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ABSTRACT

The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies
discretized as cells consisting of equilateral triangles is its mesh refinement capability. In
this thesis, a diffusion and a simplified P5 (or SP3) neutron transport nodal method are
developed based on trigonal geometry. Both models are implemented in the reactor dy-
namics code DYN3D. As yet, no other well-established nodal core analysis code comprises
an SPs transport theory model based on trigonal meshes. The development of two methods
based on different neutron transport approximations but using identical underlying spatial
trigonal discretization allows a profound comparative analysis of both methods with regard
to their mathematical derivations, nodal expansion approaches, solution procedures, and

their physical performance.

The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are
based on the transverse-integration procedure, which renders them computationally effi-
cient, and they use a combination of polynomial and exponential functions to represent the

neutron flux moments of the SP5 and diffusion equations, which guarantees high accuracy.

The SPs equations are derived in within-group form thus being of diffusion type. On this
basis, the conventional diffusion solver structure can be retained also for the solution of

the SP3 transport problem.

The verification analysis provides proof of the methodological reliability of both trigo-
nal DYN3D models. By means of diverse hexagonal academic benchmark and realistic
detailed-geometry full-transport-theory problems, the superiority of the SP5 transport over
the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is,

e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

XV






/USAMMENFASSUNG

Die herausragende Eigenschaft eines nodalen Verfahrens, dem eine Dreiecksdiskretisie-
rung zu Grunde liegt, ist, fiir Reaktorkerne mit hexagonaler Brennelementstruktur eine be-
liebige Gitterverfeinerung zu ermdglichen. Gegenstand dieser Arbeit ist die Entwicklung
und Implementierung nodaler Diffusions- und SPs-Transportverfahren basierend auf trigo-
naler Geometrie fiir das Reaktordynamikprogramm DYN3D. Bislang umfasst kein anderer
weltweit etablierter Code zur Reaktorkernanalyse ein SP3-Transportmodell fiir trigonale
Geometrie. Die Entwicklung zweier Verfahren beruhend auf unterschiedlichen Neutronen-
transportnaherungen, jedoch mit identischer raumlicher Diskretisierung, ermdglicht eine
fundierte vergleichende Analyse beider Methoden hinsichtlich ihrer mathematischen Ab-
leitungen, ihrer nodalen Entwicklungsanséatze, ihrer Lésungsverfahren sowie ihrer Vorher-

sagegenauigkeit in unterschiedlichen Anwendungen.

Die entwickelten nodalen Ansatze konnen als hybride NEM/AFEN-Methoden betrachtet
werden. Sie beruhen auf dem Verfahren der transversalen Integration und einer Kombina-
tion aus Polynom- und Exponentialfunktionen zur Darstellung der Neutronenflussmomente,

was sowohl numerische Effizienz als auch hohe Genauigkeit gewahrleistet.

Die SPs;-Gleichungen werden in der "Within-Group"-Form abgeleitet und erhalten somit
die Gestalt von Diffusionsgleichungen. Daher kann auch fiir die Behandlung des SPs-
Transportproblems die konventionelle Programmstruktur zur Losung der Diffusionsgleichung

beibehalten werden.

Die methodische Zuverlassigkeit beider DYN3D-Modelle wird umfassend verifiziert. An-
hand hexagonaler akademischer Benchmarks sowie praxisbezogener, geometrisch detail-
lierter Transportprobleme wird die Uberlegenheit des SPs-Transportverfahrens gegeniiber
der Diffusionsmethode in Fallen mit ausgepragten Anisotropieeffekten aufgezeigt. Dies ist
inshesondere relevant fiir die Modellierung von Brennelementen, die Neutronenabsorber

enthalten.
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TPEN triangle-based polynomial expansion nodal method
TRIDIF DYN3D trigonal diffusion neutronic model (NEM/AFEN approach)
TRIPEN triangular polynomial expansion nodal method
TRISP3 DYN3D trigonal simplified P3 neutronic model (NEM/AFEN
approach)
VHTR very-high-temperature reactor
VVER Russian-type PWR (water-water power reactor)
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LisT oOF SYMBOLS

Symbol Description Physical unit
A area cm?
A trigonal area cm?
a; height of an prismatic node cm
a edge length of an equilateral triangular base cm
B? buckling cm—?
D, diffusion coefficient cm
E neutron energy eV
e outer normal unit vector of the [th trigonal

nodal face
ey outer normal unit vector of the [th hexagonal

nodal face
el outer normal unit vector of the [th hexagonal

nodal vertex

G number of energy groups

g energy group index

hi orthonormal polynomial of maximum order two

/ number of spatial intervals or volumes

i spatial index

j;fg partial outward neutron current (multi-group) cm™? s~
Jng partial inward neutron current (multi-group) cm2 s~
j},rjgt) neutron net current (multi-group) cm2 s
Keit effective multiplication factor

kint infinite multiplication factor
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XXX List of Symbols
Lng transverse neutron leakage (multi-group) cm3 s~
max;, maximum number of inner iterations
N angular neutron density em™3 sr! eV
N approximation order (index)
N set of the natural numbers including 0
n outer normal unit vector of a volume V
P thermal power density W cm—3
Pn nth Legendre polynomial
r spatial vector cm
r radial distance cm
S neutron source em™3 sr1 eV 57!
Sy neutron source (angle-independent, multi-group) cm3 s~
Sext external neutron source em3 sr eV s
S neutron fission source em 3 sr eV s
S neutron scattering source em 3 sr! evT 57
Ss.q neutron scattering source (angle-independent,
multi-group) cm3 s~
Ssd,g neutron downscattering source (angle-
independent, multi-group) cm3 s~
Ssug neutron upscattering source (angle-independent,
multi-group) cm3 s~
t time s
% volume cm?
v neutron velocity vector cm s~
v scalar magnitude of v cm s~
X spatial coordinate cm
y spatial coordinate cm
z spatial coordinate cm
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€f

€k

Kronecker delta

outer iteration tolerance criterion for the fission
source

outer iteration tolerance criterion for the
effective multiplication factor kg

weighting factor of exponential flux ansatz
polar angle of the direction of neutron motion
usable energy produced per fission event
cosine of the polar angle 6

average number of neutrons released per fission
average cosine of the scattering angle
macroscopic absorption cross section
macroscopic fission cross section

nth moment of the macroscopic removal cross
section

macroscopic scattering cross section

nth moment of the macroscopic scattering cross
section from energy group g’ to energy group g

total macroscopic interaction cross section
macroscopic transport cross section
albedo function

nth neutron flux moment (multi-group)

azimuthal angle of the direction of neutron
motion

fission spectrum
angular neutron flux
angular neutron flux (u-dependent, multi-group)

unit vector in direction of neutron motion

rad

W's

rad

cm2 sr71 eV1 5]

cm
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INTRODUCTION

In order to ensure the inherent safety and economic operation of nuclear reactors by an
efficient reactor design and to estimate and limit the detrimental consequences of potential
accidents, operational and incident scenarios have to be modeled by adequate simulation
tools. The reliable safe operation of a nuclear reactor is highly dependent on the ability
to precisely predict the neutron flux, which is needed to derive criticality, power shapes,

temperature distributions, and feedback coefficients of reactivity.

1.1  REACTOR PHYSICS CALCULATIONS

The discipline of reactor physics studies the interactions between neutrons and matter in
a nuclear reactor. Such an interaction occurs when a neutron collides with the nucleus of
a specific nuclide. Two phenomena are responsible for the complexity of reactor physics. A
nuclear reactor is generally a complicated three-dimensional assembly of components with
different geometries made of a variety of materials, and many materials have interaction

characteristics which vary strongly with neutron energy [72, c. 1].

The neutron flux in a reactor core can be obtained as the solution of the neutron transport
equation. Whole-core transport calculations, however, would lead to enormous calculation
times. Therefore, reactor calculations for the detailed heterogeneous geometry and the
complex energy-dependent interaction characteristics are typically performed using the

following three main steps, as depicted in Figure 1.1:

e the cross-section calculation [38],
e the lattice calculation [138], and

e the full-core reactor calculation [3, 159].
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FiGure 1.1: Data flow for reactor physics calculations (according to [72, fig. 2.29)).

Nuclear data are edited, e.g., in the Evaluated Nuclear Data File (ENDF) format [79] con-
taining categorized information, e.g., about resonance parameters, cross-sections, energetic
and angular distributions of secondary neutrons, and radioactive decay (more details are
given in [72, s. 2.9]). These data are used in the cross-section calculation to produce the
isotopic cross-section library [147, c. Ill] for the lattice code consistent with the type of
transport equation solution, i.e., in multi-group structure for deterministic approaches or in
continuous-energy form for Monte Carlo methods. Lattice calculations are performed for
a small component of the reactor, e.g., a pin cell or an assembly, usually in a fine energy
group structure and taking heterogeneous material compositions and properties into ac-
count. The operating conditions outside the small component are generally not considered
(infinite two-dimensional lattice). The neutron flux obtained from the lattice calculation is
used to produce cell- or assembly-homogenized flux- and volume-weighted cross sections,
which are then collapsed in a coarse energy group structure. The reactor core calculation
utilizes the average cross sections generated in the previous step for polygonal prisms
(applying an appropriate axial core subdivision). However, even after the aforementioned
cell heterogeneity is replaced by a homogenized representation, a reactor core remains a

heterogeneous object because of its intra- and inter-assembly material composition. On
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the scale of a full core, the neutron transport equation is generally replaced by a simplified
form, e.g., the diffusion or simplified P; approximation (abbreviated as SP3 approximation),

which is the main focus of the present work.

1.2 THE REACTOR DYNAMICS cobE DYN3D

DYN3D is a three-dimensional nodal code for steady-state and transient analysis of nu-
clear reactor cores applicable to both square and hexagonal fuel assembly geometries,
which has been developed at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and its
predecessor organizations since the 1980s. The code allows the simulation of the neu-
tronic and thermal-hydraulic core response to reactivity changes caused by control-rod
movements or variations of the core coolant inlet conditions, the boron acid concentra-
tion, the core pressure, or the total mass-flow rates. Burn-up and reactor-poison-dynamics

calculations can also be performed [66, 67, 68].

The code is undergoing continuous development with respect to the improvement of the
physical models and the numerical methods. Originally, it was developed for Russian
VVERs with hexagonal-geometry fuel assemblies, applying a two-group nodal neutron
diffusion method [65], and then extended to square-geometry western-type light-water
reactors (LWRs) [66]. A multi-group approach was introduced [61] in order to improve
the description of spectral effects, which are increasingly important for mixed-oxide LWR
loadings, but also for innovative nuclear reactor designs [53, 94, 133, 136]. Furthermore,
the SP5 approximation of the multi-group transport equation was implemented on the basis

of Cartesian geometries [9].

DYN3D is one of the deterministic reference core codes of the European reactor simulation
platform NURESIM [26, 27, 137].

1.3 RESEARCH OBJECTIVES

The commonly used and most widely accepted approximation to the transport equation for
performing full-core reactor calculations is the diffusion equation. This approach does not
include the direction-of-motion variables and, therefore, requires low computational effort.

Physically, it places the following rather stringent restrictions:

e The neutron migration process must be dominated by scattering interactions, i.e., the

material must be highly scattering and weakly absorbing for neutrons.
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e The neutron migration process must be sufficiently far removed from material where

large gradients in the neutron density may occur.

However, quoting Alcouffe and O’Dell [3]: '..] diffusion theory has been [..] found to

perform better [in practice] than it theoretically has any right to."

Although the diffusion approach provides a sufficiently accurate prediction of the neutron
flux in a wide spectrum of reactor problems without resolving the complexities of the direc-
tional neutron transport, a simplified transport method, such as the SP3 method, is able to

capture anisotropic transport effects without a drastic increase in computational resources.

Besides VVERs, innovative reactor concepts like the sodium-cooled fast reactor (SFR) [1]
and the block-type high-temperature gas-cooled reactor (HTGR) (or very-high-temperature
reactor (VHTR)) [2] are based on hexagonal fuel assembly geometries. As a hexagon can
not be subdivided into hexagons of smaller size, hexagonal-geometry reactor problems are
effectively discretized as cells consisting of equilateral triangles. Hence, there has been
the necessity of developing both a diffusion and an SP5; model based on trigonal geometry
for the code DYN3D to enable advanced hexagonal reactor core analysis including the

capability of mesh refinement.

The important innovative aspects of the trigonal DYN3D models developed here are the

following:

e As yet, none of the worldwide well-established core analysis codes comprises a multi-
group SP3 transport theory model based on nodal triangular meshes and, therefore,
combines the advantage of the capability to capture anisotropic transport effects with

the possibility of mesh refinement for hexagonal fuel assembly geometries.

e The specific approach used to approximate the neutron flux within the trigonal prisms
is unique for both the diffusion and the SPs transport theory. It combines the so-
called transverse-integration procedure, leading to a computationally efficient nu-
merical method, with a sophisticated flux expansion ansatz based on polynomial and

exponential functions, which provides high performance.

The development of two methods based on different approximations of the transport equation
but using identical underlying spatial discretization allows a profound comparative analysis
of both methods with regard to their mathematical derivations, nodal expansion approaches,
solution procedures, and especially their physical performance, but also with regard to

aspects of the respective computational outlay.
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Apart from the necessary technical development to equip the code with trigonal mesh

capability, this thesis provides an answer to the following question:

Which degree of improvement can be achieved by the trigonal nodal DYN3D

SPs3 transport method in comparison to the respective diffusion method?

1.4 THESIS OUTLINE

The main part of this thesis addresses the theoretical examination and derivation of the
nodal diffusion and SP5 solution approaches to the neutron transport equation based on

trigonal geometry.

In Chapter 2, an introduction to the neutron transport equation is given. Different solution
approaches are briefly described. A particular focus, however, is put on the simplified Py
(or SPy) transport method, which provides a basis for both the SP5; and the diffusion

approaches. The respective equations are derived including boundary conditions.

In Chapter 3, the concept of nodal methods is outlined comprising a comprehensive literature
review. The characteristics of a method based on trigonal geometry are identified. The
transverse-leakage procedure is introduced and the specific expansion ansatzes of the
unknown functions are derived in trigonal geometry. Additionally, the hitherto existing

DYN3D expansion approaches in Cartesian and hexagonal geometries are outlined.

Chapter 4 of this thesis is concerned with the rigorous development of the numerical so-
lution procedure for the SP5 transport and diffusion equations in trigonal geometry. The
response-matrix equations are derived leading to an iterative procedure involving inner and

outer iteration cycles by which finally the core neutron flux distribution can be computed.

In Chapter 5, a numerical analysis of the performance of the trigonal SP3 transport and
diffusion methods developed in the previous chapters is demonstrated with particular regard
to mesh refinement analyses. Several hexagonal benchmark and test problems with different

material compositions are studied. The respective computation times are evaluated.

In Chapter 6, finally, the conclusions are presented and suggestions for future work are

given.






NEUTRON TRANSPORT METHODS

The behavior of a nuclear reactor is governed by the transport of neutrons and the inter-

actions between neutrons and matter.

An introduction to the neutron transport equation and its solution approaches is given
in Sections 2.1 and 2.2 with particular regard to the simplified Py (or SPy) transport
method in Section 2.3. In Sections 2.4 and 2.5, the SP5; and diffusion equations are

derived including interface and boundary conditions.

The following facts will become evident by the end of this chapter:

e Both the SP3 transport and diffusion approach represent efficient solution techniques

capable to perform whole-core reactor calculations.

e The SPs5 equations in within-group form are of diffusion type, which allows the use

of very similar solution strategies for both approaches.

e In contrast to diffusion theory, the SP5 approach takes higher-order neutron flux
moments into account, which enables the description of anisotropic neutron migration

processes.

2.1 [HE NEUTRON TRANSPORT EQUATION

Regarding a neutron as a point particle, it has a position r and a velocity v = vQ), where v
denotes the scalar magnitude of the velocity and Q(p, @) is the unit vector in the direction
of neutron motion. In a polar coordinate system, p € [—1,1] describes the cosine of the

polar angle 6 and ¢ € [0, 2] specifies the azimuthal angle as shown in Figure 2.1.

The distribution of neutrons in a reactor core is defined by the angular neutron density

function N(r, Q, E, t), which represents the expected number of neutrons at the position r

7
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FiGURE 2.1: Position and direction variables characterizing a neutron (according to [45,
fig. 4-2]).

with direction Q) and energy E at a time t per unit volume per unit solid angle per unit
energy. The product of the neutron speed v and the angular neutron density is called the

angular neutron flux:
vN(r,Q E, t)=¥(r,Q,E, 1)

[12, 5. 1.1]. Referring to the derivations, e.g., by Duderstadt and Hamilton [45, c. 4] or Stacey
[146, s. 9.1], an equation for W(r, Q, E, t) can be derived by balancing the mechanisms by
which neutrons, that are traveling in a specific direction Q) and that are characterized by
a specific energy E, can be gained or lost from a differential volume element dV at the

position r. The time rate of change of N(r, Q, E, t) within this volume equals
e the rate at which neutrons within the solid angle interval dQ about Q and of the
energy interval dE about E are streaming into the volume dV (O
e less the rate at which neutrons of Q, E are streaming out of the volume (2,

e plus the rate at which neutrons of Q, £ are being introduced into the volume by
scattering of neutrons within the volume from different directions Q' and different

energies E' 3,

e plus the rate at which neutrons of Q, E are being generated within the volume by

fission ®,
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e plus the rate at which neutrons of Q, E are being introduced into the volume by an

external source (5),
e minus the rate at which neutrons of Q, E within the volume are being absorbed (6),
e minus the rate at which neutrons of Q, £ within the volume are being scattered into

a different direction Q' or different energy E’ .

Hence, we have

1%W(r, O E t)=S(rQE t)—Q-VY(r,Q E t)—Zr, E,)¥(r,Q, E, t) (2.1)
v
@-0 ®+0®
with the source term
S(r QL E 1) = Ss(r, Q, E, ) + S¢(r, Q, E, ) + Seut(r, Q, E, 1). (2.2)
® ® ®

The balance relation (2.1) is known as the neutron transport equation and provides an exact
description of the neutron distribution within a reactor. ¥; denotes the total macroscopic
interaction cross section. The macroscopic absorption cross section £, = £; —¥; is defined

to characterize any other event than scattering [45, c. 2].

In the steady-state case, the neutron transport equation (2.1) with (2.2) reduces to
Q- VY Q E)+ Xi(r, E)W(r,Q E) = Ss(r, Q, E) + S¢(r, Q, E) + Sext(r. Q, E).  (2.3)

Applying the normalization

/dQ:1,

the scattering and fission sources are integral functions of the angular neutron flux, i.e.,

Ss(r,QE) = // (. Q' - Q E — E)Y(r, Q) E'YdE'dQY,
0

Si(r, Q, E) = Sy(r, E) = x(r, E)// vEf(r, E\W(r, O, E')dE'dCY,
0

where £ denotes the macroscopic scattering cross section. y describes the fission spec-
trum, v the average number of neutrons released per fission, and £; the macroscopic fis-
sion cross section. Therefore, the transport equations stated above are integro-differential

equations.
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Even without considering time dependence, there are six independent variables, three for
the space, two describing a direction on the unit sphere, and one for energy, which makes

the solution of transport problems a difficult task.

2.2 SOLUTION METHODS FOR THE NEUTRON TRANSPORT EQUATION

Different approaches can be used to solve the neutron transport equation. The most ac-
curate and most expensive technique is the Monte Carlo method. The second class of
neutron transport methods comprises deterministic solution techniques, which are based
on approximations related to energetic and spatial discretizations and the limitation of the
angular representation. Numerical analysis methods have to be applied to the transport

equation [72, c. 3].

2.2.1  MoNTE CARLO METHODS

The Monte Carlo (MC) method simulates a neutron population on the basis of a stochastic
process. The life of a single neutron is traced from its initial emission (or birth) until
its death by capture or leakage out of the system using a sequence of random numbers
to simulate the random physical events according to cross-section and collision laws. In
a Monte Carlo calculation, the criticality source iteration (eigenvalue problem in steady
state) is run in cycles and the source distribution of each cycle is formed by the fission
reaction distribution of the previous cycle, while the number of source neutrons per cycle
is fixed. Before starting to collect the results, inactive cycles are run in order to allow
the initial fission source distribution to converge. The statistical accuracy of the results
depends on the total number of active neutron histories run, which is determined by the
neutron population size per cycle and the total number of active cycles [110]. The Monte
Carlo method is exact, as far as the geometry and the interactions are correctly represented
and as far as the number of neutron histories is sufficiently large. Therefore, the Monte
Carlo result can be a detailed simulation of the steady-state neutron transport process [72,
s. 3.11].

Monte Carlo methods are mostly used to study difficult and nonstandard situations, such
as complex geometries, and to validate deterministic results. Their disadvantage is the

high computational cost. See also [111, c. 7] for further discussion.
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2.2.2 DETERMINISTIC METHODS

Treating the energy variable E in the neutron transport equation as not being continuous
but dividing the neutron energy spectrum into a number of discrete intervals, called energy

groups, leads to the use of multi-group methods [12, c. 4].

The collision probability (CP) approach is a deterministic multi-group method treating
general unstructured meshes. It applies a specialized "ray-tracing" routine to span a suffi-
ciently large number of neutron trajectories over the spatial domains in the given geometry.
These trajectories are then used to generate the appropriate collision probability matrices
in the number of required energy groups. The collision matrices are dense, so that the
method may involve high computational costs. Therefore, collision probability methods are

mainly used for two-dimensional cell and assembly transport problems [72, s. 3.8].

The method of characteristics (MOC) solves the multi-group transport equation along
straight paths of the neutron, called characteristics, as it moves across the complete system.
This approach is based on an iterative calculation of the neutron flux. It applies to discrete
directions and arbitrary spatial domains with nuclear properties assumed to be constant.
The methodology allows for an accurate treatment of highly heterogeneous systems and is
preferred to the collision probability method in cases where the number of regions exceeds
a few hundreds [72, s. 3.10]. Since the method of characteristics accounts for uncollided
neutron trajectories inside a cell, it is more suitable for problems in which streaming domi-
nates scattering [139]. It is routinely used for two-dimensional cell and assembly transport

calculations.

A method applicable to three-dimensional core calculations is the discrete ordinates (or
Sn) method. The essential basis of this method is the treatment of the anqular variable
Q as a set of N discrete directions in the multi-group neutron transport equation. Each
direction is characterized by a direction cosine, which is chosen to integrate the appropriate
quadrature ansatz functions with maximum accuracy. Different quadrature sets are used
depending on the type of geometry. In the limit of N — oo, the Sy solution converges
to the true transport solution. However, this is subject to the limitations of the computing
resources [72, s. 3.9]. Furthermore, the discrete ordinates method may suffer from anomalies

in the neutron flux distribution, called ray effects [111, s. 4-6].

Another approach for solving the multi-group neutron transport equation is the spherical
harmonics (or Pyn) method. It is based on the expansion of the directional dependence Q
of the angular flux ¥ in spherical harmonics. Truncating this series after a finite number of
terms, t.e, N+ 1, leads to the Py approximation [72, s. 3.7]. This method is characterized
by the following properties [100]:
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e As the order N of the approximation increases to infinity, the exact transport solution

is obtained.
e The Py equations are free from ray effects.

e In three-dimensional geometries, the number of Py equations grows like (N + 1)°.

In one-dimensional planar geometry, the number of Py equations is only N + 1.

Although it is possible to consider full three-dimensional Py core calculations, they sig-
nificantly strain computing resources. A closely related approximation to the Px method,
based on the solution of the simplified Py equations, leads to a more efficient solution
technique that can be used for full-core calculations as will be discussed in detail in the

following.

2.3 THEORETICAL ASPECTS OF THE SIMPLIFIED P/\/ METHOD

The spherical harmonics equations in multi-dimensional geometries are complicated. In
addition to a large number of equations, the complexity arises from the fact that both
components py and ¢ of the angular variable Q) are inherent in the spherical harmonics
expansion. The complex coupling involves not only the angular moments but also com-
plicated cross-derivative terms [14, 57, 119]. However, limiting the calculation to N =1,

which leads to the diffusion approximation, can turn out to be insufficient [73, 114].

About half a century ago, Gelbard [54, 55, 56] proposed a simplification of the Py equations,
the simplified Py (or SPy) equations. This approximation evolves from the planar-geometry
Pn equations, which are relatively simple, and involves an ad hoc substitution of the one-
dimensional second-order derivatives by the three-dimensional Laplacian operator. Hence,
the SPy equations can be considered a multi-dimensional generalization of the planar-
geometry Ppn equations. Compared to the full spherical harmonics approximation, this
simplification substantially reduces the number of unknowns and avoids the complexities

thereof.

Two facts should be noted comparing the SPy with the Py method [72, s. 3.7 4]:

e The SP; method is equivalent to the P; method in multi-dimensional geometries.
e For all values of N, the SPn method is equivalent to the Py method in one-

dimensional geometry.

The SPxn method is based on an expansion of the angular flux W in an incomplete basis

of orthogonal functions. In two- and three-dimensional cases, this does not quarantee the
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convergence of the numerical results as N increases. However, SPy results have proven
to be more accurate than Py solutions in many reactor problems. It is a common assertion
based on experience and numerical experimentation that the maximum potential accuracy
is obtained around SPs or SP7 [119].

The SPn equations can be derived by different approaches. Gelbard’s [54] original idea
yields only a formal derivation involving an ad hoc substitution of the multivariable differ-
ential operators, which is only a weak theoretical basis of the simplified Py approximation.
Larsen et al. [99, 100, 101] as well as Pomraning [130] used asymptotic analysis and inde-
pendently provided theoretical foundation for the numerical accuracy of the SPn method.
However, neither of these asymptotic derivations includes boundary conditions. The SPy
equations can also be derived using variational analysis [12, s. 6.4]. On the basis of
variational methods, Tomasevi¢ and Larsen [155, 157] derived the simplified P, equations,
whereas Brantley and Larsen [15, 16] accordingly established the theoretical foundation of
the SP3 method. The variational analysis is also able to provide interface and boundary

conditions for the SPy equations.

This work focuses on the SP3 approximation, where the number of second-order equations
to be solved equals two. This is significantly less than with the multi-dimensional P;3
equations. Therefore, the SP3 method is conceived a compromise between calculation

precision and cost.

2.4 DERIVATION OF THE STEADY-STATE SIMPLIFIED P/\/ EQUATIONS

With the awareness of the theoretical foundation of the simplified Py method via asymptotic
or variational analysis, we focus on the derivation of the SPn equations by Gelbard’s [54]
formal procedure (cf. [10] or any well-known reactor physics textbook, e.g., [146, s. 9.6]). We
begin by considering the planar-geometry Py approximation in Section 2.4.1 deriving in
particular the one-dimensional P3; and P; equations. The three-dimensional generalization
for the P53 equations with full anisotropic scattering is given in Section 2.4.2, its modification
allowing only within-group higher-order anisotropic scattering in Section 2.4.3. Finally,

the diffusion approximation is derived from the P; equations in Section 2.4.4.

2.4.1  THE PLANAR-GEOMETRY Py EQUATIONS

While the spherical harmonics equations in multi-dimensional geometries are complicated,

the Pn equations in one-dimensional planar geometry are relatively simple.
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FiGure 2.2: Planar-geometry coordinates (according to [45, fig. 4-9)).

