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Abstract— This paper addresses the problem of model-based
reconstruction and parameter identification of distributed
phenomena characterized by partial differential equations. The
novelty of the proposed method is the systematic approach and
the integrated treatment of uncertainties, which naturally occur
in the physical system and arise from noisy measurements.
The main challenge of accurate reconstruction is that model
parameters, i.e., diffusion coefficients, of the physical model
are not known in advance and usually need to be identified.
Generally, the problem of parameter identification leads to a
nonlinear estimation problem. Hence, a novel efficient recursive
procedure is employed. Unlike other estimators, the so-called
Hybrid Density Filter not only assures accurate estimation
results for nonlinear systems, but also offers an efficient
processing. By this means it is possible to reconstruct and
identify distributed phenomena monitored by autonomous
wireless sensor networks. The performance of the proposed
estimation method is demonstrated by means of simulations.

Keywords: Distributed phenomena, parameter identifi-
cation, stochastic systems, nonlinear estimation, sensor-
actuator-networks

I. INTRODUCTION

Miniaturization and recent developments in wireless sen-
sor network technology make it possible to exploit sensor
networks for monitoring natural large-area phenomena. The
individual sensor nodes deployed in the environment provide
distributed measurements in an intelligent and autonomous
manner [1], [2] and collect information about the phenomenon
to be monitored. Examples of distributed phenomena to be
reconstructed include temperature distributions in a plane, fluid
flows, deflection of bearings, and the surface motion of a
beating heart in minimally invasive surgery [3].

For observing distributed phenomena by means of a sensor
network, the individual sensor nodes are densely deployed
either inside the phenomenon or very close to it. In such sce-
narios, the number of sensor nodes and the measurement rates
should be as low as possible due to economical and energetic
reasons. It can be stated that the lower the measurement rate
of the sensor nodes, the higher their durability. Therefore, a
trade-off between energy costs and accuracy has to be found.
In addition, the challenge for the observation of distributed

phenomena is that measurements are available only at discrete
time steps and discrete locations, meaning that no information
between the individual sensor nodes are available. In order to
get meaningful and accurate information not only at the sensor
nodes itself but also between these nodes, the model-based
reconstruction of the distributed phenomenon is of major sig-
nificance [4]. By exploiting additional background information
of the phenomenon in form of a physical model, the accuracy
of the reconstruction can be improved significantly, even at
non-measurement points. Accordingly, the number of sensor
nodes and the measurement rates can be decreased.

The model-based reconstruction of a distributed phe-
nomenon by means of a sensor network is based on an
accurate physical model. Assuming we have an appropriate
and sufficiently accurate physical model, the distributed phe-
nomenon is uniquely characterized by model parameters and
boundary conditions. However, in practical implementations
the model parameters, such as diffusion coefficient and the
boundary conditions of the distributed phenomenon might not
be known in advance and usually need to be identified [5].
That means, by given sensor measurements, it is desirable to
find the corresponding model parameters. By this means, the
discrete-time samples measured by the individual sensor nodes
are incorporated in the physical model in order to improve
its accuracy in terms of estimated model parameters [6].
For sensor network applications, the parameter identification
becomes even more essential due to the harsh and unknown
environment, unpredictable variations of the phenomenon, and
possibly unknown sensor locations.

In general, physical phenomena can be classified into dis-
tributed-parameter systems and lumped-parameter systems.
The key characteristic of a lumped-parameter system is that the
state, which uniquely describes the system behavior, depends
only on time. In the case of a bird swarm or swarm of
robots, the position of the individual robots, which can be
regarded as the system state, depend only on time. Such a
system can be conveniently described by a set of ordinary
differential equations. On the other hand, the key characteristic
of distributed-parameter systems is that the state not only
depends on time but also on the location, e.g. irrotational



flow, heat conduction, and wave propagation. The behavior
of distributed-parameter systems can be described by a set of
partial differential equations.

