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Abstract

The superior advantage of a nodal method for reactor cores with hexagonal fuel assembliesdiscretized as cells consisting of equilateral triangles is its mesh refinement capability. Inthis thesis, a diffusion and a simplified P3 (or SP3) neutron transport nodal method aredeveloped based on trigonal geometry. Both models are implemented in the reactor dy-namics code DYN3D. As yet, no other well-established nodal core analysis code comprisesan SP3 transport theory model based on trigonal meshes. The development of two methodsbased on different neutron transport approximations but using identical underlying spatialtrigonal discretization allows a profound comparative analysis of both methods with regardto their mathematical derivations, nodal expansion approaches, solution procedures, andtheir physical performance.
The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They arebased on the transverse-integration procedure, which renders them computationally effi-cient, and they use a combination of polynomial and exponential functions to represent theneutron flux moments of the SP3 and diffusion equations, which guarantees high accuracy.
The SP3 equations are derived in within-group form thus being of diffusion type. On thisbasis, the conventional diffusion solver structure can be retained also for the solution ofthe SP3 transport problem.
The verification analysis provides proof of the methodological reliability of both trigo-nal DYN3D models. By means of diverse hexagonal academic benchmark and realisticdetailed-geometry full-transport-theory problems, the superiority of the SP3 transport overthe diffusion model is demonstrated in cases with pronounced anisotropy effects, which is,e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.
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Zusammenfassung

Die herausragende Eigenschaft eines nodalen Verfahrens, dem eine Dreiecksdiskretisie-rung zu Grunde liegt, ist, für Reaktorkerne mit hexagonaler Brennelementstruktur eine be-liebige Gitterverfeinerung zu ermöglichen. Gegenstand dieser Arbeit ist die Entwicklungund Implementierung nodaler Diffusions- und SP3-Transportverfahren basierend auf trigo-naler Geometrie für das Reaktordynamikprogramm DYN3D. Bislang umfasst kein andererweltweit etablierter Code zur Reaktorkernanalyse ein SP3-Transportmodell für trigonaleGeometrie. Die Entwicklung zweier Verfahren beruhend auf unterschiedlichen Neutronen-transportnäherungen, jedoch mit identischer räumlicher Diskretisierung, ermöglicht einefundierte vergleichende Analyse beider Methoden hinsichtlich ihrer mathematischen Ab-leitungen, ihrer nodalen Entwicklungsansätze, ihrer Lösungsverfahren sowie ihrer Vorher-sagegenauigkeit in unterschiedlichen Anwendungen.
Die entwickelten nodalen Ansätze können als hybride NEM/AFEN-Methoden betrachtetwerden. Sie beruhen auf dem Verfahren der transversalen Integration und einer Kombina-tion aus Polynom- und Exponentialfunktionen zur Darstellung der Neutronenflussmomente,was sowohl numerische Effizienz als auch hohe Genauigkeit gewährleistet.
Die SP3-Gleichungen werden in der "Within-Group"-Form abgeleitet und erhalten somitdie Gestalt von Diffusionsgleichungen. Daher kann auch für die Behandlung des SP3-Transportproblems die konventionelle Programmstruktur zur Lösung der Diffusionsgleichungbeibehalten werden.
Die methodische Zuverlässigkeit beider DYN3D-Modelle wird umfassend verifiziert. An-hand hexagonaler akademischer Benchmarks sowie praxisbezogener, geometrisch detail-lierter Transportprobleme wird die Überlegenheit des SP3-Transportverfahrens gegenüberder Diffusionsmethode in Fällen mit ausgeprägten Anisotropieeffekten aufgezeigt. Dies istinsbesondere relevant für die Modellierung von Brennelementen, die Neutronenabsorberenthalten.
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1
Introduction

In order to ensure the inherent safety and economic operation of nuclear reactors by anefficient reactor design and to estimate and limit the detrimental consequences of potentialaccidents, operational and incident scenarios have to be modeled by adequate simulationtools. The reliable safe operation of a nuclear reactor is highly dependent on the abilityto precisely predict the neutron flux, which is needed to derive criticality, power shapes,temperature distributions, and feedback coefficients of reactivity.
1.1 Reactor physics calculations

The discipline of reactor physics studies the interactions between neutrons and matter ina nuclear reactor. Such an interaction occurs when a neutron collides with the nucleus ofa specific nuclide. Two phenomena are responsible for the complexity of reactor physics. Anuclear reactor is generally a complicated three-dimensional assembly of components withdifferent geometries made of a variety of materials, and many materials have interactioncharacteristics which vary strongly with neutron energy [72, c. 1].
The neutron flux in a reactor core can be obtained as the solution of the neutron transportequation. Whole-core transport calculations, however, would lead to enormous calculationtimes. Therefore, reactor calculations for the detailed heterogeneous geometry and thecomplex energy-dependent interaction characteristics are typically performed using thefollowing three main steps, as depicted in Figure 1.1:
• the cross-section calculation [38],
• the lattice calculation [138], and
• the full-core reactor calculation [3, 159].

1
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Figure 1.1: Data flow for reactor physics calculations (according to [72, fig. 2.29]).
Nuclear data are edited, e.g., in the Evaluated Nuclear Data File (ENDF) format [79] con-taining categorized information, e.g., about resonance parameters, cross-sections, energeticand angular distributions of secondary neutrons, and radioactive decay (more details aregiven in [72, s. 2.9]). These data are used in the cross-section calculation to produce theisotopic cross-section library [147, c. III] for the lattice code consistent with the type oftransport equation solution, i.e., in multi-group structure for deterministic approaches or incontinuous-energy form for Monte Carlo methods. Lattice calculations are performed fora small component of the reactor, e.g., a pin cell or an assembly, usually in a fine energygroup structure and taking heterogeneous material compositions and properties into ac-count. The operating conditions outside the small component are generally not considered(infinite two-dimensional lattice). The neutron flux obtained from the lattice calculation isused to produce cell- or assembly-homogenized flux- and volume-weighted cross sections,which are then collapsed in a coarse energy group structure. The reactor core calculationutilizes the average cross sections generated in the previous step for polygonal prisms(applying an appropriate axial core subdivision). However, even after the aforementionedcell heterogeneity is replaced by a homogenized representation, a reactor core remains aheterogeneous object because of its intra- and inter-assembly material composition. On
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the scale of a full core, the neutron transport equation is generally replaced by a simplifiedform, e.g., the diffusion or simplified P3 approximation (abbreviated as SP3 approximation),which is the main focus of the present work.
1.2 The reactor dynamics code DYN3D

DYN3D is a three-dimensional nodal code for steady-state and transient analysis of nu-clear reactor cores applicable to both square and hexagonal fuel assembly geometries,which has been developed at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and itspredecessor organizations since the 1980s. The code allows the simulation of the neu-tronic and thermal-hydraulic core response to reactivity changes caused by control-rodmovements or variations of the core coolant inlet conditions, the boron acid concentra-tion, the core pressure, or the total mass-flow rates. Burn-up and reactor-poison-dynamicscalculations can also be performed [66, 67, 68].
The code is undergoing continuous development with respect to the improvement of thephysical models and the numerical methods. Originally, it was developed for RussianVVERs with hexagonal-geometry fuel assemblies, applying a two-group nodal neutrondiffusion method [65], and then extended to square-geometry western-type light-waterreactors (LWRs) [66]. A multi-group approach was introduced [61] in order to improvethe description of spectral effects, which are increasingly important for mixed-oxide LWRloadings, but also for innovative nuclear reactor designs [53, 94, 133, 136]. Furthermore,the SP3 approximation of the multi-group transport equation was implemented on the basisof Cartesian geometries [9].
DYN3D is one of the deterministic reference core codes of the European reactor simulationplatform NURESIM [26, 27, 137].
1.3 Research objectives

The commonly used and most widely accepted approximation to the transport equation forperforming full-core reactor calculations is the diffusion equation. This approach does notinclude the direction-of-motion variables and, therefore, requires low computational effort.Physically, it places the following rather stringent restrictions:
• The neutron migration process must be dominated by scattering interactions, i.e., thematerial must be highly scattering and weakly absorbing for neutrons.
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• The neutron migration process must be sufficiently far removed from material wherelarge gradients in the neutron density may occur.
However, quoting Alcouffe and O’Dell [3]: "[...] diffusion theory has been [...] found toperform better [in practice] than it theoretically has any right to."
Although the diffusion approach provides a sufficiently accurate prediction of the neutronflux in a wide spectrum of reactor problems without resolving the complexities of the direc-tional neutron transport, a simplified transport method, such as the SP3 method, is able tocapture anisotropic transport effects without a drastic increase in computational resources.
Besides VVERs, innovative reactor concepts like the sodium-cooled fast reactor (SFR) [1]and the block-type high-temperature gas-cooled reactor (HTGR) (or very-high-temperaturereactor (VHTR)) [2] are based on hexagonal fuel assembly geometries. As a hexagon cannot be subdivided into hexagons of smaller size, hexagonal-geometry reactor problems areeffectively discretized as cells consisting of equilateral triangles. Hence, there has beenthe necessity of developing both a diffusion and an SP3 model based on trigonal geometryfor the code DYN3D to enable advanced hexagonal reactor core analysis including thecapability of mesh refinement.
The important innovative aspects of the trigonal DYN3D models developed here are thefollowing:
• As yet, none of the worldwide well-established core analysis codes comprises a multi-group SP3 transport theory model based on nodal triangular meshes and, therefore,combines the advantage of the capability to capture anisotropic transport effects withthe possibility of mesh refinement for hexagonal fuel assembly geometries.
• The specific approach used to approximate the neutron flux within the trigonal prismsis unique for both the diffusion and the SP3 transport theory. It combines the so-called transverse-integration procedure, leading to a computationally efficient nu-merical method, with a sophisticated flux expansion ansatz based on polynomial andexponential functions, which provides high performance.

