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ABSTRACT
For several tasks in sensor networks, such as localization,
information fusion, or sensor scheduling, Bayesian estima-
tion is of paramount importance. Due to the limited com-
putational and memory resources of the nodes in a sensor
network, evaluation of the prediction step of the Bayesian
estimator has to be performed very efficiently. An exact
and closed-form representation of the predicted probability
density function of the system state is typically impossible
to obtain, since exactly solving the prediction step for non-
linear discrete-time dynamic systems in closed form is un-
feasible. Assuming additive noise, we propose an accurate
approximation of the predicted density, that can be calcu-
lated efficiently by optimally approximating the transition
density using a hybrid density. A hybrid density consists of
two different density types: Dirac delta functions that cover
the domain of the current density of the system state, and
another density type, e.g. Gaussian densities, that cover
the domain of the predicted density. The freely selectable,
second density type of the hybrid density depends strongly
on the noise affecting the nonlinear system. So, the pro-
posed approximation framework for nonlinear prediction is
not restricted to a specific noise density. It further allows
an analytical evaluation of the Chapman-Kolmogorov pre-
diction equation and can be interpreted as a deterministic
sampling estimation approach. In contrast to methods using
random sampling like particle filters, a dramatic reduction
in the number of components and a subsequent decrease in
computation time for approximating the predicted density
is gained.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
G.1.2 [Numerical Analysis]: Approximation—Nonlinear
approximation, Special function approximations

General Terms
Theory, Algorithms

Keywords
Recursive Bayesian Estimation, Nonlinear Prediction, Hy-
brid Density, Probability Density Approximation

1. INTRODUCTION
Noisy measurements and system properties that are un-

known or too complex to model are typically sources of un-
certainties a designer of a sensor network has to deal with. A
very common representation of such uncertainties are ran-
dom variables. Recursive processing of random variables
requires the efficient application of the so-called prediction
step, i.e., a recursive transformation of a random variable
over time. Fig. 1 illustrates an example application from
the field of sensor networks, where the prediction step is of
great importance: The localization of a robot (for the robot
description see [21]) via a sensor network requires continu-
ous position propagations. Inaccuracies in the robot’s kine-
matic model and the imprecise odometry leads to impre-
cisely known positions that have to be estimated by means

Figure 1: Localization of a mobile robot by means
of a sensor network.



of a predictor. In Fig. 1, the estimated position is illus-
trated by means of covariance ellipses. Measurements of
the surrounding sensor nodes can improve the position es-
timation. However, sensor nodes normally do have limited
energy resources. To save energy only sensors that give the
best improvement in position estimation should perform a
measurement. This sensor scheduling task also requires the
prediction of random variables [22].

The Bayesian estimator determines exact predictions of
the probability density function of a random variable. In
general, the density of the predicted random variable can-
not be calculated in closed form and the complexity of the
density representation increases with each time step. Espe-
cially due to the limited processing and memory resources of
the sensor nodes this is an impractical computational effort.

While for linear systems with Gaussian random variables
the Kalman filter provides exact solutions in an efficient
manner [11], the nonlinear case requires the approximation
of the true density. The well-known extended Kalman fil-
ter uses linearization to apply the Kalman filter equations
to nonlinear systems [20], while the unscented Kalman fil-
ter offers increased higher-order accuracy by using a deter-
ministic sampling approach [10]. The resulting single Gaus-
sian density of both estimation methods is typically not a
sufficient representation for the true complex density. An-
other possibility arises from the usage of more generic pa-
rameterized density functions such as the well-known Gaus-
sian mixture densities. The bandwidth of estimators using
Gaussian mixtures ranges from the efficient Gaussian sum
filter [1] that allows only an individual updating of the mix-
ture components up to computationally more expensive but
precise methods [7]. Further generic parametric densities
used for prediction are for example exponential densities [4],
Edgeworth series [6], or Fourier densities [5].

Instead of a parametric representation one can use a sam-
ple representation of the density, like particle filters do [2].
Since these estimators apply Monte Carlo methods, i.e., ran-
dom sampling of the underlying continuous density, the pre-
diction results are not deterministic and a large number of
samples is required in order to get satisfactory results. As
an alternative to random sampling, Quasi-Monte Carlo esti-
mators use deterministically drawn samples [15]. The tech-
niques used for generating these samples are often very com-
plex. Thus, scalability particularly for an increasing number
of dimensions is a critical problem [14]. A likewise computa-
tionally demanding approximation of arbitrary prior densi-
ties with deterministically drawn samples is proposed in [16,
17]. In contrast to Monte Carlo sampling very few samples
are sufficient to achieve precise prediction results, since the
samples are optimally placed with respect to a given distance
measure.