The model-based reconstruction based on a distributed-
parameter system description is quite complicated, because
a system description in lumped-parameter form is typically
required for standard Bayesian estimation approaches. That
means, the physical model characterizing the distributed phe-
nomena has to be converted from a distributed-parameter form
to a lumped-parameter form. This conversion can be achieved
by methods for solving partial differential equations, such
as finite-difference method, finite-element method [7], modal
analysis [8] and finite-spectral method [4], [9].

The novelty of this paper is the systematic approach to
reconstruction and parameter identification for sensor network
applications. Furthermore, the uncertainties occuring in the
physical system and arising from noisy measurements are con-
sidered by an integrated treatment. By means of a model-based
approach, it is possible to identify and track unpredictable vari-
ations both of the phenomena and of the sensor network itself.
Hence, the properties and behavior of the sensor network can
be autonomously adapted. Furthermore, the sensor network
collects information about the phenomena to be monitored in
terms of model parameters. The main challenge is that the
simultaneous reconstruction and parameter identification of
distributed phenomena automatically leads to nonlinear system
and measurement models. Consequently a nonlinear estimation
approach is required.

The Bayesian estimator provides a general framework for
nonlinear system models affected by noise. However, ex-
act Bayesian estimation is computationally demanding and
a closed-form solution is impossible to obtain in general.
Especially due to the limited resources in sensor networks,
it is essential to work with an approximate estimator to keep
the necessary computational demand bounded.

While widely-used approximate estimators like the Ex-
tended Kalman Filter (EKF) [10], Unscented Kalman Fil-
ter (UKF) [11], or even Particle Filters [12] require a trade-off
between accuracy and efficiency, we utilize the Hybrid Density
Filter (HDF) [13]. This estimator offers accurate estimation
results due to a continuous non-Gaussian representation as
well as an efficient processing due to a novel approximation
technique based on a hybrid density.

The remainder of this paper is organized as follows: In
Section II, a rigorous formulation of the problem and the
main challenges of the simultaneous reconstruction and pa-
rameter identification of distributed phenomena is given. In
Section III, the spatial and temporal decomposition is re-
viewed, which allows the approximation of the partial dif-
ferential equation (distributed-parameter system) by means
of a finite-dimensional system in state-space form (lumped-
parameter system). The Section IV is devoted to the simultane-
ous reconstruction and parameter identification of distributed
phenomena by means of a sensor network. It will turn out
that the parameter identification usually leads to a nonlinear
estimation problem, even in the simplest case. Accordingly, in
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Fig. 1. Scenario for the reconstruction and the identification of a distributed
phenomenon by means of a sensor network: Observation of a coral reef.

Section V a novel nonlinear filter, the so-called Hybrid Density
Filter, is proposed. Finally, in Section VI, the performance of
the proposed filter is demonstrated by means of simulation
results: As an example, the temperature distribution in a
heat conductor is reconstructed and the diffusion coefficient
is estimated by incorporating measurements from a sensor
network.

II. PROBLEM FORMULATION

The main goal is to design a dynamic lumped system
model for the purpose of estimating the state of a distributed
phenomenon monitored by a sensor network. Due to several
unpredictable variations of the phenomenon and the sensor
network itself, uncertainties naturally arise both in the dynamic
system and from the measurements. The additional uncertain-
ties in model parameters make the simultaneous identification
essential for accurate reconstruction of distributed phenomena
by means of a sensor network.

A large number of distributed phenomena, such as tempera-
ture distribution in a plate, heat conduction, flow in ducts and
in open-channel, wave propagation, and deflection of bearings
can be described by means of a set of linear partial differential
equations. In this paper, only one-dimensional linear partial
differential equations are considered for simplicity and brevity,
although similar expressions can be found for the multi-
dimensional nonlinear case.

In its most general form, the one-dimensional linear partial
differential equation is given in implicit form by

L

(
p(z, t), s(z, t),

∂p

∂t
, . . . ,

∂ip

∂ti
,
∂p

∂z
, . . . ,

∂jp

∂zj

)
= 0 , (1)

where p(z, t) denotes the state of the distributed phenomena,
e.g. the temperature at a certain time t and certain location
z. The source term driving the distributed phenomena is rep-
resented by s(z, t). The system input s(z, t), the state p(z, t)
and its derivatives are related by means of a linear operator
denoted by L (·). Furthermore, the behavior of the distributed
phenomena strongly depends on specific, in general time-
variant, physical parameters, such as diffusion coefficients
or coefficients of viscosity. These parameters are denoted as
ηP (z, t) and generally depend on both location and time.