The development of two methods based on different approximations of the transport equationbut using identical underlying spatial discretization allows a profound comparative analysisof both methods with regard to their mathematical derivations, nodal expansion approaches,solution procedures, and especially their physical performance, but also with regard toaspects of the respective computational outlay.
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Apart from the necessary technical development to equip the code with trigonal meshcapability, this thesis provides an answer to the following question:

Which degree of improvement can be achieved by the trigonal nodal DYN3D
SP3 transport method in comparison to the respective diffusion method?

1.4 Thesis outline

The main part of this thesis addresses the theoretical examination and derivation of thenodal diffusion and SP3 solution approaches to the neutron transport equation based ontrigonal geometry.
In Chapter 2, an introduction to the neutron transport equation is given. Different solutionapproaches are briefly described. A particular focus, however, is put on the simplified PN(or SPN ) transport method, which provides a basis for both the SP3 and the diffusionapproaches. The respective equations are derived including boundary conditions.
In Chapter 3, the concept of nodal methods is outlined comprising a comprehensive literaturereview. The characteristics of a method based on trigonal geometry are identified. Thetransverse-leakage procedure is introduced and the specific expansion ansatzes of theunknown functions are derived in trigonal geometry. Additionally, the hitherto existingDYN3D expansion approaches in Cartesian and hexagonal geometries are outlined.
Chapter 4 of this thesis is concerned with the rigorous development of the numerical so-lution procedure for the SP3 transport and diffusion equations in trigonal geometry. Theresponse-matrix equations are derived leading to an iterative procedure involving inner andouter iteration cycles by which finally the core neutron flux distribution can be computed.
In Chapter 5, a numerical analysis of the performance of the trigonal SP3 transport anddiffusion methods developed in the previous chapters is demonstrated with particular regardto mesh refinement analyses. Several hexagonal benchmark and test problems with differentmaterial compositions are studied. The respective computation times are evaluated.
In Chapter 6, finally, the conclusions are presented and suggestions for future work aregiven.





2
Neutron Transport Methods

The behavior of a nuclear reactor is governed by the transport of neutrons and the inter-actions between neutrons and matter.
An introduction to the neutron transport equation and its solution approaches is givenin Sections 2.1 and 2.2 with particular regard to the simplified PN (or SPN ) transportmethod in Section 2.3. In Sections 2.4 and 2.5, the SP3 and diffusion equations arederived including interface and boundary conditions.
The following facts will become evident by the end of this chapter:
• Both the SP3 transport and diffusion approach represent efficient solution techniquescapable to perform whole-core reactor calculations.
• The SP3 equations in within-group form are of diffusion type, which allows the useof very similar solution strategies for both approaches.
• In contrast to diffusion theory, the SP3 approach takes higher-order neutron fluxmoments into account, which enables the description of anisotropic neutron migrationprocesses.

2.1 The neutron transport equation

Regarding a neutron as a point particle, it has a position r and a velocity v = vΩ, where vdenotes the scalar magnitude of the velocity and Ω(µ, φ) is the unit vector in the directionof neutron motion. In a polar coordinate system, µ ∈ [−1, 1] describes the cosine of thepolar angle θ and φ ∈ [0, 2π] specifies the azimuthal angle as shown in Figure 2.1.
The distribution of neutrons in a reactor core is defined by the angular neutron densityfunction N(r,Ω, E, t), which represents the expected number of neutrons at the position r7
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Figure 2.1: Position and direction variables characterizing a neutron (according to [45,fig. 4-2]).
with direction Ω and energy E at a time t per unit volume per unit solid angle per unitenergy. The product of the neutron speed v and the angular neutron density is called theangular neutron flux:

vN(r,Ω, E, t) ≡ Ψ(r,Ω, E, t)
[12, s. 1.1]. Referring to the derivations, e.g., by Duderstadt and Hamilton [45, c. 4] or Stacey[146, s. 9.1], an equation for Ψ(r,Ω, E, t) can be derived by balancing the mechanisms bywhich neutrons, that are traveling in a specific direction Ω and that are characterized bya specific energy E , can be gained or lost from a differential volume element dV at theposition r. The time rate of change of N(r,Ω, E, t) within this volume equals
• the rate at which neutrons within the solid angle interval dΩ about Ω and of theenergy interval dE about E are streaming into the volume dV 1©
• less the rate at which neutrons of Ω, E are streaming out of the volume 2©,
• plus the rate at which neutrons of Ω, E are being introduced into the volume byscattering of neutrons within the volume from different directions Ω′ and differentenergies E ′ 3©,
• plus the rate at which neutrons of Ω, E are being generated within the volume byfission 4©,
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• plus the rate at which neutrons of Ω, E are being introduced into the volume by anexternal source 5©,
• minus the rate at which neutrons of Ω, E within the volume are being absorbed 6©,
• minus the rate at which neutrons of Ω, E within the volume are being scattered intoa different direction Ω′ or different energy E ′ 7©.

Hence, we have
1
v
∂
∂tΨ(r,Ω, E, t) = S(r,Ω, E, t)−Ω · ∇Ψ(r,Ω, E, t)︸ ︷︷ ︸2©- 1©

−Σt(r, E, t)Ψ(r,Ω, E, t)︸ ︷︷ ︸6©+ 7©
(2.1)

with the source term
S(r,Ω, E, t) = Ss(r,Ω, E, t)︸ ︷︷ ︸3©

+Sf (r,Ω, E, t)︸ ︷︷ ︸4©
+Sext(r,Ω, E, t)︸ ︷︷ ︸5©

. (2.2)
The balance relation (2.1) is known as the neutron transport equation and provides an exactdescription of the neutron distribution within a reactor. Σt denotes the total macroscopicinteraction cross section. The macroscopic absorption cross section Σa = Σt−Σs is definedto characterize any other event than scattering [45, c. 2].
In the steady-state case, the neutron transport equation (2.1) with (2.2) reduces to

Ω · ∇Ψ(r,Ω, E) + Σt(r, E)Ψ(r,Ω, E) = Ss(r,Ω, E) + Sf (r,Ω, E) + Sext(r,Ω, E). (2.3)
Applying the normalization

ˆ dΩ = 1,
the scattering and fission sources are integral functions of the angular neutron flux, i.e.,

Ss(r,Ω, E) = ¨ ∞

0 Σs(r,Ω′ → Ω, E ′ → E)Ψ(r,Ω′, E ′)dE ′dΩ′,

Sf (r,Ω, E) ≡ Sf (r, E) = χ(r, E)¨ ∞

0 νΣf (r, E ′)Ψ(r,Ω′, E ′)dE ′dΩ′,

where Σs denotes the macroscopic scattering cross section. χ describes the fission spec-trum, ν the average number of neutrons released per fission, and Σf the macroscopic fis-sion cross section. Therefore, the transport equations stated above are integro-differentialequations.
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Even without considering time dependence, there are six independent variables, three forthe space, two describing a direction on the unit sphere, and one for energy, which makesthe solution of transport problems a difficult task.
2.2 Solution methods for the neutron transport equation

Different approaches can be used to solve the neutron transport equation. The most ac-curate and most expensive technique is the Monte Carlo method. The second class ofneutron transport methods comprises deterministic solution techniques, which are basedon approximations related to energetic and spatial discretizations and the limitation of theangular representation. Numerical analysis methods have to be applied to the transportequation [72, c. 3].
2.2.1 Monte Carlo methods

The Monte Carlo (MC) method simulates a neutron population on the basis of a stochasticprocess. The life of a single neutron is traced from its initial emission (or birth) untilits death by capture or leakage out of the system using a sequence of random numbersto simulate the random physical events according to cross-section and collision laws. Ina Monte Carlo calculation, the criticality source iteration (eigenvalue problem in steadystate) is run in cycles and the source distribution of each cycle is formed by the fissionreaction distribution of the previous cycle, while the number of source neutrons per cycleis fixed. Before starting to collect the results, inactive cycles are run in order to allowthe initial fission source distribution to converge. The statistical accuracy of the resultsdepends on the total number of active neutron histories run, which is determined by theneutron population size per cycle and the total number of active cycles [110]. The MonteCarlo method is exact, as far as the geometry and the interactions are correctly representedand as far as the number of neutron histories is sufficiently large. Therefore, the MonteCarlo result can be a detailed simulation of the steady-state neutron transport process [72,s. 3.11].
Monte Carlo methods are mostly used to study difficult and nonstandard situations, suchas complex geometries, and to validate deterministic results. Their disadvantage is thehigh computational cost. See also [111, c. 7] for further discussion.
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2.2.2 Deterministic methods

Treating the energy variable E in the neutron transport equation as not being continuousbut dividing the neutron energy spectrum into a number of discrete intervals, called energygroups, leads to the use of multi-group methods [12, c. 4].
The collision probability (CP) approach is a deterministic multi-group method treatinggeneral unstructured meshes. It applies a specialized "ray-tracing" routine to span a suffi-ciently large number of neutron trajectories over the spatial domains in the given geometry.These trajectories are then used to generate the appropriate collision probability matricesin the number of required energy groups. The collision matrices are dense, so that themethod may involve high computational costs. Therefore, collision probability methods aremainly used for two-dimensional cell and assembly transport problems [72, s. 3.8].
The method of characteristics (MOC) solves the multi-group transport equation alongstraight paths of the neutron, called characteristics, as it moves across the complete system.This approach is based on an iterative calculation of the neutron flux. It applies to discretedirections and arbitrary spatial domains with nuclear properties assumed to be constant.The methodology allows for an accurate treatment of highly heterogeneous systems and ispreferred to the collision probability method in cases where the number of regions exceedsa few hundreds [72, s. 3.10]. Since the method of characteristics accounts for uncollidedneutron trajectories inside a cell, it is more suitable for problems in which streaming domi-nates scattering [139]. It is routinely used for two-dimensional cell and assembly transportcalculations.
A method applicable to three-dimensional core calculations is the discrete ordinates (or
SN ) method. The essential basis of this method is the treatment of the angular variable
Ω as a set of N discrete directions in the multi-group neutron transport equation. Eachdirection is characterized by a direction cosine, which is chosen to integrate the appropriatequadrature ansatz functions with maximum accuracy. Different quadrature sets are useddepending on the type of geometry. In the limit of N → ∞, the SN solution convergesto the true transport solution. However, this is subject to the limitations of the computingresources [72, s. 3.9]. Furthermore, the discrete ordinates method may suffer from anomaliesin the neutron flux distribution, called ray effects [111, s. 4-6].
Another approach for solving the multi-group neutron transport equation is the sphericalharmonics (or PN ) method. It is based on the expansion of the directional dependence Ωof the angular flux Ψ in spherical harmonics. Truncating this series after a finite number ofterms, i.e., N + 1, leads to the PN approximation [72, s. 3.7]. This method is characterizedby the following properties [100]:
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• As the order N of the approximation increases to infinity, the exact transport solutionis obtained.
• The PN equations are free from ray effects.
• In three-dimensional geometries, the number of PN equations grows like (N + 1)2.In one-dimensional planar geometry, the number of PN equations is only N + 1.

