed for Websphere.
A CICS TOR (Terminal Owning Region) receives work requests from outside
the system, verifies them and classifies them to a service class for performance
management. But in this case no envelope is created which represents the trans-
action in the system. Only a control block named performance block (PB) is
associated with the transaction and it is used to track execution states. The work
request is usually also passed to another region an application owning region
(AOR). Based on the previous classification the AOR also associates a PB with
the transaction. During execution the AOR now uses interfaces to book keep
execution states in the PB, see figure 5.8.

The PB has another more important meaning from a performance manage-
ment perspective. WLM runs through all PBs in the system every 250 mil-
liseconds and monitors their association to service classes. This gives WLM
a picture which transactions are executed by which application region. Based
on these measurements WLM creates sets of address spaces which process the
same transactions types. For this it is independent of how many transactions
of each type are executed by the address spaces, just the type matters. These
sets of address spaces are internally used as dynamic internal service classes.
For managing the the goal fulfillment of the transaction service classes at some
point WLM needs to decide for which associated internal service class it must

200 Workload Management

change the resource access. So finally achieving the goals for CICS transac-
tions means to select the correct internal service class which is associated with
the address spaces for which the resource access is adjusted. This also means
that transactions of the same type depending on the server address space they
are executed in might receive different service depending on other transactions
types also executing in those address spaces. It can also be shown that for N
external service classes for CICS or IMS transactions up to 2N − 1 internal
service classes can be created.

CLSFY
INIT

SWCH

RPT

INIT

NTFY

PB PB

WLM
attributes

E
xe

cu
ti

o
n

dP
h

as
e

B
eg

in
-t

o
-E

n
d

dP
h

as
e

Transactiondenters

Transactiondleaves

CICSdTOR CICSdAOR

ServicedClass

sampling

token

tokentoken

token

token

token

token

token

Figure 5.8.: Processing Model for CICS Transactions

When the transaction completes the association to the PB is removed and the
execution and end-to-end response times are tracked and book kept. WLM also
collects this information on a microsecond basis and updates the service class
statistics accordingly. By doing this the statistics of completed transactions and
their response times is always correct for the associated service classes.

Detailed descriptions on how WLM manages business units of work can be
found in [13], [27], [28], [33], and [34].

5.4 z/OS Workload Management Basics 201

5.4.9. Service Definition

User/Interface

Couple
Data/Set

BackupBackupBackup

Systems

h/h/h

Sysplex

Service/Definition

Service/Policy:/ NameJDescription

General:/ Service/Definition/Coefficients
I/O/Management
Parrallel Access/Volumes

Classification/Rules:
Qualifiers/ Service/ClassJ/Report/Class

Workload:/ NameJDescription

Service/Class:/ NameJDescription
Resource/Group

Period:/NumberJ/Duration
ImportanceJ/Goal

Resource/Groups: Name
Min/and/Max/Capacity

Report/Class: Name

Application/Environment:/ Name
JCL/procedure/to/Start/Server/AS

Scheduling/Environment:/ Name
Resource/Affinities/Scheduling/Policies

Figure 5.9.: WLM Service Definition

The service classes, goals and classification rules are saved in a service defi-
nition together with additional grouping and reporting mechanisms. A service
definition consists of multiple service policies which describe modified sets of
goals for the specified service classes. A workload is a higher grouping mech-
anism and in addition it is also possible to specify report classes for more gran-
ular reporting purposes. A service class always consists of at least one and up
to eight periods.

In addition to service classes, service policies, classification rules and report
classes the service definition contains additional constructs like resource groups,
application environments and scheduling environments. We will discuss them
in section 5.6 when we take a look at advanced topics of Workload Manage-
ment.

202 Workload Management

The service definition is defined through a user interface which can either be
an ISPF based and therefore host based user interface or a web based applica-
tion. The result of the definition can either be saved for later use or it can be
”installed” on a couple data set. A Couple Data Set is a special data set which
contains cluster information for a parallel sysplex. We will discuss them in
chapter 6. But this already shows that a service definition applies to all systems
in a z/OS cluster which is named a sysplex or parallel sysplex. This concept
shows one of design objectives for z/OS Workload Management: by assigning
a service definition to all systems of the same sysplex the definition for all these
systems must only be made once. Adding additional systems does not require
to add a new definition, the existing definition can simply be used for it too.
Therefore the WLM definitions support scalability of sysplex environments by
keeping and using only one definition for the complete sysplex.

5.4.10. Service Unit

The duration of a period is defined as the amount of consumed service. The
units of this service consumption is a Service Unit (SU). Period aging is not
the only reason to measure service consumption. Especially in the past service
consumption was used in many SRM algorithms. A service unit is composed
of CPU and SRB service, memory consumption, and I/O traffic. Service Def-
inition Coefficients are used to weight these factors against each other and the
result is the service consumption of a unit of work or a service class:

Service = (CPU weighting × CPU Service Units)
+ (SRB weighting × SRB Service Units)
+ (IOC weighting × I/O Service Units)
+ (MSO weighting × Storage Service Units)

CPU Service Units are the TCB execution time multiplied by an SRM constant
which is model dependent. SRB Service Units are basically the same except
that SRB execution time is used. The differentiation between CPU and SRB
service units allows to distinguish user related from system related work by
changing the weighting factors.

I/O Service Units are measurements of individual data set I/Os and JES spool
reads. SRM counts the number of EXCPs which give a good indication of the
number of I/Os executed. Storage service units are the number of central stor-
age pages multiplied by CPU service units and divided by 1

50 . In fact storage

5.4 z/OS Workload Management Basics 203

service units were of much interest as long as the memory size was constrained
by 2 GB and it is no longer relevant. In z/OS environment the recommendation
for the weighting factors are:

CPU=SRB=1.0; IOC = 0.3; MSO=0

The SRM constant is model dependent. It represents the speed of the proces-
sor multiplied by multi processing factors which reflect the number of logical
processors configured to the system. IBM publishes SU/sec for all of its Sys-
tem z processor models but it must be understood that these numbers are very
rough sizings only and for capacity planning purposes not ideal. Much better
suited are values taken from the Large System Performance Reference. It must
also be mentioned that IBM publishes different types of Service Units for dif-
ferent purposes. The System z IBM web pages give more information to these
subjects.

5.4.11. Goal Achievement

Finally we have to take a look how an installation can evaluate whether the
goals for their service classes have been achieved or not. This also leads over to
the next section where we will discuss the basic algorithms for z/OS Workload
Manager.

Goal achievement can be supervised with a very simple metric the Performance
Index (PI). This metric is also the base for all internal goal adjustments. It is
simply defined that a value of 1 means that the goal is achieved, if the value
is smaller than one it is over achieved and if it is bigger than one the goal is
missed. The deviation from one is also a measure for over or under achievement
and thus a possibility to project how resource adjustments can influence the
measured goal achievement. The definition is also pretty simple. For a response
time goal the actual measured response time is divided by the goal value and
for an execution velocity goal the goal value is divided by the actual value:

Response Time Goal : PI =
Actual Acieved Response Time

Response Time Goal

Execution Velocity Goal : PI =
Execution Velocity Goal

Actual Achieved Execution Velocity

The definition and calculation of the performance index is pretty simple and
we only have to take a look how it is calculated for a percentile response time

204 Workload Management

goal. When we introduced the percentile response time goal we already men-
tioned that we count all ended transactions for a certain time period up to the
defined bucket at which we get the defined percentage value. In figure 5.10
the percentile response time goal for the service class is defined that 90% of
all transactions should end within 1 second. In order to determine the actual
average response time we must count all transactions until we meet the 90%
value up to the 11th bucket. This bucket corresponds to a response time value
of 1.175 to 1.25 seconds. Now we use 1.25 seconds as the actual achieved re-
sponse time and because of the goal of 1 second the performance index results
to 1.25, so the goal is not being achieved in this example.

ServicekClasskTransactions

141

2

108

23
10710

1 1
11

83

13
1 2 0 0 0 3

13
2 0 0 0 0 0 1 0 3

0

20

40

60

80

100

120

140

160

0.
50

0
0.

57
5

0.
65

0
0.

72
5

0.
80

0
0.

87
5

0.
95

0
1.

02
5

1.
10

0
1.

17
5

1.
25

0
1.

32
5

1.
40

0
1.

47
5

1.
55

0
1.

62
5

1.
70

0
1.

77
5

1.
85

0
1.

92
5

2.
00

0
2.

50
0

3.
00

0
3.

50
0

4.
00

0
4.

50
0

5.
00

0
5.

00
0

ResponsekTimekBuckets

[f
ko

fk
T

ra
n

sa
ct

io
n

s]

0

10

20

30

40

50

60

70

80

90

100

[%
ko

fk
al

lk
T

ra
n

sa
ct

io
n

s]

Goal Bucket

<

<

Bucket where the goal is fulfilled

Figure 5.10.: Actual Response Time for a Percentile Response Time Goal

5.5. z/OS Workload Manager Algorithms

We will now take a closer look on how WLM calculates the access to resources
for work running on the system. At this point the installation has the work clas-
sified into service classes and defined goals to tell WLM how the work should

5.5 z/OS Workload Manager Algorithms 205

execute on z/OS. The steps for WLM are now to capture runtime statistics for
the work, to assess whether the service classes meet their goals and if neces-
sary to adjust the access to the system resources. A detailed description which
is the base for the this section can be found in [13].

5.5.1. Data Sampling

WLM must collects state information about the work in the system which can
then be used to assess and calculate the necessary resource access for the ser-
vice classes. State data is the using and delay information for every execution
unit in the system. The data is collected for every execution unit (TCB or SRB)
and accumulated on a per address space or enclave basis which encapsulate the
execution units. Because it is possible that multiple execution units execute for
an address space or enclave it is also possible to obtain more than one state for
them. The data is then further accumulated on a service class basis and used on
this granularity for resource adjustment.

Table 5.2 shows the available state information. As already mentioned there are
4 state categories: Idle, Other, Using and Delay. An address space or enclave is
considered idle if no execution units wants to use any kind of resource. So this
is really a single state occurrence while multiple execution units which execute
could be found in different states. z/OS Workload Manager actively manages
4 resources: CPU, I/O, Memory and Server Address Spaces. In addition it is
able to take actions for lock contentions but this is on a per request basis and
not dependent to the goal achievement of the work.

We can observe that even with only four resources we see multiple different
states for each resource. For example three different CPU types and states ex-
ist. Using states for regular CPs, for zAAPs and for zIIPs and accordingly the
same amount of delay states. For memory or storage many more delay situa-
tions can be observed. For example paging delays can be divided in multiple
categories for private and common storage. In addition it is necessary to rec-
ognize whether an address space is being swapped out and either can’t swap in
(Auxiliary Swap Delay or is not allowed to swap in Multi-Programming (MPL)
Delay. Another long list of delays exist for enclaves because enclaves may not
be associated with an address space and then it is necessary to identify the
address spaces from which enclaves require storage.

Two very special delays areCPU Capping Delay and WLM Queue Delay:.

• CPU capping delay occur if WLM sets execution units non dispatch-

206 Workload Management

able. This is done if the resource consumption of the work needs to be
throttled.

• WLM queue delay relate to WLM managed work queues which are of-
fered to middleware applications to control the server address spaces
which process the work.

System State Using Delay CPU I/O Storage Other
IDLE ×
OTHER ×
CPU Using × ×
zAAP Using × ×
zIIP Using × ×
DASD I/O Using × ×
CPU Delay × ×
zAAP Delay × ×
zIIP Delay × ×
CPU Capping Delay × ×
DASD I/O Delay × ×
Auxiliary Private Paging Delay × ×
Auxiliary Common Paging Delay × ×
Auxiliary Virtual I/O Delay × ×
Auxiliary Hiper-Space (SCR) Delay × ×
Auxiliary Hiper-Space (CAC) Delay × ×
Auxiliary Swap Delay × ×
Auxiliary Cross Memory Delay × ×
Multi-Programming (MPL) Delay × ×
Shared Paging Delay × ×
Enclave Private Paging Delay × ×
Enclave Virtual I/O Delay × ×
Enclave Hiper-Space Delay × ×
Enclave MPL Delay × ×
Enclave Swap Delay × ×
Buffer-pool Delay × ×
WLM Queue Delay × ×

Table 5.2.: WLM Data Sample Categories

Not all delay categories are still meaningful. Some were invented related to a
newer technology in the past which is no longer really important, like Hiper-

5.5 z/OS Workload Manager Algorithms 207

spaces. Other delay categories are introduced just recently like buffer pool de-
lay for DB2 buffer pools.

5.5.2. Histories

Example 1 Example 2 Example 3
Time Timer 6 Timer 16 Timer 64

Row Timer mm:ss Data After Roll Data After Roll Data After Roll
1 1 00:10 5 0 5 0 5 0
2 2 00:20 11 16 11 5 11 5
3 4 00:40 22 22 22 11 22 11
4 16 02:40 35 35 35 22 35 22
5 64 10:40 51 51 51 86 51 35

Last 21:20 77 77 77 77 77 51

Table 5.3.: Data Aging in WLM Histories

The state data needs to be accumulated on a service class basis. For each ad-
dress space or enclave 28 counters for each state category exist which represent
the occurrence of the state for a defined time period. The state information is
collected every 250 milliseconds for address spaces and enclaves and accumu-
lated on a service class every 10 seconds. At this point the state counters of the
address spaces and enclaves are reset. For evaluating and assessing the resource
access of the work a 10 second period might be too small. In order to decide
a change a certain minimum number of states should be available. For many
algorithms WLM tries to accumulate at least 500 state samples as a base for all
comparisons. 500 state samples may or may not be accumulated during the last
10 seconds so it is necessary to create a longer history of state information. The
history is created by accumulating the actual state information every second,
fourth, 16th and 64th interval into a new bucket. Altogether 6 buckets of the 28
counters are kept for each service class with the first bucket representing the
current expired 10 second interval, the second bucket the last 20 second, the
third bucket up to last 40 seconds and the fifth bucket up to the last 10 minutes.
The sixth bucket is an exception. The data is not rolled (accumulated) from the
fifth to the sixth bucket. Instead the sixth bucket is cleared and the fifth bucket
is copied to the sixth bucket. Table 5.3 shows three examples how data is rolled
up in the buckets:

208 Workload Management

to the first bucket is added to the second bucket. The first bucket
is cleared.

Example 2 At every 16th interval the data of the fourth bucket is added to
the fifth bucket. The fourth bucket is cleared. Then the data of
the third bucket is added to the fourth bucket and the third bucket
is cleared and so forth.

Example 3 At the 64th interval the buckets 1 to 5 are moved up to the buckets
2 to 6 and the 6th row is deleted. At this point after 21 minutes
the data is expired.

System State Adjusted Row1 Row2 Row3 Row4 Row5 Row6
IDLE 2734 0 110 130 2384 12302 10187
OTHER 20 0 0 0 20 20 157
CPU Using 72 0 0 1 71 411 266
DASD I/O Using 1097 0 0 0 1097 5581 3512
CPU Delay 43 0 0 0 43 178 135
DASD I/O Delay 165 0 0 0 165 815 577

... All other data is zero ...

Table 5.4.: Service Class State Sample Matrix

Table 5.4 shows an example from a service class control block. The example
only depicts the state data samples which are not zero. The first step is to roll
the history as described before. Then WLM tries to find the row up to which
at least 500 non idle state samples are available. The rows up to the row which
meets the minimum 500 sample criteria are summed together and the result
is placed in the Adjusted samples. All further decisions which require state
samples use the adjusted samples. If 500 samples can already be found in the
first row, the second row will also always be used. That means WLM bases its
decision always on at least 20 seconds of state data.

Annotations

• Using the history approach allows to cover a long period of state infor-
mation, up to 20 minutes in this case with minimal memory occupancy.

• Values of the first two rows are doubled when they are added to the
adjusted state vector to give more emphasis on the recent events in the
system.

Example 1 At every second 10s interval the data which was just accumulated

5.5 z/OS Workload Manager Algorithms 209

• The base for all decisions are the non-idle samples. Idle samples are just
tracked for reporting purposes.

• Using the history approach in this way also has the effect that decision
for a service class X might be based on a 20 second time period while
the decision for service class Y might be based on a 10 minute time
period. It is also possible that these service classes are traded against
each other. But this is meaningful because it is better to base decisions
on a statistically meaningful number of state information than on a fixed
intervals.

• Response Time Distributions are also captured in histories in the same
way as the state data. Also an adjusted distribution is created every 10
seconds which is used to determine the goal achievement of the service
class.

Rate MPL Slots (Address Spaces in Memory) to
Ready Users

M
P

L
 D

el
ay

Figure 5.11.: Data Plots

5.5.3. Data Plots

Another possibility to track information exists if a relationship between the
data exists. Such data can be saved in a plot. The idea of a plot is to learn about
the relationship in the current system and then to identify the changing point

210 Workload Management

when the relationship of the information causes a drastic change in system or
work behavior. A simple example are the number of address spaces which are
allowed to reside in storage (Multi Programming (MPL) Slots) in relation to
the READY USERS of a service class. The quotient of MPL slots to READY
USERS can be tracked versus the MPL delay. MPL delay is measured if an ad-
dress space becomes READY but it is not in memory. If the address space can’t
be swapped because the the Multi Programming Targets of the system keep it
out the number of available slots is too low. So a relation ship between the
rate of MPL slots to Ready Users and MPL delay can be continuously tracked
(see figure 5.11). At some point the MPL delay will become very small or even
zero because enough slots are available. On the other side if too few slots exists
the MPL delay is very high. The knee of the curve is now the interesting area
where changes for few slots will make a big difference. For a situation when
system resources become tight WLM will try to manage the work at the edge
of the knee so that the MPL delays do not go up too drastically and on the other
hand the work does not flood the system.

Annotation

One of the most effective macro controls of the system is to define how many
address spaces are allowed to be swapped in (Multi Programming Level). This
allows to restrict work which has a tendency to over utilize the memory but also
restricts work which may over utilize the processors. Work which is swapped
out can’t use the processor and it’s memory content is eligible to get paged out.

5.5.4. Policy Adjustment

The process of adjusting the resource access for work towards the user defined
goals is named Policy or Goal adjustment. Figure 5.12 depicts the basic policy
adjustment process. This process runs every 10 seconds. In between data is col-
lected, for example the state sampling data and system utilization information.
The collected data is accumulated by service class at the beginning of the pol-
icy adjustment process. At the same time the goal achievement of the service
classes is calculated. The value of the goal achievement the performance index
(PI) is used to trigger the goal adjustment process.

The goal adjustment starts whenever a service classes misses its goals meaning
the PI is greater than 1. It can also already start when the PI of all service classes

5.5 z/OS Workload Manager Algorithms 211

Select3Receiver

Determine3Bottleneck

Fix3Bottleneck3for3selected3receiver
1. Select3Donor,3one3or3multiple3using3the3

same3resource
2. Assess3changes3on3receiver3and3donors
3. Adjust3access3and3usage3of3resources3if3

assessment3shows3a3positive3result

Has3a3change3been3made?

Are3there3other3bottlenecks?

Are3there3other3receivers?

End

Goals PI

Collected3and3Summarized3Data

Adjust3Resource3Access

Figure 5.12.: Policy Adjustment Process

212 Workload Management

is better than 1. The trigger would then be to assess whether it is possible to
help service classes which are close to a PI of 1 and thus balance the system
resources better between the work of the system. Another factor are service
classes which do not have a specific goal; discretionary service classes. It is
also possible to help such work but we will ignore these cases for simplicity
purposes.

We assume that some service classes do not meet their goals so it is necessary
to assess whether changing the access to resources is possible and can help
the work. First WLM selects a receiver for which the resource access needs
to be changed. This is the service classes with the highest importance and the
worst PI. The next step is to determine the bottleneck. For this reason WLM
examines the adjusted sample set and identifies the delay category with the
highest value. WLM tries to fix this bottleneck. It selects one or multiple donors
which could help the service class in question. The first important selection
criterion is that the service class which is selected also uses the same resource.
For example a service class which shows I/O problems might use the device
addresses between 100 and 200. So only service classes which also use device
addresses of the same range are of possible help and service classes which use
completely different devices can be ignored. Such overlapping conditions are
calculated in the preparation steps of this algorithm.

The donors are selected in a way that service classes with the lowest importance
meeting their goals are selected first. In addition it must be possible that the
donors can give up access to resources for the requesting service class. For
example a lower important service class which already has a lower dispatching
priority is of no help for a service class which WLM wants to help with CPU
resources. Finally two important checks have to be made:

1. Does the selected donor really help the service class? We already showed
an example where this isn’t the case but it is also possible that the donor
might help but the help is not sufficient so the algorithm needs to look
for additional donors.

2. Is it allowed to use the selected donor? The dominating factor here is
how the performance index of the donor will change if the change will
be made. We will discuss this in more detail but it is clear that a donor
with lower importance can always be used. So the question really is of
interest if donors with equal or higher importance than the receiver have
been selected.

At the end of this assessment a set of questions is asked which determine how
long the algorithm runs. The first most important is whether the change which

5.5 z/OS Workload Manager Algorithms 213

WLM just has assessed could be made? If that’s the case the algorithm is com-
pleted. That means the algorithm is completed as soon as it is successful for
one target receiver. We will later see that it is possible to end up with multiple
service classes being helped but only one service class is selected as primary
target. The idea behind this solution is to change the system only on behalf of
one entity and then observe the change again before another change is done.
If it wasn’t possible to perform the change the algorithm checks whether it is
possible to help the service class for the next delay category following the idea
that the second or third best help might still accomplish something. If no other
resource can be assessed for this service class then another receiver is chosen
which is the next important service class with the second worst PI and so forth.

