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Abstract— In this paper, a framework for Nonlinear Model
Predictive Control (NMPC) for heavily noise-affected systems
is presented. Within this framework, the noise influence, which
originates from uncertainties during model identification or
measurement, is explicitly considered. This leads to a significant
increase in the control quality. One part of the proposed
framework is the efficient state prediction, which is necessary
for NMPC. It is based on transition density approximation by
hybrid transition densities, which allows efficient closed-form
state prediction of time-variant nonlinear systems with continu-
ous state spaces in discrete time. Another part of the framework
is a versatile value function representation using Gaussian
mixtures, Dirac mixtures, and even a combination of both.
Based on these methods, an efficient closed-form algorithm for
calculating an approximate value function of the NMPC optimal
control problem employing dynamic programming is presented.
Thus, also very long optimization horizons can be used and
furthermore it is possible to calculate the value function off-line,
which reduces the on-line computational burden significantly.
The capabilities of the framework and especially the benefits
that can be gained by incorporating the noise in the controller
are illustrated by the example of a miniature walking robot
following a given path.

I. INTRODUCTION

Model Predictive Control (MPC), which is sometimes also
referred to as Receding or Rolling Horizon Control, has
become more and more important as here not only the current
system state, but also a model-based prediction of future
system states is considered in the control law. In MPC,
an open-loop optimal control problem for a finite N stage
prediction horizon is solved according to a corresponding
reward or value function. The resulting optimal control input
is then applied as closed-loop control to the system.

As the well understood and widely used Model Predictive
Control for linear system models [14] together with linear or
quadratic reward functions is not always sufficient to meet
the steadily growing requirements on the control quality,
nonlinear system models and reward functions need to be
considered in the control, which is then called Nonlinear
Model Predictive Control (NMPC). The increased compu-
tational demand due to the consideration of nonlinearities
has been mitigated in the last years by advances in the
employed algorithms to solve the necessary open-loop op-
timization [13] as well as the steadily increasing available
computation power for control processes [5]. Even if the
incorporation of nonlinearities leads to a significant increase
in the control quality, most approaches do not consider
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Fig. 1. Miniature walking robot [17].

the influence of noise on the system [3] especially in the
important continuous state space case. In [9], a solution for
linear system is given, that considers uncertainties. In [4],
the stochastic system behavior is considered in the control,
but the control is only determined in the vicinity of the
deterministic solution, which just leads to a locally optimal
solution. In [12], an approach to infinite-horizon optimal
control is presented, where a radial-basis-function network
is used to discretize the continuous state space. In this ap-
proach, the noise influence is considered, but it suffers, as any
discretization, from the curse of dimensionality. Additionally,
it is computational very demanding due to a required high-
dimensional matrix inversion.

Many technical systems are only able to handle a finite
set of control inputs even if they have a continuous-valued
state space. This may, for example be a robot as depicted in
Fig. 1, whose state space comprises its posture, but which
is still just able to handle commands like turn left / right or
move straight. Another example would be a sensor network,
whose state space comprises continuous-valued quantities to
be measured with related positions, but whose inputs are
just certain discrete measurement requests. Additionally, the
models and sensor readings in most of these systems are
often to a high degree uncertain. Therefore, in this paper
a framework for discrete-time Nonlinear Model Predictive
Control for continuous state spaces and a finite set of control
inputs is presented that explicitly incorporates modeling and
measurement uncertainties. For calculating the necessary
predicted system states, a transition density approximation
technique that describes the system transition densities based
on hybrid Dirac and Gaussian densities as proposed in [7]
is employed. This approximate system description allows
closed-form calculation of the predicted system states with
constant complexity. As an additional part of this framework,
an extremely flexible representation of the reward function
based on Dirac mixtures, Gaussian mixtures as well as a
combination of both is presented. This representation is very



expressive due to the universal approximation property [11]
of Gaussian mixtures that is even enhanced by the Dirac
mixtures. To decrease the on-line computational burden sig-
nificantly, a value function approximation scheme employing
dynamic programming is introduced, that seamlessly fits in
the proposed framework. By combining these techniques, an
efficient integrated closed-form approach to NMPC for noise-
affected systems with novel abilities is gained.

