
Progressive Gaussian Mixture Reduction
Marco F. Huber and Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory
Institute of Computer Science and Engineering

Universität Karlsruhe (TH), Germany
Email: marco.huber@ieee.org, uwe.hanebeck@ieee.org

Abstract—For estimation and fusion tasks it is inevitable to
approximate a Gaussian mixture by one with fewer components
to keep the complexity bounded. Appropriate approximations
can be typically generated by exploiting the redundancy in
the shape description of the original mixture. In contrast to
the common approach of successively merging pairs of com-
ponents to maintain a desired complexity, the novel Gaussian
mixture reduction algorithm introduced in this paper avoids
to directly reduce the original Gaussian mixture. Instead, an
approximate mixture is generated from scratch by employing
homotopy continuation. This allows starting the approximation
with a single Gaussian, which is constantly adapted to the
progressively incorporated true Gaussian mixture. Whenever a
user-defined bound on the deviation of the approximation cannot
be maintained during the continuation, further components are
added to the approximation. This facilitates significantly reducing
the number of components even for complex Gaussian mixtures.

Keywords: Gaussian mixture reduction, nonlinear opti-
mization, homotopy continuation

I. INTRODUCTION

Thanks to their universal approximation property, Gaussian
mixtures are a very convenient function system for represent-
ing probability densities. Particularly in estimation tasks like
multi-target tracking [1], density estimation [2], [3], nonlinear
filtering [4] or machine learning [5], Gaussian mixtures are
employed for accurately representing multimodalities. How-
ever, recursive processing of Gaussian mixtures generally
leads to an exponential growth of the number of mixture
components. In order to keep the computational and memory
requirements bounded, it is inevitable to control this growth.

Several methods were developed in recent years for reducing
the amount of Gaussian components. Typically, the reduction
is achieved by deleting components with low contribution to
the overall mixture or by successively merging components
with strong similarity. Depending on the measure applied for
selecting components, Gaussian mixture reduction methods
can be classified into two groups: Local algorithms only
consider lower-order statistics of the mixture like mean and
variance or completely disregard the overall effect when eval-
uating the similarity between components. Salmond’s joining
and clustering algorithms [6], [7] or West’s algorithm [8] are
part of this group. On the other hand, the measure employed
in global methods like in [9], [10] considers all available
information, i.e., shape information of the mixture, when
selecting components for reduction.

Compared to local methods, the reduction results of global
methods are typically more accurate, at the expense of a higher
computational effort for reduction. One way to benefit from
both reduction approaches is to evaluate a localized version
of a global measure as done in [11], where a computationally
cheap upper bound of the Kullback-Leibler divergence mea-
sure is minimized. However, still the common approach of
starting the reduction with the complex Gaussian mixture and
reducing it by successively merging pairs of Gaussians is ap-
plied. For obtaining a specific approximation quality, merging
approaches often end up with a number of components that
is still too large, as the inherent redundancy of the original
mixture is exploited only in a greedy fashion.

To fully exploit the approximation potential of reduced-
order Gaussian mixtures, the global Gaussian mixture reduc-
tion approach introduced in this paper employs a dual principle
to existing algorithms. Instead of repeatedly removing mixture
components, a Gaussian mixture is successively built up to
approximate the original mixture with far less components.
However, a priori determining the optimal number of compo-
nents for maintaining a specific deviation to the original mix-
ture is impossible. Thus, a homotopy continuation approach is
employed, which starts with a single Gaussian density (for an
introduction to homotopy continuation see e.g. [12]). During
the continuation toward the original mixture, new Gaussian
components are added to the approximate mixture by splitting
existing components for providing better approximation capa-
bilities. To control this growth in components, the deviation
is constantly tracked by the squared integral distance measure
and new components are only added in regions of emerging
strong deviations when necessary.

For obtaining accurate results in an efficient way, the
progress of the continuation is controlled by a predictor-
corrector scheme. The continuation progresses faster whenever
the changes generated by the gradually incorporated original
mixture are marginal. On the other hand, strong changes slow
down the progression such that accurately adapting the ap-
proximation is possible. Furthermore, for enabling an efficient
implementation of the proposed reduction method, closed-
form solutions for all necessary calculations are derived.

In the next section, the Gaussian mixture reduction problem
is briefly introduced. The remainder of the paper is struc-
tured as follows: The formulation of the reduction problem
as constrained optimization problem and the corresponding
continuation solution algorithm is provided in Section III,

while Section IV is concerned with the adaptation procedures
for improving the accuracy and efficiency of the continuation
algorithm. These adaptations comprise the speed of progres-
sion as well as structurally adapting the approximation by
adding new components. The effectiveness of the proposed
Gaussian mixture reduction algorithm in comparison to state-
of-the-art algorithms is demonstrated by means of simulations
in Section V. Finally, we give conclusions and an outlook to
future work.

