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Abstract—This paper addresses the efficient state estimation
for mixed linear/nonlinear dynamic systems with noisy measure-
ments. Based on a novel density representation – sliced Gaussian
mixture density – the decomposition into a (conditionally) linear
and nonlinear estimation problem is derived. The systematic
approximation procedure minimizing a certain distance measure
allows the derivation of (close to) optimal and deterministic
estimation results. This leads to high-quality representations of
the measurement-conditioned density of the states and, hence, to
an overall more efficient estimation process. The performance of
the proposed estimator is compared to state-of-the-art estimators,
like the well-known marginalized particle filter.
Keywords: Nonlinear estimation, state space decomposi-
tion, sliced densities.

I. INTRODUCTION

The estimation of a system’s state from noisy measurements
is a common task in many applications. In some special
cases, closed-form solutions to the estimation problem can
be found. The most famous example is the case of linear
systems with additive Gaussian noise where the Kalman filter
provides the optimal solution (in the minimum mean square
error sense). A lot of proposals have been made to find at least
approximate solutions in more general (especially nonlinear)
cases like, e. g, the extended Kalman filter, which is based
on a linearization of the system equations, or the unscented
Kalman filter, where a selected set of states is used to cover
the second order statistics of the estimate. General applicability
and ease of implementation have made particle filters (which
track the distribution of the estimate by a number of samples)
quite popular.

It has been shown that the performance of such general-
purpose nonlinear estimators can be improved significantly
with respect to both accuracy and implementation effort if the
system model includes a linear substructure. In this case, a
decomposition of the entire estimation problem into a (condi-
tionally) linear problem and a nonlinear problem allows for an
overall more efficient estimation process. Conditionally linear
models arise in various applications, such as in positioning,
navigation, and tracking [1], robot mapping and localization,
speech processing [2], or the simultaneous state and parameter
estimation of distributed systems [3], [4], just to name a few.

One possible approach to solve the combined lin-
ear/nonlinear estimation problem is the marginalized (or
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Figure 1. Visualization of a sliced Gaussian mixture density consisting of a
Gaussian mixture in xl

k direction and a Dirac mixture in xn
k direction.

Rao-Blackwellized) particle filter [1], [2], [5]–[7]. Herein,
marginalization over the linear subspace is used to reduce the
dimensionality of the state space and the remaining density is
subsequently represented by particles. This way, the standard
particle filter is adopted to cope with the reduced nonlinear
problem only. Once the history of particles is given, the
Kalman filter is used to find the optimal estimate for the linear
subspace associated with each individual particle.

Despite the improved performance of the marginalized
filter in comparison with the standard particle filter, some
drawbacks still remain. Just like with the standard filter, special
measures have to be taken in order to avoid effects like
sample degeneration and impoverishment. Although the filter
yields estimates for both state and estimation error, it does
not provide a measure on how well the estimated joint density
actually represents the true one. Consequently, there appears to
be no other way than simulation when it comes to determining
which number of particles actually is high enough for good
performances.

The framework of the marginalized particle filter as pre-
sented in [7] is restricted to Gaussian densities in the linear
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Figure 2. (a) Visualization of a dynamic system with a linear substructure. The nonlinear substate xn
k characterizes the system and measurement matrices.

For simplicity, the input uk is omitted here. (b) Procedure of filter step and prediction step based on sliced Gaussian mixture density. The estimation result
of the sliced Gaussian mixture density leads to a posterior Gaussian mixture density, which is then reapproximated.

subspace. Thus, several particles would be nececessary to
represent densities that are multimodal in these dimensions.
Under unfavorable circumstances, a loss of entire (possibly
important) modes is possible due to the degeneration of single
particles. In fact, it has been argued in [8] that particle filters
are often incapable of maintaining multimodality and mixture
tracking is proposed as a possible solution. However, that
approach relies on clustering algorithms in order to reposition
the particles of a completely discrete density representation
and it is not clear how such an operation translates into the
mixed representation of the marginalized particle filter. As it
stands, there is no other interaction between the individual
particles of the marginalized particle filter than stemming
from the resampling step after the measurement update. In its
standard implementation, this boils down to duplicating some
samples while discarding others.