The remainder of this paper is structured as follows: In
the next section, the considered NMPC problem is described
together with an example from the field of mobile robot
control. In Section III, the efficient closed-form prediction
approach for nonlinear systems based on transition density
approximation is derived. Techniques modeling the reward
function are described in Section IV. Then, in Section V, a
value function approximation scheme based on dynamic pro-
gramming is introduced. In Section VI, three different kinds
of NMPC controllers are compared based on simulations
employing the example system, which has been introduced
in previous sections. The paper closes with conclusions and
perspectives on future work.

II. PROBLEM FORMULATION

In this paper, discrete-time systems of the form

xk+1 = ak(xk, uk) + wk (1)

are considered, where xk and uk denote the random vectors
corresponding to the system state and the applied control
input. ak( · ) is a nonlinear, possibly time-variant function,
where wk denotes the additive white noise.

Example System
A mobile miniature walking robot (Fig. 1) is supposed to
move along a given trajectory, e.g. along a wall, with constant
velocity. This robot is able to superimpose left and right turns
onto the forward motion. The robot’s motion can be modeled
similar to the motion of a two-wheeled differential-drive robot,
which leads to the nonlinear discrete-time system equation

xk+1 = xk + v ·T · sin(αk) + wx
k ,

αk+1 = αk + uk + wα
k ,

(2)

where xk = [xk, αk]T, with the distance to the wall xk and its
orientation relative to the wall αk. The robot’s constant velocity
is v, T is the sampling interval, and wx

k , wα
k denote the noise

influence on the system. The input uk is the steering action,
i.e., turn left, turn right, or go straight. Furthermore, the robot
is equipped with sensors for measuring the distance yx

k and
orientation yα

k with respect to the wall according to

yx
k = xk + vx

k ,

yα
k = αk + vα

k ,
(3)

where vx
k and vα

k are the measurement noise.

At any time step k, an open-loop optimal control problem
is solved for an N step prediction horizon and a correspond-
ing cumulative value function

Jk(xk) =

max
uk,0:N−1

Exk,1:N

{
gN (xk,N ) +

N−1∑
n=0

gn(xk,n, uk,n)

}
, (4)

with xk = xk,0. Jk(xk) comprises the step reward
gn(xk,n, uk,n) depending on the predicted system states xk,n

and the corresponding control inputs uk,n, as well as a
terminal reward gN (xk,N ). The optimal control input u∗

k,
which is determined according to

u∗
k(xk) = arg max

uk

Vk(xk, uk) , (5)

with uk = uk,0 and

Vk(xk, uk) =

max
uk,1:N−1

Exk,1:N

{
gN (xk,N ) +

N−1∑
n=0

gn(xk,n, uk,n)

}
, (6)

is then applied to the system. In the next time step k + 1,
the whole procedure is repeated.

For most nonlinear systems, the analytic evaluation of (6)
is not possible. This is due to the required prediction of the
system state for a noise-affected nonlinear system as well as
the necessity of calculating expected values. Both operations
typically cannot be performed in closed form. In the next
sections, an integrated approach is presented that overcomes
these two problems and allows closed-form calculations.

III. STATE PREDICTION WITH HYBRID DENSITIES

As described above, in stochastic NMPC the system state
xk,1:N needs to be predicted over an N step horizon for
all possible inputs uk,0:N−1. For a certain k, the probability
density f̃x

n+1(xn+1) of the system state xn+1 for the next
time step n + 1, and thus recursively for the next N time
steps, can be computed utilizing the so-called Chapman-
Kolmogorov equation [1]

f̃x
n+1(xn+1) =

∫
Rd

f̃T
un

(xn+1|xn) f̃x
n (xn) dxn , (7)

with the input dependent transition density f̃T
un

(xn+1|xn) =
fw

n (xn+1 −an(xn, un)), where fw
n ( · ) denotes the probabil-

ity density function of the system noise wn and an( · ) the
nonlinear system function from (1). For linear systems with
Gaussian random variables, the Kalman filter [8] provides
an exact solution to (7), since this equation is reduced to
the evaluation of an integral over a product of two Gaussian
densities, which is analytically solvable.

