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Abstract—State estimation and reconstruction quality of dis-
tributed phenomena that are monitored by a network of dis-
tributed sensors is strongly affected by communication failures,
which is a problem in real-world sensor networks. In this paper,
we propose a novel sensor scheduling approach named priority
list sensor scheduling (PLSS). This approach facilitates efficient
distributed estimation in sensor networks, even in case of unreli-
able communication, by prioritizing the sensor nodes according
to local sensor schedules based on the predicted estimation
error. It is shown that PLSS minimizes the expected estimation
error for arbitrary packet-loss or transmission probabilities.
As prioritizing sensor nodes requires the calculation of several
sensor schedules, a novel pruning algorithm that preserves
optimal schedules is also derived in order to significantly reduce
the computational demand. This is accomplished by exploiting
the monotonicity of the Riccati equation and the information
contribution of individual sensor nodes in combination with a
branch-and-bound technique.
Keywords: Sensor scheduling, communication failures,
Kalman filtering, optimal pruning.

I. INTRODUCTION

Advances in miniaturization, wireless communication, and
sensor technologies facilitate the usage of large scale sensor
networks for monitoring physical phenomena including, e.g.,
environmental monitoring, structural monitoring of buildings,
and surveillance tasks [1]. For a meaningful and detailed
view on the phenomenon, an intelligent processing of the
data provided by the distributed sensor nodes is essential. To
increase the operational lifetime of the sensor network, the
measurement rate should be as low as possible, which leads to
a decrease in information gain and consequently in estimation
accuracy.

Sensor scheduling, which is also referred to as sensor
selection or sensor management, is a promising solution to
this trade-off. A sensor schedule specifies a time sequence
of sensor nodes to be allocated for performing future mea-
surements. The problem of determining such sensor schedules
can be formulated as a stochastic control problem, where the
sensor identity is the control variable affecting the quality
of observations and the estimation process of the monitored
phenomenon. Solving the control problem involves optimiza-
tion of expected scheduler costs over time, where the sensors
are treated jointly for improved estimation results [2]. Typical
cost functions employed for sensor scheduling are based on

information theoretic measures [3], [4] or on scalar functions
of the error covariance matrix of the state estimate [5], [6].

In this paper, we assume that the phenomenon monitored
by the network of sensors is described by means of a linear
stochastic dynamic system. For such systems and for quadratic
cost functions, a separation principle holds, i.e., the sensor
schedule can be determined independently of the system
control policy and independently of the measurements [7]. The
optimal sensor schedule results from off-line performing a tree
search.

Due to the distributed nature of sensor networks, the pre-
viously mentioned scheduling algorithms are less applicable:
Scheduling has to be performed in a distributed way to ensure
scalability, measurements and estimates have to be transmit-
ted using wireless communication, which is to some degree
unreliable. Thus, the communication network has to be taken
into account when calculating sensor schedules. Concerning
this matter, some results exist for information-directed routing
[8] as well as for greedy scheduling heuristics in terms of
time-delays [9] and deterministic systems [10]. The effect
that sensors are currently not available or reachable due to
transmission failures is not considered so far. Such failures
directly affect the feasibility of the calculated sensor schedule;
adequate rescheduling strategies become inevitable.

The proposed sensor scheduling approach, named priority
list sensor scheduling (PLSS), extends classical approaches
as it considers the unreliable communication network when
selecting sensors for measurement. For selection purposes, a
priority list is constructed based on the optimal local sensor
schedules of the individual sensor nodes. Determining optimal
schedules for prioritization is accomplished by minimizing
a scalar cost function that is based on the error covariance
of the system state. With a given prioritization, selecting
valuable sensors is possible even if some nodes are currently
unavailable due to communication failures. Within PLSS, pri-
oritization and state estimation is accomplished in a distributed
way. Thus, costly transmissions to a fusion center are avoided
and additional robustness is achieved.

One key contribution of this paper is the analysis of the
proposed scheduling scheme in consideration of the underlying
communication network. Assuming a random graph, it is
shown that selecting sensors according to the priority list
minimizes the expectation over the predicted estimation error.