Let the steady-state neutron transport equation of (2.3) in one-dimensional geometry
0
paw(x, u, E)+ Zi(x, E)¥(x, pu, E) = Ss(x, 4, E) + S¢(x, E) + Sext(x, 4, E) (2.4)

be the starting point for the following derivation of the planar-geometry Py equations. For
convenience, the angular coordinate system is chosen with its polar coordinate axis in the
x-direction. The assumption of planar geometry implies that there is no dependence on
the azimuthal angle ¢. Hence, in equation (2.4), the occurring anqular dependent neutron
flux W, the total macroscopic cross section L4, the neutron scattering source S, the fission
source Sy, and the external source Seyt only depend on a single spatial coordinate x and
the cosine of the polar angle y = cos 8 with 8 being the direction of neutron motion as
depicted in Figure 2.2. Discretizations in space and energy are introduced and constant
cross sections are assumed for the resulting spatial intervals with the indices i € (1, ..., /)
and energy groups g € (1, ..., G), where g = 1 denotes the fastest group. The macroscopic
cross sections used in the subsequent equations are averaged values over space and energy
and determined via flux-volume weighting of the heterogeneous cross sections applying the
flux obtained from the lattice calculation (cf. Figure 1.1). Assuming furthermore the absence

of an external source, the following multi-group form of the above neutron transport equation
holds:

Hax Palxot) + LigWolxo ) = Sg(x 1) + Sp 4(x) (2.5)

with x € [x;_1, x;] and x;_1, x; being the respective lower and upper interval bounds. The
angular dependence of the flux and source functions in equation (2.5) can be approxi-
mated by a truncated series expansion. Therefore, the Legendre polynomials p,(u) are

introduced representing the one-dimensional equivalents of the spherical harmonics, the
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Ficure 2.3: Graphs of the Legendre polynomials p, up to n = 3.

expansion functions of the Py equations. Like the spherical harmonic functions, the Le-

gendre polynomials

po(u) =1,

pi(u) = u,

palh) = 3347 1),
palb) = 550~ 3u)

(see Figure 2.3) form an orthogonal system with the properties

1
2
dy = ) 2.6
[ potilpatids = 5% 6o 256)
and

n n+1
n = > n— S _ ., A Mn ’ 2 ’ .
1pa(u) n il 1(u)+2n+1p +1(1) n=>1 (2.7)

where 0,, denotes the Kronecker delta. According to this, the angular neutron flux ¥ and
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the angle-dependent scattering term Sg are expanded into Legendre series as follows:

|\/]8

Wl ) = )20+ 1)pa(u)®), 4(x)
n=0
N .
2 (20 +1)pa(u) 4(x), (2.8)
n=0
o
Slobou) =) (2n+T)paly Z g Ph g
n=0
N
x Y (2n+ ),y Z e Ph g (2.9)
n=0

with finite order of truncation N € N. The quantity

1
oL (x) = ;/_1 Po(u) W5 (x, p)dy (2.10)

is the nth Legendre-weighted moment of the neutron flux increasing its directional variation
with n. £ 9q’ denotes the nth moment of the macroscopic scattering cross section from
energy group ¢’ to energy group g. Inserting the expansions (2.8)—(2.9) into the transport

equation (2.5) and applying the recursion formula (2.7) gives

N N
d . [
Z NP1 () + (0 + 1)pns (1) 5-®f g (6) + 3 (20 + 1)pa() T} o) g (x)
n=0

n=

= Zan +1)pa(K) Z Zongg g ) + S g(%):

Multiplying these equations with p,(u) for m = 0, ..., N and integrating over y € [—1,1] by
taking the orthogonality condition (2.6) into account and assuming <D_1 g( X) = ¢fv+1'g(x) =
0, the following N + 1 steady-state Py equations for the N + 1 unknown flux moments

CDf,’g are obtained in planar geometry:

n d i n+1 d i i
Zn Tax oW o g Pt gl + Eeg®hgle Zzw 9+ Sng,

The occurring isotropic source term

&i 1 i
SO,g(X) = 7ng(X)

= Z /¢
kHXg;V 0.q(X



2.4 Derivation of the steady-state simplified Pn equations 17

comprises the fission source Sy and the effective multiplication factor ke to create an

eigenvalue problem, whereas

Truncating the series expansions of (2.8)—(2.9) after the fourth term, i.e, N = 3, the four

first-order linear differential equations

d

o Lg(x) +Ei,Pp Zzsoggmbog x) + 56,4 (%), (2.11)
1d 2d l. .
335 0.9 (¥) + 3 P2g () + T g Z H0g Py (2.12)
2d 3 d . c D
= Pl + 2 @500 + i@ 00 = ) T5 0P g (x), (213)
g'=1
3 d o ¢ .
23 Phgx) + T ,®h () =) Ty L () (214)
g'=1

represent the one-dimensional P3 equations for the energy group g with full anisotropic
scattering. Describing the angular dependence of W and Ss only linearly anisotropic, i.e.,

up to N =1, the system above reduces to the well-known one-dimensional P; equations

T Phgl) + TG4 (x) Zzsogg@og %) + 5,4(x). (215)

1d
33 P00 + T Z g ®h g (x (2.16)

The above systems of P3 and P; equations show that the consideration of full anisotropic
scattering — from energy group to energy group and within the particular groups — results

in a coupling of the equations over all energy groups.

2.4.2 THE SP3; EQUATIONS WITH FULL ANISOTROPIC SCATTERING

Defining the vector functions

}1(x) 01(X)
¢, 00 £ 0

®.c) So.6(%)



18 Neutron Transport Methods

with'
i
va
i T i VZ?Z
SO,g(X) = k7Xg< vf'q)O( )> and vf =
eff
i
vZf’C
as well as the matrices
i i i i
Zt,1 - z5n,11 _an,12 s _an,1C
. by R :
z;] — sn,21 t,2 sn,22 ’ n= 0' . 3'
: . : i
_zsn,G—1G
i i i i
_zsn,C1 s _an,GG—1 Zt,G - zsn,GG

the equations (2.11)—(2.14) can be rewritten in the following matrix form:

L oi) +Zho)(x) = S, (217)
L oh0 + 5 S 0b(x) + {0 () = 0, 2.18)
%dd—xtbﬁ(x) + gdixcbg(x) + Zidi(x) =0, (2.19)
KIS 404 = 0. 220

The equations (2.18) and (2.20) yield the expressions

®}(x) = —3(Z))" 2 (9h(x) + 20}(x)
®i(x) = (55" L iy

for the odd-order flux moments. Hence, ®} and ® can be eliminated from (2.17) and (2.19).
With

d i hi X
aq% (x) = —ZPp(x) + Sp(x)

from (2.17), we obtain the following second-order differential system of equations:

1 d2 . - Y.
—g(Z%) el (¢0( )+ 2¢12(x)) + 5P (x) = Sp(x), (2.21)
9 g d? 20 i i i 2y
35 —=(Z5)” dx 2¢2( x) — gzoq)o(x) + Z05(x) = —gso(x)~ (2.22)

"The inner product (-,-) : R® x R® — R denotes a generalized scalar product over the vector space R¢.
Note that the geometrical scalar product is designated by the centered dot '’ in this document.
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Introducing the diagonal matrices

Zén - Zin,ﬂ 0 0
g, : 0
0 0 Z;G - z;n,GG
the matrix diffusion coefficients can be defined as
1
th'l le‘l‘l‘l O 0
i _ et a1 0
DO §(Zdiag1) 1 = 3 1,2. 51,22
0
0 0 1
zt 672151 GG
and, respectively,
]
_ 1 0 o 0
25,1_2153,11
1
9 -1 9 0 zi 7):[
DlZ = %( dtag,3) 35 t2 Ts3.22
0
1
0 0 zlr,C_zlslGC

So, the system (2.21)—(2.22) can be written as
] d? . o Y.
(<D‘( X) + 205(x)) + Zdg(x) = Sp(x),

DOZdlag 1(21) dx .2
2

Qi d? 2 i i hi i
—D5E{,03(E5)” 1d S h(x) — gzod’o(X)Jrzzq’z(X) = —gso(x)o

Defining now the modified neutron flux moment vectors

Dl (x) 1= Ehiag 1 (E5) 7" (D (x) + 205 (x)),
D (x) 1= g 3(Z5) " D5 (x),

the above system results in the system of second-order differential equations

R Y.
—Dﬁﬁ%( )+ Z6 f(x) — 2E(;95(x) = Sh(x), (2.23)

d? 4 2o A 4ei i\ 2
—Dzd 5 5(x) — gzmd’o(x) + (5203 + 223)‘1’2()() = —gso(x) (2.24)
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with the matrices

Zo1 = 0% (Zgiag1) (2.25)
263 = Zézg(zéiag,3)_1 ' (226)
Th = Zézé(zéiag,?»)_1' (2.27)

As mentioned before, the SP3; concept has evolved from the idea of a multi-dimensional
generalization of the one-dimensional P5 equations. Thus, the ad hoc replacement of the
second derivatives in (2.23)—(2.24) by the general Laplacian operators yields the following

equations in three-dimensional form:

—DjAdY(r) + Ef; f(r) — 25305(r) = So(r), (2.28)
i AR 20 4 i \&i 2
—~D5A®)(r) — EE,Bh() + (£ Zhs + by ) B(r) = —£5h(r) (2.29)

with the gth component

&i 1 i/ i
Sholr) = £ xo(Zhr. ®00)

1 /e i (si Ry e e
= @Xg< v’ Z‘] (Zd'lag"l) 1¢0(r) — 223(Zdiag,3) 1¢2(r)>'
g =1,..., G, of the source term vector function éﬁ(r).

Since the above system of second-order differential equations (2.28)—(2.29) takes the full
anisotropic scattering into account, the coefficient matrices £, £{;, and E5; in (2.25)-
(2.27) are dense. Consequently, the SP3 equations are coupled over all energy groups
g =1,..., G. For a sufficiently large G, solving 2G coupled equations implies an extensive
numerical effort. Therefore, the anisotropic group-to-group scattering is neglected in the

following applying the so-called within-group approximation.

2.4.3 THE SP; EQUATIONS IN WITHIN-GROUP FORM

Let the one-dimensional P3 equations in first-order form (2.11)—(2.14) be the starting point.
Brantley and Larsen [16] as well as Beckert and Grundmann [10] described the SP3 equa-
tions in the so-called within-group form. The approximation involved assumes only isotropic
neutron scattering between different energy groups, i.e.,

Loy =0 for  g'#g and n>1 (2.30)
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With this assumption, the P3 equations (2.11)—(2.14) become merely coupled via the

isotropic scattering source. Taking the definition of the removal cross sections
o= Z‘ —z n=0,..,3,

rng sn,gg'

into account, they can be written as

d
dX g(X) +Zrqu)Og ZZSOgg’q)Og +SOg( )

g#g
14d 2 d .
3ax oW 340 =P (X) + 4 4(x) =0,
2d 3 d

gd7X 'l,g(X) + gd7X ( )+ Zr2 gq)'Z,g(X) = 0'
3d

7 D200 + 13,0P5,4(x) = 0.

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

By dint of the equations (2.33) and (2.35), the odd-order flux moments <D§’g and d>§’g can

be eliminated from the equations (2.32) and (2.34) also in this case. Hence,

i 1 d i
1g( )= 3[[1 dx ((DOg( )+2¢2'9(X))
and
®34(x) = Tei gy P2.90)
T 7T A

as well as the diffusion coefficients defined as

- 1 : 9
D(l)’g 3[[ and Dé,g = W
r,g r3,g

give the system of second-order ordinary differential equations

i d2 i i
_DO,g@(q)O,g(X) +2(D2,g(x)) rO gq)Og X) ZZSO gg’(DOg + S0 g( )
9#9
2 . d2 . X d2

_gDé,gw( lO,g(X)+2¢12,g(X)) Dng 2 ( )+Zr29 .Z,g(X):O
and, accordingly,

d? ~ . .
DOgd 2 ( )+ZrOg¢O,g( ) zerg ( ): S(IJ,g(X)'

;oA 2 4, 2
_DZ,g@q)Z,g( ) 5 rqu)Og(X) (ngOg—i_erg)q)Zg( ) 550g( )

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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with the new source term

S0 g Z z50 Nelel (DO g’ ) 26[29’()()) + ‘é(i),g(x)

9#9
_Zzsogg ¢Og x) = 205 /() +—ngvz CDOg — 29 ,(x))
g'=1
’#9

and the modified neutron flux moments

Bf 4 (x) 1= Bf 4 (x) + 205 (), (2.43)
5 (x) == Db (x). (2.44)

The substitutional expressions (2.43)—(2.44) are introduced to manipulate the second-order
form P5 equations (2.39)—(2.40) into a form (2.41)—(2.42) that resembles a set of diffusion-
like equations. The subsequently described nodal expansion method treats the quantities
<T>6lg and 559. The actual flux moments & and ®)  are only recalculated at the very

end of the calculation procedure.

In analogous manner to the previous subsection, the three-dimensional form of the SP3
equations is obtained by substituting the one-dimensional second derivatives in (2.41)—
(2.42) by the general Laplacian operators. Hence, we obtain the following system of

second-order elliptic partial differential equations, the SP3 equations

D5, ABf (1) + Ejo,, BG4 (1) — 27,4 ®5 (1) = 56 (1), (2.45)
- 2 4 . . 2
D5 A} (1) = £Ej0gBh (1) + (SThog +Thoy ) Bogl0) = =255, (246)
with
~. 1 & - ~
St q(r) Zzsogg o (1) 2<D‘2’g,(r))+k—eﬁ)(;ZvZ}’g,(CDf)’g,(r)—2¢‘2’g,(r)) (2.47)
g'=1

9#9

and the unknowns 569 and 559 being now dependent on the three-dimensional position

vector r. The index i now indicates a volume element with spatially constant cross sections.

The derivation above is based on the consideration of only isotropic scattering between
different energy groups. However, also a linearly anisotropic angular dependence of the
group-to-group scattering can be included allowing for a further approximation discussed
in the following. We now assume

L qq =0, g #g, only for n>2
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(compare (2.30)) and, consequently, the P53 equations (2.11)—(2.14) reduce to

d
dX g(X) +ZrOg¢Og ZZSOgg’d)Og +SOg( )'

’#9

1d 2d
3d q)Og() 3dx q)Zg() r1gq>1g Zzs'lgg

9#9
2d 3d .
i ( ) + Zr2 gq)lZ,g(X) = 0'

sax 1o T 5 s

3d
7 dx ¢29(X) r3gq>3g() 0

with the linearly anisotropic scattering term L CID"g,. The derivation of the SP5 equa-

s1,9q9’
tions can be continued in the aforementioned manner, however, with the exception that the

diffusion coefficient now obtains the artificial form

. 1 1
D} 5(x) := TN oY (2.48)
( g Z@'”stg <I>‘ )) 3(2;’9_2, 125199 @] (X))

which depends on the neutron flux Cbﬂ’g. A common procedure for avoiding this difficulty is
to take account of the heuristic argument that the contribution from the slowing down of
neutrons from energy groups g’ > g is assumed almost the same as the slowing down from

g to lower energy groups [12, s. 4.2d]. Thus, the assumption

Z £ g P g Z L gg (2.49)

simplifies the diffusion coefficient (2.48) to

D 1 _ ! ! (2550)

0.9 : - - C -
3(2%9 B Z . 251 g 9) 3(2%9 — Ho,g Zq’:1 zlSO,g’g) 32[” g

with the average cosine of the scattering angle fig4 and the transport cross section Zt,g

The approximation (2.49) is also considered by Beckert and Grundmann [10].

In principle, the SP3; equations (2.45)—(2.46) in within-group form are of the same struc-
ture as the SP5 equations (2.28)—(2.29) considering full anisotropic scattering. However,
approximating the linearly anisotropic group-to-group scattering by using the transport
cross section and allowing only anisotropic within-group scattering, the respective system
of equations is merely coupled via the isotropic group-to-group scattering, which is treated
as a source term in the following. It is shown in Chapter 4 that, in the so-called inner

iteration procedure, only one pair of coupled equations has to be solved separately for
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each energy group g (instead of 2G coupled equations in the full anisotropic scattering
case). This provides a reasonable compromise to obtain an efficient numerical solution as
previous works [8, 9, 16, 91, 123, 140] have shown.

2.4.4 THE DIFFUSION EQUATION WITH TRANSPORT CORRECTION

In the previous section, two second-order differential equations are obtained from four first-
order differential equations. Considering now the P; equations of (2.15)—(2.16), a single
second-order differential equation is derived in the following. With the aid of assumption

(2.49), the odd-order flux moment <Dﬁ’g can be eliminated from equation (2.16) via

i i d
1,g(X) = _DO,g a‘bo,g(x)' (2.57)

where D("),g denotes the transport-corrected diffusion coefficient of (2.50). Hence, applying

(2.51) to the first Py equation (2.15), the planar-geometry diffusion equation

d? ;
DOgd 2¢Og(X)+ZrOg l,g(X ZZSOgg’q)Og +50g( )
g #g
is obtained with the removal cross section
rO g - zl lsO,gg'

It is seen that the planar P; equations lead to diffusion theory in which the contribution

of the anisotropic scattering to the energy transfer is approximated.

In three dimensions, the same is true if also the spatial derivatives of higher flux moments
ngr > 0, can be neglected [146, s. 9.7]. We

accordingly have the three-dimensional steady-state diffusion equation

¢‘2 and anisotropic neutron sources Si

—Dp,g AP (1) + i,y ¥f 4(r) = S 4(r) (2.52)

with the modified source term

SOg Z Z50 gg’q)Og I’) + SO g( )

9 %g
G
1 . . )
= Z 0,99 P0,4(r) kfﬁxé > vEf 0 ().
=1
9 #g I
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2.5 INTERFACE AND EXTERIOR BOUNDARY CONDITIONS

To obtain solutions to the SP3 and diffusion equations, boundary conditions have to be de-
fined. As these equations are furthermore not defined at interfaces where cross sections are
discontinuous, also interface conditions are required. Assuming again a one-dimensional

geometry for the beginning, the true boundary conditions
‘ _ ity
LlJlg(Xl‘l /J) - l'lJlg (Xll IJ) (253)
at a nodal interface x; and
Wil p) = Whix, ), 0 <0, (254

at an outer boundary xp, respectively, where W’g’ represents a known incident angular flux
at the exterior position x, in the incoming direction p, can not be satisfied exactly by the
finite angular flux approximation (2.8). Therefore, approximate boundary conditions have
to be developed. The most obvious way is to substitute (2.8) into the exact boundary
conditions of (2.53) and (2.54), respectively.

Hence, for arbitrary material interfaces and N = 3, we trivially obtain

®f,(x1) = PG (%),
1,g(x0) = O] (%),
5 (%) = PL (),
§gx) = P51 (x)

Taking the relations (2.36)—(2.37) and the definitions (2.38), (2.50), and (2.43)—(2.44) into
account, the above conditions can be rewritten involving only the modified flux moments of

zeroth and second order:

4 (xi) = PG (xi),
Di i(ﬂﬁl (X)_ i+1i$i+1(x-)
0.9 qx 09 T F0.g gy 0.9 VY
®) 4 (x) = PN (xa),

i 4z i1 d 3
D5 g3 @b glxi) = D5l 5t (x).
Generalizing to three dimensions, the interface conditions
(1) = ) g(r), (2.55)
D ni- VO, () =Dhgn;- V& o(r), reaVvi, n=0,2 (2.56)
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hold, where VY = 9Vin aV/ = Vin V/ indicates the interface between two nonoverlap-
ping volumes V' and V/ with their boundaries V' and dV/, respectively, and n; denotes

the unit outer normal vector of V! directed towards V/.

In case of an outer boundary, we substitute (2.8) for N = 3 into (2.54), multiply by the
Legendre polynomial pn,(|p|) and the factor % integrate over y < 0, and obtain the two
Marshak boundary conditions [146, p. 333f]

3 0

1 1

/ pm(|ul) 202n+1pn (Xb)duzz/ po(l)Wolxp, p)dy, — m=1,3.
n=

(2.57)

As the odd Legendre polynomials represent directionality, only those are taken into account

as weighting functions. Thus, using p1(|y|) = —u, p < 0, gives

1 . 1 .
7P0,900) = 5P 5(x0) + ¢29Xb / |1 WE (xp, )d

With the polynomial ps(|p|) = 5;1 —3p), p < 0, and an additional factor 2 z, we have
EDY 3¢ £y 31 /0 y
~80 Og(Xb) 16 2g(Xb) 10 3g(Xb) 52 [ P3 (lu)¥ Xb p)dp.

Applying also here (2.36)—(2.37), (2.38), (2.50), and (2.43)—(2.44), and generalizing to multi-

dimensional geometries, we finally get the Marshak-like boundary conditions

1~i 1 i bl 3 b 1 a0 b
Z O,g(r) + EDO,g n; - vcl)O,g(r) - E Z,g(r) = E 0 : |u|wg(r' H, (P)CI/JCI(P,

(2.58)
3 ~. 21 2 .
80¢0g( ) 80(D29( )+ 2D29nl vq)zg 5 4]_( p3 |IJ| LP r H, e dud(p,
(2.59)

r € dViet C dV¢, with the exterior boundary dViet = Vin BU{:1 Vi of the volume V' and

the azimuthal angle ¢ (see Figure 2.1). The factor 41—” arises from the normalization of the

1 27 1 1
dQ = — deo = duy =1.
/ 2”/0 g02/—1 g

The boundary conditions (2.58)—(2.59) are called '"Marshak-Llike’ since the Marshak bound-

ary conditions (2.57) are traditionally defined only in one-dimensional geometries.

integral

The derivations above are based again on Gelbard’s formal approach of simply replacing

the one-dimensional parameters by multivariable terms. However, Brantley [14] derived
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the material interface conditions (2.55)—(2.56) and the Marshak-like boundary conditions
(2.58)—(2.59) using a complex variational analysis and established a theoretical basis also

of the interface and boundary conditions of SP3 transport approximation.
With regard to diffusion theory, the interface conditions
bf (1) = @, (1), (2.60)
D§,g i - V&G 4(r) = Dp i - Vg (r), reovy, (2.61)
and the Marshak-like boundary conditions

1 . 1 . . 1 27 0 . .
7 0,4(r) + iDé'g ni- Vg (r) = 471/0 /1 |p|LPZ(r,u, @)dude, redVet c oV,

(2.62)

hold according to (2.55)—(2.56) and (2.58), respectively.
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A reactor is a complex object in terms of its geometry, its composition, and the involved
nuclear data, which renders whole-core transport calculations practically impossible. As
outlined in Section 1.1, problem-specific modeling is essential to perform such calculations
in practice. The determination of the full-core neutron flux is generally a result of a
computational procedure based on three levels: the isotopic-cross-section calculation, the
deterministic or Monte-Carlo-based lattice neutron transport calculation, and the full-core
calculation. A scheme for determining the three-dimensional core flux distribution, which

avoids high computational costs, is provided by nodal methods.

In Section 3.1, a brief introduction to the difficulties associated with spatial homogenization
is provided to better assess the concept of nodal methods, which is described in Section 3.2.
In Section 3.3, the characteristics of a method based on trigonal geometry are identified.
Two key techniques of the nodal DYN3D approach are derived in Sections 3.4 and 3.5:
the transverse-leakage approximation and the specific expansion of the unknown functions
in trigonal geometry. In Section 3.6, the DYN3D expansion approaches in Cartesian and

hexagonal geometries are presented.
The following facts will become evident by the end of this chapter:
e The superior advantage of a nodal method for reactor cores with hexagonal fuel
assemblies based on trigonal geometries is its mesh refinement capability.

e The nodal approaches implemented in DYN3D are based on the transverse-integra-
tion procedure, which renders them computationally efficient. They furthermore use a
combination of polynomial and exponential functions to expand the unknown neutron

flux moments of the SP3 and diffusion equations, which guarantees high accuracy.

29



30 Nodal Reactor Analysis Methods

e In both the SP;3 and the diffusion approach, the intra-nodal unknown functions are
finitely represented in terms of only a small number of unknown parameters, so that

the equations can be numerically processed.

3.1 REMARKS ON HOMOGENIZATION THEORY

As any matter, also neutrons are submerged to an equilibration process. Hence, neutrons
are transported from a domain with high population density towards a reduced one. This
process formulates the following heuristic relation between the neutron current and the

gradient of the neutron flux, known as Fick's law [72, s. 5.1.1]:
I(r) = =DV P(r). (3.1

This relation is a generalization of (2.51) and based on the assumptions of the neutron

migration process being sufficiently slow varying in space and scattering dominated [146,
c. 3].

Referring to Section 1.1, reactor core calculation procedures, such as nodal methods, utilize
cell- or assembly-homogenized cross sections. The difficulty associated with the homoge-
nization process is to define heterogeneous reactor properties which should be reproduced
when the homogeneous problem is solved. To obtain a global power distribution with
a homogenized reactor representation identical to the heterogeneous representation, the
interaction between adjacent regions has to be described in an equivalent manner. To
account for the influence of adjacent regions, considering local and spectral interaction,
the integral reaction rates and neutron fluxes in every homogenized volume as well as
the integral net currents and fluxes at the interfaces between adjacent volumes should be

preserved [87].

Evaluating ideal homogenized parameters, obtained via flux-volume weighting of the het-
erogeneous cross sections, implies the a-priori knowledge of the solution to the heteroge-
neous reactor problem, which creates a practical difficulty. An additional dilemma exists
in the determination of a spatially constant diffusion coefficient, which is, taking Fick's
law (3.1) into account, strictly defined as the negative ratio of the heterogeneous surface
current and the gradient of the homogeneous surface flux. Imposing the continuity of the
interface net currents and fluxes, the values of the diffusion coefficients would be different

on each surface of the homogenized volume [145].

Consequently, approximations have to be applied and some of the constraints of the ho-

mogenization theory have to be relaxed. In the framework of Koebke’s equivalence theory
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(ET) [87, 88] of heterogeneous and homogeneous regions, the integral reaction rates and
net currents at interfaces between adjacent volumes are preserved. The flux continuity

between adjacent homogenized regions, however, is no longer postulated.

To reproduce the reference heterogeneous solution, Koebke [87] introduced reference het-
erogeneity factors (RHFs). In Koebke's ET method, the determination of the diffusion
coefficients is constrained such that the RHFs are identical on opposite volume surfaces.
Using the conventional flux-volume-weighted diffusion coefficients, Smith [145] proposed
the application of reference discontinuity factors (RDFs) in the framework of his general-
ized equivalence theory (GET). The RDF ff’g at a surface [ of the volume V' is defined for

every energy group g as

—i,het

<D0’g

—i,hom’
0.9

flg= (3.2)

where 682,“ is the surface-averaged flux calculated in detailed heterogeneous geometry,
and 5&20“1 denotes the surface-averaged flux calculated in homogenized diffusion theory.
Smith [145] furthermore defined assembly discontinuity factors (ADFs) adapted to fuel
assemblies, which can be computed directly from the information available in standard
assembly calculations. ADFs are simply ratios of the node-surface-averaged fluxes to
the node-averaged fluxes in the heterogeneous assembly calculation with zero-current
boundary conditions. Tahara et al. [152] and Mittag et al. [121] derived discontinuity

factors applicable to control absorbers and reflector assemblies.