Although it is possible to consider full three-dimensional PN core calculations, they sig-nificantly strain computing resources. A closely related approximation to the PN method,based on the solution of the simplified PN equations, leads to a more efficient solutiontechnique that can be used for full-core calculations as will be discussed in detail in thefollowing.
2.3 Theoretical aspects of the simplified PN method

The spherical harmonics equations in multi-dimensional geometries are complicated. Inaddition to a large number of equations, the complexity arises from the fact that bothcomponents µ and φ of the angular variable Ω are inherent in the spherical harmonicsexpansion. The complex coupling involves not only the angular moments but also com-plicated cross-derivative terms [14, 57, 119]. However, limiting the calculation to N = 1,which leads to the diffusion approximation, can turn out to be insufficient [73, 114].
About half a century ago, Gelbard [54, 55, 56] proposed a simplification of the PN equations,the simplified PN (or SPN ) equations. This approximation evolves from the planar-geometry
PN equations, which are relatively simple, and involves an ad hoc substitution of the one-dimensional second-order derivatives by the three-dimensional Laplacian operator. Hence,the SPN equations can be considered a multi-dimensional generalization of the planar-geometry PN equations. Compared to the full spherical harmonics approximation, thissimplification substantially reduces the number of unknowns and avoids the complexitiesthereof.
Two facts should be noted comparing the SPN with the PN method [72, s. 3.7.4]:
• The SP1 method is equivalent to the P1 method in multi-dimensional geometries.
• For all values of N , the SPN method is equivalent to the PN method in one-dimensional geometry.

The SPN method is based on an expansion of the angular flux Ψ in an incomplete basisof orthogonal functions. In two- and three-dimensional cases, this does not guarantee the
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convergence of the numerical results as N increases. However, SPN results have provento be more accurate than P1 solutions in many reactor problems. It is a common assertionbased on experience and numerical experimentation that the maximum potential accuracyis obtained around SP5 or SP7 [119].
The SPN equations can be derived by different approaches. Gelbard’s [54] original ideayields only a formal derivation involving an ad hoc substitution of the multivariable differ-ential operators, which is only a weak theoretical basis of the simplified PN approximation.Larsen et al. [99, 100, 101] as well as Pomraning [130] used asymptotic analysis and inde-pendently provided theoretical foundation for the numerical accuracy of the SPN method.However, neither of these asymptotic derivations includes boundary conditions. The SPNequations can also be derived using variational analysis [12, s. 6.4]. On the basis ofvariational methods, Tomašević and Larsen [155, 157] derived the simplified P2 equations,whereas Brantley and Larsen [15, 16] accordingly established the theoretical foundation ofthe SP3 method. The variational analysis is also able to provide interface and boundaryconditions for the SPN equations.
This work focuses on the SP3 approximation, where the number of second-order equationsto be solved equals two. This is significantly less than with the multi-dimensional P3equations. Therefore, the SP3 method is conceived a compromise between calculationprecision and cost.
2.4 Derivation of the steady-state simplified PN equations

With the awareness of the theoretical foundation of the simplified PN method via asymptoticor variational analysis, we focus on the derivation of the SPN equations by Gelbard’s [54]formal procedure (cf. [10] or any well-known reactor physics textbook, e.g., [146, s. 9.6]). Webegin by considering the planar-geometry PN approximation in Section 2.4.1 deriving inparticular the one-dimensional P3 and P1 equations. The three-dimensional generalizationfor the P3 equations with full anisotropic scattering is given in Section 2.4.2, its modificationallowing only within-group higher-order anisotropic scattering in Section 2.4.3. Finally,the diffusion approximation is derived from the P1 equations in Section 2.4.4.
2.4.1 The planar-geometry PN equations

While the spherical harmonics equations in multi-dimensional geometries are complicated,the PN equations in one-dimensional planar geometry are relatively simple.
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Figure 2.2: Planar-geometry coordinates (according to [45, fig. 4-9]).
Let the steady-state neutron transport equation of (2.3) in one-dimensional geometry

µ ∂∂xΨ(x, µ, E) + Σt(x, E)Ψ(x, µ, E) = Ss(x, µ, E) + Sf (x, E) + Sext(x, µ, E) (2.4)
be the starting point for the following derivation of the planar-geometry PN equations. Forconvenience, the angular coordinate system is chosen with its polar coordinate axis in the
x-direction. The assumption of planar geometry implies that there is no dependence onthe azimuthal angle φ. Hence, in equation (2.4), the occurring angular dependent neutronflux Ψ, the total macroscopic cross section Σt , the neutron scattering source Ss, the fissionsource Sf , and the external source Sext only depend on a single spatial coordinate x andthe cosine of the polar angle µ = cosθ with θ being the direction of neutron motion asdepicted in Figure 2.2. Discretizations in space and energy are introduced and constantcross sections are assumed for the resulting spatial intervals with the indices i ∈ (1, ..., I)and energy groups g ∈ (1, ..., G), where g = 1 denotes the fastest group. The macroscopiccross sections used in the subsequent equations are averaged values over space and energyand determined via flux-volume weighting of the heterogeneous cross sections applying theflux obtained from the lattice calculation (cf. Figure 1.1). Assuming furthermore the absenceof an external source, the following multi-group form of the above neutron transport equationholds:

µ ∂∂xΨi
g(x, µ) + Σit,gΨi

g(x, µ) = Sis,g(x, µ) + Sif ,g(x) (2.5)
with x ∈ [xi−1, xi] and xi−1, xi being the respective lower and upper interval bounds. Theangular dependence of the flux and source functions in equation (2.5) can be approxi-mated by a truncated series expansion. Therefore, the Legendre polynomials pn(µ) areintroduced representing the one-dimensional equivalents of the spherical harmonics, the
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Figure 2.3: Graphs of the Legendre polynomials pn up to n = 3.
expansion functions of the PN equations. Like the spherical harmonic functions, the Le-gendre polynomials

p0(µ) = 1,
p1(µ) = µ,

p2(µ) = 12(3µ2 − 1),
p3(µ) = 12(5µ3 − 3µ),...

(see Figure 2.3) form an orthogonal system with the properties
ˆ 1
−1 pn(µ)pm(µ)dµ = 22n+ 1δnm (2.6)

and
µpn(µ) = n2n+ 1pn−1(µ) + n+ 12n+ 1pn+1(µ), n ≥ 1, (2.7)

where δnm denotes the Kronecker delta. According to this, the angular neutron flux Ψ and
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the angle-dependent scattering term Ss are expanded into Legendre series as follows:
Ψi
g(x, µ) = ∞∑

n=0(2n+ 1)pn(µ)Φi
n,g(x)

≈
N∑
n=0(2n+ 1)pn(µ)Φi

n,g(x), (2.8)
Sis,g(x, µ) = ∞∑

n=0(2n+ 1)pn(µ) G∑
g′=1 Σisn,gg′Φi

n,g′(x)
≈

N∑
n=0(2n+ 1)pn(µ) G∑

g′=1 Σisn,gg′Φi
n,g′(x) (2.9)

with finite order of truncation N ∈ N. The quantity
Φi
n,g(x) ≡ 12

ˆ 1
−1 pn(µ)Ψi

g(x, µ)dµ (2.10)
is the nth Legendre-weighted moment of the neutron flux increasing its directional variationwith n. Σisn,gg′ denotes the nth moment of the macroscopic scattering cross section fromenergy group g′ to energy group g. Inserting the expansions (2.8)–(2.9) into the transportequation (2.5) and applying the recursion formula (2.7) gives

N∑
n=0
(
npn−1(µ) + (n+ 1)pn+1(µ)) ∂∂xΦi

n,g(x) + N∑
n=0(2n+ 1)pn(µ)Σit,gΦi

n,g(x)
= N∑

n=0(2n+ 1)pn(µ) G∑
g′=1 Σisn,gg′Φi

n,g′(x) + Sif ,g(x).
Multiplying these equations with pm(µ) for m = 0, ..., N and integrating over µ ∈ [−1, 1] bytaking the orthogonality condition (2.6) into account and assuming Φi

−1,g(x) = Φi
N+1,g(x) ≡0, the following N + 1 steady-state PN equations for the N + 1 unknown flux momentsΦi

n,g are obtained in planar geometry:
n2n+ 1 ddxΦi

n−1,g(x) + n+ 12n+ 1 ddxΦi
n+1,g(x) + Σit,gΦi

n,g(x) = G∑
g′=1 Σisn,gg′Φi

n,g′(x) + Šin,g(x),
n = 0, ..., N.