5.5.5. Policy Adjustment Example: Fix MPL Delay

We will describe the algorithm in more detail with assessing an MPL adjust-
ment for a service class. The Multi Programming Level is adjusted by changing
two thresholds which exist for each service class in the system, see figure 5.13.

MPL Out Target

MPL In Target

Swap Out

Swap In

Figure 5.13.: Swapping Related to MPL In and Out Targets

The MPL OUT target is the high bound. If this value is set to a value of N
below 999 it means that no more than N address spaces are allowed to reside

214 Workload Management

in memory at the same time. Every additional address space is being swapped
out. If a swapped out address space gets ready and wants to use the processors
it needs to get swapped in but at the same time another address space of the
same service class must be swapped out. This is called an Exchange Swap.

The low bound is the MPL In Target. If this value is set to a value of M below
999 it means that at least M address spaces must be swapped in. If the In Target
is not satisfied an address space is swapped in even if this requires to swap out
other work. The purpose of the Out target is to restrict work of a service class
to avoid that the work dominates the system. The purpose of the In target is
to guarantee a certain service for work of a service class and to avoid that it
gets swapped out completely. It should be mentioned that the Out target can be
set to zero. That is a kind of an emergency brake for the system to push work
completely out in order to survive extreme over load situations. Also as already
mentioned MPL is one of the most effective controls of the system.

Ready User Plot

Max(MPL Target, Current MPL)

R
ea

d
y

U
se

rs

MPL Delay Plot

0.5 1 1.5
Rate: MPL Slots to Ready Users

M
P

L
 D

el
ay

Ready Users delayed
(not enough MPL sloty available)

Figure 5.14.: Plots to Adjust MPL In and Out Targets

In order to adjust the targets two plots are maintained for each service class.
The plots are updated every 10 seconds with a new plot point and the changes
develop over time. The two plots are depicted in figure 5.14:

1. The Ready User Average Plot tracks the number of ready users against
the current MPL or the MPL out target (assuming the out target is set be-
low 999). If the ready users back up this is an indication that not enough
MPL slots are available. If no out target is set this can mean that other
work is dominating the system so a possible action might be to set an in
target for the work. The plot is also used if an out target is changed in
order to predict how the number of Ready Users might change. The plot
is used in two ways:

5.5 z/OS Workload Manager Algorithms 215

decrease. So for a receiver we will look to the right of the current
entry and we will try to find the change when additional slots will
not provide any significant help

• For the donor to assess how many more Ready Users can be ex-
pected if we lower the out target. For this purpose we will take a
look to the left.

2. With the number of Ready Users found in this plot we will then try to
find a corresponding or expected MPL delay. At this point we have to
mention that we can’t calculate a change of Performance Index based on
the change in number of Ready Users. But we can do this calculation
if we understand the change in delay. Therefore we will use the MPL
delay Plot which we already used as an example in section 5.5.3. WLM
calculates the rate of Ready Users to MPL slots and then obtains the
expected MPL Delay from the MPL Delay Plot. This delay value is then
used for all further projections.

5.5.6. Projecting a Change for Accessing a Resource

The example above gives the algorithm a projected delay either for a receiver
or a donor of a change. This projected delay which was read from the MPL
delay plot can also be obtained from a state history or it may be calculated for
other cases. The value is used as the starting point to project how the perfor-
mance index changes. The calculation differs whether an execution velocity or
response time goal has been defined for the service class.

Execution Velocity Goal

For an execution velocity goal the projected delay can be immediately used
to calculated a projected execution velocity and a projected local PI. The pro-
jected delay in formulas below is the changed delay for the state category which
is assessed plus the sum of all other measured delay samples.

Projected Exvel =
Using Samples

Using Samples + Projected Delay

Local Projected PI =
Execution Velocity Goal

Projected ExVel

• For the receiver to project at what point the number of ready users

216 Workload Management

Response Time Goal

For a response time goal the response time change will be calculated from the
actual response time multiplied with the proportion of the delay delta to all non
idle samples. The projected response time delta is used to calculate the local.

Delay∆ = Current Delay− Projected Delay

Projected RT∆ =
Delay∆

Non Idle Samples
× Actual RT

Local Projected PI =
Projected RT∆

RT Goal

Local and Sysplex PI

In the calculations above we obtained a local PI as result. WLM is a sysplex-
wide function. That means a goal assessment also assesses the change for the
work within the cluster. Information is sent to all systems which include the
local observations for a service class on a system in the cluster. These local
observations are summarized by each system to sysplex-wide observations and
they are used to calculate a sysplex-wide PI for each service class:

Sysplex PI =
Local Observations

Sysplex Observations
× Local PI

For the projection the calculation is the same:

Sysplex Projected PI =
Local Observations

Sysplex Observations
× Local Projected PI

5.5.7. Receiver Value Assessment

The next step is to assess whether the projected change helps the service class.
The receiver value is basically the result of the previous calculations and whether
the anticipated change really helps the receiver. For adjusting MPL it is possi-
ble to either find a number of new MPL slots for the receiver which reduces the
MPL delays significantly or not. If such a number exists it is only necessary to
find enough donors, so the following Net Value test is by far more interesting.
For other resources like adjusting CPU dispatch priorities it might be very well

5.5 z/OS Workload Manager Algorithms 217

possible to find donors which all show Net Value but they altogether do not
provide enough Receiver Value.

5.5.8. Net Value Assessment

Donor Meet Sysplex Meet Sysplex Miss Sysplex Miss Sysplex
Receiver Meet Local Miss Local Meet Local Miss Local
Meet Sysplex
Meet Local 3 5
Meet Sysplex
Miss Local 1 2
Miss Sysplex
Meet Local 4
Miss Sysplex 2 1
Miss Local

Table 5.5.: Net Value Decision Matrix

The Net Value test considers both performance indexes: Sysplex and Local. It
also ranks the receiver and donors. The ranking is derived from the importance
level. The terms Meet Sysplex, Miss Sysplex, Meet Local and Miss Local in the
decision matrix shown in table 5.5 means whether the local or sysplex PI is
above or below one.

The decision matrix in table 5.5 shows under which circumstances changes can
be made and under which circumstances not. The first row for example shows
that a change is never made for a high important service class which meets all
goals and the selected donors whether they are of the same or lower importance
miss their goals. Also the first column shows that a change will always be
made if the receiver misses a goal and the donor does not. The inner part of
the matrix covers the more interesting cases. To understand them properly we
need to define three terms:

PI GAIN means that the performance index of the receiver is improved or
the performance index of receiver and donor come closer together.

GS GAIN means that the service for a resource group of which the minimum
is not fulfilled is improved.

PI OR GS GAIN
means that either of the two conditions is fulfilled.

218 Workload Management

With these definitions we can explain the decisions in table 5.5:

1. Net Value exists if the receiver has higher rank, or receiver and donor
have the same rank and a PI OR GS GAIN exists

2. Net Value exists if the receiver has higher rank than the donors

3. Net Value exists if PI OR GS GAIN exists

4. Net Value always exists

5. No Net Value ever

5.5.9. Policy Adjustment Example: Fix CPU Delay

The policy adjustment process is an iterative process. In order to show this
we will discuss a possible scenario for adjusting dispatch priorities for service
classes. For this example we do not care about the projections we will only
focus on possible alternating adjustment steps.

Dispatch Priorities

Table 5.6 shows the dispatch priorities which are used in the system. The two
highest priorities FF and FE are fixed for system work which is classified to
the service classes SYSTEM and SYSSTC. The range between F9 and FD
is not used and it is followed by the range of dispatch priorities which are
dynamically adjusted for user defined service classes with a goal definition.
At the top of this range a dispatch priority is reserved for small consumers.
The idea is that it has not much value to exercise the adjustment algorithm for
service classes which consumes very little CPU. Because they consume that
little it is better to just give them access to CPU and to no longer worry about
them. The decision which service classes fall into this category is made every
10 seconds and the number of service classes is also restricted which can run
at this dispatch priority level.

The dynamically managed dispatch priorities are the range in which the adjust-
ment algorithm attempts to optimally place the service classes to ensure their
goal achievement and the best possible system throughput. Another small range
of unused dispatch priorities is followed by the range for discretionary work.
Discretionary work always runs at the bottom of the dispatch priority ranges.
An algorithm called Mean-Time-to-Wait adjustment is used to differentiate the
work units of this category based on their CPU and I/O intensiveness. CPU

5.5 z/OS Workload Manager Algorithms 219

Dispatch priority Service
decimal hexadecimal Class
255 FF SYSTEM
254 FE SYSSTC
253 FD
... ... Not used
249 F9
248 F8 Small consumer
247 F7 Installation defined Service Classes
... ... Dynamically managed
204 CC dispatch priorities
203 CB Not used
202 CA
201 C9 Discretionary
... ... Mean Time to Wait
192 C0 Algorithm
191 BF Quiesced work

Table 5.6.: Dispatch Priorities in z/OS

intensive work will always have the lowest DP of the range. If work units are
transferring I/O and have to wait their dispatch priority is being raised so that
they can get faster access to the CPU once the I/O transfer has been completed.

Work which is quiesced is placed at the bottom of the range. This seems a little
strange because the work can still process. But there are other possibilities from
really preventing it to make any progress.

Evaluating Dispatch Priorities

The example in figure 5.15 shows a typical situation of 9 service classes with a
service class named I which misses its goals and the evaluation steps to adjust
the dispatch priorities for I. The algorithm has also already detected that CPU
delay is the primary reason and the next step is to fix the CPU bottleneck. It
is assumed that service class I is at dispatch priority 241 together with 2 other
service classes G and H and 6 other service classes at a higher dispatch priority.
WLM always gives out the dispatch priorities in steps of 2 therefore the next
higher DP is 243.

The CPU algorithm first attempts to raise the DP of service class I. Then it

220 Workload Management

calculates the net and receiver values and if this is not successful it attempts
in the next step to lower the DP of service classes with higher dispatch prior-
ities. This alternating technique of raising and lowering dispatch priorities is
used until either all possibilities have been evaluated or a possible and feasible
change couldn’t be found.

247

245

243

241

A B C

D

E

G H

F

I

A B C

D

E

G

HF I

B A

B

CD

E

G

HF I

A

B

CD

E

G

HF

I

Dispatch
Priorities

MovebE:bUp MovebG:bDown Moveb3:bUp FinalbResult

SelectbReceiver:bI
E6MovebIbup
G6MovebHbupb
• AsbabresultbHb

becomesb
secondaryb
receiver

Result:b
• Netbvaluebok
• Receiverbvalueb

notbsufficient

36MovebCbdown
46TrybtobmovebBbdownb

4notbpossibleT
56MovebAbdown
66TrybtobmovebDbdownb

4notbpossibleT

Result:
• Netbvaluebok
• Receiverbvaluebnotb

sufficient

76 MovebIbup

Result:
• Netbvaluebok
• Receiverbvaluebok

Receiver: I
SecondarybReceiver:b H

Donors:b A)D)C)E)F)Gb

Figure 5.15.: Example for Adjusting Dispatch Priorities

The first step is to assess what it means to raise the DP of service class I to
243. This change will effect the service classes G, H, E, and F. G and H are
affected because their work units can’t compete equally with service class I
anymore and E, and F are affected because they have to compete with this
work now. WLM will deduct the CPU consumption of I from DP level 241
and adds it to DP level 243. In addition it projects how many CPU delays
can be reduced by this change. The receiver value test projects the result for
the receiver service class I. The net value test assesses whether the change is
allowed for all potential donors.

We will assume that the change for I from 241 to 243 is possible for the service
classes G, E, and F but not for service class H. The next test is what it would
mean to also raise the DP for H from 241 to 243. This allows H to compete
with E, and F and still with I. After assessing this second change we assume

5.5 z/OS Workload Manager Algorithms 221

that it is possible for the goal achievement of E, F, and G.At this point we have
the situation that we helped a service class which was not our primary target.
We need to help it in order to continue with the assessment for service class I.
So service class H is a secondary receiver, a service class which is being helped
in order to help another service class.

We further assume that first set of changes is possible but not sufficient to help
service class I. The next step is to evaluate whether the DP of other work can be
lowered. This may or may not help but if it doesn’t it can be a good preparation
for another attempt to raise the DP of service class I. In this step we examine all
service classes with higher dispatch priorities and calculate various possibilities
how the DP of the service classes can be lowered. We assume as a result that
it is not possible to lower the DP of B and that it is also not possible to lower
the DP of D to the same level as E, F, H, and I. But we assume that A and C
can move to the lower DP level. After this step we accomplished to have more
work at DP 245 but we haven’t helped service class I.

The next step again is to raise the DP of I to 245. In this case we assume that the
DP can be raised. Now we have to calculate the receiver value and the impact
on all donors again: A, D, C, E, F, H, and G. We assume that the impact on the
donors is acceptable and that raising the DP of I to 245 now provides sufficient
receiver value. At this point the algorithm terminates and the change can be
carried out. As a result of this change we end up with a very different situation
from where we started. We lowered the DP of 2 service classes A, and C and
we increased the competition for four service classes: D, E, F, and G.

Such complex changes take place very often. Many installations have 15 to 25
service classes which quiet often require complex assessments. It also possible
that the DP of the service classes either move to the high or low end of the
managed dispatch priority range. In that case the DPs are spread across the
DP range. This process is named unbunch. It is also possible to restrict certain
changes by marking service classes as critical. We will discuss such restrictions
in the next section.

5.5.10. Policy Adjustment Example: Time-line for
Changes

The examples above analyzed the individual assessment steps. For a typical
load change on a system a set of adjustments might be necessary to get the sys-
tem back to a stable state. The following example is a controlled test scenario
for a system with 4 major workloads: CICS, IMS, TSO and Batch. CICS, IMS,

222 Workload Management

and TSO process a constant flow of work. At some point a set of batch jobs is
submitted which change the load utilization of the system and which change
the existing stable situation of the system. We will observe how the system
reacts and how long it takes to get back to a stable situation again.

Service Class Definition

Service Class Period Goal Type Goal Value Importance

CICS 1 Avg. RT 0.1s 2

IMS 1 Avg. RT 10s 3

TSO 1 Avg. RT 0.1s 3
2 Avg. RT 1.0s 3
3 Avg. RT 3.0s 4

Batch 1 ExVel 10 5

Table 5.7.: Sample Service Class Definition

Table 5.7 depicts the service class definitions. CICS is the most important work
in the system which also has pretty stringent goal4. IMS has a lower importance
and a very relaxed goal definition. TSO is defined with three periods to age out
longer running requests. For the test we will only follow the first period which
covers the short running requests and the majority of the TSO load. Finally
BATCH is the lowest important work in the system.

The scenario starts with a balanced system, see figure 5.16. At this point the
system is only utilized to around 90%5. The CPU consumption of the service
classes is measured in CPU Service Units. In the beginning we can observe
very constant service rates for CICS, IMS and TSO, and nearly no service
consumption for Batch. Then at a certain point we submit a lot of Batch jobs
and observe how the service rates and also the performance achievement of the
work changes.

Before we start the batch work we can observe that CICS is just meeting its
goals, see figure 5.17. The PI for CICS is very constant around 0.9, so just
below 1. For TSO first period and IMS the goal is highly overachieved and
the PI is well below 0.5. When the batch work is started we can observe the
following aspects:

4The test was performed on a very small test system
5This is not explicitly shown in the graphic

5.5 z/OS Workload Manager Algorithms 223

ServiceIRatesIofItheIWork

0

500

1000

1500

2000

15
:0

0:
10

15
:0

1:
52

15
:0

3:
34

15
:0

5:
17

15
:0

6:
59

15
:0

8:
42

15
:1

0:
24

15
:1

2:
06

15
:1

3:
49

15
:1

5:
31

15
:1

7:
14

15
:1

8:
46

[S
er

vi
ce

/s
ec

]

CICS IMS Batch TSO

Start Batch Work

Figure 5.16.: Sample Work Execution

• The system utilization goes up to 100% (not shown)

• The service rate for batch is initially much higher than the service rate
of the other work

• The service rate for IMS drops. This is an indication that batch initially
has an equal DP to IMS. If it would have a higher DP the service rate for
IMS would go to 0.

• The PI of Batch is initially low but then goes way up. The PI of TSO and
IMS also raise. The raise of the PI for TSO is also an indication that DP
of TSO was equal to IMS and Batch.

• CICS seems to be unaffected. The PI does not change and the service
rate remains constant. So the DP for CICS is initially higher than for the
other work and also remains higher throughout the whole test scenario.

When WLM starts to change the DP for TSO, IMS and BATCH we can recog-
nize that the service rate for IMS comes back. At the same time the PI drops
below one. The PI drops to a very low value again because of the relaxed
goal definition for IMS. We can also observe that the service rate after the
first changes goes above its original value. From that time on we can observe
that the DP for IMS, TSO and BATCH are constantly changed because the ser-

224 Workload Management

PerformanceCIndexCofCtheCWork

0

0.5

1

1.5

2

2.5

3

15
:0

0:
10

15
:0

1:
52

15
:0

3:
34

15
:0

5:
17

15
:0

6:
59

15
:0

8:
42

15
:1

0:
24

15
:1

2:
06

15
:1

3:
49

15
:1

5:
31

15
:1

7:
14

15
:1

8:
56

[P
er

fo
rm

an
ce

CI
n

d
ex

]

CICS IMS Batchhi TSO
~ 1:30 minutes

Figure 5.17.: Sample Goal Achievement

vice rate for these service classes do not remain constant. The question comes
up why these changes occur? the answer is simple. IMS has a higher impor-
tance than Batch but also very relaxed goals. When it meets its goals it also
overachieves the goals to a high extent. This can’t really be avoided because as
soon as IMS has a higher DP than Batch it runs so good that it is selected as
a donor in one of the following adjustment cycles. It must also be understood
that this is not wrong because the goal was defined so easy. On the other hand
CICS is a very good example how a stringent goal protects work. The system
has no other possibility than to give CICS the highest DP in the system based
on importance level and goal definition. As a result we can nicely observe the
influence and effects of setting stringent and relaxed goals.

Altogether it takes around one and a half minute, so basically six to 9 adjust-
ment cycles to resolve the workload spike. After that the system is stable again
but now with competing workloads as discussed.

5.5.11. Test Scenario versus Real Environment

The example above is easy to understand. In a real environment the decisions
are much more complex and an analysis also requires much more understand-

5.5 z/OS Workload Manager Algorithms 225

CPU Service Consumption

0

1000000

2000000

3000000

4000000

5000000

6000000

09
:0
1:
05

09
:0
2:
55

09
:0
4:
45

09
:0
6:
35

09
:0
8:
25

09
:1
0:
15

09
:1
2:
05

09
:1
3:
55

09
:1
5:
45

09
:1
7:
35

09
:1
9:
25

09
:2
1:
15

09
:2
3:
05

09
:2
4:
55

09
:2
6:
45

09
:2
8:
35

09
:3
0:
25

09
:3
2:
15

09
:3
4:
05

09
:3
5:
55

09
:3
7:
45

09
:3
9:
35

09
:4
1:
25

09
:4
3:
15

09
:4
5:
05

09
:4
6:
55

09
:4
8:
45

09
:5
0:
35

09
:5
2:
25

09
:5
4:
15

09
:5
6:
05

09
:5
7:
55

09
:5
9:
45

Figure 5.18.: CPU Service consumption in a real system

Dispatch Priorities

202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250

09
:2
8:
05

09
:2
8:
45

09
:2
9:
25

09
:3
0:
05

09
:3
0:
45

09
:3
1:
25

09
:3
2:
05

09
:3
2:
45

09
:3
3:
25

09
:3
4:
05

09
:3
4:
45

09
:3
5:
25

09
:3
6:
05

09
:3
6:
45

09
:3
7:
25

09
:3
8:
05

09
:3
8:
45

09
:3
9:
25

09
:4
0:
05

09
:4
0:
45

09
:4
1:
25

09
:4
2:
05

09
:4
2:
45

09
:4
3:
25

09
:4
4:
05

09
:4
4:
45

09
:4
5:
25

09
:4
6:
05

09
:4
6:
45

09
:4
7:
25

Figure 5.19.: Dispatch Priorities in a real system

226 Workload Management

ing of the workload situation. Figure 5.18 shows the CPU service consumption
for service classes in a real production system. We can observe many more
more service classes which also show very different consumption values. Fig-
ure 5.19 shows the dispatch priorities. Each line represents the dispatch priority
change for a service class. We can observe that adjustments take place peri-
odically. This is driven by the goal achievement as described in the previous
section but many more service classes are involved in such decision.

This should only show that a real system analysis is more difficult than the
examples described before and it should demonstrate that WLM continuously
tunes the environment.

5.5.12. Resource Adjustment

As we learned for policy adjustment a change is possibly done on on behalf
of one selected receiver. Policy adjustment always requires to compare service
classes against each other and simply speaking take something from someone
to give it somebody else. Also policy adjustment only runs every 10 seconds.

