
Localized Cumulative Distributions and
a Multivariate Generalization

of the Cramér–von Mises Distance

Uwe D. Hanebeck and Vesa Klumpp

Abstract— This paper is concerned with distances for compar-
ing multivariate random vectors with a special focus on the case
that at least one of the random vectors is of discrete type, i.e.,
assumes values from a discrete set only. The first contribution
is a new type of characterization of multivariate random
quantities, the so called Localized Cumulative Distribution
(LCD) that, in contrast to the conventional definition of a
cumulative distribution, is unique and symmetric. Based on the
LCDs of the random vectors under consideration, the second
contribution is the definition of generalized distance measures
that are suitable for the multivariate case. These distances
are used for both analysis and synthesis purposes. Analysis
is concerned with assessing whether a given sample stems from
a given continuous distribution. Synthesis is concerned with
both density estimation, i.e., calculating a suitable continuous
approximation of a given sample, and density discretization,
i.e., approximation of a given continuous random vector by a
discrete one.

I. INTRODUCTION

A. Notation
x,x State vector and random vector ∈ IRN

f(x) Density function
FC(x) (Conventional) cumulative distribution
F (x) Localized Cumulative Distribution (LCD)
δ(x) Scalar Dirac delta function
δ(x) Multidimensional Dirac delta function

∆C(x) (Conventional) cumulative distribution
of Dirac delta function

∆(x) LCD of Dirac delta density
u(x) Uniform density
UC(x) Uniform cumulative distribution
U(x) LCD of Uniform density

N(.,m, σ) Scalar Gaussian density
N(.,m,C) Multidimensional Gaussian density
|x| Element wise absolute value of vector x

B. Motivation

In many applications, it is necessary to compare two
random vectors x̃, x and their corresponding characterizations,
i.e., their probability density functions f̃(x) and f(x). This
includes both analysis and synthesis problems. In analysis,
the closeness of two random vectors is investigated. Synthesis
includes finding a random vector and its corresponding
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probability density function that is close to a given random
vector and in some way simpler to handle or more convenient.

In many interesting cases, one or both random vectors
considered are of discrete type on a continuous domain,
i.e., assume values from a finite set only. In analysis, this
leads to the famous statistical tests like the Kolmogorov–
Smirnov test or the Cramér-von Mises test. In the case of
one discrete random vector, these tests assess whether a
given sample stems from a predefined continuous distribution.
For two discrete random vectors it is determined whether
their corresponding samples stem from the same underlying
distribution.

In synthesis, we have to distinguish three cases:

• One discrete and one continuous random vector:

– Case 1: Given the discrete random vector, e.g.,
samples, it is often desirable to perform an ap-
proximation by a continuous random vector and its
associated density function. Applications include
density estimation, interpolation, and parameter
estimation.

– Case 2: For a given continuous random vector
and its associated density function, it has been
found to be convenient to perform a systematic
approximation by a discrete random vector [1], [2],
[3], [4], [5] in order to simplify the processing steps
required for Bayesian state estimation and filtering.

• Two discrete random vectors:

– Case 3: Given a discrete random vector x̃, it is
often useful to replace it by another discrete random
vector x with a different number of components.
x̃ might represent redundant information, so that
an approximation x with a reduced number of
components is sufficient. On the other hand, it
might be required to enhance the resolution of x̃
by approximating it with x.

When at least one of the random vectors involved is of
discrete type, comparing the two random vectors based on
their probability density functions f̃(x), f(x) is impractical
or even impossible. Hence, the corresponding cumulative
distribution functions F̃ c(x), F c(x) are employed for that
purpose. In the case of a measured sample, the cumulative
distribution is called the empirical distribution function (EDF).

The reverse problem of fitting the parameters of a con-
tinuous density function to a set of samples by minimizing
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Fig. 1. Four different definitions of the conventional cumulative distribution
in two–dimensional space. The value of the distribution at [x, y]T is evaluated
by integrating the density function over the shaded area.

Kolmogorov–Smirnov test statistics is described in [6] for
one–dimensional problems.

Employing the cumulative distributions works well in one
dimension, i.e., for comparing random variables. However, in
the multivariate case, cumulative distributions are not unique.
For N–dimensional random vectors, there are 2N different
variants, 2N − 1 of which are independent.