In this paper, a novel approach to recursively estimating
the measurement-conditioned density of the states in a condi-
tionally linear Gaussian system is presented. In addition to a
decomposition of the state space into a linear and a nonlinear
part (as in the marginalized particle filter), three key features
lead to an estimation of significantly improved performance:
(a) the usage of a special kind of density for approximation
purposes, (b) a careful selection on exactly when an ap-
proximation is performed, and (c) a systematic approximation
procedure that is (close to) optimal in a certain sense. To be
more specific, a so-called sliced Gaussian mixture density is
used as a density representation, see Fig. 1. Once the slices
with the Gaussian mixture components have been positioned,
the predicted density can be computed in an analytic fashion.
Due to the conditionally linear dynamic model, this density
turns out to be a Gaussian mixture whose parameters can be
obtained by Kalman filter update and prediction steps. The
subsequent reapproximation procedure can therefore take full
advantage of the complete knowledge about the density to be
approximated. The positioning of the slices is performed in

a systematic (nonrandom) fashion that minimizes a specific
distance measure between true and approximated density.
Different approaches can be used for obtaining an (exactly
or almost) optimal solution to the minimization problem. The
final positions of the slices are not independent. Hence, a kind
of interaction is enforced in an almost natural way within this
framework.

The rest of the paper is organized as follows: Section II
contains a rigorous formulation of the problem to be solved.
In Section III, the sliced Gaussian mixture densities are
introduced and it is shown how they can be used to ap-
proximate Gaussian mixture densities. Section IV describes
the details of the recursive estimator based on this novel
density representation. In Section V, we show some simulation
results comparing the proposed estimator with a corresponding
marginalized particle filter.

II. PROBLEM FORMULATION

In this paper, we consider a nonlinear discrete-time dynamic
system of the form

xk+1 = ak
(
xlk,x

n
k , ûk

)
+ wk , (1)

with total random state vector xk, input ûk driving the sytem,
the nonlinear system function ak ( · ), and additive white
noise wk. Furthermore, we consider the measurement equation

y
k

= hk(xlk,x
n
k ) + vk , (2)

where y
k

is the measurement value at discrete time step k. The
nonlinear measurement function is denoted as hk ( · ), and the
noise term vk is assumed to be white Gaussian noise. Note,
that an actual measurement ŷ

k
is a realization of the random

variable y
k
.

It is assumed that the nonlinear system function ak ( · )
and measurement function hk ( · ) contain a linear substructure
allowing a decomposition of the total random state vector



xk ∈ Ω into two substate vectors,

xk =
[
(xlk)T (xnk )T

]T
,

with xlk ∈ Rr and xnk ∈ Rs. The decomposition of the state
vector is exploited to develop a more efficient estimator than
an estimator working on the entire state vector. A dynamic
system with a linear substructure is visualized in Fig. 2 (a).

The main goal of the estimator is to get an accurate
estimation for xk at every time step k in terms of a density
function f(xk). In general, the estimator consists of two steps
being performed alternately in order to derive the density
function f(xk) as precisely as possible, namely prediction step
and filter step.

Prediction step: The purpose of the prediction step is
to determine, for a given prior density fe(xk) for xk, the
predicted density fp(xk+1) of xk+1 for the next discrete
time step. This can be achieved by evaluating the well-known
Chapman-Kolmogorov equation

fp(xk+1) =
∫
Ω

fT (xk+1|xk)fe(xk)dxk , (3)

where fT (xk+1|xk) is the so-called transition density depend-
ing on the dynamic system model.

Filter step: The information of measurements ŷ
k

can be
incorporated into the processing scheme in order to improve
the estimation of xk. The estimated density fe(xk) can be
determined by the famous Bayes’ formula

fe(xk) = ck · fL(ŷ
k
|xk) · fp(xk) , (4)

where fL(ŷ
k
|xk) is the so-called likelihood, which can be

regarded as the conditional density for the occurrence of the
measurement ŷ

k
for given xk. The coefficient ck is a normal-

ization constant for the density product fL(ŷ
k
|xk) · fp(xk).