Generally, there are two possible ways for approximat-
ing the resulting density functions of nonlinear stochastic
systems: 1. Approximating the system directly, like the
extended Kalman filter does. 2. Approximating the prior
density without affecting the system, e.g. particle filters.
In this paper we introduce an efficient prediction approach
for nonlinear dynamic discrete-time systems, which can be
considered member of both classes. It is based on optimally
approximating the transition density by means of a hybrid
density, that consists of Dirac delta functions and another
density type, e.g. Gaussian densities, that depends on the
noise corrupting the system. Since we only assume additive

noise and no specific noise representation, the proposed pre-
diction method is very generic. For approximation purposes
we formulate an optimization problem under boundary con-
ditions for minimizing the squared integral distance measure
between the true transition density and the approximate hy-
brid density. In contrast to our purely Gaussian mixture
transition density approximation approach in [8], this op-
timization problem can be solved analytically and on-line,
i.e., for every single prediction step (see Fig. 2), and is not
restricted to time-invariant systems.

Due to approximating the transition density, which is the
probabilistic representation of the underlying nonlinear sys-
tem, the proposed approach can be considered member of
the first class of approximating predicted density functions.
But it can also be interpreted as a sampling approach, that
deterministically samples the prior density. Thus, it can be
also considered a member of the second class. However, the
hybrid structure of the approximate transition density al-
lows an analytical evaluation of the Chapman-Kolmogorov
prediction equation, which results in very low prediction
costs, while the deterministic sampling interpretation gives a
straightforward way for implementation. Using the proposed
method the number of components can be dramatically re-
duced compared to methods using Monte Carlo sampling.

In the following section, we will review the Bayesian esti-
mator and the Chapman-Kolmogorov equation for discrete-
time systems. Furthermore, the hybrid density is intro-
duced. The rest of the paper is structured as follows: In
Section 3 the optimization problem for approximation is for-
mulated and the analytical solution is derived. The gener-
ality of the proposed prediction approach is also pointed
out. Performing the efficient and closed-form prediction
step, its interpretation as deterministic sampling approach
and the incorporation of measurements are highlighted in
Section 4. Throughout the paper, an example system with
additive Gaussian noise is investigated. This widely used
noise representation is chosen for illustrating several details
of the novel approach, while in Section 5 the prediction re-
sults for this example system are compared to those of the
exact Bayesian estimator, Monte Carlo sampling, and the
unscented Kalman filter. The paper closes with conclusions
and an outlook on future work.

2. PROBLEM FORMULATION
In this paper we only consider scalar random variables, de-

noted by boldface letters, e.g. x. This restriction is made for
brevity and clarity only. All results are directly applicable to
vector-valued random variables. Furthermore, we consider
nonlinear, discrete-time systems with system equation

xk+1 = ak(xk) + wk , (1)

where ak(·) is the nonlinear system function with at most a
finite number of points of discontinuities, xk is the system
state at time step k with density fx

k (xk) and wk is the zero-
mean noise representing the unknown disturbance affecting
the system. It is assumed to be a white random process with
density fw

k (wk). No further restrictions on the type of the
noise density are necessary.

2.1 Nonlinear Prediction
In this section we mainly focus on the system equation (1),

while updating by means of measurements from sensor nodes
is considered in Section 4.3. Starting from an initial density
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Figure 2: Recursive prediction. The transition density is approximated on-line. Afterward, a closed-form
predictions step is performed.

fx
0 (x0) for x0 at k = 0, this equation is used in a Bayesian

setting for a recursive system state propagation in time, e.g.
estimating the position of an object tracked via a sensor
network. This so-called prediction step of the Bayesian es-
timator is described by the Chapman-Kolmogorov equation
(see for example [19]) and results in a predicted density

fx
k+1(xk+1) =

∫
R

fT(xk+1|xk)fx
k (xk) dxk (2)

for xk+1, where fT(xk+1|xk) is the transition density

fT(xk+1|xk) = fw
k (xk+1 − ak(xk)) , (3)

