KIT | KIT-Bibliothek | Impressum | Datenschutz

3D Reflectivity Reconstruction by Means of Spatially Distributed Kalman Filters

Schwarzenberg, Gregor F.; Mayer, Uwe; Ruiter, Nicole V.; Hanebeck, Uwe D.

Abstract:
In seismic, radar, and sonar imaging the exact determination of the reflectivity distribution is usually intractable so that approximations have to be applied. A method called synthetic aperture focusing technique (SAFT) is typically used for such applications as it provides a fast and simple method to reconstruct (3D) images. Nevertheless, this approach has several drawbacks such as causing image artifacts as well as offering no possibility to model system-specific uncertainties. In this paper, a statistical approach is derived, which models the region of interest as a probability density function (PDF) representing spatial reflectivity occurrences. To process the nonlinear measurements, the exact PDF is approximated by well-placed Extended Kalman Filters allowing for efficient and robust data processing. The performance of the proposed method is demonstrated for a 3D ultrasound computer tomograph and comparisons are carried out with the SAFT image reconstruction.

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000034853
Originalveröffentlichung
DOI: 10.1109/MFI.2008.4648096
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik (IFA)
Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2008
Sprache Englisch
Identifikator ISBN: 978-1-4244-2143-5
urn:nbn:de:swb:90-348533
KITopen-ID: 1000034853
HGF-Programm 43.01.06 (POF I, LK 01) Applikations-u.Transferlaboratorien
Erschienen in Proceedings of the 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008),Seoul, Republic of Korea, August, 2008
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 384-391
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page