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Abstract— In order to assist surgeons during surgery on
moving organs, e.g. minimally invasive beating heart bypass
surgery, a master-slave system which synchronizes surgical
instruments with the organ’s motion is desired. This synchroni-
zation requires reliable estimation of the organ’s motion. In this
paper, we present a new approach to motion estimation based
on a state motion model for a partition of the heart’s surface. Its
motion behavior is described by a partial differential equation
whose input function is assumed to be periodic. An estimator
is used on one hand to predict future model states based on
reconstruction of the input function and on the other hand to
incorporate noisy spatially discrete measurements in order to
improve state estimation. The model-based motion estimation
is evaluated using a simple heart simulator. Measurements
are obtained by reconstructing 3D position of markers on a
pulsating membrane by means of a stereo camera system.

I. INTRODUCTION

During open or minimally invasive beating heart bypass

surgery, the area of interest is mechanically stabilized. Howe-

ver, significant residual motion in this area remains [1] and

the surgeon has to follow this motion, which demands high

concentration. In order to assist surgeons while operating on

the beating heart, an active system, e.g. a robot that follows

the heart’s motion based on motion estimation, is desired.

The surgeon controls the robotic system while referring to

a still image of the intervention area on a monitor, thus

gaining the impression of operating on the motionless organ.

An overview of this concept, first introduced in [2], is

shown in Fig. 1. A promising approach to generate a still

image of a moving surface using real-time binocular eye

tracking is proposed in [3]. Master-slave robotic systems

like ZEUS and da Vinci are already used, but do not offer

active autonomous motion synchronization with the beating

heart. For this synchronization a method for exact motion

prediction , based on measurements of heart motion, for each

point of interest (POI) on the organ’s surface is necessary.

In earlier studies, several motion compensation algorithms

and measurement methods were discussed. In order to predict

the heart’s motion at a POI in one direction, a displacement

model with weighted Fourier series is used [4]. The POI-

deflection is measured by a fibre-optic laser sensor. In [2],

2D-motion of a POI is estimated with an autoregressive

model based on 2D prior position measurements by a single

camera. An approach for 3D-recovery of soft tissue de-

formation is proposed in [5]. Image rectification combined
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Fig. 1. Overview of the system architecture.

with constrained disparity registration is used to gain 3D

information about the surface directly from a stereo image

pair. This approach offers no possibility for estimating the

position of occluded surface parts, which can be caused for

example by surgical instruments. In [6], natural landmarks

on the heart surface are tracked by a single camera. They

propose a method for predicting motion of surface points

based on their x- and y-trajectories, respiration pressure

signal, and ECG signal observed in the past. Those features

are tracked robustly even with short-time occlusions. A

predictive-control approach on filtering the heart motion is

presented in [7] and [8]. In [7], a 6 DOF robot is set up,

which is synchronized with an oscillating target using visual

servoing techniques and a modified generalized predictive

controller to learn and predict the organ’s motion. The model-

based predictive controller described in [8] is based on a mo-

tion model containing sonomicrometry measurements of the

POI-trajectory out of the past heart beat cycle. Additionally,

in [8] the prediction is improved by detecting changes of

heart beat period in the ECG signal. The above mentioned

methods do not describe the connections between the measu-

rable or occluded POI and other measurable points by means

of a surface model. Such a model could, however, include

the distributed motion and facilitate the POI reconstruction.

In this paper, we present a fundamental model-based

approach for reconstructing the position of any arbitrary

POI and for predicting the heart’s surface motion in the

intervention area. The key idea of our approach is that a

partition of the heart surface is represented by a pulsating

membrane model. The motion behavior of the membrane is

described using a partial differential equation (PDE) whose

input function is assumed to be periodic. An estimator is used

for predicting future model states based on reconstruction



of the input function (similar to [4]) and to improve state

estimation by incorporating noisy spatially discrete measu-

rements from a real system. The advantage of this approach

is that state estimation can be used to reconstruct the whole

surface of the partition based on discrete measurements.