which is the probabilistic representation of the system since
it depends on the noise density of wk and the structure of
the system equation. Since (1) is time-variant and the noise
process wk is non-stationary, this conditional density is also
time-variant, i.e., its shape changes over time k. Please note
that the transition density has infinite extent, if the domain
of ak(·) is R. However, as the prior fx

k (xk) is a probability
density, it is only necessary to consider the support

Ωk := [αk, βk] ⊂ R (4)

of fx
k (xk), that stimulates the transition density, where

fx
k (xk) > ε for ∀xk ∈ Ωk with a small constant ε with

0 < ε � 1.
For nonlinear systems with arbitrarily distributed random

variables, recursive prediction according to (2) is of concep-
tual value only, since the complex shape of the transition
density generally prevents a closed-form and efficient solu-
tion. Furthermore, no analytical density that can be pre-
dicted without changing the type of representation is known
in general. To overcome this problem, an appropriate ap-
proximation of the true predicted density fx

k+1(xk+1) is in-
evitable. From now on, true densities will be indicated by
a tilde, e.g. f̃(·), the corresponding approximation will be
denoted by f(·).

2.2 Hybrid Density
Instead of directly approximating the predicted density

f̃x
k+1(xk+1) at every time step, which is computationally

demanding, we propose an approximation of the transition

density f̃T(xk+1|xk) by means of the hybrid density

fT(xk+1, xk, η) =

L∑
i=1

ωi · δ(xk − μ
(1)
i ) · f(xk+1 − μ

(2)
i , νi) ,

(5)

with parameter vector

η = [ηT

1
, ηT

2
, . . . , ηT

L
]
T
,

where

ηT

i
= [ωi, μ

(1)
i , μ

(2)
i , νT

i ] .

Here, L is the number of components, ωi are weighting co-

efficients with ωi > 0, μ
(1)
i and μ

(2)
i are location parameters,

and νi are shape parameters of f(xk+1 − μ
(2)
i , νi). Each

component of the hybrid density consists of two different
types of analytical densities: the densities of xk are Dirac

delta functions δ(xk − μ
(1)
i ), while the densities of xk+1 are

f(xk+1 − μ
(2)
i , νi), where Gaussian densities are a typical

choice, i.e., f(xk+1 − μ
(2)
i , νi) = N (xk+1 − μ

(2)
i , σi), with

μ
(2)
i is the mean and σi is the standard deviation [18]. Thus,

the marginal density of xk is a Dirac mixture, while the
marginal density of xk+1 is a Gaussian mixture.

Example 1 (Hybrid Density)
The system

xk+1 = sin(xk) + xk + wk (6)

is similar to parts of the kinematic model of many vehicles, that
can be tracked via sensor networks. The noise wk is Gaussian
with density fw

k (wk) = N (wk, σw), where σw = 1. Fig. 3(a)
depicts the system function (black, dashed line) and the cor-
responding transition density. Furthermore, the red lines in
Fig. 3(a) and Fig. 3(b) illustrate a hybrid density with L = 4
components. Due to the Dirac delta functions, a single hybrid
density component can be interpreted as a vertical slice of the
transition density.

Our goal is to minimize a certain distance measure G(η)

between the true transition density f̃T(xk+1|xk) and its ap-
proximation fT(xk+1, xk, η). Generally, the calculation of an
appropriate parameter vector η for a high quality approxi-
mation of the transition density is computational demand-
ing. Since the transition density can be time-variant, these
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Figure 3: Top view (a) and perspective view (b) on the transition density of the system xk+1 = sin(xk)+xk+wk,
where wk is Gaussian. The shape of the transition density strongly depends on the system function (black,
dashed line). An approximate hybrid density with L = 4 components slices the transition density (red, solid
lines) in 5 parts. Each slice is a Gaussian density.

calculations emerge every time step. By selecting a hybrid
density for approximation purposes, the required computa-
tional effort can be drastically reduced which allows on-line
approximation at every time step. With the given transition
density approximation the prediction step, which is depicted
in Fig. 2, can be performed efficiently in closed form.