As an exact closed-form solution to (7) is typically not
available for nonlinear systems and numerical solutions are
highly demanding, an approximate calculation is inevitable.
In the following, true densities are indicated with a tilde,
the approximations are not. One common approach in the
context of NMPC is linearizing the system and then applying
the Kalman filter [10]. The resulting single Gaussian density
is typically not sufficient for approximating f̃x

n+1(xn+1).
Hence, we propose to approximate the transition density
f̃T

un
(xn+1|xn) in (7) by a hybrid density [7] of the form

fT
un

(xn+1|xn) =
L∑

i=1

ωi · δ(xn−μ(n)
i

) · f(xn+1−μ(n+1)
i

; νi),

(8)
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Fig. 2. Asymmetric reward functions: (a) Gaussian mixture reward function, (b) Dirac mixture reward function (c) combination of Gaussian mixture and
Dirac mixture reward function.

where L is the number of components, ωi are weighting
coefficients with ωi > 0, μ(n)

i
and μ(n+1)

i
are location

parameters, and νi are shape parameters of f(xn+1 −
μ(n)

i
; νi). This hybrid density consists of two different types

of analytic densities: Dirac delta distributions δ(xn − μ(n)
i

)
and another density f(xn+1 − μ(n+1)

i
; νi) that matches the

probability density function of the system noise. In the fol-
lowing, Gaussian noise and thus Gaussian densities f(xn+1−
μ(n+1)

i
; νi) = N (xn+1−μ(n+1)

i
;C(n+1)

i ), with mean μ(n+1)
i

and covariance matrix C(n+1)
i are considered. Methods to

choose the optimal parameters of (8) in an efficient fashion
are described in [7]. By approximating the transition density
f̃T

un
(xn+1|xn) of the system by a hybrid density as described

above, the evaluation of (7) can be carried out very easily
in closed form for arbitrary well-defined probability density
functions f̃x

n (xn). The resulting probability density function
fx

n+1(xn+1) is a Gaussian mixture of the form

fx
n+1(xn+1) =

L∑
i=1

ω
(n+1)
i · N

(
xn+1 − μ(n+1)

i
;C(n+1)

i

)
,

where the weights ω
(n+1)
i can be calculated by evaluating

f̃x
n (xn) at the μ(n)

i
of the transition density. The parame-

ters μ(n+1)
i

and C(n+1)
i of fx

n+1(xn+1) correspond to the
parameters of the Gaussians of the transition density.

In contrast to our approach in [16], where pure Gaussian
mixture transition densities are used and thus demanding
off-line optimizations are necessary, which limit it to time-
invariant systems, here also time-variant systems with non-
stationary noise can be handled easily.

IV. REWARD FUNCTION REPRESENTATIONS

Besides being able to predict the system state, it is also
important to be able to describe the reward functions as
introduced in (4) in a versatile way. In the following, re-
ward functions gn(xn, un) are considered that are additively
decomposable into a state-dependent and an input-dependent
part according to

gn(xn, un) = gx
n(xn) + gu

n(un) .

For modeling the state-dependent part gx
n(xn), we propose

a reward function representation by means of Gaussian
mixtures similar to the one described in [16]. This repre-
sentation is already very expressive due to the universal

approximation property of Gaussian mixtures [11]. If not
only soft objectives are to be modeled, which can be done
very easily with Gaussian mixtures, but dedicated system
states are to be described, this can be done very well
with Dirac mixtures. Obviously, also a combination of the
Gaussian mixture and Dirac mixture representation can be
used and both the Gaussian mixtures and Dirac mixtures
may have arbitrary parameters, e.g. negative weights ω.

Example System: Reward Function
A reward function as depicted in Fig. 2 (a) can be used to let
the robot move at a certain distance to the wall (e.g. x̌n = 1),
where being closer to the wall (xWall

n = 0) is considered much
less desirable than being farther away.