Please note that even in the simplest case, the unknown
parameter vector ηP (z, t) is usually related to the system state
p(z, t) in a nonlinear way.

For solving the partial differential equation (1), and thus
reconstructing the distributed phenomenon, knowledge of the
boundary conditions is necessary. There are several types
of boundary conditions depending on the constraints at the
boundaries of the distributed phenomenon to be monitored.
Considering the solution in a domain Ω = {z|0 ≤ z ≤ L}, we
assume the following boundary conditions

∂p(z = 0, t)
∂z

= gN , p(z = L, t) = gD , (2)

where gN , specifying a condition on the derivative, is referred
to as a Neumann boundary condition and gD is the so-called
Dirichlet boundary condition.

The aforementioned partial differential equation (1) can
be regarded as the infinite-dimensional state-space form of
the distributed phenomenon. However, the application of a
Bayesian approach for reconstruction and identification pur-
poses based on the infinite-dimensional system model is quite
complex. For that reason, the partial differential equation (1)
is approximated by means of a finite-dimensional system in
state-space form.

Due to the nonlinear relationship between the system state
p(z, t) of the distributed phenomena and their unknown param-
eter vector ηP (t), the approximation of the partial differential
equation (1) leads to a nonlinear finite-dimensional system
model, according to

xk+1 = ak

(
xk, uk, ηP

k

)
+ wx

k , (3)

where xk contains the individual states characterizing the
time evolution of the distributed phenomenon, uk denotes the
system input, and wx

k represents the system uncertainties.
In general, the parameter vector ηP

k
in (3) contains all the

unknown parameters to be identified in the system model, such
as unpredictable variations of physical constants. In addition,
unknown constraints at the boundary of the phenomenon,
unknown system inputs, and unknown disturbances could be
considered in the parameter vector ηP

k
and therefore could be

eventually identified. In the case of sensor-actuator-networks,
the parameter vector ηP

k
could even contain unknown proper-

ties of the actuators.
Besides the system model, which describes the physical be-

havior of the distributed phenomenon, there is a measurement
model describing the physical properties of the sensor network
itself. In this paper, we assume that the measurements ŷ

k
are

related nonlinearly to the state vector xk according to

ŷ
k

= hk

(
xk, ηS

k

)
+ vk ,

where vk is the uncertainty in the measurement model. The
parameter vector ηS

k
contains all the unknown parameters to be

identified in the measurement model. Sensor bias and sensor
variances, for example, could be included in the unknown
parameter vector ηS

k
for the purpose of tracking of physical
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Fig. 2. The solution p(z, t) of the partial differential equation is approximated
by p̃(z, t) which is characterized by shape functions Ψj(z) and their
weighting coefficients αj(t). (a) Elemental decomposition of the solution
domain Ω into several subdomains Ωe. (b) Shape functions Ψi(z) for the
linear case.

wear of the sensor nodes. Furthermore, one could imagine to
collect the possibly unknown location of the individual sensor
nodes and correlations between the individual nodes in the
parameter vector ηS

k
.

In this paper, only the identification of physical constants ηP
k

in the system models, e.g. diffusion coefficient, are considered,
although similar approaches could be derived for the identifi-
cation of unknown measurement model parameters ηS

k
. It will

be shown that the identification of the unknown parameter ηP
k

leads to a nonlinear system model, and thus makes a nonlinear
estimation approach necessary.

III. SPATIAL AND TEMPORAL DECOMPOSITION OF
DISTRIBUTED SYSTEM

In this section, a method is introduced that allows the
temporal and spatial decomposition of the partial differential
equation, i.e., distributed-parameter system, leading to a finite-
dimensional state-space form. As an example, we consider
the following simple one-dimensional linear partial differential
equation, the so-called diffusion equation,

L (p(z, t)) =
∂p(z, t)

∂t
− ηP (t)

∂2p(z, t)
∂z2

− s(z, t) = 0 , (4)

with the boundary condition stated in (2) and the unknown
diffusion coefficient ηP (t) that needs to be identified by
incorporating sensor measurements, see Sec. IV-B.