For rather homogeneous assembly configurations, the ratio of (3.2) is approximately one
and, hence, the use of discontinuity factors is dispensable. However, if the assembly has
significant heterogeneities in the vicinity of its boundary, e.g., due to absorber pins, the

effect of discontinuity factors may be relevant.

Discontinuity factors, however, have been solely defined for diffusion theory. The SPyn
theory formulations, obtained from asymptotic or variational analysis, do not provide an
explicit and readily evaluated representation for the corresponding angular flux solution.
This makes it impossible to calculate the necessary surface discontinuity factors to force
consistency between the SPx and the transport solution. Recently, Chao and Yamamoto
[25] presented a different SPy formulation that provides the angular flux solution. However,

a practical approach in order to calculate SPy discontinuity factors is not provided.

Due to the lack of the definition of discontinuity factors for the SPs transport theory, the

use of discontinuity factors is generally not considered in this thesis.
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Spatial-homogenization methods can not only be applied to assembly-size volumes but also
at the pin-cell level. Pin-cell homogenization approaches [164], such as superhomogeniza-
tion (SPH) factors [64, 76, 77, 82], interface discontinuity factors (IDFs) [5, 17, 80], and
pin-cell discontinuity factors (CDFs) [92, 93, 126] are also based on the well-established
ET and GET described above. In the present work, however, pin-cell homogenization

methods are excluded.

3.2 CHARACTERISTICS OF NODAL METHODS

Realistic reactor models may contain hundreds or several thousand different homogenized
regions, even after the local cell-level homogenization has been imposed. There are differ-

ent numerical techniques to solve the diffusion or simplified neutron transport equations.

In the finite-difference (FD) method [50, 102], the continuous spatial dependence of the
neutron flux is replaced by a finite number of flux values at discrete spatial locations. Fur-
thermore, the occurring flux derivatives are approximated by quotients of finite differences.
Accordingly, the mesh spacing should be smaller than the neutron diffusion length [146,
s. 3.10]. This constraint reveals a limitation of the conventional finite-difference method
since the high cost of solving core dynamics problems forces the use of methods based
on coarse mesh elements. E.g., coarse-mesh finite-difference (CMFD) methods [20, 78]

overcome this constraint.

In the finite-element method (FEM) [74, 103, 112, 123], the system is also cut up into
finite mesh elements. The neutron flux, however, is represented by a sum of polynomial
test functions in each element. Therefore, the finite-element method, particularly in an
approximation higher than linear, is far more efficient than the conventional finite-difference

method as the mesh elements may be an order of magnitude wider [134, s. 6.2.4].

Nodal methods also allow a reactor core to be handled with large volume elements, so-
called nodes. The approach is similar to finite elements in terms of the intra-nodal flux
representation by only a small number of parameters. However, the neutron currents at the
nodal faces are additionally taken into consideration. Once the flux-current relationships
are specified, equations with a simple structure can be constructed. On this account, nodal
methods have been widely accepted for multi-dimensional reactor calculations already for
a very long time [4, 48, 104, 142].

Most common nodal methods are based on transverse integration of the multi-dimensional
diffusion (or diffusion-like) equations and on the transverse-leakage approximation. The
idea behind a transversely integrated nodal method is to reduce a multi-dimensional trans-

port problem to a coupled set of typically one-dimensional problems and, therefore, reduce
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the computational effort. The expansion coefficients of the transverse leakage are calcu-
lated by assuming that the (usually quadratic) polynomials extend over the adjacent node
surfaces. There are different classes of transversely integrated nodal methods. The ana-
lytic nodal method (ANM) [69, 71, 144] and the nodal integration method (NIM) [49], a
modification of ANM, solve the one-dimensional transversely integrated equations analyti-
cally without any other approximation than the transverse leakage. However, the resulting
formulation is complex making a multi-group generalization difficult. The nodal expan-
sion method (NEM) [36, 48, 89, 132] is based on a local polynomial flux expansion which
is used to determine a relationship between the mean interface partial currents and the
node-averaged fluxes. Also the nodal Green’s function method (NGFM) [105] is based on
polynomial expansions. Furthermore, combinations of ANM and NEM were proposed, such
as the semi-analytic nodal method (SANM) [47] and the hybrid ANM/NEM [42]. Using the
transverse-integration procedure, however, causes limitations. The transverse-leakage term
must be appropriately approximated; quadratic polynomials may not handle well large flux
gradients near nodal interfaces of strong material discontinuity. Furthermore, the trans-
verse leakage defined for nonrectangular nodes, e.g., hexagonal, triangular, or cylindrical,

becomes complicated due to the occurrence of nonphysical sinqular terms [19, 125].

An approach for avoiding such singularities is the technique of conformal mapping, in
which a polygonal or cylindrical node is conformally mapped to a rectangular node. Then
traditional Cartesian-geometry nodal methods are applied, i.e., ANM [24, 131, 156] or
NEM [166].

To entirely overcome the limitations of the transverse-integration procedure, Langenbuch
[96, 97, 98] developed a flux expansion method in which the neutron flux is locally expanded
in polynomials with coefficients determined by the weighted residual technique (similar to
the finite-element method). In the interface flux nodal method developed by Chao [23],
only node-interface fluxes are involved as unknown quantities. The interior fluxes are
subsequently determined from the interface fluxes. Further approaches which do not use
transverse integration are the analytic function expansion nodal (AFEN) method [33, 35,
81, 125] and the flux expansion nodal method (FENM) [163]. Here, the intra-nodal flux
is expanded in terms of nonseparable multi-dimensional analytic basis functions satisfying
the neutron diffusion or SP3 transport equations at any point of the node. To improve the
convergence property, polynomials are used instead of analytic basis functions to represent
the intra-nodal flux distribution in the polynomial expansion nodal (PEN) method [31] and
the higher-order polynomial expansion nodal (HOPEN) method [32].

The approach implemented in DYN3D can be regarded as a hybrid NEM/AFEN form,
which was similarly used by Wagner [160] (one-dimensional NEM/AFEN approach) and
Kim et al. [83] (one-dimensional NEM/AFEN approach based on conformal mapping).
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Core analysis Nodal Method Geometries References
code
ARTEMIS NEM Cartesian [129, 158]
COREDAX AFEN Cartesian [29, 34, 108]
hexagonal (only diffusion)
DYN3D hybrid NEM/AFEN  Cartesian [11, 46, 68]
hexagonal (only diffusion)
trigonal
PARCS ANM, NEM Cartesian [41, 86, 107]
trigonal (only diffusion)
SCOPE2 hybrid ANM/CMFD  Cartesian [148, 153, 165]
SIMULATE SANM Cartesian 6, 7, 47]
SUBARU hybrid ANM/CMFD  Cartesian [149, 150, 151]

TaBLE 3.1: Summary of nodal core analysis codes comprising multi-group diffusion and
SPs transport models.

DYN3D is a transversely integrated nodal method leading to one- or two-dimensional
equations, which are to be solved. It uses local polynomial expansion ansatzes according
to NEM. However, the neutron flux is additionally represented by analytic basis functions
similar to the AFEN approach. In this manner, DYN3D encompasses the advantages of
both methods: the efficiency of the NEM and the improved accuracy of the AFEN method.

Without any claim of completeness, a review of the worldwide well-established core anal-
ysis codes comprising both multi-group diffusion and SP3 transport theory models is given
in Table 3.1 (see also [141)).

3.3 ADVANTAGES OF TRIGONAL GEOMETRIES

The obvious advantage in developing a nodal method for reactor cores with hexagonal
fuel assembly geometry on a trigonal basis is the capability of mesh refinement, as a
hexagon can not be subdivided into hexagons of smaller size. A further field of application
is the modeling of asymmetric hexagonal fuel assemblies, which can be performed with

considerably more precision in trigonal than in hexagonal geometries.

Compared to Cartesian and hexagonal geometries, triangular meshes have attracted rather
scant attention in reactor core analyses. However, there are finite-difference [85, 95, 116]
and finite-element [58, 59, 122] approaches in trigonal geometry. In several publications
[117, 128, 161, 162}, e.g., trigonal nodal methods are applied to solve the discrete or-

dinates form of the neutron transport equation. With regard to nodal diffusion methods,
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t

Ficure 3.1: Hexagonal fuel assembly (a) with trianqular subdivision (m = 0) (b) and one
subsequent refinement level (m = 1) (c).

(a) (b) )

y y
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Ficure 3.2: Nodal orientations A (a) and B (b) with indication of the local coordinate
systems.

the triangle-based polynomial expansion nodal (TPEN) method [30, 44] as well as the
triangular polynomial expansion nodal (TRIPEN) method [86] combine the NEM and the
HOPEN method employing two transversely integrated diffusion equations, one for the
radial and one for the axial direction. Also an AFEN-like method [113, 127] as well as the
PEN [31] and the HOPEN methods [32] were applied to trigonal geometries. Moreover,
Li et al. [113] use an AFEN-like method to solve the SP3 equations in two-dimensional

unstructured triangular geometries.

In this work, a volume element with a hexagonal radial area can be uniformly subdivided
into 6 - 4", m € N, equilateral trigonal nodes. In Figure 3.1, the refinement mode is
schematically illustrated for the first two trigonal levels (m = 0,1). There are two nodal
orientations to be taken into account, as depicted in Figure 3.2, with the origin of the
local coordinate system in the center of the triangle. Figure 3.3 shows a prismatic node
Vi with the height a and the edge length a' of the triangular base, which is the subject
of the subsequent analysis. In contrast to the Cartesian-geometry approach, the node
boundaries do not coincide with the coordinate axes on either side. This fact increases the

complexity of the problem.
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Ficure 3.3: Prismatic node with equilateral triangular base. Indication of the local coor-
dinate system.

34 PROCEDURE OF TRANSVERSE INTEGRATION

The DYN3D nodal method is based on transverse integration to scale down the volume
of the numerical calculations. In trigonal geometries, the transverse-integration procedure
leads to a two-dimensional radial and a one-dimensional axial set of equations as shown

as follows.

Assuming the absence of an external source, let the SP3 equations (2.45)—(2.47) in within-

group form
—D y AP (1) + Zig B 4 () — 2L ;5 o (r) = S (), (3.3)
. 2 4 2

D5 A} (1) = £Ej0,,Bh (1) + (SThog +Thoy | Boy) = —255,00  (34)

with the source term

. . & -
S (1) Zzsogg ) (1) — 2<D‘2,g,(r))+k—ﬁ)(;ZvZ‘f’g/(CDf)’g,(r)—2<D‘2’g,(r)) (3.5)
e g=1

9#9

and the diffusion equation (2.52)
— D g ADG 4 (r) + Zig ;P4 (r) = S 4(r) (3.6)

with the respective source term

Sh,4(r) Z L0 ® xg Z VE] Df 4 r=(x,y,2), (3.7)

9#9
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be the starting points of the following operation. By transverse integration of (3.3)—(3.4)
and (3.6), respectively, we decouple the three-dimensional equations into radial and axial

components as follows.

SP3 METHOD — RADIAL TREATMENT: Integrating over the axial height a’ of the node V!

leads to the two-dimensional system of SP3 equations

[ 62 62 r,i

_D(I),g(ﬁ-i_ ayz)q)Og(X y)+ZrOQ¢Og(X y) ZZrqu)Zg(X y)
= Sorgxy) = L5y (xy), (38)
i 82 62 i 2 i =i 4 i =r,i

—DZg(ﬁ * aTZ)‘Dz',g(XI y) — 5 10,g%0.g (X, y) + (g r0g T Zng)q)Z,g(X’ y)

2~r i T
= —= S0 y) = Lg%, ) (3:9)

with the radial neutron flux moments

N

A 1 A
<Dn"g(x, y) = a‘/ NG (x y,z)dz

N\N_

as well as the radial neutron source

St.g % 9) Zzsogg (G (x, y) — 2057, (x, y))

’#9
1 G
1Ko Vg by (X, y) — 205 (x, y)) (3.10)
g'=1
and the term
~ . D’ % 62
Lﬁ,”‘g(x, y) = a‘z /’z 3, Zd)‘ (x,y,2)dz, n=20,2, (3.11)

2

representing the neutron leakage into the axial direction.

SP3 METHOD — AXIAL TREATMENT: On the other hand, integrating over the trigonal area

Al of the nodal element V' gives the one-dimensional system of SP3 equations

d?

=Dbg 3 P%0(2) + T,y ®g(2) — 2500 854(2) = Sig(2) — [Tg(2),  (3:12)
dz Tz, 2 Tz, 4 z,0 2"'2,[
D545 954(2) = EEio g B54(@) + (Tiag + iy ) 954(2) = —£555@) —~ Try@) (313)
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with the axial flux moments

- 4
bry(2) = \f// g(X, y, 2)dA,

the axial source

Z L0 g (Phg(2) — 2050 (z xg Z Vi, ) = 2051.(2)),
g'=1
g #9

and the transverse-leakage term

_ 4\fon i
Lo = - ?ﬂ,aﬂ )%u&%ﬂﬂl n=02 &M

describing the neutron leakage at height z into the radial directions.

The radial and the axial SP3 equations given above are merely coupled via the transverse-

leakage terms (3.11) and (3.14), which are formally treated as source terms.

DiFrusioN METHOD: With respect to the three-dimensional diffusion equation (3.6) and

its source term (3.7), we accordingly obtain the radial diffusion equation

i (82 92

r,i r,i
a2 T 902 dy2 )q)o (X y) + 10,4 %0 g(X y) = Spy(x.y) — Ly(x,y)

with the isotropic source

G G

1 i r,i
Segxy) =Y Tl 00 ®hulx,y) + k—xg > vEfPh (X y)
g =1 g’:1
9'#g

and the transverse-leakage term

Di ﬁ )
0 20

T ol 072
¥

Ly (x,y) = b 4(x, y, 2)dz. (3.15)

In axial direction, we analogously have the one-dimensional expression

d z,i z,i z,i z,i
DOgd 2(]) ( ) + ZI‘O g(b ,g(z) = SO,g(Z) - LO,g(Z)
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with

Zzsogg,%g (2) + k —X} Z VE} 5 PG (2),

g#q
4\fD'
L5i(2) = — 09 // 5+ )¢Og(x y, 2)dA. (3.16)

For the sake of simplification, the node index i and the energy group index g are omitted

in the following as far as possible.

3.5 EXPANSION OF NEUTRON FLUX, SOURCE, AND TRANSVERSE LEAK-

AGE IN TRIGONAL GEOMETRY

In this section, the neutron flux, source, and transverse-leakage terms are locally approxi-
mated, which is necessary to determine relationships between the interface partial currents

and the fluxes in a further stage.

The unknown intra-nodal flux moments <T>[, and <T>ﬁ, n = 0,2, are represented by the
sum of a particular solution of the inhomogeneous equations and the general solution of
their complementary equations, i.e., the respective homogeneous equations (according to
[8, 10, 63]). Therefore, consider first the following homogeneous three-dimensional SP;3

equations:

—DoAdy(r) + Z,0Po(r) — 2Z,9®2(r) = 0, (3.17)
~ 2~ 4 ~
—DyAd;(r) — =Zo®o(r) + (gz,o - Zrz)q)z(r) =0. (3.18)

The general solution of the system above is obtained by means of the exponential ansatz
a)n(r) = e, exp(Bn-r), r=(xuy,2)",

with the buckling B? and the arbitrary unit vector n = (n,, ny, n,)". Inserting this solution

approach into (3.17)—(3.18), we get

( — DoeoB*(n% + ny + n2) + Lr0€0 — 2E,0€2) exp(Bn - 1) = 0,

2 4
(= DaesB2(n2 + n2 + n?) — =060 + (fzro + Zrz)é‘z) exp(Bn 1) =0,

=1 #0
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which consequently gives the fourth-order equation for B

1/5%,0 4L, 5L L0Xp
84—* r r r BZ =0
5(D0+D2+D2) " DD,
with
Y0 — DoB?
€0 =1 and 62,~=0T001, ji=12,
r

arbitrarily chosen. Hence, we obtain the two positive solutions

Bip =

1 /D%, 4%, 5%, 1 5%, 4%, 522\2 Lk,
(o+ 0+ z)i\/ (0+ 0+ 2)_02

10\ Dy D, D, 100\ Dy D, D, DoD>

SP3 METHOD — RADIAL TREATMENT: To specify the general solution of the homogeneous
equations of the radial system (3.8)—(3.9), the outer normal unit vectors of the trigonal

nodal faces are used (cf. Figure 3.2), i.e,,

1 -} -
—1 1
€4 = , eé5 = 2 , ep =
: =

For the particular solution of the inhomogeneous equations (3.8)—(3.9), a polynomial ansatz

and

) . (3.20)

)
o

is deemed appropriate. Therefore, the orthogonal polynomials of maximum order two

ho(x. y) = No,

X

hA(x, y) = NK =,
1(x.y) 10

h3(x, y) = —/\/z%, (3.21)
2 2
A _ X y
(x, y) = /\/3(? + p) Ny
and

hB =N

o(x. y) 0,
HB(x, y) = —N; =

1(x,y) L
M(x,y) = NoZ, (3.22)
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are chosen according to the nodal orientations A and B. With the normalization factors

No =1,
Ny = 2V6,
N, = 2V/6,
N3 = 4V 15,
Ny = %\/15,
they become orthonormal, i.e.,
fX+ a A A
302 / x—lah x, y)hi(x, y)dy dx

V3

3
3 a 7?X+ a
302 / hB(x g)hB(x y)dy dx = 0k, k,l=0,...,3,

with dx; denoting the Kronecker delta. Hence, the radial neutron flux expansion approaches

2 3
A (x, y) Z k(X y) + ) €nj Z djiexp(Bje; - 1), (3.23)
j=1
_ 2 3
B (x, y) = Z cokhf (X, y) + ) €y djexp(Bjerz-r),  n=02, (3.24)
k=0 j =

hold with r = (x, y)' for the trigonal nodal orientations A and B.

The use of exponential functions in addition to the polynomial representation is important
to sufficiently describe the neutron flux especially at interfaces between nodes with differ-
ing material properties. For the radial neutron source and the corresponding transverse-

leakage terms, the following purely polynomial approximation is sufficient:
SaEr(x, ZSOkhk/B (x, y), (3.25)
[ABr(x Z Leht®(x,y),  n=0,2 (3.26)

Note that the same polynomial bases (3.21) and (3.22) are used here.
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SP3 METHOD — AXIAL TREATMENT:  Analogous ansatzes are applied in axial direction. With

the orthonormal polynomials

o(2) =1,
2) = zﬁai, (3.27)
5 2
hi(z) = {(1222 —1),

z

the neutron flux, the neutron source, and the transverse neutron leakage of (3.12)—(3.13)

are represented as follows:

2
Z chehi(2)+ ) enj(d7, exp(Bjz) + d7_ exp(—B;z)), (3.28)

= ]:‘]
7) = Z st hi(2), (3.29)
Zz i (2) n=0,2 (3.30)

DirrusioN METHOD: Considering the homogeneous three-dimensional diffusion equation

—DoAdy(r) + E,00(r) = 0,

with €91 = 1 and egy = 0, the buckling simplifies to one positive solution

- ZrO
By = Do’

Hence, we have the flux expansion approaches

CDAr (x, y) Z Cokh (x, y) + Z diiexp(Bie;-r), (3.31)
k 0 = 1
q)Br (x, y) Z C()kh (x,y) + Z diiexp(Breiy3 - 1), (3.32)
k 0 =1
Z cihi(2) + (df, exp(Biz) + di_ exp(—Bi2)). (3.33)
For the sources SS/B’ and the leakages transversal to the radial plane Lngr as well as

for the respective axial functions 55 and L§, identical expansion ansatzes are used, ie.,
(3.25)—(3.26) and (3.29)—(3.30).
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As a result, in both the SP3 and the diffusion method, the intra-nodal neutron flux, source,
and transverse leakage are finitely represented in terms of only a small number of unknown
parameters, the coefficients cpx, dji, sok, lnk, and ¢, d]Z.i, Sokr 74 Thus, a numerical

procedure can be applied to solve the equations.

3.6 PRrevious NopAL DYN3D mMoDELs

Besides the newly developed trigonal methods, the reactor code DYN3D introduced in Sec-
tion 1.2 comprises the hitherto existing neutronic models based on Cartesian and hexagonal
geometries. Different nodal expansion approaches are available for both geometry options
[66, 67, 68].

3.6.1  THE CARTESIAN-GEOMETRY DYN3D NODAL EXPANSION APPROACHES

For reactor cores with square-geometry fuel assemblies, DYN3D offers both an SPs trans-

port and a diffusion option [9, 10, 11].

Due to the fact that all nodal edges are parallel to the Cartesian coordinate axes, a separate
treatment of all directions is easily manageable. Considering volume elements of the radial
size of a fuel assembly, such a purely one-dimensional ansatz is more accurate than a two-
dimensional treatment of the radial plane, since the transverse leakage is described less
precisely in the latter case. This effect diminishes with a reduction of the node size to
pin-cell level [62]. In the diffusion model, only the one-dimensional ansatz is implemented,
while both the one-dimensional and the two-dimensional approaches are available for the

Cartesian SP3 method.

The transverse-leakage approximation in the purely one-dimensional approach is realized
for every coordinate direction in a similar manner to the axial treatment derived in Sec-
tion 3.4, so that three one-dimensional systems of SP3 equations or three one-dimensional

diffusion equations have to be solved. Using the polynomials of (3.27)

ho(u) =1,

hY(u) = 2\/§ai, (3.34)
5 2

hY(u) = {(1252—1),

u
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the neutron flux, source, and transverse leakage are represented as follows:

2
dU(u) = Z cuchi(u) + ) enj(dYy exp(Bju) + di_ exp(—Bju)), (3.35)
j=1
u) = Zsa'khzw), (3.36)
LY(u) = Zz (3.37)

where n = 0,2 in case of SPs (tilde omitted) and n = 0 in case of diffusion. v € {x, y, z}

denotes the respective coordinate direction. B; and €,; apply analogously to Section 3.5.

In the two-dimensional approach, the one-dimensional ansatzes are simply combined for

the radial plane:

2 2
' (x,y) = Z (Zc P +Ze df, exp(Bju) + dj_ exp(—Bju))
u=x,y \ k=0 j=1
2
Solxy) =) ( s&hi(u)),
u=x,y " k=0
2
L) = (3 ttia)
u=x,y " k=0

The axial treatment remains identical to the above approach.

3.6.2 THE HEXAGONAL-GEOMETRY DYN3D NODAL EXPANSION APPROACHES

DYN3D comprises two hexagonal nodal expansion methods based on diffusion theory — the
models HEXNEM1 and HEXNEM2 [60, 63]. Similarly to the trigonal approach, the radial
plane is not one-dimensionally separated to avoid the occurrence of singularities, so that

a two-dimensional and a one-dimensional diffusion equation have to be solved.

In the radial plane, the outer normal unit vectors of the hexagonal nodal faces are

(i (1) el
(3] () ()

as illustrated in Figure 3.4. With the orthonormal ansatz polynomials

| =

N
m

SIE N‘&r\)
B

M
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y
€3 esZ
e54 esl X
esS esG

ho(x,y) = No,

A X
hi(x,y) = N1—,
1(x, y) =

Y
h ’ = —
2(x, y) 2

2 2 .

and the appropriate normalization factors Ny, k = 0, ..., 6, the following expansion ap-
proaches hold for the HEXNEM1 method:

CDO X, y ZCOkhk X y —I— stl exp 8165[ I’) r= (X, y)T,
k 0 (=1

So(x. y) ZSOkhkx y),

Lo(x, y) ZIOkhkx y).

The nodal coupling, however, can be realized not only via the neutron currents at the
nodal faces but also additionally via the hexagonal vertices. This extension leads to the

HEXNEM2 method, which achieves higher accuracy than HEXNEM1. Hence, we have

do(x, y) ZCOkhk (x. y) +Zd51exp Bies; 1) +de exp(Biec - 1), r=(x, y)T,
k=0 =1 =1



46 Nodal Reactor Analysis Methods

with the outer normal unit vectors of the hexagonal nodal vertices

V3 0 _V3
€ = 3 ’ e = , e3 = 12 ’
2 1 2
_V3 V3
2 0 2
€cq = 1 , €5 = , €6 = 1
—2 =1 —2

The axial direction of both methods is processed with the same expansion approaches
as used for both the trigonal and the Cartesian geometry. Using the polynomials (3.34),
the neutron flux, source, and transverse leakage are approximated via (3.35)—(3.37), where

u=2zn=20, and Bj, €0j as specified in Section 3.5.

A variation of the HEXNEM methods introducing tangentially weighted exponential basis

functions was recently described by Christoskov and Petkov [37].



SoLutioN oF THE SP3; TRANSPORT AND DIFFUSION

EqQuATiOoNSs IN TRIGONAL GEOMETRY

In the previous chapters, the physical phenomena of the neutron transport are identified
and translated into mathematical entities. A trigonal nodal scheme is proposed using the
transverse-integration procedure, which converts the original three-dimensional neutron
SP;3 transport and diffusion equations into two-dimensional radial and one-dimensional
axial sets of equations. All intra-nodal unknown functions are finitely represented in terms

of only a small number of unknown parameters.

This chapter focuses on a rigorous analysis of the mathematical interrelations. The principle
unknowns of the problem are the outgoing neutron partial currents at the faces of the
nodal elements. Subject to the Legendre moments of the neutron flux, the outgoing partial
currents are determined in Section 4.1. For each homogeneous node, the local response-
matrix equations are derived in Section 4.2 allowing to calculate the moments of the node-
interface outgoing partial currents in terms of the flux coefficients and the incoming partial
currents. As the incoming partial currents are the outgoing partial currents of the adjacent
nodes (shown in Section 4.3), the discrete representation of the equations leads naturally
to an iterative procedure, the inner iteration, which is performed for each energy group
g =1,..., G to solve the steady-state multi-group SP3 transport or diffusion problem for a
given source distribution. The calculation of the upward and downward neutron scattering
as well as of the neutron fission source is discussed in Section 4.4. The transverse neutron
leakage is also treated as a source. It is shown in Section 4.5, how the transverse leakage
of a node is calculated involving its adjacent nodal elements. Eventually, in Section 4.6, the
node-averaged flux is deduced from the neutron balance equations. The standard power
method, called outer iteration, is used to compute successive estimates of the effective

multiplication factor ke Finally, the nodal thermal power densities P' are determined

47
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44 Calculation of transverse neutron leakage |

| Calculation of upward neutron scattering |

Calculation of downward neutron scattering
Update of neutron source

—'| Calculation of node-averaged neutron fluxes |

| Calculation of neutron partial currents at nodal faces |

Outer jteration
Group cycle
Inner iteration

<&
<

Calculation of neutron fission
Update of neutron source

Calculation of neutron multiplication factor

. 4

| Update of node-averaged neutron fluxes |

| Calculation of node-averaged power densities |

FIGURE 4.1: Block diagram of the inner and outer iteration scheme.

— .
from the node-averaged neutron fluxes ®; , via

G
P =Y kiZf, o, (4.1)
g=1
where Ké and Z}yg denote the usable energy produced per fission event and the macroscopic

fission cross section, respectively. The total power generated by the core is the sum of the
power densities over all nodes Vi. The block diagram in Figure 4.1 visualizes the inner

and outer iteration scheme outlined above.
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In Section 4.7, specific simplifications in terms of the implementation are explained. Sec-
tion 4.8 summarizes the implementation of the inner and outer iteration schemes in a

compact algorithmic form.