If the robot were to move at certain well-defined distances
to the wall (e.g. x̌a

n = 1 and x̌b
n = 6) a reward function as

depicted in Fig. 2 (b) could be used.
Obviously, also a combination of the Gaussian mixture and

the Dirac mixture representation can be used (Fig. 2 (c)).
If not only the distance to the wall, but also the orientation is

to be incorporated into the reward function, this can be done
by extending the dimensionality of the reward function, which
leads to a reward function as depicted in Fig. 3. Here, the robot
is also driven to move in parallel to the wall.

For a Dirac mixture reward function gx
n(xn), the expected

value Exn
{gx

n(xn)}, which is necessary to compute (6), can
be calculated in closed form according to

Exn
{gx

n(xn)}
=

∫
Rd

fx
n (xn) · gx

n(xn) dxn

=
∫
Rd

L∑
i=1

ω
(n)
i N (xn − μ(n)

i
;C(n)

i )

·
M∑

j=1

ω
(n)
j δ(xn − μ(n)

j
) dxn

=
L∑

i=1

M∑
j=1

ω
(n)
i ω

(n)
j N (μ(n)

j
− μ(n)

i
;C(n)

i ) , (9)

where fx
n (xn) denotes the Gaussian mixture probability den-

sity function of the system state. The closed-form calculation
in case of Gaussian mixture reward functions is shown in
[16]. In case of mixed reward functions, the solution can be
gained by calculating the Dirac mixture part and the Gaussian
mixture part separately.
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Fig. 3. Asymmetric two-dimensional reward function consisting of six components with a maximum at x̌n = 1 and α̌n = 0.

The input dependent part of the reward function gu
n(un)

can be modeled with any kind of function or a lookup-table
since there is just a finite number of discrete un.

By using the efficient state prediction presented in Sec-
tion III together with the reward function representations
presented above, the calculation of the value function and
the optimal control as described in (5) and (6) can be carried
out, as shown, in closed form.

V. VALUE FUNCTION APPROXIMATION USING DYNAMIC
PROGRAMMING

In case of short optimization horizons, the techniques
described above allow an efficient calculation of the open-
loop optimal control problem within NMPC, where the
straightforward solution is an exhaustive search of a tree with
depth N . For longer optimization horizons, the straightfor-
ward calculation becomes unfeasible as the computational
demand increases exponentially with the length N of the
optimization horizon. This can be resolved by calculating the
value function (4) in an efficient approximate fashion using
dynamic programming (DP), which is possible since the
value function only consists of additive terms [2]. Employing
DP, (4) can be calculated in a backward fashion according
to

JN (xN ) = gN (xN ) ,

Jn(xn) = max
un

{Vn(xn, un)} , n = N − 1, . . . , 0 ,
(10)

with

Vn(xn, un) = gx
n(xn) + gu

n(un) +Exn+1

{
Jn+1(xn+1)|xn

}
for a fixed k. Using this recursion, the computational demand
just increases linearly with N . Additionally, this allows off-
line calculation of (6), thus only (5) needs to be evaluated on-
line, which increases the on-line performance significantly.

For calculating Jn(xn), two main operations have to be
executed per step:

A. First, Exn+1
{Jn+1(xn+1) |xn} has to be calculated.

B. Second, Vn(xn, un) has to be maximized with respect
to un.

A. Calculation of Exn+1
{Jn+1(xn+1) |xn}

Employing the fact that system (1) is represented by
a hybrid transition density fT

un
(xn+1|xn) as introduced in

Section III, an approximation of the conditional expected

value Exn+1
{Jn+1(xn+1) |xn} that depends on the state xn

and the input un can be calculated according to

Exn+1
{Jn+1(xn+1) |xn}

≈
∫

IRd

fT
un

(xn+1|xn) ·Jn+1(xn+1) dxn+1

=
∫

IRd

L∑
i=1

ωi · δ(xn − μ(n)
i

) · N (xn+1 − μ(n+1)
i

;C(n+1)
i )

·Jn+1(xn+1) dxn+1

=
L∑

i=1

ωi · δ(xn − μ(n)
i

)