The model-based motion estimator is evaluated using an

experimental setup, where markers attached to a pulsating

membrane are tracked by a stereo camera system (see Fig.

2). Model-based prediction is used to identify markers in

consecutive image frames.

The remainder of this paper is organized as follows.

Section II gives a general problem formulation for motion

estimation of elastic surfaces. In Section III model equations

are derived and the estimator used is presented. Section IV

describes the experimental setup and software of the testbed.

In Section V results of model-based motion estimation for

the pulsating membrane are shown.

II. PROBLEM FORMULATION

As already mentioned in the previous section, model-

based surface reconstruction and estimation opens up new

possibilities for motion compensation in minimally invasive

surgery, particularly for beating heart bypass surgery. In this

section, the problem of motion estimation of an organ’s

surface is formulated in a general manner. Then, by making

certain assumptions, these problems are restricted to the

special case of a circular partition of an organ’s surface with

linear elastic material behavior.

In general, the problem of model-based motion estimation

of an organ’s surface can be separated into two subproblems.

The first one consists of mathematically describing the moti-

on behavior of the surface as a distributed phenomenon. The

surface motion model is usually formulated as a distributed

parameter system, which has to consider specific material

properties as well as muscle contraction or external forces

that affect and deform the surface. In order to estimate the

system’s state, it has to be converted into a lumped parameter

system. The behavior of a discrete-time lumped parameter

system can be described by the system equation, which can

either be linear, such as

xk+1 = Akxk + Bk(uk + wk) (1)

or nonlinear. In (1), xk and xk+1 are chronologically con-

secutive system states related to each other by Ak. Matrix

Bk relates the control input uk, which can either be muscle

contraction or external forces, to state xk+1 and wk describes

process noise.

The second subproblem is concerned with estimation

of the real system state based on system description and

measurements. For this purpose, the system state xk has to

be related to measurements y
k
. This measurement equation

can either be linear, such as

y
k

= Hkxk + vk (2)

or nonlinear. In (2), vk is the measurement uncertainty.

Furthermore, an appropriate estimator has to be chosen,

which contains a predictor for estimation of future states by

Fig. 2. Pulsating membrane and tracking system.

means of the stochastic system equation as well as a filter

step to improve estimation of the system state with noisy

measurement. The choice of an estimator initially depends

on whether system and measurement equations are linear or

nonlinear. While a Kalman Filter [9] can be used for the

linear case, nonlinear filters such as Extended Kalman Filter

or Progressive Bayes [10] can be used for the nonlinear case.

Regarding the problem of reconstructing the surface and

estimating the motion of a partition of a beating heart, some

assumptions can be made. The shape of the partition and

boundary conditions are determined by the stabilizer, which

is used for stabilizing the heart. In this paper, the partition

is assumed to be of circular shape with fixed boundary

conditions. The elasticity of the organ’s material is assumed

to be linear and the organ moves periodically. With these

assumptions the motion model can be designed, which finally

leads to the system equation. For obtaining measurements,

a binocular system is used, which enables 3D-tracking of

markers attached to the surface as shown in Fig. 2. In order to

track particular markers, they need to be uniquely identified

in consecutive image frames. The model-based predictions

for marker positions can be used in order to recover the

corresponding marker in the next image frame and to restrict

the search area.

III. A MODEL FOR SURFACE ESTIMATION OF A

CIRCULAR MEMBRANE

In order to describe and predict the behavior of a circular

partition of an organ’s surface, the state system model

is derived by means of a membrane model (III-A), the

measurement equation is derived and the state estimator has

to be chosen (III-B). In [11], approaches for reconstruction

and prediction of stochastic distributed linear system are

proposed. As the motion behavior of the membrane is

described by a linear PDE, an approach from [11] is basically

used. In [11], the control input uk is known and predefined.

The novelty in this paper in contrast to [11] is that the

input function is represented by a Fourier series and its

parameters are adapted during data processing to reconstruct

a real periodic input function.