For arbitrary prior density functions and general dynamic
systems, both prediction step (3) and filter step (4) cannot
be solved analytically. Hence, approximation methods are in-
evitable in order to derive the density function f(xk) of xk. In
the special case of linear systems and Gaussian densities, the
estimation can be performed analytically. Furthermore, there
exist many nonlinear systems with a linear substructure, for
example the system depicted in Fig. 2 (a). For such systems,
the prediction step (3) and filter step (4) can be calculated more
efficiently by a decomposition into a linear and a nonlinear
estimation problem. In this paper, the decomposition of the
estimation problem is mainly achieved by a novel density
representation, the so-called sliced Gaussian mixture densities.

III. DENSITY APPROXIMATION

In this section, we introduce the sliced Gaussian mixture
density. Furthermore, we explain how it can be used for
approximating arbitrary densities in a systematic fashion.

  

    

  

(b)

(a)

xn
k

xn
k xn

k

xn
k

ξi
k ξi

k

[lik, ui
k] [lik, ui

k]

ξi1
k ξi2

k ξi1
k ξi2

k

[li1k , ui1
k ] [li2k , ui2

k ]
    
[li1k , ui1

k ] [li2k , ui2
k ]

 fn
(x

n k
)

 F
n
(x

n k
)

 fn
(x

n k
)

 F
n
(x

n k
)

Figure 3. Visualization of the approximation process in the nonlinear
subspace, and thus the determination of the position of the slices. The Dirac
component at location ξi

k is replaced by two Dirac components at positions
ξi1
k and ξi2

k .

A. Representation

The sliced Gaussian mixture density f(xk) is represented
by a Dirac mixture density in the nonlinear subspace xnk and
Gaussian mixture density in the linear subspace xlk,

f(xlk, x
n
k ) =

M∑
i=1

αik δ(x
n
k − ξ

i

k
)︸ ︷︷ ︸

Dirac mixture

f(xlk|ξ
i

k
)︸ ︷︷ ︸

Gaussian mixture

, (5)

where ξi
k
∈ Rs can be regarded as the position of the sliced

density function f(xlk, x
n
k ) as shown in Figure 1.

The marginal density in the nonlinear subspace xnk is given
by a Dirac mixture function according to

f(xnk ) =
M∑
i=1

αik δ(x
n
k − ξ

i

k
) , (6)

where αik and ξi
k

represent the weights and positions of the
Dirac functions, respectively. The density representation along
the individual slices is assumed to be a Gaussian mixture
density

f(xlk|ξ
i

k
) =

Ni∑
j=1

βijk N
(
xlk − µijk ,C

ij
k

)
, (7)

with βijk , µij
k
∈ Rr, and Cij

k ∈ Rr×r denoting the weights,
means, and covariance matrices of the i-th component of the
Gaussian mixture density of the j-th slice.

In general, sliced Gaussian mixtures as given in (5) can be
used for approximating arbitrary density functions arising in
estimators for nonlinear dynamic systems. However, the full
advantage of such a density representation can be exploited
in the case of system structures allowing a decomposition
into a linear and a nonlinear estimation problem, as shown in
Sec. IV.



B. Approximation with consideration of marginal density

In the following, we will assume that the true density to be
approximated is given as a Gaussian mixture density

f̃(xlk, x
n
k ) =

L∑
j=1

α̃jkN
(
xlk − µ̃

j

k
, C̃lj

k

)
N
(
xnk − ξ̃

j

k
, C̃nj

k

)
,

with weighting factors α̃jk, means µ̃j
k

and ξ̃
j

k
, and covariance

matrices C̃lj
k and C̃nj

k . The individual Gaussian components,
each represented as a product of two Gaussians, consist of
mutually independent linear and nonlinear parts. From now
on, we use the tilde to distinguish between true densities f̃
and their approximations f .

Two options exist for the approximation of the true density
f̃(xlk, x

n
k ) by a sliced Gaussian mixture density. The first

option is based on a distance measure over the entire state
space. The second option just considers the marginal density
f̃n(xnk ) in the nonlinear subspace, which is the approach
used in this paper. For both options, the derivation of the
slice locations is performed by either a batch approximation
or a sequential approximation. The batch approximation is
an efficient solution procedure for arbitrary true densities
on the basis of homotopy continuation (Progressive Bayes)
and results in an optimal solution [9]. The sequential greedy
algorithm for Dirac mixture approximation of a arbitrary
densities is based on inserting one component at a time [10].

