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Abstract— We consider the problem of approximating an
arbitrary multi–dimensional probability density function by
means of a Dirac mixture density. Instead of an optimal
solution based on minimizing a global distance measure between
the true density and its approximation, a fast suboptimal
anytime procedure is proposed, which is based on sequentially
partitioning the state space and component placement by local
optimization. The proposed procedure adaptively covers the
entire state space with a gradually increasing resolution. It
can be efficiently implemented by means of a pre–allocated
tree structure in a straightforward manner. The resulting com-
putational complexity is linear in the number of components
and linear in the number of dimensions. This allows a large
number of components to be handled, which is especially useful
in high–dimensional state spaces.

I. INTRODUCTION

Notation
x,x State vector, random vector ∈ IRN

f(x) Density function
F (x) (Cumulative) distribution function
δ(x) Multidimensional Dirac delta function
δ(x) Scalar Dirac delta function
H(x) Multidimensional Heaviside step function
H(x) Scalar Heaviside step function

N(.,m, σ) Scalar Gaussian density with mean m
and standard deviation σ

N(.,m,C) Multidimensional Gaussian density with
mean vector m and covariance matrix C

A. Motivation

Nonlinear processing of random quantities described by
(prior) probability density functions in general requires the
approximation of the resulting (posterior) densities. Calcu-
lation of the true densities is either too complex or even
impossible or the resulting densities are simply of a type
inconvenient for further treatment. Hence, the true posterior
density, i.e., the result of the processing step that might
not be explicitly available, is approximated by a density
tractable in subsequent processing steps. Many types of
generic analytic density representations are available for that
purpose, including Gaussian mixtures [1], Edgeworth series
expansions [2], and exponential densities [3].

As an alternative representation, we propose to use mixtures
of Dirac delta functions (impulse functions), so called Dirac
mixtures, for approximating the underlying true densities in
analytic form. This is different from representing densities
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by means of random samples [4], which is used by the
popular particle filters [5], where the appropriate density
parameters, i.e., weights and locations of the particles, are
typically calculated by means of Monte Carlo techniques [6],
[7].

The proposed approach for calculating optimal Dirac
mixture approximations for a given density relies on the sys-
tematic minimization of a certain distance measure between
the two densities. As standard distance measures operating in
the density domain such as the Kullback–Leibler divergence
[8], its symmetrized version [9] or integral quadratic distances
are obviously not well suited for Dirac mixtures, comparison
is performed in the distribution domain. As a result, the
fundamental property of the Dirac delta function in the
density domain can be exploited to simplify processing while
the continuity of the corresponding staircase function in the
distribution domain is used for comparison purposes.

Several approaches that simultaneously calculate the lo-
cations and weights of all components, so-called batch
approaches, have already been published [10], [11]. The
case of components with equal weights is treated in [10]. A
method for the calculation of optimal weights and locations
is given in [11]. For both cases, efficient solution procedures
for arbitrary true densities based on homotopy continuation
have been proposed.

Typically, the number of components required for achieving
a certain approximation quality is not known a priori and
must be determined as well. Two approaches for doing
so are possible on the basis of the available solutions.
The first approach relies on trying different numbers of
components suitable for the given approximation problem
and employs certain heuristics in order to avoid an exhaustive
search. For every number of components investigated, a full
recalculation is performed [12]. The second approach adds
new components one at a time and adjusts all components to
guarantee optimality of the resulting approximation [13]. In
both approaches, the complexity of the parameter adjustment
grows quadratically with the number of components.

The greedy approach proposed in this paper also builds up
the final approximate density by adding one component at a
time. However, the components are inserted locally without
affecting the set of components already placed. This procedure
yields suboptimal results at a much lower computational load
compared to the optimal approaches, as the complexity is
linear in the number of components. Computational savings
are especially severe, when an exhaustive search is used
for finding the minimum number of components required to
satisfy a certain predefined quality measure.