II. PROBLEM FORMULATION

It is assumed that the true density function of the random
variable x is represented by the Gaussian mixture

f̃(x) =
M∑
i=1

ωi · N
(
x;µi, σ2

i

)
,

where ωi are non-negative weighting coefficients with∑
i ωi = 1 and N

(
x;µ, σ2

)
is a Gaussian density with mean

µ and variance σ2. For the sake of brevity and clarity only one-
dimensional random variables are considered in this paper.

In typical estimation and fusion tasks, the number of mix-
ture components M increases exponentially over time. Due to
computational and memory limitations, this growing mixture
cannot be processed for any significant time span. Even when
f̃(x) has a large number of components, the shape of the
Gaussian mixture is often not that complex, e.g., a mode of
the true density is represented by several Gaussians, whereas
a single component would be adequate for approximating the
mode. Thus, a Gaussian mixture with a considerable smaller
number of components can typically be found by fusing locally
shared information and by removing redundancy in f̃(x).

The goal is now to find a reduced Gaussian mixture

f(x, η) =
L∑
j=1

ω2
j · N

(
x;µj , σ2

j

)
, (1)

with parameter vector

η = [ηT
1
, ηT

2
, . . . , ηT

L
]T , η

j
= [ωj , µj , σj]T ,

consisting of L�M components that is close to the original
mixture f̃(x).1 A distance measure G

(
f̃(x), f(x, η)

)
is used

for quantifying the deviation or the similarity between both
mixtures, which in turn allows adapting the parameters η,
i.e., the weights, means, and variances, of f(x, η) in order
to minimize the deviation.

III. GAUSSIAN MIXTURE REDUCTION VIA HOMOTOPY
CONTINUATION

The key idea is to reformulate the Gaussian mixture reduc-
tion problem as an optimization problem

η
min

= arg min
η

G
(
f̃(x), f(x, η)

)
(2)

w.r.t. G
(
f̃(x), f(x, η

min
)
)
≤ Gmax

1Please note that squared weighting coefficients ω2
j are used to ensure that

f(x, η) remains a valid density function during the reduction process.

by minimizing a certain distance measure G
(
f̃(x), f(x, η)

)
under the constraint that the deviation between f̃(x) and
f(x, η) is less than an user-defined maximum value Gmax.
Besides defining a maximum deviation it is also possible to
additionally constrain the number of used components for
f(x, η).2 Thus, the user is able to adjust the quality as well as
the computational demand of the reduction by giving a limit
on the allowed deviation and/or the number of components.

A. Progressive Processing

The optimization problem (2) is generally not convex, so
that directly minimizing the deviation between both mixture
densities results in getting trapped in an unappropriate local
optimum. Furthermore, the optimal number of mixture com-
ponents L is not known a priori for maintaining a deviation
less than Gmax. To overcome these problems, the proposed
reduction approach makes use of the Progressive Bayes frame-
work introduced in [13], i.e., a specific type of homotopy
continuation is applied in order to find the solution of (2)
progressively.

In doing so, a so-called progression parameter γ ∈ [0, 1] is
used for parameterizing the original Gaussian mixture f̃(x) in
such a way that for γ = 0 the Gaussian mixture can be reduced
directly, i.e., the exact solution of the optimization problem
is known without deviation from f̃(x). By incrementing the
progression parameter, the effect of the original mixture is
introduced gradually. This ensures a continuous transformation
of the optimal solution of the initial optimization problem
toward the desired original Gaussian mixture f̃(x), by pro-
gressively adjusting the parameters η of f(x, η) to keep
G
(
f̃(x), f(x, η)

)
at a minimum.

B. Parameterization

For that purpose, the parameterized Gaussian mixture
f̃(x, γ) is given by

f̃(x, γ) = γ · f̃(x) + (1− γ) · f̂(x) . (3)

Hence, we obtain

f̃(x, 0) = f̂(x) and f̃(x, 1) = f̃(x) ,

where the Gaussian mixture f̂(x) should be chosen such that
performing its reduction is straightforward. A very natural
choice is a single Gaussian f̂(x) = N (x;µ, σ2), whose mean
µ and variance σ2 correspond to the mean and variance of the
original mixture f̃(x), i.e.,

µ =
M∑
i=1

ωi ·µi , σ2 =
M∑
i=1

ωi ·
(
σ2
i + µ2

i

)
− µ2 .

Using a single Gaussian density for capturing these first two
moments automatically minimizes the Kullback-Leibler diver-
gence or equivalently maximizes the entropy [14]. Starting
the progression with this “simple” density allows directly
determining the optimal solution, i.e., f(x, η) = f̂(x) with

2Obviously, in case of an additional component constraint, the maximum
deviation is not guaranteed to be maintained.

η = [1, µ, σ]T. This solution, i.e., the parameter vector η,
then tracks the original Gaussian mixture that is progressively
modified by increasing γ.

As the initialization of the continuation indicates, the way
the proposed mixture reduction approach operates is dual to
existing algorithms. Instead of beginning with the complete
original mixture, at first a less complex reduction or approxi-
mation task is solved. As it is shown in Section IV-B, splitting
operations are used in order to add new Gaussian components
to the initial single Gaussian when required. This ensures to
achieve the maximum deviation value Gmax.