For simplicity and brevity only the case of the one-
dimensional nonlinear subspace is considered here, i.e., s = 1.
For that purpose, we consider a variation of the sequential
greedy algorithm proposed in [10] for deriving the position of
the slices that can easily be extended to several dimensions.

In the greedy algorithm for the density approximation,
every Dirac component corresponds to an interval [lik, u

i
k] in

the nonlinear subspace of the state space and approximates
the true marginal density f̃n(xnk ) only in the corresponding
interval, see Fig. 3. Basically, the density approximation is
based on splitting the intervals and Dirac components. The
entire algorithm consisting of the phases – initialization phase,
identification phase, and splitting phase – is shown in Alg. 1.
It takes the number of components M , the density f̃n and the
interval [l0k, u

0
k] that will be approximated. The initialization

phase (lines 2–5) is used to set up the data structure, containing
the set of Dirac components, with one tuple. In the identifi-
cation phase (lines 7–11), the specific interval for inserting
new Dirac components is determined, based on the maximum
deviation between the distributions of the true prior density
and the approximating Dirac mixture. Here, the Cramér-von
Mises distance Dn is used, which is calculated as

Dn =
1
2

∫
R

(
F̃n(xnk )− Fn(xnk )

)2

dxnk .

In this algorithm, the deviation measure is assumed to be
dependent on the interval width uil − lil and the weight αik
of the Dirac component. This is calculated for every Dirac
component (line 9) and the interval with the highest deviation
is chosen for the splitting phase. This interval corresponds to

Algorithm 1 Derivation of the positions ξik and weights αik
of the slices by considering the marginal density f̃n.

1: Function Approximation(M, f̃n, l0k, u
0
k)

2: // Initialization Phase
3: α0

k ←
∫ u0

k

l0k
f̃n(xnk )dxnk

4: ξ0
k ← Solve

[
ξ0
k,
∫ ξ0k
l0k
f̃n(xnk ) dxnk

!= α0
k

2

]
5: A ←

{(
ξ0
k, α

0
k, l

0
k, u

0
k

)}
6: for c = 1 to M − 1 do
7: // Identification Phase
8: for all (ξjk, α

j
k, l

j
k, u

j
k) in A do

9: Dn(j)← (ujk − l
j
k) ·αjk

10: end for
11: i← arg max

j
{Dn(j)}

12: // Splitting Phase
13: li1k ← lik; ui1l ← ξik; αi1k ←

αi
k

2

14: li2k ← ξik; ui2l ← uik; αi2k ←
αi

k

2

15: ξi1k ← Solve
[
ξi1k ,

∫ ξi1
k

li1k
f̃n(xnk ) dxnk

!= αi1
k

2

]
16: ξi2k ← Solve

[
ξi2k ,

∫ ξi2
k

li2k
f̃n(xnk ) dxnk

!= αi2
k

2

]
17: A ← A \

{(
ξik, α

i
k, l

i
k, u

i
k

)}
18: A ← A∪

{(
ξi1k , α

i1
k , l

i1
k , u

i1
k

)
,
(
ξi2k , α

i2
k , l

i2
k , u

i2
k

)}
19: end for
20: return A

the region where the approximation deviates most from the
true density. In the splitting phase (lines 12–18), the Dirac
component with position ξik, weight αik, and interval [lik, u

i
k]

is replaced by two tuples. The new Dirac positions ξi1k and ξi2k
are chosen to split the probability mass of the true marginal
density over the intervals into halves (lines 15 & 16) using the
subroutine Solve, that numerically solves the given equation.
The splitting of one Dirac component is shown in Fig. 3. With
an increasing number of Dirac components, the approximation
converges towards the true marginal distribution.

