KIT | KIT-Bibliothek | Impressum | Datenschutz

Stochastic Model Predictive Control of Time-Variant Nonlinear Systems with Imperfect State Information

Weissel, Florian; Schreiter, Thomas; Huber, Marco F.; Hanebeck, Uwe D.

Abstract:
In many technical systems, the system state, which is to be controlled, is not directly accessible, but has to be estimated from observations. Furthermore, the uncertainties arising from this procedure are typically neglected in the controller. To remedy this deficiency, in this paper, we present a novel approach to stochastic nonlinear model predictive control (NMPC) for heavily noise-affected systems with not directly accessible, i.e., hidden states, extending the stochastic NMPCframework presented in [1]. An important property of our novel method is that, in contrast to classical approaches, time-variant system and measurement equations as well as time-variant step rewards can be considered. Extending the techniques from [1] by introducing virtual future observations and combining this with a novel tree search algorithm, called probabilistic branch-and-bound search (PBAB), a solution with a feasible computational demand of the challenging problem is possible.


Volltext §
DOI: 10.5445/IR/1000034855
Originalveröffentlichung
DOI: 10.1109/MFI.2008.4648105
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Informatik – Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2008
Sprache Englisch
Identifikator ISBN: 978-1-4244-2143-5
urn:nbn:de:swb:90-348552
KITopen-ID: 1000034855
Erschienen in Proceedings of the 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), Seoul, Republic of Korea, August, 2008
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 40-46
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page