KIT | KIT-Bibliothek | Impressum | Datenschutz

Stochastic Model Predictive Control of Time-Variant Nonlinear Systems with Imperfect State Information

Weissel, Florian; Schreiter, Thomas; Huber, Marco F.; Hanebeck, Uwe D.

In many technical systems, the system state, which is to be controlled, is not directly accessible, but has to be estimated from observations. Furthermore, the uncertainties arising from this procedure are typically neglected in the controller. To remedy this deficiency, in this paper, we present a novel approach to stochastic nonlinear model predictive control (NMPC) for heavily noise-affected systems with not directly accessible, i.e., hidden states, extending the stochastic NMPCframework presented in [1]. An important property of our novel method is that, in contrast to classical approaches, time-variant system and measurement equations as well as time-variant step rewards can be considered. Extending the techniques from [1] by introducing virtual future observations and combining this with a novel tree search algorithm, called probabilistic branch-and-bound search (PBAB), a solution with a feasible computational demand of the challenging problem is possible.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000034855
Zugehörige Institution(en) am KIT Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Jahr 2008
Sprache Englisch
Identifikator ISBN: 978-1-4244-2143-5
KITopen-ID: 1000034855
Erschienen in Proceedings of the 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), Seoul, Republic of Korea, August, 2008
Verlag IEEE, Piscataway
Seiten 40-46
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page