A. System Equation

In this section, the linear PDE describing the motion

behavior of the system is first derived. Then it is converted

into a system equation as in (1) using the two-step process

similar as described in [11]. The starting point for deriving

a mathematical description for motion behavior of a circu-

lar membrane with isotropic elastic material are the Lamé

differential equations. They are denoted with j = 1, 2, 3 as

follows for the three-dimensional case

(λ + μ)(
3∑

i=1

∂2ui

∂xj∂xi
) + μ∇2uj + (fj − ρ

∂2uj

∂t2
) = 0 . (3)

λ and μ are the so-called Lamé moduli describing the elastic

properties of the medium. ui = ui(x1, x2, x3, t) describes

the deflection in xi direction at surface point (x1, x2, x3)
and time t. fi is an external force affecting the membrane

in xi direction and ∇2 is the Laplace-operator. As a sim-

plifying constraint, the deflection is assumed to only occur

in direction x3, which is perpendicular to the (x1, x2)-plane

of the membrane as shown in Fig. 2. This leads to

μ∇2u + (f − ρ
∂2u

∂t2
) = 0 , (4)

where u := u3 and f := f3. In order to incorporate the

damping, which occurs in the system, a velocity dependent

damping term du̇ is added to (4). For easier handling,

coordinates are converted from cartesian to polar, whereas

r and ϕ denote radius and angle, respectively. This results

in

μ(
∂2u

∂r2
+

1
r2

∂u

∂r
+

1
r

∂2u

∂ϕ2
) − ρ

∂2u

∂t2
− d

∂u

∂t
= −f , (5)

with u = u(r, ϕ, t). Boundary conditions, describing the

circular shape of the membrane are given by

u(a, ϕ, t) = 0 , (6)

where a denotes the radius of the membrane.

In order to convert (5) to an equation of the form (1), the

homogeneous part of the linear PDE (5) is considered first.

By means of the separation method the solution uH of the

homogeneous part is decomposed into a spatially dependent

part ψ and a time-dependent part α. Then the particular

solution is calculated and adapted to the boundary conditions.

In general, this results in several solutions. The solutions

are characterized by eigenvalues. Due to the linearity of the

PDE, the superposition of all solutions is also a solution of

the homogeneous part of equation (5). Finally, the solution

is approximated by a finite number NEF of eigenfunctions,

which results in

u(r, ϕ, t) =
∞∑

i=1

ui(r, ϕ, t) ≈
NEF∑
i=1

ψi(r, ϕ)αi(t) . (7)

For a circular membrane with boundary conditions (6), this

leads to

u(r, ϕ, t) =
M∑

m=1

N∑
n=0

2∑
i=1

AmniUmni(r, ϕ) cos(
ccmnt

a
), (8)

where cmn is the m-th zero point of a Bessel function Jn(t)
of first kind and order n. In (8), c =

√
μ
ρ , Umn1 and Umn2

are given by

Umn1 = cos(nϕ)Jn( r
acmn) and

Umn2 = sin(nϕ)Jn( r
acmn) .

The number of eigenfunctions is NEF = 2M(N + 1).
In contrast to [11] in this paper the approximated solution

(7) is not transformed into a normalized form and the

excitation function f of the inhomogeneous PDE is described

in a different way. f is decomposed into spatially and time-

dependent parts as follows

f(r, ϕ, t) ≈
NT E∑
i=1

Xi(r, ϕ)pi(t) . (9)

The time-dependent parts pi of (9) are approximated by the

Fourier series

pi(t) = ci +
NT P∑
j=1

aij cos(jωt) + bij sin(jωt) . (10)

The spatially dependent parts Xi are assumed to be known.

In this paper, pi is assumed to be periodical with constant

frequency ω. Therefore ci, aij and bij are the only parameters

that need to be determined in (10).