A. Spatial Decomposition

By means of spatial decomposition, it is possible to ap-
proximate the partial differential equation (4) by a set of
ordinary differential equations. For that purpose, the solution
domain Ω = {z|0 ≤ z ≤ L} needs to be decomposed into
Nel subdomains Ωe the so-called finite elements. These sub-
domains are defined by the element boundary nodes zi for
i = 0, 1, . . . , Ndof − 1, where z0 = 0 and zNdof−1 = L.
The elemental decomposition of the solution domain Ω into
several subdomains Ωe is visualized by means of an example
in Fig. 2.



It is well-known that the finite-difference, the finite-element,
and the finite-spectral method may be used with the same
numerical methodology, the so-called Galerkin formulation.
For this method, it is assumed that the solution p(z, t) in
the solution domain Ω can be represented by a piecewise
approximation p̃(z, t) according to

p̃ (z, t) =
Ndof−1∑

i=0

ψi (z) αi (t) = ΨT (z) x(t) , (5)

where Ψi(z) are analytic functions called the shape functions.
It is important to note that the individual shape functions
Ψi(z) are defined in the entire solution domain Ω and the
form strongly depends upon the used numerical method, e.g.,
orthogonal polynomials for finite-spectral method [4].

Due to the fact that the approximated solution p̃(z, t) cannot
satisfy the partial differential equation (4) everywhere in the
region of interest, a residual RΩ remains. To make this residual
small in some sense, a weighted integral has to be minimized

∫
Ω

Ψi (z) L (p (z, t)) dz = 0 ,

with i = 0, 1, . . . , Ndof − 1.
By replacing both the solution function p(z, t) and the input

function s(z, t) by the finite expression (5), the weighted
integral can be reduced to a system of ordinary differential
equations in terms of the weighting coefficients αi(t),

MGẋ (t) = −ηP (t)DGx(t) + ηP (t) (MGu∗(t) + b∗(t))︸ ︷︷ ︸
u(t)

,

(6)
where MG is called the global mass matrix and DG is the
global diffusion matrix. The individual entries Mg

ij and Dg
ij ,

which assemble to the global mass matrix MG and the global
diffusion matrix DG, can be derived according to

Mg
ij =

∫
Ω

Ψi (z) Ψj (z) dz , Dg
ij =

∫
Ω

dΨi (z)
dz

dΨj (z)
dz

dz.

It is obvious that MG and DG contain the information
about the discretized domain Ω and merely depend upon the
choice of the shape functions Ψi(z), i.e., depend on the used
approximation method. The vectors x(t) and ẋ(t) are the state
vectors of the unknown weighting coefficients αi(z) and their
derivatives

x(t) = [α0(t), α1(t), . . . , αNdof−1(t)] .

The boundary conditions of the distributed phenomenon to
be monitored are contained in the boundary condition vector
b∗(t). For brevity, the input vector u∗(t) and the boundary con-
dition vector b∗(t) can be combined to a so-called augmented
input vector u(t). The interested reader should refer to [4]
and [9] for more information on how to derive the system of
ordinary differential equations (6).

B. Temporal Decomposition

In the previous section, we presented the spatial decomposi-
tion allowing the conversion of the partial differential equation
into a set of ordinary differential equations, i.e., the conversion
of the distributed-parameter system into a lumped-parameter
system. In this section we are now ready to specify the time
evolution leading to the discrete-time system model.

The time discretization of the set of ordinary differential
equations (6) by means of an explicit discretization method
leads to following equation

MG
xk+1 − xk

Δt
= −ηP

k DGxk + ηP
k uk ,

where Δt represents the time step and has to be chosen in such
a way that the resulting system model is numerically stable.
Rearranging finally leads to the lumped-parameter system

xk+1 = Ak(ηP
k )xk + Bk(ηP

k )uk , (7)

where the system matrix Ak and the input matrix Bk depend
on the unknown parameter ηP

k to be identified. These matrices
can be derived according to

Ak(ηP
k ) = I − ΔtM−1

G DG ηP
k ,

Bk(ηP
k ) = ΔtM−1

G ηP
k .