For more simplistic adjustments the cycle of 10 seconds is too long and the
effort of trading work against each other might also not always be necessary.
Especially if the system is underutilized it may not be required to consider all
aspects of policy adjustment. Some resource changes can be made much sim-
pler. In order to address such concerns another algorithm runs every 2 seconds
in the system. This algorithm is named ”Resource Adjustment” and it deals
situations where the system over or under utilized. The full decision tree is
depicted in figure 5.20.

If an over load situation is recognized the most effective reaction of the system
is to swap address spaces out of the system. We already discussed the effi-
ciency of this control. Such an over load situation occurs if too many work
units can’t be dispatched or if the available storage thresholds exceed all high
watermarks. The system now uses an emergency break and tries to free up as
much resources as possible in order to mitigate the situation. Policy adjustment
can later adjust the MPL targets based on goal assessment but at this time the
system starts to swap out work from bottom to top. The first work which is
eligible for being swapped out is discretionary work and then followed by the
lowest import service classes meeting their goals and so forth. Typically this
will resolve critical contention situations and allows the high important work
to complete within their objectives. The action might be too drastic but policy
adjustment can correct it at a later point in time.

5.5 z/OS Workload Manager Algorithms 227

The other situation is when the system is lowly utilized. Low utilization is
typically given if the system is less than 90% utilized from a CPU perspective
and if sufficient unused memory is available. It is possible that work wants to
get into the system but the MPL targets might prevent this absed on previous
contention situations which have been resolved meanwhile. WLM will make a
projection whether raising the MPL target will not lead to a contention situation
and then adjust the MPL target by 1 every 2 seconds as long as these conditions
are met.

Ifhsystemhishunderhutilized?
Waitinghusersh<honlinehCPUs

Ifhsystemhishoverhutilized?
>50hworkhunitshwaitinghforhCPU

fixedhstorageh>hthreshold

LowerhMPL
• Starthwithhdiscretionaryh

servicehclasses
• Thenhcontinuehwithhleasth

importanthworkhmeetingh
goalshetch…

IncreasehMPL
• Projecththathadditionalh

addresshspacehdohnothcreateh
ahconstraint

MPLhDelay

QMPLhDelay

BatchhInitiator

Addhuphtoh5hBatchhInitiators
• Projecththathadditionalh

addresshspacehdohnothcreateh
ahconstraint

Addh1hServerhManager
• Projecththathadditionalh

addresshspacehdohnothcreateh
ahconstraint

End

End

Every 2 seconds

Yes

Yes

Yes

Yes

Yes

No

No

No

Figure 5.20.: Resource Adjustment

Related to MPL adjustment is WLM queue management. WLM queue man-
agement provides work queues for application programs and starts server ad-
dress space which are able to consume the work requests. The delay of the
work queues are measured as Queue MPL (QMPL) delay and the adjustment
is very much like MPL adjustment. One special case of queue management is
WLM batch management where WLM manages the number of batch initiators
for service classes in a sysplex environment. Policy adjustment routines exist
to address such adjustment but also if the system is lowly utilized there is no
point to wait until policy adjustment runs. In such cases it is possible to start

228 Workload Management

1 server address space or up to 5 batch initiators. We will discuss queue man-
agement a little deeper in chapter 5.6 because it is a very good example for
scalability and availability management of WLM.

5.5.13. Timed Algorithms

Policy adjustment, resource adjustment, and the Hiperdispatch balancer are 3
re-occurring timed algorithms of the system. Altogether 20 timed algorithms
exist which run between 1 millisecond and some also only on a per minute
basis. For some of these algorithms the scheduling time is dependent on the
system speed while other algorithms always run at a fixed time period. For
example we discussed briefly the transaction management for CICS and IMS.
CICS and IMS use WLM services to associate a Performance Block to each
transaction and book keep when the transaction has been started plus transac-
tion execution states. Now when the transaction ends the ending time and the
completion must be book kept as well. The middleware components achieve
this by just adding a small control block to a queue which is examined by
WLM on current systems around every millisecond. Then the completion time
is transferred to the service class structures in the system.

Many timed algorithms collect information which is used by the three major
algorithms. For example the CPU utilization and the Ready User numbers are
very frequently updated. Also swap analysis and taking actions for swapping
work in and out of the system based on adjusted targets is done on a very
frequent basis.

5.5.14. Management Approach and Restrictions

So far we discussed the WLM management approach in its full flexible form
but this might not always be desired. There are situations for an installation
where it wants to restrict certain flexibility and wants to assign more fixed
rules, for example:

• Some work has a very high urgency and when it runs it needs to complete
as fast as possible. In such cases dispatch priority management might not
be desirable and just assuring a high dispatch priority is sufficient.

• Especially online work runs best when it finds all required data in mem-
ory. If an installation runs OLTP during day time and very memory inten-
sive batch during night time it is possible that the memory for the OLTP

5.5 z/OS Workload Manager Algorithms 229

regions is migrated to page data sets. This can result in a significant delay
time at the beginning of the day time shift because many pages need to
be paged in again. In order to avoid such situations it might be desirable
to set targets which prevent that the OLTP storage is migrated to page
data sets at least not within one night shift.

• Some work has a tendency to dominate the CPU especially some batch
work. Even if it may have low dispatch priorities this may have some
unwanted side effects which still may incur some delay on higher im-
portant work. Also some applications might be dangerous and even if
they require high access to the CPU it might be desirable to restrict its
overall consumption.

These are three examples which lead to the development of restrictions for the
management algorithms. It is also clear that using such restrictive knobs too
extensive will result in a system with very fixed resource assignments and very
little flexibility. A complete other set of reasons related to pricing exist which
may require to impose restrictions especially on CPU consumption. We will
briefly touch this at the end without going into too much detail.

5.5.15. Resource Groups

Resource Groups are mechanisms which allow to restrict CPU resource con-
sumption and they allow to guarantee a minimum amount of CPU service for
service classes. The functionality is provided by two limits:

• A maximum limit which ensures that over a longer period the CPU con-
sumption will always stay below the definition.

• A minimum limit which ensures that the specified amount of CPU can
be consumed as long as the CPU demand exists.

Both limits are defined in service units, as a multiple of logical processors or
as a multiple of fraction of the partition share.

A service class can only be associated with one resource group but a resource
group can encompass multiple service classes. Resource groups can be man-
aged across the systems in a sysplex or just on the individual systems.

The minimum limit is guaranteed by the policy adjustment algorithm. When we
discussed the policy adjustment algorithm we saw the term PI AND GS GAIN.
GS GAIN refers to an adjustment for a resource group minimum limit. Work
which is protected by a resource group minimum receives the minimum ser-

230 Workload Management

vice regardless of its importance. That means even higher importance work
which even may not meet its goals may become a donor for a resource group
minimum. Within a resource group the importance and goal of service classes
determines the relative priority of the work. This applies to both limits.

CPU Service Active Service Classes

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

09
:0

5:
00

09
:0

5:
40

09
:0

6:
20

09
:0

7:
00

09
:0

7:
40

09
:0

8:
20

09
:0

9:
00

09
:0

9:
40

09
:1

0:
20

09
:1

1:
00

09
:1

1:
40

09
:1

2:
20

09
:1

3:
00

09
:1

3:
40

09
:1

4:
20

09
:1

5:
00

09
:1

5:
40

09
:1

6:
20

09
:1

7:
00

09
:1

7:
40

09
:1

8:
20

09
:1

9:
00

09
:1

9:
40

09
:2

0:
20

09
:2

1:
00

09
:2

1:
40

09
:2

2:
20

09
:2

3:
00

09
:2

3:
40

C
P

U
 S

er
vi

ce
 U

n
it

s

0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f
C

ap
 S

lic
es

NumberLofLCapLSlicesLforLResourceLGroupLELPMAX

ServiceLClassLassociatedLwithLResourceLGroupLELPMAX

OtherLServiceLClasses

Figure 5.21.: Example for a Resource Group with Maximum Limit

Figure 5.21 shows the function of a resource group on a single system. The used
resource group type derives the limits from the weight or share of the partition
on the CEC. There is no minimum defined and the maximum for resource
group ELPMAX is set to 60% of the LPAR share of the partition. Based on
its share which is pretty small for this partition it can consume roughly 8700
SU/s. The resource group definition entitles the resource group to use 60% of
the share or up to 5200 SU/s.

The scenario shows 3 service classes running on the partition. One of the
service classes is associated with resource group ELPMAX. The CEC is not
highly used so the service classes and the partition can consume much more
than the 8700 SU/s. When the work for the service class which is associated
with ELPMAX is started we can observe a big spike of CPU consumption
which is capped down to roughly 5000 SU/s after around 2 minutes. WLM
creates a cap pattern which sets the units of work within the service class(es)
non dispatchable to cap the work.

5.5 z/OS Workload Manager Algorithms 231

A resource group is usually always below the maximum possible consumption.
The reason is that the cap pattern is defined in slices and the consumption is ap-
proximated in number of slices when the work is dispatchable. This algorithms
always ensures that the number of slices stay below the defined capping limit.
The red curve in the graph shows the number of cap slices. At the time when
the graph was created 64 cap slices could be defined. Meanwhile the number
is increased to 256 cap slices in order to support a higher precision. The small
graph shows nicely how the consumption of resource group ELPMAX remains
capped even after the work of the other 2 service classes has completed.

5.5.16. CPU Critical

ServicehClasshC
Imp=3,hCC

ServicehClasshD
Imp=4

ServicehClasshE
Imp=5

ServicehClasshB
Imp=3

ServicehClasshA
Imp=2

…

239

241

243

245

247

ServicehClasshC
Imp=3,hCC

ServicehClasshD
Imp=4

ServicehClasshE
Imp=5

ServicehClasshB
Imp=3

ServicehClasshA
Imp=2

ServicehClasshC
Imp=3,hCC

ServicehClasshD
Imp=4

ServicehClasshE
Imp=5

ServicehClasshB
Imp=3

ServicehClasshA
Imp=2

PossiblehChanges

Figure 5.22.: Example for a Service Class with CPU Critical Definition

CPU Critical is a service class attribute which ensures that lower important
work can never get a dispatch priority equal or higher than the service class
for which this attribute is specified. Figure 5.22 illustrates a service class C
at importance 3 which is defined as CPU Critical and the two service classes
D and E with lower importances. Service Classes E and D will always have
a lower dispatch priority than C. C can still compete with A and B for CPU
access. D, and E can also still compete with A, and B but this requires that A,
or B get a lower DP than C. On the right hand side two possible changes are
depicted.

232 Workload Management

5.5.17. Storage Critical

Storage Frames

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

08:00:00 08:00:40 08:01:20 08:02:00 08:02:40 08:03:20

Prot. Imp=3 AS Not prot. Imp=3 AS Not prot. Imp=4 AS

Figure 5.23.: Storage Frames of Service Classes

Storage Critical is important if memory is a limited resource. On a system with
2 GB main memory it was easy that OLTP work lost its storage frames during a
night shift with heavy batch workload. Meanwhile the urgency for this control
has diminished because the memory sizes of systems is drastically higher. This
is very different from CPU Critical or Resource Groups which are still often
used.

Figure 5.23 and 5.24 show the effect of storage Critical. The test scenarios
consists of 3 service classes:

• Service Class with Importance 3, Execution Velocity Goal of 1 and Stor-
age Critical

• Service Class with Importance 3, Execution Velocity of 1 and no storage
protection

• Service Class with Importance 4, Execution Velocity of 20 and also no
storage protection

5.5 z/OS Workload Manager Algorithms 233

The effect can easily be observed. The two unprotected service classes com-
pete with each other for storage while the protected service class maintains its
storage unchanged and also doesn’t show any paging activity.

Paging Rate

0

50

100

150

200

250

300

350

08
:0

0:
00

08
:0

0:
20

08
:0

0:
40

08
:0

1:
00

08
:0

1:
20

08
:0

1:
40

08
:0

2:
00

08
:0

2:
20

08
:0

2:
40

08
:0

3:
00

08
:0

3:
20

08
:0

3:
40

Prot. Imp=3 AS Not prot. Imp=3 AS Not prot. Imp=4 AS

Figure 5.24.: Paging Rate of Service Classes

5.5.18. Discretionary Goal Management

Discretionary Goal Management follows the philosophy that only so much re-
sources should be given to work which is required to meet its goals. The dif-
ficulty for work which is defined as discretionary is that it always has lower
resource access to resources than work with goal definitions. This is also the
case if the work with goal definitions highly over achieves its goal. In that case
Discretionary Goal Management takes a little of the system resources from the
highly overachieving work and gives it to the discretionary work. This should
especially avoid situations that discretionary work can’t get access to system
resources while over achieving work dominates the system.

The mechanism used to take some of the CPU resources from over achieving

234 Workload Management

Discretionary Goal Management

0

20000

40000

60000

80000

100000

120000

140000

160000

[C
P

U
 S

er
vi

ce
]

IMP5WRK, ExVel=10, Test Run 1 DSCWORK, Test Run 1 IMP5WRK, ExVel=10, Test Run 2 DSCWORK, Test Run 2

Test Run 1 Test Run 2

Discretionary Goal Management

0

20000

40000

60000

80000

100000

120000

140000

160000

[C
P

U
 S

er
vi

ce
]

IMP5WRK, ExVel=10, Test Run 1 DSCWORK, Test Run 1 IMP5WRK, ExVel=10, Test Run 2 DSCWORK, Test Run 2

Test Run 1 Test Run 2

Figure 5.25.: Discretionary Goal Management

work is by defining an internal resource group and by associating the over
achieving work with this internal resource group. This is only possible if no
resource group was already defined for the service class which could donate for
discretionary work. WLM will take a little of the CPU resources by defining
a dynamic maximum limit for the internal resource group. WLM also always
assures that this limit never causes the service class with a goal definition to
miss its goal.

Figure 5.25 shows a test scenario of two service classes one with a goal defini-
tion and one being defined as discretionary. The two test runs were performed
at different times but because the elapse time and behavior the curves were
placed in the same chart to depict the difference:

Test Run 1 Discretionary Goal Management takes some of the resources from
the service class with goal definition and gives it to the service class
defined as discretionary.

Test Run 2 Discretionary Goal Management is turned off. This can be achieved
by associating an external resource group to the service class with goal
definition without a maximum and minimum limit6.

6Because only a service class can only be associated with one resource group

5.6 z/OS Workload Manager Advanced Functions 235

We can observe that the CPU consumption of the Discretionary work is higher
but not extreme when discretionary goal management caps the work with goal
definition. It is also necessary that some additional conditions are met by the
service class with goal definition:

• The PI is less than 0.7 and remains below this level even if the service
class is capped

• The goal is an execution velocity goal with a value less or equal 30 or a
response time goal with more than 1 minute

The first condition ensures that only really over achieving work is eligible for
discretionary goal management. The second condition ensures that only work
with ”long” response time goals or quiet relaxed throughput goals are eligible.

5.6. z/OS Workload Manager Advanced
Functions

The z/OS Workload Manager is a systems management function which is in-
tegrated into the operating system. Up to this point we discussed its primary
objective to optimize the resource access for workloads towards end user de-
fined goals. But WLM does more. It provides a set of additional functions
which primarily support subsystems and middleware with the specific focus on
scalability and high availability. We already discussed Hiperdispatch and the
algorithmic part of parking and unparking logical processors as well as dis-
tributing the work across the nodes is integrated in WLM. In this section we
will briefly discuss other functions which build on top of the basic goal and
resource algorithms, such as:

• Routing support

• Contention management

• Scalable Server and Batch Environments

• Workload Scheduling Support

• Adjusting CEC wide resources

• Supporting software licensing

236 Workload Management

5.6.1. Routing Support

One of the strength of z/OS is the integrated sysplex technology (see chapter
6). A sysplex is a cluster of z/OS systems and most middleware components
exploit the cluster by providing distributed implementations. The sysplex-wide
implementations allow the middleware to spread the work across the system
and instances of the middleware in the sysplex. At a minimum a round robin
based routing methodology is usually supported but for scalability and avail-
ability concerns this is not sufficient. Intelligent routing means that the system
utilization, system constraints like storage shortages and goal achievement of
the workload needs to be considered. Also it is required to consider higher im-
portant work running on the systems as well as under certain considerations
lower important work too. This all requires that the routing component require
information from WLM on how work can be best distributed in the cluster.

Server9C

Routing
Server

System93

Server9B

Routing
Server

System92Routing9
Manager

Server9A

Routing
Server

System91

050100Free

10050200Discretionary

1502003005

4003004004

4007006003

6508508002

9009009001

100010001000System=0

System93System92System91Importance

WLM

WLM

WLM

22A

18C

24B

WeightServer

Figure 5.26.: Routing Support

WLM has developed a quiet complex set of routing services which can be used
by routing components. The most important routing components are Sysplex

5.6 z/OS Workload Manager Advanced Functions 237

Distributor (SD) which assist middleware. CICS uses SD as well as Websphere
Application Server (WAS) but WAS also supports its own routing function.
For WAS the usage of the router depends on the connection type (IIOP, IOR
or HTTP). DB2 has a gateway routing mechanism which requests information
from WLM to place distributed requests on the system. Another set of place-
ment decision is for permanent session logins which create a permanent con-
nection of the client to a host. TSO but also IMS uses such session placement
functions which are integrated in Virtual Terminal Access Method (VTAM).
Finally CICS which uses SD for incoming work requests also supports its own
distribution mechanism for routing work between Terminal Owning and Appli-
cation Owning regions. All of these routing functions depend on information
and guidance from WLM as the central component which overlooks the actual
systems and workload states.

WLM provides interfaces which allow the routing components to obtain rec-
ommendations. In many cases the placement recommendation which is re-
turned to the router is a table which either contains the systems or registered
routing instances plus a weighting factor which indicates which instances are
best suited to receive work. The weighting factors are calculated based on the
following factors or at least a subset of them:

• The service consumption of the work on systems in the sysplex. The
service consumption is passed around in the sysplex so that each system
has a picture of how the other systems are utilized and especially how
the different importance levels of the workloads are utilized.

• System constraints like SQA and CSA overflows are very hard condi-
tions because nodes which have serious storage constraints are not suited
to receive additional work.

• Internal queuing for some middleware components or abnormal request
termination can be considered too. This requires that the middleware
components pass such information to WLM.

• The goal achievement of the work is considered and systems where the
work achieves the goals more easily are typically preferred routing can-
didates.

• The middleware or middleware monitors have the ability to set a health
indicator to prevent routing or to reduce routing to certain systems. This
again requires a communication between the middleware and WLM

Routing is a very important aspect not only for scalability but also for availabil-
ity in a cluster environment. The possibility to move work away from a system

238 Workload Management

which becomes sick is a guarantee that the workload and this the stability of
the business survives during contention situations.

5.6.2. Contention Management

Contention for resource locks are one of the most critical factors which can
reduce the throughput of large applications. The typical situation is that a lower
important unit of work was able to obtain a resource lock but than looses its
ability to get to a processor. Work with higher dispatch priorities which also
wants to access the resource now backs up. Such a situation can occur quiet
often on highly utilized systems with on-line work and lower important Batch
work all using the same database.

Resource
Dispatcher

Queue

High Important
Work arrives fast

Processors are busy

Lock

Waiters

Holder

Figure 5.27.: Contention Situation

It is impossible to monitor all locks something which is typically done by mid-
dleware resource monitors. Lock monitors usually exist for hot-spots. Such
monitors observe the queue length of waiting elements for the resource. In most
cases resource locks within subsystems are implemented as suspend locks un-
likely than operating system locks which are more typically implemented as
spin locks. But it is also necessary to solve high suspend lock contention situ-
ations.

WLM now offers a set of subsystem interfaces which allow the monitors to
signal lock contention to WLM which then takes some actions:

5.6 z/OS Workload Manager Advanced Functions 239

• The most typical action is to promote the holder of the lock to a dispatch
priority which ensures that the work gets access to the CPU. WLM main-
tains a dispatch priority which is dynamically adjusted and which guar-
antees that 40% of the work in the system can execute above or equal
to it. This ensures that lock promotion requests cannot take out other
important work from executing but it also ensures that lock promotion
requests get access to the CPU.

• Sometimes a more chronic contention situation is recognized. This may
be the case if long running updates require to hold a lock for a quiet sub-
stantial period of time. For such cases WLM offers an interface which
will not simply promote the holder of the lock. Instead the highest im-
portant waiter is determined and the holder is managed towards the goals
of the highest important waiter.

As already mentioned it is not always possible for the middleware to instru-
ment all of their locks or latches. The possibility that contention occurs for
not instrumented latches can’t be eliminated. This is certainly a rare case but
there are also precautions to help such cases. WLM is able to determine how
long work has to wait for the processor. If it is recognized that work must wait
for a very long period it is possible to just give it some access to the proces-
sor without really knowing whether a problem exists or not. This function has
been implemented as a last security valve. On very highly utilized systems it is
very well possible that especially low important batch work must wait for the
processors for multiple seconds. If such a situation is recognized WLM gives
this work one major time slice to execute. The underlying idea is that this is
hopefully enough in case the work holds a latch or lock to release it.

Contention management is a crucial part for the stability and availability of the
system. Fats lock resolution is required for an application to scale up and to
support high incoming traffic. Contention management has evolved over the
last years and with adding more and more support in WLM as well as the mid-
dleware components critical lock contention situations have nearly completely
diminished.

5.6.3. Scalable Server Environments

We introduced enclaves in section 5.4.7 to encapsulate work requests on z/OS.
It is the preferred possibility to manage units of work across multiple server
address spaces. When an enclave is created the request start time is book kept.
Whenever an execution unit joins the enclave the execution time is recognized.