Example I.1 (Cumulative Distributions in Two Dimensions)
In two dimensions, there are four possible definitions of the
cumulative distribution

1) F1(x, y) = P (x ≤ x,y ≤ y) =
R x

−∞

R y

−∞ f(u, v)dvdu the
standard definition, see Figure 1 (a),

2) F2(x, y) = P (x > x,y > y) =
R∞

x

R∞
y
f(u, v)dvdu,

Figure 1 (b),
3) F3(x, y) = P (x ≤ x,y > y) =

R x

−∞

R∞
y
f(u, v)dvdu,

Figure 1 (c), and
4) F4(x, y) = P (x > x,y ≤ y) =

R∞
x

R y

−∞ f(u, v)dvdu,
Figure 1 (d).

In addition, cumulative distributions are not symmetric,
which is not a problem in one dimension. In several di-
mensions, however, this results in biases that depend on the
selected variant.

The next example demonstrates these problems by means
of the simple problem of approximating a two–dimensional
uniform distribution with a single Dirac density with respect
to a cumulative distance measure.

Example I.2 We consider a two–dimensional uniform density
u01(x, y) according to

u01(x, y) = u01(x) · u01(y)

with
u01(z) =


1, 0 ≤ z ≤ 1
0, elsewhere ,

which is approximated by a Dirac mixture density

δ(x−mx, y −my) = δ(x−mx) · δ(y −my)

with
δ(z) =


undefined, z = 0
0, elsewhere .

The corresponding conventional cumulative density distribution
functions are given by

UC
01(x, y) = UC

01(x) · UC
01(y)

with

UC
01(z) =

8<: 0, z < 0
z, 0 ≤ z ≤ 1
1, z > 1

and

∆C(x−mx, y −my) = ∆C(x−mx) ·∆C(y −my)

with

∆C(z) =

8<: 0, z < 0
1
2
, z = 0

1, z > 0
.

When applying the Cramér–von Mises distance [4] according to

D(mx,my) =

Z ∞
−∞

Z ∞
−∞

w(x, y)
“
U01(x, y)−∆C(x−mx, y −my)

”2

dx dy ,

we select w(x, y) in such a way that only the region of interest
is considered, e.g., w(x, y) = u01(x, y). Hence, we obtain

D(mx,my) =

Z 1

0

Z 1

0

“
x · y −∆C(x−mx, y −my)

”2

dx dy .

The necessary condition for a minimum of D(., .) gives

∂D(mx,my)

∂mx
=

Z 1

0

Z 1

0

“
xy −∆C(x−mx, y −my)

”
δ(x−mx)∆C(y −my)dx dy

=

Z 1

0

„
mxy −

1

2
∆C(y −my)

«
∆C(y −my)dy

= mx

Z 1

my

ydy − 1

2

Z 1

my

dy

=mx
1

2
y2

˛̨̨̨1
my

− 1

2
y

˛̨̨̨1
my

=
mx

2

`
1−m2

y

´
− 1

2
(1−my)

= − 1

2

`
mxm

2
y −mx −my + 1

´ !
= 0

and in analogy

∂D(mx,my)

∂my
= −1

2

`
mym

2
x −mx −my + 1

´ !
= 0 .

The solution

mx =
1

2
(
√

5− 1), my =
1

2
(
√

5− 1)

does not correspond to the expected solution mx = 1
2
,my = 1

2
due to the missing uniqueness and symmetry of the conven-
tional cumulative distribution.



As a result, the distance measures based upon the cumu-
lative distribution are well suited and well established for
one dimension only. In the multivariate case, several types of
problems occur. The unweighted Cramér-von Mises distance
for comparing two random vectors, for example, is zero when
the two random vectors are identical and goes to infinity for
the slightest difference between the corresponding densities.
Hence, the definition of suitable distances for the multivariate
case, i.e., between random vectors, is still an open problem.

Of course, some of these problems could be solved prag-
matically. The non–uniqueness of the cumulative distributions
could be treated by averaging the results obtained from all
2N different variants, which unfortunately is impractical for
high–dimensional random vectors. The unboundedness could
be handled by either considering bounded domains as in the
previous example or by using a suitable weighting function,
i.e., by employing the weighted Cramér-von Mises distance,
which might be impractical for densities with infinite support.