Please note that we have chosen an explicit time discretiza-
tion method for simplicity and brevity. To circumvent the
restriction on the time step Δt, it is reasonable to integrate
the set of ordinary differential equations by means of implicit
methods, such as the Crank-Nicolson discretization as it was
shown in [4]. These methods lead to a system model which
is unconditionally stable for any time step Δt.

The finite-dimensional system model (7) represents the
approximation of the infinite-dimensional state-space form of
the distributed phenomenon characterized by the partial differ-
ential equation (4). In the next section, the finite-dimensional
system model is used for the reconstruction and parameter
identification of the distributed phenomena.

IV. SIMULTANEOUS RECONSTRUCTION AND
PARAMETER IDENTIFICATION

The physical model in finite-dimensional state-space
form (7) derived in the last section could be used for the simu-
lation of the underlying distributed phenomenon. However, for
applications in sensor networks the aim is not only to simulate
the behavior of the phenomenon but also to reconstruct and
identify the distributed phenomenon by incorporating discrete-
time measurements. The individual sensor nodes, which are
densly deployed inside the distributed phenomenon, are ex-
ploited to monitor and identify that phenomenon and thus
to improve both the estimated state xk and the unknown
parameter vectors ηP

k
and ηS

k
.
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Fig. 3. Overview and components of the procedure for model-based simultaneous parameter identification and reconstruction of distributed phenomena. (a)
System model, (b) Measurement model, and (c) Estimator.

A. Model-based Reconstruction of Distributed Systems

In addition to a system model a measurement model, which
maps the specific measurements ŷ

k
obtained from the sensor

network to the solution p(z, t) of the observed phenomenon
is necessary. The measurement model consists of two parts:
Measurement equation and output equation.

The measurement equation relates the actual measurement
ŷ
(i)
k at location z(i) and at time tk to the distributed phe-

nomenon p(z, tk) according to

ŷ
k

= h∗
k

(
p (z, tk) , ηS

k

)
+ vk ,

where the measurement vector ŷ
k

contains the actual measure-

ments of the m sensor nodes, i.e., ŷ
k

=
[
ŷ(1), . . . , ŷ(m)

k

]T

.
The vector vk represents the uncertainties arising from the
actual sensor node and the parameter vector ηS

k
contains the

imprecisely known sensor node properties, e.g. sensor bias,
sensor variances or sensor locations.

The output equation, on the other hand, relates the measure-
ments of the distributed phenomenon p(z(i), tk) directly to the
finite-dimensional state vector xk, according to

p(z(i), tk) =
Ndof−1∑

j=0

ψj(z(i)) x
(j)
k ,

which is identical to the representation of the approximate
solution p̃(z(i), tk) for the partial differential equation.

Substitution of the output equation into the measurement
equation leads to the complete measurement model

ŷ
k

= hk

(
xk, ηS

k

)
+ vk .

This equation provides the mapping of the finite-dimensional
state vector xk to the individual discrete-time measurements
ŷ

k
obtained from the sensor network.

Assuming a linear measurement equation for a sensor
network consisting of L sensor nodes, the measurement gain

matrix Hk is set up by the shape function ΨT (z(i)) of order
N , leading to the following linear measurement model

ŷ
k

=

⎡
⎢⎣

ψ1(z(1)) · · · ψN (z(1))
...

. . .
...

ψ1(z(L)) · · · ψN (z(L))

⎤
⎥⎦

︸ ︷︷ ︸
Hk

xk + vk ,

where vk are the measurement uncertainties; see [4] for more
information.

In general, depending on the structure of the system model
and the measurement model, i.e., being linear or nonlinear, an
appropriate estimator has to be chosen in order to reconstruct
the entire phenomenon.