3. TRANSITION DENSITY APPROXI-
MATION

The approximation quality of fx
k+1(xk+1) strongly de-

pends on the similarity between f̃T(xk+1|xk) and its hybrid
density approximation fT(xk+1, xk, η). The key idea is now
to reformulate the approximation problem as an optimiza-
tion problem

η
min

= arg min
η

G(η) , (7)

by minimizing a certain distance measure G(η). The result
of this optimization problem yields the parameter vector for
fT(xk+1, xk, η), which minimizes the distance to f̃T(xk+1|xk).
As distance measure we employ the widely used squared
integral distance measure [9]

G(η) =

1

2

∫
R

∫
Ωk

(
f̃T(xk+1|xk) − fT(xk+1, xk, η)

)2

dxk dxk+1 , (8)

where Ωk comprises the support (4) of the prior density
fx

k (xk). Additionally, we have to formulate some boundary
conditions, since the Dirac delta functions in fT(xk+1, xk, η)
do not allow to compare the transition density and the hy-
brid density, i.e., there exist an infinite number of solu-
tions for η

min
with identical distance to the true transition

density. With

2

∫
R

μ
(1)
1∫

αk

f̃T(xk+1|xk) dxkdxk+1

=

∫
R

μ
(1)
2∫

μ
(1)
1

f̃T(xk+1|xk) dxkdxk+1 =

...

=

∫
R

μ
(1)
L∫

μ
(1)
L−1

f̃T(xk+1|xk) dxkdxk+1

= 2

∫
R

βk∫
μ
(1)
L

f̃T(xk+1|xk) dxkdxk+1 , (9)

we ensure equal transition density probability mass enclosed
between the several components (slices) of the hybrid den-
sity, when approximating the transition density. This is
equivalent to employing the so-called Cramér-von Mises dis-
tance [3]

G(η) =
1

2

∫
R

∫
Ωk

(
F̃ T (xk+1|xk) − F T (xk+1, xk, η)

)2

dxk dxk+1

between the cumulative distribution function F̃ T (xk+1|xk)
of the transition density and the cumulative distribution
function F T (xk+1, xk, η) of the hybrid density.

3.1 Optimal Approximation
Normally, the underlying nonlinearity complicates solving

(7), as pointed out for example in [8] for a pure Gaussian



mixture representation of the transition density approxima-
tion. Since we are using the hybrid density (5), the optimal
solution can easily be derived in closed form.

Theorem 1 (Optimal Approximation)
Given the distance measure (8) with boundary conditions (9),

the elements ηT

i
= [ωi, μ

(1)
i , μ

(2)
i , νT

i ] of the optimal solution

η
min

of the optimization problem (7) are

ωi = 1 ,

μ
(1)
i = αk +

2i − 1

2
· βk − αk

L
,

μ
(2)
i = ak(μ

(1)
i ) .

The shape parameter νi coincides with the shape parameter
of the noise density fw

k (wk).

Proof. Parameter μ
(1)
i can be derived by means of the

boundary conditions. Solving one of the integrals in (9) by
first integrating along xk+1 results in

∫
R

μ
(1)
i+1∫

μ
(1)
i

f̃T(xk+1|xk) dxk dxk+1 = μ
(1)
i+1 − μ

(1)
i ,

for i = 1, . . . , L − 1 and

2

∫
R

μ
(1)
1∫

αk

f̃T(xk+1|xk) dxk dxk+1 = 2
(
μ

(1)
1 − αk

)
,

2

∫
R

βk∫
μ
(1)
L

f̃T(xk+1|xk) dxk dxk+1 = 2
(
βk − μ

(1)
L

)
,

for the borders of the support.
Thus, the boundary conditions can only be met, if the

location parameters μ
(1)
i , i = 1, . . . , L are chosen uniformly

on Ωk, according to

μ
(1)
i = αk +

2i − 1

2
· βk − αk

L
.

Incorporating the necessary condition ∂G(η)/∂η = 0 for
the existence of a minimum of G(η) leads to the other opti-
mal hybrid density parameters. The derivative with respect
to the weighting coefficient ωi, i = 1, . . . , L, leads to

∂G(η)

∂ωi
= −

∫
R

∫
Ωk

(
f̃T(xk+1|xk) − fT(xk+1, xk, η)

)

· δ(xk − μ
(1)
i ) · f(xk+1 − μ

(2)
i , νi) dxk dxk+1 . (10)

By setting (10) equal to zero and utilizing (3), the sifting
property of the Dirac delta function, and the derivations in
[18], Section 4.2, we get∫

R

fw
k

(
xk+1 − ak(μ

(1)
i )

)
· f(xk+1 − μ

(2)
i , νi) dxk+1

=

∫
R

ωi · f(xk+1 − μ
(2)
i , νi) · f(xk+1 − μ

(2)
i , νi) dxk+1 .