240 Workload Management

Thus it is easy to determine enclave wait time which is simply the time when
no execution unit runs under the enclave.

Control Region Server Region

z/OS Workload Manager

Enclave

Application Environment

starts
stops

Service Class

classifies
creates
deletes

selects

joins
leaves

Figure 5.28.: WLM Queue Management

Middleware applications are typically structure in one or multiple control re-
gions and multiple application regions which start the programs to process the
end user requests. Middleware monitors or system programmers have to main-
tain, start, and stop the application regions. The difficulty of this approach is
that the number of application regions is not associated with the actual sys-
tem throughput nor the goal achievement of the work or any other relevant
performance metric. Therefore scalability depends on planning or specialized
functions of the middleware. This deficiency can be addressed with the help
of enclaves if it is possible to queue enclaves or work requests, measure their

5.6 z/OS Workload Manager Advanced Functions 241

retention time on the queue and react on the retention time and its influence of
the goal achievement accordingly.

WLM Queue Management fills this gap. It allows an installation to define ap-
plication environments for middleware as part of the service definition, see
section 5.4.9. An application environment is a named entity which is used to
tell WLM how an application region can be started. WLM requires basically
two pieces of information:

• The name of start procedure which is used to start the application region

• The start parameters which have to be passed to the procedure and which
are required to execute the application region

Both can be defined in the service definition. An application region typically
a control region can connect as a work manager to WLM. Then it can use
the WLM application environments. The application environment defines a
logical queue. The control region receives requests from outside the system,
classifies them, creates enclaves and puts the work request on the application
environment queue. Based on the service class which is associated with the
enclave WLM creates one queue per service class within the application envi-
ronment. Then WLM is able to monitor the retention time of the work requests
on the queue and start server address spaces according to the goal achievement,
system utilization and considering system constraints. Figure 5.28 depicts the
interaction between control region, WLM and the server regions. In the sec-
tion 5.5.12 we introduced the resource adjustment algorithm which allows to
quickly start server address spaces on a 2 second basis. This is possible if the
system is under-utilized. Otherwise policy adjustment can adjust the number of
server address spaces. This adjustment is very similar to the algorithm which
we discussed for MPL management.

Queue Management is a very popular advanced function of WLM. The main
users are DB2 for DB2 Stored Procedures and Websphere Application Server
(WAS). There are many additions to the basic algorithm which we just briefly
discussed. For example WAS does not require a definition of the application
environment in the service definition rather it defines it when the control region
connects to WLM. DB2 for example uses a sub function which also allows
to start and stop the server tasks which are able to process work in a stored
procedure address space and there are many more additions.

Queue Server Management supports both, scalability which is much better ad-
justed to system resource usage and availability because WLM restarts server
address spaces immediately when an address space abnormally terminates.

242 Workload Management

5.6.4. WLM Batch Management

WLM WLM

WLMWLM

JES

stop

start

Figure 5.29.: WLM Batch Management

WLM Batch Queue Management is based on Queue Server Management. The
difference is that WLM does not actively maintain the queue but it receives
periodically information about the queues from the JES subsystem. A WLM
managed Batch queue is defined by setting an indication in a JES configuration
file that a ”Batch Execution Class” is now associated with a WLM queue. The
main difference or enhancement to Queue Server Management is that Batch
Queue Management works sysplex-wide. JES puts a converted batch job which
is ready for execution on its spool dataset and WLM starts the initiators which
are eligible to process the batch job on the best suited system. Again this func-
tion also has many additions for example it is possible to move an initiator from
a very busy system to a system which has much more available capacity (see
figure 5.29).

5.6 z/OS Workload Manager Advanced Functions 243

5.6.5. Workload Scheduling Support

Workload Scheduling is an important function especially for a z/OS cluster
which has a long lasting Batch heritage. Workload scheduler provide function-
ality for installations to send batch work suites into the system. Such batch
workloads might need to be scheduled at certain times of the day or night but
also if resource dependencies are fulfilled. Such resource dependencies in a
z/OS sysplex environment can be the availability of a certain database system
or database version, the availability of a JES subsystem7.

System 1 System 2 System 3

DB2 DB2

JESA JESB

Resource: DB2

Resource: JESA

Scheduling
Environment

Workload
Scheduler

Figure 5.30.: WLM Supported Workload Scheduling

WLM provides a construct named ”Scheduling Environment” which allows
the specification of named resource states. Such resource states can beset to
ON meaning that the resource is available or OFF. The states can be set by pro-
grams or via operator commands. The resource states are combined to schedul-
ing environments which are defined in the WLM Service Definition (see ??).
A workload scheduling product can now test the scheduling environments to

7It hasn’t been mentioned but in a sysplex environment multiple JES environments can coexist
with each other

244 Workload Management

identify systems which meet the requirements to submit jobs too. Also the
scheduling environments can be defined in the Job Control of Batch Jobs and
JES will then ensure that the job will only run on a system which meets all the
resource requirements.

Figure 5.30 shows an example of a three way sysplex environment, a workload
scheduler which needs to submit jobs into the sysplex and two resources which
are needed by the jobs: Subsystem DB2 and the JES subsystem JESA. The
scheduling environment defined in WLM now reflects the availability states of
the resources. System 1 is the only system on which the DB2 subsystem and
JESA are available. The workload scheduler can now submit the jobs directly
to System 1. But it is also possible to submit the jobs on System 2 because the
Multi Access Spool of JESA allows it to execute the jobs either on System 1
or 2. In this case JESA ensures that only System 1 selects the jobs with the
scheduling environment from the JES SPOOL data set.

Scheduling Environments are a good example to directly support availability
states on a large sysplex. This makes it pretty easy for workload scheduling
and job entry systems to execute jobs on the correct systems.

5.6.6. Adjusting Resources in a CEC

We discussed an example of very high CPU contention between two z/OS sys-
tems in section 4.3.3. In such cases the local management within a z/OS system
is not sufficient to help the mission critical work. If we assume that the produc-
tion system SYP1 in the example is by far more important than the test system
it would be wise to give SYP1 a higher share of the CPU resources. But do-
ing this for all times might also not useful. Especially during night shifts it is
possible that the work in the development environment is more important than
the batch work running in the production system. What would be needed is a
workload dependent adjustment of the CPU share.

This requirement can be accomplished within a sysplex environment on the
same CEC. By definition the systems of the same sysplex on the same CEC
form an ”LPAR Cluster”. Within this cluster it is possible to shift CPU weight
and channel paths between the systems in a way that no partition outside of the
cluster is effected. Both functions depend on the service classes which execute
on the z/OS systems. The weight shift function is for example an extension to
the adjustment function for dispatch priorities.

Figure 5.31 illustrates the decision process which first assesses whether a local
adjustment of CPU dispatch priorities is possible (Steps 1 to 4). If this gives

5.6 z/OS Workload Manager Advanced Functions 245

enough improvement then dispatch priorities are adjusted (Steps 5) and the ad-
justment is completed. But if this is not possible a test is performed whether
the systems runs in an LPAR Cluster (Step 6). The LPAR Cluster requires that
a coupling facility structure is created through which the systems exchange
specific information for these adjustments8. WLM starts the weight adjustment
process when the LPAR cluster exists and CPU Weight Management is en-
abled. First it gets information from the cluster and projects possible weight
changes. This can easily be done because on all systems in the sysplex the
same service definition is active and all systems run the same service classes.
So all what is required is that the information about the service classes on other
systems plus consumption data from PR/SMis collected (Step 7). The receiver
donor logic is the same as described in section 5.5 (Step 7). The system ini-
tiates the weight change if the projections show that the change is beneficial
(Step 8). A weight change will always ensure that the sum of all weights of the
systems in the LPAR cluster do not change (Step 9).

Service/class/missing/goals/

CPU/delay?

Assess/changing/service/class/
periods/dispatch/priorities/

Any/Improvement?

Connected/to/
LPAR/Cluster/

Structure?

Gather/Weights/from/PR/SM
Assess/Changing/Weights

Use/receive/donor/logic

Any/Improvement?

Change/LPAR/Weights/ No/further/action/

Change/DP/

NO

NO

NO

NO

Yes

Yes

Yes

Yes

1

2

3

4

5
6

7

8

9 10

Figure 5.31.: WLM Policy Adjustment for Weight Changes

8Other information is exchanged directly between the WLM instances in the same sysplex

246 Workload Management

The functionality for CEC wide resource adjustment is named ”Intelligent Re-
source Director (IRD)”. It is another example how different components work
together to establish a higher level functionality.

SYSA SYSB SYSC

Batch OLTP

LPAR Cluster
System z

SYSA SYSB SYSC

Batch OLTP

LPAR Cluster
System z

1. 1.

2.

3.

2. 2. 2.

3.

Figure 5.32.: Intelligent Resource Director Functions

Figure 5.32 depicts the functions. The numbers in the graphic correspond to
the numbers below. IRD contains 4 functions:

1. CPU Weight Management as described above. This is a function between
WLM, PR/SM and it exploits parallel sysplex functionality.

2. Vary CPU On/Off Management is an optimization function which at-
tempts to do something similar like Hiperdispatch. If too many logical
processors are defined for a partition the time a logical processor can
be dispatched can be too small especially if the CEC shows CPU con-
tention. In such cases CPU vary On/Off management allows to vary logi-
cal processors offline and bring them back online if the CECE utilization
drops. Meanwhile this function has been superseded by Hiperdispatch
which is by far more efficient, see section 4.7.

3. Dynamic Channel Path management allows to switch channels between
partitions very similar to shifting weights between partitions. This func-
tion is established between WLM and the I/O Supervisor. The function
was very important when the channel speed was limited. meanwhile with
bi-directional FICON channels it is not really important from a scalabil-
ity point. But it is still important as a high availability feature which
allows to replace a channel immediately in case a channel path fails.

5.6 z/OS Workload Manager Advanced Functions 247

4. Channel Path Priority Queuing offers a function which prioritized work
requests in the channel subsystem either based on workload importance
or based on fixed definitions by the installation. This function is not de-
picted in figure 5.32.

5.6.7. Support for Software Licensing

Another comprehensive area which is supported by WLM is software licens-
ing. The question how expensive it is to execute certain software products on
z/OS is a very huge area of considerations. Offload processors which have been
discussed in section 4.4 are one important factor. They allow to switch proces-
sor types so that the software license bill becomes smaller. There are many
different software licensing models on z/OS, a System z and with a paral-
lel sysplex and this is not subject to this write up. Besides offloading work
another possibility to control software license is by controlling the CPU con-
sumption of z/OS partitions on System z. IBM offers a function named ”De-
fined Capacity Limit” which allows an installation to define a licensing cap for
a z/OS partition. The cap is enforced on the basis of a 4 Hour Rolling Average
(4HRAvg). This allows the partition to run above the defined capping limit as
long as the 4HRAvg is below the defined limit. A very interesting extension
is named ”Group Capacity Limit” which allows to combine multiple partitions
under one limit and ensure that the sum of the CPU consumption of these parti-
tions stays below the group limit. the interesting feature of this function is that
a partition can borrow CPU from partitions which are in the same group and
which do not exploit their share while the group as a whole is already being
capped.

Partition Limit Weight Target MSU
IRD3 None 52 ≈ 8.5
IRD4 None 102 ≈ 16.7
IRD5 None 152 ≈ 24.8

Group 50 306 50

Table 5.8.: Group Capping Definitions

Table 5.8shows an example of 3 partitions on a CEC which run in the same

248 Workload Management

capacity group. The group capacity limit is set to 50 MSU9. Figure 5.33 shows
how the partitions request capacity and how much they are able to get. In the
beginning after starting the partitions the 4HRAvg of the group allows the par-
titions to use more capacity than the group limit permits. Two partitions IRD3
and IRD4 use around 63 MSU each so that the 4HRAvg reaches 50 MSU after
1.5 hours. Partition IRD5 does not run any workload at this time. When the
group limit is reached the group is being capped. That means the partitions are
reduced to the amount of MSU which they are entitled to based on their weight
definitions, see table at the top of figure 5.33. Because IRD5 still doesn’t run
any meaningful work the MSU which are not used by this partition can be given
to the two other partitions which request CPU. IRD uses only 3 of the 25 MSU
it is entitled to. So based on the shares of partition IRD3 and IRD4, IRD3 can
use 8 MSU more and IRD4 around 14 MSU more than they are entitled to.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

19
:0

4f
A4

5v

19
:3

9f
A5

2v

20
:1

3f
A5

9v

20
:4

8f
A6

6v

21
:2

4f
A7

3v

21
:5

9f
A8

0v

22
:3

3f
A8

7v

23
:0

9f
A9

4v

23
:4

4f
A1

01
v

00
:1

9f
A1

08
v

00
:5

4f
A1

15
v

01
:2

9f
A1

22
v

02
:0

4f
A1

29
v

02
:3

9f
A1

36
v

03
:1

4f
A1

43
v

03
:4

9f
A1

50
v

04
:2

4f
A1

57
v

04
:5

9f
A1

64
v

05
:3

4f
A1

71
v

06
:0

9f
A1

78
v

06
:4

4f
A1

85
v

07
:1

9f
A1

92
v

07
:5

4f
A1

99
v

08
:2

9f
A2

06
v

09
:0

4f
A2

13
v

09
:3

9f
A2

20
v

10
:1

4f
A2

27
v

M
ill

io
n

s
o

f
S

er
vi

ce
 U

n
it

s
(M

S
U

) IRD5 IRD3 IRD4

HighfDemandfallfPartitions

Periodfoff4fHourfRollingfAveragef
belowfthefDefinedfGroupfLimitf

Figure 5.33.: Group Capping Example

When work is started on IRD5 it requests the CPU back from the other parti-
tions. IRD3 and IRD4 are now pushed back to their entitlements and all par-
titions are now capped until the work is stopped again on IRD5. At that point
IRD3 and IRD4 can expand and use the unused capacity of IRD5 again.

9MSU = Million of Service Units

5.6 z/OS Workload Manager Advanced Functions 249

It is clear that this is a powerful function and that it needs to be used with
care. Running production partitions under such high contention as shown in the
example is certainly not a good idea but the example shows how the function
works.

5.6.8. Subsystem Participation

Middleware, Classification Monitoring Enclaves Queue Routing Special
Subsystem Services Mngmt. Services Functions
CICS X X
IMS X X
DB2 X (1) (2) X X X (3)
WAS X (2) X X X
SAP R/3 X X
JES2/3 X (4) (5)
VTAM X
TCP/IP
NetView X X
LDAP X X
Oracle 9i X X
(6) X

1. as extension to CICS and IMS

2. for reporting purposes

3. Bufferpool and contention management

4. Batch Server Management

5. Scheduling environments

6. TSO, APPC, OMVS, STC, LSFM

Table 5.9.: Subsystem Participation with z/OS Workload Management

Throughout the whole chapter we discussed how WLM interacts with the sub-
systems and middleware running on the operating system. In fact this is the real
success story of this management function. Algorithms are only useful if they
are exploited. The subsystem participation starts with using the classification
capabilities of work to the exploitation of sophisticated functions like queue
management services. All major subsystems and middleware products support
the Workload Management concept on z/OS which also provide a lot of ben-
efit to them. For example a scalable server environment as it is exploited by

250 Workload Management

Websphere and DB2 only requires very little coding effort within the middle-
ware. Table 5.9 lists middleware and subsystems and how they exploit WLM
functions.

5.7. Summary

z/OS Workload manager ensures that many different workloads can share a
z/OS system, a parallel sysplex and a System z CEC. The base functions ensure
that the work gets access to system resources based on the installation defined
goals, their demand and the workload mix on the system. The algorithms not
only try to simply give the most important work the highest access to CPU they
rather optimize the access to system resources by giving them the resources
they need to fulfill the goal definitions.

In addition WLM includes many technologies to support the scalability of the
work and the environment, such as:

• Starts and stops server spaces to help scale-out of middleware on z/OS

• Starts and stops initiators for batch work across systems to ensure that
work finds the best place to execute

• Shifts weights between partitions of the same CEC

• Balances work across processor nodes to run work efficiently on few
processors to avoid cache misses

• Gives routing recommendations to load balancing functions

• Promotes work to resolve lock contentions and allow to run high work-
load demands

The list above is not complete and should just give some examples. Interest-
ingly we can use nearly the same examples to understand how high availability
is support by WLM:

• Starting, stopping and re-starting server address spaces and batch initia-
tors improve the availability of the managed applications.

• Shifting weights between partitions of the same CEC to ensure that im-
portant work is not being harmed by lower important work.

• Giving out routing recommendations ensure that work is not routed to
systems which have severely constraints or on which the application is
not working properly.

5.7 Summary 251

• Promoting work ensures that work can continuously operate and does
not timeout

In can be understood that Workload Management is not just a feature but a
very important function which differentiates the operating system from other
operating systems.

6. Parallel Sysplex

In the beginning of the 90s the development of bipolar or TTL technology be-
came too expensive. This affected the future development of the technology as
well as its usage because of the enormous electricity consumption for cooling.
The size of the systems were immense compared to today’s mainframes and
also required from customers to build very large and complex data centers. In
the beginning of the ’90s IBM made the decision to stop all future enhance-
ments of bipolar technology and rather put all emphasis on CMOS technology.
The difficulty at that time was that CMOS technology didn’t provide neither
the single processor speed nor the total system capacity of existing bipolar
technology. The first generation of CMOS processors only provide 28% of the
single processor speed and only 16% of the total system capacity. Consequently
CMOS technology was not able to replace bipolar technology immediately.

As a result IBM introduced a cluster technology which allowed to couple mul-
tiple z/OS systems together which then at least achieved the same and even
more total system capacity. It took four generations of CMOS systems until
they reached the total capacity of the last IBM bipolar system. Therefore sys-
plex technology was an important factor for scalability at that time.

Figure 6.1 illustrates the total system capacity of CMOS systems from the first
generation to the zEC12. The last IBM bipolar processor was named H5. Its
capacity is set to one and the capacity of the other systems is shown relative
to it. Meanwhile the capacity of the last generations is far above the capacity
of the systems of the early ’90s. The zEC12 provides more than 152 times the
capacity of the IBM H5 system. The capacity of today’s systems is sufficient
for many installations. The motivation for cluster technology has changed. It
is nowadays more important with respect to high availability and continuous
operations than scalability.

254 Parallel Sysplex

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

G1 G2 G3 G4 G5 G6 z9
00

z9
90 z9 z1

0
z1
96

zE
C1
2

IBMH5

Figure 6.1.: Total System Capacity of System z compared to IBM H5

6.1. High Availability Aspects

We defined High Availability in the beginning in section 1.2. There are various
aspects of High Availability which need clarification when look from a higher
on the system and the complete IT infrastructure:

Reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time.
This aspect is especially important when we look at the hard-
ware which defines the reliability of its components.

Availability is the ability of an environment to mask individual errors or in-
dividual component failures.

Disaster Recovery
is the ability of an infrastructure to recover from unplanned out-
ages.

Continuous Operations
is the ability of an infrastructure to maintain continuous access
to applications when everything is working properly. This in-

6.2 Cluster Technologies 255

cludes that the applications can be used properly even during
period of planned backups or scheduled maintenance.

We use the terminology High Availability to cover all these aspects. Other
terms are Business Resilience which can also be used for Disaster Recovery or
Business Continuity for Continuous Operations. The following sections about
cluster technology and the parallel sysplex are based on documentation in [8],
[9], [10], and [11].

6.2. Cluster Technologies

Before we start to look at the components of the parallel sysplex we will take a
brief look at the cluster technologies which have been evolved in information
technology.

Network

... ...

Local DB Buffer

Local
Locks

I/O Shipping

Function
Shipping

Local
Locks

Local DB Buffer

System System

Figure 6.2.: Shared-Nothing Cluster

6.2.1. Shared-Nothing Cluster

A shared nothing cluster or also known as data partitioning technology is a
collection of systems which are connected by a network. Each system has I/O
devices attached to it but nothing is shared between these systems. The data

256 Parallel Sysplex

is distributed across the systems or partitioned. In order to implement a dis-
tributed application software methods must be used to access the data or func-
tion on remote nodes. The two typical methods are I/O shipping or function
shipping. For I/O shipping the system which requires a data item asks a remote
system where it is stored to obtain it and send it to the requesting system. Func-
tion shipping sends a request to a remote system where the application and data
is located. The request is executed on the remote system and only the result is
returned to the requesting system.

Network

... ...

Local DB Buffer

Global
Locking

Local DB Buffer

Shared Disks

SystemSystem

Figure 6.3.: Shared-Disk Cluster

The advantage of this method is that no cache coherency and no global locking
problems exist. But the methodology requires high coordination between the
involved system and network latency is also a very visible issue. Such methods
are typically effective on a small scale but show performance limitations on
large scale environments. Another difficulty is the availability of the data and
the access to it. If a system which hosts certain data is down the data is typically
not accessible anymore.

6.2.2. Shared-Disk Cluster

The first step to overcome some of the limitations of a shared nothing envi-
ronment is an environment with shared disk architecture. The advantage of

6.2 Cluster Technologies 257

this environment is that the data can be accessed from all systems in the en-
vironment. The challenge for distributed applications is now to ensure that the
access to the data is coordinated. This challenge lead to the development of
global lock managers which coordinate the access to data bases. A distributed
application for example a distributed data base which wants to modify a data
item must first obtain a lock to the data page or data table where the item re-
sides. It sends a request to the global lock manager and eventually obtains the
lock. The lock manager sends lock requests to all involved systems to inform
the local instances of the data base. If a local instance already buffers the data
page or table it must invalidate it. The requesting instance then modifies the
data item and writes it back to the I/O system so that it can be obtained from
other instances again. Finally the lock is released.