Inserting formulas (7) and (9) into the inhomogeneous

PDE (5) according to [11] results in

μ

NEF∑
i=1

(∂rr +
1
r
∂r +

1
r2

∂ϕϕ)ψi(r, ϕ)αi(t)

−ρ

NEF∑
i=1

ψi(r, ϕ)α̈i(t) − d

NEF∑
i=1

ψi(r, ϕ)α̇i(t)

= −
NT E∑
i=1

Xi(r, ϕ)pi(t),

(11)

which has to be satisfied at any arbitrary point. In order to

spatially discretize (11), a finite number NCP of collocation

points is chosen, where (11) has to be fulfilled. After

inserting the collocation points into (11), the equations are

summarized to the form

μ ψμα(t) − dψdα̇(t) − ρ ψρα̈(t) = −Xp(t) (12)

where ψd, ψρ ∈ IRNCP ×NEF contain spatially dependent

eigenfunctions, ψμ ∈ IRNCP ×NEF contains spatially deriva-

tions of the eigenfunctions and X ∈ IRNCP ×NT E contains

the predetermined spatially dependent functions Xi of (9).

If α, α̇ and α̈ in (12) are known at time tm, setpoints

pS
i (tm) for each pi(tm) from (10) can be calculated by

inverting X in (12). In order to reconstruct ci, aij and bij

adequately, the condition

ci +
NT P∑
j=1

aij cos(jωtm) + bij sin(jωtm) != pS
i (tm) (13)

has to be satisfied. This equation is under-determined and has

an infinite number of solutions. In order to reconstruct the



desired parameters anyway, not only one setpoint is used,

but also setpoints for past points in time are considered.

Thus, a linear system of equations is obtained from (13)

for each setpoint, which can be used to calculate ci, aij and

bij . The reconstruction process of the excitation function (9)

is included in the filter step of the estimator as discussed in

(III-B).

The lumped parameter system (12) of order two is reduced

with the corresponding matrices E, A, B to the form

Eβ̇(t) = Aβ(t) + B(u(t) + w(t)), (14)

where β = (α(t), α̇(t))T is defined as the system state. The

term w(t) is an additive noise term with covariance Q and

describe the zero mean process noise. In order to obtain an

equation as in (1), equation (14) has to be transformed. If E
is regular, it can just be inverted. If (14) is over-determined,

i.e., NEF < NCP , rank(E) = NEF and rank(Q) = NCP ,

the least squares method can be used to calculate the pseudo-

inverse of E. Otherwise, if rank(E) < NEF , (14) is a

descriptor system. Literature regarding solutions for that

problem can be found in [11]. After the time-discretization

of (14), a system equation as in (1) is finally obtained.

B. Measurement- and Kalman Filter Equations

In the previous section, the linear stochastic system equa-

tion, describing the motion behavior of a circular oscillating

membrane, was derived. Because the state β
k

of the system

equation is estimated, one has to improve the estimation of

the state by means of measurements of the real system. In

this section, the measurement equation is defined and the

state estimator used to predict and reconstruct the surface

deflection of the membrane is described.

If measurements y
k

at time tk directly refer to membrane

deflection u and deflection velocity u̇ in x3-direction (see

Fig. 2) at certain measurement points, a linear mapping of the

derived state β
k

onto measurements y
k

by means of relation

(7) can be derived. For the measurements y
k
, a zero mean

noise value vk with covariance Rk is assumed, so that a

linear measurement equation as in (2) is obtained. Thereby

Hk contains the spatially dependent eigenfunctions ψ for any

measurement points as described in [11].

Because the system and measurement equations are linear,

and additive zero-mean process noise and measurement noise

is assumed, the well-known Kalman Filter is used for the

estimation of the state β
k
. The estimator consists of two main

steps: the filter step and the prediction step. The equations

of the filter step are equal to those discussed in [11]. The

characteristics of the estimated state are described by its

expectation value β̂
k

and its covariance matrix Ck. After

improving the estimation of the state β
k

with measurements

y
k
, the excitation function f as described in Section III-

A is reconstructed. First of all the values α, α̇, α̈ of (12)

are estimated and the matrix X is inverted to obtain the

setpoints. After this the coefficients of the Fourier series (10)

are determined. The obtained Fourier series for p is used to

determine the excitation function for the next prediction step.