The following facts will become evident by the end of this chapter:

e As the SP3 equations in within-group form are of diffusion type, the conventional
diffusion solver structure can be retained also for the solution of the SP3 transport

problem.

e The inter-nodal neutron exchange ("coupling") is realized via the nodal face-averaged

partial currents.

e To simplify the input structure of the cross-section sets, higher-order scattering cross
sections are not included in the present SP; implementation. |dentical cross-section

data are used in the DYN3D trigonal SP3 and diffusion models.

e Although only node-averaged neutron fluxes are finally used to determine relevant
reaction rates, the accuracy of these node-averaged fluxes is strongly impacted by
the intra-nodal flux representation, which contains higher-order flux moments in the

SPs approach.

4.1 DERIVATION OF THE NEUTRON PARTIAL CURRENTS AT NODAL FACES

In this section, expressions for the face-averaged partial currents of the trigonal nodes are
derived. These partial currents are of particular importance since they realize the nodal

coupling and, therefore, contribute significantly to the inter-nodal neutron balance.

At first, we recall Fick's law (3.1) and introduce the net current
Jir) =m0 =J7(r) =7 (r) (4.2)

which is defined as the sum of the partial outward current /© and the negative partial
inward current J=. The unit vector n denotes the outer normal of the considered node.
Hence, from (2.10) and (2.36)—(2.38), (2.50), we obtain the one-dimensional relations

d 1

_ ~ 1
Jolx) = =Do - Polx) = @1 (x) = 5 /_1 p1(u) ¥ (x, p)du

1 [0 1/
1 0

::76()() ZZYJ(X)
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and
~ d 31 1
hx) = —Dza%(X) = =®3(x) = ) /_1 p3(u)¥W(x, p)du
3 [0 3 /7
= =55/ palla ¥+ 1 /0 3 ()W (x, i)l

Note that the currents jn, ] and jJr are denoted with a tilde since they refer to the modified
fluxes ®,,, n = 0,2, of the SP; approach. Using the angular neutron flux expansion (2.8) for
N = 3 and the definitions of the modified flux moments (2.43)—(2.44), the one-dimensional

outwardly and inwardly directed partial currents can be approximated by

1
i) =2 /0 W(x, u)du

1~ 1 d~ 3~
= Zq)o(x) - iDoaq’o( X) — ﬁ‘bz( X),
~ 1 (0 1 (0 1 /]
o= [ 1 = / (= 5 [, i
—1 - 0
1~ 1 d~ 3~
:Z%( x) + ZDOd do(x) — 16‘1)2( X),
I —3/1 U d—3153—3w d
5 (x) 10 p3()¥(x, p)dy = 20 (5u W (x, p)dp
3~ 21 1 d
= —%(Do(x) + %(Dz(x) — iDzd—q)z(X),

3 3 /1
-= / Pl (x, —m)d = o [ (5%~ 3)¥(x, ~1dp
3~ 21 ~ 1 ~
= —%CDO(X) + %(DZ(X) + iDzd*(DZ(X)

Generalization to multi-dimensional geometries gives

2 1~ 1 ~ 3 ~
fo 471 / / p¥(r, £y, p)dude = Z<I>0(r) ¥ iDO n-Vo(r) — Ed)z(r), (4.3)
St = Zﬁ/ ( P)didp = — o(r) + = By() F 2Dy V()
’ 207T pali)? HEP = g ol T gg Al F g VR

(4.4)

SP3 METHOD — RADIAL TREATMENT:  To average the incoming and outgoing partial currents

over the nodal faces perpendicular to the radial plane (recall Figure 3.3), line integrals
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£

&

(a) (b)

FIGURE 4.2: Location of the linear functions g; describing the radial faces [ = 1,2, 3 of
node A (a) and [ = 4,5, 6 of node B (b).

along the linear functions

g2(x) = \fx + %a, (4.5)
g3(x) = —\fx - %a, (4.6)
gs(x) = ?x - %a, (4.7)
ge(x) = —\fx + %a (4.8)

describing the respective faces [ = 2,3,5,6 have to be solved. Figure 4.2 shows the

location of the sides [ =1, ...,6 of the nodes A and B. Now, let
T+ 1~A/Br _ 1 TA/Br 3 TABr
Jo(x.y) = Zd’o (x,y)+§Doe1-V<D0 (Xry)—ﬁq’z (x, y),

~ 3 <k, 21 ~4m, 1 ~iB
Lilx, y) = —%qﬁgm (x, y)+%¢§/3 (x, y)?iDz er- VOB (x, y), [=1,....6

be the two-dimensional partial currents at the trigonal nodal faces with their particular

unit outer vectors e; of (3.19) and (3.20), respectively. Hence, the radial face-averaged
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zeroth moment partial currents are given by

7(_)_: - CIGZ/ / jo1 dy dZ

1 1~ \f3 1 0~ 3~,.V3
— _ 7¢Ar , -D q)Ar ‘ _7¢Ar ) d , 49
/g (6 0.9)% 300508 )| s, — 6 Cgoudy, (49
d 2
:aa / / T (%, 92(x) )\/ +(5-9200) drz
_2V3 *”1~ 1 0~
— (DAr *D 7¢Ar , ‘
Sq _974 (x, g2(x)) £ 2 D05 % (x,y) N
NE 3~
+ Y2 Dy L PAr(x, ‘ — 2 A (x go(x))dx, 410
T Dog W] = 16 ga00) (410)
az \/§
= 1 2 (69~ d 2
+ +
oz = . /_UZZ /_?0103(& gg(x))\/1 + (dxg3(x)) dxdz
V3
2V3 [69 1~ 10
_ L + Dy FA(x, (
o | a2 G
NE 3~
+ Y2 py L phry, ‘ — 2 A (x, g5(x))dx, 411
3 Dog o )| = e (950 (411)
and
= _ 1 /z i V3
+ _ (Y20 y)dyd
Joa aa, | %104( 6 ¢ y)dy dz
1 71~ V3 1.0~ 3 5, V3
- R ¥ Ly N ) 2@ 412
/ (=0 = 500 8 )|~ 6 (e dy, (412
R=— / / T (x, gs(x )\/1 + (5o9500 ) drdz
_2V3 *“1~ 1 9~
— 7¢Br D q)Br ‘
So [, a0 o F G008 )|
N 3~
+ V2D, L By, ‘ — 2 BB (x, g5(x))dx, 413
7 D5y o byl T 1602 g (4.13)
az \/§
= 1 2 (39 d 2
]6—’6= e /a / A, 106()( ge(x ))\/1 + (5960()) dx dz
zJ=FJ=%a
V3
2V3 (591~ 1 9~
N 7¢Br Df(bBr , ‘
3o |, 300 o G008 )|
NI 3~
+ 2Dy T B (x, ‘ ~ 2 3B(x, dx. 414
3 an 0 (x,y) smant) 162 (x, ge(x))dx (4.14)
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Similarly, the face-averaged second moment partial currents are obtained:
=2/ R0+ L0 ® 30 Wy v 6419
7 = 2;? _;a %d)‘“(x, g2(x)) + %CDM(X: 92(x))
+ %DO%5§r(x, y)(y:gz(x) ¥ ‘f[)g;y@gf(x, g)’y:m)dx, (4.16)
e
= 23? _j;a %¢“( x, g3(x)) + %CD“(X,%(X))

. %Dg(%a)‘z“(x, y)‘y=g3( . ‘f[)g Ar(x, )’yzgg(x)dx, (4.17)
=y, B0+ B (0= 10 Sy v, )
Th=22 j — op B[ g5(x) + 258 (x, g5(x)

T %DO%QDB’(X, y)(y:gsm + \fDOa BB (x, y)‘y:%(x)dx, (4.19)
=20 j BB (x, go(x) + 2583 (x, go(x)

+ %Doa%@;f(x, y)(y:gﬁm + ‘fooijaigf(x, y)’y:gﬁ(x)dx. (4.20)

SP3 METHOD — AXIAL TREATMENT:

For the nodal faces parallel to the radial plane (see

again Figure 3.3), the axial averaged partial inward (superscript —) and outward (superscript

+) currents are determined in the conventional way. Accordingly, we have

T = s = 39(0:12)F 300 ddZ&?s(z) )

BE 1= et = 08(-0:12) % 300 8|, — (0.l
By = ap06la.l2) + g0/ 7 300y 50
BE=U, . =_%¢Z( az/2)+%55(—@/2&%02:—2&5(2) -

DIFFUSION METHOD:

net current

o{x) = =D @o(x) = @1(x) = J§ () g ()

(4.21)
(4.22)
(4.23)

(4.24)

With respect to diffusion theory, an analogous relation holds for the
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with the incoming and outgoing partial currents

1 1. d
00 = 790(x) F 5 D0 -o(x)

which finally gives the same expressions for the radial and axial face-averaged partial
currents (4.9)—(4.14) and (4.21)—(4.22) by just assuming the terms comprising the second

flux moment $, zero.

In the following, the overbar and the tilde on the face-averaged partial currents are omitted,

ie.,

4.2 RESPONSE-MATRIX REPRESENTATION OF THE NEUTRON PARTIAL

CURRENTS

SP3 METHOD — RADIAL TREATMENT: Let

J5; Iy

n1 n4

=1 I35 and  PBF=1|J5 |, n=0.2 (4.25)
Jos Jos

be the vectors of the face-averaged partial currents (4.9)—(4.20) of the previous section for
the respective trigonal nodal orientations A and B in the radial plane. Applying the flux
expansion approaches (3.23) and (3.24) for a)ﬁ/B’ to the relations (4.9)—(4.20) results in
the independence of the averaged partial currents on the nodal orientation. By the use
of the particular polynomial bases (3.21) and (3.22), the local coordinate system is simply

rotated. Thus, we define

=0 =0 (4.26)

Cn0 d
1
o= ", n=02  ad d=|dp|. =12
Cn2 d
i3
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the linear algebraic system of equations
Iy =Poc+Pre+Qyndi +Qhd;, n=0,2, (4.27)
is obtained for the SP3 approach with the matrices

Pam0 2P 1 0 Phms
Pon = | Pomo —men —me,z mes ' (4.28)
Pnm,0 _mej me,z pfm,3
Tajr Gnj2 o2
;j = ‘ﬁj,z ij,1 ‘ﬁj,z ' n.m=0,2, j=12 (4.29)

+ + +
qnj,Z qnj,Z qnj,1

and their respective entries

Pnm,0 = NO’]nm = Nnm,

V3 V3D V2 V3D

+ _ V> - ny_ V=< - n
Poma1 = 12 Nj (r]nm F Onm a ) 5 (nnm F Onm a )'

. V3D, VB . 3D,
an,z—ZNz(flnm-i-(San) —7(’7nm+5nm a ),

N 1 __ V3D, 2V/15 __ 3D,y V15
Pam3 = 6N3(’7nm F Onm p ) — Nanpm = 3 (nnm + Onm a ) - ?nnm
and

1 V3
Cﬁm = (nno €0j + Nn2 €2j F ienanBj) exp (?aBj),
N 2V/3 1 3 V3
Grio =575 (Mo€0j+ nNn2€ej+ —€,jDyBj) | exp|—aBj)| —exp| — =aB;
/2 3a3j( / I g f) (6 f) ( 3 f)
with
1 3 3 21
Mo =5, M2=—ge 0= gy 127 gy (4.30)
Note that P} = P, for n # m.

In the system of equations (4.27), the vectors d; can be eliminated. Considering the equa-
tions only for the inwardly directed partial currents, the exponential terms comprising d;

can be expressed by J; and the polynomial terms, i.e.,

Q,d1 +Q,,d> =], —P,yc0o — P, ,c2 =Ry, n=20,2.
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Thus, we have

R>

-1
d 0 0 R
1) 2 Qu Qo 0. (4.31)
d> Q; Qx
The matrices ij are nonsingular, symmetric, real, and circulant. Circulant matrices of
the same size have the property of multiplicative commutativity. In addition, the product of

circulant matrices is circulant [39, s. 3.3]. By means of these matrix properties, the inversion

of the block matrix in (4.31) can be simplified as follows:

( Qi )_ e [ Q7 +Qp 'Q0S5'QQn T —Qp ' QSs )
QG Q -55'Q5Qp S
aen [ QST _Q525_1)
—Q;S7" QyST
_ [ Qi Qp )
1@, Q,

with the so-called Schur complement
Ss = Q5 - Q7Qp ' Qp
and the circulant matrix
S 1= Qg1Q% — Q2 Q21
Hence, we get

di = Qg (lg — Pgoco — Pgrca) + Qpa(); — Pogeo — P3,c2), (4.32)
d2 = Qb (Jy — Pgoco — Ppyca) + Qhy(l; — Pogeo — Pyca). (4.33)

Accordingly, the matrices

S1 52 S $1 %5 5

1 vy
S=| s5 s1 s3 |, ST = % 5 %
2 52 1 S 5 8

and

qu qu,Z qﬁvj,Z
I _ / I /
an - qnj,Z qnj,'l qnj,Z (434)

/ / /
qnj,2 qnj,Z qnj,1
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contain the entries

S1=G0119221 290129222 — 90219211 — 29022921 2/
$2=90119222 + 90129221 + 9222) — 90219212 — 902,2(9211 + G21.2),

v s1+ 52

s% + 5157 — 25%'
v —S2
S% + 515 — 25%'

qlnm = (_1)(7+/_1)(q;,j,'1§1 +2q,7252),

Gnj2 = (DTN am 1324 231+ 32)),

where

n=n, /=;j U mod(Z+/2)=0
non'=02  jj=12  with = (2+72=0

n"#n, j'#j, otherwise

By the use of (4.32)—(4.33), the partial outward currents ] can eventually be expressed as
functions of the partial inward currents J,;. Hence, the algebraic system of radial response-

matrix equations

= V00 + Vioeo + Wily + Winly (4.35)

holds with the matrices
W,,; := Qf,Qq; + Q/,Q5,, (4.36)
Vom = PH — W,1Pg,, — Wn2P3,, n,m=0,2, j=12. (4.37)

The neutron current formulation based on the response-matrix method is a common tech-

nique in nodal approaches (see, e.g., [143, 150, 154, 160]).

SP3 METHOD — AxIAL TREATMENT: The axial partial currents are proceeded in the same
manner. Inserting the flux expansion approach (3.28) into the relations (4.21)—(4.24) gives

the linear algebraic systems of equations
7+ _ pz+ 7 z+ 7 7+ 4z 7+ 4z
Jn - I:)HOCO_{— Pn2c2+ mdr + n2d2
and, eliminating d?, the response-matrix equations

1 = Vioch + Via + Wilg™ + Wioli, 0 =0,2, (4.38)
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with the vectors

JZ=

and

as well as the matrices

z z+ z+
Pzi _ ( pnm,O pnm,1 pnm,Z )
nm — !

z z+ z+
pnm,O _pnm,1 pnm,Z

z+
nj —

z+ z+
qnj,1 qnj,Z )

z+ z+
qnj,Z qnj,'l

zl zl zl zl z— z—
2 _ | 9hj1 Gnj2 Qh Qw2 | _ 01 02
an = | | , where | ; = . Z
V4 V4 zZ zZ - —
nj2 9nji Q% Q% 21 22
and
z . Nz2+Nnz! z+ Nzl
W7, = Q1 Qg + Q72 Q3
z e Z+ z z— z z— _ _
Vnm = an_ n1 Om_WnZPZm' n,m=0,2, 1= 1,2,
where
z _
pnm,O = Nnm,
D
4 _ n
p[Z7m,1 = \/§(’7nm + 5/7[77?):

z

3D,
pf;i,z = \/g(nnm + 5ann),
1

2€n/DnBj) exp (%GZB]'),

+ —
Qf,m = (flno €0j + M2 €2j F

1 1
qifz = (I]n() €0/' + nn2 €2j + 76”/'D”Bj) exp ( o 7028]’)’

2 2

zZ __ zZ— zZ— zZ— zZ— zZ— zZ— zZ— zZ—
$1=90119221 1t 90129222 — 90219211 — 902,2921,2

zZ __ zZ— zZ— zZ— zZ— zZ— zZ— zZ— zZ—
$2=401,19222 T 901,2922,1 — 90219212 — 902,2921 1

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)
(4.44)
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V4
¥ =1
sﬁz — 552

z

§Z _ _52
2 ]
sﬁz — 552

I D4jN) (2= x -y
qnj1 = (1) )(qi’j’,15€+qi’j’,2$§)'

/ D4j—1 — v — v
qnj2 = (1) )(quﬂj'nsé + Qi'j’,zsf)

with np, from (4.30) and again

n,n =02, j.j=12

n"=n, j=j it mod5+,,2)=0
with .
n"#n, j/+j, otherwise

DirrusioN METHOD: Considering the diffusion theory approach and inserting the radial
flux expansion ansatzes (3.31)—(3.32) for CDS/B’ into the relations (4.9)—(4.14) for the re-

spective diffusion modification and, accordingly, (3.33) for ®§ into (4.21)-(4.22), we obtain

the reduced linear algebraic

system of equations

I = P+ ol

with the matrices szo)i and Qgﬂ) of (4.28)—(4.29) and (4.40)—(4.41), respectively. Expressing

the partial outward currents

with the matrices

where

ng by the partial inward currents JE)Z)_, we get

i = Pl + ofd
= Vigey! + W)™ (4.45)

_-1

Wi = o e
(@) ._ pla+ (2)pl(2)—
Vi = P - WP

goi1 Goi2 Qo1

—1 v v v
i = | qo01,2 do11 do1.2 (4.46)

Go12 Goi2 Goin
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with
v qo1,1 + qo1,.2
4o = — ol
G011 T G01,1901,2 — 2G04
v —qo1,2
qoi2 = — 5
do11 + G01,1901.2 — 2qGy; >
and
P4 P4
=1 _ [ 9011 9012 (4.47)
0j - vz vz .
o122 9011
with
z
42, = do1,1
1= "5 3 5 2
9011 — 4012
z
vz —q01,2
4012 = —F > 5, -

2
9511" — 9012
4.3 NODAL BOUNDARY CONDITIONS

So far, expressions are derived to determine the nodal partial currents in terms of the flux
expansion coefficients. By means of these averaged inwardly and outwardly directed partial
currents, information between one trigonal prismatic element and its five neighboring nodes
is exchanged ('nodal coupling"). We, therefore, recall Section 2.5, in which the approximate

boundary conditions for the SP5 and the diffusion approach are derived.

Conferring the deficiencies of homogenization theory outlined in Section 3.1, the interac-
tion between adjacent regions has to be described in an equivalent manner to obtain a
global power distribution with a homogenized reactor representation identical to the cor-
responding heterogeneous representation. Without the use of discontinuity factors, this
equivalence may not be guarantied. However, in consequence of the lack of adequate dis-
continuity factors for the SP3 transport theory, continuous surface-averaged neutron fluxes

are assumed leading to continuous partial currents at nodal interfaces.

Let V/ be an adjacent node of V¢, then the interface condition (2.56) together with Fick's

law (3.1) give the continuity of the nth moment neutron currents
ne- V() =n;- V), reovi=vinVvi, n=0,2, (4.48)

with respect to the SP5 approach. The unit outer normal vector n; of the node V' is directed

towards V/.
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In the case that a boundary of a node V! is part of the outer core boundary, the Marshak-
like boundary conditions (2.58)—(2.59) have to be applied. With the SP5 approximation
of the partial currents (4.3)-(4.4), the incoming partial currents at the exterior boundary

dV'et can be expressed as

~ . 1 27 0
0 =ge [ vt oiduds, (4.49)
TJo -1
~ . 3 2n 0 b )
0= 50n [ [ Pl gldudg, v avie (450)
20 0 1

Assuming the particular class of the incident angular flux at the boundary
Yo(r, Q) = 7(nWi(r, —Q), re oV, n-Q<0, (4.51)

with an arbitrary albedo function 7, and n; denoting the outer unit normal vector of V! at
dV'et, the above conditions (4.49)—(4.50) can be rewritten as

~ 1 2 1 ;
Jo(r) = 4/ To(r)/ pWi(r, b, )dude,
T Jo 0

3 27 1 )
= — T (r MW(r, u, p)dudeo.
sor [, 0 [ P ¥ie, . o)y

Note that 7, can optionally be chosen unequally for different moments n = 0,2. Thus,
taking again (4.3)—(4.4) into account, the incoming neutron currents at an exterior boundary
dV'et of the node V! can be determined via the outgoing partial currents of the same node,

iLe.,

L0 = ), reove,  n=0.2. (4:52)

This relation can also be expressed in terms of the neutron flux. Hence, applying (4.3)—(4.4)

to (4.52), the outer boundary conditions

1 i\ i i i 1~ 3~
> (14 1) Dhn; - Y1) = (1 - 1) ( — 2 + E<1>2(r)), (4.53)
%(1 +74)Din; - Vh(r) = (1 — 1) (%E)g(r) - %Em), reaVie,  (454)

are obtained.

SP3 METHOD — RADIAL TREATMENT:  Considering the radial currents, let Vi be the adjacent
node of V! which is located in radial direction e, referring to the vectors (3.19)—(3.20),

l=1,...,6. The above interface condition (4.48) can be rewritten to describe the continuity
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of the radial neutron currents as follows:
el VIi(x,y) =e - VI(x,y), (x,y) € V.

Hence, with (4.2) and particularly regarding the face-averaged incoming partial currents,

we obtain
—,i _ i
jnl _jn [+37

where [ = 1,2,3 and [ = 4,5,6, respectively. Hence, with the vector notation (4.25)-
(4.26), the above continuity of the radially incoming and outgoing partial currents can be

expressed via
It =1, n=0,2. (4.55)

With regard to the outer boundary, the albedo function 7, of (4.52) is now assumed constant
on each exterior nodal face @V for all V¢, which means that 7, is to be a stepwise constant

function along the outer core boundary. Thus, with
T, = Tp(r), regVie,
the condition
It =l n=0,2, (4.56)
holds for the face-averaged radial partial currents. Particularly, we have

1, for reflective boundary conditions
T = 0, for vacuum boundary conditions (4.57)

—1, for zero-flux boundary conditions

for every nodal element V! and every energy group g, whose index is omitted here.

SP3 METHOD — AXIAL TREATMENT: Analogously, for an axial upper adjacent node V% and

a lower adjacent node V', the interface conditions

jr27;,i — j2+,fa/b (458)

nF
and the outer boundary conditions

Szt =T (4.59)
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are obtained for the axial partial currents defined in (4.39), where n =0, 2.

DirrusioN METHOD: Considering only the zeroth moment n = 0, both the interface con-
ditions (4.55), (4.58) and the exterior boundary conditions (4.56), (4.59) also hold for the
partial currents ng)i’[ derived from diffusion theory when applying the conditions (2.61)
and (2.62), respectively. The expressions (4.53)—(4.54) accordingly reduce to the outer

boundary condition

Y4 ) Din, - voi(r) = %(1_15)%“)’ . € aVien.

N

4.4 DETERMINATION OF THE NODAL NEUTRON SOURCE

Consider the general neutron source (3.5) of the SP3 equations (3.3)—(3.4) in within-group

form
S0 g Z z50 gg q)O g ) 2(1)2 g Z st gg q)O g ) 252,9’“))
g'<yg g'>g
k —Xg Z VEf g (® —20;,4(r)) (4.60)

comprising a downward and an upward scattering term as wells as a term describing the
neutron fission. In the course of the iteration process, the particular neutron source terms

averaged over the nodal volumes have to be calculated. Let, therefore,

By = /// nl dV_//A BABY (x / 4(2)dz, (4.61)
Sog = v // ’ Sog(r)dV = //A ) ShEr(, — / . S5,4(2)dz (4.62)

be the formal definitions of the node-averaged neutron flux and source, n = 0, 2, with the

nodal height a,, the trigonal node area Apn = \/%02

, and the nodal volume V = Aaa,.

According to the source representation of (4.60), the average neutron source

= = - 'I —
S0 = Ssdg + Ssug + 1~ XgS1 (4.63)

is split into the respective averaged downscattering term

Yl

sd,g = Z Z‘so,gg’(a')o,g’ - 262,9’): (4.64)
g'<g
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the upscattering term

Sang =Y Ls0gg(boy — 2024), (4.65)
g'>g

and the fission source term

_ G _ _
Sf = Z Vz,t,gr(d)olg/ —_ 2d>2,g,), (466)
g'=1

which are determined via the average neutron flux moments 50,9 and 532,9.

SP3 METHOD — RADIAL TREATMENT: In addition to the average neutron source, the coeffi-

cients of the source expansions have to be determined. Let, therefore,

500,9

501,9
Soyg =

502,g

503,9

be the coefficient vector of the radial polynomial source representation (3.25). Applying
(3.25) to the radial neutron source (3.10), multiplying by the polynomials hﬁ/B of (3.21)-
(3.22), and integrating over the respective trigonal area yields expressions for the source
coefficients in relation to the neutron flux coefficients c, 4 of (3.23)—(3.24), n = 0, 2. Using

the property of orthogonality of h*® we obtain

1
S0, = Ssd,g T Ssu,g T rﬁngf (4.67)
e
with
Ssd,g = Z ZSO,gg’(cO,g’ - 2C2,g’): (468)
9'<g
Ssu,g ‘= Z ZsO,gg’(cO,g’ - 2C2,g’): (4.69)
9'>g
G
spi= ) VEjglcoy —2c04). (4.70)
g'=1

SP3; METHOD — AXIAL TREATMENT: In z direction, the coefficients

V4
500,g

rA— z
S09 = | S0ig

z
502,g
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of the respective axial source expansion (3.29) are related to the axial flux coefficients cZ

9
of (3.28) as follows:
7z z 2 1 .
S0.g = Ssd,g T Ssug T k—ﬁxgs,, (4.71)
where
Sigg = ) Ls0gq (G g — 265 ), (4.72)
9'<g
SSug - Z L50,99'(5,g — 2€5,47), (4.73)
g9'>g
G
sii=) Vig(chy =26 ). (4.74)
g'=1

DirrusioN METHOD: Considering the neutron source (3.7) of the diffusion equation (3.6)

G
1
SO g Z 250 gg’q)O g + Z Z50,gg’q)0,g’(r) + QXQ Z sz,g’(DO,g'(r)l
g'=1

9'<g 9'>9
we have
1
Sog=)_Ta0ggPog+ ) TsogyPog+p X Z VEfy®Poq - (4.75)
g'<g 9'>g 9'=
=S =Seug =5

for the respective average source. According to the derivation above, the polynomial diffu-

sion theory source coefficients are approximated as follows:

@)
S0 = TaoggChyt+ Y LaggChy + —Xo Z VE gty (4.76)
9'<g g'>g
=531 =5l =sf’

4.5 DETERMINATION OF THE NODAL TRANSVERSE NEUTRON LEAKAGE

In consequence of the decoupling of the solution space of the DYN3D SP;5 transport and
diffusion method into the radial plane and the axial direction by transverse integration, the
neutron leakage in the respective transverse direction or plane is described by the SP3
transverse leakages (3.11) and (3.14) as well as the terms (3.15) and (3.16) in case of the
diffusion approach. In addition to the scattering and fission terms of Section 4.4, these

nodal transverse leakages are formally treated as neutron sources as well.
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In Section 3.5, equations (3.26) and (3.30), the axial and radial neutron leakages are ap-
proximated by polynomials of maximum order two. It is shown in the following that the
polynomial coefficients can be determined by the average transverse leakages of the con-
sidered node and its respective radial and axial nodal neighbors. These average transverse
leakages can then be represented in terms of face-averaged partial currents, which play a

central role in the DYN3D inner-iteration algorithm.