...

Apps

PR/SM PR/SM

Network

Apps

SharedFDisks

ServerF
Time
Protocol

CouplingF
Facilities

Global Locks
Work Distribution Queues

Global DB Buffers

CDS
Couple

Data
Sets

CEC CECPartitions
(Systems)

Figure 6.4.: Parallel Sysplex

This data sharing method is very efficient but still requires a lot of network
access for global lock requests. Also for high availability concerns the technol-

258 Parallel Sysplex

ogy is suited to back up the important I/O devices so that in case of failures
back up copies of the data exist. Very interesting in this context are methods
which ensure that locks which are obtained from a failing node can be released
so that a failure of one system does not drag down the whole environment.

Shared disk cluster are the most common data sharing methods. One of the
first and very efficient technology was introduced by Digital Equipment with
their VAX cluster which also provided a single system image for users which
want to login to the environment. IBM /370 systems, IBM HACMP solution
and Oracle 9i also use shared disk architectures.

6.2.3. Shared-Disk and Shared-Memory Cluster

The next logical step is to provide also a shared memory component for the sys-
tems of the cluster and to ensure that all systems in the cluster use the same time
reference. The Parallel Sysplex architecture uses this shared memory compo-
nent which is named coupling facility, a common time reference and it is built
on the shared disk architecture of System /370.

6.3. Parallel Sysplex Overview

The parallel sysplex introduces two more components, the coupling facility
and a common time reference. The coupling facility is either a separate system
or a partition of a CEC. At least all production sysplex environments use 2
coupling facilities and deploy methods to synchronize its data. The purpose of
the coupling facility is to share storage in the sysplex. Theoretically it is also
possible to define a sysplex environment without a coupling facility but this is
not really be used anymore. The terminology parallel sysplex refers to the fact
that a coupling facility is used to share data in the sysplex environment.

The operating system of the coupling facility is named Coupling Facility Con-
trol Code (CFCC). This operating system is very basic. Its main function con-
sists of maintaining data structures which are used to share information be-
tween z/OS and middleware components in the parallel sysplex and it pro-
vides signaling functions to inform connected systems about state changes of
the data structures. The coupling facility supports 3 different structure types:
Lock, cache and List structures of which the list structures can be serialized or
un-serialized. All structures need to be defined in the couple data sets of the

6.3 Parallel Sysplex Overview 259

parallel sysplex. The Couple Data Sets (CDS) define also the sysplex commu-
nication groups and policies which are sysplex-wide in use.

The other important piece of the parallel sysplex is time synchronization. Orig-
inally an external time reference (ETR) was used. Due to the signaling time a
distance of up to 40 km was possible for a parallel sysplex. By placing the ETR
into a different site 40km away from the systems and by using two ETRs which
is required for redundancy it was possible to spread a parallel sysplex across
100km. Meanwhile ETRs are no longer state of the art and replaced by the
Server Time Protocol (STP) which is based on Network Time Protocol (NTP)
and which allows to synchronize the systems over the network.

Link

A B N…

Locks Caches Lists

CouplingmFacilitym(CF)

CPU CPU

Application z/OSm
System

LocalmStatemVector
MainmStoragem(Memory)

Figure 6.5.: Coupling Facility Components

260 Parallel Sysplex

6.4. Sysplex Couple Data Sets

VolumeG1

ServiceGDefinitionWLM

HowGtoGmanageGSystemxG
Signalling andGCFGfailures

SFM

LoggerGstructuresGandGstreamsLOGR

CFs andGstructureGattributesCFRM

SharedGHFSGandGzFSBPXMCDS

PolicyGwhichGstartedGtasksGandG
batchGjobsGcanGbeGrestarted

ARM

SysplexGStatus
XCFGgroups
WhichGCDSGexist

Sysplex

DescriptionCDS
VolumeG2 VolumeG3

Primary

Primary

Spare

Alternate

Spare

Primary

Alternate

Alternate

Alternate

Primary

Spare

Primary

Alternate

Spare

Spare

Spare

Alternate

Primary

Alternate

Spare

Primary

Figure 6.6.: Sysplex Couple Data Sets

Couple Data Sets (CDS) are data sets that contain status and policy information
for the sysplex. They provide a way for the systems in the sysplex to share this
information so that they can manage the sysplex environment cooperatively.
There are seven different types of Couple Data Sets that could be used in a
sysplex. Each type is associated with a different system component, such as
WLM, System Logger, or XCF. These components use the the Couple Data
Sets as a repository of information. For example:

• Transient control information, such as the time of the latest status update
for each system in the sysplex (Sysplex CDS).

• More permanent control information, such as information about System
Logger offload data sets.

• Policy information, such as WLM service class definitions in the sysplex.

The information held in the CDS is critical for continuous operations of the
sysplex. If one of the system components loses access to its CDS, that com-
ponent may fail. The impact on either a single system or the entire sysplex
depends on which component loses access to it, for example:

• If a system loses access to all the sysplex CDS, it is unable to update its
system status. As a result the system is partitioned out of the sysplex.

6.5 Coupling Facility 261

• If a system loses access to a WLM CDS, it can remain in the sysplex but
its service policy is from this time unsynchronized to the other systems.

• If a system loses access to all Sysplex Failure Management (SFM) CDS,
SFM is disabled across the entire sysplex.

When the first system is IPLed into the sysplex it reads its CDS definitions
from the COUPLExx parmlib member. This system makes sure that the CDS
are available for use in the sysplex, and then it adds them to the sysplex. All
systems that subsequently join the sysplex must use the same CDS. After the
systemn are active in a sysplex, it is possible to change the CDS configuration
of a sysplex dynamically.

Figure 6.6 shows the couple data sets which can be defined in a sysplex and a
possible design how CDS can be spread across multiple logical devices in the
sysplex. For each component there should be at least a primary and alternate
CDS. It is possible to switch the alternate and primary CDS during runtime.
A primary CDS is used for all read and write operations. The alternate CDS
only for write operations. That ensures that both CDS always reflect the same
component status throughout the sysplex. The spare CDS ensures that the in-
stallation can add a second CDS whenever it is necessary to take the primary
CDS out of the sysplex. That ensures that the components have never to rely on
a single CDS. The distribution of primary and alternate CDS shown above also
attempts to avoid contention on specific volumes in the sysplex. For example
the primary Sysplex CDS and primary Coupling Facility Recovery Manage-
ment (CFRM) CDS should be placed on different volumes. They are not busy
during normal operations but especially the CFRM CDS can become very busy
during recovery situations.

6.5. Coupling Facility

The coupling facility is the shared memory component of the parallel sysplex.
It supports three structures allowing system components and middleware to
maintain common data structures in the cluster.

6.5.1. Lock Structure

The lock model is implemented with lock structures in the coupling facilities
and lock managers on the systems. The model grants exclusive or shared access
to a resource or denies it depending on the state of the resource (see figure

262 Parallel Sysplex

6.7). In the coupling facility the lock structure is a vector which maintains two
information: Which system if any holds the lock exclusively and which systems
if any access the lock shared. The shared state is indicated by a bit which exists
for each system. The vector does not represent each lock but a hash table to the
locks. Therefore it is possible to observe one of two states if the has table entry
is being used:

1. The application on the system which is marked as holder of the lock re-
ally holds the lock. This is a real lock contention situation. In this case
the lock request is either denied or the lock manager implements a mech-
anism to suspend the holder and inform it once the lock is freed.

2. The application on the indicated system holds a different lock but both
locks have the same hash table index. In this case a false contention
situation exists. The lock request can be permitted but only if the systems
exchange information between each other.

CouplingVFacilityVwCFG

z/OSV
System

Program

Lock
ResourceVName
HashVValue
Shared/Exclusive
UserVData
LockVRecoveryVData

Name

Waiter Owner

G S-S

HashVTable
Entry Userid

Lock
Recovery
Data

Hash
Value

LockingVServices

Figure 6.7.: Lock Structure

6.5 Coupling Facility 263

The maintenance of the lock is implemented by lock managers. An application
requests a global lock by asking its local lock manager instance. The local
lock manager resolves all local conflicts and then sends a lock request to the
coupling facility structure. This is a synchronous request that means the lock
manager waits for the completion. If the entry is free the lock request can be
granted and the application can start to use the resource. The lock manager
also transfers information about the application to the coupling facility into a
second related structure. This ensures that other lock manager instances can
recover the lock in case the system goes unexpected down.

The situation is more complex if the hash index indicates that the lock might be
occupied on another system. The lock manager now tests which locks are kept
on the system in its local structure. If the requested lock is the same as the held
lock the lock request can be denied or the caller can be suspended to wait for
the lock. If the requested lock is different the lock manager uses the information
from the local lock structure to inform the other systems that a false contention
exists and that the lock request can be granted. This requires additional data
exchange to the other systems and it is required to build a structure which
depicts the usage of the hash index.

6.5.2. List Structure

List structures are intended to exchange messages between applications or op-
erating system components. List structures can be used with or without a lock.
The lock table allows to serialize the add and remove of list entries. List struc-
tures can be maintained in various access methods: LIFO, FIFO or by key.

Two state information exist for list structures in each system: The Local State
(LS) vector exists for each list on each system. It is set when an entry in the
list is modified. The Global State (GS) vector exists once per system and it is
changed whenever a list structure is modified. Figure 6.8 illustrates the flow
between systems and a list structure.

1. The application which wants to use a list structure initializes the connec-
tion to it. The application registers and establishes a listener on the local
state vector of the list.

2. It is now possible to add one or multiple entries to a list entry.

3. As a result of this change all global state vectors are changed and also
the entry of the local state vectors which reflect the changed list entry.

4. The change of the global state vector causes that the dispatcher receives

264 Parallel Sysplex

control on the interested system and that it can schedule the listener im-
mediately to a processor.

CouplingLFacilityL(CF)

z/OSLA

Headers

UserL1

TestLStateLVector

N

GS

LS

UserL2

GS

LS

ListLEntry

Locks

z/OSLB

1

2

3

4

Figure 6.8.: List Structure

6.5.3. Cache Structure

Cache Structures of the coupling facility are being used to either synchronize
the update to data items or to exchange data. In the first case the cache structure
is used as a directory. In this case the cache data entry only tells the system
whether an item is being updated or not. The data itself is always obtained
directly from disk and also written back to disk. In the second case the data
item also resides in the coupling facility and can be obtained from it.

The Cache structure always consists of two parts a registration or directory
entry and optionally a data entry. The directory entry consists of a name and
a registration field in which each system signals whether it is interested in the
data item. The storage class allows to define how the storage of the cache struc-
ture is managed and the Castout Class defines the policy how the data is writ-
ten to disk. The Castout Lock provides a lock for writing out the data and the
Change Bit indicates whether the data has been changed. Finally the Cache

6.5 Coupling Facility 265

data is connected to the directory entry. There are two main methods how data
can be managed in the coupling facility and on disk:

• For a ”Store-In” Cache Structure the data is written to the coupling fa-
cility and not immediately on disk. The Castout Class now defines the
rules how the data is written to disk and the Castout Lock ensures that
the data is not modified while it is written out to disk.

• For a ”Store-Through” Cache Structure the data is always written in par-
allel to disk when it is also written to the coupling facility. This ensures
that never data can get lost and the coupling facility is primarily used to
speed up the read process to the data.

CouplingeFacility

A

V
1

2

3

4U1

zIOSeA

A*

V‘

U2

zIOSeB

A

A

NumV‘U2NumVU1

Datae
Pointer

Changee
Bit

Castout
Lock

Castout
Class

Storagee
Class

RegistryName

CacheeData

1T Changeedata
2T ChangeedataeineCF
3T Allesystemsegete

informedeaboute
changeeofedatae
dautomaticallyf

4T Dataeonedisk
• Forestoreethroughe

CacheeoreDirectorye
onlyeCache

CacheeTypes
• StoreeThrough
• StoreeIn
• DirectoryeOnly

Figure 6.9.: Cache Structure

Each system maintains a state vector which contains a change bit for each cache
entry. Figure 6.9 illustrates the flow between systems and a cache structure.

1. Application A wants to change a data item.

2. It calls to the coupling facility and provides the name of the cache struc-
ture and the data entry.

266 Parallel Sysplex

3. Within the coupling facility the change bit of the data entry is set and
all systems which are registered to the data entry are informed automati-
cally. On the systems the state vector of the cache structure and the data
item is changed. Each system establishes a listener which is invoked and
which now allows to invalidate local copies of the data item.

4. In this example the serialization to the data is not shown. It is possible
that the application first requests a lock which could also be maintained
in a lock structure of the coupling facility. Typically this also involves
a lock manager which is separate component. Finally the data item can
also be written in parallel to disk. This is typically used for mission crit-
ical data. Another option is to write the data in parallel to a second cou-
pling facility.

6.6. Sysplex Setup

PATHOUT

PATHIN

IXC_DEF_1

SYSA

SYSB

SYSC

SYS1.PARMLIB(COUPLExx)

SYSPLEX(TESTPLEX)

PCOUPLE(TESTPRIM,SYSCDA)
ACOUPLE(TESTALTN,SYSCDB)

INTERVAL(85)

PATHIN STRNAME(IXC_DEF_1)
PATHOUT STRNAME(IXC_DEF_1)

Volume::SYSCDA

CDS::TESTPRIM

Volume::SYSCDB

CDS::TESTALTN

Figure 6.10.: Sysplex Setup

The sysplex setup is defined during IPL of the systems. The main parmlib
member is COUPLExx. Figure 6.10 shows some of the definitions from the
COUPLExx member:

6.6 Sysplex Setup 267

• The name of the sysplex: TESTPLEX

• The name of the primary and alternate Sysplex Couple Data Sets and the
volumes on which they should reside

• The time out interval for systems which leads to actions to partition a
system off the sysplex if it doesnt up date the its sysplex state within this
time frame.

• The PATHIN and PATHOUT definition of a XCF1 signaling structure.

In this example we assume that a sysplex always contains coupling facilities.
This wasn’t required when sysplex technology was introduced and it is still
possible to set up a sysplex without coupling facility. In this case the XCF
signaling structures will use Channel to Channel (CTC) connections to set up
the signaling paths. This is not commonly used anymore, especially because
the number of CTC connections grows quadratic with the number of system in
the sysplex:

Required CTC Connections =
n(n− 1)

2
for n systems

With coupling facilities a new system requires only the connectivity to them.

6.6.1. XCF Groups

The main cluster communication takes place via sysplex signaling. The infor-
mation is exchanged with the help of list structures. These list structures are
named XCF Groups. nearly every operating system component and all major
subsystems, like CICS, IMS, or Websphere use XCF groups for data exchange
in a parallel sysplex cluster. The operating system component WLM, which we
discussed in the previous chapter uses XCF groups to exchange performance
information between the WLM members in a sysplex. In addition many op-
erating system components as well as the middleware components use other
coupling facility structures to exchange information for special functions. A
more detailed discussion follows.

6.6.2. Coupling Facility Duplexing

Not all CF exploiters provide the ability to recover from a structure failure.
For those that do, certain types of structure failures require disruptive recovery

1Cross System Coupling Services

268 Parallel Sysplex

processing. Recovery from a structure failure can be time consuming, even for
exploiters that provide recovery support. One possibility to avoid this is to use
CF structure duplexing. Two types of structure duplexing exist: User-managed
duplexing, that means the component provides it own duplexing support and
system-managed duplexing which is the duplexing support which is optionally
available for all types of structures.

CF1 CF2

z/OS XES Exploiter

1

7

2a 2b

6a 6b

4 4

3a

3b 5a

5b

1. Requestnin
2. SplitnRequestnoutnya+bm
3. ExchangenReadynton

ExecutenSignalsnya+bm
4. Executenrequest
5. ExchangenReadynton

CompletenSignalsnya+bm
6. Responseninnya+bm
7. ResponsenOut

Figure 6.11.: Coupling Facility Duplexing

System-managed CF structure duplexing is designed to provide a general pur-
pose, hardware assisted mechanism for duplexing CF structures. Figure 6.11
shows the way system managed structure duplexing is implemented.

1. The CF write request is split at the XES (Cross System Extended Ser-
vices) driver on the z/OS system.

2. It is sent synchronously out to both coupling facilities in the parallel
sysplex.

3. First the coupling facilities exchange information that they both received
the structure update request.

6.6 Sysplex Setup 269

4. They execute the update request.

5. And exchange information that the request was executed.

6. When all CF handshakes are completed they send the response back to
the z/OS system.

7. XES sends the response back to the caller (7).

The two synchronization points at (3) and (5) allow to reset the request when-
ever necessary.

It is obvious that this type of processing requires more time than just simply
updating a coupling facility structure. Therefore it is not used for all type of
structures. Structures which can fail without impacting the overall operation of
the business are typically not duplexed. Also it should be remembered at this
point that the other option to securely maintain an application state is to use a
coupling facility structure in Store Through mode which updates the data on
hard disk synchronously. It simply shows different possibilities to achieve high
availability and resilience.

XES
XCF

XES
XCF2/Sysplex/Timers

2/Coupling/Facilities

High/Speed/Links

ESCON/FICON/Directors

Up/to/32/z/OS/Systems

Couple/
Data/Set

Figure 6.12.: Original Parallel Sysplex Configuration

270 Parallel Sysplex

6.7. Parallel Sysplex Configuration

The configuration of a parallel sysplex has changed significantly since its intro-
duction in 1993. Originally a parallel sysplex encompassed up to 32 CECs with
each CEC running a single partition, 2 separate coupling facilities and 2 exter-
nal sysplex timer, see figure 6.12. The sysplex timerhave been replaced by the
server time protocol and CECs typically run multiple partitions. Nevertheless
it is still possible that a CEC is dominated by one big partition which partici-
pates in a production syplex. But it is also possible that multiple partitions on
the same CEC are members of the same syplex.

XES

XCF

ESCON/FICONnDirectors

z/OS
LPAR

Couple
DatanSet

CEC CEC

......

OS/390
LPAR

z/OS
LPAR

z/OS
LPAR

XES

XCF

XES

XCF

XES

XCF

C
ou

pl
in

gn
F

ac
ili

ty

C
ou

pl
in

gn
F

ac
ili

ty

Integrated
CouplingnChannel

Integrated
ClusternBus

Server
Time
Protocol

Figure 6.13.: Modern Parallel Sysplex Configuration

Coupling facilities can be either partitions of the CEC or still be on separate
hardware systems. Many installations like to have the coupling facilities still
separated because this enhances their resiliency against CEC outages and en-
hance their flexibility in locating the hardware systems in different data centers.
Figure 6.13 depicts a more modern parallel sysplex configuration. The graphic
implies that a parallel sysplex consists of multiple hardware systems which are
all located at the same site. This is not really the case anymore. For high avail-

6.8 Using IMS as an Example how a Parallel Sysplex is exploited 271

ability reasons most installations operate at least 2 sites and spread their system
across these sites. A parallel sysplex has meanwhile evolved to a ”Global Dis-
persed Parallel Sysplex (GDPS)” and we will discuss in detail what this really
means and what levels of availability can be achieved with dispersing the sys-
tems.

6.8. Using IMS as an Example how a Parallel
Sysplex is exploited

The next question is what it takes to exploit the coupling facility and with it the
parallel sysplex technology. Large middleware components like Customer In-
formation Control System (CICS) and Information Management System (IMS)
already supported multi system environments. Introducing the parallel sysplex
technology does not immediately mean that these middleware application were
able to use all possibilities of the coupling facility. As an example we will take
a look at IMS.

IMS was introduced in 1968 for the Apollo space program. It consists of two
components a database and a transaction monitor. The original IMS database
is named DL/1 (Data Language 1) and it is a hierarchical database system.
The database was named after its query language. IMS also supports another
database implementation named Fast Path Data Entry Database (DEDB). DEDB
was created to support customers which have lower resilience requirements for
the database. In addition IMS supports DB2 which is a relational database and
which was introduced on MVS in 1983. IMS uses the IBM Resource Lock
Manager (IRLM) for multi system locking. IRLM was also originally designed
for IMS but it became a common component for shared DB2 and IMS database
environments.

IMS supports short living requests and permanent sessions like TSO sessions.
They exist from logon to logout of end users connected to the IMS control
region. The requirement for sessions is that they should be distributed in a
multi system environment in order to avoid load imbalances. It is also needed
to distributed the short living client requests (messages) to the systems which
can best process them. For accessing the databases IMS keeps local data buffers
which need to be synchronized and locking needs to be supported between the
IMS instances which is performed by IRLM. Figure 6.14 depicts the structure
on an IMS environment.

The IMS transaction monitor controls flow of end user requests which are

272 Parallel Sysplex

DL1

Network

IMS
DB/DC

IRLM

DB2

DBRC

Recon

MPP IFP BMP

Application
Program

Application
Program

Application
Program

DEDB

Libs/Logs

Figure 6.14.: Information Management System Structure

named messages. Messages are received either from the network or other pro-
grams like Batch. The control region verifies the message and then passes it
to a processing region which is named Message Processing Region (MPP or
MPR). The MPP starts the application program to process the request which
may access the data base and returns the result in an output queue which is
passed back to the client. Besides MPPs there are two other type of message
processing regions:

BMP (Batch Message Processing) regions run programs which typically don’t
pass the output back to a waiting client.