Potential applications of the greedy approximation include
the calculation of the density of a function of random
variables, long–term prediction [13], state estimation of non-
linear stochastic systems [14], reachability analysis, numerical
integration, and even the generation of pseudo–random
numbers.

The paper is structured as follows. The following parts
of this section give a problem formulation, an overview of
prior work, and the key ideas of sequentially approximating
arbitrary density functions by means of Dirac mixtures. The
approximation is described in detail in Section III. It is
shown how a single Dirac delta function can be used to
approximate a region of a density function. Furthermore, a
procedure for inserting one Dirac component at a time into the
approximation is presented. The problem of determining the
next region, whose approximation will be refined, is addressed
in Section IV. Simulation results showing approximation
results in state space, comparison of higher moments between
the proposed Dirac positioning and Monte Carlo sampling,
and runtimes of the algorithm are shown in Section V. The
paper concludes with a discussion of the proposed new
approximation approaches and an outlook to future work.

B. Problem Formulation

We consider a continuous–valued random vector x̃ ∈ IRN

that is approximated by a discrete random vector x taking
on a finite set of values from the set D = {x1, x2, . . . , xL}
with |D| = L. The given random vector x̃ is characterized
by a true density function f̃(x).

The goal is to calculate appropriate locations xi,
i = 1, 2, . . . , L and corresponding probabilities wi, i =
1, 2, . . . , L in such a way that the discrete approximation
is in some way close to the true random vector x̃.

C. Prior Work

A very common and popular method of approximating a
probability distribution function is given by random sampling
[15]. However, this method suffers from poor convergence
as the samples are drawn independently from the underlying
distribution. Furthermore, the approximation produces random
results and in addition, depends on the sampling algorithm
used.

An alternative to random sampling is to use quasi–random
sample sequences that are generated in a deterministic way,
which ensures reproducible results. Unfortunately, these
Quasi–Monte Carlo techniques typically allow a sampling
of uniform densities only. Much work has been done on the
field of low–discrepancy sequences that try to minimize the
discrepancy, a maximum deviation of a uniform distribution
over a unit hyper–cube and its sample representation. Several
of these sequences, like Latin Hypercube Sampling [16]
or low–discrepancy sequences [17] exist, unfortunately a
minimum discrepancy bound, and therefore the best possible
sequence, is not known [18], [19]. The generalization of these
approaches to the sampling from nonuniform distributions is
not simple as optimality is not preserved by a mapping from
uniform to arbitrary distributions.

D. Key Ideas of the Paper

The sequential approximation procedure that will be intro-
duced in the following performs the desired approximation by
iteratively partitioning the state space, where each partition is
represented by a Dirac delta component. It is specifically
designed in such a way that it can be applied to high–
dimensional problems, which is achieved by three main
ingredients.

First, a given region is partitioned into just two subregions
independent of the number of dimensions involved. Since
every region corresponds to a hyper-rectangle, splitting is
performed along the axes of the coordinate system. Hence,
there are N possible partitions for a given region, where N is
the number of dimensions. As a result, with every partitioning
step, the number of Dirac delta components just increases by
one.

Second, the quality of the approximation is calculated by
means of a distance measure. According to a global distance
measure, all components of the approximation density would
be dependent and could not be calculated sequentially without
affecting components already placed. In order to simplify
the approximation problem, the individual regions are treated
separately, i.e., a distance measure is minimized for every
region. A global distance measure is just used for assessing
the total approximation quality.

Third, the complexity of calculating the optimal Dirac delta
representation for a given region would typically still increase
exponentially with the number of dimensions N . Hence, the
marginals of the true density are used for placing the Dirac
delta components. Of course, the global marginals are not
useful as the true density typically is not composed of a
product of its marginals. Here, we define submarginals, i.e.,
the marginals corresponding to the true density within an
individual region of the state space. As a result, the complexity
of calculating the Dirac delta representation for a given region
increases linearly with the number of dimensions N .