The occurring isotropic source term
Ši0,g(x) = 1

keffSif ,g(x)
= 1
keffχ ig

G∑
g′=1 νΣif ,g′Φi0,g′(x)
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comprises the fission source Sf and the effective multiplication factor keff to create aneigenvalue problem, whereas

Šin,g(x) = 0, n > 0.
Truncating the series expansions of (2.8)–(2.9) after the fourth term, i.e., N = 3, the fourfirst-order linear differential equations

ddxΦi1,g(x) + Σit,gΦi0,g(x) = G∑
g′=1 Σis0,gg′Φi0,g′(x) + Ši0,g(x), (2.11)

13 ddxΦi0,g(x) + 23 ddxΦi2,g(x) + Σit,gΦi1,g(x) = G∑
g′=1 Σis1,gg′Φi1,g′(x), (2.12)

25 ddxΦi1,g(x) + 35 ddxΦi3,g(x) + Σit,gΦi2,g(x) = G∑
g′=1 Σis2,gg′Φi2,g′(x), (2.13)

37 ddxΦi2,g(x) + Σit,gΦi3,g(x) = G∑
g′=1 Σis3,gg′Φi3,g′(x) (2.14)

represent the one-dimensional P3 equations for the energy group g with full anisotropicscattering. Describing the angular dependence of Ψ and Ss only linearly anisotropic, i.e.,up to N = 1, the system above reduces to the well-known one-dimensional P1 equations
ddxΦi1,g(x) + Σit,gΦi0,g(x) = G∑

g′=1 Σis0,gg′Φi0,g′(x) + Ši0,g(x), (2.15)
13 ddxΦi0,g(x) + Σit,gΦi1,g(x) = G∑

g′=1 Σis1,gg′Φi1,g′(x). (2.16)
The above systems of P3 and P1 equations show that the consideration of full anisotropicscattering – from energy group to energy group and within the particular groups – resultsin a coupling of the equations over all energy groups.
2.4.2 The SP3 equations with full anisotropic scattering

Defining the vector functions

Φi
n(x) =


Φi
n,1(x)Φi
n,2(x)...Φi
n,G(x)

 and Ši0(x) =


Ši0,1(x)
Ši0,2(x)...
Ši0,G(x)


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with1

Ši0,g(x) = 1
keffχ ig

〈
Σiνf ,Φi0(x)〉 and Σiνf =


νΣif ,1
νΣif ,2...
νΣif ,G


as well as the matrices

Σin =


Σit,1 − Σisn,11 −Σisn,12 . . . −Σisn,1G
−Σisn,21 Σit,2 − Σisn,22 . . . ...... . . . . . . −Σisn,G−1G
−Σisn,G1 . . . −Σisn,GG−1 Σit,G − Σisn,GG

 , n = 0, ..., 3,

the equations (2.11)–(2.14) can be rewritten in the following matrix form:
ddxΦi1(x) + Σi0Φi0(x) = Ši0(x), (2.17)13 ddxΦi0(x) + 23 ddxΦi2(x) + Σi1Φi1(x) = 0, (2.18)25 ddxΦi1(x) + 35 ddxΦi3(x) + Σi2Φi2(x) = 0, (2.19)37 ddxΦi2(x) + Σi3Φi3(x) = 0. (2.20)

The equations (2.18) and (2.20) yield the expressions
Φi1(x) = −13(Σi1)−1 ddx (Φi0(x) + 2Φi2(x)),
Φi3(x) = −37(Σi3)−1 ddxΦi2(x)

for the odd-order flux moments. Hence, Φi1 and Φi3 can be eliminated from (2.17) and (2.19).With
ddxΦi1(x) = −Σi0Φi0(x) + Ši0(x)

from (2.17), we obtain the following second-order differential system of equations:
−13(Σi1)−1 d2dx2 (Φi0(x) + 2Φi2(x)) + Σi0Φi0(x) = Ši0(x), (2.21)
− 935(Σi3)−1 d2dx2 Φi2(x)− 25Σi0Φi0(x) + Σi2Φi2(x) = −25 Ši0(x). (2.22)

1The inner product 〈·, ·〉 : RG × RG → R denotes a generalized scalar product over the vector space RG .Note that the geometrical scalar product is designated by the centered dot ’·’ in this document.
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Introducing the diagonal matrices

Σidiag,n =


Σit,1 − Σisn,11 0 . . . 00 Σit,2 − Σisn,22 . . . ...... . . . . . . 00 . . . 0 Σit,G − Σisn,GG

 , n = 0, ..., 3,

the matrix diffusion coefficients can be defined as

Di0 := 13(Σidiag,1)−1 = 13


1Σit,1−Σis1,11 0 . . . 0
0 1Σit,2−Σis1,22

. . . ...... . . . . . . 00 . . . 0 1Σit,G−Σis1,GG


and, respectively,

Di2 := 935(Σidiag,3)−1 = 935


1Σit,1−Σis3,11 0 . . . 0
0 1Σit,2−Σis3,22

. . . ...... . . . . . . 00 . . . 0 1Σit,G−Σis3,GG

 .

So, the system (2.21)–(2.22) can be written as
−Di0Σidiag,1(Σi1)−1 d2dx2 (Φi0(x) + 2Φi2(x)) + Σi0Φi0(x) = Ši0(x),
−Di2Σidiag,3(Σi3)−1 d2dx2 Φi2(x)− 25Σi0Φi0(x) + Σi2Φi2(x) = −25 Ši0(x).

Defining now the modified neutron flux moment vectors
Φ̂i0(x) := Σidiag,1(Σi1)−1(Φi0(x) + 2Φi2(x)),
Φ̂i2(x) := Σidiag,3(Σi3)−1Φi2(x),

the above system results in the system of second-order differential equations
−Di0 d2dx2 Φ̂i0(x) + Σi01Φ̂i0(x)− 2Σi03Φ̂i2(x) = Ši0(x), (2.23)

−Di2 d2dx2 Φ̂i2(x)− 25Σi01Φ̂i0(x) + (45Σi03 + Σi23)Φ̂i2(x) = −25 Ši0(x) (2.24)
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with the matrices
Σi01 = Σi0Σi1(Σidiag,1)−1, (2.25)
Σi03 = Σi0Σi3(Σidiag,3)−1, (2.26)
Σi23 = Σi2Σi3(Σidiag,3)−1. (2.27)

As mentioned before, the SP3 concept has evolved from the idea of a multi-dimensionalgeneralization of the one-dimensional P3 equations. Thus, the ad hoc replacement of thesecond derivatives in (2.23)–(2.24) by the general Laplacian operators yields the followingequations in three-dimensional form:
−Di0∆Φ̂i0(r) + Σi01Φ̂i0(r)− 2Σi03Φ̂i2(r) = Ši0(r), (2.28)

−Di2∆Φ̂i2(r)− 25Σi01Φ̂i0(r) + (45Σi03 + Σi23)Φ̂i2(r) = −25 Ši0(r) (2.29)
with the gth component

Ši0,g(r) = 1
keffχ ig

〈
Σiνf ,Φi0(r)〉

= 1
keffχ ig

〈
Σiνf ,Σi1(Σidiag,1)−1Φ̂i0(r)− 2Σi3(Σidiag,3)−1Φ̂i2(r)〉,

g = 1, ..., G, of the source term vector function Ši0(r).
Since the above system of second-order differential equations (2.28)–(2.29) takes the fullanisotropic scattering into account, the coefficient matrices Σi01, Σi03, and Σi23 in (2.25)–(2.27) are dense. Consequently, the SP3 equations are coupled over all energy groups
g = 1, ..., G. For a sufficiently large G, solving 2G coupled equations implies an extensivenumerical effort. Therefore, the anisotropic group-to-group scattering is neglected in thefollowing applying the so-called within-group approximation.
2.4.3 The SP3 equations in within-group form

Let the one-dimensional P3 equations in first-order form (2.11)–(2.14) be the starting point.Brantley and Larsen [16] as well as Beckert and Grundmann [10] described the SP3 equa-tions in the so-called within-group form. The approximation involved assumes only isotropicneutron scattering between different energy groups, i.e.,
Σisn,gg′ = 0 for g′ 6= g and n ≥ 1. (2.30)
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With this assumption, the P3 equations (2.11)–(2.14) become merely coupled via theisotropic scattering source. Taking the definition of the removal cross sections

Σirn,g := Σit,g − Σisn,gg, n = 0, ..., 3, (2.31)
into account, they can be written as

ddxΦi1,g(x) + Σir0,gΦi0,g(x) = G∑
g′=1
g′ 6=g

Σis0,gg′Φi0,g′(x) + Ši0,g(x), (2.32)
13 ddxΦi0,g(x) + 23 ddxΦi2,g(x) + Σir1,gΦi1,g(x) = 0, (2.33)
25 ddxΦi1,g(x) + 35 ddxΦi3,g(x) + Σir2,gΦi2,g(x) = 0, (2.34)
37 ddxΦi2,g(x) + Σir3,gΦi3,g(x) = 0. (2.35)

By dint of the equations (2.33) and (2.35), the odd-order flux moments Φi1,g and Φi3,g canbe eliminated from the equations (2.32) and (2.34) also in this case. Hence,
Φi1,g(x) = − 13Σir1,g ddx (Φi0,g(x) + 2Φi2,g(x)) (2.36)

and
Φi3,g(x) = − 37Σir3,g ddxΦi2,g(x) (2.37)

as well as the diffusion coefficients defined as
Di0,g := 13Σir1,g and Di2,g := 935Σir3,g (2.38)

give the system of second-order ordinary differential equations
−Di0,g d2dx2 (Φi0,g(x) + 2Φi2,g(x)) + Σir0,gΦi0,g(x) = G∑

g′=1
g′ 6=g

Σis0,gg′Φi0,g′(x) + Ši0,g(x), (2.39)
−25Di0,g d2dx2 (Φi0,g(x) + 2Φi2,g(x))−Di2,g d2dx2 Φi2,g(x) + Σir2,gΦi2,g(x) = 0 (2.40)

and, accordingly,
−Di0,g d2dx2 Φ̃i0,g(x) + Σir0,gΦ̃i0,g(x)− 2Σir0,gΦ̃i2,g(x) = Si0,g(x), (2.41)