C. Distance Measure

For quantifying the deviation between f̃(x, γ) and f(x, η),
several measures G(·) can be used. For convenience, the
squared integral distance measure [15]

G
(
f̃(x, γ), f(x, η)

)
=

1
2

∫
R

(
f̃(x, γ)− f(x, η)

)2

dx (4)

is chosen, since it can be evaluated analytically for Gaussian
mixtures. However, the proposed approach is not restricted
to this specific deviation measure. For instance, the Kullback-
Leibler divergence [16] can also be used, especially as it is the
ideal deviation measure for mixture reduction in a maximum
likelihood sense [10], [11]. Due to the fact that it is impossible
to evaluate this measure in closed form for Gaussian mixtures,
numerical integration schemes have to be employed, which
leads to increased computational costs.

In the following, we write G(η, γ) shorthand for
G
(
f̃(x, γ), f(x, η)

)
.

D. Progressive Minimization

To perform the progression of γ from 0 to 1, while keeping
the distance measure at its minimum, the differential relation
between γ and the parameter vector η, i.e., the variation of
η depending on the variation of γ, is required. Hence, the
optimization problem (2) is transformed into a system of
ordinary differential equations (ODE). In order to obtain these
differential equations, the necessary condition of a minimum
of G(η, γ) has to be satisfied. Thus, derivatives of G(η, γ) with
respect to γ and η have to be zero, as G(η, γ) is a function
over γ and η. Taking the partial derivative of G(η, γ) with
respect to the parameter vector η yields

∂G(η, γ)
∂η

= −
∫
R

(
f̃(x, γ)− f(x, η)

)
F (x, η) dx , (5)

where

F (x, η) =
∂f(x, η)
∂η

.

By setting (5) to zero we obtain∫
R

f̃(x, γ)F (x, η) dx =
∫
R

f(x, η)F (x, η) dx .

The partial derivative with respect to γ gives the desired
system of ordinary first-order differential equations(∫

R

F (x, η)F (x, η)T dx︸ ︷︷ ︸
=:P′(η)

+

∫
R

(
f(x, η)− f̃(x, γ)

)
M(x, η) dx︸ ︷︷ ︸

=:∆P(η,γ)

)
∂η

∂γ

=
∫
R

F (x, η)
∂f̃(x, γ)
∂γ

dx ,

where

M(x, η) =
∂2f(x, η)
∂η ∂ηT

.

This can be written as

P(η, γ) · η̇ = b(η, γ) , (6)

where the coefficients are given by

P(η, γ) = P′(η) + ∆P(η, γ) , (7)

b(η, γ) =
∫
R

F (x, η)
∂f̃(x, γ)
∂γ

dx . (8)

Closed-form expressions for (7) and (8) are given in Ap-
pendix A and Appendix B, respectively. Due to the squared
weights in (1) and the specific parameterization in (3), these
expressions do significantly differ to those in [9], [13].

E. Solving the System of Ordinary Differential Equations

The system of ODEs (6) cannot be solved analytically in
general. Thus, a numerical solution scheme has to be used.
One option is to employ well-known ODE solvers like Runge-
Kutta. However, for this specific case these methods often
turned out to be numerically unstable. Instead, the numerical
solver given in Algorithm 1 is proposed.

The algorithm starts with γ = 0 and thus with an optimal
choice of the parameter vector η (see line 1-2). During the
solution process, γ is gradually increased while η is simulta-
neously adjusted (line 5-8). Please note that solving the ODE
in line 6 can be carried out directly, as γ is a fixed value and
thus, merely a system of linear equations Pη̇ = b has to be

Algorithm 1 Pseudo-code of the numerical solver for (6)
1: γ ← 0
2: η ← η(γ = 0)
3: ∆γ ← γmin

4: repeat
5: γ ← γ + ∆γ
6: η̇ ← solve

(
P(η, γ), b(η, γ)

)
7: η

tmp
← η + ∆γ · η̇

8:
[
η, γ, ∆γ

]
← Adaptation

(
η

tmp
, Gmax

)
9: until γ = 1

solved, e.g., by employing LU factorization.
With the solution vector η̇ for a specific γ, a so-called

predictor-corrector scheme can be realized, which is quite
common in homotopy continuation [12], [17]. Here, the pre-
dictor is represented by line 7, where η̇ gives the direction for
predicting η, while the step size ∆γ gives the increment in
prediction direction.

Typically, this prediction step causes an error governed
by the current step size. For reducing the introduced error
under the user-defined error bound Gmax, a correction or
adaptation step is applied subsequently (line 8). In this paper,
the term adaptation is used instead of correction, as not only
a correction of η is performed after the prediction. In fact,
new Gaussian components are introduced by splitting existing
Gaussians, if the deviation between f̃(x, γ) and f(x, η) is
still larger than Gmax. This procedure facilitates adapting
f(x, η) to emerging structural changes in f̃(x, γ) during the
progression. The methods used for adaptation are described in
detail in the following section.

