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ABSTRACT 
 

A new type of analogy between frictional pressure drop and heat transfer has been discovered that may be used in chevron-
type plate heat exchangers, in tube bundles, in crossed-rod matrices, and in many other internal flow situations. It is based on 
the Generalized Lévêque Equation (GLE). This is a generalization of  the well known asymptotic solution for thermally 
developing, hydrodynamically developed tube flow, which was first derived by A. Lévêque in 1928. Nusselt or Sherwood 
numbers turn out to be proportional to the cubic root of the frictional pressure drop (ξRe2) under these conditions. 
It was found that using a friction factor ξ= xf

.ξtotal leads to a very reasonable agreement between the analogy predictions and 
the experimental results. The fraction xf of the total pressure drop coefficient ξtotal  that is due to fluid friction only, turned out 
to be a constant over the whole range of Reynolds numbers in many cases. For the packed beds of spheres, Ergun’s equation, 
or more appropriate equations from the literature may be used to calculate the total pressure drop.  
The new method can also be used in external flow situations, not only for internal flow as shown so far. This is demonstrated 
here for a single sphere as well as for a single cylinder in cross flow. In these cases, however, the frictional fraction xf of the 
total drag coefficient is not a constant over the range of Reynolds numbers. Nevertheless it is easily obtained from standard 
correlations of drag coefficients.  The successful application of the GLE also in cases of external flow seems to confirm, that 
this new type of analogy has a broad range of applications and may lead to a better understanding of the interrelation between 
fluid flow and heat or mass transfer in general. 

  
THE GENERALIZED LÉVÊQUE EQUATION  

 
The following equation has been termed the Generalized 

Lévêque Equation (GLE) in [1] 
 

Nu/Pr1/3 = Sh/Sc1/3  = 0.403755(ξ Re2dh/L)1/3   (1) 
 
where the dimensionless numbers (Nu, Pr, Sh, Sc, Re), 

named after Wilhelm Nusselt, Ludwig Prandtl, Thomas K. 
Sherwood, Ernst Schmidt, and Osborne Reynolds, are defined 
as usual in the heat and mass transfer literature, dh is the 
hydraulic diameter, defined as 4 times the cross sectional area 
divided by the circumference of the flow channel, and L is the 
length in the direction of flow. The friction factor 
ξ=(∆p/∆z)d/[(ρ/2)u2] is defined as pressure gradient (∆p/∆z) 
times tube diameter d divided by the stagnation pressure 
(ρ/2)u2. Substituting ξ from the Hagen-Poiseuille law for fully 
developed laminar tube flow, ξ=64/Re, eqn. (1) yields the 
classical form of Lévêque’s equation:  

 
Nu=1.615(Re Pr d/L)1/3   (2) 

 
as it is usually found in the textbooks. This equation has 

been theoretically derived for the first time in André Lévêques 
thesis [2], pp. 283-287. The choice of the characteristic length 
(d) to be used in Nu, Sh, Re and ξ is arbitrary as both Nu/Pr1/3 
(or Sh/Sc1/3) and (ξ Re2)1/3 contain this length with the same 
power of one. Of course the same (arbitrary) length has to be  

 
used in Nu, Sh, Re and ξ. The same consistency ought to be 
maintained in the use of the characteristic velocities in both 
the Reynolds number Re and the friction factor ξ. In the 
product ξRe2 this velocity cancels. So the heat or mass transfer 
coefficients predicted from the GLE do not depend on flow 
velocities, but only on the pressure gradient, the physical 
properties and the geometric ratio dh/L. 

The generalization in eqn. (1) is to be seen in the fact, that 
the equation in this form may also be applied to turbulent 
flow, as long as the thermal boundary layer remains within the 
viscous sublayer. This idea seems to have been first suggested 
independently both by Bankston and McEligot [3] and by 
Schlünder [4]. These authors, however, suggested the use of 
eqn. (1), or its equivalent, only for the asymptotic behaviour in 
the entry region of a circular duct. In the meantime it has been 
shown, that the GLE is in fact applicable to a number of other 
problems of practical interest, like the cross-corrugated 
channels of chevron-type plate heat exchangers [1], tube 
bundles [5], and crossed rod matrices [6]. 