−Di2,g d2dx2 Φ̃i2,g(x)− 25Σir0,gΦ̃i0,g(x) + (45Σir0,g + Σir2,g)Φ̃i2,g(x) = −25Si0,g(x) (2.42)
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with the new source term
S̃i0,g(x) = G∑

g′=1
g′ 6=g

Σis0,gg′(Φ̃i0,g′(x)− 2Φ̃i2,g′(x)) + Ši0,g(x)
= G∑

g′=1
g′ 6=g

Σis0,gg′(Φ̃i0,g′(x)− 2Φ̃i2,g′(x)) + 1
keffχ ig

G∑
g′=1 νΣif ,g′

(Φ̃i0,g′(x)− 2Φ̃i2,g′(x))
and the modified neutron flux moments

Φ̃i0,g(x) := Φi0,g(x) + 2Φi2,g(x), (2.43)Φ̃i2,g(x) := Φi2,g(x). (2.44)
The substitutional expressions (2.43)–(2.44) are introduced to manipulate the second-orderform P3 equations (2.39)–(2.40) into a form (2.41)–(2.42) that resembles a set of diffusion-like equations. The subsequently described nodal expansion method treats the quantitiesΦ̃i0,g and Φ̃i2,g. The actual flux moments Φi0,g and Φi2,g are only recalculated at the veryend of the calculation procedure.
In analogous manner to the previous subsection, the three-dimensional form of the SP3equations is obtained by substituting the one-dimensional second derivatives in (2.41)–(2.42) by the general Laplacian operators. Hence, we obtain the following system ofsecond-order elliptic partial differential equations, the SP3 equations

−Di0,g∆Φ̃i0,g(r) + Σir0,gΦ̃i0,g(r)− 2Σir0,gΦ̃i2,g(r) = S̃i0,g(r), (2.45)
−Di2,g∆Φ̃i2,g(r)− 25Σir0,gΦ̃i0,g(r) + (45Σir0,g + Σir2,g)Φ̃i2,g(r) = −25 S̃i0,g(r) (2.46)

with
S̃i0,g(r) = G∑

g′=1
g′ 6=g

Σis0,gg′(Φ̃i0,g′(r)− 2Φ̃i2,g′(r)) + 1
keffχ ig

G∑
g′=1 νΣif ,g′

(Φ̃i0,g′(r)− 2Φ̃i2,g′(r)) (2.47)
and the unknowns Φ̃i0,g and Φ̃i2,g being now dependent on the three-dimensional positionvector r. The index i now indicates a volume element with spatially constant cross sections.
The derivation above is based on the consideration of only isotropic scattering betweendifferent energy groups. However, also a linearly anisotropic angular dependence of thegroup-to-group scattering can be included allowing for a further approximation discussedin the following. We now assume

Σisn,gg′ = 0, g′ 6= g, only for n ≥ 2
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(compare (2.30)) and, consequently, the P3 equations (2.11)–(2.14) reduce to

ddxΦi1,g(x) + Σir0,gΦi0,g(x) = G∑
g′=1
g′ 6=g

Σis0,gg′Φi0,g′(x) + Ši0,g(x),
13 ddxΦi0,g(x) + 23 ddxΦi2,g(x) + Σir1,gΦi1,g(x) = G∑

g′=1
g′ 6=g

Σis1,gg′Φi1,g′(x),
25 ddxΦi1,g(x) + 35 ddxΦi3,g(x) + Σir2,gΦi2,g(x) = 0,
37 ddxΦi2,g(x) + Σir3,gΦi3,g(x) = 0

with the linearly anisotropic scattering term Σis1,gg′Φi1,g′ . The derivation of the SP3 equa-tions can be continued in the aforementioned manner, however, with the exception that thediffusion coefficient now obtains the artificial form
Di0,g(x) := 13(Σir1,g −∑G

g′=1
g′ 6=g Σis1,gg′ Φi1,g′ (x)Φi1,g(x)

) = 13(Σit,g −∑G
g′=1 Σis1,gg′ Φi1,g′ (x)Φi1,g(x)

) , (2.48)
which depends on the neutron flux Φi1,g. A common procedure for avoiding this difficulty isto take account of the heuristic argument that the contribution from the slowing down ofneutrons from energy groups g′ > g is assumed almost the same as the slowing down from
g to lower energy groups [12, s. 4.2d]. Thus, the assumption

G∑
g′=1 Σis1,gg′Φi1,g′(x) ≈ G∑

g′=1 Σis1,g′gΦi1,g(x) (2.49)
simplifies the diffusion coefficient (2.48) to

Di0,g ≈ 13(Σit,g −∑G
g′=1 Σis1,g′g) = 13(Σit,g − µ̄0,g∑G

g′=1 Σis0,g′g) =: 13Σitr,g (2.50)
with the average cosine of the scattering angle µ̄0,g and the transport cross section Σitr,g.The approximation (2.49) is also considered by Beckert and Grundmann [10].
In principle, the SP3 equations (2.45)–(2.46) in within-group form are of the same struc-ture as the SP3 equations (2.28)–(2.29) considering full anisotropic scattering. However,approximating the linearly anisotropic group-to-group scattering by using the transportcross section and allowing only anisotropic within-group scattering, the respective systemof equations is merely coupled via the isotropic group-to-group scattering, which is treatedas a source term in the following. It is shown in Chapter 4 that, in the so-called inneriteration procedure, only one pair of coupled equations has to be solved separately for
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each energy group g (instead of 2G coupled equations in the full anisotropic scatteringcase). This provides a reasonable compromise to obtain an efficient numerical solution asprevious works [8, 9, 16, 91, 123, 140] have shown.
2.4.4 The diffusion equation with transport correction

In the previous section, two second-order differential equations are obtained from four first-order differential equations. Considering now the P1 equations of (2.15)–(2.16), a singlesecond-order differential equation is derived in the following. With the aid of assumption(2.49), the odd-order flux moment Φi1,g can be eliminated from equation (2.16) via
Φi1,g(x) = −Di0,g ddxΦi0,g(x), (2.51)

where Di0,g denotes the transport-corrected diffusion coefficient of (2.50). Hence, applying(2.51) to the first P1 equation (2.15), the planar-geometry diffusion equation
−Di0,g d2dx2 Φi0,g(x) + Σir0,gΦi0,g(x) = G∑

g′=1
g′ 6=g

Σis0,gg′Φi0,g′(x) + Ši0,g(x)
is obtained with the removal cross section

Σir0,g := Σit,g − Σis0,gg.
It is seen that the planar P1 equations lead to diffusion theory in which the contributionof the anisotropic scattering to the energy transfer is approximated.
In three dimensions, the same is true if also the spatial derivatives of higher flux momentsΦi2,g and anisotropic neutron sources Šin,g, n > 0, can be neglected [146, s. 9.7]. Weaccordingly have the three-dimensional steady-state diffusion equation

−Di0,g∆Φi0,g(r) + Σir0,gΦi0,g(r) = Si0,g(r) (2.52)
with the modified source term

Si0,g(r) = G∑
g′=1
g′ 6=g

Σis0,gg′Φi0,g′(r) + Ši0,g(r)
= G∑

g′=1
g′ 6=g

Σis0,gg′Φi0,g′(r) + 1
keffχ ig

G∑
g′=1 νΣif ,g′Φi0,g′(r).
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2.5 Interface and exterior boundary conditions

To obtain solutions to the SP3 and diffusion equations, boundary conditions have to be de-fined. As these equations are furthermore not defined at interfaces where cross sections arediscontinuous, also interface conditions are required. Assuming again a one-dimensionalgeometry for the beginning, the true boundary conditions
Ψi
g(xi, µ) = Ψi+1

g (xi, µ) (2.53)
at a nodal interface xi and

Ψi
g(xb, µ) = Ψb

g(xb, µ), µ < 0, (2.54)
at an outer boundary xb, respectively, where Ψb

g represents a known incident angular fluxat the exterior position xb in the incoming direction µ, can not be satisfied exactly by thefinite angular flux approximation (2.8). Therefore, approximate boundary conditions haveto be developed. The most obvious way is to substitute (2.8) into the exact boundaryconditions of (2.53) and (2.54), respectively.
Hence, for arbitrary material interfaces and N = 3, we trivially obtain

Φi0,g(xi) = Φi+10,g (xi),Φi1,g(xi) = Φi+11,g (xi),Φi2,g(xi) = Φi+12,g (xi),Φi3,g(xi) = Φi+13,g (xi).
Taking the relations (2.36)–(2.37) and the definitions (2.38), (2.50), and (2.43)–(2.44) intoaccount, the above conditions can be rewritten involving only the modified flux moments ofzeroth and second order:

Φ̃i0,g(xi) = Φ̃i+10,g (xi),
Di0,g ddx Φ̃i0,g(xi) = Di+10,g ddx Φ̃i+10,g (xi),Φ̃i2,g(xi) = Φ̃i+12,g (xi),
Di2,g ddx Φ̃i2,g(xi) = Di+12,g ddx Φ̃i+12,g (xi).

Generalizing to three dimensions, the interface conditions
Φ̃i
n,g(r) = Φ̃j

n,g(r), (2.55)
Di
n,g ni · ∇Φ̃i

n,g(r) = Dj
n,g ni · ∇Φ̃j

n,g(r), r ∈ ∂V ij , n = 0, 2, (2.56)
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hold, where ∂V ij = ∂V i ∩ ∂V j = V i ∩ V j indicates the interface between two nonoverlap-ping volumes V i and V j with their boundaries ∂V i and ∂V j , respectively, and ni denotesthe unit outer normal vector of V i directed towards V j .
In case of an outer boundary, we substitute (2.8) for N = 3 into (2.54), multiply by theLegendre polynomial pm(|µ|) and the factor 12 , integrate over µ < 0, and obtain the twoMarshak boundary conditions [146, p. 333f.]