B. Simultaneous Reconstruction and Parameter Identification

In the last section, it was assumed that the parameter vectors
ηP

k
and ηS

k
are precisely known, so that the distributed phe-

nomenon can be reconstructed by means of the sensor network.
In this section, we assume that the parameter vectors ηP

k
and

ηS
k

are not initially known, and thus need to be identified.
The parameters characterizing the distributed phenomenon and
the sensor network are usually time-variant and affected by
disturbances not considered in the respective models. This
criterion becomes much more essential in a sensor network
application due to many uncertainties, such as on node loca-
tions, on sensor properties, on boundary conditions, and on
physical properties of the phenomena itself. Consequently, we
are proposing to reconstruct the distributed phenomenon and
identify the unknown parameters simultansously, as illustrated
in Fig. 3.

For simultaneous reconstruction and parameter identifica-
tion, the unknown parameter vectors ηP

k
and ηS

k
are treated as

additional state variables. Hence, an augmented state vector
zk containing the system state xk and the additional unknown



parameters can be defined according to

zk :=

⎡
⎣xk

ηP
k

ηS
k

⎤
⎦ .

Assuming the unknown parameters ηP
k

and ηS
k

to be slowly
time varying we can model these parameters as follows

ηP
k+1

= ηP
k

+ wP
k , ηS

k+1
= ηS

k
+ wS

k ,

where wP
k and wS

k are small artificial noise terms that allow the
estimator to modify the estimate of ηP

k
and ηS

k
respectively.

The augmentation of the state vector with additional un-
known parameters leads to the so-called augmented system
model. In the case of simultaneous reconstruction and identi-
fication of the diffusion coefficient of the diffusion equation
(4), the augmentation leads to the following augmented system
model ⎡

⎣xk+1

ηP
k+1

ηS
k+1

⎤
⎦

︸ ︷︷ ︸
=zk+1

=

⎡
⎣Ak(ηP

k )xk + Bk(ηP
k )uk

ηP
k

ηS
k

⎤
⎦

︸ ︷︷ ︸
=ak(zk)

+

⎡
⎣wx

k

wP
k

wS
k

⎤
⎦

︸ ︷︷ ︸
=wk

(8)

and measurement model

ŷ
k

= hk

(
xk, ηS

k

)
+ vk ,

where wk and vk denotes the system noise and the mea-
surement noise respectively. In this case, it is obvious that
the augmented system model is nonlinear in the augmented
state zk due to the multiplication of Ak(ηP

k ) containing the
unknown parameter ηP

k and the system state xk.

V. HYBRID DENSITY FILTER (HDF)

For nonlinear systems that are affected by noise, the exact
Bayesian estimator calculates the probability density function
representing the augmented state. It consists of the so-called
prediction step for a recursive state propagation in time and
a measurement update or filter step to incorporate actual
measurements (see Fig. 3 (c)). However, due to its high com-
putational demand and the resulting non-parametric density
representation, an approximate estimation is inevitable as men-
tioned in Section I. The Hybrid Density Filter (HDF) provides
the opportunity of accurate estimations in combination with an
efficient processing due to its novel approximation technique
[13].

A. Prediction Step

In this section, a short review of the prediction step of
the HDF is provided. Given the current probability density
function fe

k(zk) of the augmented state at time step k, the
Chapman-Kolmogorov equation [14]

fp
k+1

(
zk+1

)
=

∫
Rn

fT
(
zk+1|zk

)
fe

k (zk) dzk (9)

0

0

3

4

0

|

Fig. 4. The hybrid transition density approximation with K = 4 components
(red lines) slices the true transition density in 5 parts. Each slice is a Gaussian
density.

describes the prediction of the Bayesian estimator and derives
the predicted density fp

k+1(zk+1), i.e., the density of zk at the
next time step k + 1. In (9), fT

(
zk+1|zk

)
given by

fT
(
zk+1|zk

)
= fw

k

(
zk+1 − ak (zk)