In summary, a definition of a modified type of cumu-
lative distribution function that is suitable for multivariate
random vectors would greatly enhance the applicability of the
corresponding distance measures for comparing multivariate
random quantities.

C. Prior Work

In general, two applications of a distance measure for
probability distributions exist. These are the comparison of
two distributions and the generation of a representation, i.e.,
samples, from a given distribution.

In order to determine the similarity between one–
dimensional probability distributions, several approaches,
like the Kolmogorov–Smirnov distance [7] or the Cramér–
von Mises distance [8] can be used. Unfortunately, in
general they are not suitable for multi–dimensional probability
distributions. Determining the similarity between arbitrary
multi–dimensional probability density distributions is still a
mostly unsolved problem.

Testing the quality of samples regarding a given density
function is referred to as Goodness–of–Fit test. Some ap-
proaches for the multi–dimensional case already exist. [10]
describes the multi–dimensional Kolmogorov–Smirnov test
and variations of it [11], [12], [13].

A new entropy measure based on the cumulative distribu-
tion of the considered random variable has been introduced in
[9]. The so called cumulative residual entropy is well suited
for both discrete and continuous random variables.

Comparing a Dirac mixture density [4] with an arbitrary
density function, the individual Dirac components can be
regarded as samples. Generating a deterministic sequence of
samples from a given density distribution is often referred to
as quasi–Monte Carlo sampling [14]. In the case of uniform
distributions, so called low–discrepancy sequences [15] are
used to determine regular approximations, unfortunately
the best possible sequence is not known [16]. Different
discrepancies for determining the quality of dispersion exist,
e.g., L2 discrepancy, [17] and star discrepancy [18]. These
approaches are usually applied in numerical integration

techniques [19] and the approximation of multivariate uniform
distributions [20].

D. Key Ideas and Results of the Paper

In order to alleviate the problems of the conventional
cumulative distribution, i.e., non–uniqueness and asymmetry,
a different type of smoothing of the underlying probability
density function is proposed. Rather than integrating over
half–open infinite hyper spaces, an integration over finite
domains is employed by defining certain window functions.
The new characterization of the underlying probability density
function, the so called Localized Cumulative Distribution,
is then a function of the location of the window center and
the window widths. Hence, for N–dimensional densities, the
Localized Cumulative Distribution is 2 ·N–dimensional.

In this paper, we restrict our attention to rectangular
domains with arbitrary extents. This is similar to performing
an rectangular wavelet transform [21] of the underlying
probability density function, whereas there only the special
case of a fixed number of rectangular domain sizes is
considered. However, more general window types could be
employed.

As the well–known distance measures between two random
quantities based on cumulative distributions suffer from their
associated problems especially in the multivariate case, a
generalization of these distance measures can now be found by
using the LCDs of the two random quantities to be compared.
In this paper, a multivariate generalization of the well–known
Cramér–von Mises distance is proposed by defining the
squared integral deviation between the corresponding LCDs
of the densities. This new type of distance measure can be
used for the analysis and synthesis purposes described above.

Of course, the Localized Cumulative Distribution (LCD)
can also be used for generalizing other types of distance
measures like the Kolmogorov–Smirnov distance, i.e., the
maximum or supremum over the difference of the LCDs cor-
responding to the two random quantities under investigation.

II. LOCALIZED CUMULATIVE DISTRIBUTION

Definition II.1 Let x be a random vector with x ∈ IRN ,
which is characterized by an N–dimensional probability
density function f : IRN→IR+. The corresponding Localized
Cumulative Distribution (LCD) is defined as

F (x, b) = P

(
|x− x| ≤ 1

2
b

)
with b ∈ IRN

+ and F (., .) : Ω→ [0, 1],Ω ⊂ IRN
+ × IRN .

Remark II.1 Note that the relation x ≤ y with x, y ∈ RN

holds, if and only if xi ≤ yi for every element i = 1 . . . N
of the vectors hold.

Definition II.2 As a shorthand notation, we will denote the
relation between the density f(x) and its LCD F (x, b) by

f(x) c sF (x, b) .
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Fig. 2. Localized Cumulative Distribution of a Dirac density at location
x = 0. The parameter b varies between 0 and 4.

Corrolary II.1 The Localized Cumulative Distribution
function F (x, b) is calculated from the corresponding
density function f(x) according to

F (x, b) =
∫ x+ 1

2 b

x− 1
2 b

f(t) dt .