IV. ADAPTATIONS

A straightforward way to realize the adaptation is to keep
the step size always at the minimum size γmin. This leads to a
linear increment of γ. However, choosing an appropriate γmin

is critical, since one has to balance between a compensation
of even marginal changes in f̃(x, γ) and a fast progression,
leading to a coarse error reduction at some parts of the
progression.

A. Parameter and Step Size Adaptation

Since the distance measure has to be minimized for a
specific γ, a Newton approach for determining the roots of (5)
is applied [17]. This allows correcting η in order to compensate
the introduced error. Furthermore, γ and the step size ∆γ are
adjusted for controlling the speed of the progression. This
can be done due to the fact that a fast convergence of the
Newton approach indicates only a small error introduced by
the prediction. Hence, the step size can be increased for the
next progression step. The opposite case, where the Newton
approach does not converge, indicates a large error. Thus, the
prediction step can be reverted by setting γ to its former value
and the step size can be decreased.

For obtaining this adaptation, the Newton approach

H(η
k
, γ) ·∆η =

∂G(η, γ)
∂η

∣∣∣
η=η

k

=: h(η
k
, γ) , (9)

has to be applied. A closed-form expression of the gradient of
the distance measure h(η

k
, γ) is given in Appendix C, while

the Hessian

H(η
k
, γ) =

∂2G(η, γ)
∂η ∂ηT

∣∣∣
η=η

k

,

is identical to the matrix P in (7). ∆η = η
k+1
− η

k
is

determined by solving the system of linear equations (9),
which yields the recursion

η
k+1

= η
k

+ ∆η .

Algorithm 2 [η, γ,∆γ]← Adaptation(η
tmp

, Gmax)

1: η
0
← η

tmp
2: repeat
3: ∆η ← solve

(
H(η

k
, γ), h(η

k
, γ)
)

4: η
k+1
← η

k
+ ∆η

5: until k + 1 = kmax or ∆η → 0
6: if ∆η → 0 then // Newton method converged
7: ∆γ ← Increase(∆γ)
8: η ← StructuralAdaptation(η

k+1
, Gmax)

9: else
10: η ← η

tmp
11: γ ← γ −∆γ
12: ∆γ ← Decrease(∆γ)
13: end if

This recursion is initialized with η
0

= η
tmp

(obtained at line
7 of Algorithm 1). In cases where this initial value is close
to the true parameter vector, the method quickly converges,
which can be detected by ∆η → 0.

Algorithm 2 summarizes the correction method for η, γ,
and ∆γ. Again, the system of linear equations in line 3 can
be solved efficiently using LU factorization. In addition to
controlling the convergence of the Newton approach, adapting
η is aborted after a maximum number of steps kmax (see line
5). The structural adaptation performed in line 8 is described
in detail in the following section.

B. Structural Adaptation

Performing the correction step does not guarantee that the
maximum deviation Gmax is maintained. This is especially the
case when new modes emerge due to gradually incorporating
the true Gaussian mixture. Here, the current number of com-
ponents of the reduced mixture may not suffice to capture this
structural change.

1) Normalized Distance Measure: For enabling a scale-
invariant check of the deviation between f̃(x, γ) and f(x, η),
the normalized distance measure

GN (η, γ) =

∫
R

(
f̃(x, γ)− f(x, η)

)2

dx∫
R
f̃(x, γ)2 dx+

∫
R
f(x, η)2 dx

(10)

is employed. Compared to the distance (4), this measure is
more convenient for specifying limits on the allowed deviation
as it ranges between zero and one [13].

2) Component Splitting: Once GN (η, γ) is larger than
Gmax, the progression is stopped and the number of com-
ponents is increased. A straightforward way to introduce new
mixture components is to split existing ones. In doing so, the
most critical component, i.e., the component that is mainly
responsible for the deviation, has to be identified by evaluating
L individual distances

Gi(η, γ) =
∫
R

(
f̃(x, γ)− f(x, η)

)2

· fi(x, ηi) dx ,

where i = 1, . . . , L and fi(x, ηi) = ω2
i · N (x;µi, σ2

i). These
individual distances can be evaluated in closed form and the
component with maximum distance is selected for splitting.

Several possibility arise for performing a split. They differ,
e.g., in number of new components or the parameters of the
new components. Simply reproducing the original component
is not sufficient since the symmetry has to be broken to
facilitate approximating the critical region of the true Gaussian
mixture in different ways [18].