In order to prioritize the sensor nodes, several optimal sen-
sor schedules have to be determined. Since sensor scheduling
can be interpreted as resource allocation problem, determining
optimal schedules over finite time-horizons is NP-hard. To
deal with this complexity, many approximate algorithms with
reduced computational demand have been proposed. Greedy
or myopic scheduling algorithms only calculate the one-step-
ahead solution [11], [12]. Another way is to employ pruning
techniques for reducing the size of the search tree. Existing
pruning techniques range from suboptimal methods, where
conserving the optimal schedule is not guaranteed (see e.g.
[13], [14]), but drastic savings in computational demand are
possible, to optimal methods, where potentially many com-
plete schedules have to be computed [3], but deleting the
optimal schedule is impossible.

To avoid the high computational load of determining op-
timal schedules for prioritization purposes, a novel optimal
pruning algorithm is also introduced in this paper. In contrast
to existing methods typically based on branch-and-bound tech-
niques, the so-called sensor information matrix is exploited.
This matrix represents the information contribution of a sensor
and implies a partial order on the sensors. Together with
the monotonicity of the Riccati equation, complete schedules
can be pruned early, while preserving the optimal schedule
is guaranteed. It is also shown that the proposed pruning
algorithm can be used in combination with existing branch-
and-bound techniques.

In the next section, the problem of sensor scheduling for
linear systems is formulated and a short review of the Riccati
equation is given. The remainder of the paper is structured
as follows. In Section III, the priority list sensor scheduling
scheme is described, while its theoretical discussion is part
of Section IV. The optimal pruning algorithm is derived in
Section V. An example application from the field of vehicle
tracking is used in Section VI to demonstrate the effectiveness
of PLSS and optimal pruning by means of numerical simu-
lations. The paper closes with conclusions and an outlook to
future work.

II. PROBLEM FORMULATION

This paper focuses on efficiently estimating the state of
a physical phenomenon via a sensor network in discrete
time within a finite state space. Generally, the phenomenon
can be described by means of a set of (stochastic) partial
differential equations. Thus, throughout the paper it is assumed
that a spatial and temporal discretization of the model of the
phenomenon is already given (for details see e.g. [15]).

A. System and Sensor Model

The temporal behavior of the monitored phenomenon is de-
scribed by the linear discrete-time stochastic system equation

xk+1 = Akxk + Bkwk .

Here, the state vector xk comprises the state variables to be
estimated at discrete time steps k = 0, 1, . . . , N − 1, where
N is the estimation time horizon. Ak ∈ R(n×n) and Bk ∈

R(n×m) are real-valued matrices, wk is white Gaussian noise
with covariance matrix Cw

k , and the initial state vector x0 is
also Gaussian with mean x̂0 and covariance matrix Cx

0 .
For updating the state estimate, measurements obtained by

S sensors are used. Each sensor i ∈ {1, . . . , S} is described
by the linear discrete-time stochastic measurement equation

ŷi
k

= Hi
kxk + vik ,

where ŷi
k
∈ Rs is the current measurement, Hi

k ∈ R(s×n)

is the real-valued time-variant measurement matrix, and vik
is zero-mean white Gaussian noise with positive definite
covariance matrix Cv,i

k affecting sensor i. It is assumed that
for i 6= j, vik and vjk are uncorrelated. Furthermore, Ak, Bk,
Cw
k , Hi

k and Cv,i
k are known to all sensors.

If sensor i takes a measurement at time step k, the covari-
ance of the observed system evolves according to the recursive
algebraic Riccati equation

Cx
k+1(i) = AkCx

kA
T
k + BkCw

kBT
k −AkKi

kH
i
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x
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T
k , (1)

with gain Ki
k = Cx

k(H
i
k)

T
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kC

x
k(H

i
k)

T + Cv,i
k

)−1

, as in
the well-known Kalman filter [16].

B. Sensor Scheduling

Given the covariance matrix Cx
0 of the initial system state

x0, the optimal sensor sequence

u∗0:N−1 = arg min
u0:N−1

V (u0:N−1) , (2)

when selecting one sensor per time step, results from mini-
mizing the function of the predicted estimation error1

V (u0:N−1) =
N−1∑
k=0

g
(
Cx
k+1(u0:k)

)
, (3)

with Cx
k+1(u0:k) according to (1) when applying the sensor

sequence u0:k = [u0, u1, . . . , uk] to Cx
0 , where un is the

n-th element of u0:k indexing the sensor to be selected for
measurement at time step n. The scalar function g( · ) in (3)
is used to quantify the size of the error covariance, where the
trace or the determinant of Cx

k+1(u0:k) are typical choices.
The extension to multiple measurements per time step is
straightforward [6].