Theorem II.1 The LCD F (x, b) has the following character-
istics:

1) ∀i ∈ {1, 2, . . . , N} and finite b0

lim
xi→±∞

F (x, b0) = 0 ,

2) ∀i ∈ {1, 2, . . . , N} and finite x0

lim
bi→0

F (x0, b) = 0 ,

3) For finite x0 and ∞ = [∞,∞, . . . ,∞]T

lim
b→∞

F (x0, b) = 1 .

Theorem II.2 (Separability) For separable densities f(x) =
f1(x1) · f2(x2) · . . . · fN (xN ) with

f1(x1) c sF1(x1, b1) ,

f2(x2) c sF2(x2, b2) ,

...

fN (xN ) c sFN (xN , bN ) ,

the Localized Cumulative Distribution is also separable
according to

f(x) c sF (x, b)

with

F (x, b) = F1(x1, b1) · F2(x2, b2) · . . . · FN (xN , bN ) .
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Fig. 3. Localized Cumulative Distribution of a one–dimensional uniform
density over the interval x ∈ [0, 1]. The parameter b varies between 0 and
4.

PROOF. By definition, we have

F (x, b) =

Z x1+
b1
2

x1−
b1
2

Z x2+
b2
2

x2−
b2
2

· · ·
Z xN +

bN
2

xN−
bN
2

f1(t1) · f2(t2) · . . . · fN (tN ) dtN . . . dt2 dt1 ,

which immediately gives the desired result. �

Theorem II.3 The inverse transformation from a Localized
Cumulative Distribution to its underlying density function is
given as

f(x) = lim
b1→0

· · · lim
bN→0

F (x, b)∏N
i=1 bi

.

A. Special Case: One–dimensional Densities

In the case of a one–dimensional random variable x
characterized by the density f(x) : IR→ IR+, we have

F (x, b) = P

(
|x− x| ≤ b

2

)
=
∫ x+ b

2

x− b
2

f(t)dt

with F (x, b) : Ω→ [0, 1], Ω ∈ R+ × R.
In the scalar case, the Localized Cumulative Distribution

can obviously be expressed in terms of the conventional
cumulative distribution function according to

F (x, b) = F c

(
x+

b

2

)
− F c

(
x− b

2

)
.

Corrolary II.2 For separable densities f(x) according to
Theorem II.2 with individual LCDs given by

fi(xi) c sFi(x, b) = F c
i

(
xi +

bi
2

)
− F c

i

(
xi −

bi
2

)
for i = 1, . . . , N , the total LCD is given by

f(x) c sF (x, b) =
N∏

i=1

(
F c

i

(
xi +

bi
2

)
− F c

i

(
xi −

bi
2

))
.
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Fig. 4. Localized Cumulative Distribution of a one–dimensional Gaussian
density with variance 1 and mean 0. The parameter b varies between 0 and
10.

Example II.1 (Visualization of LCDs) The Localized Cumula-
tive Distributions for various widths b are shown in Figure 2,
Figure 3, Figure 4, and Figure 5. Figure 2 shows the LCD of a
Dirac density at the location x = 0, i.e., f(x) = δ(x). In Figure 3
the LCD of the uniform density over the interval [0, 1] is shown.
Figure 4 visualizes the LCD of a Gaussian density f(x) =
N(x, 0, 1). Figure 5 visualizes the LCD of the non–symmetrical
Gaussian mixture density f(x) = 2

5
N (x, 2, 1) + 3

5
N
`
x,−2, 1

2

´
.

B. Special Case: Two–dimensional Densities

In the case of two–dimensional random vectors x charac-
terized by the density f(x) : IR2 → IR+, we have

F (x, b) = P

(
|x− x| ≤ 1

2
b

)
=
∫ x1+

b1
2

x1− b1
2

∫ x2+
b2
2

x2− b2
2

f(t1, t2)dt2 dt1

with F (x, b) : Ω→ [0, 1], Ω = R2
+×R2. It can be expressed

in terms of the conventional cumulative distribution according
to

F (x, b) =FC

„
x1 +

b1
2
, x2 +

b2
2

«
+ FC

„
x1 −

b1
2
, x2 −

b2
2

«
−FC

„
x1 −

b1
2
, x2 +

b2
2

«
− FC

„
x1 +

b1
2
, x2 −

b2
2

«
.