 
HEAT TRANSFER IN TUBE BUNDLES 
 

Heat transfer in tube bundles in cross flow is a classical 
problem of process heat transfer which has been investigated 
by many researchers already in the first half of the 20th 
century. The present state of the art can be found in the 
handbooks, like the H E D H [7] and the VDI-Heat Atlas [8]. 
In these handbooks, the heat transfer coefficient between the 



outer cylindrical surfaces of a tube bundle and a fluid flowing 
through the bundle in cross flow is calculated from the 
corresponding equations for the Nusselt number of a single 
(row of) cylinder(s) in cross flow, multiplied by an empirically 
correlated arrangement factor fa(a, b, type), which was found 
to be a function of the type of bundle, i.e. inline or staggered 
arrangements, and of the transverse and longitudinal pitch 
ratios a and b respectively. The pitches ad and bd are defined 
as the distances of two adjacent tube centerlines of the bundle 
in a direction perpendicular to the main flow direction (lateral, 
ad) and in flow direction (longitudinal, bd), where d is the 
outer diameter of the tubes. The equations to calculate 
Nubundle(Re, Pr, a, b, type) as recommended in the H E D H 
and in the VDI-Heat Atlas have been developed by Gnielinski 
[9]. In this paper the experimental data then available from the 
literature had been used to find out the appropriate 
arrangement factors fa. The method was tested against a large 
number of experimental data from 20 sources. The comparison 
between the correlation (curve) and the experimental data 
(symbols) was shown graphically by Gnielinski [9] in eight 
figures containing up to fourteen single curves of a (Nubundle/fa) 
vs. Re plot with Pr as a parameter. From these figures one can 
find out that this state of the art method fits the data for inline 
bundles with an acceptable degree of approximation in the 
whole range of the experimental variables. The data for 
staggered bundles are also well represented for gases (air 
mainly), while for the liquids (see Fig. 8 in [9]) the data 
systematically tend to give higher values with increasing 
Prandtl and decreasing Reynolds numbers. 

When using the pressure drop correlation by Gaddis & 
Gnielinski [10], it has to be taken into account, that they 
defined their coefficient ξ = ξ total as the pressure drop per 
number of main resistances (=number of rows of tubes N) 
divided by the dynamic pressure (ρu0

2/2) using the velocity in 
the narrowest cross section. 

As the pressure gradient (∆p/∆z) at the heated surface is 
needed, the values can be used directly for b>1, while they 
have to be divided by b for b<1.  

The hydraulic diameter for the tube bundles was calculated 
as 
 
dh=((4a/π)-1)d (for b >1) (3) 
 
and 
 
dh=((4ab/π)-1)d (for b <1) (4) 
  

where a and b are the lateral and the longitudinal pitch 
ratios respectively, and d is the outer diameter of the tubes. 
Longitudinal pitches of b<1 are only possible for staggered 
bundles. The length L in the generalized Lévêque equation has 
been taken as the longitudinal or diagonal pitches, respectively 
 
L = bd  (for inline tube bundles)  (5) 
and 
L = cd  (for staggered bundles)  (6) 
where c is the diagonal pitch ratio  c =((a/2)2+b2)0.5. 

It was found that using  ξf = xf
.ξ  leads to a very 

reasonable agreement between the GLE predictions and the 
experimental results. The fraction xf of the total pressure drop 
coefficient ξ, that is due to fluid friction only, and therefore 
related to the average shear rate at the surface, turned out to be 
a constant over the whole range of Reynolds numbers. This 
fraction was found to be close to 0.5 for tube bundles. The 
optimized values where found to be xf=0.54 for inline tube 
bundles, and xf =0.46 for staggered bundles. 
 
COMPARISON OF THE TWO METHODS 
 

A detailed comparison of the state of the art method 
(Gnielinski, [9]), here denoted as: HEDH, with the new  
method, Eqn. (1): GLE, to calculate heat (and mass) transfer in 
tube bundles has been carried out by Martin & Gnielinski [5]. 
The results are shown in Table 1. For the inline bundles, the 
state of the art method (HEDH), based on empirical 
correlations for the arrangement factors fa(a, b, type) that have 
to be multiplied to the equations for the Nusselt numbers of 
single cylinders in cross flow, is slightly better than the new 
method (especially so in the range of low Reynolds numbers. 
If the Reynolds numbers are greater than 500, both methods 
are roughly equal in their accuracy. For the staggered bundles 
the new method is definitely better in its RMS deviations, 
especially for the data obtained with liquids, where the state of 
the art method (HEDH) may lead to larger discrepancies in the 
range of higher Prandtl and lower Reynolds numbers. 
 
 
  
 
Table 1 Comparison of data collected by Gnielinski [9] 
with both methods (GLE with xf=0.5 in all cases). 
 
 
inline  tube bundles 
liquids 

HEDH  
state of the art 

GLE 
new 

669 data  RMS: 22.8% 24.6% 

gas    

937 data RMS: 14.6% 15.3% 

all data    

1606 (a>1.05) RMS: 18.5% 19.7%* 
 

 

   

staggered tube bundles 
liquids 

HEDH 
state of the art 

GLE 
new 

705 data RMS: 45.4% 16.6% 

gas    

752 data RMS: 17.5% 10.5% 

all data    
1457 RMS: 34.0% 13.8% 
 
* this deviation was improved by a correction to 18.2%  
even for a bigger number of data (a>1.02, see next section) 
 
 



IMPROVING THE NEW METHOD FOR INLINE TUBE 
BUNDLES 
 

In case of the inline bundles the experimental data show a 
tendency towards lower values in the range of Re0 below 
about 500. This can of course not be seen from Table 1, but 
from the figures in  reference [5]. Here the new method (GLE) 
tends to overpredict the experimental results.  

A reason for this may be seen in the fact that the inline 
bundles tend to be parallel channels, especially so for small 
longitudinal pitches. In this case, a laminar flow may not show 
periodically repeated developing boundary layers with the 
short length L=bd, as assumed in Eq. (4). 

This was the starting point for an empirical improvement of 
the new method. It is suggested to use a simple correction 
function C(Re0) to compensate for the overprediction of the 
GLE at low Reynolds numbers, with (0.50 < C < 1): 
 
C=[(Re0+1)/(Re0+1000)]0.10  (7) 
 

This is equivalent to taking a length L in the GLE, which is 
the same as given in eq. (4) for sufficiently high Reynolds 
numbers, while this length increases to LCorr=bd/C3. The 
correction C tends to unity for large Re, the smallest value of 
C is obtained in the limit as Re tends to zero. The data for 
inline tube bundles can be predicted from the GLE, using a 
best fit value of xf=0.59, with an RMS-deviation of only 
18.2%. With the correction, the new method is slightly better 
than the purely empirical state of the art method (see under 
HEDH in Table 1) even for the inline bundles. This is shown 
in Fig. 1, where Nu/C was plotted versus the argument 

 
 Lq = xfξ Re2 Pr dh/L  (8) 
 

of the GLE. The simple straight line prediction 
log(Nu/C)=1/3log(Lq) is found to be valid over the whole 
range of 8 decades in the “Lévêque number”, Lq, which is 
proportional to the pressure drop. Compared to our earlier 
results in [5] and Table 1, the number of data (1609 for inline 
bundles) has been increased by 88 to 1694 including those 
data with very narrow lateral pitch ratios (a>1.02), that had 
been excluded in the state of the art method (HEDH). For the 
staggered bundles the GLE, without any correction, had 
already been shown to be much better than the state of the art 
method (see Table 1).  This good agreement between the 
prediction of the empirical pressure drop correlation of Gaddis 
& Gnielinski [7, 8, 10] via the GLE and the total amount of 
experimental data from the literature may be seen as an 
encouragement to further study this new kind of analogy 
between momentum and heat (or mass) transfer.  

Looking at a limited set of data, especially those, where 
pressure drop and heat transfer have been measured in the 
same equipment, the agreement may be shown to be even 
better, if the measured friction factors are used in place of a 
pressure drop correlation.  

 

This is shown in Fig. 2  for the data of Kays, London & Lo 
[11] for six different staggered tube bundles in cross flow of 
air. 

 These data, when evaluated with their original friction 
factors measured in the same equipment show an RMS-
deviation of only 3.9% against the GLE prediction, when 
using xf=0.46 as has been found as the optimum value for the 
1457 data for staggered bundles in combination with the 
pressure drop correlation of Gaddis & Gnielinski [7, 8, 10] in 
reference [5]. 

 
CROSSED ROD MATRICES 
 

Crossed rod matrices, i.e. periodic arrangements of parallel 
solid metal rods of diameter d, with a regular lateral pitch  ad, 
every second layer turned by 90° and the layers touching each 
other, have been used in compact heat exchangers. 
Experimental friction factor and heat transfer data for such 
inline, as well as staggered, and random arrangements, are to 
be found among many other compact heat transfer surfaces in 
the well known book by Kays & London [12]. Recently, 
Nanda, Das, & Martin [6] have shown, that these data also can 
be predicted from the GLE concept. In that paper, however, 
only a limited number of the data from Kays & London [12] 
have been shown in a graphical comparison. Here in Fig. 3 the 
total amount of data from table 10-10 in Compact Heat 
Exchangers has been compared to a slightly more general 
form of the GLE. As the flow in the crossed rod matrices is 
three-dimensional, as in a packed bed, the length L has been 
taken as an average length of a flow path, L/d=(V/Vs)

n, with  
Vs/V=(1-ψ), ψ=void fraction, which is  
 
ψ=1-π/(4a) (9) 
 

for the matrices with the rods touching each other. The 
hydraulic diameter is  

 
dh=d ψ/(1-ψ) (10) 
 
and therefore the term  dh/L in the GLE becomes 
 
dh/L=ψ/(1-ψ)(1-n) (11) 
 

where n should be 1/2 in case of the cylindical rods, as it 
has been taken to be 1/3 for the beds of spherical particles. If 
both, xf and n are taken as fitting parameters, the best fit is 
found for xf =0.782, n=0.924, leading to an RMS-deviation of 
only 4.16%.  

Using the more logical n=1/2 in dh/L gives the same result 
with xf  as a function of voidage: xf =0.782(1-ψ)0.424.  

The version published by Nanda, Das & Martin [6] 
corresponds to xf =0.822, n=1, with a slightly higher RMS-
deviation of 4.48%.  

With n=1/2 and a constant average value of xf =0.457 one 
finds a somewhat larger deviation, RMS=6.64%.  
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Fig. 1 Heat transfer, Nu/C, to the tubes of inline bundles in cross flow vs. frictional pressure drop, Lq.  
Correction C(Re0) to account for increasing length L of repeated developing boundary layers in the  
Generalized Lévêque Equation beyond the axial pitch bd for lower Reynolds numbers (0.5 < C < 1).  

Fig. 2 Heat transfer, Nu, to the tubes of staggered bundles in cross flow vs. frictional pressure drop, Lq. Data of Kays, 
London, & Lo (1954) compared to the GLE with friction factors measured in the same equipment, xf=0.46 as found for all 
staggered data by Martin & Gnielinski (2000). 
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PACKED BEDS 
 
Available experimental data on heat transfer in packed beds 

of spherical particles of diameter d had been collected and 
empirically correlated earlier by Gnielinski [13]. His  
correlation provides a simple way to test the GLE for its 
applicability in predicting packed bed heat or mass transfer 
from pressure drop. The hydraulic diameter is obtained from 
the well-known relationship 

 

dh= (2/3) d ψ/(1-ψ),  (12) 
 

for a bed of spherical particles of diameter d and void 
fraction ψ. The length L in the generalized Lévêque equation 

has been taken as the average distance between two particles 
in the bed of spheres obtained from L/d=(V/Vs)

1/3, with the 
total bed volume V and the solids volume Vs 

 
L=d/(1-ψ)1/3,  (13) 
 

resulting in the geometric ratio in the GLE to be a function 
of the void fraction only: 
 
dh/L=(2/3)ψ/(1-ψ)2/3. (14) 
 

The total friction factor ξ can be calculated for example 
from the Ergun equation, which is found in many textbooks, 
see, for example [14], p. 200). This gives a relatively good 
agreement between the Nusselt numbers from the empirical 
packed bed equations by Gnielinski [13], as recommended in 
some relevant handbooks, as the VDI-Heat Atlas [8] and the 
Heat Exchanger Design Handbook [7].  

Figure 4 shows Nu/Pr1/3 vs. Re, with the voidage ψ as 
parameter, calculated from Gnielinski’s correlation as the full 
lines for ψ=0.26, 0.4, and 0.6 and from the GLE with the same 
parameter values, shown as the symbols. The frictional 
fraction xf was found to be very close to xf =0.5 in this case by 

optimization (xf,opt=0.535 for these parameters). Again, the 
GLE works over the whole range of Reynolds numbers with a 
constant xf. 

Gnielinskis correlation has a Pr-dependency, which slightly 
deviates from the limiting 1/3 power law, so an intermediate 
value of Pr=100 has been chosen for this comparison. The 
deviation is practically negligible for higher Pr (or Sc) 
numbers, while for air Pr=0.7, the formal minimum value 
Numin=2(1+1.5(1-ψ)) in Gnielinskis correlation, based on the 
single sphere, would lead to greater deviations from the GLE. 
The data in this range, however, usually show lower values 
than those calculated from Gnielinskis equation, i. e. they are 
closer to the GLE prediction. 
 

EXTERNAL FLOW 
 

Heat transfer to a single sphere in cross-flow 
 

In this case the Nusselt number is calculated from a 
generalized Lévêque equation (GLE) in the form  

 
NuGLE,sphere= 2 + 0.404(cF Re2Pr)1/3 (15) 
 

with a friction factor cF - in place of ξ dh/L in eqn. (1) - 
calculated from the drag coefficient cD(Re) as given by Brauer 
[15], see Fig. 5, but with the “constant” term in the Newton 
range (103< Re<105) multiplied by an empirical factor 
xN=0.085, and xS=2/3 from Stokes law (Re <1). The term dh/L 
is replaced by 4Ac/A, (with the flow cross-sectional area Ac 
and the surface area A) for the external flow cases, which 
turns out to be 4(π/4)d2/(πd2) =1 for the sphere.  
 
cF =  xS(24/Re)+3.73/Re1/2+  
  + xN(0.49 - 4830 Re1/2/(106+3Re3/2)) (16) 
 

The original drag coefficient (Brauer, [15]) is cD=cF(from 
eqn. (16), with xS=1, xN=1). Here two parameters xS and xN 
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might be used to find a suitable friction factor c F from the total 
drag coefficient. Theoretically Stokes’s law, valid in the 
creeping flow limit of very low Reynolds numbers, requires xS 
to be 2/3. This theoretical value has been retained in the GLE, 
as it leads to (Nu-2)=1.0174(RePr)1/3 for Re<1, which is only 
slightly higher than the theoretical creeping flow limit  
(Nu-2)=0.9914(RePr)1/3 calculated from an integration of local 
values over the surface of the sphere. Therefore also in this 
case only one single fitting parameter (xN) was needed to find 
an appropriate friction factor from the total drag coefficient.  

Figure 6 shows Nu vs. Re from the correlations of 
Gnielinski [13] as the full diamond symbols, of Achenbach 

[16] as the open circles, of Whitaker [17] as the open triangles, 
and a correlation by Ihme et. al. [18]  as the full circles, based 
on their numerical data and on numerical as well as 
experimental data of others together with the line representing 
the Generalized Lévêque Equation, eqn. (15), with the friction 
factor from eqn. (16). Gnielinski’s correlation has been tested 
against a large number of experimental data from the literature 
and is recommended in the relevant handbooks like the VDI-
Heat Atlas and the Heat Exchanger Design Handbook. From 
this comparison it can be seen, that the GLE is also applicable 
to the single sphere in cross flow. A more detailed comparison 
with experimental data is presently under preparation. 
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Heat transfer to a single cylinder in cross-flow 
 

The Nusselt number is calculated from the generalized 
Lévêque equation (GLE) in the form: 
 
NuGLE,cylinder=0.18+0.404(cF Re2Pr 4/π)1/3, (17) 

 

with the friction factor c F calculated from the formula for c D 
from Sucker and Brauer [19] , see Fig. 7, where the „constant“ 
term for the Newton range (103 <Re< 105) has been multiplied 
by an empirical factor xN=0.027, 
 
cF=xS(6.8/Re0.89)+1.96/Re0.5+ 
  +xN (1.18-1/(2500/Re+Re/1100))  (18) 

 
whereas xS=cF/cD has been retained as the theoretical value 

xS=0.5 for cylinders at low Re. 
 

The factor (4/π)=4Ac/A (in place of dh/L for internal flow) 
has to be included in eqn. (17) as cD is based on the cross-
sectional area Ac=dl. The surface area, however, is A=πdl. The 
original drag coefficient (Sucker and Brauer [19]) is 
cD=cF(from eqn. (18), with xS=1, xN=1). The weak function of 
Re in the “constant” term with xN of eqn. (18) can be replaced 

without loss of accuracy by a real constant cN, so the friction 
factor to be used in the GLE is simply:  
cF = 3.4/Re0.89+1.96/Re1/2+cN. 

Figure 8 shows (Nu-0.18)/Pr1/3 or (Sh-0.18)/Sc1/3 vs. Re 
from the experimental data collected by Gnielinski [13] from 
12 different sources, additionally the data for air by 
Achenbach [20, 21] at high Reynolds numbers, and a 
correlation by Lange et. al. [22] based on numerical data in the 
range 10-4<Re<200, together with the line representing the 
Generalized Lévêque Equation, eqn. (17), with the friction 
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 Fig. 8  (Nu-0.18)/Pr1/3 vs. Reynolds numbers for a single cylinder in cross flow. Lines: GLE 



factor from eqn. (18). The total amount of 1036 data - about  
30% of these data are from Zukauskas [23] and his group - is 
represented by the GLE with an RMS-deviation of 12.8% in 
the range 10-3<Re<5.106, 0.6<(Pr, Sc)<1230.  

 
CONCLUSIONS 

 
The most important result of these comparisons is the fact, 

that xf  turned out to be a constant over the whole range of 
Reynolds numbers for internal flow. Therefore, one can 
conclude, that as for the chevron type plate heat exchangers 
(Martin, 1996), for packed beds and for similar periodically 
arranged structures, the heat (and mass) transfer coefficients 
can be predicted from the pressure drop.  

To show this graphically, the experimental data from the 
literature have been plotted against the dimensionless group in 
the Generalized Lévêque Equation (1). 

The product of the friction factor and the square of the 
Reynolds number does not contain a velocity, so the definition 
of the characteristic velocity in ξ and Re is arbitrary. It should 
be the same of course in both ξ and Re. This was the reason to 
use Re0 as in the Gaddis-Gnielinski correlation for the 
pressure drop in tube bundles. The term 

 
(ξ/2)Re2 = Hg = (1/ρ)(∆p/∆z)d3/ν2 (19) 
 

is a dimensionless number that may be termed Hagen 
number Hg. It is related to the driving force of a flow. In case 
of a gradient of static pressure (∆p/∆z)= g∆ρ , i.e. a bouyancy 
driven, natural convection flow, the Hagen number becomes 
equal to the Grashof number. Using Hg and Re in place of the 
various friction factors defined in the literature makes pressure 
drop vs. flowrate equations and figures more easy to 
understand.  

The Hagen-Poiseuille law, a linear relationship between 
pressure drop and flowrate, when written in terms of the 
friction factor leads to the hyperbolic law ξ=64/Re, because 
the friction factor is defined with (ρ/2)u2 as a reference 
pressure. With eqn. (19), however, the Hagen-Poiseuille law 
simply reads 
 
Hg=32Re (20) 
 

i.e. as the original linear relationship between pressure drop 
(Hg) and flowrate (Re). A “pressure drop number” (like Hg) 
has been suggested earlier by Steimle [24] under the label SK 
(from German: Strömungs-Kennzahl, i. e. flow number). He 
developed a direct relationship between Nu and SK or 
modified versions of that number. Steimles empirical power 
product functions Nu=c(SK.Pr)m are in fact rather close to 
what follows from the GLE. The exponent m chosen by 
Steimle was somewhat greater than 1/3, as to be expected for a 
fully developed turbulent tube flow (m=0.37), but in the case 
of spacewise periodic structures, like tube bundles in cross 
flow, Steimle’s figures often show, that the slope of 1/3 (as 
from Lévêques theory) fits better than 0.37. 

In case of the tube bundles for example it was found that the 
Generalized Lévêque Equation represents all the data very 
well over a range of “Lévêque numbers” 

 
Lq = (2xf) Hg Pr dh/L  (21) 
 

that covers eight decades. With xf close to 0.5 for internal 
flow, the factor (2xf) in eq. (21) is typically close to unity.  

The examples given to calculate heat or mass transfer via 
the Generalized Lévêque Equation from fluid friction, clearly 
demonstrate, that a large class of heat and mass transfer 
problems may be solved in that way. A number of so far 
empirical heat and mass transfer correlations might thus be 
replaced by the theoretical equation we originally owe to 
André Lévêque. Furthermore the new analogy may lead to a 
better understanding of the interrelation between fluid flow 
and heat or mass transfer in general. 

 
NOMENCLATURE 
 
Latin symbols 
a lateral pitch ratio =(pitch)/(tube diameter), 1 
A area, m2 

b longitudinal pitch ratio, 1 
c diagonal pitch ratio, 1 
cp heat capacity at const. pressure, J/(kg K) 
cD  drag coefficient, 1 
cF  friction factor, 1 
d outer tube diameter, m 
Gr Grashof number, (g∆ρ/ρ)d3/ν2 
Hg Hagen number, Hg=(ξ/2)Re2, proportional to ∆p/∆z 
 see eqn. (19) 
L length, m 
Lq Lévêque number, see Eqs.(8, 21) 
N number of tube rows, 1 
Nu Nusselt number, αd/λ  
p pressure, Pa 
Pr Prandtl number, Pr=ηcp/λ 
Re Reynolds number, Re=ud/ν 
u flow velocity, m/s 
V volume, m3 

x coordinate in flow direction, m 
xf fraction of total pressure drop due to friction, 1  
y distance from the wall, m 
z coordinate in flow direction, m 
 
Greek symbols 
α heat transfer coefficient, W/(m2 K)  
λ thermal conductivity, W/(m K) 
η viscosity, Pas 
ν kinematic viscosity, m²/s 
ξ friction factor, pressure drop coefficient, 1 
ρ density, kg/m3 
 

Subscripts 
f friction 
h hydraulic (diameter) 
s solid 
0 refering to the narrowest cross section  
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 The present invited lecture is based on published 

material from the references [1, 5] and partly from the 
references [25, 26], to be published in 2002: 

  
25. H. Martin, The Generalized Lévêque Equation and its 

practical use to predict heat and mass transfer rates from 
pressure drop, to be published in Chem. Eng. Sci. 2002. 

 (first part on internal flow) 
 
26. H. Martin, The Generalized Lévêque Equation (GLE) 

and its use to predict heat and mass transfer from fluid 
friction, to be presented at the 12th Int. Heat Transfer 
Conference, Grenoble, 2002. 

 (second part on external flow) 
 