·
∫

IRd

N (xn+1 − μ(n+1)
i

;C(n+1)
i ) ·Jn+1(xn+1) dxn+1︸ ︷︷ ︸

=:zi

=
L∑

i=1

ωizi · δ(xn − μ(n)
i

) =: Kn(xn, un) , (11)

where the result of this calculation is a Dirac mixture.
Additionally, if Jn+1(xn+1) is approximated by a Dirac
mixture (DM), a Gaussian mixture (GM), or a sum of both
(which will be shown in the next section), the calculation
of (11) can be performed very easily and in closed form
as it is just the multiplication of two Gaussian mixtures or
a Gaussian mixture and a Dirac mixture with a subsequent
marginalization1.

B. Maximization

In the following, the necessary maximization of

Vn(xn, un) ≈ gx
n(xn)︸ ︷︷ ︸

GM / DM

+ gu
n(un)︸ ︷︷ ︸

DM

+Kn(xn, un)︸ ︷︷ ︸
DM

with respect to un is described.
gx

n(xn) has no impact on the maximization as it does not
depend on un. Kn(xn, un) is, as described above, a Dirac
mixture depending on continuous-valued xn and discrete un.
Thus, a maximization of this part with respect to un is easily
possible, as long as the μ(n)

i
of the Diracs are identical for

all un. This restriction can be easily met if it is considered
during the approximation of fT

un
(xn+1|xn). In this case, the

maximization can be carried out individually for each set of
Diracs with equal μ(n)

i
.

1The calculation for a Gaussian mixture and a Dirac mixture is equivalent
to (9), the calculation for two Gaussian mixtures is described in [16].
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At first sight, the maximization of the sum of Kn(xn, un)
and gu

n(un) poses a problem in case gu
n(un) is an arbitrary

function depending on un, but as gu
n(un) does not depend on

xn it is thus constant with respect to xn and can be easily
approximated by a Dirac mixture. If this Dirac mixture is
chosen in such a way that its components are at the very
same position as the components of Kn(xn, un), again the
maximization can be carried out easily.

If fT
un

(xn+1|xn) and gu
n(un) are approximated as de-

scribed above, maxun
{Jn(xn, un)} from (10) can be ap-

proximated by the sum of a Dirac mixture, arising from
gu

n(un), Exn+1
{Jn+1(xn+1) |xn} and the Dirac mixture

part of gx
n(xn), and a Gaussian mixture, arising from the

Gaussian mixture part of gx
n(xn), and is then of the same

structure as the reward function depicted in Fig. 2(c). Thus,
an approximation of Exn+1

{Jn+1(xn+1) |xn} can be calcu-
lated, as shown, efficiently in closed form.

VI. SIMULATIONS

In order to illustrate the modeling capabilities of the
introduced NMPC framework as well as the benefits gained
by directly considering the noise in the control, several
simulations have been conducted using the example of a
miniature robot walking along a wall. The considered non-
linear system is given by (2) and (3), with v ·T = 1 and
inputs uk ∈ {−0.2, 0, 0.2} (turn left/right, go straight).
The noise influence on the system wx

k and wα
k is zero-mean

white Gaussian noise with standard deviation σx
w = 0.5 and

σα
w = 0.05 ≈ 2.9◦. The measurement noise is also zero-mean

white Gaussian noise with standard deviation σx
v = 0.5 and

σα
v = 0.05. All simulations are performed for a N = 4 step

prediction horizon, with a reward function according to (4),
where gN (xN ,αN ) is the function depicted in Fig. 3 and
gn(xn,αn) = gN (xN ,αN ),∀n.

To evaluate the benefits of the proposed NMPC frame-
work, three different kinds of simulation are conducted:

1) Calculation of the control input without any consid-
eration of noise (deterministic NMPC): The deterministic

control neglecting the noise influence has been calculated as
a benchmark.

2) Straightforward calculation of the control input with
consideration of the noise influence (stochastic NMPC):
The optimal control input with explicit consideration of noise
has been calculated employing the techniques presented in
Section III and Section IV. Therefore, all calculations could
be executed analytically without the need for any numerical
methods. The employed approximate transition densities with
25 elements have been calculated on-line. Still, this approach
has the drawback that the computational demand for the
optimal control problem increases exponentially with the
length of the horizon N . Thus, this approach is only suitable
for short horizons.