After the approximation of the marginal density f̃n(xnk ) in
the nonlinear subspace, the Dirac approximation is extended to
a sliced Gaussian mixture representation over the entire state
space. This is achieved by the evaluation of the Gaussian mix-
ture density f̃(xlk, x

n
k ) at every Dirac position determined by

the aforementioned algorithm, leading to a Gaussian mixture
density in the linear subspace

f(xlk|ξik) = ck · f̃(xlk, ξ
i
k)

=
L∑
j=1

ck · α̃jkN
(
ξik − ξ̃

j
k, C̃

nj
k

)
︸ ︷︷ ︸

=:βij
k

· N
(
xlk − µ̃

j

k
, C̃lj

k

)

for every slice i = 1 . . .M with L components. The cor-
responding parameters for the Gaussian components are as-
signed as

βijk =
α̃jkN

(
ξik − ξ̃

j
k, C̃

nj
k

)
∑L
j=1 β

ij
k

, µij
k

= µ̃j
k

, and Cij
k = C̃lj

k .
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Figure 4. Approximation of a Gaussian mixture density ef(xl
k, x

n
k ) with 4 components for a different number of density slices M = 3 and M = 5. (a)–(b)

True joint density ef(xl
k, x

n
k ) and joint distribution eF (xl

k, x
n
k ) to be approximated (surface) and their respective approximation f(xl

k, x
n
k ) and F (xl

k, x
n
k )

(red lines). (c)–(d) True marginal density ef(xn
k ) and true marginal distribution eF (xn

k ) to be approximated (blue line), and their respective approximations
f(xn

k ) and F (xn
k ) (red line).

Example 1 (Density approximation)
In this example, a Gaussian mixture with 4 components is
approximated by a sliced Gaussian mixture. The mean values of
the state vector xk =

ˆ
xl

k xn
k

˜T of the individual components
are given by

x̂
(1)
k =

»
5
−3

–
, x̂

(2)
k =

»
0
−4

–
, x̂

(3)
k =

»
5
4

–
, x̂

(4)
k =

»
−1
5

–
,

the covariance matrices are assumed to be

C
(1)
k =

»
2 0
0 3

–
,C

(2)
k =

»
4 0
0 4

–
,C

(3)
k =

»
3 0
0 4

–
,C

(4)
k =

»
5 0
0 3

–
,

and the weights are assumed to be equal to 0.25. The approxi-
mation of the Gaussian mixture density for different numbers of
density slices is visualized in Fig. 4. The upper and lower parts
show the approximation with M = 3 and M = 5 slices.

IV. SLICED GAUSSIAN MIXTURE FILTER

This section is devoted to the Bayesian prediction step and
the combined filter and prediction step based on sliced Gaus-
sian mixture densities (5) introduced in Sec. III-A. It is shown,
how this novel density representation can be exploited for
decomposing the general prediction step (3) and filter step (4)
into a linear and nonlinear part. By this means, a more
efficient closed-form calculation of the estimation problem for
certain nonlinear dynamic systems is possible.

A. Considered Model Structure

The key idea of decomposing the estimation problem by
sliced Gaussian mixture densities and a systematic reapproxi-
mation can be applied to various dynamic systems. However,
for the sake of simplicity and in order to show the novelties
of the new approach, we consider a specific system structure
similar to the model structure introduced in [7].

Example 2 (Considered model structure)
In this paper, we restrict our attention to a nonlinear discrete-
time dynamic system with a linear substructure

xl
k+1 = Ak (xn

k ) xl
k + Bk (xn

k ) ûk + wl
k ,

xn
k+1 = ak (xn

k ) + wn
k , (8)

where xl
k ∈ Rr and xn

k ∈ Rs denote the linear and nonlinear
substate vectors decomposed by the sliced Gaussian mixture
density (5). The noise terms wl

k and wn
k are assumed to be

white Gaussian with covariance matrix

Cov
»

wl
k

wn
k

–ff
=

»
Cl

w 0
0 Cn

w

–
= Cw , (9)

which means that the process noise in the linear and the
nonlinear subspace is stochastically independent. Furthermore,
the measurement model is given by

y
k

= Hk (xn
k ) xl

k + hk (xn
k ) + vk , (10)

where the noise term vk is assumed to be white Gaussian noise
with covariance matrix Cv. This model structure is quite often
referred to as a conditionally linear dynamic model [11]. That
means, given the trajectory of the nonlinear state vector xn

k , the
system can be regarded as linear, visualized in Fig. 2 (a).

For the sake of simplicity and in order to keep the equations
simple, the following abbreviations are used:

Ai
k := Ak

(
ξi
k

)
, Bi

k := Bk

(
ξi
k

)
, Hi

k := Hk

(
ξi
k

)
,

which can be seen as the system matrix Ak, input matrix Bk,
and measurement matrix Hk conditioned on the nonlinear
dimension ξi

k
, i.e., on the position of the individual density

slices.