12
ˆ 0
−1 pm(|µ|) 3∑

n=0(2n+ 1)pn(µ)Φi
n,g(xb)dµ = 12

ˆ 0
−1 pm(|µ|)Ψb

g(xb, µ)dµ, m = 1, 3.
(2.57)

As the odd Legendre polynomials represent directionality, only those are taken into accountas weighting functions. Thus, using p1(|µ|) = −µ, µ < 0, gives
14Φi0,g(xb)− 12Φi1,g(xb) + 516Φi2,g(xb) = 12

ˆ 0
−1 |µ|Ψb

g(xb, µ)dµ.
With the polynomial p3(|µ|) = −12 (5µ3 − 3µ), µ < 0, and an additional factor 35 , we have

− 380Φi0,g(xb) + 316Φi2,g(xb)− 310Φi3,g(xb) = 35 12
ˆ 0
−1 p3(|µ|)Ψb

g(xb, µ)dµ.
Applying also here (2.36)–(2.37), (2.38), (2.50), and (2.43)–(2.44), and generalizing to multi-dimensional geometries, we finally get the Marshak-like boundary conditions

14Φ̃i0,g(r) + 12Di0,g ni · ∇Φ̃i0,g(r)− 316Φ̃i2,g(r) = 14π
ˆ 2π

0
ˆ 0
−1 |µ|Ψb

g(r, µ, φ)dµdφ, (2.58)
− 380Φ̃i0,g(r) + 2180Φ̃i2,g(r) + 12Di2,g ni · ∇Φ̃i2,g(r) = 35 14π

ˆ 2π
0
ˆ 0
−1 p3(|µ|)Ψb

g(r, µ, φ)dµdφ,(2.59)
r ∈ ∂V iext ⊂ ∂V i, with the exterior boundary ∂V iext = V i ∩ ∂

⋃I
i=1 V i of the volume V i andthe azimuthal angle φ (see Figure 2.1). The factor 14π arises from the normalization of theintegral

ˆ dΩ ≡ 12π
ˆ 2π

0 dφ 12
ˆ 1
−1 dµ = 1.

The boundary conditions (2.58)–(2.59) are called ’Marshak-like’ since the Marshak bound-ary conditions (2.57) are traditionally defined only in one-dimensional geometries.
The derivations above are based again on Gelbard’s formal approach of simply replacingthe one-dimensional parameters by multivariable terms. However, Brantley [14] derived
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the material interface conditions (2.55)–(2.56) and the Marshak-like boundary conditions(2.58)–(2.59) using a complex variational analysis and established a theoretical basis alsoof the interface and boundary conditions of SP3 transport approximation.
With regard to diffusion theory, the interface conditions

Φi0,g(r) = Φj0,g(r), (2.60)
Di0,g ni · ∇Φi0,g(r) = Dj0,g ni · ∇Φj0,g(r), r ∈ ∂V ij , (2.61)

and the Marshak-like boundary conditions
14Φi0,g(r) + 12Di0,g ni · ∇Φi0,g(r) = 14π

ˆ 2π
0
ˆ 0
−1 |µ|Ψb

g(r, µ, φ)dµdφ, r ∈ ∂V iext ⊂ ∂V i,(2.62)
hold according to (2.55)–(2.56) and (2.58), respectively.





3
Nodal Reactor Analysis Methods

A reactor is a complex object in terms of its geometry, its composition, and the involvednuclear data, which renders whole-core transport calculations practically impossible. Asoutlined in Section 1.1, problem-specific modeling is essential to perform such calculationsin practice. The determination of the full-core neutron flux is generally a result of acomputational procedure based on three levels: the isotopic-cross-section calculation, thedeterministic or Monte-Carlo-based lattice neutron transport calculation, and the full-corecalculation. A scheme for determining the three-dimensional core flux distribution, whichavoids high computational costs, is provided by nodal methods.
In Section 3.1, a brief introduction to the difficulties associated with spatial homogenizationis provided to better assess the concept of nodal methods, which is described in Section 3.2.In Section 3.3, the characteristics of a method based on trigonal geometry are identified.Two key techniques of the nodal DYN3D approach are derived in Sections 3.4 and 3.5:the transverse-leakage approximation and the specific expansion of the unknown functionsin trigonal geometry. In Section 3.6, the DYN3D expansion approaches in Cartesian andhexagonal geometries are presented.
The following facts will become evident by the end of this chapter:
• The superior advantage of a nodal method for reactor cores with hexagonal fuelassemblies based on trigonal geometries is its mesh refinement capability.
• The nodal approaches implemented in DYN3D are based on the transverse-integra-tion procedure, which renders them computationally efficient. They furthermore use acombination of polynomial and exponential functions to expand the unknown neutronflux moments of the SP3 and diffusion equations, which guarantees high accuracy.

29
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• In both the SP3 and the diffusion approach, the intra-nodal unknown functions arefinitely represented in terms of only a small number of unknown parameters, so thatthe equations can be numerically processed.
3.1 Remarks on homogenization theory

As any matter, also neutrons are submerged to an equilibration process. Hence, neutronsare transported from a domain with high population density towards a reduced one. Thisprocess formulates the following heuristic relation between the neutron current and thegradient of the neutron flux, known as Fick’s law [72, s. 5.1.1]:
J(r) = −D∇Φ(r). (3.1)

This relation is a generalization of (2.51) and based on the assumptions of the neutronmigration process being sufficiently slow varying in space and scattering dominated [146,c. 3].
Referring to Section 1.1, reactor core calculation procedures, such as nodal methods, utilizecell- or assembly-homogenized cross sections. The difficulty associated with the homoge-nization process is to define heterogeneous reactor properties which should be reproducedwhen the homogeneous problem is solved. To obtain a global power distribution witha homogenized reactor representation identical to the heterogeneous representation, theinteraction between adjacent regions has to be described in an equivalent manner. Toaccount for the influence of adjacent regions, considering local and spectral interaction,the integral reaction rates and neutron fluxes in every homogenized volume as well asthe integral net currents and fluxes at the interfaces between adjacent volumes should bepreserved [87].
Evaluating ideal homogenized parameters, obtained via flux-volume weighting of the het-erogeneous cross sections, implies the a-priori knowledge of the solution to the heteroge-neous reactor problem, which creates a practical difficulty. An additional dilemma existsin the determination of a spatially constant diffusion coefficient, which is, taking Fick’slaw (3.1) into account, strictly defined as the negative ratio of the heterogeneous surfacecurrent and the gradient of the homogeneous surface flux. Imposing the continuity of theinterface net currents and fluxes, the values of the diffusion coefficients would be differenton each surface of the homogenized volume [145].
Consequently, approximations have to be applied and some of the constraints of the ho-mogenization theory have to be relaxed. In the framework of Koebke’s equivalence theory
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(ET) [87, 88] of heterogeneous and homogeneous regions, the integral reaction rates andnet currents at interfaces between adjacent volumes are preserved. The flux continuitybetween adjacent homogenized regions, however, is no longer postulated.
To reproduce the reference heterogeneous solution, Koebke [87] introduced reference het-erogeneity factors (RHFs). In Koebke’s ET method, the determination of the diffusioncoefficients is constrained such that the RHFs are identical on opposite volume surfaces.Using the conventional flux-volume-weighted diffusion coefficients, Smith [145] proposedthe application of reference discontinuity factors (RDFs) in the framework of his general-ized equivalence theory (GET). The RDF f il,g at a surface l of the volume V i is defined forevery energy group g as

f il,g = Φi,het0,gΦi,hom0,g , (3.2)
where Φi,het0,g is the surface-averaged flux calculated in detailed heterogeneous geometry,and Φi,hom0,g denotes the surface-averaged flux calculated in homogenized diffusion theory.Smith [145] furthermore defined assembly discontinuity factors (ADFs) adapted to fuelassemblies, which can be computed directly from the information available in standardassembly calculations. ADFs are simply ratios of the node-surface-averaged fluxes tothe node-averaged fluxes in the heterogeneous assembly calculation with zero-currentboundary conditions. Tahara et al. [152] and Mittag et al. [121] derived discontinuityfactors applicable to control absorbers and reflector assemblies.
For rather homogeneous assembly configurations, the ratio of (3.2) is approximately oneand, hence, the use of discontinuity factors is dispensable. However, if the assembly hassignificant heterogeneities in the vicinity of its boundary, e.g., due to absorber pins, theeffect of discontinuity factors may be relevant.
Discontinuity factors, however, have been solely defined for diffusion theory. The SPNtheory formulations, obtained from asymptotic or variational analysis, do not provide anexplicit and readily evaluated representation for the corresponding angular flux solution.This makes it impossible to calculate the necessary surface discontinuity factors to forceconsistency between the SPN and the transport solution. Recently, Chao and Yamamoto[25] presented a different SPN formulation that provides the angular flux solution. However,a practical approach in order to calculate SPN discontinuity factors is not provided.
Due to the lack of the definition of discontinuity factors for the SP3 transport theory, theuse of discontinuity factors is generally not considered in this thesis.
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Spatial-homogenization methods can not only be applied to assembly-size volumes but alsoat the pin-cell level. Pin-cell homogenization approaches [164], such as superhomogeniza-tion (SPH) factors [64, 76, 77, 82], interface discontinuity factors (IDFs) [5, 17, 80], andpin-cell discontinuity factors (CDFs) [92, 93, 126] are also based on the well-establishedET and GET described above. In the present work, however, pin-cell homogenizationmethods are excluded.
3.2 Characteristics of nodal methods