In this paper, splitting a component into two new Gaus-
sians is used, since for two Gaussians a moment-preserving
replacement can be easily guaranteed [11]. Therefore, a com-
ponent ω2 · N (x;µ, σ2) is replaced by ω2

1 · N (x;µ1, σ
2
1) and

ω2
2 · N (x;µ2, σ

2
2), where

ω2 = ω2
1 + ω2

2 ,

µ = ω̄2
1µ1 + ω̄2

2µ2 ,

σ2 = ω̄2
1σ

2
1 + ω̄2

2σ
2
2 + ω̄2

1ω̄
2
2 (µ1 − µ2)2

,

and ω̄2
1 = ω2

1/(ω
2
1 +ω2

2), ω̄2
2 = ω2

2/(ω
2
1 +ω2

2). Throughout the
simulations the parameters

ω2
1 = 0.5ω2 µ1 = 0.5σ + µ σ2

1 = 0.75σ2

ω2
2 = 0.5ω2 µ2 = −0.5σ + µ σ2

2 = 0.75σ2

are used.
3) Component Deletion: During the progression it also

occurs that components of the reduced mixture become neg-
ligible and thus, contribute almost nothing to the approxi-
mation of f̃(x, γ). These components can be identified by
the ratio ω2

i /σ
2
i being close to zero. Deleting them reduces

the complexity of the reduced Gaussian mixture, which in
turn avoids overfitting effects. Furthermore, in cases where
a maximum number of components is specified by the user,
deleting components facilitates splitting operations, especially
when the current number of components in f(x, η) is close to
the maximum.

4) Additional Correction Step: At first, structural adapta-
tions by performing splitting and deletion of mixture compo-
nents introduces an additional error. This error can be reduced
by reapplying the Newton approach derived in Section IV-A.

V. SIMULATION RESULTS

For demonstrating the effectiveness of the proposed pro-
gressive Gaussian mixture reduction (PGMR) algorithm, two
different simulations are conducted. First, the effect of the
deviation bound Gmax on the reduction quality is highlighted.
Additionally, PGMR is compared to state-of-the-art reduction
methods by means of reducing randomly generated Gaussian
mixtures. For improved readability, all deviation values and
bounds are multiplied by a factor 100.

A. Deviation Bound

The true Gaussian mixture f̃(x) consisting of M = 10
components, where the single Gaussians have weighting coef-

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

x →

f̃
(x

),
f
(x

,η
)
→

True
PGMR

Figure 1. True Gaussian mixture (green, solid) and reduced Gaussian
mixture (black, dashed) consisting of 5 components (black, dotted).

ficients, means, and standard deviations according to

ω = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1] ,
µ = [−3.5 − 3 − 1 0 0.5 2 3 3.5 5 5.5] ,
σ = [0.6 0.6 0.6 0.6 0.7 0.7 1 0.5 0.5 0.5] ,

is reduced by PGMR with varying deviation bound Gmax ∈
{0.5, 0.75, 2, 4}. In Table I, the used number of components L
as well as the deviation between the true Gaussian mixture and
its reduced version are listed. The normalized distance mea-
sure (10) is used for quantifying the deviation.

By increasing the maximum deviation value Gmax, the
number of used components decreases as expected. This comes
along with a reduced computation time since less structural
adaptation operations have to be performed for more relaxed
deviation limits. In Fig. 1, the true Gaussian mixture (red,
solid) is depicted together with the reduced Gaussian mix-
ture (blue, dashed) for Gmax = 2. Furthermore, the individual
Gaussian components of f(x, η) are also shown. Considering
the five modes of the true mixture, one might expect that
using also five mixture components would result into a precise
approximation. This is almost true except of the second mode
at x ≈ 0, which cannot be fitted appropriately by a single
Gaussian. Thus, a considerable improvement of the reduction
quality is gained for L = 6. At this point, spending more
components only gives marginal quality improvements.

Table I
NUMBER OF COMPONENTS AND REDUCTION QUALITY FOR DIFFERENT

MAXIMUM DEVIATION VALUES Gmax .

Gmax 0.5 0.75 2 4
Number of components 7 6 5 4

Deviation GN (η, γ) 0.217 0.234 0.917 3.228

As the last row in Table I indicates, the bound Gmax

is always maintained. The bound can be violated, when in
addition to Gmax a limit on L is imposed. For example,
not allowing more than L = 6 for the bound Gmax = 0.5,
results in a deviation GN (η, γ) = 0.896, which indeed is
larger than the bound. However, in many practical applications,
keeping L below a given maximum number of components is
of paramount importance for assuring worst-case computation

time. Thus, with PGMR the user can set preferences on either
a maximum deviation or a maximum number of components.

B. Comparison with State-of-the-art Methods

Now, the PGMR algorithm is compared with two es-
tablished reduction methods. Williams’ reduction algorithm
employs the squared integral measure (4) to evaluate at each
reduction step which particular deletion of a component or
merge of a pair of components yields the smallest dissimilarity
from the true Gaussian mixture [10]. The second method is a
local reduction algorithm proposed by M. West [8]. Here, at
each reduction step the component with the smallest weight is
merged with its nearest neighbor, where the weighted Maha-
lanobis distance [19] is used for determining the neighboring
component.

For comparison purposes, the true Gaussian mixture con-
sists of M ∈ {40, 80, 120, 160, 200} components, where the
parameters are drawn i.i.d. from uniform distributions over the
intervals

ω ∈ [0.05, 0.5] ,
µ ∈ [0, 3] ,
σ ∈ [0.09, 0.5] .