With (2), a discrete optimization problem is given, where
the function of the predicted estimation error is optimized
over a finite set of possible sensor schedules and over a
finite time horizon. It is worth mentioning that (3) can be
evaluated without knowledge of the actual measurement ŷi

k
of sensor i. However, the covariance matrix is a function
of the sensor schedule. So, with the assumption that the
current estimate x̂k with covariance matrix Cx

k of xk can be
successfully transmitted over the sensor network, the optimal
sensor sequence can be determined off-line by an exhaustive
tree search [7], since all possible sensor schedules form a path
in a tree with depth N .

1The terms predicted estimation error and estimation error are used inter-
changeably throughout the paper.



Distributed sensor scheduling can easily be carried out in
case of no communication failures. Initially, at time step k = 0,
the so-called leader node s, i.e., the sensor node responsible
for calculating the current estimate, can be determined directly
in a distributed manner, since any sensor node knows the
measurement matrix and noise of any other sensor. After
performing the measurement, the leader node can hand over
the leader role and thus, the updated state estimate to the next
sensor of the sensor schedule u∗0:N−1 and so forth.

In sensor networks, communication is typically carried out
over a wireless medium. Thus, the assumption of always
successfully transmitting the estimates is no longer valid. The
communication link between two sensors is unreliable, i.e.,
the packet containing the current estimate may be dropped.
In literature, this effect has not been considered so far when
scheduling sensors for measurement.

III. PRIORITY LIST SENSOR SCHEDULING (PLSS)

For the typical case of a wireless communication between
the sensors, it is possible that some sensors of the optimal
sensor schedule u∗0:N−1 are currently unavailable. To deal with
this fact, several options arise: The measurement update for
the current time step can be omitted or another sensor can
be selected for measurement. In the following, we present
a scheduling scheme that gives a practical solution to this
problem, while theoretical investigations are the content of
Section IV.

A. Network Model

The communication network of the sensors is modeled by
means of a random directed graph G with S vertices (see e.g.
[17]). An edge, i.e., a communication link from sensor i to
sensor j, is established randomly and independently of other
edges with probability ci,jk ∈ [0, 1]. In the following, ci,jk is
denoted as probability of successful transmission (short: trans-
mission probability). These probabilities are not known to the
sensor nodes and do not change in-between two consecutive
time steps k and k + 1.

In some cases, the current estimate of the system state xk is
processed without communication. It remains at the currently
selected sensor. Such self-loops in G have probability ci,ik = 1.

B. Scheduling Scheme

The key idea of the proposed distributed sensor scheduling
approach is to provide a prioritization of the sensors. The
sensor with the highest priority at time step k + 1 is the
first sensor of the sensor schedule with the overall minimum
estimation error during time horizon N . The sensor with
the second highest priority is the first sensor of the sensor
schedule with the second lowest estimation error and so on.
As illustrated in Fig. 1, at time step k the priority list for S = 2
sensors is calculated (framed by rounded box) by determining
the optimal schedules u∗,1k+1:N−1 and u∗,2k+1:N−1 beginning with
sensor uk+1 = 1 and uk+1 = 2, respectively. If the sensor
schedule starting with uk+1 = 1 has the lowest cost, then
sensor 1 is the sensor with highest priority and the priority
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Figure 1. Priority list determination for two sensors.

list is Pk = [1, 2]. Otherwise, sensor 2 is the sensor with the
highest priority and the priority list is Pk = [2, 1].

In the proposed priority list sensor scheduling (PLSS)
algorithm for any time step k, three operations have to be
performed:

1. Priority List Calculation For each sensor i its so-called
optimal local sensor schedule u∗,ik+1:N−1 with uk+1 = i is
calculated according to (3). Ranking the sensors in ascending
order with respect to the function of the estimation error
V i
k+1 := V (u∗,ik+1:N−1) yields the priority list

Pk = [p1
k, p2

k, . . . , pSk ] , (4)

where pjk = arg mini{V i
k+1|i ∈ {1, . . . , S}\{p1

k, . . . , p
j−1
k }}.