(11)

The comparison of both sides of (11) yields

fw
k

(
xk+1 − ak(μ

(1)
i )

)
= ωi · f(xk+1 − μ

(2)
i , νi) .

By comparing parameters we get the optimal parameters for

ωi, μ
(2)
i and νi.

3.2 A General Framework
Summarizing the result of Theorem 1, optimally approxi-

mating the transition density is merely a uniform placement
of the Dirac delta functions of the hybrid density. The com-

ponents f(xk+1 − μ
(2)
i , νi) of the second density type are

displaced duplicates of the noise density fw
k (wk), that are

placed along the nonlinear system function ak(μ
(1)
i ). In do-

ing so, no assumptions on the noise density’s type are made,
i.e., the result of Theorem 1 is not restricted to special noise
types.

Typically, a parametric structure is used for representing

the noise. So, the shape parameters νi of f(xk+1 − μ
(2)
i , νi)

can be directly set to the corresponding parameters of the
noise.

Example 2 (Gaussian Noise)
Consider the system (6) of Example 1 and its transition density.
Since the noise wk is Gaussian, the hybrid density consists of
Dirac delta functions and Gaussian densities. For Ωk = [−6, 6]
and L = 4 components the optimal parameters are listed in
Table 1 and the hybrid density is illustrated in Fig. 3.

Table 1: Optimal parameters for Example 2.

i ωi μ
(1)
i μ

(2)
i νi = σi

1 1 -4.5 -3.5225 1
2 1 -1.5 -2.4975 1
3 1 1.5 2.4975 1
4 1 4.5 3.5225 1

If a non-parametric noise density is available or the density
type of the noise differs from the desired type for represent-
ing fx

k+1(xk+1), an appropriate selection of the shape param-

eters νi is needed, such that f(xk+1 −μ
(2)
i , νi) optimally ap-

proximates fw
k (wk), e.g. using the method described in [7].

4. EFFICIENT PREDICTION
Due to the simplicity of determining the optimal hybrid

density, the transition density approximation is well-suited
for sensor networks and can be performed on-line, i.e., at
every time step k. The special structure of the hybrid tran-
sition density is very convenient for efficiently performing
the prediction step.

4.1 Closed-Form Calculation
By means of a hybrid transition density, the Chapman-

Kolmogorov integral (2) can be solved analytically, resulting
in a closed-form solution of the prediction step.

Theorem 2 (Approximate Predicted Density)
Given the density fx

k (xk) of the current system state xk and
the hybrid density (5) with parameter vector η according to
Theorem 1, the approximate predicted density fx

k+1(xk+1) is
a mixture density with L components that can be calculated
analytically.



Proof. With (2) we obtain

fx
k+1(xk+1) =

∫
R

fT(xk+1, xk, η)fx
k (xk) dxk

=

L∑
i=1

ωi · f(xk+1 − μ
(2)
i , νi)

·
∫
R

fx
k (xk)δ(xk − μ

(1)
i ) dxk

︸ ︷︷ ︸
=fx

k
(μ

(1)
i )

=

L∑
i=1

ωk+1,i · f(xk+1 − μ
(2)
i , νi) . (12)

with ωk+1,i = ωi · fx
k (μ

(1)
i ). For i = 1, . . . , L, the weight-

ing coefficients ωi of the hybrid transition density have the
same constant value, whose quantity is unessential for pre-

diction. Thus, we can set ωi = 1/
∑L

i=1 fx
k (μ

(1)
i ) to achieve

a normalized predicted density.

The approximate predicted density is a mixture density,
whose type of representation depends on the type f(xk+1 −
μ

(2)
i , νi) of the hybrid density. The type of fx

k+1(xk+1) is
unchanged during recursive prediction and additionally the
complexity remains at a constant level, since the number
of components representing fx

k+1(xk+1) only depends on the
number L of components of the hybrid density. This number
is dynamically adjustable if needed (see Section 4.4).

Example 3 (Prediction)
Consider again the nonlinear system (6) with Gaussian noise
wk. Let us further assume that the system state’s current den-
sity fx

k (xk) is a Gaussian mixture. Performing the prediction
step accordant to (12) results in a Gaussian mixture represen-
tation

fx
k+1(xk+1) =

L∑
i=1

ωk+1,i · N (xk+1 − μ
(2)
i , σi)

of the predicted density.