II. DIRAC MIXTURES

The discrete random vector x is characterized by a Dirac
mixture density of the form

f(x, η) =
L∑
i=1

wi δ(x− xi) , (1)

where the components δ(x− xi) are multidimensional Dirac
delta functions defined by

δ(x− xi) =
N∏
j=1

δ(x(j)− xi(j)) .

The scalar Dirac delta functions are defined by

δ(x− xj) =

{
undefined, x = xj

0, elsewhere

with ∫ ∞
−∞

δ(x− xj)dx =
∫ xj+ε

xj−ε
δ(x− xj)dx = 1



for some ε > 0. wi are weighting factors with wi > 0 and∑N
i=1 wi = 1.
The parameter vector η contains both the weighting factors

and the locations of the individual Dirac functions according
to

η =
[
w1, w2, . . . , wL, x1, x2, . . . , xL

]T
.

Our goal is to approximate the true density f̃(x) by a Dirac
mixture density f(x) in such a way that a certain distance
measure G between the two densities is below a prespecified
threshold. As distance measures in the density domain are
typically not well defined for Dirac mixture densities, the first
key idea is to employ distance measures between (cumulative)
distributions.

The distribution function corresponding to the true density
f̃(x) is denoted by F̃ (x). The distribution function corre-
sponding to the approximate density f(x, η) is denoted by
F (x, η) and is given by a Heaviside mixture according to

F (x, η) =
L∑
i=1

wiH(x− xi) .

H(x−xi), i = 1, . . . , L are multidimensional Heaviside step
functions defined by

H(x− xi) =
N∏
j=1

H(x(j)− xi(j)) ,

where the scalar Heaviside step functions are given by

H(x− xi) =


0, x < xi
1
2 , x = xi

1, x > xi

.

In the following, we restrict our focus to quadratic distance
measures between the true distribution F̃ (x) and its Dirac
mixture approximation F (x, η).

Hence, the second key idea pursued in this paper is a
greedy type sequential approximation of the true density
f̃(x). Instead of optimizing the approximation by means
of minimizing a global distance measure, an approach is
utilized, which improves the approximation in a greedy way,
i.e., the action is taken that maximizes the improvement of
the approximation in one optimization iteration. This typically
does not lead to an optimal approximation, but it has the
advantage of being very fast and easy to implement.

Another important fact is that the approximation of the true
density f̃(x) is not homogeneous over the state space. Regions
of high interest, i.e., regions with a high probability mass,
are approximated more precisely than regions, which have
low probability. The approximation procedure incorporates
an adaptive refinement of the regions of interest.

In the optimal multi–dimensional approximation of den-
sity functions with Dirac mixtures, the complexity grows
exponentially with the number of dimensions. This problem
can be solved by working on the individual marginals of the
regions of high interest, which leads to a linear growth of
algorithmic complexity only, and thus, dramatically reduces

computational efford by maintaining a high quality of the
approximation result.

III. APPROXIMATION APPROACH

A. Optimizing a Given Region

We consider an axis–aligned hyper–rectangle in IRN given
by a set of lower limits xL

i , i = 1, . . . , N and a set of upper
limits xU

i , i = 1, . . . , N for characterizing a region in the
considered state space.

Example III.1 (Two–dimensional Region) A two–dimensional
region is defined by its axis–aligned borders. In every dimension
the region can be handled seperately and its extend can be
given by an interval [xL

i , x
U
i ]. So every point p = [p1, . . . , pN ]T

is inside of the region, if pi ∈ [xL
i , x

U
i ] holds for every dimension

i.

Definition III.1 (Submarginals) The submarginals of the
given true density f̃(x) in the considered region are given by

f̃(xi) =
∫ xU

1

xL
1

· · ·
∫ xU

i−1

xL
i−1

∫ xU
i+1

xL
i+1

· · ·
∫ xU

N

xL
N

f̃(x) dxN . . . dxi+1 dxi−1 . . . dx1

for i = 1, . . . , N . The respective cumulative probability
distribution F̃ (xi)

F̃ (xi) =
∫ xi

xL
i

f̃(x′i)dx
′
i

is given by integrating the corresponding submarginal.