SP3 METHOD — RADIAL TREATMENT: Hence, considering the SP3 approach, the averaged

neutron leakage of the node V! transverse to the radial plane is obtained by integrating

Lt of (3.11) over the trigonal area A of the node. Applying the divergence theorem to
0

the vector field F, := 0 and Fick's law (3.1) yields

d di
Eq)n

=r,i 4\/§ ~i

- W//A I7(x, y)dA

3.1) 4\fD’ ;

= /// aZZCD x,y,z)dV

_ 4fD // vV .F,dV
0)2 \/1
div. i
thn. _4\f.D".# F, ndS
Vi

3(ai)?
_ 4\fDl (// iy //A _gé)aazdgg(x,y,z)dA

2=
Fick's
law (3.1) ~_ .
= (// y // ,- )]ﬁ"(x,y,z)dA
i :71 i Z:_GTZ
1 Z+,i z—,i Z+,i zZ—,1
= ;(jnﬁ-' _jn+ + o= _jn—')
1 2
= — Z | AU ) n=0,2 (4.77)
0
where 7ﬁ’i(r) = 0 T‘,,(r) Evidently, like the partial currents jﬁi’i of (4.21)—(4.24),

the average transverse leakages f;l are independent of the nodal orientations A/B. Next,
consider a node V' and its in direction e; adjacent node V. In Figure 4.3, the locations
of the respective radial nodal faces [ are illustrated in consideration of the different nodal
orientations A and B. See further the vectors given in (3.19)—(3.20) to recall the unit outer

normals e; of the faces [. Assuming the same continuity requirements at material interfaces
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FIGuRrE 4.3: Location of the nodal faces [ of adjacent nodes with the respective orientations
A and B.

for the second derivative of the flux with respect to the coordinate z as for the flux itself,

the general relations

9% ~ ; 0? ~ i
—5®h() = S5, (4.78)
2"\’. .o
Din-(L8,0) = Din- v (S800),  r=(uyeavi,  (479)

hold according to the flux interface conditions (2.55) and (2.56) for n = 0,2. Hence, with

(3.11) and the assumption of an identical node height a = @Y, the interface conditions

I'l[

1~ 1
i bmix y) = D — Ly s(xy), (4.80)
e VI(xy) =—euws- VLM (xy),  (xy) eavi, n=0,2, (4.81)

result from the above relations (4.78)—(4.79) for the transverse leakages Z;';' at the in-
terfaces [ between two adjacent nodal elements V¢ and Vi, [ = 1,2,3 and [ = 4,5,6,
respectively. Let now the point with the coordinates (x;, y;) be the center of the nodal
face [, then the occurring derivatives can be approximated by the respective difference

quotients

e VL(x,y) = (4.82)

(x,y)=(x1.1) @ai

where fn,[ denotes the mean transverse leakage of the faces [. From (4.81) and (4.82), we

consequently get

=r,i =r,i =r,i| =r,i|

Lnl - Ln = _(Lnl—_l-3 - Ln )
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and, with (4.80) eventually,

:r,i Di :f,[ :I’,i[
n

=gl +L) 116 n=02 (483

In case the nodal boundary 9V coincides the exterior boundary, the Marshak-like bound-
ary conditions (2.58)—(2.59) are considered taking the particular class (4.51) of the incident
flux into account. Assuming again the same conditions for the second derivative of the flux
%5;, as for the flux itself, the outer boundary conditions (4.53)—(4.54) can be rewritten
with respect to the transverse leakages in an analogous manner to the aforementioned
interface conditions. Thus, for a point (x,y) € dVi on the nodal face [ at the exterior

boundary, the following outer boundary transverse-leakage conditions hold:

1 i - ; 1~ 3

5(1 +1g) e Vigi(x,y)=(1- To)( a 4D i) + @LZ(X' y)),
1 . _y 3~ 1~

SO+ ter VIgxy) = (1 — o) (o= Toily) — o Lh(x, ).
2 (8000 80D] )

According to (4.82), the occurring derivatives are approximated, and we get

V3 = . =r,i 3 =ri
o (1 Do —Lo) = (1 =) = Lo + 36501 ).
V3 Co=ri  =ni ) 3 =ni 21 =ri
7(1 + )Ly —Ly) =1~ Té)(SOD() o~ 8oD] 21)
With
ai = o)
al
Bi - 1 (»] _ T[)
kn - 4Dll< nr’

) 21 . 15 . .
Y= a(‘)aé + 2—00(6352 + C(éﬁ(l)o + EB([)OBéZ'

the average transverse leakage from an exterior nodal face [ can eventually be determined

via
=r,i 1 i 21 i =r,i 3 ; [:r,i
Lo = W(Ofo(az + Eﬁzz)Lo + gazﬁzoLz ) (4.84)
fr'i = l(iaiﬁi fr'i + ab(ad + B )fr'i) (4.85)
2t = i 59 %Pozto 2(ag + Poo)Lo - .

As stated initially in this section, the leakage transversal to the radial plane is represented
by the polynomial expansion approach (3.26). Hence, four polynomial leakage coefficients

lf,k, k =0, ...,3, have to be determined for both moment indices n = 0, 2. For a node with
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the orientation A or B, we have

frl 43 ili /\?Gi /?“‘;a[ (. g)dy d
. = X X
3(01)2 — nk —?ai —?)(—%g’ k y)ay
W3 & T e o
" 3(a)? ”k/_ﬁui /ﬁx_u,l (. y)dy dx
k=0 6 3 3
4 3 af
=l 1 ; 2 V/§
Ly = al-Zlnk/a,. hﬁ(Ta,g)dg,
k=0 -7
) 3 V3 i
=r,i 1 i 6 d 2
Lyop = alglnk /_ﬂu[ hi(x, 92/3()())\/1 + (d*92/3(x)) dx,
= 3
3 at
=r,l 1 . 2 V/§
n4 = lenk/ni hk(—fary)dy,
k:O -7

V34
L5 = Zl / . F(x, g5/6(x ))\/1 + ((%(95/6()())2(1)('

where g((x), [ = 2,3,5,6, refers to the linear functions describing the radial faces [ (see

equations (4.5)—(4.8)). Analogously to the neutron currents, the transverse neutron leakages

can be expressed independently of the nodal orientation A/B. With the vectors

:l’,i :I‘,i
Ln Ln
ir’i Tl’,l fr,l
Ln = :7,1( = :7:‘
an Ln5
Ln3 Ln6
and
Lo
li — liﬂ
Ly
L
the linear system of equations
No 0 0 0 1 0 0 0
No BNy 0 INg—Ng i_| 1 v2 oo NE
VTV OSSN R IRV R
N BN N N I
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holds for n = 0, 2. Thus,

1 :I’,i ;I‘,i
Nob b
' %Ly — Lo — Ly3) N W(ZLm - an — L, )
n — =, =r,l - rl rt
2Ly — L) (L3 — L)
] =r,i =r,i =r,i \/7 =r,i r,i =r,i =r,i
W(Lm + L+ Ls— 3L ) YR (Lo + an L3 =3L,)

(4.86)

=r,i =r,i
In summary, taking L, of (4.77) as well as L,,; of (4.83) in case of an interfacial boundary
or (4.84)—(4.85) in case of an exterior into account, we see from (4.86) that the transverse
leakage of a node V! can be approximated by the axially incoming and outgoing partial

currents of the element itself together with those of the respective radially adjacent nodes.

SP3 METHOD — AXIAL TREATMENT:  For the z direction, the neutron leakage into the radial
plane is to be considered. With L2° of (3.14), the average leakage perpendicular to the

axial direction is obtained in an analogous manner to the derivation of (4.77) as follows:

“z

=z,i ’]
L= [, e

a‘ al

def.
314) 4\fD’ ~
- al 201 /// aXZ )q)n(x'y'z)dv
div.
thm. 4\/7Dl
= — —_n F.+F,) -ndS
3(01)2 e

lawz(;.n (//A //A // ) Ty(x9.2) + 8 (x,,2)) dA

- 43\52(1”, 1)

(=1

4V3 : i -
= S 0= n=02 (4.87)
=1
99! 0
where F, := 0  Fy = %6; as well as 7ﬁ’i(r) =10 T‘r,(r) and jﬁ’i(r) =
0
0
1 Tﬁ,(r) The denotation Af, [ =1,2,3, generally refers to the three surface areas
0

of the node V' parallelly aligned to the z coordinate axis (recall thure 33) By reason
of the equivalence relation of the radial partial currents (4.26), also L is independent

of the nodal orientation. We now define again an axial upper adjacent node Vi and a
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lower adjacent node V' relative to the considered node V‘. Assuming also here the same
continuity conditions at axial interfaces for the second derivatives of the flux as for the flux

itself, the relations

PP\~ PP\,
(W*ng)“’n(r)— (502 * ayz) (1)
. 92 9%\ ~. " 92 02 ~iob .
{ . o o { — a s o a — iigp
Di n, V(axz + agz)d),,(r) Do n; - V(axz + agz)CDn (N, r=(xy z) € Vi,

and consequently, with (3.14) and the assumption a‘ = a'o®,

1 =z.i 1 =ziap

D*gLna/b = WLn bla (4.88)
d~,; d~,i
— L o= oLy 4.89
dZ n (Z) +72 dZ n (Z) Z=¥GZZ ( )
are obtained according to (2.55)—(2.56) for n = 0, 2, where
Lo = L (25) (4.90

denotes the mean transverse leakage at the upper (a) and lower (b) nodal interface. With

the approximation of the occurring derivative

=Z,l =Z,l
d~,; Lyap —L
—IZ(z)| , omen (4.91)
dz z=+% 49
2
we get
:Z,i :Z,i :Z,ig/b :Z,ig/b

)

Lna/b - Ln = _(Lnb/a - Ln

from (4.89) and eventually, with (4.88),

=z, Di =z,  =ziqp

Lna/b=W(Ln+Ln ), n=02 (4.92)

In the case that the upper or lower nodal boundary 0V is part of the exterior boundary,
the relations (4.53)—(4.54) derived from the Marshak-like boundary conditions have to be
applied analogously to the lateral case. With the aforementioned assumptions, the outer

boundary transverse-leakage conditions

1 , d~,; 1 L 3 ~ al

_ L = [ _ i Z'[i z i Z,li 4
S0 L E0)| Ly = 0= - @S+ 55 ES).
1 , d~,; , 3 ~ al 21 ~ al

o [ o _ [ _ Zl+ V4 i Zl+ Z
SO+ =L ())Z:i% (1 a)(SODéLO =3~ o 3=2)
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hold with a stepwise constant albedo function 7{. Hence, using (4.90) and the approxima-

tion (4.91), we obtain

Zl

L —(1+ Td)(LOa/b —Ly)=(1- Té)( —

Z

'] fZ,l. 3 fZ,i
e + — ):

=z, i 3 =z, 21 =z,
*(1 + Tz)(Lz =L ) =0 =) sirmiloanp — gomrLoam |-
a; ! (80D0 @ 8oD; 1 )

Finally, with

. 1
apt = (1+T)
Bl = —(1—1i)
kn - 4D[ nlr
Z[ Zl z,i 21 15 i pi
V= o+ 20% /922"‘0‘2 ‘Blo + 6300322:

the average transverse leakage of an axial outer node boundary is determined via

=z, ’] 2.0 =z, 3 i

Loay = 3 — (e + BZZ)LO + 20l Bl ), (4.93)
=z,i 1 3 2, zi =z,i

Lyaip = (200(0 302/-0 + 5" (ag" + Bio) L ) (4.94)

The leakage transversal to the axial direction is approximated by the polynomial approach
(3.30). Considering

1
iZ

1 2
alZz/ 2(2)dz,
Z k=0

i
9z
2

the occurring leakage coefficients

[z,i
n0
z,i _ z,0
I = ln1

z,0
an
are obtained from the simple linear system of equations

:Z,i

1.0 0 Ly,
1 V3 Vs L= T |

na

1 —V3 V6 ™
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which yields the relations

:Z,l

Ln
i =z, =z,
2 = ?(Lna ~L,) , n=0,2. (4.95)
:Z,[ :Z,l :Z,i

1

W(Lna + Lnb - 2Ln )

Hence, the coefficients of the transverse leakage of a node Vi with respect to the z direction
can be expressed by the terms (4.92) and (4.93)—(4.94) in case of a nodal interface and
an exterior boundary, respectively. Finally, with (4.87), the leakage transversal to the
axial direction is approximated by the incoming and outgoing radial partial currents of the

element itself and its upper and lower adjacent nodes.

DiFrusioN METHOD: Taking the diffusion theory instead of the SP3 approach into con-
sideration, the polynomial transverse-leakage coefficients lgz)’i can be determined from the
same relations (4.86) and (4.95), respectively. The average nodal transverse leakages Zg'i
and Z(Z)'i are calculated from the perpendicular partial currents via (4.77) and (4.87), whereas
the average transverse leakages at nodal interfaces Z(r)',i, l=1,2,3, and Zé'f,,b are obtained
from (4.83) and (4.92). However, the expressions for the average transverse leakages from

exterior boundaries simplify to

- at —r,i
Lr’l = 70L ' ,
—z,i Q'g'i —z,i
LOa/b = Z,lilLO
%" + By
with
V3 ,
O’(l) = ?(1 + T(l])r
i 1
O(g'l = ?(1 + Té),
z
[ 1 1 i
Boo = 4D"( — Tp)-
0

46 DETERMINATION OF THE NODAL NEUTRON FLUX

To compute the nodal power distribution within the reactor core in the end of the neutronic
calculation via equation (4.1), the node-averaged fluxes ®q have to be known for each node

and each energy group. Regarding the SP3 transport method, this means that the modified
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nodal flux moments CTD,,, n =0, 2, have to be determined as we have

By = by — 20, (4.96)

4.6.1 F ORMAL DERIVATION OF THE NODE-AVERAGED FLUX AND THE POLYNOMIAL FLUX

COEFFICIENTS

Consider, therefore, the three-dimensional system of SP5 equations (3.3)—(3.4), which has

to be integrated over the node volume V. Applying the divergence theorem, we get

—Dgﬁvn-v5o(r)d5+zro/// $o(r)dV—zzro/// cT>2(r)d\/=// So(r)dV,
—DZ# n-Vo(r )dS—Z,O/// ®(r dV+ ro+zr2 ///d)z
Y EL

With the node-averaged terms Er, of (4.61) and §0 of (4.62) as well as by the use of Fick's

law (3.1), the relations

1 - - o
Vi n-Jo(r)dS + L0®o — 2L,0P2 = So,
V- Jlav
- To(f)dS — 25,000 + (25,0 + 5,2 ) Py = —25
v Jb n-Lnds - SE 0+ (T +E02)®2 = —£5

are obtained. The occurring surface integrals can be expressed in terms of the averaged
values of the partial inward and outward currents at the nodal faces (cf. (4.9)—(4.24) with

the overbar and tilde omitted). Thus, we have

3
1 n ~Tn(r)d5 = ( Z ) + £02((/ )+ sl — jﬁi)))

Vv oV 302 =

2
_4;0[2( GLZJ2+_JZ n=0,2,

(=1 (=1

which yields the integral balance equations

f 3 1 2 = = =
S Z )0+ = 205"+ Zo®o — 2L,0%2 = S, (4.97)
=1 Z =1
4\/§ net 1 2 net 2 4 > 2%
= _ 4 r [0) Zr Zr by = ——5). 4.
3a Z GZZJ 5 0 O+(5 o+ 2) 2 550 (4.98)

(=1 (=1
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Conferring (4.2) and using the algebraic expressions (4.35) and (4.38), the net currents in
the above equations (4.97)—(4.98) are given via

15 = 1§ — Jg = Vooco + Vorca + (Wor — N)lg + Woal5, (4.99)
15 =13 =15 = Vageo + Vazeo + Warlg + (Wa2 — )3 (4.100)
and
Bt = 05T — 05T = VEoch + Viocs + (Wg — NIE™ + W55, (4.101)
Bt = 15 — 15T = Vi5ch + Vi, + W U5 + (W5, — )57, (4.102)

where [ denotes the corresponding identity matrix. Hence, integrating equations (3.3)—(3.4)

over the node volume yields the nodal neutron balance equations

go T %Zro +X2 250
('1“)2 Z,OZrz %Zro ZrO
= 43 3 n 1 2 zn
X So— 55 Lm0 — g i 6™ , (4.103)

~2So— BBV (05— £ L5,

where the node-averaged flux moments 53,, can be determined from the flux coefficients c,
and ¢, the incoming currents J;; and J%~ as well as from the node-averaged neutron source
So.

SP3 METHOD — RADIAL TREATMENT: Besides the average neutron flux moments, also the
coefficients of the series expansions of the neutron flux have to be determined. Consider
therefore the radial plane at first. Applying the expansion approaches of the flux (3.23),
(3.24), the source (3.25), and the transverse-leakage terms (3.26) to the inhomogeneous
system of SP3 equations (3.8)—(3.9), multiplying by hi/B of (3.21) and (3.22), and integrating
over the respective trigonal node area, relations between the flux coefficients c,k, the
source coefficients sok, and the transverse-leakage coefficients l,,, n = 0,2, k =0, ..., 3,

are obtained. Using the property of orthogonality of the polynomials hAB we have

4Dy N
Lro(cok — 2¢2k) = sok — lok + 50k0720m3)603
16V 15D
= sok — lok + 60k720603,
2 4 2 4D, N3
e (fzr zr) = —Zsox — oy + Gop =2 -2
5 0Cok + 5 0t 2| Cok 5 S0k 2k + Ook 72 N0623
2 16V 15D
=~ S0k — bk + 50k72623,
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where 0gx denotes the Kronecker delta. Hence, the radial flux coefficients can be deter-

mined via
Cok 1 %er +Xo 2% sok — lok + Ook 16\ﬁD0 €03
T Lol 2 2 16WD (4.104)
C2k r0%r2 510 210 — &S0k — Lok + dok—" 7223
k =0,..3.
SP3 METHOD — AXIAL TREATMENT: Accordingly, we obtain the coefficients
ok ! sZo+In 280 — Lo + 50k12fD0 02
z Ty T 2 Z 12[D . (4.105)
ok 0= 5L10 L0 —350k — By + B0k 37 65,
k =0,1,2,

for the axial series expansion of the neutron flux (3.28).

DiFrusioN METHOD:  With regard to diffusion theory, the three-dimensional diffusion equa-
tion (3.6) integrated over the node volume V gives an integral balance relation, which can
be rearranged to the equation for the node-averaged neutron flux

1= 43 1 &
Po=—|[S0o— = ety — — &net) 4106
0 X0 ( 7 34 ; Uo ay Z % ) ( )

(=1

representing the diffusion-theory equivalent to (4.103), with the net currents
A AR

Note that the identity matrices / have different sizes for the above radial and axial equa-

tions. For the flux expansion coefficients, the following relations hold:

1 16v/15D

ok =5 (SOk — log + Sk — 0603), k=0,..3, (4.107)
.
1 12v/5D

Cok = Zr(J(S(Z)k_[(Z)k+6Ok(72()ng), k=012 (4.108)

4.6.2 EXPONENTIAL WEIGHTING OF THE POLYNOMIAL FLUX COEFFICIENTS

From Section 4.4, we infer that the calculation of the average neutron source Eo,g of (4.63)
via (4.64)—(4.66) is based on the node-average fluxes <T>n,g, which means that the exponential
functions of the flux expansions (3.23), (3.24), and (3.28) are indirectly considered. However,

the determination of the neutron source coefficients sg 4 of (4.67) and S0, of (4.71) via
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(4.68)—(4.70) and (4.72)—(4.74) solely takes the polynomial part, i.e., only the coefficients

Cn,g and c; ; of the flux expansion, into account.

SP3 METHOD — RADIAL TREATMENT: To overcome this limitation, the radial flux coefficients

Cn,g are additionally updated involving the exponential impact as follows:

fX+ a
o A TAr
= / o, PRI )y 0
V3,1
4f 3 V3 -5 x+30a 5 ~p,
=342 4, /ﬂx;a hi(x, y)®, " (x, y)dy dx, k=0,..3
Hence, applying (4.32)—(4.33), the matrix equation
¢ =c, +MLdi +M)5d,
=c, — Thoco — Thoco + Uply + U2y
is obtained with
Upj = M on +M QZI’
Tom = UnPy, + Up2P5,, n,m=20,2, j=12,
and
Mnj,0 2mnj,1 0 Mmnpj3
Mnj Mnpjo0 Mpj Mpj2 Mpj3
Mpj0 —Mpj1 Mpj2  Mpj3
where
4V3 4V3
Mpjo = TNoenj(wjﬂ —wj21) = ?Gn,’(wm — wj21),
433 2v6
Mnj1 = 3~ 75 = Ni€pj(wjn — wj22 + wj31) = Tenj(wj,'l — w2 + wj31),
4v/31
Mnj2 = — 4/\/2€n,(w/1 wj20 + wj31) = 2V 2€nj(wj,1 — wj 22 + W} 31),
4/3 (1
Mmpj3 = ?%,’(6/\/3(00;,1 — wj 23 + wj32 — Swj4) — Na(wj1 — wj,21))
_ 45

3

——€nj (Z(wm — wj23 + w32 —DSwj4) — (wj1 — wj,21))

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)
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holds with the exponential terms

wj1 = 018jexp (\?GB,-),

wj21 = 2V3 (exp (\@aBj) — exp ( — ?aBj)),

3a2B? 6
vy = 3‘;2@ (269 (*a8)) + e (- Lam)
= g (00 (5 o8] ~2ew (= Fos ) )
o = i (20 (508~ (=) )
w,,32:;Bf(gexp(fag,)uexp(_ 303,))
s = i o0 o8) ~o [~ Som)

Note that the structural composition of the matrices M,; is identical to the matrix compo-

sitions of P£, by reason of the polynomial structure of hﬁlB (compare (3.21), (3.22)).

SP3 METHOD — AXIAL TREATMENT: In axial direction, the update of the polynomial flux

coefficients ¢f / is analogously realized via

az

1 -
iy = - / . hi(2)®7(z)dz, k=0,1,2.
z J—_9z
Hence, we have
ey =cp—Thoch — Thocs + Uplg™ + UnLls™

with the respective matrices

z . zT Nzl zT Nzl
U7, = M7y Qo + M7, Q3

zZ ._11Z pz— z pz— _
Tom = UnPo, + ULPs,, n,m=20,2,
and
z z z
MZ. mnj,O mn/1 man
nj — Py ’

(4.114)

(4.115)

(4.116)

(4.117)
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where
m,z,j’O = e,,/-wf’ﬂ, (4.118)
mpj = \ﬁen/’(wfnz — W),
myio = \/ge,,j(wf” — W] + wi3),
and
wlz-,ﬂ = a:Bj ( exp (%GZBI') — exp ( — %GZB/') )
Wigy = a:Bj ( exp (%GZB]') + exp ( — %GZB]') )
Wiy = G;B/Z ( exp (%GZBJ) — exp ( — %asz) )
W’y = G;sz ( exp (%Gsz) + exp ( — %GZB]‘) )
Wiz = 0;129;‘ ( exp (%asz) —exp ( — %asz) )

DiFrusioN METHOD: With respect to diffusion theory, the exponentially weighted update

of the polynomial flux coefficients reduces to
& = — T + Ul (4.119)
where the occurring matrices are defined as

T /
U = M0
i = el

with Mgﬁ) of (4.112), (4.117) and its components mgﬁ)’k recalling that eg1 = 1.

463 EXPLICIT FORMULATION OF THE NODE-AVERAGED FLUX

A closer inspection of the relations (4.61) and (4.109), (4.114) for k = 0 reveals the identities
cf,ozcﬁ’()zgn, n=0,2,

based on the fact that hS/B(x, y) = ho(z) = 1. From this it follows that the expression (4.103)
derived to calculate the average neutron flux moments ®g and O, represents only an implicit
net

formula since the determination of the neutron net currents J§® and J§"! requires the zeroth

flux coefficients c,0 and cZ, (compare (4.99)—(4.102)). In the following, a respective explicit
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computation approach is derived, which significantly improves the convergence behavior
of the iterative procedure and reduces the computation time. However, the clear matrix

equation structure has to be broken.