III. A MODIFIED CRAMÉR–VON MISES DISTANCE

Based on the definition of the Localized Cumulative
Distribution (LCD), we will now present a modified version
of the Cramér–von Mises distance suitable for comparing
multivariate random quantities, i.e., random vectors.

The new distance is defined as the integral of the square
of the difference between the LCD of the true density f̃(x)
and the LCD of its approximation f(x).

Definition III.1 (Modified Cramér–von Mises Distance)
The distance D between two densities f̃(x) : RN → R+ and
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Fig. 5. Localized Cumulative Distribution of a one–dimensional Gaussian
mixture density f(x) = 2

5
N (x, 2, 1) + 3

5
N
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x,−2, 1

2

´
. The parameter b

varies between 0 and 10.

f(x) : RN → R+ is given in terms of their corresponding
LCDs F̃ (x, b) and F (x, b) as

D =
∫

IRN

∫
IRN

+

(
F̃ (x, b)− F (x, b)

)2

db dx .

Remark III.1 Obviously, the distance D has the following
characteristics:

1) If the two densities f̃(x) and f(x) are equal, we have
D = 0.

2) In the case of finite window LCDs, we have D < ∞
for arbitrary densities f̃(x) and f(x).

Remark III.2 A weighted variant Dw of the modified
Cramér–von Mises Distance D is given by

Dw =
∫

IRN

∫
IRN

+

w(x, b)
(
F̃ (x, b)− F (x, b)

)2

db dx .

Remark III.3 Of course, the Localized Cumulative Distri-
bution can also be used for generalizing other cumulative
distance measure such as the Kolmogorov–Smirnov distance.

IV. SANITY CHECK

In order to demonstrate the usefulness of the new distance
and especially its uniqueness and symmetry, we will recon-
sider a generalization of the problem posed in the Example
I.2, i.e., we will approximate a multivariate uniform density
by a single Dirac density.

Theorem IV.1 For separable N–dimensional true densities
f(x) according to Theorem II.2, the locations of the optimal
Dirac approximation that minimize the distance in Definition
III.1 are obtained by solving∫ bmax

i

0

(F c
i (mi − bi) + F c

i (mi + bi)) dbi = 2 bmax
i F c

i (mi)

for i = 1, . . . , N .



PROOF. The distance measure is given by

D =

Z
IRN

+

Z
IRN

(F (x, b)−∆(x−m, b))2 dx db ,

with F (x, b) according to Corrolary II.2 and

∆(x−m, b) =

NY
i=1

„
∆c

„
xi −mi +

bi
2

«
−∆c

„
xi −mi −

bi
2

««
.

The partial derivatives of D with respect to the location parameters
mj are given by

∂ D

∂mj
= I1

j + I2
j

for i = 1, . . . , N , with the two expressions I1
j and I2

j

I1
j =

Z
IRN

+

Z
IRN

∆(x−m, b) ∂∆(x−m, b)
∂ mj

dx db

and

I2
j = −

Z
IRN

+

Z
IRN

F (x, b)
∂∆(x−m, b)

∂ mj
dx db .

The partial derivative ∂∆(x−m,b)
∂ mj

is given according to Lemma V.1
in the appendix. The first expression I1

j is zero according to Lemma
V.2 in the appendix, so we only have to consider I2

j in the following
derivation. For I2

j , we obtain

I2
j =−

Z
IRN

+

Z
IRN

NY
i=1

„
F c

i

„
xi +

bi
2

«
− F c

i

„
xi −

bi
2

««
· ∂∆(x−m, b)

∂ mj
dx db ,

which gives

I2
j =−

Z
IRN

+

Z
IRN

„
F c

j (xj +
bj
2

)− F c
j

„
xj −

bj
2

««
·
„
−δ
„
xj −mj +

bj
2

«
+ δ

„
xj −mj −

bj
2

««
NY

i=1
i 6=j

„
F c

i

„
xi +

bi
2

«
− F c

i

„
xi −

bi
2

««
NY

i=1
i6=j

„
∆c

„
xi −mi +

bi
2

«
−∆c

„
xi −mi −

bi
2

««
dx db .