Realistic reactor models may contain hundreds or several thousand different homogenizedregions, even after the local cell-level homogenization has been imposed. There are differ-ent numerical techniques to solve the diffusion or simplified neutron transport equations.
In the finite-difference (FD) method [50, 102], the continuous spatial dependence of theneutron flux is replaced by a finite number of flux values at discrete spatial locations. Fur-thermore, the occurring flux derivatives are approximated by quotients of finite differences.Accordingly, the mesh spacing should be smaller than the neutron diffusion length [146,s. 3.10]. This constraint reveals a limitation of the conventional finite-difference methodsince the high cost of solving core dynamics problems forces the use of methods basedon coarse mesh elements. E.g., coarse-mesh finite-difference (CMFD) methods [20, 78]overcome this constraint.
In the finite-element method (FEM) [74, 103, 112, 123], the system is also cut up intofinite mesh elements. The neutron flux, however, is represented by a sum of polynomialtest functions in each element. Therefore, the finite-element method, particularly in anapproximation higher than linear, is far more efficient than the conventional finite-differencemethod as the mesh elements may be an order of magnitude wider [134, s. 6.2.4].
Nodal methods also allow a reactor core to be handled with large volume elements, so-called nodes. The approach is similar to finite elements in terms of the intra-nodal fluxrepresentation by only a small number of parameters. However, the neutron currents at thenodal faces are additionally taken into consideration. Once the flux-current relationshipsare specified, equations with a simple structure can be constructed. On this account, nodalmethods have been widely accepted for multi-dimensional reactor calculations already fora very long time [4, 48, 104, 142].
Most common nodal methods are based on transverse integration of the multi-dimensionaldiffusion (or diffusion-like) equations and on the transverse-leakage approximation. Theidea behind a transversely integrated nodal method is to reduce a multi-dimensional trans-port problem to a coupled set of typically one-dimensional problems and, therefore, reduce
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the computational effort. The expansion coefficients of the transverse leakage are calcu-lated by assuming that the (usually quadratic) polynomials extend over the adjacent nodesurfaces. There are different classes of transversely integrated nodal methods. The ana-lytic nodal method (ANM) [69, 71, 144] and the nodal integration method (NIM) [49], amodification of ANM, solve the one-dimensional transversely integrated equations analyti-cally without any other approximation than the transverse leakage. However, the resultingformulation is complex making a multi-group generalization difficult. The nodal expan-sion method (NEM) [36, 48, 89, 132] is based on a local polynomial flux expansion whichis used to determine a relationship between the mean interface partial currents and thenode-averaged fluxes. Also the nodal Green’s function method (NGFM) [105] is based onpolynomial expansions. Furthermore, combinations of ANM and NEM were proposed, suchas the semi-analytic nodal method (SANM) [47] and the hybrid ANM/NEM [42]. Using thetransverse-integration procedure, however, causes limitations. The transverse-leakage termmust be appropriately approximated; quadratic polynomials may not handle well large fluxgradients near nodal interfaces of strong material discontinuity. Furthermore, the trans-verse leakage defined for nonrectangular nodes, e.g., hexagonal, triangular, or cylindrical,becomes complicated due to the occurrence of nonphysical singular terms [19, 125].
An approach for avoiding such singularities is the technique of conformal mapping, inwhich a polygonal or cylindrical node is conformally mapped to a rectangular node. Thentraditional Cartesian-geometry nodal methods are applied, i.e., ANM [24, 131, 156] orNEM [166].
To entirely overcome the limitations of the transverse-integration procedure, Langenbuch[96, 97, 98] developed a flux expansion method in which the neutron flux is locally expandedin polynomials with coefficients determined by the weighted residual technique (similar tothe finite-element method). In the interface flux nodal method developed by Chao [23],only node-interface fluxes are involved as unknown quantities. The interior fluxes aresubsequently determined from the interface fluxes. Further approaches which do not usetransverse integration are the analytic function expansion nodal (AFEN) method [33, 35,81, 125] and the flux expansion nodal method (FENM) [163]. Here, the intra-nodal fluxis expanded in terms of nonseparable multi-dimensional analytic basis functions satisfyingthe neutron diffusion or SP3 transport equations at any point of the node. To improve theconvergence property, polynomials are used instead of analytic basis functions to representthe intra-nodal flux distribution in the polynomial expansion nodal (PEN) method [31] andthe higher-order polynomial expansion nodal (HOPEN) method [32].
The approach implemented in DYN3D can be regarded as a hybrid NEM/AFEN form,which was similarly used by Wagner [160] (one-dimensional NEM/AFEN approach) andKim et al. [83] (one-dimensional NEM/AFEN approach based on conformal mapping).
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Core analysis Nodal Method Geometries ReferencescodeARTEMIS NEM Cartesian [129, 158]COREDAX AFEN Cartesian [29, 34, 108]hexagonal (only diffusion)DYN3D hybrid NEM/AFEN Cartesian [11, 46, 68]hexagonal (only diffusion)trigonalPARCS ANM, NEM Cartesian [41, 86, 107]trigonal (only diffusion)SCOPE2 hybrid ANM/CMFD Cartesian [148, 153, 165]SIMULATE SANM Cartesian [6, 7, 47]SUBARU hybrid ANM/CMFD Cartesian [149, 150, 151]
Table 3.1: Summary of nodal core analysis codes comprising multi-group diffusion and

SP3 transport models.
DYN3D is a transversely integrated nodal method leading to one- or two-dimensionalequations, which are to be solved. It uses local polynomial expansion ansatzes accordingto NEM. However, the neutron flux is additionally represented by analytic basis functionssimilar to the AFEN approach. In this manner, DYN3D encompasses the advantages ofboth methods: the efficiency of the NEM and the improved accuracy of the AFEN method.
Without any claim of completeness, a review of the worldwide well-established core anal-ysis codes comprising both multi-group diffusion and SP3 transport theory models is givenin Table 3.1 (see also [141]).
3.3 Advantages of trigonal geometries

The obvious advantage in developing a nodal method for reactor cores with hexagonalfuel assembly geometry on a trigonal basis is the capability of mesh refinement, as ahexagon can not be subdivided into hexagons of smaller size. A further field of applicationis the modeling of asymmetric hexagonal fuel assemblies, which can be performed withconsiderably more precision in trigonal than in hexagonal geometries.
Compared to Cartesian and hexagonal geometries, triangular meshes have attracted ratherscant attention in reactor core analyses. However, there are finite-difference [85, 95, 116]and finite-element [58, 59, 122] approaches in trigonal geometry. In several publications[117, 128, 161, 162], e.g., trigonal nodal methods are applied to solve the discrete or-dinates form of the neutron transport equation. With regard to nodal diffusion methods,
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Figure 3.1: Hexagonal fuel assembly (a) with triangular subdivision (m = 0) (b) and onesubsequent refinement level (m = 1) (c).

Figure 3.2: Nodal orientations A (a) and B (b) with indication of the local coordinatesystems.
the triangle-based polynomial expansion nodal (TPEN) method [30, 44] as well as thetriangular polynomial expansion nodal (TRIPEN) method [86] combine the NEM and theHOPEN method employing two transversely integrated diffusion equations, one for theradial and one for the axial direction. Also an AFEN-like method [113, 127] as well as thePEN [31] and the HOPEN methods [32] were applied to trigonal geometries. Moreover,Li et al. [113] use an AFEN-like method to solve the SP3 equations in two-dimensionalunstructured triangular geometries.
In this work, a volume element with a hexagonal radial area can be uniformly subdividedinto 6 · 4m, m ∈ N, equilateral trigonal nodes. In Figure 3.1, the refinement mode isschematically illustrated for the first two trigonal levels (m = 0, 1). There are two nodalorientations to be taken into account, as depicted in Figure 3.2, with the origin of thelocal coordinate system in the center of the triangle. Figure 3.3 shows a prismatic node
V i with the height aiz and the edge length ai of the triangular base, which is the subjectof the subsequent analysis. In contrast to the Cartesian-geometry approach, the nodeboundaries do not coincide with the coordinate axes on either side. This fact increases thecomplexity of the problem.



36 Nodal Reactor Analysis Methods

Figure 3.3: Prismatic node with equilateral triangular base. Indication of the local coor-dinate system.
3.4 Procedure of transverse integration

The DYN3D nodal method is based on transverse integration to scale down the volumeof the numerical calculations. In trigonal geometries, the transverse-integration procedureleads to a two-dimensional radial and a one-dimensional axial set of equations as shownas follows.
Assuming the absence of an external source, let the SP3 equations (2.45)–(2.47) in within-group form

−Di0,g∆Φ̃i0,g(r) + Σir0,gΦ̃i0,g(r)− 2Σir0,gΦ̃i2,g(r) = S̃i0,g(r), (3.3)
−Di2,g∆Φ̃i2,g(r)− 25Σir0,gΦ̃i0,g(r) + (45Σir0,g + Σir2,g)Φ̃i2,g(r) = −25 S̃i0,g(r) (3.4)

with the source term
S̃i0,g(r) = G∑

g′=1
g′ 6=g

Σis0,gg′(Φ̃i0,g′(r)− 2Φ̃i2,g′(r)) + 1
keffχ ig

G∑
g′=1 νΣif ,g′

(Φ̃i0,g′(r)− 2Φ̃i2,g′(r)) (3.5)
and the diffusion equation (2.52)

−Di0,g∆Φi0,g(r) + Σir0,gΦi0,g(r) = Si0,g(r) (3.6)
with the respective source term

Si0,g(r) = G∑
g′=1
g′ 6=g

Σis0,gg′Φi0,g′(r) + 1
keffχ ig

G∑
g′=1 νΣif ,g′Φi0,g′(r), r = (x, y, z), (3.7)
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be the starting points of the following operation. By transverse integration of (3.3)–(3.4)and (3.6), respectively, we decouple the three-dimensional equations into radial and axialcomponents as follows.
SP3 method – radial treatment: Integrating over the axial height aiz of the node V ileads to the two-dimensional system of SP3 equations
−Di0,g( ∂2

∂x2 + ∂2
∂y2

)Φ̃r,i0,g(x, y) + Σir0,gΦ̃r,i0,g(x, y)− 2Σir0,gΦ̃r,i2,g(x, y)
= S̃r,i0,g(x, y)− L̃r,i0,g(x, y), (3.8)

−Di2,g( ∂2
∂x2 + ∂2

∂y2
)Φ̃r,i2,g(x, y)− 25Σir0,gΦ̃r,i0,g(x, y) + (45Σir0,g + Σir2,g)Φ̃r,i2,g(x, y)