Example III.2 (Two–dimensional Submarginals) In the case of
two–dimensional densities, the submarginals f̃(xi) for dimen-
sion i are given by integrating the true density function f̃ over
the dimension 3− i with

f̃(x1) =

Z xU
2

xL
2

f̃(x1, x2) dx2 , x
1 ∈ [xL

1, x
U
1 ], and

f̃(x2) =

Z xU
1

xL
1

f̃(x1, x2) dx1 , x
2 ∈ [xL

2, x
U
2 ] .

Note that the submarginals are only defined on the correspond-
ing interval

ˆ
xL

i , x
U
i

˜
.

For many interesting densities, the submarginals are either
directly given or can be calculated analytically.

Example III.3 (Submarginals of Gaussian Density) The sub-
marginals of a Gaussian density can easily be written by means
of the error function. By assuming an axis–aligned Gaussian
density

f̃(x1, x2) = N

„»
x1

x2

–
,

»
m1

m2

–
,

»
σ2

1 0
0 σ2

2

–«
= N(x1,m1, σ

2
1) ·N(x2,m2, σ

2
2)

the submarginal for dimension 1 is simply given as

f̃(x1) =
1

2

„
erf
„
xU

2 −m2√
2σ2

«
− erf

„
xL

2 −m2√
2σ2

««
N(x1,m1, σ1).

The submarginal for the other dimension is calculated analo-
gously.



Lemma III.1 (Weight of Dirac Component) The weight of
the Dirac component representing the considered region is
given by the probability mass of the true density f̃(x)

w =
∫ xU

1

xL
1

· · ·
∫ xU

N

xL
N

f̃(x) dxN . . . dx1

inside the region.

Based on the submarginals for the considered region, an
appropriate but suboptimal location of the Dirac component
is calculated by treating the individual dimensions separately.
As a result, the complexity just increases linearly with the
number of dimensions.

Theorem III.1 (Location of Dirac Component) The optimal
location x̂i in dimension i of the Dirac component represent-
ing the considered region with respect to the Cramér–von
Mises distance [11] is given by the solution of

2 F̃ (x̂i) = F̃ (xU
i )− F̃ (xL

i )

for all dimensions i = 1, . . . , N .

Remark III.1 The location x̂i from Theorem III.1 corre-
sponds to the local median of the submarginal in the
considered region. This is equivalent to splitting the total
probability mass into two equal submasses.

B. Splitting a Given Region

The splitting line in 2D, the splitting plane in 3D, and the
splitting hyperplane in higher dimensions are axis–aligned so
that only one dimension is affected. In addition, they always
contain the location of the Dirac component representing this
region. Hence, there are N possible splittings.

The splitting of a region given by the lower and upper
limits xL

i , x
U
i , i = 1 . . . N in an arbitrary dimension j results

in two new regions. The limits of the new regions differ only
in the j-th component, because the axis–aligned splitting
affects one dimension only. In the following these regions
are named region 1 and region 2, independent of the splitting
dimension. The limits of a specific region are defined as xL,r

i ,
xU,r
i with r = 1, 2 in order to distinguish them from the

original limits.
The resulting components xL,1

i and xU,1
i are given for

region 1 as

xL,1
i = xL

i , xU,1
i =

{
xU
i , i 6= j
x̂i, i = j

and for region 2 as

xL,2
i =

{
xL
i , i 6= j
x̂i, i = j

, xU,2
i = xU

i .

The cost of evaluating all possible splittings grows linearly
with the number of dimensions. The two different splittings
in 2D space are shown in Figure 1.