B. Prediction Step

Based on the system structure given in Example 2, we now
explain the Bayesian prediction step and derive an efficient
time update for the prior density fe(xlk, x

n
k ) given as sliced

Gaussian mixture density representation (5).
The predicted density f̃p(xlk+1, x

n
k+1) for the next discrete

time step can be determined by substituting the prior density
into the Chapman-Kolmogorov equation (3), leading to

f̃p(xlk+1, x
n
k+1) =

∫
Rs

∫
Rr

fT
(
xlk+1, x

n
k+1|xlk, xnk

)
·
M∑
i=1

αik δ(x
n
k − ξ

i

k
) fe(xlk|ξ

ei

k
)dxlkdxnk ,

which in general cannot be solved analytically for nonlinear
systems and arbitrary density representations for fe(xlk|ξ

ei

k
).

In view of the system model (8), the transition density fT is
given by

fT ( · ) = N
([
xlk+1 −Ak(xnk )xlk −Bk(xnk )ûk

xnk+1 − ak(xnk )

]
,Cw

)
,

with uncorrelated process noise between the linear and non-
linear subspace, i.e., the covariance matrix Cw is structured
according to (9). In this case, the transition density fT can be
written as a product of two density functions. Applying the
sifting property of Dirac’s delta function leads to

f̃p(xlk+1, x
n
k+1) =

M∑
i=1

αikN
(
xnk+1 − ak(ξei

k
),Cn

w

)
·
∫
Rr

N
(
xlk+1 −Ai

kx
l
k −Bi

kuk,C
l
w

)
fe(xlk|ξ

ei

k
)dxlk , (11)

where the estimated density fe(xlk|ξ
ei

k
) is represented by a

Gaussian mixture density (7). Thanks to the conditionally
linear dynamic model (8), the integral in (11) can be solved
analytically using a linear prediction step for a Gaussian
mixture, i.e., a bank of independent Kalman Filters.

Finally, the predicted density f̃p results in a Gaussian
mixture in both linear xlk and nonlinear subspace xnk ,

f̃p(xlk+1, x
n
k+1) =

M∑
i=1

Ni∑
j=1

αikβ
ij
k

· N
(
xnk+1 − ξ

pi

k+1
,Cn

w

)
N
(
xlk+1 − µpijk+1

,Cpij
k+1

)
,

(12)

where means and covariance matrices in the linear sub-
space xlk are calculated by applying the standard Kalman
prediction step. The means in the nonlinear subspace xnk are
derived by simply repositioning the density slices according
to the nonlinear system equation (8), see Table I.

Here, it is worthwhile mentioning that, although ξpi
k

rep-
resents the individual position of the Dirac mixture density
fe, the ξpi

k+1
denotes the means of the resulting Gaussian

mixture density in nonlinear dimension. In order to keep

Table I
PREDICTION STEP: PARAMETERS OF THE PREDICTED DENSITY.

Nonlinear dimension Conditionally linear dimension

ξpi
k+1

:= ak

“
ξei

k

”
µpij

k+1 := Ai
kµ

eij
k + Bi

kûk

Cn
w Cpij

k+1 := Ai
kCeij

k Ai
k

T
+ Cl

w

Table II
FILTER STEP: PARAMETERS OF THE ESTIMATED DENSITY.

Conditionally linear dimension

γij
k := N

“
ŷ

k
− hk

“
ξpi

k

”
−Hi

kµ
pij
k ,Hi

kCpij
k Hi

k
T

+Cv

”
µeij

k := µpij
k + K

“
ŷ

k
− hk

“
ξpi

k

”
−Hi

kµ
pij
k

”
Ceij

k := Cpij
k −KHi

kCpij
k

with K := Cpij
k Hi

k
T
“
Cv + Hi

kCpij
k Hi

k
T
”−1

the density representation (5), the predicted Gaussian mixture
density f̃p needs to be reapproximated in a systematic fashion
as already shown in Sec. III-B. Furthermore, for bounding
the complexity, the number of components of the resulting
Gaussian mixture density (12) or the individual components
of the slices (7) can be reduced by component reduction
algorithms for Gaussian mixtures, e.g., [12], [13], and [14].