For each number of components M , 20 Monte Carlo simu-
lation runs are performed, where all reduction algorithms are
forced to use L = 10 or less components. For PGMR the
bound Gmax = 1 is selected.

Table II
DEVIATION AND TIME CONSUMPTION OF THE THREE METHODS FOR

REDUCING A MIXTURE WITH A VARYING NUMBER OF COMPONENTS M

Normalized Deviation GN Computation time in s
M PGMR Williams West PGMR Williams West
40 0.620 0.861 5.533 4.171 1.370 0.009
80 0.545 0.949 4.796 3.871 5.588 0.017

120 0.548 0.962 3.944 5.424 14.531 0.028
160 0.589 0.898 4.174 3.957 30.627 0.036
200 0.638 1.029 3.806 4.777 57.923 0.044

In Table II, the average deviations and average computation
times for all M are listed.3 PGMR provides the best average
deviation for each M . This is notable, as PGMR on average
uses between four and five components, while Williams’ and
West’s algorithm, always result in reduced mixtures with 10
components. In Fig. 2, the reduction results for a true mixture
with M = 200 components are depicted. The corresponding
progression is illustrated in Fig. 3. Thanks to the progressive
processing, PGMR is capable of almost exactly capturing the
shape of the true mixture, while Williams’ algorithm fails in
accurately approximating details of the shape as it can be
clearly seen for the second mode. The grossness of West’s
method is even more significant, as it does not incorporate
any shape information when merging components. However,
in contrast to PGMR, both algorithms preserve the mean and
variance of the original mixture (see Section VI).

3The computation times depend on a Matlab 7.5 implementation running
on a PC with an Intel Core2 Duo 2.4 GHz processor.

−1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

x →

f
(x

)
→

True
PGMR
Williams
West

Figure 2. A 200 component Gaussian mixture (green, solid) and its reduced
versions resulting from PGMR (black, dashed), Williams’ algorithm (orange,
dotted), and West’s algorithm (red, solid).

The right hand columns of Table II indicate that the com-
putation time of PGMR is approximately constant for all M ,
while it grows with M for the other algorithms. In case of
West’s algorithm, this growth is negligible, as the algorithm
is generally computationally very efficient due to its local
reduction characteristic.

The constant computation time of PGMR originates from
the different way a mixture is reduced. Regardless of the
number of components of f̃(x), PGMR always starts with
a single Gaussian. The computationally most expensive op-
erations of PGMR are structural adaptations, i.e., extending
the number of components. However, these operations are
only performed if required and handling many components in
f(x, η) is systematically avoided. On the other side, Williams’
and West’s algorithm start the reduction with the complete
original mixture and perform a greedy search involving all
remaining components for identifying the next merging op-
eration in each reduction step. This search basically has a
quadratic complexity in case of Williams’ algorithm4 and a
linear complexity for West’s method.

VI. CONCLUSIONS AND FUTURE WORK

To achieve the goal of replacing a complex Gaussian
mixture by one consisting of a minimal number of compo-
nents with respect to a desired maximum reduction error,
the classical approach of successively merging components
is often inappropriate. In comparison, the novel Gaussian
mixture reduction algorithm introduced in this paper provides
significantly better reduction results. It was demonstrated
that gradually incorporating the effect of the complex true
Gaussian mixture during the progression facilitates accurate
approximations as the reduced Gaussian mixture can be con-
stantly adapted and, if required, its approximation capability at
specific regions can be improved by adding new components.
Compared to local reduction methods, the resulting reduced
mixture is very close to the original since adapting the approx-
imation is accomplished by a global optimization. Compared

4As suggested in [10], our implementation makes use of the fact that all
terms for calculating the measure (4) can be pre-computed and stored. Because
only a few terms change between several reduction steps, partially updating
the stored terms leads to significant computational savings.

f̃
(x

,γ
),

f
(x

,η
)
→

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x →

γ = 0

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x →

γ = 0.33

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x →

γ = 0.66

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x →

γ = 1

True
PGMR

Figure 3. Progression for the Gaussian mixture depicted in Fig. 2. For several values of γ the parameterized mixture f̃(x, γ) and the corresponding reduced
mixture f(x, η) are shown.

to other global approaches, redundancy in the original mixture
is better exploited. Thus, the used number of components and
the computational demand is significantly smaller.

Future work includes the extension to multivariate Gaussian
mixtures. For the most part, this extension is straightforward,
since all terms can still be expressed analytically. However,
splitting components becomes more challenging as the degree
of freedom in the splitting direction drastically grows.

Alternatively to splitting it is intended to provide adding of
completely new components at regions of high deviation. By
directly adding components, the problem of heuristically de-
termining the splitting direction can be avoided and emerging
deviations can be resolved in situ. However, accurately deter-
mining regions of high deviations is difficult, as this problem
is similar to finding modes in a Gaussian mixture, which is
well-known as a demanding optimization problem [20].

Thanks to the shape approximation of the proposed ap-
proach, the deviation between the moments of the original
mixture and the reduced mixture is marginal. However, in
order to provide an exact preservation of mean and variance,
it is intended to incorporate the true moments as further con-
straints. By applying the Lagrangian multiplier approach, these
constraints can then be maintained during the progression.