The strategy pursued in this paper is to split the region in
the dimension i

i = arg max
i

{
|xU
i − xL

i |
}

(2)

Fig. 1: Visualization of different splittings of a two–
dimensional region. The splitting lines halve the probability
mass of the original region and are aligned to one of the axis
directions.

with maximum width. This avoids the computation and
evalutation of the N different splittings and reduces the
computational effort. This results in a regular splitting of
the complete approximation and thus a more regular Dirac
positioning.

Remark III.2 The complexity of selecting the splitting dimen-
sion depends linearly on the number of dimensions. Although
the effort to compute (2) can be seen as practically constant
in comparison to the overall algorithm runtime.

Example III.4 (Region Splitting in 2D) This example shows
the splitting result of the Dirac tree approximation of a two–
dimensional density f̃ . The true density is given as a Gaussian
mixture density

f̃

„»
x1

x2

–«
= w1 ·N

„»
x1

x2

–
,m1,C1

«
+w2 ·N

„»
x1

x2

–
,m2,C2

«
with weights w1 = 0.3, w2 = 0.7, means

m1 = [0.3, 0.6]T , m2 = [0.6, 0.3]T ,

and covariance matrices

C1 =

»
0.1 0
0 0.05

–
, C2 =

»
0.05 0
0 0.1

–
.

The result after 15 consecutive splittings is shown in Figure 2.

C. Sequential Partitioning

Sequential partitioning of different regions is needed to
refine the approximation. This is achieved by splitting one
region in every iteration. First, the algorithm is initialized with
a single element. This element contains the region considered
for approximation, the Dirac weight, and the Dirac position,
derived from the equations in Section III-A. From now on, we
consider a list containing the set of all these elements. Then,
a selection mechanism is utilized that determines the next
splitting region, which is described in detail in Section IV.
This region is replaced in the list by its splitting according
to Section III-B. This leads to a subsequent minimization
of a distance measure between the approximation and the
true density. Splitting is repeated until the desired number of
Dirac mixture components is reached or the quality of the
approximation falls below a given threshold. The resulting
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Fig. 2: Splitting of a two–dimensional Gaussian mixture
density. The rectangular regions show the regions constructed
by the splitting algorithm.

greedy Dirac mixture approximation algorithm is shown in
pseudocode notation in Algorithm 1.

Note that with every iteration, the number of Dirac mixture
components increases by one, because one element is replaced
by two new elements in the list. This can be seen as a tree
structure, where the elements of the list are leaf nodes. New
elements in the list refine the approximation of the removed
one. The corresponding binary tree is shown in Figure 3,
where the first element is represented as the root node and
the two child nodes represent the resulting elements after the
splitting. After 7 sequential splittings, the number of Dirac
mixture components increased to 8. In the tree representation
these components correspond to the leaf–nodes.

Algorithm 1 Greedy Algorithm for Sequential Dirac mixture
approximation

1: start with one element in the list
2: repeat
3: determine next splitting element (see Algorithm 2)

and remove it from list
4: select splitting direction
5: perform split
6: insert the two results into list
7: until Maximum number of components obtained (or

maximum distance below threshold)

IV. REGION SELECTION

In order to keep a good approximation quality over the
whole state–space, the selection of the next splitting region
is essential. Generally, the region that gives the maximum
improvement in approximation quality is chosen. Within
the proposed algorithm the improvement depends on the
probability mass assigned to the region. Hence, regions with
high probability mass are potential splitting candidates.

Because of the anytime functionality of the proposed
algorithm, selecting the next splitting candidate is of great
importance. That means, after every approximation step the
algorithm is able to return and give the best possible coverage
for the given number of components. In order to obtain a
good approximation quality over the complete state–space,
the selection of the splitting region has to fulfill the following
properties. First, the selection has to cover the relevant regions
as quickly as possible. Second, it has to be symmetric in
order to maintain the quality of the first and other odd central
moments of the approximation. Here, it is assumed that the
locations of the regions in state–space are correlated with
their positions in the splitting tree. Hence, the regions are
selected based on the following tree structure.