In the prediction step, the state estimation β
k

is updated to

Fig. 3. Testbed and enlarged surface section.

β
k+1

by means of the state equation obtained by (14). The

excitation function is calculated via the reconstructed p of the

last filter step. Also the covariance matrix Ck is updated (see

[11]). Now the used estimator is described, the only thing that

is still missing is the reconstruction of the surface deflection

at every point. With the estimation of state β
k

the deflection

at each point can be reconstructed with the approximated

solution function (7) as u(r, ϕ, tk) ≈ ψ(r, ϕ)T α̂k. The

quality of the model-based estimator derived above will be

evaluated in the following section.

IV. MODEL EVALUATION

For evaluating the stochastic surface model, a pulsating

membrane as shown in Fig. 3 was used. Apart from that,

the model-based motion estimator introduced in Section III

was implemented and image processing software, to gather

measurements, was written. In this section the testbed and

implemented software systems are described.

A. Experimental Setup

In this section, the experimental setup for evaluating the

model-based motion estimator derived in III is described. A

moving circular partition of a heart’s surface is simulated by

a thin elastic membrane bounded by a circular aperture in a

metal plate as shown in Fig. 3. The membrane oscillates with

a constant frequency, which can be set arbitrarily between

about 0.5 and 2.4 Hz. In order to acquire measurements of

particular surface points, circular markers are attached to the

membrane and are tracked using a stereo camera system and

corresponding image processing algorithms.

B. Image Processing

In order to obtain measurements of the deflection of the

membrane at discrete surface points, markers stuck to the

membrane’s surface (see Fig. 3) are tracked. In this section,

initialization as well as functionality of the image processing

system using Intel’s OpenCV library is described.

During initialization, the intrinsic and extrinsic camera

parameters needed for 3D depth recovery are computed.

The fundamental matrix for epipolar matching is calculated.



Then the diameter of the membrane, the coordinates of its

center, and the plane containing the margin of the membrane

are determined. From an initialization image, which is an

arbitrary image from the sequence, measuring points are

chosen. Later on, only the distances between these surface

points to their projections into the membrane plane serve

as measurements. To speed up feature extraction and stereo

matching, the size of the landmarks as well as the search

areas in each camera image can be specified.

Image processing is done in three major steps: Extraction

of marker positions, stereo-matching, and reconstruction of

3D coordinates. Features are extracted from both, the left

and right camera images independently using the Canny edge

detection algorithm and ellipsoid fitting methods supplied by

OpenCV. The matching of corresponding features is realized

by epipolar matching combined with a relative position

constraint to reduce search space along the epipolar line. For

each pair of matched features, 3D coordinates are computed.

C. Implementation of the Model-based Estimator and Inter-
action with Image Processing

Fig. 4 illustrates the interaction between the model-based

estimator and the image processing components. The model-

based estimator was implemented in MATLAB. The MAT-

LAB methods are called from the C++ part using the

MATLAB COM-interface. For setting model parameters,

the function init(M,N,NCP , NTE , NTP , μ, d, ρ, ω, rm, ϕ
m

)
has to be executed. M , N , NCP , NTE , NTP , μ, d, ρ and

ω are declared in Section III. rm and ϕ
m

contain radii and

angles of the surface points for which the deflections should

later be predicted. Since the real deflection of the membrane

is only known at marker positions, only estimations at those

points can be evaluated. Therefore, rm and ϕ
m

in this case

exclusively contain marker positions. From these marker

positions the NCP collocation points are selected randomly.

In this evaluation, the measurement points are equated to the

collocation points.

Besides the initialization routine, the implementation pro-

vides two methods: update(u,mask, tm) and estimate(tk).
update is called to provide new measurements. u contains

the measured distances between the collocation points and

the membrane plane. mask is used to indicate whether

measurements at certain collocation points are available at

time tm. Therefore, the model state can be updated even

if measurements could not be obtained at all collocation

points, for example due to occlusion. During update the

filter step of the estimator (see Section III-B) is executed

and improves the estimation of β. By calling estimate, the

prediction step is executed. With the received estimation β̂,

the deflections for any arbitrary point can now be computed.