4.2 Relation to Sampling
As mentioned before, the density types of noise and system

state are typically identical as well as represented in a para-
metric and continuous form. Thus, the predicted density is
also parametric and continuous. This is worth mentioning,
since the closed-form prediction framework proposed in this
paper can be also interpreted as sampling the density fx

k (xk)
deterministically. Due to the Dirac delta functions used in
the hybrid density and the boundary condition (9), sam-
ples are drawn deterministically from the interval Ωk. The
Dirac delta functions represent the samples that are always
located uniformly in Ωk. Therefore, the sampling is called
deterministic. Except for a constant ωi the weights ωk+1,i

in (12) coincide with the function values of fx
k (μ

(1)
i ). Thus,

we can replace fx
k (xk) with

fx
k (xk) =

L∑
i=1

ωk+1,i · δ(xk − μ
(1)
i ) .

Using the true transition density f̃T(xk+1|xk) in (2) leads to

fx
k+1(xk+1) =

∫
R

f̃T(xk+1|xk)fx
k (xk) dxk

=

∫
R

f̃T(xk+1|xk)

(
L∑

i=1

ωk+1,i · δ(xk − μ
(1)
i )

)
dxk

=

L∑
i=1

ωk+1,i

∫
R

f̃T(xk+1|xk)δ(xk − μ
(1)
i ) dxk

︸ ︷︷ ︸
=fw

k

(
xk+1−ak(μ

(1)
i )

)

=

L∑
i=1

ωk+1,i · f(xk+1 − μ
(2)
i , νi) ,

that is identical to (12). Thus, the proposed approach com-
bines both types of approximate nonlinear prediction: the
approximation of the underlying nonlinear system as well
as the approximation of the prior density (see Section 1).
The sampling interpretation reveals a very straightforward
way to implement the predictor. Determining the predicted
density is reduced to using duplicated and shifted noise den-
sity functions as components for the predicted density and
to evaluating the prior density at discrete points with sub-
sequent normalization to obtain the weighting coefficients.
The number of components of the predicted density coin-
cides with the number of deterministically placed samples.

Sample-based predictors like the well known particle fil-
ter typically do not generate a continuous representation of
fx

k+1(xk+1). Since they use Monte Carlo techniques, a sam-
ple representation is generated. Exceptions are the Gaussian
(sum) particle filters described in [12, 13]. These filters use a
Gaussian or a Gaussian mixture representation for the pre-
dicted density. But still random sampling and resampling
is applied. The Dirac mixture estimator proposed in [16]
draws samples in an optimal, deterministic way and calcu-
lates a continuous density representation. In contrast to
the proposed approach, this estimator solves an optimiza-
tion problem on the prior density. Therefore, numerical and
thus computational demanding processing is required.

Example 4 (Prediction (cont’d))
Given the prior density fx

k (xk) = N (xk − 2.5, 1), the nonlinear
system (6), and the corresponding hybrid density with L = 8
components, the deterministically placed samples are shown
in Fig. 4(a), while the predicted Gaussian mixture density is
depicted in Fig. 4(b). The larger a sample weight is, the larger
is its contribution to the predicted density. Thus, the first four
components of the Gaussian mixture have an almost negligible
contribution to the predicted density as the weights of the first
four samples in Fig. 4(a) are nearly zero.

4.3 Incorporation of Measurements
The major task of a sensor network is to generate measure-

ments. By including those measurements, estimates solely
depending on the prediction result can be greatly improved.
Therefore, Bayes’ law [19]

fe
k (xk) = ckfL

k (ŷk|xk) fx
k (xk) , (13)

has to be applied to the predicted density fx
k (xk) for ob-

taining the posterior density fe
k (xk). In (13), fL

k (ŷk|xk)
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Figure 4: (a) A Gaussian prior density fx
k (xk) (red,

curve) is sampled at eight deterministically chosen
positions (blue, stems) in Ωk = [−6, 6]. (b) The re-
sulting predicted density (red, solid) and its eight
Gaussian components (blue, dashed).

= fv
k (ŷk − hk(xk)) is the so-called likelihood, that depends

on the actual measurement ŷk and the measurement model

yk = hk(xk) + vk ,

where vk is the zero-mean measurement noise with density
fv

k (vk) and hk(·) is the nonlinear measurement function. An
actual measurement ŷk is a realization of yk.