3) Calculation of the control input with the proposed
value function approximation scheme employing dynamic
programming (stochastic NMPC with Dynamic Program-
ming): The control input is calculated using the value
function approximation technique presented in Section V.
Thus, the noise influence is also considered directly in the
control and additionally longer prediction horizons could be
easily used without any impact on the on-line computation
performance. The resulting approximate value function con-
sists of 200 Dirac components from Kk,0( · ) and 6 Gaussian
components from gx

k,0( · ).
In Fig. 4 (a), the first 40 steps of an example simulation

run are shown. The distance to the wall xk is depicted by the
position of the circles, the orientation αk by the orientation
of the arrows. For each simulation run, a particular noise
realization has been used that was applied to all the different
controllers. It can be clearly seen that the robot under
deterministic control behaves very differently from the other
two. The deterministic controller just tries to move the robot
to the maximum of the reward function at x̌k = 1 and
α̌k = 0, while it totally neglects the asymmetry of the reward
function. The two stochastic controllers both lead to a larger
distance from the wall, as they consider the noise influence
in conjunction with the non-symmetric reward function. Both
stochastic controllers behave similarly, which illustrates the



TABLE I
SIMULATION RESULTS

det. control stoch. control stoch. DP control
average reward 0.2528 0.2922 0.2927
normalized av. reward 100% 115.6% 115.8%

good performance of the value function approximation tech-
niques proposed in Section V. In Fig. 4 (b), the evaluation
of the reward function for each step is shown. As expected,
both stochastic controllers perform much better, i.e., they
generate a higher average reward than the deterministic one.
This finding has been validated by a series of 100 Monte
Carlo simulations with different noise realizations and initial
values. The uniformly distributed initial values are sampled
from the intervals x0 ∈ [0, 6] and α0 ∈ [−π/4, π/4]. In
Table I, the average step rewards of the 100 simulations
are shown with 40 steps each. To facilitate the comparison
also normalized average step rewards are given. It can be
clearly seen that the stochastic controllers outperform the
deterministic one by over 15% in terms of reward. In more
than 86% of the runs, the stochastic controllers gave better
results than the deterministic one. Therefore, the performance
increase by the stochastic controllers is highly significant
with a p-Value of below 10−13.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel framework for Nonlinear Model
Predictive Control is introduced that explicitly considers
the noise influence on the system. This framework uses a
stochastic state prediction method based on transition density
approximation by hybrid densities, which allows closed-form
computation and, if needed, fast on-line approximation and
thus enables the framework to handle time-variant system
function. Another important aspect of the proposed NMPC
framework is the modeling of the reward function by Gaus-
sian mixtures, Dirac mixtures, and even a combination of
both, which leads to a level of flexibility far beyond the
traditional representations. By employing matching repre-
sentations for both the approximate transition densities and
the reward functions, a closed-form solution is obtained.
Based on the transition density approximation and the reward
function representation as well as employing dynamic pro-
gramming, a closed-form algorithm for calculating the value
function of the related optimal control problem is presented
that permits its off-line calculation. This significantly reduces
the required on-line computational demand and also allows
the use of long prediction horizons. The benefits gained by
the consideration of noise in the controller as well as the
effectiveness of the presented framework and its algorithms
are illustrated with simulations of a miniature robot walking
along a wall.

One interesting future extension will be the incorporation
of the state estimation in the control, which is important for
nonlinear systems, as here the separation principle does not
hold. An additional interesting aspect will be the considera-
tion of effects of inhomogeneous noise, i.e., noise with state

and/or input dependent noise levels. Here, the consideration
of the stochastic behavior of the system is expected to have
an even greater impact on the control quality. Also the
extension to new application fields is intended. Of special
interest is the extension to the related emerging field of
Model Predictive Sensor Scheduling [6], [15], which is of
special importance, e.g. in sensor-actuator-networks.
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