SP3 METHOD — RADIAL TREATMENT:  Substituting P = oo and P, = 5o in (4.110) gives

3 3
®o = coo + mo1,0( — r00,0¢00 — r00,3€03 — r02,0€20 — 102,3¢23 + §or ZJO_, + Go2 ZI{,)
=1 =1
3 3
+ mo2,0( — r20,0€00 — r20,3€03 — 22,0620 — 22,323 + {21 ZJO_, + 422 ZJZ_,),
=1 =1
(4.120)
_ 3 3

®y = 20 + m21,0( — r00,0¢00 — r00,3€03 — r02,0€20 — 102,323 + §or ZJO_, + Go2 ZJZ_,)
1=1 (=1
3 3
+ m2,0( — r20,0C00 — r20,3€03 — 22,0620 — 122,323 + §21 ZJO_, + 422 ZJZ_,)
(=1 (=1
(4.121)

with my; 0 of (4.113) and

n ol !
4nj = qnj1+ 24,2,
F'nm,0 ‘= 3(&n1p0m,0 + an2p2m,0):

F'nm3 = 3(aﬂ1pam,3 + a”2p2_m3)' n,m=0,2, / =12,

where pnmo, P 3 q’nm, and q/nj’2 are entries of the matrices P, of (4.28) and Qf”- of
(4.34). Note that only the first and the last components of the respective flux coefficient
vectors c, appear in the above equations, which can be traced back to the fact that the
structure of the matrices QL,].P;,,, is identical to the matrix structures of P£, with vanishing
sums of the middle columns (see (4.28)). With the matrix

R = 1 — mo; ,0100,0 — M02,0120,0 —Mo1,0M02,0 — M02,022,0

—MmM21,0r00,0 — M22,020,0 11— m21,0r02,0 — M22,022,0

and its determinant

detR = (1 — mo1,0r00,0 — M02,0r20,0)(1 — mM21,0r02,0 — M22,0r22,0)

—(mo1,0r02,0 + M02,0r22,0)(M21,0r00,0 + M22,0r20,0),



4.6 Determination of the nodal neutron flux 81

the coefficients cgp and cyg can be extracted from (4.120)—(4.121) as follows:

detR o, — m21,0bo — m220b2

€00 1 R §0 — mo1,0bo — mo2,0b2
€20

where

3 3
bo := —ro0,3€03 — r02,3¢23 + 401 ) Joy + Go2)_ Sy,
= =1

3 3
by := —r3c03 — r223¢23 + 21 ZJO_, +qn ZJZ_,.
=1 =1

Finally, with 0, denoting the Kronecker delta, we obtain

_ _ 3
cno = fnoo®o + Ma2o®2 + Y (M +hac Y ), n=02, (4.122)
k=0,2 =1
with
Mpko 1= L(5 K+ (=) (m 1 ororr 0 + My of2k’o))
n detR n n’1, E n’2, i ,
where
n=n K=k in=k
nn’ k k=02 with (4.123)
n"#n, k'+ k, otherwise
and

Mpi3 = Ap00(Mo1,0rok,3 + Mo2,0r2k,3) + Mn20(M21,0r0k,3 + M22,0r2k,3),

~

hnk == —h1p00(mo1,0Gok + mMo2,0G2k) — Mn20(mM21,0Gok + M22,0G2k)-

SP3 METHOD — AXIAL TREATMENT:  Analogously, the relation

V4 e V4 zZ V4 Z
( oo ) 1 o1 [ Po—mGyobg — mf, b3
€20

: | 7 detR? B mZ b7 mZ b
®2 — m34 obg — M 0b3
describing the respective axial case can be derived, which gives the expression

Cho = Mhoo®Po + M7 ®2 + Z (Mracks + f’fzk(f/fjr +1{2)), n=20,2 (4.124)
k=02
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for the axial zeroth flux coefficients. Here, we have

z V4 z V4 z 4 z V4
R” — T = mg10M000 = Mo2,0m00  —M1,0702,0 ~ Mb2,0732,0

V4 V4 V4 v4 z V4 V4 V4
—M%1 070,0 — M3207200 1= M31,0MG2,0 — M32,0"52,0
P V4 V4 Z V4 N7 zZ— zZ— N7 zZ— zZ—
0°= —150,2€02 — 102252 + Gonlor +Jo=) + G5 + J50),
zZ .__ Z V4 Z V4 N7 zZ— zZ— nNZ zZ— zZ—
b3 = —r302¢02 — 22265 + @ Uoy +Jo2) + G505 + 50),
and
rz ozl zl
Anj = Gnja T Ghj2

V4 P N7 V4 N7 Z
Fam0 = 2(451P0m,0 + 472P2m0),

Fom2 = 20451P0m 2 + Gn2Pom2), n,m=0,2, j=172,

with p7 o and p7 5 of (4.40), q,ﬁj.’1 and qﬁj.’z of (4.42), and m7, ; of (4.118), as well as

ko = m(énk + (=1)° (M7 0G0 + M2k 0))
allowing for (4.123), and

N7 e ANZ V4 Z zZ Z A4 V4 Z V4 Z
M2 = Mh00(Mb1,070k 2 + Mo2,0M2k,2) + M520(M51,070k2 + M52,072k.2),

~

z —— N7 z N7 z N7 N7 z N7 z N7
nk = —Mhoo(Mo1 0G0k + Mo2,045k) — Mp20(M21 0G0k + M52,0G5)-

RADIAL/AXIAL cOMBINATION: Considering now all net currents (4.99)—(4.102), with

gnkj = 3Vnk,j: j =0,3,
Wok = (Wnk1 + 2Wnk2) — Onk,

Gkj = 2Vnk )i =02
Wik = (Woier + Wik 2) — Onk,

the sums of the radial and axial net currents can now be expressed as

3 3
> =) (gnkocko + gnk3cks + Wak Y Jir) (4.125)
=1 k=0,2 =1
2
Z(nynet)l = Z (ghkoCho + grkacio + Wi Ui +40)), n=0,2 (4.126)
=1 k=0,2

where Vpk.0, Vak 3, V;k,o' Vsk,z and Wpk1, Wnk2, Wﬁkn, Wﬁk,z denote entries of the first and
last columns of the matrices Vi, V7, and Wy;, Wi (compare (4.36), (4.37), (4.43), (4.44)).
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Note the partly modified indexing: j = 1 corresponds to k = 0 and j = 2 corresponds to
k = 2. Like the matrices Q;7;, Q71 and qu-, Qf,; of (4.29), (4.34), (4.41), (4.42), the matrices
W, and Wﬁj are circulant. Furthermore, the matrices V,x and V7, feature the structure
of the respective matrices P, and PZ; of (4.28), (4.40). Hence, the properties of constant
column sums of W,; and W7, as well as the properties of vanishing sums of the middle
columns of V¢ and V7, are used. Now, applying first the relations (4.122) and (4.124)
to the above expressions (4.125)—(4.126) and second the latter net current equations to
the (4.103), the following system of equations is finally derived to explicitly calculate the

average neutron flux moments:

$ 1 a —Q K
Po ) _ 22 02 0 (4127)
b, Q00022 — 002020 \ —ong Qo K>
with
Ko := So — Boocoz — Bo2¢23 — Bio oo — B2
3 3
—voo)_Jor—ve2 ) o — vooUy +J57) — veallst + J50),
(=1 (=1
Ky 1= —550 — Boco3 — Bc3 — B3y — B5¢h
3 3
—v20) Joi— vy —vilsy +152) — vaaUsy + 150)
(=1 (=1
as well as

4v3 . . 1 . .
a0o0 := L0 + <—(goooM000 + go20/1200) + ;(9600"7600 + g620M500)
V4

3a
43 X . 1 . .
agy = —2%L.0 + a(gooomozo + go20/1220) + a*(gtz)oom(z)zo + 9020M%20),
z
2 43 . 1 . X
a0 = _gzro + W(gzoomooo + g220/M200) + ?(giooméoo + 9520M500),
V4

4 4/3 . . 1 . .
an = ger +Xo+ W(gzoomozo + g220M220) + 0*(9500'”’7520 + g%20M520),
z

Bk =

4 . .
w(gnoomom + gn20M2k3 + Gnk3),
1

z . F A4 F A4 z _
nk = ?(gn00m0k2 + gn20Mak2 + Grk2), n k=02,
V4
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and
4V3 . A .
Yok 1= y(gnoohOk + gn20hok + Wik),
1 - n .
Vak i= a*(gf;ooh(z)k + gr20h2k + Wig), n k=02
V4

DiFFusioN METHOD: Turning towards the diffusion theory approach, we substitute ®y =

(2)

Coo in the equations of (4.119) and obtain

3

®o = coo + m01,0( — 00,0€00 — 00,3€03 + Go1 Zj(]_[),
(=1
3
. Z z z z z z AZ zZ—
®o = cyo + ’"01,0( — 190,0€00 — 700,2€02 t 401 me )
(=1

or, equivalently,

3
coo = Mooo®o + Moozcos + hoo Y oy, (4.128)
=1
o = MGooPo + MGgach + 360(15; +J5°) (4.129)
with
4ot := Go1,1 + 2Go1,2,
r00,0 := 3G01P00,0,
Fnm3 = 36701p0_0,3'
401 = o141 + Go1.2
rgo,o =240 P60,0r
Fom2 = 2401P0o 2,
and
~2) 1
Mo00 = TG @)

T —mg1 0700,0
Moo3 := MoooMo1,0r00,3,
FUA N4 V4 Z
Mooz := MpopMo1,0700,2+

rM2) . ~(2) (2) A(2)
hoo == —MgeoMo1 0400
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where pgo)'o, Poo3r Poo2 and égﬂ)ﬂ, Fqgﬂ)’z are entries of the matrices PE,Z,%_ of (4.28), (4.40)
_1
and QE)ZJ.) of (4.46), (4.47), respectively. Finally, equation (4.106) can be rewritten in the

explicit form

3
[ ! S — Z (12— 77—
(=1

with

4v3 . T, .,
Qo = L0 + ——g000M000 + — G500 M000-
30 a;

4+/3 R
Boo = y(gooomom + g003),
1 .
Boo == ?(géoomﬁoz + gbo2),
z

443
Yoo : j(gooohooﬁ-woo),

Yoo = —~(gd00 50 + Woo)-
Determining the average nodal neutron flux moments via (4.127) and (4.130), the first flux
coefficients c,0 and ¢, can subsequently be calculated by the use of the relations (4.122),

(4.124) and (4.128), (4.129). However, they serve only as auxiliary quantities.

4.7 SIMPLIFYING IMPLEMENTATION ASSUMPTIONS

In the previous sections, the equations to solve the steady-state multi-group SP3 transport
and diffusion problem are derived. The differences between the SP; and the diffusion

approaches are gradually presented.

In the SP5 theory described in Section 2.4.3 and the subsequent mathematical processing,
the second-moment removal cross sections Zﬁz g and diffusion coefficients Dé g are required

in addition to the zeroth-moment quantities zf’O,g and D(")’g (cf. definitions (2.31) and (2.38),

(2.50)). As shown in Table 4.1, ZiZ,g and Dé,g comprise the higher within-group scattering

i i i
cross sections L, oo and X5 o

consequence of the applied transport correction, i.e., the scattering cross section X

Linear anisotropic scattering is enclosed indirectly in
151,gg is
23,99
SPs implementation. Hence, identical cross-section data are used in the DYN3D trigonal

eliminated. For the sake of simplicity, Zéz 99 and £ are not included in the current
SPs and diffusion models, which benefits the general cross-section set input structure. In
Table 4.2, the diffusion coefficients and removal cross sections implemented in DYN3D are

summarized.
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Zeroth-moment data according to SP3 and diffusion theory

i i i
ZrO,g Zt,g - st,gg
i 1 1 : .
= 7 = s without transport correction
Q,g 3%, 3(Zhg =T gg) ( P )
D¢ = . L = —— (with transport correction)
0.9 3=y Ty ) 3Lirg
Second-moment data for SP3 theory
i i i
Zr.Z,g Zt,g - st,gg
29 T 3BI,, 35(% 4 —LL3 )

TaBLE 4.1: Diffusion coefficients and removal cross sections of the within-group SP;
transport and diffusion theory without and with transport correction.

Zeroth-moment data according to SP3 and diffusion implementation

i _ i G i — i i
X = I, + Zg:j Liogg = Zig—L
979

r0,g s0.9g9
1

i
0g — 3%,

Second-moment data for SP5; implementation

i _ i G i — i
Zf.zfg = Lggt Zgg’=1 ZSOH'Q = thg

L —_ = =

2,9 35(Zé,g+ZgG/=1 z;ovg,g) - 3B,

TaBLE 4.2: Diffusion coefficients and removal cross sections implemented in the DYN3D
code.

In contrast to the diffusion equation (2.52), the SP3 equations (2.45)—(2.46) contain the
second flux moment 2132 in addition to the zeroth flux moment E130, t.e., the neutron flux is
dependent on the polar angle 8 = cos™" p of the direction of neutron motion (see Figure 2.2
and equation (2.8)). In this manner, the trigonal DYN3D SP5 calculation model can still
reproduce anisotropy effects higher than linear even if Zén’gg are neglected for n > 2, while
the diffusion model suffers from the limitation of capturing maximum linear anisotropic flux

behavior based on the applied transport-corrected diffusion coefficient.

With the Cartesian DYN3D SP3 model, significant improvements were obtained compared
to the corresponding diffusion calculations [9, 11], notwithstanding the use of the reduced
cross-section input set described above. This performance is shown and discussed in
Chapter 5 for the trigonal-geometry DYN3D models.

4.8 ALGORITHMIC SUMMARY

Sections 4.1-4.6 present a precise derivation of all relevant mathematical interrelations
concerning the neutron currents, the neutron sources, the neutron transverse leakages, and

the neutron flux moments as well as the respective interface and boundary conditions. In
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Quantity Initial value
kS 1
=i0

Py 1000
=i0 ] . =0
®gq 9> 1 Tos Zg’<g ZSO,gg’q)O,g’
=i0

® 0

cj'?%j 0

2,00

iy 0
=i0 G =i0

Sf Zg’ 1Vng¢Og

10 0

glO

sy 0

=i0
J+ ,i0 1(])”
pai

Jz+ i0 1¢)n

[y 0 from Jﬁ;,o via (4.55), (4.56)
JZ_ 0 from 1270 via (4.58), (4.59)

TaBLE 4.3: Initial values of the numerical SP; (n = 0, 2) and diffusion (n = 0) procedures.

this section, the sequences of implementation are summarized in a compact algorithmic
form describing the inner and outer iteration schemes in detail (recall the overview block

diagram of Figure 4.1 as a general guideline).

For all nodal volume elements V! and all energy groups g, the geometrical dimensions a'
vZ;’g,
K;Z‘}’g, the fission spectrum Xé, and the albedos T;,’g are given for n = 0, 2. In Table 4.3, the

and a;, the diffusion coefficients Dy, ; as well as the cross sections £, g7 Ls0,9g"
initial values of the numerical procedures are listed. For the diffusion method, naturally,

only quantities for n = 0 are needed.

The inner iteration loop is interrupted after a fixed number of iterations max;, (typically
there is no need for more than five). The outer iteration cycle stops as soon as the fission

source term §f and the multiplication factor k.t meet some predefined tolerance criteria.

Algorithms 4.1 and 4.2 outline the iterative procedures for the DYN3D SP;3 transport
method, while Algorithms 4.3 and 4.4 summarize the respective DYN3D diffusion method.
In the course of the numerical procedure, every calculation step is performed for all nodes
Ve
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Algorithm 4.1 Outer iteration scheme of the nodal neutron flux calculation using the steady-
state SP3 transport method

Require: a[,a D! YL ¥

i isi i . r_
g Lrngr &50,gg" vZf’g, ngf’g, Xg: €fr €k Vi=1,...,1,Vg,g"=1,..., G,

n=0,2
1. Initialize k) = kgﬁ $:O; = g;(l)g, ) = %y, 0 = i0 ?f(O) = S;O, o _ sio,
570 = 710, O — g0 prtO) — 7210 i vg, n = 0,2
2 it=1
3: repeat
4: IF)etermlne l ) from Jf,Jrgl (it=1) via (4.86), Vi, Vg, k >0, n =0, 2.
5. Determine [} ” from Jo s via (4.95), Vi, Yg, k >0, n = 0,2,
6:  Determine g;(:,t)g from g ey via (4.65), Vi, Vg, g’ > g.
7: Determine so(kt from ¢ (,l(tg,” via (4.69), Vi, Vg, g’ > g, k > 0.
8:  Determine SOk(st)g from ci,iffqt, "V via (4.73), ¥i, Vg, ¢’ > g, k > 0.
9. forg=1to G do
10: Determine ?S(;t)g from <I>l l; K via (4.64), Vi, ¢’ < g.
11 Determine sé(;fidg from c;(;f’g,” via (4.68), Vi, ¢’ < g, k > 0.
12: Determine S(Z)k‘(;;g from ci,ﬁf;t,_” via (4.72), Vi, g’ < g, k > 0.
=i(it) =ilit) =ilit) gy =ilit=1) ‘
13: Determine Sq , from Soq 0, Sey g0 l< . Sy via (4.63), V..
14: Determine Sé)k) from sg(;;tldg (l)(;flu'g, kgc[t 1), 56(;([;1) via (4.67), Vi, kK > 0.
15: Determine s(z)kl ;t from sgkl(sl;)g, sé’,j(sifl)’g, ké#_”, sg'ki(f”_” via (4.71), Vi, k > 0.
16: Determine ¢ lnkg from sé);f)g l;(,lfg via (4.104), Vi, k> 0,n =0, 2
17. Determine cijo) from sg ), () via (4105) Vi, k>0,n=0,2
18: Inner iteration (Algorithm 4.2): Compute CD ng n(ét)g, i(; ;t), J+ i J,Z,+gl “n=02
19: Update ang from cnlt) Jnglt) via (4.110), Vi, k >0,n =0,2.
20: Update Pt /< from ch ’g‘t) JZ /(i) via (4115), Vi, k >0,n =0, 2
21:  end for

—i(it) =i(it)
22:  Determine S, from &, , via (4.66), V

23:  Determine 50,“r from c( via (4.70), Vi, k > 0.

nk,g
24:  Determine 50kf ) from anfg) via (4.74), Vi, k > 0.
—i(it)y 2
. (3
25:  Compute multiplication factor kgcft) = %
i=1>f f

26: it=1it+1

=i(it) =i(it—1)

2
27 until\/lzl 1 (SS,(”SQ)) < ¢ and

! .

28: Determine 66,9 from En,g via (4.96), Vi, Vg.

k(lt) k(lt 1)

R —Reit | < ¢
(it— 1) =
ke '

29: Determine node-averaged thermal power densities P! from 5(1),9 via (4.1), Vi.
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Algorithm 4.2 Inner iteration scheme of the nodal neutron flux calculation using the steady-
state SP3 transport method

Require: al, a D,ﬁ, g Z‘m g T ,g» MaXin, Vi=1,..,1,¥g=1,...,G,n=0,2

. =i(it)
1: Receive c;(,[f)g i,é(lt) So,g In gl (=0
loop (Algorithm 4. 1)

Jngl(lt 1) , Vi, k>0,n=0,2, from outer iteration

() _ i) zi) 2l M ‘(”) —iit=1) yz—i(0) _
2: Initialize ¢, 'g = Cpegr Chkg = Cnkig - SOg = So,q Jng Jng v dng =
5 ik >0,n=0,2

3 in=1
4: while in < max;, do

=i(in) i(in)  _z,i(in) =ilin) —,i(in=1) yz—,i(in—1)
5. Determine <Dn’ from ¢ c 50’9 g g via (4.127), Vi, k > 0,

nk,g' “nk,g '
n=020,2.
6: Determine ¢ 0 from CDng , ;(,‘("; I ém R via (4.122), Vi, k>0,n=0,2

~i(in)
n ﬁk“‘g”’ 151N \ia (4124), Yi, k> 0, n = 0,2,

8: Determine Jn,g(m from c,,g , J,,gm Y Via (4.35), Vi, n =0, 2.

9:  Determine Jf,Jrg“" from ¢y lgm Jf,gl =1 Via (4.38), Vi, n =0, 2.
10:  Obtain J, 5" from J " wa (4.55), (4.56), Vi, n = 0, 2.

11: Obtain J575"" from 155 via (4.58), (4.59), Vi, n = 0,2.

122 in=in+ 1

13: end while

=(i1) =i(in) i(it) i(in)  z,i(it) z,i(in) y+,i(it) +,i(in) yz+,i(it) z=,i(in)
14: Return @, o = &, . co0 = €000 Cog’ = Chong v Jng Jng g =1ng

Vi, n = 0,2, to outer iteration loop.

7. Determine ¢’ 0 from ®
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Algorithm 4.3 Outer iteration scheme of the nodal neutron flux calculation using the steady-
state diffusion theory method

Require: al, aé, D(")’g, ZiO,g’ ZiO,gg" vZf(’g, KiZi ,Xé, e e, Vi=1,...,1,¥g,g=1,....G
=i(0) =i0 , . .
1: Initialize k(?f) = k%, ®y, = Dp c(()zlgl(o) = '0 5[(0 Slfo, ng),l(O) = s, 2).i0 J(Z 1210 _
(2)+,i0
Jozg , vi, vg.
2. it=1
3: repeat
4. Determine lOk; J0 =01 i (4.86), (4.95), Vi, Vg, k > 0.
5. Determine S ) fro CDO 7Y via (4.75), Vi, Yg, g’ > g.
6: Determine 50,(5‘“ p from Ozk l(,” Y Via (4.76), Vi, Vg, g’ > g, k > 0.
7: forg—1toGdo -
8: Determine SSdg fro 66(”,_1) via (4.75), Vi, ¢’ < g.
9: Determine sgkéstg from c(()k) g(,'t Y via (4.76), Vi, g’ < g, k > 0.
10:  Determine Sqy from Seyr, Sey o, k", 517 via (475), vi.
11: Determine SE)Zk l(” from sgzk)sl(;t; ngkszgtg k(” 1), gk)’fi(” R via (4.76), Vi, kK > 0.
122 Determine cOkg”)f serrd®, 16 via (4107) (4.108), ¥i, k > 0.
13: Inner iteration (Algorithm 4. 4) Compute (DO OZO);”) J {aias
14 Update ¢ from ¢, 15 via (4.119), Vi, k > 0
15:  end for

16:  Determine 3:;“) from 63,‘; via (4.75), Vi.
17:  Determine sgzk)’;(”) from cgz,ll’;(“) via (4.76), Vi, k > 0.
—i(it)\ 2
, I (2
18:  Compute multiplication factor kgft) = %
i=1>f f

19: it=1it+1

~t(Lt) =i(it—1)

5 2 k(lr) k(lt 1)
20: until ,Zl 1 T,Q) < ¢r and

R et | < ¢
(it— 1) =
ke '

f
21: Determine node-averaged thermal power densities P! from 68,9 via (4.1), Vi.
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Algorithm 4.4 Inner iteration scheme of the nodal neutron flux calculation using the steady-
state diffusion theory method

Require: d, a!, Di yi

rog T(i)g max;,, Vi=1,...,1,Vg=1,...,G

1: Receive c ”t) 56 J )g_ AN ik > 0, from outer iteration loop (Algorithm 4.3).

i(1 t) it) —i —,i(it=1)
2: Imtlal1tze cék) 0 = Ozk) ;([ 50 OIQ,JE)Z,L 1) JBL A= i k> 0.
3 1n =
4: while in < max;, do .
5. Determine 632) from cozk) lg(m) 58 ng A1) i (4.130), Vi, kK > 0.
6:  Determine Céo) ;(m from @, (m ;(m) JO g_ =1 yia (4.128), (4.129), Vi, k > 0.
7: DetermmeJ +”" ) from cg )gl ) J(Z’g_ =1 g (4.45), Vi.
8 Obtain Jj/) " ‘”’ om J§H+ " via (4.58), (459), Vi.
9. in=in+1
10: end while i -
11: Return d)f)lg be)(lgn), 020) ;(” = OZ(]; J(Z )= (i) Jg;i'l(m), Vi, to outer iteration loop.







VERIFICATION ANALYSIS

This chapter focuses on the analysis of the performance of the trigonal SP5; and diffu-
sion models with particular regard to mesh refinement analyses. Diverse two-dimensional

hexagonal test and benchmark problems with different material compositions are studied.

Section 5.1 gives an introductory overview of potential sources of errors in reactor calcu-
lations. In Section 5.2, the DYN3D diffusion method on trigonal geometry is verified using
a fine-mesh diffusion reference solution. The respective verification of the trigonal DYN3D
SP3 method is presented by means of a fine-mesh SP3 transport problem. Furthermore,
the performances of both trigonal DYN3D models are compared against a higher transport
solution using the latter benchmark problem to demonstrate the potential superiority of
the DYN3D SP3 method over the diffusion model. All test problems of this section are
defined for the use of assembly-homogenized cross sections. The trigonal DYN3D SP5 and
diffusion methods are further verified against detailed-geometry full-transport references in
Section 5.3. Three full-core and single-assembly test problems are considered involving, in
each example, cases with weak and strong anisotropy effects. The few-group cross-section
data sets are homogenized from assembly down to pin-size level. Section 5.4 evaluates

the computation times with respect to solution approaches and nodal refinement levels.

The following facts will become evident by the end of this chapter:

e The verification analysis of both trigonal DYN3D models based on mathematical

benchmarks provides proof of their methodological reliability.

e The superiority of the SP3 transport over the diffusion model can be clearly demon-
strated by means of an academic benchmark especially prepared to magnify transport

effects.

e Considering physical test problems with detailed-geometry full-transport reference

solutions, the superposition of errors complicates the analysis of the accuracy of
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the methods. However, the trigonal SP3 model achieves significantly better agree-
ment with the reference solutions than the trigonal diffusion approach in cases with

pronounced anisotropy effects.

5.1 EVALUATION OF ERROR SOURCES

Recalling the main steps of reactor calculations outlined in Section 1.1, the corresponding
intrinsic simplifications and approximations naturally entail specific deficiencies. This in
turn necessitates an examination of the contribution of each assumption to the total error.
Of course, errors in measurement and nuclear-data evaluation of the microscopic cross
sections compiled in data bases such as ENDF (cf. Figure 1.1) exist and, in case of
deterministic lattice calculations, uncertainties resulting from the complicated resonance
(self-shielding) treatment are present. These errors will affect the accuracy in modeling
the behavior of a real reactor. However, all of these errors evidently must be present also
in the benchmark reference solutions to be considered in this chapter, so that they are
irrelevant for the subsequent analyses. Thus, only the following categories of error sources

[43, 93, 120, 145] subsequent to the lattice calculation have to be discussed:

e the spatial-homogenization effect that results from the averaging, i.e., the flux-volume
weighting of the macroscopic cross sections applying the fluxes calculated by the

lattice code, and

e an error resulting from averaging macroscopic cross sections over energy intervals
(groups), which produces few-group homogenized data from continuous-energy or

multi-group cross sections (‘group-collapsing").

For both items, it should be noted that the lattice calculations are usually carried out
in an infinite lattice environment (zero-current boundary conditions) producing a certain
space-dependent neutron spectrum. However, the few-group homogenized cross sections
generated in this spectrum are later used with ambient core conditions, i.e., a different

actual core spectrum. This can also lead to a relevant error contribution.

While the aforementioned types of error sources are merely cross-section related, the

following items directly concern the methods developed in the present work:

e the transport effect emerging from the quality and reactor-specific validity of the
diffusion or higher-order approximation to the transport equation, i.e., the ability to

represent anisotropy effects, and
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Ficure 5.1: Error sources in the data flow of reactor physics calculations.

e the spatial-discretization effect in consequence of the employed nodal method, i.e., the

methodological sophistication of the intra-nodal flux approximation, and the applied

spatial mesh.

In Figure 5.1, an illustration of the errors in the reactor calculation data flow is provided.

As the phenomena described above can hardly be isolated in a reactor calculation, they

all interfere with each other and complicate the analysis of the accuracy of the methods

themselves.
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Material 1 2 3 4 5

Dy 1 1.383200 1.382990 1.395220 1.394460 1.395060
Dy 0.386277 0.389403 0.386225 0.387723 0.384492
o1+ Ls021 2.48836e-2 2.62865e-2 2.45662e-2 2.60117e-2 2.46141e-2
o2 6.73049e-2 8.10328e-2 8.44801e-2 9.89671e-2 8.93878e-2
25021 1.64977e-2 1.47315e-2 1.56219e-2 1.40185e-2 1.54981e-2
s 1.86139e-3 1.81560e-3 2.36371e-3 2.31026e-3 2.50773e-3
Lo 3.48111e-2 3.50622e-2 4.91322e-2 4.95721e-2 5.31856e-2
vEfq 4.81619e-3 4.66953e-3 6.04889e-3 5.91507e-3 6.40256e-3
vEifo 8.46154e-2 8.52264e-2 1.19428e-1 1.20497e-1 1.29281e-1

TaBLE 5.1: Cross-section data for the VVER-1000 two-group benchmark [22].

5.2 VERIFICATION AGAINST MATHEMATICAL BENCHMARKS

The reliability of the trigonal DYN3D models is demonstrated by means of academical
benchmarks in this section, applying reference solutions produced by other codes which

use exactly the same assembly-homogenized cross sections as input to DYN3D.

Since identical cross-section data and exterior boundary conditions are used for both
the DYN3D and the respective fine-mesh reference calculations, the occurrence of errors
owing to spatial-homogenization and energy-averaging effects is eliminated. The mesh
refinement studies of Sections 5.2.1 and 5.2.2 additionally exclude transport effects and,
therefore, specifically identify spatial-discretization errors. In the limit of infinitely fine

mesh spacing, the spatial-discretization error approaches zero.