Using the properties of the Dirac delta function then gives

I2
j =−

Z
IR+

F c
j (mj − bj) + F c

j (mj + bj)− 2F c
j (mj) dbj

NY
i=1
i 6=j

Z
IR+

Z
IR

„
F c

i

„
xi +

bi
2

«
− F c

i

„
xi −

bi
2

««
„

∆c

„
xi −mi +

bi
2

«
−∆c

„
xi −mi −

bi
2

««
dxi dbi .

The necessary condition for a minimum is now obtained by I2
j

!
= 0.

For finite widths bj , we finally obtain the desired result. �

Now, we will reconsider uniform densities as in Example
I.2.

Example IV.1 For anN–dimensional uniform density with LCD
U(x, b) =

QN
i=1 Ui(xi, bi) and

Ui(xi, bi) = Uc
i

„
xi +

bi
2

«
− Uc

i

„
xi −

bi
2

«
,

applying Theorem IV.1 givesZ bmax
i

0

(Uc
i (mi − bi) + Uc

i (mi + bi)) dbi = bmax
i +mi −

1

2

= 2 bmax
i Uc

i (mi) .

Dividing both sides by bmax
i

1 +
mi − 1

2

bmax
i

= 2Uc
i (mi)

and taking the limit bmax
i →∞ finally gives

Uc
i (mi)

!
=

1

2
,

which provides the desired locations of the approximating N–
dimensional Dirac density as

mi
!
=

1

2

for i = 1, . . . , N .

V. DISCUSSION AND FUTURE WORK

A generalization of cumulative distributions has been
proposed, which can be interpreted as a cumulative rectan-
gular kernel transform of the underlying probability density
function. The new characterization of a random quantity, the
so called Localized Cumulative Distribution (LCD) is unique
and symmetric also in the multivariate case. By employing the
LCDs of two random vectors rather than their conventional
cumulative distributions, a multivariate generalization of the
well–known Cramér–von Mises distance has been proposed.
For the simple case of approximating a uniform density by
a single Dirac density in arbitrary dimensions, it has been
shown that the new distance measure gives useful results.

In the next step, the approach proposed in this paper will be
used for generalizing the results obtained for approximating a
continuous random variable by a discrete one (on a continuous
domain) and vice versa. This includes the generalization of the
density estimation proposed in [22] and the extension of the
results derived in [1] for approximating a given continuous
random variable and its associated density by a discrete
random variable characterized by a Dirac mixture density.

Of course, the proposed Localized Cumulative Distribution
could provide the basis for deriving new statistical tests similar
to the Cramér–von Mises test or the Kolmogorov–Smirnov
test, which are so far limited to the univariate case.

The proposed approach may also be useful for deriving
alternatives to the current definition of entropy and mutual in-
formation valid for discrete or mixed discrete and continuous
random vectors similar to the so called differential cumulative
entropy proposed in [9].
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APPENDIX

Here, we will derive two lemmas useful for the derivations
in Section IV.

The first Lemma is concerned with the partial derivative
of the LCD corresponding to a multivariate Dirac density.

Lemma V.1 The derivative of the LCD ∆(x−m, b) corre-
sponding to a multivariate Dirac density δ(x−m) at location
m with respect to the location parameter mj in dimension j
is given by

∂∆(x−m, b)
∂ mj

=(
−δ
(
xj −mj +

bj
2

)
+ δ

(
xj −mj −

bj
2

))
N∏

i=1
i 6=j

(
∆c

(
xi −mi +

bi
2

)
−∆c

(
xi −mi −

bi
2

))
.

The second Lemma uses this result and provides a surpris-
ing result that proves useful for simplifying the derivations
in Section IV.

Lemma V.2 For the LCD of an N–dimensional Dirac density
f(x) = δ(x−m) at location m denoted by F (x, b) = ∆(x−
m, b), we have∫

IRN

∆(x−m, b) ∂∆(x−m, b)
∂ mj

dx = 0 ,

for j = 1, . . . , N , where mj is the j–th component of m.

PROOF. Performing the integration givesZ
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For the first integral we obtainZ
IR

„
∆c

„
xj −mj +
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«
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·
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««
= ∆c(−bj) + ∆c(bj)− 2 ∆c(0) = 0 .

Hence, the total derivative is zero, which concludes the proof. �


