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ABSTRACT 
 
Rough estimation of an economically optimal flow 

velocity still seems to be general engineering practice in 
heat exchanger design. The more rational alternative, a 
tediously detailed economic optimization, may not often be 
chosen because of excessive engineering costs. An 
intermediate path is shown in the present paper. Using some 
simplifying assumptions, a dimensionless function FC(Re) 
may be derived, which is proportional to the sum of the 
annual costs of investment CI (assumed to be proportional to 
the surface area) and the costs of operation CO (proportional 
to the pumping power required). The minimum of this 
function at the optimal Reynolds number (Re=Reopt) 
depends on the type of heat exchanger chosen, and on a new 
dimensionless quantity, called Reeco, that contains all 
necessary economic input parameters. The minimum can be 
easily found by standard methods. The question of an 
economically optimal efficiency εopt can also be answered in 
a simple way. So the influence of changing economic 
situations may be easily taken into account even at an early 
stage of heat exchanger design.  

 

ECONOMIC FLUID VELOCITY 
 
The economic design of heat transfer equipment usually 

starts with assuming a value of the flow velocity, which is 
thought to be close to an economic optimum value. In some 
textbooks (e.g. in (Martin,1992)) one may find ranges of 
recommended flow velocities of say 

 
0.2 m/s < wliquid < 2.0 m/s,   and 

  
5 m/s < wgas, atmospheric pressure < 50 m/s. 

 
Usually these flow velocities are roughly choosen 

depending on the individual experience of the designer. A 
more rational alternative to this rough engineering practice 
would be the detailed economic optimization of each heat  

 

 
exchanger during design. An example of such a detailed 
step-by-step procedure is given in (Martin,1992) for a 
double-pipe heat exchanger.  

Many authors, as e.g., Gregorig (1959), fourty years 
ago, or, more recently, Hewitt and Pugh (1998) have tried to 
improve and to simplify the economic design of heat 
exchangers. In these sources, and especially in the later, 
more extended version of Gregorig’s book (Gregorig, 1973), 
one may find a number of additional references on the topic. 
The present paper suggests a solution, which may be useful 
in the early stages of heat exchanger design. More or less 
experienced guessing of a value for the flow velocity should 
be replaced by calculation, based on a rational approach (see 
also: Martin, 1998). A simple explicit formula for the 
optimal flow velocity will be derived, which is very easy to 
apply. Taking the relevant economic parameters into 
account, the most economic cross-sectional area of an 
apparatus may thus be found.  

 

ASSUMPTIONS 
 
The annual costs of investment CI or capital costs are 

taken to be proportional to the surface area A and the 
amortization a* (of say 10%/year). 

 

 ∗⋅= aACC AI        (1) 
 
The price per unit area CA will of course depend on the 

type of apparatus, on the material needed, and on the size 
(i.e.,, on the surface area A) itself. It is generally well 
known, that the price of equipment does not linearly 
increase with its size. So Eq. (1) should be regarded as a 
linearization of a more appropriate empirical power law 
(C=constAn), with an exponent n less than one. If the prices 
of heat exchangers of a given type for different sizes are 
known, one may find CA = CA0 (A/A0)(n-1), to account for the 
degressive increase of price with equipment size. 
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The costs of operation CO will be taken to be 
proportional to the pumping power required to overcome the 
flow resistances in the exchanger 
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The following variables do have an influence on the 

costs of operation: the price of electrical energy kel, the 
hours of operation per year τ,  the factor x accounting for the 
pumping power required on the other side of the heat 
exchanger (for symmetrical operation, x would be equal one 
in a plate heat exchanger for example), the pressure drop ∆p, 
the volumetric flowrate Vt, and last but not least, the 
efficiency of the pump (or fan) ηP . 

In many cases, CO from Eq. (2) will be the main part of 
the cost of operation, at least for a heat exchanger with 
process fluids on both sides, i.e., not a heater or a cooler in 
the sense of the pinch-point-method of energy integration. 
For heaters and coolers the (thermal) energy cost of the 
utilities will usually be much more important. 

  

TOTAL COST FUNCTION  
 
Starting from these assumptions one can easily show, 

that the total cost, i.e., the sum  C = CI  + CO measured in an 
appropriate currency unit per year [ACU/year], when 
nondimensionalized (FC = C/CN) by  
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leads to a relatively simple cost function  
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where the volume flowrate Vt, density, specific heat 
capacity, and conductivity (ρ ,  cp, λ )  of the process fluid on 
one side (chosen for the design), the diameter d, and the 
Number of Transfer Units NTU have only to be known if 
absolute values in [ACU/year] are required. In Eq. (4) Re = 
wd/ν, f(Re) is the Fanning friction factor, the “velocity” in 
the so called “economic Reynolds number” Reeco is to be 
calculated from the specific economic parameters and the 
fluid density ρ: 

 

ν











ρ⋅τ
η

=
∗ d

k
aC

Re
3/1

el

PA
eco        (5) 

 

The term Nuov stands for a dimensionless overall heat 
transfer coefficient Nuov = kd/λ.  The latter can be expressed 
as  

 
∗+

+
= f,w

ov
R

Nu
y1

Nu
1

      (6) 

 
where the factor y stands for a dimensionless transfer 
resistance of the other side (just as x had been introduced in 
Eq. (2) to account for the pumping power on the other side) 
and R*w,f includes the resistances of the solid wall, and 
fouling resistances if necessary. As a first example, Fig. 1 
shows the results of an optimization of this kind applied to 
the chevron-type plate heat exchangers, using the equations 
given in Martin (1996) for pressure drop and heat transfer. 
These equations are given in a comprehensive form in the 
Appendix. Varying the angle ϕ  of the corrugation pattern 
from 30° to 80°, measured against the main flow direction, 
the pressure drop at a fixed flowrate would increase by a 
factor of about 20. So with increasing angle, the 
economically optimal Reynolds number varies from about 
Reopt (30°) = 4300 to Reopt(80°) = 1500. The total cost 
function FC from Eq. (4) has an absolute minimum at an 
angle of about 60°. 
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Fig. 1 Total Cost Function FC vs Re for Chevron-Type 
Plate Heat Exchangers, Parameter: Chevron angle, 
ϕ =30°, 45°, 60°, 75°, 80°  (see Table 1) 

 
 
This can be seen better in Fig. 2, where the values of 

FCmin from Fig. 1 are plotted versus ϕ. The numerical values 
used in this optimization are listed in Table 1.  

The curves in Fig.1, showing the total cost function FC 
vs. Re, i.e., the sum of CI (falling with Re) and CO (rising 
with Re) clearly show the minima of the total costs. The 
Reynolds numbers at these minima are the economically 
optimal ones. They can be found graphically or by standard 
procedures.  

From Eq. (1) we can see, that increasing price per m2 of 
heat transfer surface CA, and increasing interest rates (i.e., a* 
increasing) would lift the falling branch of the curve, i.e., 
move the optimum velocity to higher values. 
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Fig. 2 Minima of the Total Cost Function FCmin vs 
Chevron-Angle  ϕ  

 
 
 
Equation (2) tells us that higher price of electrical 

energy kel, higher number of hours of operation τ (max: 
8760 h/year), and lower pump efficiency ηP   would lift the 
rising branch of the curve, and thus move the optimum 
velocity to lower values. 

 
 

Table 1 Economic Optimization of Plate Heat Exchangers - 
numerical input, and results. Equations used: see 
Appendix. 

 
Pr 3 x 1 R*wf  0.003 
Reeco 3000 y 1   
ϕ   30° 45° 60° 75° 80° 
Reopt 4287 3334 2518 1750 1517 
FCmin 0.0423 0.0372 0.0356 0.0378 0.0408 

 
 
So far the method (Eqs. (1) through (6)) had already 

been presented by Martin (1998). In the following, a 
shortcut solution will be derived, that allows for an explicit 
closed-form calculation of the optimal fluid velocity. 

 

THE SHORTCUT SOLUTION  
 

The Fanning friction factor f (= ξ/4) and the overall 
Nusselt number Nuov may be approximated by simple power 
laws in many practical cases. 

 
n

F Recf −=          (7) 
m

hov Re(Pr)cNu =        (8) 
 

Here the factors cF and ch, as well as the exponents n and m 
are constants. The exponent m in Eq. (8) may be chosen a 
little bit smaller than the corresponding exponent in an 

equation for the Nusselt number of one side, as the overall 
heat transfer coefficient contains a wall (and fouling) 
resistance, which do not depend on the flow rate. So if the 
Reynolds exponent in the Dittus-Boelter equation for 
turbulent tube flow is 0.8, one may take m in Eq. (8) to be 
about 0.7 or 0.6, depending on the relative importance of the 
wall resistance. The total cost function FC from Eq. (4), 
with Eqs. (7) and (8) leads to a relatively simple function of 
the Reynolds number F*(Re)=FC.ch.  
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The derivative of F* with respect to Re, when put equal 

to zero, yields an explicit formula to calculate the optimal 
Reynolds number, woptd/ν, or the optimal flow velocity: 
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It is clear that the factor ch(Pr) has no influence on the 

value of the optimal flow velocity. From Eq. (10) with Eq.  
(5) for Reeco, one can find that the optimal flow velocity, 
under the above mentioned assumptions, depends on the 
exponents (n, m) of the friction and (overall) heat transfer 
laws, and on two physical properties of the fluid (the density 
ρ, and the dynamic viscosity µ = νρ). The diameter d of the 
channel has an effect on wopt, too. 
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Using the well-known Blasius equation for turbulent 

tube flow, n = 1/4, and the optimal flow velocity depends on 
the tube diameter and on the viscosity with the weak 
exponents 1/11, or –1/11 respectively, while the fluid 
density enters with an exponent of –3/11. For fully 
developed laminar tube flow, n = 1, i.e., the density has no 
effect on wopt, while d and µ enter with exponents of  ½ and 
- ½. 

Similar approximate explicit solutions of the economic 
optimization problem had been found much earlier (see e.g., 
Gregorig, 1959), but they seem to have been greatly ignored 
in industrial practice. 

 

EXAMPLES 
 
Using typical sets of input data for Eqs.  (5) and (10) the 

results may be compared to the values known from 
experience. 

 
CA 400 Euro/m²   price/m2  
a* 10%/year  amortization 
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ηP  0.5    pump efficiency 
τ 6500 h/year  hours of operation 
kel 30 Euro/MWh price of electrical energy 
x 1    ratio of pumping powers 
 
Water in the tubes of a shell-and-tube hx: 
 
ρ 997 kg/m³  density  
ν 8.93.10-7 m²/s kinematic viscosity 
d 12 mm   tube diameter 
cF 0.3164/4   turbulent tube flow 
n 0.25    Blasius law 
m 0.7    Re exponent of ov htc 
 
Reeco= 6296  Reopt=23734  wopt=1.77 m/s 
 
Air in the tubes of a shell-and-tube hx: 
 
ρ 1.168 kg/m³  density  
ν 1.58.10-5 m²/s kinematic viscosity 
d 12 mm   tube diameter 
cF 0.3164/4   turbulent tube flow 
n 0.25    Blasius law 
m 0.7    Re exponent of ov htc 
 
Reeco= 3372  Reopt=12009  wopt=15.8 m/s 
 
Water in a chevron-type plate hx:  
 
ρ 997 kg/m³  density  
ν 8.93.10-7 m²/s kinematic viscosity 
d 6 mm   hydraulic diameter 
cF 18.2/4   ϕ=71° (hard plate)* 
n 0.25    as in Blasius law 
m 0.6    Re exponent of ov htc 
 
Reeco= 3148  Reopt=2372  wopt=0.35 m/s 
 
Air in a chevron-type plate hx:  
 
ρ 1.168 kg/m³  density  
ν 1.58.10-5 m²/s kinematic viscosity 
d 6 mm   hydraulic diameter 
cF 18.2/4   ϕ=71° (hard plate)* 
n 0.25    as in Blasius law* 
m 0.6    Re exponent of ov htc 
 
Reeco= 1687  Reopt=1201  wopt=3.17 m/s 
 

* The values for cF =18.2/4 and n = 0.25 have been taken 
from (Martin,1992, p.72, Fig. 2.29). 

The results for water (wopt=1.77 m/s) and air (15.8 m/s) 
respectively in a conventional shell-and-tube heat exchanger 
do in fact agree very well with the well-known 
recommended values for liquids (0.2 to 2.0 m/s) and for 
gases at normal pressure (5 to 50 m/s) as given at the 
beginning of the paper.  

The considerably lower optimal velocities of only 
wopt=0.35 m/s for water (or 3.17 m/s for air) for a compact 
chevron-type plate heat exchanger are a result of the much 
higher flow resistance of this type of exchanger. 

 

ECONOMICALLY OPTIMAL EFFICIENCIES 
 

Once the cross-sectional area of the heat exchanger has 
been found from the given volume flowrate, and the optimal 
flow velocity, the remaining question is to fix the length, or 
the number of transfer units NTU. Usually, the efficiency ε 
of a heat exchanger is assumed to be given, when starting 
the design procedure. In that case NTU is also fixed, if the 
flow configuration has been chosen. Heat recovery, 
however, has an economic value opposite to the total costs 
C, which may be written as the savings, S: 

 
S=Smax

 ε           (12) 
 

with 
 

Smax= ρcpVt(Th,in-Tc,in) τ ktherm     (13) 
 

where the maximal possible savings are proportional to the 
maximal possible change of enthalpy flow, and ktherm is the 
price of thermal energy, often roughly estimated to be one 
third of the price of electrical energy (ktherm=kel/3). The 
difference (S-C), with C as the total costs  
 

C=CAa* ρcpVt(d/λ) NTU FC(Re, Reeco,...)  (14) 
 

should be maximized for optimal economic design. It is 
clear that under the assumptions made in this paper, the 
savings are proportional to the efficiency, while the cost are 
proportional to the NTU (see bold terms in Eqs. (12) and 
(14)). This idea has been brought forward only recently by 
Chawla (1999). The break even point, i.e. the situation, 
where the savings just equal the costs (S-C=0), naturally 
leads to a second dimensionless criterion (besides Reeco) 
connected with the economic design of heat exchangers: 
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which may be called a „thermal gain number“. 

For the break-even situation, the Eqs. (12) to (15) 
require 
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or FC < GT. Otherwise the installation of the heat exchanger 
would only lead to economic losses. The ratio of efficiency ε 
to NTU is the normalized mean temperature difference 
(NMTD), Θ (see Martin, 1992). 
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In general, the function to be maximized can be written: 
 

( )NTUSCS 0max Θ−ε=− .     (17) 
 
For the important special case of a balanced 

counterflow heat exchanger, the relationships between NTU, 
and Θ with the efficiency ε are  
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Using this in Eq. (17) to eliminate NTU, the resulting 

function of the efficiency is: 
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This function, as shown in Fig. 3, has a zero at ε0=1-Θ0 , 

and at ε=0, it has a maximum in between at: 
 

0opt 1 Θ−=ε        (20) 
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Fig. 3  The Savings-Costs-Function vs efficiency. 
   Parameter: Θ0= 0, 0.125, 0.25, 0.5, 1.0 

 
 
The value of Θ0 is to be obtained from Eq. (16) as the 

ratio of the total cost function FC, and the thermal gain 
number GT from Eq. (15).  

 
 

CONCLUSIONS 
 

The examples of the calculation of an economically 
optimal flow velocity for different types of heat exchangers 
have shown that the new method may be very easily applied 
even in an early stage of equipment design. The simplified 
method of optimization, with all economic data put together 
in the terms Reeco, in Eq. (5), and GT in Eq. (15), make it 
easy to check how a higher price of material (increasing CA), 
a lower price of electrical, kel, and thermal energy ktherm, or a 
lower number of hours of operation per year τ, may change 
the optimal velocity and the optimum efficiency. The 
velocity determines the cross sectional area, while the 

efficiency fixes the transfer surface area of the most 
economic design. The shortcut method may help to take 
economic considerations into account already in the early 
stages of  heat exchanger design. 

 

NOMENCLATURE 
 
A surface area of a heat exchanger, m 
a* amortization, %/year 
C total costs, ACU/year 
 (appropriate currency unit =EURO, USD, YEN)  
CA price per unit area, ACU/m²   
CI annual costs of investment, ACU/year 
CN normalization factor, Eq. (3), ACU/year 
CO costs of operation, ACU/year 
cF factor in Eq. (7), dimensionless  
ch(Pr) factor in Eq.  (8), dimensionless  
d diameter, m 
dh hydraulic diameter, m 
f Fanning friction factor, dimensionless 
FC total cost function , Eq.  (4), dimensionless 
GT thermal gain number, Eq. (15), dimensionless  
k overall heat transfer coefficient, Wm-2K-1 

kel price of electrical energy, ACU/MWh 
m exponent of Re in Eq.  (8), dimensionless 
n exponent of Re in Eq.  (7), dimensionless   
NTU number of transfer units, NTU = kA/(ρcpVt), 
  dimensionless 
Nu Nusselt number, Nu = αd/λ,  dimensionless 
Nuov overall Nusselt number, Nuov = kd/λ 

p pressure, Pa    
R*wf dimensionless wall (plus fouling) resistance 
Re Reynolds number, Re=wd/ν 
Reeco defined in Eq. (5), dimensionless 
S savings by heat recovery, Eq. (12), ACU/year 
Smax maximum savings, Eq. (13), ACU/year 
T temperature, K 
Th, in inlet temperature of hot stream, K 
Tc, in inlet temperature of cold stream, K 
Vt volumetric flowrate, m3s -1 
w flow velocity, m/s   
x ratio of pumping powers 
y ratio of heat transfer resistances 
α heat transfer coefficient, Wm-2K-1 
ε efficiency, ε =NTU. Θ, dimensionless 
Θ normalized mean temperature difference (NMTD), 

=MTD/( Th, in – Tc, in ), dimensionless 
ηP  pump (or blower) efficency, dimensionless 
λ thermal conductivity, Wm-1K-1 

µ viscosity, Pas 
ν kinematic viscosity, m2s -1 

ρ density, kgm-3 

τ hours of operation per year, h/year 
ϕ chevron-angle, °,  measured against the main flow 

direction  
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APPENDIX 
 

Friction factors for chevron-type plate and-frame heat 
exchangers  

The equations for friction factors from Martin (1996, 
1997) have been rewritten in a more comprehensive form 
(see Shah, 1998). These equations are based on a model of 
the flow pattern in the channels of these compact heat 
exchangers. The numerical constants in these equations have 
been fitted to experimental data from the literature. (for 
details, see Martin, 1996). 

The Fanning friction factor f(Re) is obtained from the 
following set of equations 
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The velocity w in the Reynolds number Re = wdh/ν is 
defined as 
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with Vt as the volumetric flowrate, 2â as the gap width of a 
channel, (â is the amplitude of the sinusoidal corrugation), 
and BP  is the width of the plate between the gaskets. 

The hydraulic diameter is defined as 

Φ
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with the area enhancement factor Φ, which can be 
approximately found from 
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if the geometric parameters of the corrugation, i.e., the 
amplitude â, and the wavelength Λ are known.   

The friction correlation of Eq. (A) is valid for the 
corrugation angle ϕ within 0-80°, and is accurate within –
50% and +100%. 
 
Nusselt numbers for chevron-type plate and-frame heat 
exchangers  

It has been shown in (Martin, 1996), that the generalized 
Lévêque equation may be used to obtain heat transfer data 
from pressure drop. For the industrial plate-and-frame heat 
exchangers, an empirically modified version of this 
theoretical result has been given as: 
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This correlation is valid for the corrugation angle ϕ 

within 10-80°, and is accurate within ±20%.  Note that if Eq. 
(H) is used for gases, the viscosity correction term (µm/µw)1/6 
should be omitted from Eq. (H). 

It is interesting to note that the product fRe2 is 
proportional to the pressure drop. 
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