All these calculations take place at leader node s, which was
selected at time step k − 1 for performing the measurement.

2. Reachability Check Leader node s requests one sensor at
a time according to its rank in the priority list Pk and waits for
its response. Requesting the sensors stops once the currently
requested sensor responds.

3. Sensor Selection Sensor s hands over the leader role
and thus the current state estimate x̂k as well as the state
covariance Cx

k to this sensor.
At time step k + 1, the operations described above are

repeated until the end of the time horizon is reached. It is
obvious that in case of a transmission without packet losses,
the sensor sequence resulting from the priority list approach is
identical to the well-known solution neglecting communication
constraints.
Remark 1 Alternatively to requesting one sensor at a time
during the reachability check, the current leader node could
broadcast the request into the network and wait for response.

IV. MINIMIZING THE EXPECTED ESTIMATION ERROR

The intention of PLSS is to indirectly include information
about the communication network when performing the reach-
ability check rather than utilizing the transmission probabili-
ties. This is motivated by the fact that existing methods for
determining transmission probabilities are inadequate. While
estimating the probabilities by using models of the communi-
cation channel or sensor movement is fairly complex [18],



measuring the probabilities, e.g., by counting successfully
transmitted packets leads to imprecise results.

A. Expected Estimation Error

By requesting the sensors according to the priority list (4),
the first sensor of the currently best reachable local sensor
schedule is selected for measurement. This procedure mini-
mizes the expected cost or expected estimation error

E{V (uik+1:N−1)} , (5)

where E{ · } is the expectation with respect to the one-
step transmission probabilities cs,ik . The following theorem
summarizes this finding.

Theorem 1 (PLSS minimizes (5))
PLSS minimizes the expected estimation error without being
aware of the transmission probabilities cs,ik .

PROOF. The idea for proving this result is to show that any
arbitrary ranking of sensor nodes can be reordered into the
ranking of the priority list. This reordering is performed by
first shifting the sensor with the highest cost to the end of
the sensor list. Then, the sensor with the second highest cost
is shifted to the second to last position and so. All shift
operations correspond to a successive and monotonic reduction
of the expected estimation error until the minimum of the
priority list ranking is reached.

Without loss of generality, the arbitrary ranking of sensor
nodes is given by the list [1, 2, . . . , S], where the leader node
can be an arbitrary node. Furthermore, the time index k and the
index s of the leader node are omitted for improved readability.
With the transmission probabilities ci := cs,i, the expected
estimation error is

E{V (uik+1:N−1)} =
S∑
i=1

i−1∏
j=1

(1− cj)

 · ci ·V i . (6)

When shifting the sensor i with the highest estimation error V i

toward its position in the priority list, sensor i’s position has
to be interchanged with its right neighbor i + 1. The resulting
list will be [1, 2, . . . , i − 1, i + 1, i, i + 2, . . . , S]. In the next
step, the position of sensor i is interchanged with sensor i+2
and so on. We will now show, that interchanging positions
between sensor i and i + 1, where V i ≥ V i+1, successively
reduces the expected estimation error. Here, the fact is used
that interchanging two neighboring sensors only affects the
summands i and i + 1 in (6), i.e., we can disregard all other
summands. Before interchanging the sensors, the variant part
in (6) is

i−1∏
j=1

(1− cj) ·
(
ci ·V i + (1− ci) · ci+1 ·V i+1

)
, (7)

and after interchanging we have

i−1∏
j=1

(1− cj) ·
(
ci+1 ·V i+1 + (1− ci+1) · ci ·V i

)
. (8)

Subtracting (8) from (7) leads to
i−1∏
j=1

(1− cj) ·
(
ci · ci+1 ·V i − ci · ci+1 ·V i+1

)
,

which is non-negative since V i ≥ V i+1 and cj ∈ [0, 1].
This holds for any initial sensor ranking. The minimization
of (5) only depends on the cost values V i and not on specific
transmission probabilities. �

The result of Theorem 1 can be interpreted as follows: As
long as the reachability of the sensors can be checked, the
sensor nodes should by requested or selected according to their
estimation error. This maximizes the chance to continue with
the best local sensor schedule. Thus, PLSS provides a practical
method for minimizing the estimation error under unreliable
communication without utilizing computationally expensive
but often imprecise methods for determining transmission
probabilities. Furthermore, PLSS is generally applicable, since
other effects like sensor breakdowns or topology changes can
be directly handled.

B. Optimal Schedule

Applying PLSS and thus minimizing the expected estima-
tion error allows for the randomness of communication fail-
ures. However, there is a gap between the resulting schedule of
PLSS and the best possible, i.e., optimal schedule. If at most at
one time step within the time horizon communication failures
occur or only one sensor per time step is reachable, PLSS
generates sensor schedules with minimum estimation error. In
all other cases, it is not guaranteed that the schedule of PLSS
is optimal. Optimal schedules in cases of random communi-
cation failures can only be calculated, if the occurrence of
all communication failures and thus the reachability of each
sensor at any time step is known a priori. Thus, an algorithm
calculating optimal schedules is acausal and thus impractical,
since it depends on future knowledge of the communication
network. In Example 1, the difference between acausal optimal
scheduling and PLSS is demonstrated.

Example 1 (Acausal Scheduling vs. PLSS)
In this example, a two-dimensional time-invariant system char-
acterized by the matrices A = 1.5 · I, B = I and Cw = I, where
I is the identity matrix, is observed for N = 2 time steps. The
initial system state x0 has the mean x̂0 = [0, 0]T and covariance
matrix Cx

0 = I. Three sensors are used for observation, with
measurement matrices

H1 =

[
1 1
0 0

]
, H2 =

[
1 0
0 1

]
, H3 =

[
0 0
1 1

]
,

and noise covariances Cv,1 = 0.5 · I, Cv,2 = 1.5 · I and Cv,3 =
0.1 · I. The trace is used for g( · ) in (3).

Assuming that at the first time step only sensor two and
three and in the second time step only sensor one and three
are reachable, it can be seen in Fig. 2 that PLSS results in
an estimation error of 13.8, while the acausal schedule has a
value of 12.1. At the first time step PLSS constructs the priority
list P0 = [3, 1, 2], since the schedule 3, 2 is optimal in case of
no communication errors, the next best schedule is 1, 2. Since
sensor two is not reachable at the next time step, the schedule
2, 3 becomes optimal.
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Figure 2. Difference between optimal schedule (green, sequence 2, 3) and
PLSS (red, dotted, sequence 3, 3).

V. OPTIMAL PRUNING

When calculating the priority list, searching each tree of a
sensor for the optimal local sensor scheduling is required. If all
possible sensor sequences are considered to yield the optimal
schedule, the complexity of searching grows exponentially
with the length of the time horizon N . The increase in
complexity can be reduced by employing pruning techniques.
Here, sub-trees are disregarded from the search, if they do
not contain the optimal schedule. The computational demand
can be drastically reduced if the identification of sub-trees that
contain only suboptimal schedules occurs as early as possible.

In the following, a novel optimal pruning technique by
employing the so-called sensor information matrix and the
monotonic character of the Riccati equation (1) is introduced,
where sub-trees are pruned without explicitly evaluating the
Riccati equation. Furthermore, branch-and-bound techniques
can be easily included, which leads to further savings in
computation and improvement in pruning performance.

A. Sensor Information Matrix

For the sake of clarity and brevity it is assumed that Ak = I
and Bk = 02. Hence, the Riccati equation corresponds exactly
to the measurement update step of the Kalman filter and the
information form is given by [19](

Cx
k+1

)−1 = (Cx
k)
−1 + HT

k (Cv
k)
−1 Hk ,

where
(
Cx
k+1

)−1
is the Fisher information matrix. This

equation can be interpreted as gain of information over xk
when performing a measurement. In this context the matrix
Mk := HT

k (Cv
k)
−1 Hk is denoted as sensor information

matrix.

Theorem 2 (Order of Sensor Information Matrices)
Given the covariance matrix Cx

k and the sensor information
matrices Mi

k and Mj
k of the two sensors i and j such that

Mi
k �Mj

k , (9)

i.e., Mi
k − Mj

k is positive semi-definite, then Cx
k+1(i) �

Cx
k+1(j).

2This assumption corresponds to a static system.

PROOF. Multiplying both sides of (9) from left with Cx
k ,

adding the identity matrix I, inverting both sides, applying
the matrix inversion lemma [19]

(A + BC)−1 = A−1 −A−1B
(
I + CA−1B

)−1
CA−1

and multiplying both sides from right with Cx
k yields

Cx
k+1(i) � Cx

k+1(j). �
So far, we know that if it is possible to determine the

order (9) between two sensors i and j, selecting sensor i
provides a smaller covariance at time step k + 1. Due to the
monotonic character of the Riccati equation this result is also
true for all time steps n ≥ k.

Theorem 3 (Monotonicity of Riccati Equation)
Given two covariance matrices Cx

k and C̃x
k with Cx

k � C̃x
k ,

applying the Riccati equation (1) for sensor uk ∈ {1, . . . , S}
results in

Cx
k+1 � C̃x

k+1 .

PROOF. A proof can be found in [6], Lemma 2. �
Thus, selecting arbitrary sensors does not effect an existing

order of covariance matrices. This holds also for arbitrary
sensor sequences.

Corollary 1
Given two covariance matrices Cx

k and C̃x
k with Cx

k � C̃x
k ,

∀uk:n, n ≥ k exists a sensor sequence ũk:n such that

Cx
n+1 � C̃x

n+1 .

PROOF. Due to Theorem 3, at least the sensor sequence uk:n =
ũk:n yields Cx

n+1 � C̃x
n+1. �

Together with the following lemma the optimal pruning
technique based on the sensor information matrix can be
formulated. For a proof of the lemma see [20].

Lemma 1 Suppose that Cx
k � C̃x

k , then trace(Cx
k) ≥

trace(C̃x
k) and |Cx

k| ≥ |C̃x
k|.

Corollary 2 (Information-Based Pruning (IBP))
Suppose that the covariance matrix Cx

k(u0:k−1) for the sensor
sequence u0:k−1 is given at time step k. If for two sensors uk
and ũk

Muk

k �Mũk

k ,

then V ≥ Ṽ for any sequence uk+1:N−1, where V :=
V (u0:N−1) and Ṽ := V ([u0:k−1, ũk, uk+1:N−1]).

PROOF. Follows directly from Theorem 2 and Corollary 1. �
Thus, without evaluating the Riccati equation and only by

comparing the sensor information matrices it can be decided
that only sensor ũk needs to expanded for determining the
optimal schedule, while the sub-tree of sensor uk can be
pruned. In the following example, the effectiveness of the
proposed optimal scheduling scheme is illustrated.



Example 2 (Pruning based on Sensor Information Matrices)
We consider the system from Example 1. The sensor informa-
tion matrices of the three sensors are

M1 =

[
2 2
2 2

]
, M2 =

[
2/3 0
0 2/3

]
, M3 =

[
10 10
10 10

]
.

It follows that M3 � M1, while all other comparisons do not
result in positive semi-definite differences. Due to the time-
invariance of the system, sensor 1 never needs to be considered
for determining the optimal schedule. The tree in Fig. 2 is
reduced to 7 nodes.

B. Order of Sensors

When comparing sensor information matrices (or equi-
valently covariance matrices), the difference is in some cases
indefinite, i.e., it is not determinable, if one sensor information
matrix is “larger” than another (see M1 and M2 in Exam-
ple 2). This is due to the fact that the order relation � of
positive semi-definite matrices leads to partial orders. Thus,
in general, not all sensors can be pruned at a specific time
step.

There is one exception in case of scalar systems. Here, the
partial order becomes a total order. Per time step, it is now
possible to prune all sensors except of one, which is equivalent
to selecting the sensor that minimizes the covariance at each
time step. This greedy strategy leads automatically to the
optimal sensor schedule. Similar results can be found in [21]
for the case of multiple scalar systems observed by one sensor.

C. Branch & Bound

Applying the proposed pruning technique leads to a signif-
icant reduction of possible sensor schedules. However, due to
the partial order, the remaining number of nodes in the search
tree may still be large. To further prune the tree, the proposed
technique is combined with branch-and-bound (B&B) pruning
algorithms. B&B pruning is common for classical problems
like traveling-salesman or resource allocation. Here, we use
the B&B algorithm proposed in [3], where sub-trees not yet
evaluated are bounded from below by the estimation error of
their root node. This bound is also valid here, since (3) is
cumulative with non-negative summands.

Combining B&B and the sensor information matrix based
pruning yields the information-based pruning* (IBP*) algo-
rithm (see Algorithm 1). Here, a node i is pruned, if its sensor
information matrix is smaller than the sensor information
matrix of an other node j or its estimation error value V (i)
(calculated using (3)) is larger than the error value VB of the
currently best, completely evaluated schedule. Otherwise, the
node i is expanded (lines 6–14). If the algorithm completes
a schedule whose estimation error is less than VB , then VB
is set to this error value (line 1–2). For accelerating the
decrease of the bounding value VB and thus for improving
the pruning performance, the sensors are sorted in ascending
order according to the error values V (i) (line 10).

VI. SIMULATION RESULTS

To illustrate the effectiveness of the proposed priority list
sensor scheduling scheme and the optimal pruning algorithm,

Algorithm 1 IBP*(u), where u is the currently expanded
sensor node. Initially, the best error bound is set to VB =∞.

1: if k = N and V (u) ≤ VB then
2: VB ← V (u)
3: else
4: U ← child(u) // Children of sensor u
5: L← ∅ // List of sensors to expand
6: for i, j ∈ U do
7: if M i �M j then L← L ∪ {i}
8: end if
9: end for

10: L← sort(L)
11: for all sensors i ∈ L do
12: if V (i) < VB then IBP*(i)
13: end if
14: end for
15: end if

numerical simulations from the field of vehicle tracking are
conducted. The state xk = [xk, ẋk, yk, ẏk]T of the vehicle
comprises the two-dimensional position [xk, yk]T and the
velocities [ẋk, ẏk]T in x and y direction, while the system
model is given by

xk+1 = Axk + wk ,

where system matrix and noise covariance matrix of wk are

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , Cw
k = q ·


T 3

3
T 2

2 0 0
T 2

2 T 0 0
0 0 T 3

3
T 2

2

0 0 T 2

2 T

 ,

resulting from converting the stochastic ordinary differential
equation of the vehicle into a discrete-time model [5], [22].
Here, T = 1 s is the sampling interval and q = 0.1 is the
scalar diffusion strength. The mean vector and the covariance
matrix of the initial state x0 are x̂0 = [0, 1, 0, 1]T and Cx

0 = I,
respectively.

A sensor network consisting of 6 sensors with measurement
matrices

H1 = H3 =
[
1 0 0 0

]
, H2 = H5 =

[
0 0 1 0

]
,

H4 =
[
0 0 0 1

]
, H6 =

[
0 1 0 0

]
and noise covariances Cv,1 = 0.2 · I, Cv,2 = Cv,3 = 0.1 · I,
and Cv,4 = Cv,5 = Cv,6 = 0.05 · I is used. The sensors are
placed in a square [0, 20] m×[0, 20] m according to Fig. 3 (a).

A. Optimal Pruning

At first, the effectiveness of the proposed pruning scheme
is demonstrated. Three scheduling algorithms are utilized for
determining the optimal sensor schedule:

Full: Scheduling by means of an exhaustive tree search
without any pruning.

Information-based pruning (IBP): Scheduling utilizing
pruning according to Corollary 2.
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Figure 3. (a) Sensor placement. (b) Transmission probabilities.

Information-based pruning* (IBP*): Combines IBP with
B&B techniques according to Algorithm 1.

Table I
NUMBER OF EXPANDED NODES AND COMPUTATION TIME.

Full IBP IBP*
# expanded nodes 55986 5460 144

time in s 185.38 3.94 0.37

The time horizon is set to N = 6 and no communication
failures are assumed. As shown in Table I, by using the sensor
information matrix for pruning, the number of expanded nodes
during the calculation of the optimal schedule is reduced by a
factor of 10 compared to an exhaustive tree search. The savings
in computation time are greater, which is essential for sensor
networks consisting of less capable sensor nodes. A further
reduction in the number of expanded nodes and computation
time is achieved by additionally employing B&B techniques.
Here, the IBP can be interpreted as a preselection on candidate
schedules, since it always prunes schedules containing sensor
1 and 2, while B&B further thins out this candidate set.
Finally, the optimal sensor sequence is given by u∗0:N−1 =
[4, 6, 5, 3, 5, 3].