IFP (IMS Fats Path) regions access the DEDB data bases.

Like all middleware transaction monitors IMS supports LOG writers which
are required to protocol synchronization points for failure recovery. The failure
recovery is performed by Database Recovery Control (DBRC) which runs in a
separate address space.

Supporting everything at once is nearly impossible. When parallel sysplex
technology was released only XCF was able to use list structures to support
the communication for the XCF groups in the coupling facility. Components

6.8 Using IMS as an Example how a Parallel Sysplex is exploited 273

Message
Queues

CouplingXFacility

IRLMA IRLMB IRLMC

CacheXStruktur
BufferXInvalidation

Buffer
Pools

IMSA

IRLMA

XES

Figure 6.15.: IMS Parallel Sysplex Exploitation Step 1

like IRLM supported multi system locking but initially they were only able to
use parallel sysplex technology indirectly by using XCF message flow.

The support for parallel sysplex technology of IMS can be seen in two phases.
The first phase which is illustrated in figure 6.15, enabled sysplex wide locking
anf buffer invalidation for local buffer pools. IRLM uses lock structures for
global locking and buffer invalidation uses a coupling facility cache structure.

The IRLM lock structure is used to manage the hash indexes of locks between
the systems and a list structure in which the IRLM instances maintain addi-
tional information to their locks. In case of a system outage the IRLM instances
on still running systems are able to take over the responsibility of the failing
instance and either free the locks or ensure that the processes can complete
their processing.

The IMS cache structure is used as a directory to maintain the validity state
of the local data buffers. This reduces the traffic between the systems but data
access always requires to go directly to disk.

The second step of parallel sysplex exploitation tries to address the open items.
One open item is session placement. In this case IMS is able to profit from

274 Parallel Sysplex

Shared
Message
Queues

CouplingTFacility

IRLMA IRLMB IRLMC

DL1:TStore-Through Cache
DEDB:TStore-In Cache
XGlobalerTBufferTPool)

Buffer
Pools

IMSA

IRLMA

XES

VTAM Generic Resources

Figure 6.16.: IMS Parallel Sysplex Exploitation Step 2

VTAM Generic Resources. This is a technique which is used by TSO to place
a new session to the system which is the best fit for it. The idea is to spread the
sessions between systems to avoid over-utilization and to ensure that systems
which show problems or run other high important work are not selected. VTAM
generic Resources is based on WLM routing recommendations as discussed in
section 5.6.1.

The second item is the placement of short running requests. WLM developed
sysplex routing services to assist routing functions to place user requests on
the systems which are best suited to process them and also to distribute the
requests in a sysplex environment. But IMS uses a different technology which
is based on its in and output processing. Every incoming IMS message is placed
in an Input queue and every out going message into an Output queue. IMS now
places these Input and Output queues in the coupling facility and uses a list
structure for them. If a system receives a new message this message is always
placed on the shared message queue in the coupling facility. The next system
which has available capacity and on which the IMS control region runs selects
the message from the coupling facility and processes it. This guarantees that
the messages which are typically short lived are distributed automatically to the
system which can most easily process them. Also if load shifts in the sysplex
environment the load also shifts for the IMS processing automatically. Figure

6.9 Parallel Sysplex Exploitation Summary 275

6.16 summarizes the sysplex exploitation of IMS.

Finally data buffers can be held globally in the coupling facility. IMS databases
offer two options for maintaining global buffer pools in the coupling facility:
For DL/1 the global buffer pool is implemented as a store-through cache. That
means all data items are also written automatically to disk when they are up-
dated and the copy is written to the coupling facility. This always ensures that
the data is consistent. It is easy to understand that this is not the best perform-
ing way to share data in a parallel sysplex but for installations using DL/1 data
bases it is more interesting to always maintain consistent data then to optimize
on performance. For DEDB databases a Store-In cache structure or technol-
ogy is used. DEDB databases typically do not have the same high availability
concerns than DL/1 data bases and therefore optimizing on performance is
a desired functionality. This example and the exploitation of parallel sysplex
technology shows that it is often more important for installations to optimize
on availability and ensuring consistency than to optimize on performance. This
should be clearly noted for all types of exploitation on System z.

6.9. Parallel Sysplex Exploitation Summary

Middleware Lock List Cache
Subsystem Structure Structure Structure
CICS Shared Memory VSM/RLS Buffers
IMS Shared Message Queues Global Buffer Pools
DB2 Data Sharing Groups Global Buffer Pools
IRLM Global Lock Tables
z/OS Logger Log Streams
GRS Lock Contention
Tape Allocation Multi System Tape Usage
RACF Frequently Used Data
VTAM Multi-node persistant

sessions
Generic Resources

JES Checkpoint and Spool
data sets

WLM Multi-System Enclaves2 LPAR Cluster
XCF Signaling

Table 6.1.: Parallel Sysplex Exploitation

Table 6.1 summarizes the exploitation of Coupling Facility Structures for ma-

276 Parallel Sysplex

jor IBM middleware and z/OS operating system components. Together with
the exploitation of XCF groups which we discussed before we can see a high
degree of parallel sysplex exploitation. Nevertheless we have to notice that the
full exploitation by a middleware component like IMS took 6 years and the
deployment of the functionality by customer installations even longer.

6.10. Business resilience

Business Resilience is the ability of a system or company to adapt itself to
unplanned situations. Ideally the system or company can survive any kind of
unplanned incident as well as to plan for continuous operations for planned
events. Meanwhile information technology is so critical for companies that the
necessity to protect itself for unplanned events is one of the most critical and
most highly valued features of an enterprise wide IT infrastructure.

Applicationutransansaction
IntegrityurecoveryRPO

RTOuofuData

RTOuofuTransactionuIntegrity

RTOu=uRecoveryuTimeuObjective:uHowulonguwithoutuservice?
RPOu=uRecoveryuPointuObjective:uHowumuchudatautourecreate?

Figure 6.17.: Recovery Objectives

There are two metrics which describe high availability and business resilience
solutions (see figure 6.17:

Recovery Time Objective (RTO) This value tells how long a business re-
mains out of service for a disaster incident.

Recovery Point Objective (RPO) Tells how much data has been lost and
how much data needs to be recovered or recreated. RPO is also described
as a time value.

After a disaster incident, RTO of data tells how long it takes until the system
is up and data can be accessed again. The next step is to recover the lost data
or to reset the system to a saved recovery point. RTO of transaction integrity
tells how long it takes until the system is again fully operational after a disaster
incident.

The recovery objectives as well as the availability objectives have dramatically

6.10 Business resilience 277

changed during the last 50 years, see figure 6.18. In the beginning of computer
infrastructure as part of companies the loss of systems was not a critical situa-
tion to the business. In the beginning mostly internal booking ran on computer
systems. A loss of the computer infrastructure had no immediate effect on the
business. Restart times of more than 1 day were not unusual also data loss of
more than 1 day was still consumable. With the technology becoming more
and more part of the daily business the objectives for availability became more
and more stringent. In fact today financial institutions must provide a 24 hour
availability for all days in the week. Global processes do not allow to take the
whole environment down.

1960 1970 1980 1990 2000 2010

TechnologyAandAHardwareAPricesRecoveryAObjectives

Availability
AObjectives

83hours3x353days

243hours3x373days

13MillionT/MIPS
100T/MB3disk3space

3000T/MIPS
100T/GB3disk3space

Restart3Time:324-72h
Data3Loss: 24-72h

Restart3Time3<31h
Data3Loss3 ~30

Figure 6.18.: Requirements on Recovery Objectives

6.10.1. Continuous Operations

One important factor to reach a high available environment as well as to enable
an environment to reach a state of continuous operations is the ability to up-
grade the environment without shutting it down. A cluster of systems, like the
parallel sysplex is ideal to achieve this goal. The cluster consists of multiple
systems which cooperate to provide the service to the end users. At least this is
the ideal situation. Cooperation means that the middleware and applications on
the cluster provide a common service to the end users and not that the cluster

278 Parallel Sysplex

is just a loosely coupled set of systems which all provide different services. In
reality both type of clusters can be found. From a high availability and con-
tinuous operations point of view we will primarily take a look at clusters in
which the middleware is distributed across the systems in the cluster providing
a single system image to the end user. That doesn’t mean that certain systems
can’t special workloads. This is also often the case and does not interfere with
the general concept as long as the main purpose of the cluster preserved.

CICS
DB2

z/OS
1.12

LPAR

CEC CEC

......

z/OS
1.12

LPAR

z/OS
1.11

LPAR

z/OS
1.10

LPAR
CICS
DB2

IMS
DL1

IMS
DL1

C
ou

pl
in

ge
F

ac
ili

ty

C
ou

pl
in

ge
F

ac
ili

ty

RollingeOperatingeSystemeUpgrade

RollingeOperatingeSystemeServiceeUpgrade

Parallel
Sysplex

Figure 6.19.: Rolling Upgrades and Service

It is necessary in such an environment is to provide a technique to upgrade
the systems without shutting down the cluster and without interrupting the ser-
vice to the end users. The same applies for upgrading the major middleware
components as well as bringing up service on the systems. For upgrading a
system, the system needs to be re-ipled. This is also often the case if a major
middleware component is upgraded as well as if new service is brought on the
system especially if parts of the system nucleus is changed. The idea is to shut
down only a single system, upgrade the system and to re-ipl it. The service to
the end user is taken over by the remaining systems in the sysplex. Sometimes
this may require to increase the capacity of a CEC and/or to move middleware
applications to other systems in the cluster. It also requires that different ver-
sions of the operating system can work together. For z/OS this means that an
operating system version can always work together with a defined number of
lower versions as well as higher versions.

6.11 Disaster Recovery Prevention 279

6.11. Disaster Recovery Prevention

After introducing the parallel sysplex we will now further explore what it
means to enable this environment to survive site disasters. One important factor
is redundancy, for example using two coupling facilities and coupling facility
duplexing (see section 6.6.2) is one item to it. The reliability build into System
z another factor. But what else is needed to prepare for disaster recovery events.
At least two factors need to be discussed:

1. How to add CPU Capacity if a system or a site fails to take over the
work?

2. How and to what extent is it possible to mirror permanent and temporary
data?

6.11.1. Capacity Backup

CapacityfonfDemandfMCoDS

PermanentfUpgrade
MCustomerfInitiatedfUpgradefMCIUSS

TemporaryfUpgrade

ReplacementfCapacity
BillablefCapacity

MOOCoD =fOn1OfffCoDS

CapacityfBackupfMCBUS
PrexPaid PostxPaid

Usingfprexpaidf
unassignedf
capacityfupftofthef
limitfoffthefHW
Capacity:

• MSUW
• hfoffProcessors

OOCoD withftokensf
nofexpiration
Capacity:

• MSUW
• hfoffProcessors

Tokens
• MSUfdays
• Processorfdays

OOCoD
Expirationf088fdays
Capacity:

• MSUW
• hfoffProcessors

OOCoD withftokensf
Expirationf088fdays
Capacity:

• MSUW
• hfoffProcessors

Tokens
• MSUfdays
• Processorfdays

CapacityfforfPlanned
EventsfMCPES

Figure 6.20.: Capacity Upgrade Options

280 Parallel Sysplex

Figure 6.20 summarizes the various capacity upgrade options on System z.
Capacity Upgrade can be divided in the following categories:

• Permanent upgrades which allows an installation to increase the capacity
permanently because simply more capacity is required

• Temporary upgrades which are thought to either survive a disaster sce-
nario, which can be used for a planned event or which is required to
provide the capacity for high business scenarios like the end of a month
or a quarter which shows a much higher number of business transactions
than normal operation hours.

We are mainly interested in the Capacity Backup (CBU) and Capacity increase
for planned events (CPE) option because these are specifically designed for
High Availability reasons. CBU and CPE allow to increase the number of phys-
ical processors for a pre-defined time period in order to survive a down incident
or a planned upgrade or test scenario.

6.11.2. Data Mirror Techniques

While the parallel sysplex provides the capability to maintain redundant pro-
cessing capacity for continuous operations we have to take a look how the data
can be kept available across system failures. The standard technique is data
replication. Now replicating data at pre-defined time intervals is not effective
therefore it is necessary to copy the data at the time when it is generated or
modified. Such techniques are mirror techniques. The difference is that the
data which is contained on a hard drive is not copied at once but each modifi-
cation is copied when it is modified or created. A flash copy of the hard drive
might still be necessary to create an initial copy of the drive and to create a
synchronization point.

Basically two mirror techniques exist:

• Synchronous copy techniques which require that the data is written si-
multaneously at both sites and the final acknowledgment to the applica-
tion is returned when the data exists at sites.

• Asynchronous copy techniques which copy the data also instantaneously
but the acknowledgment is returned when the first copy at the local site
is created.

We will discuss bot copy techniques together with data mirroring for tape de-
vices and swap techniques in the next sections. This discussion also includes
latency considerations.

6.12 Peer-to-Peer Remote Copy 281

6.12. Peer-to-Peer Remote Copy

Synchronous copy techniques exist today for different large system environ-
ment. This is not a feature of the system hardware but of the I/O hardware. A
synchronous copy is created by a handshake mechanism of the physical con-
trol units at the two sites. The idea is to have an identical copy at the remote
site and a physical control unit which is just a redundant instance of the local
physical control unit. The IBM implementation on System z and z/OS is named
Peer-to-Peer Remote Copy (PPRC). Other vendors name their techniques for
example Truecopy from Hitachi Data Systems.

Local Site Remote Site

1. Write

2. Copy

3. Acknowledge

4. Acknowledge

Figure 6.21.: Peer-to-Peer Remote Copy

Synchronous copy guarantees ”zero data loss” by the means of atomic write
operation. This means the write either completes on both sides or not at all.

282 Parallel Sysplex

Write is not considered complete until acknowledgment by both local and re-
mote storage. Most applications wait for a write transaction to complete before
proceeding with further work, hence overall performance will be impacted by
the distance of the sites between the copy occurs. An often-overlooked aspect
of synchronous copy is the fact that failure of remote replica, or even just the
interconnection, stops by definition any and all writes (freezing the local stor-
age system). This is the behavior that guarantees zero data loss. However, this
also requires that a commercial system must also freeze at this point and it does
not continue to proceed with local writes and thus loosing the desired zero re-
covery point objective. We will emphasis this fact and the additional technique
which has been implemented on System z and z/OS to support the freeze and
a take over with minimal overall system impact.

6.12.1. Latency of Synchronous Copy

Figure 6.22.: I/O Benchmark for Synchronous Copy

In order to evaluate the impact of synchronous copy during runtime we will
take a look at a common benchmark (iozone) for synchronous copy opera-
tions3. Iozone is an I/O performance benchmark executed on AIX and DS8000.
DS8000 control units are also connected to z/OS and System z systems and the

3This section is based on an evaluation of the PSSC Montpellier, published at GSE 2008 in [12]

6.12 Peer-to-Peer Remote Copy 283

benchmark results can be used to evaluate the impact for z/OS applications as
well. First of all the maximal possible speed in a fiber channel is two third
of the speed of light which is around 200000 km/s. So the maximal possi-
ble round trip for a 10 km distance between two physical control units is 100
microseconds which is twice the signal latency of 50 microseconds. In some
newer measurements and calculations it can be seen that 67 microseconds are
possible for a 10km round trip distance but this is just a theoretical value.

Figure 6.22 illustrates the relationship between block size and distance to through-
put, I/Os per second and I/O response time. It can be seen that a 4 block size is
most advantageous from a performance point. Nevertheless the response time
impact for a 100km distance is already very significant with 4 milliseconds
because it must be seen together with the fact that a local write to a DASD
can complete in much less than 4 milliseconds. Also the limiting factors to I/O
throughput and the number I/O per seconds which can be issued to the I/O sub-
system show that from a practical point of view a distance of more than 100km
is not efficient. In fact most installations separate their disaster recovery sites
by less than 50km. We will discuss the impact of a ”relative short” distance
between disaster recovery sites too.

6.12.2. Hyperswap

PPRC enables an installation to create just in time copies of the current write
operations with an acceptable latency as long as the distance is within a 100
km range of the two sites and the ability to achieve a recovery point objective
of zero. We have to discuss what can be done if a problem is recognized and
how is it possible to switch over to the remote site with minimal recovery time.
In order to achieve a recovery time with minimal impact and which is nearly
transparent to the running applications a technique has been implemented on
z/OS which is named Hyperswap. Hyperswap is enabled to keep a second set of
unit control blocks (UCBs) for each device in the system. The mirror UCBs can
be placed in a secondary sub-channel set for example. In this example a device
with the number 123 might have a mirror 523 which is connected to the sub-
channel of the secondary device. This means that all primary and all secondary
devices are configured on z/OS and that a mirror (or secondary) UCB is defined
for each primary device UCB. If now an error occurs the following processing
starts:

• Errors recognized

• Running I/Os are terminated. They are returned to the application and the

284 Parallel Sysplex

application can restart them. This is necessary because it is not possible
to evaluate the state of each individual I/O already not for performance
reasons.

• Waiting I/Os are elongated. For waiting I7Os it is possible to keep them
alive because the Start Sub-channel hasn’t been issued yet. Therefore it
is possible to just leave them in the wait until the secondary I/O devices
can take over.

• Primary devices drain and will be set to an error state

• UCB status switched to secondary UCB. This means the UCB now con-
nects to the sub-channel of the secondary device and the mirror UCB to
the sub-channel of the primary device.

• Secondary devices take over and the waiting I/Os can be started

P S

UCB 123 UCB 523

application

PPRC

Subch. Subch.

S P

UCB 123 UCB 523

application

Flashcopy/PPRC

Subch. Subch.

Figure 6.23.: Hyperswap

This procedure can complete within seconds even for a very large number of
I/O devices and thus works nearly transparently to the applications. The old
primary devices which are now the secondary devices are in an error state until
the error has been fixed. After taking the secondary devices on-line again it is
necessary to copy the content from the primary devices back to the primary set
and then start to continue with PPRC for each single write operation.

6.13 Extended Remote Copy 285

Hyperswap is possible on an I/O subsystem level. Nevertheless for data con-
sistency reason all primary devices are switched to all secondary devices so
that the primary set always resides on the same site. The advantage of this
procedure is that data integrity can always be achieved. If only a single I/O
subsystem would be copied it is possible that the primary content of the data is
spread across sites and a consecutive error can cause loss of parts of the data.

6.13. Extended Remote Copy

SDM

1. Write

2. Acknowledge

3. Copy to Mirror Site

4. Write to
Secondary

Local Site Remote Site

Figure 6.24.: Extended Remote Copy

Extended Remote Copy (XRC) is the IBM implementation for asynchronous
copy operations on System z and z/OS. There are basically two versions of
asynchronous copy operations:

• Full asynchronous copy is complete as soon as the storage acknowledges
the write operation. This can also be already the case if the write is just
buffered and not even issued.

286 Parallel Sysplex

• Semi-synchronous copy completes if a local copy is written to disk and
the asynchronous copy operation has been initiated. XRC is a semi syn-
chronous copy operation because the local copy always completes.

XRC requires a software component named System Data Mover (SDM). The
System data Mover resides on the remote system and ensures that no depen-
dent write operations are mode out of sequence and the data residing on the
secondary volumes provide a time consistent copy of the primary volumes be-
ing mirrored.

XRC allows to copy data of long distance thus knowing that a recovery point
objective of 0 cant be achieved. We will discuss how it is possible to combine
PPRC and XRC technologies to achieve a global environment for disaster re-
covery and continuous operations. XRC as a z/OS copy services solution can
be compared to Global Mirror for ESS, which is a controller-based solution for
either the open systems or System z environments. Both Global Mirror for ESS
(Asynchronous PPRC) and XRC (Global Mirror for z/Series) are asynchronous
replication technologies, although their implementations are somewhat differ-
ent.

6.14. Peer-to-Peer Virtual tape Support

The Peer-to-Peer Virtual Tape Support (VTS) automatically creates a copy of
any newly created or updated tape volume in both Virtual Tape Servers, unless
the assigned Management Class does not request a copy. This process is per-
formed transparently to the customer application and with no host processor
resources required. Either volume copy can then be used to satisfy a specific
customer mount. This copy of all new or updated virtual volumes can be cre-
ated using one of two possible modes of operation:

Immediate copy Creates a copy of the logical volume in the companion
connected Virtual Tape Server prior to completion of a rewind/unload
command. This mode provides the highest level of data protection.

Deferred copy Creates a copy of the logical volume in the companion con-
nected Virtual Tape Server as activity permits after receiving a rewind/
unload command.

6.15 Disaster Recovery Scenarios 287

The Virtual Tape Controllers provide the connection to the hosts and to two
virtual tape servers. Each VTC provides synchronization of the copy of logi-
cal volumes, creates logical volume copies using large block transfers of com-
pressed logical volumes, balances workload between the two Virtual Tape Servers,
directs specific volume mounts to the Virtual Tape Server with a cached copy of
the requested virtual volume, and displays the status and current configuration
of the Peer-to-Peer VTS.