The function estimate returns the predicted deflections for

the marker positions used by the image processing software

to track the markers over subsequent image frames.

V. EXPERIMENTS

In this section, first experimental results regarding model-

based surface estimation of the circular membrane are discus-

Fig. 4. Interaction of system components.

sed. Afterwards, the influence of tracking the markers using

the model-based predictions (see Section IV-C) on robustness

of estimations is described.

Fig. ?? shows measured and predicted deflection of a non-

collocation point on the circular membrane. Image series

for that experiment were taken with a frame rate of 72

fps while the membrane was oscillating at ω = 0.653
Hz. Resolution of camera images is 320x320 pixels, which

corresponds approximately to a ratio of 0.45 mm/pixel. The

membrane used has radius a of 6 cm and is shown in Fig.

3. Attached markers have a diameter of 5 mm. The number

of collocation points was set to 30 and 21 eigenfunctions

were used to model the surface. Results in Fig. ?? show,

that deflection of the oscillating surface is predicted quite

accurately at a non-collocation point. The comparison of

predicted and actual deflection at other surface points of the

membrane shows similar results. Prediction error is 1.39 mm

in average with a maximum value of 6.8 mm. The maximum

occurs only during the fast up- and downward movements of

the membrane. This relatively large error originates from a

phase shift of the reconstructed excitation function compared

to the real excitation. This delay of approximately 0.03 s

is probably caused by unexact material parameters, which

were empirically adapted to μ = 9.5, d = 0.1 and ρ =
0.08. The error of time shifted predicted deflections for a

single point is shown in Fig. 6. Generally, predictions for

markers close to borders of the membrane are slightly worse,

because boundary condition (6) is not fulfilled exactly by the

membrane shown in Fig. 3. For the considered data only an

average of 15 out of 30 measurement points was available.

This shows the robustness of predictions towards the absence

of measurements at single collocation points.

Another issue is the robustness of the tracking procedure

described in IV-C. Since model-based prediction with accura-

te material parameters is used to find corresponding markers

in consecutive image frames, those markers, which were lost

for example due to occlusions or reflections, can be retrieved

again. On the other hand, if the material parameters are

inaccurate the prediction is also inaccurate and the markers

may be tracked wrongly. This inaccuracy leads to predictions
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Fig. 6. Error for time shifted prediction at point p = (0.63, 0.38).

even worse and to instability in ensuing time steps.

VI. CONCLUSION

In this paper, a fundamentally new model-based approach

for estimating the motion of a circular partition of an organ

surface is proposed. The periodically moving organ surface is

represented by a pulsating membrane model which material

behavior is assumed to be linear. The deflection behavior

of the membrane is described by a linear inhomogeneous

PDE. By means of modal analysis and collocation method,

the PDE is converted to a lumped parameter system. The

unknown periodical input function is represented by a Fou-

rier series. A linear measurement equation, which maps the

model state to 3D position measurements of the membrane

surface is defined. The derived equations are used together

with the Kalman Filter to predict the model state based on

the reconstructed input function and in order to reconstruct

z-deflection of the surface in any arbitrary point. The state

prediction is also used to identify markers attached to the

membrane over consecutive image frames. Evaluation using

a pulsating membrane instead of a real heart surface showed

promising prediction and reconstruction results.

In order to use the model-based estimator to synchronize

manipulators of a master-slave system with the moving heart

surface our approach has to be extended. The membrane

model has to be formulated for a deflection in all three

dimensions. The 3D model-based estimator has to adapt

the parameters of the model to each patient’s heart indi-

vidually. Furthermore, it has to be extended to be robust

against irregularities in the excitation function and changing

excitation frequencies. If it turns out that the linear model

is not sufficient for predicting real heart motion, it has to

be extended to the nonlinear case. In this context and to

consider more complex boundary conditions, the approach

proposed in [12] might be more suitable. In further research

work, real-time capability of the system has to be evaluated

and assured.
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