Although the presented pruning scheme finds the optimal
schedule very early, it is not aware of it. Thus, all sensor
sequences that cannot be pruned have to be evaluated for
determining the optimal schedule with certainty. This fact
leaves enough space for further improving the pruning perfor-
mance. For example finding better bounds than the admittedly
conservative bound used here is one way.

B. Priority List Sensor Scheduling

In this section, the effect of communication failures on the
estimation performance is demonstrated. Again, three methods
are used for comparison. Besides the proposed PLSS, these
methods are:

OPT: The acausal optimal scheduling algorithm de-
scribed in Section IV-B.

Greedy: If the first sensor of the optimal schedule is not
reachable, the leader again performs a measurement.

The transmission probabilities ci,jk are established using
the communication model proposed in [23]. Here, one-hop
communication is assumed, where the transmission probability

between two sensor nodes i and j is

ci,jk = exp{−RC d2
i,j} , (10)

where C = Pt ·Gt ·Gr ·λ2

(4π)2L is the receiving signal power, di,j is
the Euclidean distance between the sensor nodes, and R is the
receiving threshold. It is obvious that the function in (10) is
monotonically decreasing with respect to di,j and for di,j = 0,
ci,jk = 1. For simulation purposes several values

R
C ∈ {0.001, 0.005, 0.008, 0.01, 0.03}

for the decay factor R
C in (10) are used. The resulting

probabilities for these factors are shown in Fig. 3 (b). For
each decay factor 20 Monte Carlo (MC) simulation runs are
performed with an estimation horizon N = 10.

In Fig. 4 (a), the average estimation error over all MC runs
for each scheduling method and each decay factor is depicted.
Except for RC = 0.03, there is almost no difference between the
estimation error of PLSS and the optimal scheduling method.
Only for very adverse communication conditions with R

C =
0.03, the discrepancy becomes obvious. Here, a transmission
probability of 50% and less arises, if the distance between
the sensors is larger than 5 m. Since the minimum distance
between the sensors in the simulation setup is 8 m, the chance
of not reaching a sensor is quite high. However, by employing
PLSS the estimation error is drastically improved compared to
the greedy strategy, which diverges strongly even for relatively
good transmission conditions as communication effects are not
or only marginally considered in scheduling.

Consequently, the same effect can be seen for the concrete
estimates of the state vector x. In Fig. 4 (b)–(c), the average
root mean square error (rmse) over all simulation runs with
respect to the position x and the velocity ẋ is illustrated.
Similar results are obtained for the position and velocity in
y direction. PLSS provides estimates close to the optimal
method, if the communication failures are not too strong. It
is important to note that particularly better estimates of the
greedy method compared to PLSS or OPT can occur. However,
the estimation error and thus the covariance of OPT and PLSS
is smaller (as depicted in Fig. 4 (a)), which corresponds to a
larger reliability of the estimate.

VII. CONCLUSIONS AND FUTURE WORK

The approach introduced in this paper treats the problem
of sensor scheduling in the presence of unreliable commu-
nication, as it is the case in real-world sensor networks.
Besides efficiently calculating sensor schedules that minimize
the estimation error, which is the goal of many established
sensor scheduling approaches, priority list sensor scheduling
(PLSS) also takes transmission failures into account. As a
result of a prioritization among the sensors, the best currently
reachable sensor is selected for measurement, which leads to a
minimization of the expected estimation error without explicit
knowledge about packet-loss or transmission probabilities.
For realistic communication conditions, PLSS leads to an
estimation performance that is comparable to those of the
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optimal but impractical scheduling algorithm. Additionally,
other situations leading to unavailable sensors, e.g., sensor
breakdown due to low battery power or topology changes due
to sensor movements can easily be handled with PLSS.

Since all calculations, especially state estimation and pri-
oritization are carried out locally in the sensor nodes, the
computational demand for the priority list calculation has
to be as low as possible. Thus, a novel optimal pruning
approach is introduced, which guarantees preserving optimal
sensor schedules. Compared to existing methods, suboptimal
schedules can be pruned without explicitly evaluating the
function of the estimation error.

To improve the practical applicability of the proposed
approach, especially for a better scalability in large sensor
networks, it is worth to investigate clustering strategies. Fur-
thermore, the performance of the pruning algorithm can be
increased by determining less conservative bounds.
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