)
is the so-called transition density, which strongly relies on
the nonlinear augmented system model (8) and the noise wk

affecting it. For simplicity, we assume that this noise is zero-
mean white Gaussian with density

wk ∼ fw
k (wk) = N

(
wk − μw

k
,Cw

k

)
,

where μw
k

= 0 is the mean vector and Cw
k is the covariance

matrix. However, the HDF is not restricted to Gaussian noise.
While most of the state-of-the-art estimators concentrate on

directly approximating the density of the state, the key idea of
the HDF is to approximate the transition density instead, which
is the probabilistic representation of the nonlinear system
model. For approximating the transition density a hybrid
density

f
(
zk+1, zk, κ

)
=

K∑
i=1

ωi · δ
(
zk − μ(1)

i

)
· N

(
zk+1 − μ(2)

i
,Ci

)
(10)

with parameter vector

κ = [κT
1, . . . , κ

T
K ]

T
, where κT

i = [ωi, μ
(1)
i

, μ(2)
i

,Ci]
T

is used. Here, K is the number of components, ωi are weight-
ing coefficients with ωi > 0, and δ(zk−μ(1)

i
) is the Dirac delta

function with mean vector μ(1)
i

= [μ(1)
i,1 , . . . , μ

(1)
i,n]

T
. Hence,

the hybrid density is a mixture density consisting of Dirac
components for the prior side zk and Gaussian components
for the posterior side zk+1.

To adjust these parameters, it is possible to reformulate the
approximation problem as an optimization problem that yields
the optimal parameter vector κ with respect to an appropriate



distance measure [13]. Assuming that zk ∈ Sk, i.e., zk is
restricted to its support

Sk = [sl
1, s

u
1 ] × [sl

2, s
u
2 ] × · · · × [sl

n, su
n] ⊂ R

n ,

such that fe
k(zk) > ε for zk ∈ Sk and for a small constant

0 < ε � 1, the optimal parameters are given by

ωi =
n∏

j=1

ωi,j , ωi,j =
su

j − sl
j

Lj
,

μ
(1)
i,j = sl

j + ωi,j · 2i − 1
2

, μ(2)
i

= ak

(
μ(1)

i

)
,

Ci = Cw
k ,

for j = 1, . . . , n. In Fig. 4 the transition density for the
scalar nonlinear system model zk+1 = z2

k + wk, where
wk ∼ N (wk − 0, 0.16), is depicted. The corresponding hybrid
density approximation consists of K = 4 components, whose
Dirac delta functions are placed uniformly on the interval
Sk = [−2, 2]. The Gaussian elements are duplicates of the
noise density that are placed along the nonlinear function
ak(zk) = z2

k.
By using (10) instead of the transition density in (9), pre-

diction can be performed efficiently in closed-form, resulting
in a Gaussian mixture representation

fp
k+1

(
zk+1

)
=

K∑
i=1

ωk+1,i · N
(
zk+1 − μ(2)

i
,Ci

)
, (11)

with ωk+1,i = ωi · fe
k

(
μ(2)

i

)
, for the predicted density. Fi-

nally, normalizing (11) by multiplying it with 1/
∑K

i=1 ωk+1,i

yields a very accurate approximation of the true predicted
density [13].

B. Measurement Update
In the same way as the prediction step can be performed

by means of hybrid densities, we can use a hybrid density
approximation of the likelihood fL

(
ŷ

k
|zk

)
in Bayes’ law [14]

fe
k (zk) = ckfL

(
ŷ

k
|zk

)
fp

k (zk) (12)

for updating the augmented state zk with an actual mea-
surement ŷ

k
to achieve the posterior density fe

k (zk). This
approach is described in detail in [13].

In this paper, we use a more straightforward approach to
further decrease the computational load. Instead of a separate
measurement update step, we propose a combined prediction
and update by plugging (12) into (9). Consequently, we obtain

fp
k+1

(
zk+1

)
= ck

∫
Rn

fT
(
zk+1|zk

)
fL

(
ŷ

k
|zk

)
fp

k (zk) dzk ,

where ck = 1/
∫

Rn fL(ŷ
k
|zk)fp

k (zk)dzk is merely a nor-
malization constant. Here, it is sufficient to approximate the
transition density only and to perform the prediction step as
described before for additionally updating the system state
by means of an actual measurement. According to (11), a
Gaussian mixture representation for fp

k+1

(
zk+1

)
is obtained.