6.15. Disaster Recovery Scenarios

6.15.1. Single Site Workload (Active/Standby)

Figure 6.25 shows a GDPS layout which primarily uses one site for production
systems and the second site purely for recovery purposes. The sysplex with
active production systems is always completly located in only one site. The
second site primarily consists only of standby capacity and an I/O subsystem
with mirrored devices. Usually PPRC is used to copy the device activity syn-
chronously to the second site. Such a layout only requires full access of the
systems to its local I/O subsystem plus additional cabling effort for mirroring
the coupling facility and the PPRC devices. The second site is a standby and
disaster recovery test site. Typically only one system is running on the second
site, the K-system which controls the interoperability of the primary site and
the takeover to the secondary site in case of a malfunction. In addition Capacity
Backup (CBU) is in place to enable processors required for the systems of the
secondary site in case of a failure.

6.15.2. Single Site Failure Scenario

A single site failure will always cause a takeover to the second site. The first
step is to restart systems on the second site and to restart the middleware and
applications. Typically the restart of of middleware and rebuilding their states
takes most of the recovery time. Therefore such a layout does not guarantee
continuous operations. Recovery times can exceed 1 hour. The recovery point
is determined by the amount of data mirrored and write policies of the coupling
facility structures. But a recovery point objective of 0 is achievable for such a
configuration. Besides the difficulty that this configuration always implies to
live with a downtime it also implies that that after a failure the secondary site
is completely stand alone until the problem of the primary site has been fixed.

288 Parallel Sysplex

Secondary Secondary Local
Secondary

K P1 P2

Primary Site Secondary Site

PPRC

CBU

PrimaryLocal

K P1 P2

Primary
PrimaryLocal

Pn...

Figure 6.25.: Single Site Workload (Active/Standby)

Therefore it is also possible to gradually enhance this configuration by using
Hyperswap and additional cabling for the I/O subsystem. Then it is possible to
survive only an I/O subsystem failure and also to use the original primary site as
PPRC backup site while the secondary site has taken over the data processing.

6.15.3. Multi Site Workload (Active/Active)

A better but also more cost intensive solution is an active/active configuration.
For this configuration the workload is spread across the two sites. Typically
half of the systems run on site 1 and the other half on site 2. The I/O subsystem
is again fully located in one site and Hyperswap is typically used to protect the
environment against an I/O subsystem failure. Another option is to use Cou-
pling facility duplexing depending on the urgency to how fast the systems need
to be back on-line again and how much latency is acceptable for the instal-
lation. The standby capacity is now also spread across the sites. Because this
environment provides full access from each site to each I/O subsystem much
more cabling and connectivity is required. Nevertheless this environment is the
choice for most installations today.

6.15 Disaster Recovery Scenarios 289

Local Local Primary Primary Secondary Secondary Local
Primary Secondary

P1 P2 P3
…

K P1 P2

Primary Site
Complete failure

Secondary Site

PPRC

CBU

Simplex (not mirrored)

Figure 6.26.: Single Site Failure Scenario

Secondary Secondary Local
Secondary

K2 P3 P4

Primary Site Secondary Site

PPRC and Hyperswap

PrimaryLocal

K1 P1 P2

Primary
PrimaryLocal Local

Figure 6.27.: Multi Site Workload (Active/Active)

290 Parallel Sysplex

6.15.4. Multi Site Failure Scenario

There are two error scenarios: The first is an I/O subsystem only failure, see
figure 6.28. Hyperswap will then switch the UCBs in all systems from the
primary I/O subsystem to the secondary site. Typically such a failure can be
solved between 10 and 60 seconds depending on the size of the number of
devices which need to be swapped. The secondary scenario is a system failure.
Now the backup capacity needs to be activated and the failing systems need to
be restarted on the still active site. It is theoretical possible that this situation
can be handled while the overall environment is still operational to the end
users. On the other hand this also depends from the system load when the
failure occurred and the white space capacity which is available on all running
systems. In any case this configuration has the highest potential for continuous
operations.

Secondary Secondary Local
Secondary

K2 P3 P4

Primary Site Secondary Site

Hyperswap

PrimaryLocal

K1 P1 P2

Primary
PrimaryLocal Local

Figure 6.28.: Multi Site Workload: I/O Subsystem Failure

Figure 6.29 shows a complete failure of the primary site with a full takeover
of the secondary site. After using the I/O devices of site 2 as primary devices
systems P3 and P4 can continue to run. Sometimes it is possible that it is not
necessary to restart the partitions P1 and P2 and just to provide standby ca-
pacity which can then be used by system P3 and P4. This is the case if all
applications run across all sites. In this case a minimal recovery time can be as-

6.16 Summary of Business Resilience Concepts 291

Secondary Secondary Local
Secondary

K2 P3 P4 P1 P2

Primary Site Secondary Site

Takeover

PrimaryLocal

K1 P1 P2

Primary
PrimaryLocal Local

CBU

Figure 6.29.: Multi Site Workload: Complete Site Failure

sumed and the environment remains operational. If coupling facility duplexing
is also active all cross system states are immediately available on the secondary
site as well.

6.16. Summary of Business Resilience
Concepts

Business resilience or high availability strategies which are implemented at
customer sites can be classified into 4 categories:

1. Continuous Availability of data within a data center provides access to
data without interruption. The data is synchronized between different
disk volumes and in case of a disk failure the system can use the sec-
ondary devices nearly immediately. But this solution doesn’t provide
any protection against a data center failure because the environment is
not spread across different sites.

2. The next step is to create two data centers and to use PPRC for mirroring
the data between the sites within a metropolitan area. It is also assumed

292 Parallel Sysplex

that workload either runs across the two data centers or that it primarily
uses one data center and the second provides only standby capability.
This solution provides continuous availability and full disaster recovery
within a region of up to 100km. The issue is the signal latency. Within
a range of 20 to 50km the signal latency is very small and doesn’t pro-
vide to much impact to OLTP workloads but for further separation this
solution is limited. By using synchronous data copying the RPO is still
zero and the RTO depends on the layout and strategy for the parallel sys-
plex but it can be kept below 1 hour. The issue of this solution is the low
data separation which still requires the data centers to remain in the same
metropolitan region which is not sufficient for all customers.

3. The third solution uses asynchronous data mirroring XRC on System z
or Global Mirror (GM) on other platforms to separate the data centers at
extended differences. The site separation is now given but typically the
RTO is already much higher than for the metropolitan solution. Also this
solution does not achieve an RPO of seconds.

4. Finally the solutions two and three are merged together. The three site
concept uses a metropolitan solution for continuous availability and the
third data center at an extended distance for additional disaster recovery
to protect against failures which impact the metropolitan area. The local
solution provides RPO and RTO like the second solution and the exten-
sion to the third site the qualities like the third solution. Typically the
XRC solution is initiated by the secondary site which copies the data to
the third site after it has acknowledged the write.

6.17. Summary

A metropolitan disaster happens more often than expected. Very typical are
power failures which can affect millions of people. The most popular was the
North East Coast power blackout in 2003. Since then the wikipedia lists 68
power outages world-wide which means 6 to 7 per year.

Data centers take precautions against power failures by installing emergency
power supplies but also emergency power supplies can only survive a data cen-
ter for a limited period of time. Parallel sysplex technology and the possibility
to spread data centers across different locations are today the state-of-the-art
way to protect the environment against disasters. Mechanisms like rolling sys-
tem and service updates allow installations to continuously operate their en-

6.17 Summary 293

vironment. Altogether System z together with the techniques discussed in this
chapter are currently the most secure and highest available computer platform.

7. Summary

This overview describes some important aspects for mainframe environment:
Scalability and High availability. For Scalability we saw that simply increas-
ing the number of processors on a system and just developing processing with
higher frequencies does not automatically lead to better performance. Higher
processor frequency increases the speed difference between processors and
memory and as result we found out that additional cache levels are required to
mitigate this difference. because not all processors can share the same caches
a quiet sophisticated hierarchy of caches and book structures is required to add
up to 96 processors on a system.

But that wasn’t all. We found out that higher processor speed also increases
the processing pipeline. In order to use the high speed efficiently a super-scalar
design which finally requires techniques to crack and re-order instructions is re-
quired to make the best use of the technology. Many processors create another
set of problems. Especially when we took a close look at the layout of a mod-
ern mainframe system we found out that at least always two work dispatching
processes are involved. This creates difficulties for accessing data across the
cache hierarchies and in chapter 4 we discussed this problem in great detail.

Finally scalability can even be limited by the second subject: High Availability.
High Availability requires to separate data centers as much as possible but this
is not so easy especially with respect on throughput and performance. But we
also found other ways to improve performance on the system. In chapter 2 we
saw that complex instructions which are designed for specialized purposes can
help performance to a large extent.

For High Availability we started with the reliability concepts of the architec-
ture. We discussed function like z/OS Workload Manager which not only add
to manageability and scalability but also provide significant support to keep
the system and applications running. Finally on a large scale the parallel sys-
plex and the design for GDPS emphasize what is needed to achieve a highly
resilient environment and to achieve continuous operations.

This book only highlights some of the aspects to give an understanding on
which levels design, functions and work is needed to achieve environments as

296 Summary

they are required by large business institutions which depend heavily on Infor-
mation Technology. System z and z/OS are the perfect example for it because
this product and its ancestors set the industry standards for RAS and Quality of
Services. No world-wide operating company is able to live without this infras-
tructure and it is also part of our daily business, for example in our own money
transactions.

A. Glossary

A

ABIST Array Built-In Self-Test - Built in self test machine for integrated
circuits including memory arrays

AES Advanced Encryption Standard - Specification for encryption of
electronic data based on the design principle known as substitution
permutation network.

AMD Air-Moving Device - Fan

APPC Advanced Program to Program Communication - Protocol for pro-
gram to program communication between multiple systems

ARL Authority Revocation List - List of revoked certificates which should
not be relied on.

ASCB Address Space Control Block - z/OS control block which repre-
sents a virtual storage entity tight to an end user or set of programs
to execute

B

BCP Basic Control Program - z/OS or MVS kernel routines

C

CA Certification Authority - An entity that issues digital certificates

CBA Concurrent Book Add - Add a book while the system is running

CBC Cipher Block Chaining - Modes of operation that enable the re-
peated and secures use of block cipher under a single key

298 Glossary

CBR Concurrent Book Replacement - Unplug and exchange a book
while the system is running

CC Cage Controller - Controller for an entity of a System z frame
which either contains processors (CEC cage) or I/O cards (I/O
cage)

CCA IBM Common Cryptographic Architecture - Architecture of cryp-
tographic features and cards for IBM systems

CCW Channel Command Word - Defines an I/O operation (read, write,
control) to be performed on an I/O device

CDS Couple Dataset - Dataset which contains control information to
setup a parallel sysplex environment

CDSA Common Data Security Architecture - Set of layered security ser-
vices and cryptographic framework that provide an infrastructure
for creating cross-platform, inter-operable, security-enabled appli-
cations for client-server environments

CE Correctable Error - Error which can be detected and corrected for
example memory bit errors

CEC Central Electronic Complex - The system (processors, memory,
I/O adapters), not including I/O devices

CECSIM Central Electronic Complex Simulation - Firmware simulator for
System z CEC

CFCC Coupling Facility Control Code - Operating System of the cou-
pling facility

CHPID Channel Path Identifier - Identification of the channel path, typi-
cally a number

CICS Customer Information Control Server - A transaction monitor that
runs primarily on z/OS

CISC Complex Instruction Set Computing - Processing architecture which
contains many complex instructions which perform functions like
small programs

CKD Count Key Data - System z disk architecture

CKDS Cryptographic Key Data Set - Keys that are protected under DES
or AES are stored ina VSAM data set that is called CKDS

CP Central Processor - Standard processor of a System z

299

CP Control Program - Main component (hypervisor) of z/VM

CPACF CP Assist for Crypto Function - Assist processor for cryptographic
functions

CPU Central Processing Unit - see CP

CRL Certificate Revocation List - see ARL

CRT Chinese Remainder Theorem - About congruences in number the-
ory and abstract algebra

CSS Channel Subsystem - The heart of moving data in and out of of a
mainframe

CSSID Channel Subsystem Identifier - Number which identifies the Chan-
nel Subsystem in case multiple exist

CVC Card Verification Code - Security feature for credit cards

CVV Card Verification Value - see CVC

D

DAE Data Analysis and Elimination - z/OS RAS function which en-
sures that only data is captured which is needed to analyze system
problems

DASD Direct Access Storage Device - A storage device which supports
direct access (typically a disk)

DB2 Database - Relational database based on E. F. Codd’s theory of
relational databases

DCA Distribution Converter Assembly -

DCS Dynamic CPU Sparing - Feature that allows inactive CPUs to act
as dynamic spares

DDF Distributed Data Facility - Component of DB2 to exchange infor-
mation with external clients

DEDB Data Entry Database - Fast path database for IMS

DES Data Encryption Standard - Block cipher that uses shared secret
encryption

DL/I Data Language Interface - Database of IMS

Glossary

300 Glossary

DRAM Dynamic Random-Access Memory - Memory which can be ac-
cessed byte wise and randomly

DRDA Distributed Relational Database Architecture - Distributed database
architecture of the open group standard

DSA Digital Signature Algorithm - Algorithm which allows to verify
the correctness of data exchanged on an unsecured network

DSS Digital Signature Standard - DSA standard

E

EBC Electronic Code Book - Simple block cipher method

ECC Error-Correction Codes - Redundant data added to a data item for
error detection and checking

ECKD Extended Count Key Data - incorporates fixed-block and CKD ar-
chitecture

EMIF ESCON Multiple Image Facility - Feature which allows to use ES-
CON channels from multiple partitions

ESA/390 Enterprise Systems Architecture/390 - 32-bit predecessor of Sys-
tem z architecture

ESCON Enterprise System Connection - Half-duplex optical fiber serial
channel

ESPIE Extended Specify Program Interruption Exit - Interrupt exit rou-
tine

ESTAE Extended Specified Task Abnormal Exit - Recovery routine for
z/OS user or problem state programs

ESTI Enhanced Self-Timed Interface -

ETR External Time Reference - Device to synchronize all TOD (time-
of-day) clocks in a cluster environment (Parallel Sysplex)

EXCP Execute Channel Program - z/OS macro to execute an I/O opera-
tion

301

F

FCP Fibre Channel Protocol - Transport protocol for transporting SCSI
commands on Fibre Channel networks

FEDC First Error Data Capture - Concept to collect all data required to
analyze and fix a problem on its first occurrence

FICON Fibre Channel Connection - Full-duplex fibre optical serial chan-
nel

FIFO First In, First Out - Queuing mechanism

FIPS Federal Information Processing Standards - Publicly announed
standard developed by the US government for use in computer
systems by all non military government agencies and government
contractors

FLIH First Level Interrupt Handler - Interrupt handler that gets imme-
diate control when the interrupt occurs (where the new Program
Status Word points to)

FRR Functional Recovery Routine - Recovery routine for z/OS system
programs

FRU Field-Replaceable Unit - Circuit board, part or assembly that can
be quickly removed from an electronic equipment

FSP Flexible Service Processor - Firmware for diagnostic which con-
nects the managed system to the HMC

G

GDPS Global Dispersed Parallel Sysplex - Parallel Sysplex which is spa-
tially distributed to ensure high availability

GRS Global Resource Serialization - z/OS subsystem which supports
global lock management

H

HCA Host Communication Adapter - Infiniband I/O Adapter

Glossary

302 Glossary

HCD Hardware Configuration Dialog - z/OS component to define I/O
devices to the system

HFS Hierarchical File System - UNIX file system on z/OS

HMC Hardware Management Console - Console to access and manage
hardware components of System z

HOM Hardware Object Module -

HWA Hardware Address -

I

I/O Input/Output - Abbreviation for all parts which send data to and
from an electronic complex

IBF Integrated Battery Facility -

ICB Integrated Cluster Bus - Bus for connecting system in a parallel
sysplex for short distance. The bus relies on few parts and provides
very high speed and reliable connectivity

ICF Integrated Coupling Facility - Processor on system z which allows
to run coupling facility control code

ICSF Integrated Cryptographic Service Facility - Set of services on z/OS
that manages security encryption keys

IETF Internet Engineering Task Force - Open task force to improve the
internet

IFL Integrated Facility for Linux - Processor on system z which allows
to execute z/VM and Linux operating systems

IML Initial Microcode Load - Initialization process of System z hard-
ware. At its completion, operating systems can be booted (IPLed).

IMS Information Management System - A transaction monitor and database
for z/OS (introduced 1968 for the Apollo space program)

IOCDS Input/Output Configuration Data Set - Data set which contains
hardware I/O definitions (related to IODF; also should be consis-
tent with IODF)

IODF I/O Definition File - Data file which contains the I/O definitions
for System z (created by HCD)

303

IPC Inter Process Communication - Protocol for system processes to
interact which each other

IPKI Internet Public Key Infrastructure - IETF standard for public keys

IPL Initial Program Load - Process to start the z/OS operating system

IRB Interrupt Request Block - z/OS Control Structure to start an I/O
routine

IRD Intelligent Resource Director - A combination of multiple z tech-
nologies to enhance the autonomic capabilities of PR/SM, z/OS
and the I/O subsystem

IRLM IBM Resource Lock Manager - Lock manager for DB2 and IMS

ISPF Interactive System Productivity Facility - End user interface for
TSO users

J

JES Job Entry System - z/OS subsystems which support the execution
of scheduled programs

K

KGUP Key Generation Utility Program - The key generator utility pro-
gram generates data, data-translation, MAC, PIN, and key-encrypting
keys, and enciphers each type of key under a specific master key
variant

L

LBIST Logic Built-In Self-Test - Hardware or software built into inte-
grated circuits which allows them to test their own function

LCP Logical Processor - Representation of a processor to the virtual
system or logical partition

LCSS Logical Channel Subsystem - A system may use multiple logical
channel subsystems (currently up to 4) to increase connectivity

LDAP Lightweight Directory Access Protocol - Application protocol for

Glossary

304 Glossary

accessing and maintaining distributed directory information ser-
vices over an IP network

LED Light-Emitting Diode - Semiconductor light source

LGA Land Grid Array - Surface mount packaging technology which
has the pins on the socket rather than on the integrated circuit.
Opposite is pin grid array (PGA).

LIC Licensed Internal Code - System z microcode or firmware

LICCC Licensed Internal Code Configuration Control -

Ln Level n Cache - L1 is closest to the processor, the highest number
is used to describe memory (”storage” in System z terminology)

LPAR Logical Partition - Container which hosts an operating system to
execute on System z virtualization layer. Up to 60 LPARs are sup-
ported

M

MBA Memory Bus Adapter - I/O hub chip used on z10 and earlier ma-
chines. No longer used on z196.

MCF Microcode Fix - Corrected code for firmware layer

MCM Multi-Chip Module - contains processor and storage controller chips

MCSS Multiple-logical-Channel Subsystem - Restructuring of the phys-
ical CSS into multiple logical instances in order to enable more
external devices to be attached to the CEC

MD5 Message Authentication Code - Widely used cryptographic hash
function that produces 128-bit has value

MLCS Multiple Logical Channel Subsystems - see MCSS

MMU Memory Management Unit - Hardware component which handles
virtual memory

MPL Multi Programming Level - Term which expresses the ability of
workload to access system resources

MRU Modular Refrigeration Unit - Cooling unit

MSU Million of Service Units per Hour - Unit to measure CPU capacity
on System z

305

MTTW Mean Time To Wait - Algorithm which gives access to units of
work based on their deliberate wait time

MVS Multiple Virtual Storage - Original name of z/OS based on the
ability to support multiple applications in virtual storage

O

OAEP Optimal Asymmetric Encryption Padding - Padding scheme for
encryption

OCSP Online Certificate Status Protocol -

OLTP Online Transaction Processing - Umbrella term for transaction
processing

OSA Open System Adapter - Networking adapter

P

PAF Processor Availability Facility -

PAV Parallel Access Volume - Protocol which supports parallel access
to the same I/O device

PCHID Physical Channel Identifier - identifies the plug position of a chan-
nel adapter

PCP Physical Processor - see CP

PKA Public Key Architecture - Encryption architecture with 2 keys: one
to encrypt the data and one to decrypt the cypher-text

PKDS Public Key Data Set - VSAM data set that stores public and private
keys

PKI Public Key Infrastructure - see PKA

PPRC Peer to Peer Remote Copy - A protocol to replicate a storage vol-
ume to a remote site

PR/SM Process Resource and System Manager - Management component
of the logical partition technology of System z (alias for LPAR
hypervisor)

Glossary

306 Glossary

PSW Program Status Word - Central register to control all program ex-
ecution

PU Processing Unit - Physical processor

Q

QDIO Queued Direct I/O - memory to Memory I/O mechanism between
LPARs on System z

R

RACF Resource Access Control Facility - z/OS subsystem which sup-
ports access control

RAS Reliability, Availability, Serviceability - Terminology to depict the
robustness of information technology systems (originated from
IBM mainframe)

RETAIN Remote Technical Assistance Information Network - IBM network
to handle service requests for end users

REXX Restructured Extended Executor - Interpretive Execution Language
from IBM

RISC Reduced Instruction Set Computing - Processing architecture which
only contains elementary instructions like LOAD, STORE, and
register-to-register operations

RLS Record Level Sharing - VSAM access method which introduces
record sharing and serialization

RMF Resource Measurement Facility - z/OS Performance Monitor

RRMS Resource Recovery Management Services - z/OS component to
synchronize the activities of various syncpoint managers

RSA Rivest-Shamir-Adleman - Algorithm for public key cryptography

RSF Remote Support Facility - Part of HMC to report and repair hard-
ware and firmware components

307

S

S/360 IBM System/360 - Is a mainframe computer system family an-
nounced by IBM on April 7, 1964. It is the computer architecture
of which System z is the current incarnation.

