KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient Nonlinear Measurement Updating based on Gaussian Mixture Approximation of Conditional Densities

Huber, Marco F.; Brunn, Dietrich; Hanebeck, Uwe D.


Filtering or measurement updating for nonlinear stochastic dynamic systems requires approximate calculations, since an exact solution is impossible to obtain in general. We propose a Gaussian mixture approximation of the conditional density, which allows performing measurement updating in closed form. The conditional density is a probabilistic representation of the nonlinear system and depends on the random variable of the measurement given the system state. Unlike the likelihood, the conditional density is independent of actual measurements, which permits determining its approximation off-line. By treating the approximation task as an optimization problem, we use progressive processing to achieve high quality results. Once having calculated the conditional density, the likelihood can be determined on-line, which, in turn, offers an efficient approximate filter step. As result, a Gaussian mixture representation of the posterior density is obtained. The exponential growth of Gaussian mixture components resulting from repeated filtering is avoided implicitly by the prediction step using the proposed techniques.

Volltext §
DOI: 10.5445/IR/1000034829
DOI: 10.1109/ACC.2007.4282269
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Informatik – Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2007
Sprache Englisch
Identifikator ISBN: 1-4244-0988-8
KITopen-ID: 1000034829
Erschienen in Proceedings of the 2007 American Control Conference (ACC 2007), New York, New York, USA, July, 2007
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 4425-4430
Externe Relationen Abstract/Volltext
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page