5.2.1  FINE-MESH DIFFUSION BENCHMARK FOR VVER-1000

A VVER-1000-type core benchmark, provided in the work of Chao and Shatilla [22], is
considered to verify the consistency of the implementation of the trigonal diffusion method
DYN3D-TRIDIF. The core is loaded with 163 fuel assemblies having a typical VVER-1000
assembly pitch! of 23.6cm. 25 assemblies have control-rod (CR) clusters inserted. In
Table 5.1, the two-group assembly-homogenized cross-section data are given for the five
fuel types, which were generated by Knight and Chao [21, 84, 85] using fuel configuration
and material data based on an existing PWR benchmark specified by Koebke et al. [90]. The
reflector region outside the fuel assemblies is not explicitly modeled. It can be represented
by albedos at the core boundary. Chao and Shatilla provided solutions for the VVER-
1000 benchmark applying two different albedos for the problems corresponding to vacuum

(to = 0) and more realistic (79 = 0.6) boundary conditions (cf. expression (4.57)). In this

"The distance between the centers of two adjacent fuel assemblies is called assembly pitch.
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Normalized powers (ref.)

6 nodes/FA 384 nodes/FA
24 nodes/FA 1536 nodes/FA
96 nodes/FA 6144 nodes/FA

Material 1
Material 2 (CR cluster)
Material 3
Material 4 (CR cluster)

Material 5

EECIC ]

Ficure 5.2: Core configuration of the VVER-1000 benchmark. Normalized power dis-
tribution obtained by DIF3D and relative errors (%) determined by DYN3D-TRIDIF for
different mesh refinements.

work, the vacuum boundary case is exemplified to demonstrate the performance of DYN3D-
TRIDIF by means of the more extreme example with higher flux gradients. The fine-mesh
diffusion reference solution was generated by the finite-difference code DIF3D [40] applying
the given coarse-mesh cross sections. Both power distribution and multiplication factor
were extrapolated from DIF3D runs with the subdivisions of 384 and 486 triangles per

hexagon.

A mesh refinement study is performed with DYN3D-TRIDIF. In Figure 5.2, the normalized
power distribution of a 60° sector of the VVER-1000 core and the respective relative errors
considering nodal refinements from 6 to 6144 triangles per fuel assembly (FA) are depicted.
The corresponding effective multiplication factors obtained by DYN3D-TRIDIF and the
respective deviations from the DIF3D reference multiplication factor?, denoted by Ok, as

well as the maximum and root mean square (RMS)3 power differences in comparison to the

. ) . ) Kesi—k
The difference in ke is calculated via &, = % x 1e5 pcm.

eff,ref
3The RMS value of a set of / power differences {Py — Pj ef, ..., P/ — Pi et} is given by \/17 Zf:1(P,- — P e)2.
This analogously applies to fluxes.
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Method No. of trigonal Keff Oky Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)

DYN3D-TRIDIF 6 1.008968 245 14.7 7.4

24 1.007461 96 5.2 2.7

96 1.006887 40 1.9 1.0

384 1.006650 16 0.8 0.4

1536 1.006544 6 03 0.2

6144 1.006493 1 0.2 0.1

DYN3D-HEXNEM1 1.007074 58 5.8 2.9

DYN3D-HEXNEM?2 1.006540 5 1.3 0.6
DIF3D (ref.) 1.006485

TaBLE 5.2: VVER-1000 benchmark: Effective multiplication factors ke, maximum and
RMS power differences — DYN3D-TRIDIF and DYN3D-HEXNEM1/2 in comparison to
the DIF3D reference.

reference values are displayed in Table 5.2. High relative errors in the power distribution
of more than 10% in the subdivision case of 6 nodes per assembly can be observed in the
outermost core region (material 5). On account of the vacuum boundary conditions and the
fact that material 5 features the highest fission cross sections, the neutron flux suffers a
strong gradient at the core boundary. The largest deviation occurs in the corner assemblies
of the core, since three assembly sides face the vacuum boundary. Furthermore, it can be
seen that the central zone, with 7 out of 19 fuel assemblies of the innermost three assembly
rings of the core having control-rod clusters inserted, shows rather high power deviations
in a coarse nodalization due to the accumulation of local flux minima resulting from the
control absorbers. While the power distribution is overestimated by DYN3D-TRIDIF in
the outer core assemblies, there is an underestimation in the core center. Such a convex
deviation behavior is simply a compensation effect resulting from normalization and was
also observed by other authors [28, 37, 63]. (A concave deviation shape is also possible.
Curvature and magnitude of the effect depend on the particular core configuration.) With 6
trigonal nodes per assembly, DYN3D-TRIDIF only reasonably reproduces strong local flux
gradients in this extreme example. Applying further mesh refinement, however, significantly
reduces the spatial-discretization error. The mean power difference decreases by a factor
of two to three with every higher level of refinement. Using a fine nodalization, very
good agreement between DYN3D-TRIDIF and the reference solution is achieved. Both the

eigenvalue and the power distribution spatially converge to the reference values.
Hence, the functional reliability of the trigonal DYN3D diffusion model is proven.

In Table 5.2, also the results obtained by the DYN3D hexagonal diffusion methods HEX-
NEM1 and HEXNEM2 are summarized. The discrepancies in ket and the nodal power
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Material 1 2 3

Toq 0025 0.025 0.075
Y011 0013 0024 00
a1 00 0.006 0.0
VIl 00155 00 00

TaBLE 5.3: Cross-section data for the one-group benchmark by Hébert [73].

distributions between the models DYN3D-TRIDIF, DYN3D-HEXNEM1, and DYN3D-
HEXNEM?2 can be traced back to the fact that the hexagonal DYN3D flux expansion
ansatzes differ from the trigonal approach in both the polynomial and exponential part (see
Section 3.6.2). Due to only an incomplete set of polynomials and only three exponential
terms, the trigonal method is weaker than its hexagonal analogon. HEXNEM?2 features the
most sophisticated approach. However, in the present case, DYN3D-TRIDIF outperforms
the accuracy of HEXNEM1 already with a refinement of 24 nodes, HEXNEM2 with a
refinement of 384 nodes. More detailed information concerning the behavior of DYN3D-
HEXNEM?2 relating to this VVER-1000 benchmark problem is provided in the work by
Grundmann and Hollstein [63].

The author would like give the supplementary information that, applying realistic bound-
ary conditions (19 = 0.6), the DYN3D-TRIDIF results agree significantly better with the
reference solution already in case of coarse nodalization. The maximum power differences

are by about a factor of two smaller than the values presented in this extreme example.

5.2.2 FINE-MESH SP3; ACADEMIC BENCHMARK

For the verification of the trigonal SP3 method DYN3D-TRISP3, a one-group benchmark
with anisotropic scattering is considered, which was originally proposed by Hébert for var-
ious one-dimensional-geometry cases and two-dimensional Cartesian geometry [70] and
further developed for hexagonal-geometry problems [73]. This benchmark does not rep-
resent a real-life problem. The 30° core sector consists of one type of hexagonal fuel
assemblies and two types of reflector assemblies with an assembly pitch of 32.9cm. The
one-group coarse-mesh cross-section data are given in Table 5.3. Whereas material 2
allows solely scattering, material 3 features pure absorption. Thus, the neutron flux is
dominated by a strong migration process in direction towards the absorber. In such a case,
the importance of a method capable of representing anisotropic flux behavior becomes obvi-
ous. Using these cross sections and vacuum outer boundary conditions, the SP5 transport
reference solution has been obtained by the code TRIVAC [75] applying finite-element

discretization and quadratic flux expansion. The TRIVAC results converged well already
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Material 1 (fuel)

Normalized fluxes (ref.) Material 2 (reflector)

B0

6 nodes/FA 384 nodes/FA Material 3 (reflector)

24 nodes/FA 1536 nodes/FA
96 nodes/FA 6144 nodes/FA

Ficure 5.3: Core configuration of the Hébert benchmark. Normalized neutron flux distri-
bution obtained by TRIVAC (SPs option) and relative errors (%) determined by DYN3D-
TRISP3 for different mesh refinements.

Method No. of trigonal Kett Oy Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)
DYN3D-TRISP3 6 1.001100 77 25 1.7
24 1.000085 -25 1.9 1.0
96 0.999939 -39 1.4 0.7
384 1.000039 -29 0.9 0.4
1536 1.000156 -18 0.5 0.2
6144 1.000238 -10 0.3 0.1
TRIVAC - SPs (ref) 1.000330

TaBLE 5.4: Hébert benchmark: Effective multiplication factors ke, maximum and RMS flux
differences — DYN3D-TRISP3 in comparison to the TRIVAC (SPs) reference.

with a small number of lozenges per hexagon. The reference solution used here has been

generated with 300 lozenges per assembly [124].

Similar to the study by Chiba [28], DYN3D-TRISP3 calculations have been run to evalu-
ate and compare the neutron fluxes and effective multiplication factors. In Figure 5.3, the
normalized flux distribution of the considered core sector and the respective relative errors
are depicted. Also here, a mesh refinement study is performed. In Table 5.4, the effective
multiplication factors obtained from the DYN3D-TRISP3 calculations with nodal refine-
ments from 6 to 6144 triangles per fuel assembly are given and compared to the TRIVAC

reference value. Furthermore, the maximum and RMS flux differences are evaluated. There
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is an overestimation of the nodal flux distribution in the core center and a respective under-
estimation in the reflector regions due to compensation effects of the applied normalization.
However, a general good agreement between DYN3D-TRISP3 and the reference solution

is achieved.

By demonstrating spatial convergence of both the DYN3D-TRISP3 multiplication factors
and the flux distributions to the fine-mesh TRIVAC SP;5 reference solution in this section,
the methodological reliability of the trigonal DYN3D SP3; model can be conceived as

verified.

5.2.3 FINE-MESH SP5 ACADEMIC BENCHMARK

In this section, the latter academic benchmark problem is used to compare the trigonal
DYN3D SPs transport and diffusion models with a higher transport reference solution
obtained by the TRIVAC code now using the SPs5 option (plus again a finite-element
discretization of 300 lozenges per hexagon and quadratic flux expansion) [124]. Hébert
[73] especially prepared the cross-section data given in Table 5.3 to magnify transport and
anisotropic effects. The capability of diffusion theory to capture extreme anisotropic flux

behavior is expected to be poor.

As already discussed in Section 2.3, the SPy solution is generally not equivalent to the Py
solution and therefore increasing N does not in any case provide a more accurate result.
However, it is common experience that the maximum potential accuracy is obtained around

SPs or SP; [119]. On this account, the fine-mesh TRIVAC SPs solution is considered a

reasonable reference solution.

The development of two methods based on different approximations of the transport equation
but using identical underlying spatial discretization allows a comparative analysis of both
methods with regard to transport effects. As very similar nodal flux expansions are applied
to DYN3D-TRISP3 and DYN3D-TRIDIF (cf. Section 3.5), the spatial-discretization error
becomes negligible when considering identical trigonal refinement levels. In any case, the

spatial-discretization error approaches zero in the limit of infinitely fine mesh spacing.

DYN3D-TRISP3 and DYN3D-TRIDIF calculations have been run applying the refinements
from 6 to 6144 trigonal nodes. In Figure 5.4, the normalized flux distribution of the consid-
ered core sector and the respective relative errors for the coarse nodalization of 6 and the
fine nodalization of 6144 triangles per assembly are depicted. The effective multiplication
factors and the deviations from the TRIVAC reference as well as the maximum and RMS
flux differences for both trigonal models are summarized in Table 5.5 listing all refine-

ment levels. For the hexagonal DYN3D methods, the results are also given. Especially
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Material 1 (fuel)

Normalized fluxes (ref.) Material 2 (reflector)

B0

TRISP3

TRIDIF Material 3 (reflector)

6 nodes/FA 6 nodes/FA

6144 nodes/FA 6144 nodes/FA

FiGure 5.4: Core configuration of the Hébert benchmark. Normalized neutron flux distri-
bution obtained by TRIVAC (SPs option) and relative errors (%) determined by DYN3D-
TRISP3 and DYN3D-TRIDIF for the nodalizations 6 and 6144.

Method No. of trigonal ke Oy  Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)

DYN3D-TRISP3 6 1.001100 -17 3.7 1.8

24 1.000085 -118 3.2 13

96 0.999939  -133 2.7 1.0

384 1.000039  -123 2.2 0.8

1536 1.000156  -111 1.8 0.7

6144 1.000238  -103 15 0.6

DYN3D-TRIDIF 6 0.973001 -2820 18.5 8.2

24 0.971983 -2921 20.0 9.0

96 0.971902 -2929 20.4 9.3

384 0.972064 -2913 20.5 9.3

1536 0.972220 -2898 20.4 9.3

6144 0.972322 -2888 20.2 9.3

DYN3D-HEXNEM1 0.973931 -2727 20.0 9.3

DYN3D-HEXNEM?2 0.972710 -2849 21.0 9.4
TRIVAC - SPs (ref) 1.001271

TABLE 5.5: Hébert benchmark: Effective multiplication factors ke, maximum and RMS flux
differences — DYN3D-TRISP3, DYN3D-TRIDIF, and DYN3D-HEXNEM1/2 in comparison
to the TRIVAC (SPs) reference.
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in the outer reflector region, DYN3D-TRISP3 superiorly represents the flux distribution
in comparison to DYN3D-TRIDIF (and also DYN3D-HEXNEM1/2) by more than an or-
der of magnitude. Recalling Section 1.3, diffusion theory requires the migration process
to be scattering collision dominated. In material 3, this requirement is not fulfilled with
the consequence that the DYN3D diffusion models fail with an error in flux of about 20 %.
DYN3D-TRISP3 performs reasonably well in a coarse nodalization with a maximum flux
deviation of 3.7 % in the inner reflector region. The maximum error is diminished to 1.5% in
a fine nodalization showing an overall good performance. The differences in ke are signif-
icantly reduced from almost 3000 pcm by the DYN3D diffusion methods to about 100 pcm
by the DYN3D SPs5 approach.

Hence, the concluding statement of this section is: By means of the present academic
benchmark, anisotropy effects are quantitatively identified and the superiority of the trig-

onal DYN3D SPs method over the respective diffusion model is clearly demonstrated.

A further remark shall be made on the assessment of trigonal nodalizations of differing size
or hexagonal nodalizations with different underlying flux expansions. Here, the effect of the
spatial-discretization error has to be considered in addition to the transport error. Such
effects superpose and may impact the degree of agreement in different directions, e.g., acci-
dental error compensation is possible [93]. The findings that DYN3D-TRIDIF shows results
closer to the reference solution for 6 nodes per assembly than with a finer nodalization and
that DYN3D-HEXNEM?2 agrees less well with the reference than DYN3D-HEXNEM1,

are examples of such phenomena.

5.3 VERIFICATION AGAINST DETAILED-GEOMETRY FULL-TRANSPORT-

THEORY PROBLEMS

In this section, further comparison studies are performed to verify the trigonal DYN3D
models. Realistic and detailed-geometry full-transport-theory problems are investigated.
In contrast to the cases of Section 5.2, spatial-homogenization and energy-averaging effects

occur in addition to spatial-discretization and transport effects.

The employed few-group cross-section data sets are homogenized from assembly level
in Section 5.3.1 to one sixth of an assembly in Section 5.3.2 down to pin-size level in
Section 5.3.3.
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@ (b)

Ficure 5.5: Simplified HTGR core models without (a) and with (b) control rods.

Ficure 5.6: Geometry of the two-dimensional fuel-reflector model (30° core profile).

5.3.1  HTGR core

A two-dimensional simplified core of the prismatic-fuel-type high-temperature gas-cooled
reactor (HTGR), which was developed by the Idaho National Engineering and Environ-
mental Laboratory (INEEL) in the frame of the Next Generation Nuclear Plant (NGNP)
project [118], is considered the reference. The core is loaded with 102 fuel assemblies em-
bedded in an inner and outer graphite reflector occupying 61 and 102 assembly positions,
respectively. The assembly pitch is 36 cm. Further core parameters are provided in the
work of Rohde et al. [136].

Two core models — with and without inserted control rods — are analyzed. The NGNP core
design comprises control rod channels which are asymmetrically aligned in several fuel
and outer reflector elements. For the case study without inserted control rods, however, all
assemblies are modeled without any control rod channels. In the case of inserted control
rods, only fuel assembly rod channels are taken into account, reflector control rods are
neglected. Instead of an asymmetrical composition, a central alignment of the control rods
is furthermore assumed for the sake of simplicity. In Figure 5.5, the considered HTGR core
geometries are illustrated. To model the reflector regions, a diagonal section of the core

has been used as shown in Figure 5.6.

Considering a core temperature of 1200 K, the verification analysis has been performed as

follows. First, full-core heterogeneous reference solutions have been obtained using the
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Group Upper group energy
(MeV)
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TaBLE 5.6: 12-energy-group structure for the HTGR analysis.

continuous-energy Monte Carlo code Serpent [109, 110]. The Monte Carlo calculations
have been performed with 500 inactive and 1000 active neutron cycles and 60,000 neutron
histories per cycle (cf. Section 2.2.1). For the present test cases, this is considered
sufficient. Second, homogenized cross-section sets required for the nodal analysis have
been created also using the Serpent code. The cross sections have been generated for
hexagonal assemblies in an infinite environment (reflective boundary conditions) in 12
energy groups [51]. The group structure shown in Table 5.6 is a predefined subset of
the CASMO-4 [135] basic 70-group energy structure and consists of 3 fast, 2 resonance,
and 7 thermal energy groups. A relatively large number of thermal groups is believed
to be sufficient to properly account for thermal upscattering events. It should be noted,
however, that an optimization of the energy group structure for HTGR applications has
not been performed [52]. Finally, 30°-symmetry-sector DYN3D calculations with vacuum
exterior boundary conditions have been run using the few-group constants generated by

the Serpent code.

In Figure 5.7, the Serpent outputs of the thermal-flux distributions for both considered

cases are presented.

CASE WITHOUT CONTROL RoDS: In Figure 5.8, a 30° sector of the considered HTGR core
without control rods is depicted exemplarily showing the relative errors in the radial power
distribution obtained by DYN3D-TRISP3 and DYN3D-TRIDIF for the subdivisions of 6
and 96 nodes per hexagonal assembly. In Table 5.7, the effective multiplication factors

and the differences from the Serpent reference value* as well as the maximum and RMS

“The standard deviation of ke in the Serpent calculations is about 0.0002.
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(a) (b)

FiGure 5.7: Serpent thermal-flux distribution of the simplified HTGR core without (a) and
with (b) inserted control rods. Indication of the 30° core radius.

Normalized powers (ref.)
TRISP3 TRIDIF
6 nodes/FA 6 nodes/FA
96 nodes/FA 96 nodes/FA

Ficure 5.8: HTGR core without control rods: Normalized power distribution obtained by
Serpent and relative errors (%) determined by DYN3D-TRISP3 and DYN3D-TRIDIF for
the nodalizations 6 and 96.
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Method No. of trigonal Keff Oky Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)
DYN3D-TRISP3 6 1.317994 115 1.4 0.9
24 1319332 192 1.1 0.7
96 1.320052 233 0.9 0.6
384 1320375 252 0.9 0.6
DYN3D-TRIDIF 6 1.318244 129 1.4 0.9
24 1.319642 210 1.2 0.8
96 1320383 252 1.0 0.7
384 1.320707 271 0.9 0.6
DYN3D-HEXNEM1 1321472 315 0.3 0.2
DYN3D-HEXNEM?2 1.322347 366 0.7 0.4
Serpent (ref.) 1.316010

TaBLE 5.7: HTGR core without control rods: Effective multiplication factors ke, max-
imum and RMS power differences — DYN3D-TRISP3, DYN3D-TRIDIF, and DYN3D-
HEXNEM1/2 in comparison to the Serpent reference.

power differences are summarized for the trigonal DYN3D SPs and diffusion models and
additionally for the hexagonal DYN3D diffusion methods. Nodal refinements from 6 to 384
triangles per assembly are considered. Additionally, the graphs in Figure 5.9 represent the
normalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of DYN3D-
TRISP3/TRIDIF and Serpent along the core radius at an angle of 30° (in Figure 5.7,
an indication of this radius is given). For the fast and the resonance fluxes, the energy
groups 1, 2, 3 and 4, 5 are collapsed, respectively. The flattening of these curves in the
inner (r < 145cm) and outer (r > 229 cm) reflector regions due to missing fission sources
and dominant neutron downscattering into thermal energy groups is shown. Accordingly,
pronounced peaks in the thermal flux, combining groups 6 to 12, are identified in the
reflector zones adjacent to the fuel. For DYN3D, the trigonal discretization of 96 nodes
per assembly has been chosen. In this manner, flux values at 113 mesh points have been
extracted and interpolated along the radius. Only one curve per collapsed energy group,
however, is displayed for DYN3D-TRISP3/TRIDIF, since no visible difference between
the DYN3D SPs and diffusion fluxes can be perceived. Generally, a good agreement
between the different DYN3D methods and the Monte Carlo reference is demonstrated.
The deviations in ke are about 200 pcm for the trigonal approaches, the RMS difference
in power is generally less than 1%. Also the fast-, resonance-, and thermal-flux curves of
DYN3D-TRISP3/TRIDIF agree very well with the Serpent flux reference shapes.

The trigonal DYN3D SP3 method predicts the reference solution better than the trigonal
DYN3D diffusion method. However, in this rather isotropic case, the degree of improvement

is very marginal.



108 Verification Analysis

Serpent, fast groups (9=1,2,3) TRISP3/TRIDIF, fast groups (g=1,2,3)
— Serpent, resonance groups (9=4,5) = TRISP3/TRIDIF, resonance groups (g=4,5)
= Serpent, thermal groups (9=6,...,12) TRISP3/TRIDIF, thermal groups (9=6,...,12)
0.012 : .
inner reflector 3 fuel ; outer reflector
0.01
= 0.008 -
3
>
o
3
&N 0.006
1
E
(=]
=
0.004 -+
0.002 +
0 T T : T T I T —

0 50 100 150 200 250 300
Distance r from core center (cm)

Ficure 5.9: HTGR core without control rods: Normalized neutron flux distribution along
the 30° core line obtained by Serpent and DYN3D-TRISP3/TRIDIF (96 nodes per as-
sembly).

The hexagonal-geometry DYN3D diffusion models agree well with the reference power dis-
tribution in this example due to the intra-nodal flux ansatzes, which are more sophisticated

in the hexagonal than in the trigonal approaches.

The phenomenon that a coarse trigonal nodalization gives better multiplication factors in
this case than calculating with a higher nodal resolution can be traced back to coincidental
error compensation. The same argumentation applies to the general results of DYN3D-
HEXNEM1 and DYN3D-HEXNEM2.

CAse wITH coNTRoL RoDs: In Figure 5.10, a 30° symmetry sector of the HTGR core
with inserted control rods is depicted. Also here, the relative errors in the radial power
distribution obtained by DYN3D-TRISP3 and DYN3D-TRIDIF for the nodalizations of 6
and 96 triangles per assembly are shown. The effective multiplication factors and the
maximum and RMS power differences from the Serpent Monte Carlo reference solution for
the nodal subdivisions from 6 to 384 triangles per assembly are listed in Table 5.8. The
graphs in Figure 5.11 show the normalized shapes of the fast-, resonance-, and thermal-
group neutron fluxes of DYN3D-TRISP3/TRIDIF and Serpent along the core radius at an
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Normalized powers (ref.)
TRISP3

TRIDIF
6 nodes/FA 6 nodes/FA
96 nodes/FA 96 nodes/FA

Ficure 5.10: HTGR core with inserted control rods: Normalized power distribution ob-
tained by Serpent and relative errors (%) determined by DYN3D-TRISP3 and DYN3D-
TRIDIF for the nodalizations 6 and 96.

Method No. of trigonal Keft Oy  Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)
DYN3D-TRISP3 6 0.997185 -1360 41 2.0
24 0.992167 -1851 3.7 1.7
96 0.990934 -1972 35 1.7
384 0.990648 -2000 3.4 1.7
DYN3D-TRIDIF 6 0.995924 -1484 4.0 1.9
24 0.990937 -1971 3.6 1.8
96 0.989744 -2088 35 1.9
384 0.989494 -2112 3.4 1.9
DYN3D-HEXNEM1 0.991483 -1918 3.2 1.7
DYN3D-HEXNEM?2 0.989681 -2094 3.4 2.1
Serpent (ref.) 1.011090

TaBLE 5.8: HTGR core with inserted control rods: Effective multiplication factors ke,
maximum and RMS power differences — DYN3D-TRISP3, DYN3D-TRIDIF, and DYN3D-
HEXNEM1/2 in comparison to the Serpent reference.
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FiGure 5.11: HTGR core with inserted control rods: Normalized neutron flux distribution
along the 30° core line obtained by Serpent and DYN3D-TRISP3/TRIDIF (96 nodes per
assembly).

angle of 30° (see Figure 5.7 (b)) considering a refinement of 96 nodes per assembly. In the
reflector regions, naturally, the same physical effects are observed than in the case without
control rods. The fuel region (145 < r < 229 cm), evidently, shows a different behavior and

can be divided into the following three zones (cf. Figure 5.10 for clarification):

e zone 1: a symmetry boundary line between two fuel assemblies with inserted control
rod (145 < r < 166 cm),

e zone 2: a line from corner to corner through the center of a fuel assembly with
inserted control rod (166 < r < 208 cm), and

e zone 3: a symmetry boundary line between two fuel assemblies without control rod
(208 < r < 229 cm).

Concerning zones 1 and 3, the considered radius is located on graphite material with
fuel rods (and coolant channels) in the immediate vicinity. Hence, fission and scattering
from fast to resonance energies lead to an increase of the fast and the resonance neutron

flux. The thermal flux, naturally, decreases from the reflector to the fuel region caused by
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absorption. Due to the presence of boron carbide (B4C) in the close vicinity of zone 1, the
fluxes in this zone are generally lower than in zone 3. However, in zone 2, one centrically
modeled control rod is diagonally cut, which results in strong local flux minima in the
middle of the region. Certainly, neither DYN3D-TRISP3 nor DYN3D-TRIDIF is capable
of reproducing those narrow minima, caused by the absorber rod, especially in the thermal
flux, as DYN3D uses cross sections that are homogenized over the much broader fuel
assembly. Therefore, this discrepancy is not a shortcoming of the SP5 transport or diffusion
method but of the homogenization procedure. As a consequence, DYN3D underestimates
the flux outside zone 2. This behavior is also reflected in the corresponding assembly
powers. In a coarse nodalization, the nodal power distribution is generally underestimated
in the 30° region as a result of the overestimation of the power in the inner corner assembly
due to compensation effects of the applied normalization. The maximum power difference
with about 4% occurs in the assembly with the largest distance to the absorber assemblies.
In this region, the highest power density occurs, which is connected to a strong thermal-
flux gradient in direction to the inner reflector. The deviations in power and also the
differences in ke of about 2000 pcm are generally rather high as a result of the significant

flux gradients.

Discontinuity factors can remedy such a situation. However, the use of discontinuity fac-
tors is generally not considered in this work since the underlying theory has only been
established for the diffusion method (cf. Section 3.1). In view of the precise comparison
of the performance of the trigonal DYN3D SP5 and diffusion models, simply applying
diffusion-theory discontinuity factors to the SP3 method may reproduce the SP3 results
inconsistently and generate an additional error source (although a general improvement of

the results could be expected).

The conclusion which can be drawn from the full-core HTGR calculations is that DYN3D-
TRISP3 produces better results compared to DYN3D-TRIDIF. However, the improvements
are marginal when using assembly-homogenized cross sections in such a strongly hetero-
geneous material configuration. The anisotropy effect simply becomes unpronounced. With
use of cross sections homogenized over smaller nodes, the SP;3 effect is expected to appear

more emphasized.