SAP System Assist Processor - System z I/O processor

SCC Storage Controller Control - Storage controller chip

SCD Storage Controller Data - Cache chip

SCE Storage Control Element - Controls access to main storage data by
processor unit

SDWA System Diagnostic Work Area - Control structure to capture infor-
mation in case of an abnormal program termination

SE Support Element - Laptop that acts as user interface to System z
machine

SEC/DED Single-Error Correction/Double-Error Detection - Error correc-
tion codes

SIE Start Interpretive Execution - Instruction to drive a processor in a
logical partition (LPAR) or virtual machine (z/VM)

SIGP Signal Processor - Instruction to inform a processor about status
change

SLE Session Level Encryption - Encryption between originator and re-
ceiver of data across all network elements

SLIH Second Level Interrupt Handler - Term which encompasses a set
of specialized interrupt handling routines

SMF Systems Management Facility - z/OS component which supports
performance and status logging

SMP Symmetric Multiprocessing - A computer system with all physical
processors accessing the same storage and I/O subsystems

SRB Service Request Block - Control structure to execute a z/OS system
program

SRC System Reference Code - Sequence of data words to identify a unit
that is reporting an error

SRM System Resource Manager - Component of z/OS for resource man-

Glossary

308 Glossary

agement (introduced 1974, now part of WLM)

SSL Secure Sockets Layer - Cryptographic protocol that provides com-
munication security over the internet

STP Server Time Protocol - Follow-on to ETR

SU/sec Service Unit per second - Capability of a System z processor to
execute instructions

SVC Supervisor Call - Interface to invoke a z/OS system program

Sysplex System Complex - A single logical system running on one or more
physical systems

System z IBM mainframe computer brand - Current 64-bit incarnation of
the S/360 architecture

System z10 BC
System z10 Business Class - Mid-range model of System z proces-
sor family (2009)

System z10 EC
System z10 Enterprise Class - High end model of System z pro-
cessor family (2008)

T

TCB Task Control Block - Control Structure to execute user or problem
state programs on z/OS

TLS Transport Layer Security - see SSL

TSO Time Sharing Option - z/OS component which supports the paral-
lel execution of multiple end users on MVS

U

UCB Unit Control Block - z/OS control structure which represents an
I/O device

UoW Unit of Work - An execution unit on z/OS

USS Unix System Services - z/OS component which supports a full
functioning UNIX environment on z/OS

309

V

VCPU Virtual CPU - see LCP

VMM Virtual Machine Monitor - Hypervisor or control program to run
multiple virtual machines

VPD Vital Product Data - Collection of configuration and informational
data associated with a particular set of hardware or software

VPN Virtual Private Network - Method of computer networking that
allows users to share information (privately) between remote loca-
tions

VSAM Virtual Storage Access Method - A set of access methods for Sys-
tem z I/O devices

VTAM Virtual Terminal Access Method - Access method for communica-
tions devices (now part of z/OS TCPIP subsystem)

VTOC Volume Table of Content - Index of a DASD device

W

WLM Workload Manager - Central z/OS component for resource man-
agement (introduced 1995)

X

XCF Cross System Coupling Services - z/OS Services which support
the exploitation of a z/OS sysplex

XES Cross System Extended Services - z/OS services which support the
access to the coupling facility

XRC Extended Remote Copy - System z protocol for data replication

Z

z114 zEnterprise 114 - Mid-range end model of System z processor
family (2011)

Glossary

310 Glossary

z196 zEnterprise 196 - High end model of System z processor family
(2010)

zAAP System z Application Assist Processor - System z processor to ex-
ecute Java code. This processor type can only be used by z/OS
and only for instrumented software like the Java Virtual Machine.
A special instruction tells the dispatcher when Java execute starts
and ends.

zFS System z File System - UNIX file system on z/OS

zIIP System z Integrated Information Processor - System z processor
to execute code which is subject to get offloaded from regular
processors. The offload capability is described by the middleware
through an interface to WLM and the z/OS dispatcher. Exploiters
are middleware like DB2 and TCPIP.D5

B. Trademarks

The following are trademarks of the International Business Machines Corpo-
ration in the United States and/or other countries:

AIX R©, AS/400 R©, BatchPipes R©, C++/MVS, CICS R©, CICS/MVS R©, CICSPlex R©, COBOL/370,
DB2 R©, DB2 Connect, DB2 Universal Database, DFSMS/MVS R©, DFSMSdfp, DFSMSdss, DF-
SMShsm, DFSORT, e (logo) R©, ECKD, ES/3090, ES/9000 R©, ES/9370, ESCON R©, FICON, GDPS,
Geographically Dispersed Parallel Sysplex, HACMP/6000, Hiperbatch, Hiperspace, IBM R©, IBM
(logo) R©, IMS, IMS/ESA R©, Language Environment R©, Lotus R©, OpenEdition R©, OS/390 R©, Par-
allel Sysplex R©, PR/SM, pSeries, RACF R©, Redbooks, RISC System/6000 R©, RMF, RS/6000 R©,
S/370, S/390 R©, S/390 Parallel Enterprise Server, System/360, System/370, System/390 R©, Sys-
tem z, ThinkPad R©, UNIX System Services, VM/ESA R©, VSE/ESA, VTAM R©, WebSphere R©,
xSeries, z/Architecture, z/OS, z/VM, zSeries

The following are trademarks or registered trademarks of other companies:

• Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc.,
in the United States and other countries

• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

• UNIX is a registered trademark of The Open Group in the United States and other coun-
tries.

• Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

• Red Hat, the Red Hat ”Shadow Man” logo, and all Red Hat-based trademarks and logos
are trademarks or registered trademarks of Red Hat, Inc., in the United States and other
countries.

• SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic
Transaction LLC.

Bibliography

[1] Exploring IBM eServer zSeries and System/390 Servers, Seventh Edition,
Jim Hoskins and Bob Frank, 2001, ISBN 1-855068-70-0

[2] RAS Strategy for IBM S/390 G5 and G6, M. Müller et al., IBM Journal of
Research and Development VOL. 43 NO. 5/6 Sept./Nov. 1999

[3] Computer Engineering 30 Years After the IBM Model 91, Michael J.
Flynn, IEEE April 1998

[4] TSO Time Sharing Option im Betriebssystem z/OS, Dr. Michael Teuffel,
Oldenbourg, 2002, ISBN-13: 978-3486255607

[5] Das Betriebssystem z/OS und die zSeries: Die Darstellung eines moder-
nen Grorechnersystems, Dr. Michael Teuffel, Robert Vaupel, Oldenbourg,
2004, ISBN-13: 978-3486275285

[6] ESA/390 Interpretive-Execution Architecture, foundation for VM/ESA
Osisek, Jackson, and Gum, IBM SYSTEMS JOURNAL, VOL 30, NO
1, 1991

[7] IBM System /370 Extended Architecture, Interpretive Execution Publica-
tion Number SA22-7095-1

[8] In Search Of Clusters, The Ongoing Battle in Lowly Parallel Computing,
Gregory F. Pfister, Prentice Hall, 1998, ISBN 0-13-899709-8

[9] Cluster Architectures and S/390 Parallel Sysplex Scalability, G.M. King,
D.M. Dias, P.S. Yu, IBM Systems Journal, Vol. 36, No. 2, 1997, Seiten
221-241

[10] S/390 Cluster Technology: Parallel Sysplex, J.M. Nick, B.B. Moore, J.-Y.
Chung, N.S. Bowen, IBM Systems Journal, Vol. 36, No. 2, 1997, Seiten
172-202

[11] A Locking Facility for Parallel Sysplex, N.S. Bowen, D.A. Elko, J.F. Isen-
berg, G.W. Wang, IBM Systems Journal, Vol. 36, No. 2, 1997, Seiten
202-220

[12] Performances of DS8000 Metro Mirror over Distance Gausach, et. al,

314 Bibliography

PSSC Customer Center Montpellier, TotalStorage, 65. GSE z/OS Expert
Forum, 2006

[13] Adaptive Algorithms for Managing A Distributed Data Processing Work-
load, J. Aman, C.K. Eilert, D. Emmes, P. Yocom, D. Dillenberger, IBM
Systems Journal, Vol. 36, No. 2, 1997, Seiten 242-283

[14] Validity of the single processor approach in achieving large-scale com-
puter capabilities, Gene Amdahl, In Proceedings of the AFIPS Confer-
ence, Seiten 483-485, 1967

[15] MVS Performance Management (ESA/390 Edition), Steve Samson, J.
Ranade IBM Series, Printed and bound by R.R.Donnelley and Sons Com-
pany, ISBN 0-07-054529-4, 1992

[16] Introduction to the New Mainframe: Large Scale Commercial Computing,
IBM Redbook, SG24-7175-xx

[17] IBM zEnterprise 196 Technical Guide, IBM Redbook, SG24-7833-xx,
July 2011

[18] The zEnterprise 196 System and Microprocessor, Curran et al., IEEE
0272-1732/11, March/April 2011

[19] Design and micro-architecture of the IBM System z10 microprocessor,
Shum et al., IBM Journal of Research and Development, Volume 53, NO.
1, 2009

[20] IBM zEnterprise 196 microprocessor and cache subsystem Busaba et al.,
IBM Journal of Research and Development, Volume 56, NO. 1, 2012

[21] IBM System z Software Pricing,
http://www-03.ibm.com/systems/z/resources/swprice/reference/

[22] Large System Performance Reference for IBM System z,
https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/-
pages/lsprindex?OpenDocument

[23] IBM zEnterprise redundant array of independent memory subsystem
Meaney et al., IBM Journal of Research and Development, Volume 56,
NO. 1, 2012

[24] Performance innovation in the IBM zEnterprise 196 processor Greiner et
al., IBM Journal of Research and Development, Volume 56, NO. 1, 2012

[25] Overview of IBM zEnterprise 196 I/O subsystem with focus on new PCI
Express infrastructure Gregg et al., IBM Journal of Research and Devel-
opment, Volume 56, NO. 1, 2012

Bibliography 315

[26] How Do You Do What You Do When Youre a z196 CPU Bob Rogers,
Share Proceedings, Anaheim 2011 and IBM Systems Magazine, February
2012

[27] z/OS Workload Manager: How It Works and How To Use It Robert
Vaupel, 2nd Edition, May 2011,
http://www-03.ibm.com/systems/z/os/zos/features/wlm/WLM-
Further Info.html

[28] z/OS Workload Manager Managing CICS and IMS Workloads Robert
Vaupel, March 2011,
http://www-03.ibm.com/systems/z/os/zos/features/wlm/WLM-
Further Info.html

[29] ABC of z/OS System Programming, IBM Redbooks, Volume 11, SG24-
6327-xx

[30] OS/390 MVS Parallel Sysplex Capacity Planning, IBM Redbook, SG24-
4680-01, January 1998

[31] z/Architecture Principles of Operations, SA22-7832-xx

[32] z/OS MVS Planning: Workload Management, z/OS Literatur, SA22-7602-
xx

[33] System’s Programmer Guide to: Workload Management, IBM Redbook,
SG24-6472-xx

[34] z/OS MVS Programming: Workload Management Services, z/OS Liter-
atur, SA22-7619-xx

[35] z/OS Resource Measurement Facility: Performance Management Guide,
z/OS Literatur, SC28-1951-xx

[36] z/OS Basic Skills Center,
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

Index

Access Registers, 108
Address Generation Interlock, 42
Address Space

Creation, 94
Home, 105
Primary, 105
Secondary, 105

Address Types, 63
ASCB, 94
ASCE, 105
Assigned Storage Locations, 67
Atomic Instructions, 69
Availability, 4

Branch Mis-Prediction, 42
Business Continuity, 255
Business Resilience, 3, 255, 276

Concepts, 291
Business Unit of Work, 197

Cache Structure, 264
CCW, 71
CDS, 260
CEC, 13
CFCC, 258
CFRM, 261
Channel, 71, 74
Channel Subsystem, 71, 75
CICS, 89
CISC, 27
Clock Comparator, 62

Common Storage, 93
COMPARE AND SWAP, 69
Compatibility, 9
Continuous Operations, 3, 255, 276
Control Unit, 74
Couple Data Set, 260
Coupling Facility, 11, 258, 261

Cache Structure, 264
Duplexing, 267
List Structure, 263
Lock Structure, 261

CP, 81
CPC, 13
CPI, 179
CPU Timer, 62
CS, 69
CTC, 266
Cycles per Instruction, 179

DASD, 74, 114
DAT, 64
Data Exchange

Common Storage, 103
Cross Memory, 104

Data Mirroring, 280
Data Partitioning, 255
Data Space, 92
DB2, 271
Decimal Arithmetic, 35
DEDB, 271
Defined Capacity Limit, 248

318 Index

DIMM, 22
Disaster Recovery, 255
Discretionary, 191
Dispatch Priority, 134
Dispatcher

I/O Enablement, 139
Dispatcher Affinity, 163, 171
Dispatching, 129
DL/1, 271
DRAM, 22
Dynamic Address Translation, 64

ECKD, 114
Enclave, 197
Execution Velocity Goal, 193
Expanded Storage, 11, 92
Extended Remote Copy, 285
External Time Reference, 259

Floating Point Arithmetic, 37
Binary, 37
Decimal, 38
Hexadecimal, 37

GDPS, 12, 78, 271
Goal Achievement, 203
Group Capacity Limit, 248

Hardware Management Console, 15
Hardware Storage Area, 27
Hardware System Area, 31
HCD, 78
HFS, 119
High Availability, 3
High Performance Work Unit Queue,

178
Hiperdispatch, 2, 163

Affinity Nodes, 171
Helper Processing, 175
How much does it help, 178
Processor Shares, 165

System Work, 177
Hiperspace, 92
History, 9
HMC, 15, 147
HSA, 31, 39, 78
Hyperswap, 283

I/O Configuration, 78
I/O Interrupt, 139
I/O Processors, 71
I/O Subsystem, 71
i390 Code, 26
IMS, 89, 271

Control Region, 271
Message Processing Region, 271

In-Order Execution, 43
Infiniband, 71
Information Management System,

271
INIT Task, 94
Input and Output, 70
Instruction

Cracking, 49
Re-Ordering, 46

Instruction Execution, 27
Instruction Fetch Interlock, 42
Instruction Pipeline, 42
Intelligent Resource Director, 246
Interrupts, 57

Disabling, 59
Enabling, 59

IOCDS, 78
IODF, 78
IPL, 119
IRD, 246
IRLM, 271
IUCV, 81

JES, 123, 244
Job/Step Task, 94, 96

Index 319

L-Shaped Partition, 143
LAA, 69
Large Page Support, 66
Large System Performance Refer-

ence, 162
List Structure, 263
LOAD AND ADD, 69
Lock Structure, 261
Logical Partition

Name, 147
Logical Partitioning, 78
LPAR, 27, 78

Processor Management, 82
Storage, 84

LRU, 112
LSPR, 162

Memory Mapped I/O, 71
Millicode, 26
MPL, 210
MQ, 89
MTBF, 4
MTTF, 4
MTTR, 4
Multiprocessing, 68
MVC, 35
MVCP, 107, 108
MVCS, 107, 108
MVS, 11

Offload Processors, 151
Operand Store Compare, 42
Oracle, 89
OS/390, 11
Out-Of-Order Execution, 49
Out-of-Order Processing, 13

Parallel Access Volume, 77
Parallel Sysplex, 2, 11, 78, 253, 258

Configuration, 270
Setup, 266

PAV, 77
PCIe, 71
PCIe I/O Drawer, 74
PDS, 117
Peer-to-Peer Remote Copy, 281
Peer-to-Peer Virtual Tape Support,

286
PERFORM LOCKED OPERATION,

69
Performance Index, 203

Local, 216
Sysplex, 216

PI, 203
Pipeline

z10, 43
PLO, 69
Policy Adjustment

Example, 213, 218, 221
PPRC, 78, 281
PR/SM

Dispatching, 143
Prefixed Save Area, 67, 93
Prefixing, 67
Principles of Operations, 39
Processor

Dedicated, 143
Shared, 143

Processor Pools, 154
Processor Utilization, 178
Program Status Word, 31
PSW, 31

RAIM, 17, 22
Recovery Point Objective, 276
Recovery Time Objective, 276
Redundant Array of Independent Mem-

ory, 22
Region Control Task, 94, 96
Register Renaming, 47
Reliability, 3, 255

320 Index

Report Class, 189
Resource Adjustment, 226
Resource Group, 229
Resource Measurement Facility, 141
Response Time Goal, 191
RISC, 27
RMF, 141

CPU Activity Report, 141
Partition Data Report, 147, 155

RSM, 111

SAP, 89
SAS, 89
Scalability, 5
SE, 15
Server Time Protocol, 259
Service Class, 189
Service Definition, 201
Service Unit, 202
SFM, 261
SIE, 81
Software Licensing, 247
SRB, 97, 133
SRM, 111, 139
SSAR, 105, 108
Storage

Protection, 66
Storage Protection, 94
Super-Scalar, 42
Supervisor Call, 97
Support Element, 15
SYSOTHER, 189
Sysplex CDS, 261
Sysplex Distributor, 237
SYSSTC, 189
SYSTEM, 189
System Assist Processor, 71
System z, 2, 12

Firmware, 25
Multi Chip Module, 16

Processor Frequency, 13
Support Element, 15

System z10
CPU Error Detection and Re-

covery, 21
System/370, 11

TCB, 97, 133
Time-of-Day Clock, 60
TLB, 44
TOD Clock, 60

Steering, 61
TPI, 139
Trademarks, 311
Transaction, 197
Transparent CPU Sparing, 20
TSO, 124, 237

UCB, 78, 94
UIC, 112
USS, 126

Vertical CPU Management, 164
Virtual Machine, 80
Virtual Storage, 64
VMRM, 81
VOLSER, 119
VSAM, 118
VTAM, 237
VTOC, 119
VTS, 286

WAS, 237
Websphere, 89
WLM, 2, 134, 170, 186

4Hour Rolling Average, 248
Algorithms, 204
Application Environment, 239
Batch Management, 242
CICS Transactions, 199
Contention Management, 238

Index 321

CPU Critical, 231
CPU Weight Management, 246
Data Plots, 209
Data Sampling, 205
Discretionary Goal Management,

233
Enclave, 197
Execution Velocity Goal, 193
Goal, 191
Goal Adjustment, 210
Histories, 207
IMS Transactions, 199
Period, 191
Policy Adjustment, 210
Projecting A Change, 215
Queue Management, 240
Resource Adjustment, 226
Resource Group, 229
Response Time Goal, 191
Routing Support, 236
Scalable Server, 239
Scheduling Environment, 243
Service Class, 191
Service Definition, 201
Service Policy, 201
Storage Critical, 232
Subsystem Participation, 249
Timed Algorithms, 228
Transactions Management, 196
Work Balancing, 174

Work
Dispatching, 135

Work Classification, 187, 190
Workload

Utilization, 131
Workload Management

Concepts, 185
Workload Scheduler, 244

XCF, 266

Groups, 267
XRC, 285

z/Architecture, 9, 39
z/OS, 2

Address Space, 89
Data Sets, 114
Dispatcher, 135
Dispatching, 132
Hiperdispatch, 170
I/O Supervisor, 75
Interrupt Processing, 138
Master Catalog, 119
Partitioned Data Sets, 117
Program Call, 106
Program Data Exchange, 102
Program Execution, 96
Program Recovery, 99
Reentrant Programming, 97
Sequential Data Sets, 116
Serialization, 156
Spin Lock, 158
stack, 89
Storage Management, 108
Storage Manager, 109
Structure, 87
System Name, 147
Workload Manager, 2, 78, 134

z/VM, 80
Storage, 85

z10, 13
Microprocessor, 43
Pipeline, 43

z196, 13
Blade Extension, 14
Book, 18
Cache Level Structure, 16
Instruction Optimization, 54
Instructions, 33, 54
Microprocessor, 51

322 Index

Register, 30
Scalability, 6

z9, 13
z900, 13
z990, 13
zAAP, 152
zBX, 13
zEC12, 13

Memory, 17
System Components, 14
Z and A Frame, 15

zFS, 119
zIIP, 152

Mainframe computers are the backbone of industrial and commercial
computing, hosting the most relevant and critical data of businesses.
While mainframes are essential, knowledge about them is sparse, and
even more which characteristics of them are important.
One of the most important mainframe environments is IBM System z
with the operating system z/OS. This book introduces mainframe tech-
nology of System z and z/OS and some of its most important features
high availability and scalability. It highlights how these features are
implemented on different levels within the hardware, virtualization
layers and throughout the software stack to satisfy the needs of large
institutions to base their business on information technology. The
book is intended for students and IT professionals who are interested
or actively work with large-scale computing technology. hi

gh
 a

va
il

ab
il

it
y

an
d

sc
al

ab
il

it
y

of
 m

ai
nf

ra
me

 e
nv

ir
on
me
nt
s

r.
 v
au
pe
l

9 783731 500223

ISBN 978-3-7315-0022-3

hi
gh

 a
va

il
ab

il
it

y
an

d
sc

al
ab

il
it

y
of

 m
ai

nf
ra

me
 e

nv
ir

on
me

nt
s