In a Bayesian framework, incorporating measurements is
referred to as measurement update. This update is performed
in a separate processing step. However, the hybrid density
approximation of the transition density allows to perform a
combined prediction and measurement update by inserting
(13) into (2), i.e., replacing fx

k (xk) by fe
k(xk). Consequently

we obtain

fx
k+1(xk+1) = ck

∫
R

f̃T (xk+1|xk)fL
k (ŷk|xk)fx

k (xk) dxk ,

where ck = 1/
∫
R

f(ŷk|xk)fx
k (xk) dxk is a normalization con-

stant. Here, it is sufficient to approximate the transition
density and to perform the prediction step as described be-
fore to additionally update the system state by means of
an actual measurement. According to (12), a mixture rep-
resentation for fx

k+1(xk+1) is obtained. However, by per-
forming a combined prediction and update it is impossible
to achieve a separate posterior density fe

k(xk), which is not
always preferable.

4.4 Number of Components
Due to the shape approximation of the true transition den-

sity, the approximation quality of fx
k+1(xk+1) increases with

an increasing number L of components representing the ap-
proximate predicted density and the hybrid density, respec-
tively. The systematic and efficient way the predicted den-
sity is generated allows dynamically adjusting the number L
of required components for achieving a quantifiable accurate
approximation if needed.

Following the description in [17], gradually evaluating an
appropriate distance measure, which quantifies the deviation
between the true predicted density and its approximation
yields the optimal number of components. Due to the fact
that the true predicted density is generally not available, we
also use an approximate predicted density with Lmax com-
ponents, where Lmax is enough large that the approximation

is very close to the truth. Now, a binary search starts with
a minimum number Lmin of components and stops, if the
quality falls below a user-defined maximum error threshold.

In case of a Gaussian mixture representation for
fx

k+1(xk+1), the squared integral distance measure (8) is
suitable and analytically solvable.

5. SIMULATION RESULTS
To investigate the performance of the proposed prediction

approach, we consider the nonlinear system

xk+1 = sin(xk) + xk + wk , (14)

previously introduced in Example 1 for two noise density
representations: At first, we treat the system state propa-
gation under Gaussian noise. Afterward, noise modeled by
means of a bimodal Gaussian mixture is considered.

5.1 Gaussian Noise
The Gaussian noise assumption is widely used since it ap-

proximates the reality in many scenarios very well. We in-
vestigate the prediction results for the noise wk ∼ N (wk −
0, 0.6). Since the noise is Gaussian, the hybrid density con-
sists of Dirac delta functions and Gaussian densities (see
Example 2). Thus, we will acquire a Gaussian mixture rep-
resentation for the predicted density. We approximate the
transition density for Ωk = [−6, 6], ∀k ∈ N, with L = 20
components.

The simulation starts with the initial Gaussian density

fx
0 (x0) = N (x0 + 1, 1.2)

of the system state xk at time step k = 0. Five consec-
utive prediction steps at time k = 0, . . . , 4 are executed.
For comparison we take the results of the exact Bayesian
estimator (Bayes), predictions based on Monte Carlo (MC)
sampling with 200 components, and the predictions made
by the unscented Kalman filter (UKF) [10]1. The MC pre-
dictor uses a sample representation of the prior density with
randomly drawn samples. Applying (2) on these samples
yields a Gaussian mixture approximation of the predicted
density. Fig. 5 depicts the predicted densities of the several
estimators.

It is obvious that there is almost no shape difference be-
tween the exact predictions of the Bayesian estimator and
the densities resulting from the proposed approach. Espe-
cially both modes are approximated almost exactly. Same
is true for the means, see Table 2. Due to the fact that
the number of components stays at a constant level of 20,
the computation time is also constant and in the order of
milliseconds, while exact Bayesian estimation has an expo-
nentially growing time consumption as recursive numerical
integration is applied.

The Gaussian assumption makes it impossible for the UKF
to keep track of the multimodality of the true predicted den-
sities. Due to random sampling, the MC approach performs
predictions based on unsystematically placed samples. Thus,
the resulting densities diverge relatively strongly from the
ground truth, despite using one order of magnitude more
samples as the proposed prediction approach. The same de-
viation can be determined for the approximated means as

1The MC predictor and the unscented Kalman filter are
both members of the second class of nonlinear approximate
estimators as stated in Section 1.
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Figure 5: Five prediction steps of the proposed approach with 20 components (upper plots, red solid) in
comparison with those of the exact Bayesian estimator (all plots, blue dashed), Monte Carlo sampling with
200 samples (lower plots, green solid) and the unscented Kalman filter (lower plots, orange, dotted).