However, by performing a combined update and prediction it
is impossible to achieve a separate posterior density fe

k (zk),
which is not always preferable.
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VI. SIMULATION RESULTS

In this section, the performance of the proposed estimation
method is demonstrated by means of simulations for the
reconstruction and identification of a heat rod. In particular,
the accuracy of the reconstructed phenomenon and of the
identified parameter ηP

k characterizing the partial differential
equation is investigated in comparison to other nonlinear
estimation methods.

The evolution of the temperature in the heat rod with length
L = 1 is modeled by the one-dimensional linear partial
differential quation (4) with initial condition p(z, t = 0) = 20,
Dirichlet boundary condition p(z = L, t) = 20, and Neuman
boundary condition ∂p(z=0,t)

∂t = 0. The noisy input function
is given by s(z, t) = 50. Approximating the solution p(z, t)
by means of p̃(z, t) = ΨT (z)α(t), the partial differential
equation (6) can be spatially decomposed leading to the
finite-dimensional state-space form (7). The state vector xk

can be derived from temporal discretization of the weighting
factors α(t) of the approximate solution, as shown in Sec. III.
For simplicity, the shape functions ψi(z) are assumed to be
piecewise linear. Furthermore, it is assumed that the sensor
network consists of two sensor nodes located at z(1) = 0.33
and at z(2) = 0.66, as it is visualized in Fig. 5. As a
measurement model we assume ŷ

k
= Ixk + vk, where I is

the identity.
For simulation we investigate the Unscented Kalman Fil-

ter (UKF), the Particle Filter (PF), and the proposed HDF
for identifying the parameter ηP

k , which is assumed to have
the value 0.6. PF and HDF operate with 405 particles and
components respectively. In Fig. 6 (a) and (b) the mean
estimate of the identified parameter ηP

k and the absolute
difference to the true parameter are visualized. It is obvious
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Fig. 6. Comparison of the HDF, UKF, and PF for ηP
k = 0.6. (a) Mean

estimation and (b) absolute difference for an exemplary simulation run. (c)
Root mean square error of 50 simulation runs.

that the HDF offers parameter estimation, which is nearly
exact, since the hybrid transition density approximation allows
to cover the nonlinearity of the system model. Therefore,
a more accurate estimation of moments and shape of the
predicted density is provided. The UKF provides also a good
parameter identification result, while the PF strongly jitters.
Increasing the number of particles in turn results in a higher
computational load.

The estimates depicted in Fig. 6 (a) and (b) are resulting
from one simulation run out of 50 Monte Carlo simulations.
The root mean square errors (rms) of all 50 runs are depicted
in Fig. 6 (c). Except of one simulation run, the HDF always
outperforms the UKF and PF. Thanks to the model-based
approach the unknown parameter ηP

k can be identified and
the solution p(z, t) in the entire domain can be reconstructed
by incorporating measurements from the sensor network.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced the methodology for deriving system
models and measurement models for the reconstruction and
identification of distributed phenomena characterized by linear
partial differential equations. By means of the augmentation of
the system state with the unknown parameters it was possible
to simultaneously estimate the system state and identify the
unknown parameter. It was shown that the augmentation of
the state vector leads to nonlinear system models. In order to
cope with these nonlinearities, a novel estimator, the so-called
Hybrid Density Filter, was proposed and its performance was
demonstrated by means of simulations. It turned out that,
compared to other nonlinear estimators, the Hybrid Density
Filter achieves a higher accuracy.

The application of such reconstruction and identifica-
tion methods to sensor network applications provides novel
prospects. The individual sensor nodes would be able to oper-
ate in a completely unknown surrounding in a self-organized
and autonomous manner and thereby identify, observe, and
reconstruct unknown distributed phenomena.

For considering the physical wear of individual nodes in
a sensor network the identification of sensor properties such
as sensor bias, measurement variance, and node location is
of special interest. This is left for future research work.
Furthermore, for a lot of real sensor network applications it
might be necessary to identify complex, not a-priori known,
boundary conditions. For the observation of large-area dis-
tributed phenomena, decentralized methods or modularization
methods could be necessary in order to cope with high-
dimensional state vectors.
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