5.3.2 HTGR FUEL BLOCK WITH CONTROL ROD

In this section, the cross-section data are homogenized for six regions within an assembly.

A simplified single HTGR control rod fuel block of the aforementioned prismatic NGNP
design [118] is considered taking the real asymmetric rod channel position into account. In

Figure 5.12, the single assembly HTGR model is depicted. We investigate the two cases
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Ficure 5.12: Simplified single HTGR control rod fuel assembly model with indication of
six homogenized-cross-section regions.

powers (ref.)

TRISP3 TRIDIF
6 6
384 384
(nodes/
FA)

Ficure 5.13: HTGR single assembly without inserted control rod: Normalized power
distribution obtained by Serpent and relative errors (%) determined by DYN3D-TRISP3
and DYN3D-TRIDIF for the nodalizations 6 and 384.

with and without inserted control rod. Here, the advantage of a method based on trigonal

geometry over a purely hexagonal method is obvious.

Considering a core temperature of 1200 K, the heterogeneous reference solutions as well
as the homogenized cross-section sets have been generated again by the Monte Carlo
code Serpent [109, 110]. The cross sections have been created on an infinite assembly
level (reflective boundary conditions) in a 12-energy-group structure (cf. Table 5.6) and

extracted for six congruent trigonal regions (see Figure 5.12) [51].

CASE WITHOUT CONTROL ROD INSERTED: The Monte Carlo normalized power distribution
reference values for the case without inserted control rod as well as the relative errors
obtained by the trigonal DYN3D SP3 and diffusion models applying reflective boundary
conditions are depicted in Figure 5.13. A refinement study is performed up to 1536 nodes
per assembly, i.e., 256 nodes per homogenized trigonal region. However, only the nodal-

izations of 6 and 384 triangles per assembly are presented in this figure. Note that the
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Method No. of trigonal Kin Ok, Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)
DYN3D-TRISP3 6 1.418970 -4 0.3 0.2
24 1.418985 -4 0.2 0.1
96 1.418995 -3 0.2 0.1
384 1.419001 -3 0.2 0.1
1536 1.419006 -3 0.2 0.1
DYN3D-TRIDIF 6 1.418970 -4 0.2 0.2
24 1.418984 -4 0.2 0.1
96 1.418993 -3 0.2 0.1
384 1.419000 -3 0.2 0.1
1536 1.419004 -3 0.2 0.1
Serpent (ref.) 1.419060

TaBLE 5.9: HTGR single assembly without inserted control rod: Infinite multiplication
factors ki, maximum and RMS power differences — DYN3D-TRISP3 and DYN3D-TRIDIF
in comparison to the Serpent reference.

Serpent solutions are not absolutely symmetric owing to statistical imprecision. In addition,
the infinite multiplication factors and their relative deviations from the reference value® as
well as the maximum and RMS power differences for DYN3D-TRISP3 and DYN3D-TRIDIF
are summarized in Table 5.9 for the full refinement study. In Figure 5.14, the graphs of the
normalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of DYN3D-
TRISP3/TRIDIF and Serpent along the horizontal central assembly line are additionally
depicted for the refinement level of 384 nodes, i.e., 16 triangles in the horizontal profile.
The fluxes are collapsed in the same manner as presented in Section 5.3.1. As we consider
a reflective environment, the flux shapes, naturally, are rather flat for this case. Due to a
concentration of fuel on the left side, a moderate increase in the fast flux and a respective
slight decrease in the thermal flux is observed. The helium filled control rod channel on
the right hardly influences the neutron flux. The decrease in power in this region evidently
results from the relatively small average fission cross sections. A very good agreement
between the DYN3D methods and the Monte Carlo reference is obtained already for the
coarsest nodalization with a difference in ki in the single-digit range and a maximum
difference in power of 0.3% and less. With increasing mesh refinement, the power minimum
in the helium channel region is superiorly represented by the DYN3D SP3 method (cf.
Figure 5.13). However, this effect is rather marginal. The overall performance of DYN3D-
TRISP3 and DYN3D-TRIDIF is very similar in this case as a consequence of the overall

isotropic flux behavior.

5The standard deviation of ki, in the Serpent calculations is about 0.0002.



114 Verification Analysis
0.02 4 :
fuel helium channel . fuel
: = Serpent, fast groups
(9=1,2,3)
= Serpent, resonance
0.015 groups (g=4,5)
> T = - —— Serpent, thermal
] groups (g=6,...,12)
=
3 001 - TRISP3/TRIDIF, fast
D e groups (9=1,2,3)
o B— e —
3
N ==TRISP3/TRIDIF,
g resonance groups
5 0.005 - (9=4.5)
= : TRISP3/TRIDIF,
thermal groups
(=6,...,12)
I T T O T T 1
-18 -12 -6 0 6 12 18

Distance r from fuel block center (cm)

Ficure 5.14: HTGR single assembly without inserted control rod: Normalized neutron flux
distribution along the horizontal central assembly line obtained by Serpent and DYN3D-
TRISP3/TRIDIF (384 nodes).
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Ficure 5.15: HTGR single assembly with inserted control rod: Normalized power distri-
bution obtained by Serpent and relative errors (%) determined by DYN3D-TRISP3 and
DYN3D-TRIDIF for the nodalizations 6 and 384.

CASE WITH INSERTED CONTROL ROD:

In Figure 5.15, the Serpent reference normalized

power distribution as well as the relative errors obtained by DYN3D-TRISP3 and DYN3D-
TRIDIF are depicted for the inserted-control-rod case. In Table 5.10, the infinite multipli-

cation factors and the relative deviations from the reference value as well as the maximum
and RMS power differences for both trigonal DYN3D models are listed. The graphs of

the normalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of the
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Method No. of trigonal Kin Ok, Max. diff. RMS diff.
nodes per FA (pcm) (%) (%)
DYN3D-TRISP3 6 0.565346 14108 10.3 49
24 0.543393 6182 4.3 2.2
96 0.534428 2945 21 15
384 0.531467 1876 2.3 15
1536 0.530908 1674 2.3 15
DYN3D-TRIDIF 6 0.553963 9998 7.5 4.2
24 0.531493 1885 2.7 1.9
96 0.522590 -1329 29 1.9
384 0.519903 -2300 31 2.2
1536 0.519599 -2409 31 2.2
Serpent (ref.) 0.526272

TaBLE 5.10: HTGR single assembly with inserted control rod: Infinite multiplication factors
kint, maximum and RMS power differences — DYN3D-TRISP3 and DYN3D-TRIDIF in
comparison to the Serpent reference.

trigonal DYN3D methods and Serpent along the horizontal central assembly line are dis-
played in Figure 5.16. Here, separate curves are shown for DYN3D-TRISP3 and DYN3D-
TRIDIF as small differences can be perceived in this example. Due to the presence of
boron carbide (B4C), a so-called black absorber, there is a general decrease in the flux
towards the absorber resulting in a vanishing thermal flux in the domain of the control rod
(5.0 < r < 14.5cm). Using cross sections homogenized over regions of the size of one
sixth of the considered assembly, the circular control-rod region (cf. Figure 5.12) is "artifi-
cially provided with some fuel" in the DYN3D calculation. Hence, DYN3D is not capable
of reproducing the existent gradients in the resonance and thermal flux, which is not a
shortcoming of the intrinsic method but of the homogenization procedure itself. However,
the finer the spatial refinement is chosen, the less pronounced this effect becomes. This
reflects in the power profile with an error of about 10% in case the node size equals the
size of the homogenized region. For a finer nodalization, DYN3D-TRISP3 reduces the
error to less than 1% in the control rod node and performs superior to DYN3D-TRIDIF.

In case of the coarsest nodalization, DYN3D-TRIDIF represents the reference solution

closer than DYN3D-TRISP3 due to coincidental error cancellation.

Regarding the multiplication factors, a convergence of the DYN3D SP;5 results towards the
Monte Carlo solution is clearly evident. However, the results are far away from the Serpent
reference. The remaining deviation (about 1700 pcm) must be caused by a combination of
the deficiencies of the SP3 approach with spatial-homogenization/energy-averaging er-
rors. Discontinuity or superhomogenization (SPH) factors can reduce such discrepancies.

However, they have deliberately not been used in the present calculations (cf. Section 3.1).
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Ficure 5.16: HTGR single assembly with inserted control rod: Normalized neutron flux
distribution along the horizontal central assembly line obtained by Serpent, DYN3D-
TRISP3, and DYN3D-TRIDIF (384 nodes).

The bottom line of this HTGR single-assembly study is that DYN3D-TRISP3 delivers a
performance superior to DYN3D-TRIDIF in regions with extreme flux gradients, especially
if applying fine nodalization. A refinement of the cross-section homogenization areas would

emphasize this effect.

5.3.3 VVER-1000-LIKE FUEL ASSEMBLY

In the previous subsections, the performance of the trigonal DYN3D models is analyzed re-
quiring cross sections homogenized on assembly or quasi-assembly size. Now, an example

is investigated using cross sections homogenized on pin-cell level.

A single hexagonal fuel assembly with two different material compositions is chosen. Both
fuel assembly types consist of 151 fuel pins and 18 quide tubes. In one case, 6 burnable-
absorber pins are introduced. The used materials as well as the fuel rod geometry and the
fuel pin pitch® are typical for a VVER-1000 fuel assembly (a detailed description is given
in [115]). However, the diameter of the guide tubes is scaled down to fit the nodalization

grid. The gquide tubes and the space between the pins are filled with unborated water.

5The distance between the centers of two adjacent fuel pins is called fuel pin pitch.
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Ficure 5.17: 60° sectors of a VVER-1000-like fuel assembly without (a) and with (b) a
fuel/gadolinium pin.

In Figure 5.17, 60° symmetry sectors of the two test cases — without and with burnable-

absorber (fuel/gadolinium) pin — are illustrated.

The two-dimensional heterogeneous reference solutions have been generated by the HE-
LIOS 1.10 lattice transport code [18], which solves the transport equation by a method
based on current coupling and collision probabilities. The transport calculations have
been performed in 190 neutron energy groups. For the DYN3D pin-level calculations, a
refinement of 1536 trigonal nodes has been chosen. With this nodalization, one fuel pin or

guide tube is radially represented by six trigonal elements. We have the following regions:
e triangles containing one sixth of a higher enriched UO, fuel pin (4.4% 23°U) and
unborated water (H>0),

e triangles containing one sixth of a lower enriched UO; fuel pin (4.0% 23°U) and

unborated water (H>0),

e triangles containing one sixth of a fuel/gadolinium pin (3.6% 23°U + 5.0% Gd,03)
and unborated water (H;0),

e triangles containing one sixth of a quide tube (Zr alloy) and unborated water (H,0),

e inner triangles containing only unborated water (H,0), and

peripherical triangles containing only unborated water (H;0).

The macroscopic cross sections required for DYN3D have also been generated by the

HELIOS code, using reflective assembly boundary conditions and allowing for ambient
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Group Upper group energy
(MeV)

2.0000e1
22313
8.2085e-1

9.1188e-3
1.3007e-4

3.9279e-6
6.2506e-7
1.4572e-7

CONO|Ol A~ WN =

TABLE 5.11: 8-energy-group structure for the VVER analysis.

Method No. of trigonal King Ok, Max. diff. RMS diff.

nodes per FA (pcm) (%) (%)
DYN3D-TRISP3 1536 1.421852 -43 2.4 0.9
DYN3D-TRIDIF 1536 1.422373 -18 2.0 0.8
HELIOS (ref.) 1.422729

TaBLE 5.12: VVER-1000-like fuel assembly without fuel/gadolinium pin: Infinite multipli-
cation factors ki,;, maximum and RMS power differences — DYN3D-TRISP3 and DYN3D-
TRIDIF in comparison to the HELIOS reference.

effects. They have been extracted for the aforementioned regions in the 8-energy-group
structure shown in Table 5.11, which is considered appropriate for light-water reactors
[13, 120]. Finally, the DYN3D calculations have been performed also using reflective

exterior boundary conditions.

CASE WITHOUT BURNABLE-ABSORBER PINS: In Figure 5.18, the HELIOS reference normal-
ized power distribution as well as the relative errors obtained by DYN3D-TRISP3 and
DYN3D-TRIDIF are presented for the case without absorber pin. The infinite multiplica-
tion factors and the relative deviations from the reference value as well as the maximum and
RMS power differences for both trigonal DYN3D models are summarized in Table 5.12. Due
to the wide (and unrealistic) inter-assembly water gap of the present assembly model, the
highest power values are located in the outermost area of the assembly with the power peak
in the outer corner pins as a result of extensive moderation in the junction area of three ad-
jacent assemblies. This maximum nodal power value is well predicted by DYN3D-TRISP3
with 0.0% error, whereas DYN3D-TRIDIF shows a slight deviation of -0.4%. However, the
maximum error in power of the trigonal DYN3D methods occurs in the opposite node of
the corner pin. Here, the DYN3D diffusion method shows a better local representation of
the reference value with -2.0% deviation in comparison to -2.4% determined by DYN3D-
TRISP3, which is simply a compensation effect. Globally, the trigonal DYN3D methods
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Ficure 5.18: VVER-1000-like fuel assembly without fuel/gadolinium pin: Normalized
power distribution obtained by HELIOS and relative errors (%) determined by DYN3D-
TRISP3 and DYN3D-TRIDIF.

slightly overestimate the relatively low power values in the inner assembly region and
underestimate the higher powers in the outer area. A general good agreement, however,
between DYN3D and the HELIOS reference is achieved. Both trigonal DYN3D methods

show similar results with oy

inf

values in the lower double-digit range and an average devi-
ation in power of less than 1% as a consequence of the rather negligible anisotropic effects

in the neutron flux.

CASE WITH BURNABLE-ABSORBER PINS: The HELIOS reference normalized power distri-
bution as well as the relative errors obtained by the trigonal DYN3D SP5 and diffusion
models for the case with the strong absorbing fuel/gadolinium pin are shown in Figure 5.19.
The infinite multiplication factors and the respective deviations from the reference value as
well as the maximum and RMS power differences for DYN3D-TRISP3 and DYN3D-TRIDIF
are summarized in Table 5.13. The DYN3D diffusion method reproduces the reference so-

lution with an error of almost 9% in the nodes containing gadolinium material (highlighted
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Ficure 5.19: VVER-1000-like fuel assembly with fuel/gadolinium pin: Normalized power
distribution obtained by HELIOS and relative errors (%) determined by DYN3D-TRISP3
and DYN3D-TRIDIF.

Method No. of trigonal kint Ok, Max. diff. RMS diff.

nodes per FA (pcm) %) (%)
DYN3D-TRISP3 1536 1.287081  -858 4.8 1.4
DYN3D-TRIDIF 1536 1.278561 -1361 8.8 2.0
HELIOS (ref.) 1.301624

TasLE 5.13: VVER-1000-like fuel assembly with fuel/gadolinium pin: Infinite multiplica-
tion factors kihr, maximum and RMS power differences — DYN3D-TRISP3 and DYN3D-
TRIDIF in comparison to the HELIOS reference.
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in orange), whereas, with the DYN3D SP3 method, this error is reduced to less than 5%.
Also in the immediate vicinity of the absorber pin, DYN3D-TRISP3 superiorly predicts the
power distribution. The global performance, however, is comparable to the aforementioned
case. With regard to the multiplication factors, the DYN3D SPs approach reduces the
difference in ks by 500 pcm.

The rather high deviations in ki can be reduced by the use of pin-cell discontinuity factors
(CDFs) or superhomogenization (SPH) factors. However, this is generally abandoned in

this work (cf. Section 3.1).

The fact that DYN3D-TRIDIF shows results in the inner assembly area slightly closer
to the reference solution than DYN3D-TRISP3 can be explained by the superposition of
the transport error with the spatial-homogenization and group-collapsing effects. Such a

fortunate error cancellation in low-order methods was also observed by Kozlowski et al.
[93].

The bottom line of this simplified VVER-1000 single-assembly study is that the performance
of the DYN3D SP3; method is superior to the respective diffusion method in regions with

significantly pronounced flux gradients resulting in anisotropic neutron transport behavior.

5.4 COMPUTATION TIMES

This section gives an overview of the computational effort of the test cases analyzed in this

chapter.

As the computation times depend not only on the computer performance of the used pro-
cessor but also on the DYN3D input requirements like the number of inner iterations and
particular outer iteration stop criteria (cf. Section 4.8), the following review should be

considered in a relative manner rather than absolutely.

In Tables 5.14-5.18, the DYN3D computation times are summarized for the VVER-1000
and the Hébert benchmarks considered in Section 5.2 as well as for the HTGR core and
fuel-block examples and the VVER-1000-like single assembly of Section 5.3. Note that
the respective cases with and without inserted absorber do not significantly differ from
each other. All calculations have been run on a 2.8 GHz computer (Intel(R) Core(TM)2)
using a maximum number of inner iterations max;, of 3 to 5 (cf. Algorithms 4.2 and 4.4) as
well as outer iteration tolerance criteria € and €, of 1e-7 or 1e-8 (cf. Algorithms 4.1 and
4.3).

The main conclusion of this overview is that the trigonal DYN3D SP;5 calculations are

generally about four times more expensive than the respective diffusion runs. This can be
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Verification Analysis

Method No. of trigonal Computation time
nodes per FA
DYN3D-TRIDIF 6 <1s
24 <1s
96 6s
384 s
1536 243s
6144 1359s = 22.7min
DYN3D-HEXNEM1 <1s
DYN3D-HEXNEM?2 <1s

TaBLE 5.14: Computation times required for the VVER-1000 benchmark calculations.

Method

No. of trigonal
nodes per FA

Computation time

DYN3D-TRISP3 6 <1s
24 <1s
96 2s
384 14s
1536 107 s
6144 949s =~ 15.8min
DYN3D-TRIDIF 6 <1s
24 <1s
96 <1s
384 3s
1536 24s
6144 255s =~ 43 min
DYN3D-HEXNEM1 <1s
DYN3D-HEXNEM2 <1s

TaBLE 5.15: Computation times required for the Hébert benchmark calculations.

Method

No. of trigonal
nodes per FA

Computation time

DYN3D-TRISP3 6 29s

24 159 s

96 899s =~ 150min

384 5662s =~ 94.4min
DYN3D-TRIDIF 6 7s

24 37s

96 196s =~ 3.3 min

384 1379s =~ 23.0min
DYN3D-HEXNEM1 1s
DYN3D-HEXNEM?2 2s

TaBLE 5.16: Computation times required for the HTGR core calculations.
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Method No. of trigonal
nodes per FA

Computation time

DYN3D-TRISP3 6
24
96

384

1536

DYN3D-TRIDIF 6
24
96

384

1536

TaBLE 5.17: Computation times required for the HTGR single-assembly calculations.

Method No. of trigonal Computation time
nodes per FA

DYN3D-TRISP3 1536

DYN3D-TRIDIF 1536

TaBLE 5.18: Computation times required for the VVER-1000-like single-assembly calcu-

lations.

traced back to the fact that DYN3D-TRISP3 solves a 2 x 2 system of equations for the flux

moments ®¢ and ®, in comparison to only a single equation for ®y in the DYN3D-TRIDIF

approach. It is further found that a mesh refinement step increases the calculation time by

roughly a factor of seven. In addition to the quadrupling of the number of nodal elements

with every higher level of refinement, the convergence behavior of the implemented solver

deteriorates (cf. outer iteration schemes of Algorithms 4.1 and 4.3).

Depending on the core configuration to be calculated, one has to deliberate about whether

the diffusion or SP3 approximation to the transport equation is the appropriate choice

considering both the potential gain in accuracy in a certain discretization and the spent

computation time.






CoNCLUSIONS

This thesis focuses on the simplified P3 (or SP3) and diffusion approximations to the
neutron transport equation. The SPs transport and diffusion equations are solved in the
scope of a nodal method based on trigonal geometry and are implemented in the reactor
code DYN3D. Here, the main results are summarized and possible areas of future research

are suggested.

6.1  SUMMARY

The reliable safe operation of nuclear reactors is highly dependent on the ability to pre-
cisely determine the neutron flux, from which reactivity feedback coefficients as well as
criticality, power, and temperature distributions are derived. A reactor, however, is a com-
plex object in terms of its geometry, its composition, and the nuclear data involved. This
renders a whole-core neutron transport calculation practically impossible. In Chapter 1,
the main steps of reactor calculations are outlined and the three-dimensional nodal reactor
dynamics code DYN3D is introduced.

The neutron flux in a reactor is governed by several mechanisms by which neutrons can be
gained or lost from the system, such as streaming effects as well as scattering, absorption,
and fission events. Balancing these mechanisms against the time rate of change in the
neutron density yields the neutron transport equation, which is presented in Chapter 2.
Distinquishing between Monte Carlo and deterministic methods, an overview of different
solution approaches to the transport equation is given. It is shown that the simplified Py
method allows an efficient solution technique, which is applicable to full-core calculations.
The simplified Py equations are derived leading to both the SP5 and diffusion equations
and revealing the main difference between both methods: the inclusion of higher-order

neutron flux moments in the SP5 approach. This fact involves the capability of the SP;3
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method to describe anisotropic neutron migration processes, while merely the zeroth flux
moment is taken into account in diffusion theory and only linear anisotropy effects can
be reproduced by using the transport-corrected diffusion coefficient. A further advantage
of the SP5 approach becomes evident in Chapter 2: The SP5 equations in within-group
representation form a pair of coupled diffusion-type equations, which enables the use of

very similar solution strategies of both the SP3 and diffusion approaches.

In Chapter 3, the nodal reactor analysis concept is introduced. Nodal methods provide
a framework for determining the three-dimensional neutron flux distribution throughout
the reactor core, which avoid high computational costs. For reactor cores with hexagonal
fuel assemblies, the capability of mesh refinement is an obvious advantage of a nodal
method based on trigonal geometry. Furthermore, this geometry is particularly relevant
for the modeling of asymmetric fuel assemblies as they can be found in high-temperature
reactor cores. Analyzing also the previously existing DYN3D models, it is shown that the
nodal approaches implemented in DYN3D can be regarded as hybrid forms of two classes
of common nodal methods encompassing the advantages of both approaches and, hence,
providing a highly efficient code. The DYN3D nodal methods are based on the transverse-
integration procedure and use a combination of polynomial and exponential ansatzes to

expand the unknown functions of the neutron flux.

Chapter 4 of this thesis focuses on the rigorous analysis of the mathematical interrela-
tions. In the context of the development of numerical solution procedures for the SP;3
transport and diffusion equations in trigonal geometry, the nodal face-averaged partial
neutron currents are important quantities since they significantly contribute to the inter-
nodal neutron balance by realizing the nodal coupling. The response-matrix equations are
derived to calculate the moments of the node-interface outgoing partial currents leading to
an iterative procedure involving inner and outer iteration cycles from which the nodal fluxes
are determined. Although only node-averaged neutron fluxes are finally used to derive rel-
evant reaction rates, the accuracy of these node-averaged fluxes is strongly impacted by
the intra-nodal flux representation, which is known to be more sophisticated in the SP;3

transport than in the diffusion approach.

A compact verification analysis of the performance of the trigonal DYN3D SP;3 transport
and diffusion models is presented in Chapter 5. With particular regard to mesh refinement
studies, diverse hexagonal test and benchmark problems with different material compo-
sitions are investigated. By means of mathematical benchmarks defined for the use of
assembly-homogenized cross sections, the spatial convergence of the DYN3D diffusion
and SPs results to the corresponding fine-mesh reference solutions provides proof of their

respective functional reliability. The superiority of the SP5 over the diffusion model is



6.2 Recommendations for future work 127

demonstrated by means of an academic benchmark especially prepared to magnify trans-
port effects. To investigate examples related more closely to practical applications, test
problems with detailed-geometry full-transport reference solutions are analyzed in addi-
tion. Due to various error sources, such as homogenization effects and the assumption
of an infinitely periodic lattice during cross-section generation, deviations of the DYN3D
results from the reference solutions are inevitable. In the frame of their methodological
possibilities, however, the results of the trigonal DYN3D models developed in this work
agree well with the considered reference solutions. The question to which degree an error
should be minimized, e.g., by refining the nodal mesh, has to be posed in the context of
each specific core configuration — considering the potential gain in accuracy subject to the

computational costs.

It should be emphasized that, as yet, none of the worldwide well-established core analy-
sis codes comprises a multi-group SP3 transport theory model based on nodal trianqular
meshes, which combines the advantage of the capability to capture anisotropic transport
effects with the possibility of mesh refinement for hexagonal fuel assembly geometries.
Therefore, the present work constitutes a significant contribution to the nodal-code devel-
opment from which benefits may be expected throughout the community and ensures that

DYN3D remains a world-wide competitive reactor code.

To summarize and conclude this thesis: The development of two methods based on different
approximations of the transport equation using identical underlying spatial discretization
allows a profound comparative analysis of both methods with regard to their mathemat-
ical derivations, nodal expansion approaches, solution procedures, and most importantly
their physical performance. From the latter aspect, the following main conclusion can be
drawn: The trigonal DYN3D SP; model achieves significantly better agreement with the
reference solutions than the trigonal DYN3D diffusion approach in cases with pronounced
anisotropy effects. The gain in accuracy obtained by the SP3 model increases with the use
of cross sections homogenized over smaller nodes. The improvements provided in this thesis
are particularly relevant to the modeling of reactor cores with fuel assemblies comprising

absorber material such as inserted control rods or burnable absorbers.

6.2 RECOMMENDATIONS FOR FUTURE WORK

In addition to the application of the newly available code to further investigating practical
problems in reactor physics like those mentioned above, areas for future development fall

into the following groups:
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e the reduction of the computational costs,
e the increase of flexibility of the discretization, and

e the enhancement of the physical and mathematical approaches.

Due to a considerable computational burden, nodal calculations on a very fine mesh are
certainly not practical in the near term for full-core analyses. In addition to the possible ap-
plication of acceleration methods, the computational costs could be simply but significantly
reduced if it was possible to apply a refinement locally. In this manner, a fine resolution
could be used in regions with strong anisotropy effects, whereas a coarse nodalization may
be sufficient elsewhere. A hybrid use of the SP5 transport and diffusion methods, similar

to the work by Lee and Downar [106], could be added to the aforementioned approach.

With respect to the discretization, a more flexible mesh refinement could be implemented.
The present trigonal models only allow the number of nodal rows within one trigonal node
to be 2™, m € N. A user-defined number of such rows would enable the representation
of more realistic fuel assembly compositions. In this manner, e.g., the VVER-1000 fuel
assembly of Figure 5.17 (page 117) could be modeled without the unrealistic peripherical

water nodes.

Enhancement of the physical and mathematical approaches of the trigonal DYN3D diffusion
and SP3; models could be achieved, e.g., via the incorporation of higher-order anisotropic
scattering beyond the first-moment within-group scattering cross section in the SP5 imple-
mentation and the application of assembly and pin-cell discontinuity factors, while pointing
out that, as yet, ADFs for the SP3 theory have not been defined. Furthermore, an improved
inter-nodal coupling by averaging the partial currents over subdivisions of the trigonal node
faces could be derived and the flux expansion could be upgraded via higher-order poly-
nomial and/or additional exponential basis functions, similar to the DYN3D-HEXNEM?2
ansatz or the approach by Christoskov and Petkov [37].

Finally, this work should be extended to the applicability of time-dependent phenomena,

since this is indispensable for reactor safety analysis.
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