Table 2: Means of the predicted densities (Gaussian
noise).

mean: μk+1

k Bayes Hybrid MC UKF
0 -1.410 -1.409 -1.418 -1.425
1 -1.652 -1.651 -1.366 -1.761
2 -1.754 -1.753 -1.328 -2.113
3 -1.792 -1.790 -1.091 -2.508
4 -1.805 -1.802 -1.191 -2.903

shown in Table 2. Also higher-order moments cannot be
tracked accurately by the UKF and MC approach. In con-
trast, the shape approximation provided by the proposed
method allows to cover higher-order moments accurately.

5.2 Gaussian Mixture Noise
Consider again system (14), but now affected by the bi-

modal Gaussian mixture noise

fw
k (wk) = 0.5 · N (wk − 1, 0.5) + 0.5 · N (wk + 1, 0.5) .

All other simulation parameters are similar as in the previous
simulation. The prediction results are depicted in Fig. 6. It
is obvious that the bimodality of the noise has an effect on
the modes of the predicted densities. Each of the formerly
two modes under Gaussian noise is replaced by a pair of
modes.

Again, the predicted densities determined by means of the
approximate hybrid transition density almost coincide with
the ground truth provided by the Bayesian estimator. These
approximate densities are again represented by means of a
Gaussian mixture, but now this Gaussian mixture has 40

Table 3: Means of the predicted densities (Gaussian
mixture noise).

mean: μk+1

k Bayes Hybrid MC UKF
0 -1.410 -1.409 -1.513 -1.425
1 -1.547 -1.548 -1.830 -1.762
2 -1.596 -1.596 -2.136 -2.248
3 -1.615 -1.616 -2.272 -2.816
4 -1.621 -1.621 -2.218 -3.127

components due to the two components of the Gaussian mix-
ture noise. For the i-th component of the hybrid density the
relations

ωi = 0.25 ,

f(xk+1 − μ
(2)
i , νi) = N (xk+1 − μ

(2)
i − 1, 0.5)

+ N (xk+1 − μ
(2)
i + 1, 0.5)

hold.
Table 3 reveals a very accurate approximation of the true

means by the proposed approach. The estimates from the
MC predictor as well as the UKF strongly deviate.

6. CONCLUSIONS AND FUTURE WORK
The key idea of this paper is to approximate the transition

density on-line at every prediction step by means of a hybrid
density, in order to obtain an efficient recursive prediction.
For achieving a high-quality approximation of the transition
density and in turn of the predicted density, the approxi-
mation is formulated as an optimization problem. Due to
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Figure 6: Five prediction steps with system (14) affected by Gaussian mixture noise. Results of the proposed
approach with 20 components (upper plots, red solid), the exact Bayesian estimator (all plots, blue dashed),
Monte Carlo sampling with 200 samples (lower plots, green solid), and the unscented Kalman filter (lower
plots, orange, dotted).

the special structure of the hybrid density, this optimization
problem can be solved analytically, permitting complex non-
linear system models and noise densities without demand-
ing computations. Given the approximate transition density,
the prediction step for nonlinear dynamic systems corrupted
by arbitrary additive noise can be performed in closed form
with low computational effort.

Predictions by means of the optimal hybrid density can
be interpreted as a deterministic sampling approach. Com-
pared to Monte Carlo methods like particle filters, which
utilize random sampling, the proposed approach has sev-
eral distinct advantages. The Dirac delta components of the
hybrid density are systematically placed to solve the opti-
mization problem. In doing so, very few components are
needed for achieving predictions represented by means of a
continuous parametric density. This offers the opportunity
to efficiently derive predictions very close to the ground truth
provided by the Bayesian estimator.

The described approach has been introduced for scalar
random variables for the sake of brevity and clarity. Gen-
eralization to vector-valued random variables is straightfor-
ward. It is assumed, that the number of required compo-
nents grows exponentially with the dimension. Investigating
more elaborate distance measures used for the optimization
could counter this exponential growth.

In the field of sensor networks the proposed prediction
method can be applied in a wide variety of scenarios: sensor
scheduling and placement, decentralized information fusion
and reconstruction, sensor and object localization. The in-
troduced combined prediction and measurement update ap-
proach offers the incorporation of noisy measurements from

the sensor nodes. However, performing separate measure-
ment update steps especially when no system model is avail-
able is part of further research.
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