The splitting described in the previous section produces
regions with equal probability mass in every layer leading
to a tree structure shown in Figure 3. The root node, which
represents the first region, holds the complete probability mass,
whereas its children nodes, which result from the first splitting,
halve the corresponding probability mass. This splitting is
applied to all nodes in the tree, resulting in layers with equal
probability mass.

The dispersion and symmetry in selecting the splitting
region is achieved by an alternating switching at the root
node of every subtree recursively. The selection begins at
the root node and descends to a leaf, which will be split. In
every node, the descent to the left–hand or right–hand side
is determined by a simple switch that is toggled everytime
the selection algorithm traverses it. This can be described by
a virtual state that is assigned to every node and keeps track
of the next descending direction. A simple, but important,
assumption in this algorithm is the initial state of the tree,
which is defined recursively in the following way: the initial
state of the right sub–tree is the mirrored (or toggled) state
of the left sub–tree. An example initial state configuration is
visualized in Figure 3 by the arrows in every non–leaf node.

Instead of storing the state of every node in the complete
tree, only n bits for layer n, containing 2n regions, are
needed to compute and address the next splitting region. The
algorithm is shown in Algorithm 2. Note that in line 1, i can
easily be computed by knowing the actual number of Dirac
components, whereas only the lower n bits of i have to be
considered. The resulting number is the index that addresses
all regions in the considered layer. This procedure is similar
to pseudo random number generation [20], [17], especially
to the generation of (t, s)-sequences introduced in [18].

Algorithm 2 Select the next splitting region
1: i← number of Diracs processed in actual layer
2: for every bit in i, beginning with MSB do
3: if bit is set then
4: toggle next lower bit
5: end if
6: end for
7: return i
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Fig. 3: Subtree of the considered tree structure, where the
leaf–nodes correspond to the list of all current regions. The
probability w is assigned to the root node and split for every
child. A probability is assigned to every region and the
probabilities of all leaf–nodes sum up to w.

V. SIMULATION RESULTS

A. Reconstuction of Continuous Densities

The applicability of the proposed approximation approach
for multi–dimensional densities is shown by some simple
density approximations. First, a simple two–dimensional
Gaussian density is approximated by different numbers
of Dirac components. The true density f̃ is given as a
Gaussian density with zero mean and an identity covariance
matrix. Figure 4 shows the approximations for various
numbers of Dirac components and the true density. The
locations of the Dirac components focus on regions with high
probability mass of the true density function. Usually, the
Dirac components can have different weights. For simplicity,
only approximations whose number of Dirac components
is given by powers of 2 are shown here. This leads to the
same weights for all Dirac components and thus simplifies
visualization. Note that for the symmetric Gaussian density,
the Dirac components are placed symmetrically, too.

Figure 5 shows the approximation results for the Gaussian
mixture density introduced in Example III.4. It can be seen
that the two Gaussian components are approximated with a
different number of Dirac components. This is due to the
different weights of the Gaussian components and therefore
different probability mass distributions over the state–space.
The effect of the Dirac components concentrating at locations
with high probability mass can be seen, too.

B. Central Moments

In this section, the Dirac approximation is compared to
random sampling, as typically used in Monte Carlo techniques,
like the well known particle filter. The true density function
f̃ , the Gaussian mixture density from example III.4, is
approximated by both approaches.

The relative errors of the mean and the 2nd – 4th central
moments of the first dimension x1 are computed for a growing
number of components (1–500). In order to smooth the results
of the random sampling, the approximation was performed
100 times with independent sample sets. The root mean square
errors of the relative moments of both approximations are
displayed in Figure 6.