C. Combined Filter and Prediction Step

In the combined filter and prediction step, first, the filter
step is performed on a sliced Gaussian mixture, followed by
the prediction step as introduced in the previous subsection.
It is assumed that the the prior density fp at time step k is
given as a sliced Gaussian mixture density (5).

The predicted density at time step k + 1 can be derived
by the substitution of Bayes’ formula (4) into the Chapman-
Komogorov equation (3) according to

fp(xk+1) =
∫
Ω

fT (xk+1|xk) ck · fL(ŷ
k
|xk)fp(xk)︸ ︷︷ ︸

=:fe(xk)

dxk

with a normalizing factor ck.
The estimated density fe results from the normalized prod-

uct of the prior density fp and the likelihood fL according to
(4). By representing the prior density fp as a sliced Gaussian
mixture, the likelihood is evaluated only at nonlinear slice
positions. This results in a Kalman filter step in the linear
subspace, modifying only the weights αik and βijk , the mean
vectors µeij

k
, and covariance matrices Ceij

k of the prior density
according to the likelihood. The estimated density fe is given
as a sliced Gaussian mixture

fe(xlk, x
n
k ) = ck · N

(
ŷ
k
−Hi

kx
l
k − hk (xnk ) ,Cv

)
·
M∑
i=1

αikδ
(
xnk − ξ

pi

k

)
·
Ni∑
j=1

βijk N
(
xlk − µpijk ,Cpij

k

)

= ck ·
M∑
i=1

αikδ
(
xnk − ξ

pi

k

) Ni∑
j=1

βijk γ
ij
k N

(
xlk − µeijk ,Ceij

k

)
,



with weights, means, and covariances according to Table II.
It is worth mentioning that the positions of the slices ξpi

k
are

not affected by the filter step.
The estimated density fe(xk) has to be substituted into (11)

in order to perform a prediction step. Applying the prediction
step in Section IV-B leads to the predicted density

fp(xlk+1, x
n
k+1) = ck ·

M∑
i=1

Ni∑
j=1

αikβ
ij
k γ

ij
k

· N
(
xnk+1 − ξ

pi

k+1
,Cn

w

)
N
(
xlk+1 − µpijk+1

,Cpij
k+1

)
,

with the normalizing factor ck = 1/
(∑M

i=1

∑Ni

j=1 α
i
kβ

ij
k γ

ij
k

)
.

The parameters of the resulting function fp(xk+1) can easily
be computed by first applying the assignments in Table II and
then Table I.

V. SIMULATION RESULTS

In this section, the performance of the Sliced Gaussian
Mixture Filter is demonstrated by means of simulation results
for the following example system.

Example 3 (Nonlinear system)
In this example, we consider a nonlinear two-dimensional sys-
tem with a linear substructure, which is exploited by the Sliced
Gaussian Mixture Filter in order to perform the processing more
efficiently. The system equation is given by

xl
k+1 = (0.7− 0.2xn

k )| {z }
Ai

k

xl
k + (0.3 + 0.2xn

k )| {z }
Bi

k

ûk + wl
k ,

xn
k+1 = xn

k + wn
k ,

where wl
k and wn

k are zero mean additive Gaussian noise with
a variances of Cl

w =1 and Cn
w =0.5, respectively. The system

input ûk is assumed to be ûk =−5 sin (0.2 k). The measurement
equation is given by a polynomial of degree 5

ŷk = xn
k|{z}

Hi
k

xl
k + hi

k + vk ,

hi
k = −0.32 (xn

k )5 − 1.6 (xn
k )4 − 5.6 (xn

k )2 − 16xn
k − 9.12 ,

where vk denotes the measurement noise with a variance of
Cv = 20. The system was simulated for 20 consecutive time
steps and 68 independent Monte-Carlo simulation runs. The
estimation results are shown in Fig. 5 and Fig. 6.