VII. ACKNOWLEDGEMENTS

This work was partially supported by the German Re-
search Foundation (DFG) within the Research Training Group
GRK 1194 “Self-organizing Sensor-Actuator-Networks”.

APPENDIX

A. Analytical Expression for P(η, γ)

At first, the solution of the first summand in (7) is given,
which is

P′(η) =
∫
R

F (x, η)F (x, η)T dx

=


P(1,1) P(1,2) · · · P(1,L)

P(2,1) P(2,2) · · · P(2,L)

...
...

...
P(L,1) P(L,2) · · · P(L,L)

 .

The individual 3 × 3 block matrices P(i,j) for i = 1, . . . , L
and j = 1, . . . , L are

P(i,j) =
∫
R

∂fi(x, ηi)
∂η

i

(
∂fj(x, ηj)

∂η
j

)T

dx

= ωi ·ωj · N
(
µi;µj , σ2

i,j

)
·

P
(i,j)
1,1 P

(i,j)
1,2 P

(i,j)
1,3

P
(i,j)
2,1 P

(i,j)
2,2 P

(i,j)
2,3

P
(i,j)
3,1 P

(i,j)
3,2 P

(i,j)
3,3

 ,

with fi(x, ηi) := ω2
i · N (x;µi, σ2

i), σ2
i,j := σ2

i + σ2
j and

P
(i,j)
1,1 = 4 ,

P
(i,j)
1,2 = 2ωj

µi−µj

σ2
i,j

,

P
(i,j)
1,3 = 2ωjσj

(µi−µj)2−σ2
i,j

σ4
i,j

,

P
(i,j)
2,1 = 2ωi

µj−µi

σ2
i,j

,

P
(i,j)
2,2 = ωiωj

σ2
i,j−(µi−µj)2

σ4
i,j

,

P
(i,j)
2,3 = ωiωjσj

(µj−µi) · ((µi−µj)2−3σ2
i,j)

σ6
i,j

,

P
(i,j)
3,1 = 2ωiσi

(µi−µj)2−σ2
i,j

σ4
i,j

,

P
(i,j)
3,2 = ωiωjσi

(µi−µj) · ((µi−µj)2−3σ2
i,j)

σ6
i,j

,

P
(i,j)
3,3 = ωiωjσiσj

(µi−µj)4+3σ2
i,j(σ2

i,j−2(µi−µj)2)
σ8

i,j
.

The expression for ∆P(η, γ) is given by

∆P(η, γ) =
∫
R

(
f(x, η)− f̃(x, γ)

)
M(x, η) dx , (11)

where

M(x, η) =
∂2f(x, η)
∂η ∂ηT

=


M(1) 0 · · · 0

0 M(2) 0
...

. . .
...

0 · · · 0 M(L)

 ,

with 3× 3 block matrices

M(i) = 2 · fi(x, ηi) ·
1
ω2

i

x−µi

ωiσ2
i

(x−µi)
2−σ2

i

ωiσ3
i

x−µi

ωiσ2
i

(x−µi)
2−σ2

i

2σ4
i

(x−µi)
3−3σ2

i (x−µi)

2σ5
i

(x−µi)
2−σ2

i

ωiσ3
i

(x−µi)
3−3σ2

i (x−µi)

2σ5
i

(x−µi)
4−5σ2

i (x−µi)
2+2σ4

i

2σ6
i

 .

Thus, solving (11) corresponds to calculating the zeroth up to
the forth moment of the Gaussian mixtures f(x, η) · fi(x, ηi)
and f̃(x, γ) · fi(x, ηi), similarly as shown in the following for
b(η, γ).

B. Analytical Expression for b(η, γ)
The expression for the vector

b(η, γ) =
∫
R

F (x, η)
∂f̃(x, γ)
∂γ

dx

consists of the vector of partial derivatives F (x, η), which
comprises the elements

∂f(x, η)
∂η

i

= fi(x, ηi)


2
ωi

x−µi

σ2
i

(x−µi)
2−σ2

i

σ3
i

 .

Together with the scalar function

∂f̃(x, γ)
∂γ

= f̃(x)− f̂(x) ,

the i-th element of b(η, γ) is given by

bi(ηi, γ) =
∫
R

(
f̃(x)− f̂(x)

)
fi(x, ηi)


2
ωi

x−µi

σ2
i

(x−µi)
2−σ2

i

σ3
i

dx (12)

=


2
ωi

0 0
− µi

σ2
i

1
σ2

i
0

µ2
i−σ

2
i

σ3
i

− 2µi

σ3
i

1
σ3

i


︸ ︷︷ ︸

=:Bi

·

 EF̃i{1} − EF̂i{1}
EF̃i{x} − EF̂i{x}

EF̃i{x2} − EF̂i{x2}

 .