It can be seen clearly, that the relative errors of the Dirac
approximation decrease faster in magnitudes than the errors
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Fig. 7: (a) Computing time against number of dirac compoents
for the approximation of 10 (blue), 100 (green; dotted), and
500 (red; dashed) Gaussian mixture components. (b) Com-
puting time against number of Gaussian mixture components.
Apprxoximation with 1000 (blue), 1500 (green; dotted), and
2000 (red; dashed) Dirac components.

of Monte Carlo sampling. Even with a low number of Dirac
components, a very good approximation of the complete
density (regarding the first moments) is given.

C. Runtime Measurements

For runtime measurements, two–dimensional Gaussian
mixture densities were approximated by means of Dirac
mixtures. Simulation results show that the runtime is linear
in the number of Gaussian components and in the number of
Dirac components. In Figure 7 (a), the approximation time is
shown depending on the number of Dirac components used
for approximation. Figure 7 (b) shows the approximation time
depending on the number of Gaussian mixture components
that have to be approximated. The runtime measurements
were taken in MATLABr calling a C# sub–routine that
computes the Dirac approximation.

D. Stochastic Prediction

A two–dimensional discrete time linear system model is
given by[

xk+1

vk+1

]
=
[
1 t
0 1

] [
xk
vk

]
+
[
0
α

]
+
[
wx

wv

]
, (3)

with a hysteresis

α =

 −at, xk > 0.25
at, xk < −0.25
0, −0.25 ≤ xk ≤ 0.25

,
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Fig. 4: Approximation result of a two–dimensional Gaussian density with 8, 16, 128, and 1024 Dirac components.
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Fig. 5: Approximation result of a two–dimensional Gaussian mixture density with 8, 16, 128, and 1024 Dirac components.
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Fig. 6: Root mean square of relative errors of mean and central moments of the density approximations. Random sampling
(blue; dashed) and greedy Dirac approximation (red) are shown for a growing number of Diracs/particles used.

which defines a position dependent linear acceleration. The
constants for acceleration and time discretization are a = 0.05
and t = 0.05. The system noise [wx,wv]T is given as zero
mean Gaussian noise with covariance Cw = diag(0.02, 0.02).

Here, the greedy Dirac approximation is used to represent
the continuous prior density by means of Dirac components,
which are propagated through the system. Due to the system
noise in (3) the resulting density is given as a Gaussian
mixture density, which is reapproximated for the following
processing step.

The Dirac mixture approximation using 100 Dirac compo-
nents is compared to the particle filter with 4000 particles.
The absolute differences di of the i–th root of the first i
central moments, i = 1, . . . , 4, for 50 consecutive prediction
steps, is shown in Figure 8. It can be seen clearly, that the

quality of the Dirac approximation is substantially better
than the particle approximation, even the number of particles
is 40 times higher. The differences of the moments for the
particle filter are substantially higher, except for the minimum
difference of the moments for the particle filter at time step
18 due to an occassional intersection with the true mean.

VI. DISCUSSION AND FUTURE WORK

This paper introduced a greedy algorithm for calculating
Dirac mixtures approximating arbitrary multi–dimensional
probability functions. Dirac components are added sequen-
tially one at a time, which allows to minimize a distance
measure between the approximation and the true density. It
also enables to efficiently determine the required minimum
number of components for achieving a certain task. A
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Fig. 8: Visualization of simulation results of Subsection V-D. Absolute differences di, i = 1, . . . , 4 of mean and 2nd to 4th
central moments of substate x for the greedy Dirac approximation (red) and particle filter (blue; dashed) are shown for the
first 50 time steps.

non-homogeneous placement is achieved to increase the
approximation quality where needed and to emphasize regions
of higher importance.

The procedure is very simple to implement, extremely
stable, and efficiently provides approximations even for high-
dimensional state spaces.

The results provided in this paper can immediately be
used for recursive nonlinear filtering of multi–dimensional
nonlinear stochastic dynamic systems. For that purpose, the
posterior density resulting from a certain processing step, i.e.,
prediction step or measurement update, is approximated by
a Dirac mixture, which is then used as an approximate but
convenient prior for the subsequent processing step.
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