The density function after the combined filter and prediction
step is calculated by brute force numerical integration for
having a ground truth for comparison purposes, see Fig. 5 (a).
In Fig. 5 (b), the simulation result of the marginalized paricle
filter with 1000 particles is shown as a histogram of particles in
the nonlinear subspace. The corresponding Gaussian compo-
nents are added up in the linear subspace. Due to the randomly
chosen position of the particles, the marginalized particle filter
produces a joint density deviating from the true density. The
resulting joint density after combined filter and prediction
step for the Sliced Gaussian Mixture Filter using 20 slices
is depicted in Fig. 5 (c). It can easily be seen that the density
derived by the Sliced Gaussian Mixture Filter hardly deviates

(a) (b)

(c)

xl
k

xn
k

xl
k

xn
k

xl
k

xn
k

MPF
(1000 particles)

SGMF
(20 slices)

Figure 5. Visualization of joint densities for the system described in
Example 3 after combined filter and prediction step at time k = 2: (a)
brute force numerical integration, (b) marginalized particle filter (M = 1000
particles), and (c) Sliced Gaussian Mixture Filter (M = 20 slices).

from the brute force solution and appears much smoother
compared to the density from the marginalized particle filter.

The mean squared integral deviation D̂ over K time steps
and over n Monte Carlo simulation runs is approximated by
calculating the average according to

D̂ ≈ 1
nK

n∑
i=1

K∑
k=1

1
2

∫
R2

(
F̃ (xk)− F (xk)

)2

dxk , (13)

where F̃ (xk) is the true distribution to be approximated and
the sliced Gaussian mixture distribution is denoted as F (xk).
The approximation error D̂ is shown in Fig. 6 (a). During the
simulation, a maximum number of 10 Gaussian components
per slice was allowed, whereas 3.86 components were utilized
on average. It is obvious that the deviation decreases with
growing number of slices. The plateau at the right-hand side
of the graph arises from discretization errors in the calculation
of the true density function.

Fig. 6 (b) depicts a comparison between the Sliced Gaussian
Mixture Filter and the marginalized particle filter with 50 times
more particles than slices. This figure visualizes the mean
squared integral deviation D̂, i.e., similar to (13), between
the distribution FB(xlk, x

n
k ) derived by a brute force numer-

ical integration method and the estimation result F (xlk, x
n
k )

from both the Sliced Gaussian Mixture Filter (red) and the
marginalized particle filter (green). Furthermore, the dashed
lines visualize the squared integral deviation variance CD
given by

CD ≈
1

n− 1

n∑
i=1

(
D(i) − D̂

)2

,

where D̂ is the mean squared integral deviation (13) and D(i)

denotes the squared integral deviation of the individual Monte-
Carlo simulation runs. The dashed lines in Fig. 6 (b) depict the
squared integral deviation variance according to D̂ ± 3 ·CD.



It can be stated that the Sliced Gaussian Mixture Filter sig-
nificantly outperforms the marginalized particle filter for this
simulated example. Compared to the Sliced Gaussian Mixture
Filter with M=15 slices, the marginalized particle filter needs
far more particles (M ≈ 2500), in order to reach the same
deviation error. Thanks to the low number of slices compared
to the higher number of particles, the Sliced Gaussian Mixture
Filter requires far less memory storage.

VI. CONCLUSION AND FUTURE WORK

In this paper, based on a novel density approximation –
sliced Gaussian mixture density – the linear substructure in
certain dynamic systems is exploited in order to derive a more
efficient estimation process. The systematic approximation
approach reduces a distance measure between an approxima-
tion given as a sliced Gaussian mixture density and the true
density. It is important to note that, although we have chosen
the special model structure (8) for the sake of simplicity,
the principles of the Sliced Gaussian Mixture Filter can be
applied to more general conditionally linear models in a
straightforward fashion.

Future work is devoted to the consideration of the joint
density f(xlk,x

n
k ), i.e., both in linear and nonlinear dimension,

for the positioning of the sliced Gaussian mixtures. By this
means, the accuracy of the approximation could be further
improved and less slices would be necessary to get an ac-
curate density representation. It is believed that the approach
introduced in this paper allows the systematic approximation
of the joint densities. For further reducing the number of slices
and increasing the performance of the filter, it is possible
to consider both the system equation (transition density) and
measurement equation (likelihood) for the determination of the
positions of the slices.

The next step is to extend the Sliced Gaussian Mixture
Filter to system models decomposable into several nonlinear
subsystems. By applying separate nonlinear filters to the
individual subspaces, it might be possible to derive an overall
more efficient estimation processs.
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