Thus, b(η, γ) can be efficiently calculated using matrix-vector
calculus, where the vector comprises the zeroth up to the
second moment of the densities F̃ i(x) = f̃(x) · fi(x, ηi) and
F̂ i(x) = f̂(x) · fi(x, ηi). All moments can be determined in
closed form and EF̃i as well as EF̂i are the corresponding
expected value operators.

C. Analytical Expression for h(η, γ)
The gradient h(η, γ) of the squared integral distance mea-

sure comprises the elements

hi(η, γ) = −
∫
R

(
f̃(x, γ)− f(x, η)

)
·
∂f(x, η)
∂η

i

dx , (13)

for i = 1, 2, . . . , L, which are quite similar to (12). Hence,
(13) can also be written in matrix-vector notation

hi(η, γ) = Bi ·

 EFi{1} − EF̃i{1}
EFi{x} − EF̃i{x}

EFi{x2} − EF̃i{x2}

 ,

with F i(x) = f(x, η) · fi(x, ηi), F̃ i(x) = f̃(x, γ) · fi(x, ηi).

REFERENCES

[1] Y. Bar-Shalom and X.-R. Li, Multitarget-multisensor Tracking: Princi-
ples and Techniques. YBS Publishing, Storrs, CT, 1995.

[2] V. Hasselblad, “Estimation of Parameters for a Mixture of Normal
Distributions,” Technometrics, vol. 8, no. 8, pp. 431–444, Aug. 1966.

[3] E. Parzen, “On Estimation of a Probability Density Function and Mode,”
The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076,
Sep. 1962.

[4] D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian Estimation
using Gaussian Sum Approximation,” IEEE Transactions on Automatic
Control, vol. 17, no. 4, pp. 439–448, Aug. 1972.

[5] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active Learning with
Statistical Models,” Journal of Artificial Intelligence Research, vol. 4,
pp. 129–145, 1996.

[6] D. J. Salmond, “Mixture reduction algorithms for target tracking,” in IEE
Colloquium on State Estimation in Aerospace and Tracking Applications,
London, UK, Dec. 1989, pp. 7/1–7/4.

[7] ——, “Mixture reduction algorithms for target tracking in clutter,” in
Proceedings of SPIE Signal and Data Processing of Small Targets, vol.
1305, Oct. 1990, pp. 434–445.

[8] M. West, “Approximating Posterior Distributions by Mixtures,” Journal
of the Royal Statistical Society: Series B, vol. 55, no. 2, pp. 409–422,
1993.

[9] O. C. Schrempf, O. Feiermann, and U. D. Hanebeck, “Optimal Mixture
Reduction of the Product of Mixtures,” in Proceedings of the 8th
International Conference on Information Fusion (Fusion 2005), vol. 1,
Philadelphia, Pennsylvania, Jul. 2005, pp. 85–92.

[10] J. L. Williams and P. S. Maybeck, “Cost-Function-Based Gaussian
Mixture Reduction for Target Tracking,” in Proceedings of the Sixth
International Conference of Information Fusion, vol. 2, 2003, pp. 1047–
1054.

[11] A. R. Runnalls, “Kullback-Leibler Approach to Gaussian Mixture Re-
duction,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 43, no. 3, pp. 989–999, Jul. 2007.

[12] E. L. Allgower and K. Georg, Numerical Continuation Methods:
An Introduction, ser. Springer Series in Computational Mathematics.
Springer-Verlag, 1990.

[13] U. D. Hanebeck, K. Briechle, and A. Rauh, “Progressive Bayes: A New
Framework for Nonlinear State Estimation,” in Proceedings of SPIE,
AeroSense Symposium, vol. 5099, Orlando, Florida, May 2003, pp. 256–
267.

[14] D. E. Catlin, Estimation, Control, and the Discrete Kalman Filter,
1st ed., ser. Applied Mathematical Sciences. New York: Springer-
Verlag, 1989, vol. 71.

[15] A. J. Izenman, “Recent developments in nonparametric density estima-
tion,” Journal of the American Statistical Association, vol. 86, no. 413,
pp. 205–224, Mar. 1991.

[16] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” Annals
of Mathematical Statistics, vol. 22, no. 2, pp. 79–86, 1951.

[17] O. C. Schrempf, D. Brunn, and U. D. Hanebeck, “Dirac Mixture Density
Approximation Based on Minimization of the Weighted Cramér-von
Mises Distance,” in Proceedings of the 2006 IEEE International Con-
ference on Multisensor Fusion and Integration for Intelligent Systems
(MFI 2006), Heidelberg, Germany, Sep. 2006, pp. 512–517.

[18] M. J. Beal, “Variational Algorithms for Approximate Bayesian Infer-
ence,” Ph.D. dissertation, Gatsby Computational Neuroscience Unit,
University College London, 2003.

[19] P. Mahalanobis, “On the generalised distance in statistics,” Proceedings
of the National Institute of Science of India, vol. 12, no. 1, pp. 49–55,
1936.

[20] M. A. Carreira-Perpinán, “Mode-Finding for Mixtures of Gaussian
Distribution,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 11, pp. 1318–1323, Nov. 2000.