= −25 S̃r,i0,g(x, y)− L̃r,i2,g(x, y) (3.9)
with the radial neutron flux moments

Φ̃r,i
n,g(x, y) = 1

aiz

ˆ aiz2
− aiz2

Φ̃i
n,g(x, y, z)dz

as well as the radial neutron source
S̃r,i0,g(x, y) = G∑

g′=1
g′ 6=g

Σis0,gg′(Φ̃r,i0,g′(x, y)− 2Φ̃r,i2,g′(x, y))
+ 1
keffχ ig

G∑
g′=1 νΣif ,g′

(Φ̃r,i0,g′(x, y)− 2Φ̃r,i2,g′(x, y)) (3.10)
and the term

L̃r,in,g(x, y) = −Di
n,g
aiz

ˆ aiz2
− aiz2

∂2
∂z2 Φ̃i

n,g(x, y, z)dz, n = 0, 2, (3.11)
representing the neutron leakage into the axial direction.
SP3 method – axial treatment: On the other hand, integrating over the trigonal area
Ai4 of the nodal element V i gives the one-dimensional system of SP3 equations

−Di0,g d2dz2 Φ̃z,i0,g(z) + Σir0,gΦ̃z,i0,g(z)− 2Σir0,gΦ̃z,i2,g(z) = S̃z,i0,g(z)− L̃z,i0,g(z), (3.12)
−Di2,g d2dz2 Φ̃z,i2,g(z)− 25Σir0,gΦ̃z,i0,g(z) + (45Σir0,g + Σir2,g)Φ̃z,i2,g(z) = −25 S̃z,i0,g(z)− L̃z,i2,g(z) (3.13)
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with the axial flux moments
Φ̃z,i
n,g(z) = 4√33(ai)2

¨
Ai4

Φ̃i
n,g(x, y, z)dA,

the axial source
S̃z,i0,g(z) = G∑

g′=1
g′ 6=g

Σis0,gg′(Φ̃z,i0,g′(z)− 2Φ̃z,i2,g′(z)) + 1
keffχ ig

G∑
g′=1 νΣif ,g′

(Φ̃z,i0,g′(z)− 2Φ̃z,i2,g′(z)),
and the transverse-leakage term

L̃z,in,g(z) = −4√3Di
n,g3(ai)2
¨
Ai4

( ∂2
∂x2 + ∂2

∂y2
)Φ̃i

n,g(x, y, z)dA, n = 0, 2, (3.14)
describing the neutron leakage at height z into the radial directions.
The radial and the axial SP3 equations given above are merely coupled via the transverse-leakage terms (3.11) and (3.14), which are formally treated as source terms.
Diffusion method: With respect to the three-dimensional diffusion equation (3.6) andits source term (3.7), we accordingly obtain the radial diffusion equation

−Di0,g( ∂2
∂x2 + ∂2

∂y2
)Φr,i0,g(x, y) + Σir0,gΦr,i0,g(x, y) = Sr,i0,g(x, y)− Lr,i0,g(x, y)

with the isotropic source
Sr,i0,g(x, y) = G∑

g′=1
g′ 6=g

Σis0,gg′Φr,i0,g′(x, y) + 1
keffχ ig

G∑
g′=1 νΣif ,g′Φr,i0,g′(x, y)

and the transverse-leakage term
Lr,i0,g(x, y) = −Di0,g

aiz

ˆ aiz2
− aiz2

∂2
∂z2 Φi0,g(x, y, z)dz. (3.15)

In axial direction, we analogously have the one-dimensional expression
−Di0,g d2dz2 Φz,i0,g(z) + Σir0,gΦz,i0,g(z) = Sz,i0,g(z)− Lz,i0,g(z)
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with

Sz,i0,g(z) = G∑
g′=1
g′ 6=g

Σis0,gg′Φz,i0,g′(z) + 1
keffχ ig

G∑
g′=1 νΣif ,g′Φz,i0,g′(z),

Lz,i0,g(z) = −4√3Di0,g3(ai)2
¨
Ai4

( ∂2
∂x2 + ∂2

∂y2
)Φi0,g(x, y, z)dA. (3.16)

For the sake of simplification, the node index i and the energy group index g are omittedin the following as far as possible.
3.5 Expansion of neutron flux, source, and transverse leak-

age in trigonal geometry

In this section, the neutron flux, source, and transverse-leakage terms are locally approxi-mated, which is necessary to determine relationships between the interface partial currentsand the fluxes in a further stage.
The unknown intra-nodal flux moments Φ̃r

n and Φ̃z
n, n = 0, 2, are represented by thesum of a particular solution of the inhomogeneous equations and the general solution oftheir complementary equations, i.e., the respective homogeneous equations (according to[8, 10, 63]). Therefore, consider first the following homogeneous three-dimensional SP3equations:

−D0∆Φ̃0(r) + Σr0Φ̃0(r)− 2Σr0Φ̃2(r) = 0, (3.17)
−D2∆Φ̃2(r)− 25Σr0Φ̃0(r) + (45Σr0 + Σr2)Φ̃2(r) = 0. (3.18)

The general solution of the system above is obtained by means of the exponential ansatz
Φ̃n(r) = εn exp(B n · r), r = (x, y, z)T ,

with the buckling B2 and the arbitrary unit vector n = (nx , ny, nz)T . Inserting this solutionapproach into (3.17)–(3.18), we get
(
−D0ε0B2(n2

x + n2
y + n2

z ) + Σr0ε0 − 2Σr0ε2) exp(B n · r) = 0,(
−D2ε2B2(n2

x + n2
y + n2

z︸ ︷︷ ︸
≡1

)− 25Σr0ε0 + (45Σr0 + Σr2)ε2) exp(B n · r)︸ ︷︷ ︸
6=0

= 0,
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which consequently gives the fourth-order equation for B
B4 − 15(5Σr0

D0 + 4Σr0
D2 + 5Σr2

D2
)
B2 + Σr0Σr2

D0D2 = 0
with

ε0j = 1 and ε2j = Σr0 −D0B2
j2Σr0 , j = 1, 2,

arbitrarily chosen. Hence, we obtain the two positive solutions
B1/2 =

√√√√ 110(5Σr0
D0 + 4Σr0

D2 + 5Σr2
D2

)
±

√ 1100(5Σr0
D0 + 4Σr0

D2 + 5Σr2
D2

)2
− Σr0Σr2
D0D2 .

SP3 method – radial treatment: To specify the general solution of the homogeneousequations of the radial system (3.8)–(3.9), the outer normal unit vectors of the trigonalnodal faces are used (cf. Figure 3.2), i.e.,
e1 = ( 10

)
, e2 = ( −12√32

)
, e3 = ( −12

−
√32
) (3.19)

and
e4 = ( −10

)
, e5 = ( 12

−
√32
)
, e6 = ( 12√32

)
. (3.20)

For the particular solution of the inhomogeneous equations (3.8)–(3.9), a polynomial ansatzis deemed appropriate. Therefore, the orthogonal polynomials of maximum order two
hA0(x, y) = N0,
hA1(x, y) = N1 xa,
hA2(x, y) = −N2ya, (3.21)
hA3(x, y) = N3( x2

a2 + y2
a2
)
−N4

and
hB0(x, y) = N0,
hB1(x, y) = −N1 xa,
hB2(x, y) = N2ya, (3.22)
hB3(x, y) = N3( x2

a2 + y2
a2
)
−N4
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are chosen according to the nodal orientations A and B. With the normalization factors

N0 = 1,
N1 = 2√6,
N2 = 2√6,
N3 = 4√15,
N4 = 13√15,

they become orthonormal, i.e.,
4√33a2

ˆ √36 a
−
√33 a
ˆ √33 x+ 13a
−
√33 x− 13a

hAk (x, y)hAl (x, y)dy dx
= 4√33a2

ˆ √33 a
−
√36 a
ˆ −√33 x+ 13a
√33 x− 13a

hBk (x, y)hBl (x, y)dy dx = δkl, k, l = 0, ..., 3,
with δkl denoting the Kronecker delta. Hence, the radial neutron flux expansion approaches

Φ̃A r
n (x, y) = 3∑

k=0 cnkh
A

k (x, y) + 2∑
j=1 εnj

3∑
l=1 djl exp(Bjel · r), (3.23)

Φ̃B r
n (x, y) = 3∑

k=0 cnkh
B

k (x, y) + 2∑
j=1 εnj

3∑
l=1 djl exp(Bjel+3 · r), n = 0, 2, (3.24)

hold with r = (x, y)T for the trigonal nodal orientations A and B.
The use of exponential functions in addition to the polynomial representation is importantto sufficiently describe the neutron flux especially at interfaces between nodes with differ-ing material properties. For the radial neutron source and the corresponding transverse-leakage terms, the following purely polynomial approximation is sufficient:

S̃A/B r0 (x, y) = 3∑
k=0 s0khA/Bk (x, y), (3.25)

L̃A/B rn (x, y) = 3∑
k=0 lnkh

A/B
k (x, y), n = 0, 2. (3.26)

Note that the same polynomial bases (3.21) and (3.22) are used here.
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SP3 method – axial treatment: Analogous ansatzes are applied in axial direction. Withthe orthonormal polynomials
hz0(z) = 1,
hz1(z) = 2√3 zaz , (3.27)
hz2(z) = √52 (12 z2

a2
z
− 1),

the neutron flux, the neutron source, and the transverse neutron leakage of (3.12)–(3.13)are represented as follows:
Φ̃z
n(z) = 2∑

k=0 c
z
nkhzk (z) + 2∑

j=1 εnj
(
dzj+ exp(Bjz) + dzj− exp(−Bjz)), (3.28)

S̃z0(z) = 2∑
k=0 s

z0khzk (z), (3.29)
L̃zn(z) = 2∑

k=0 l
z
nkhzk (z), n = 0, 2. (3.30)

Diffusion method: Considering the homogeneous three-dimensional diffusion equation
−D0∆Φ0(r) + Σr0Φ0(r) = 0,

with ε01 = 1 and ε02 = 0, the buckling simplifies to one positive solution
B1 = √Σr0

D0 .
Hence, we have the flux expansion approaches

ΦA r0 (x, y) = 3∑
k=0 c0khAk (x, y) + 3∑

l=1 d1l exp(B1el · r), (3.31)
ΦB r0 (x, y) = 3∑

k=0 c0khBk (x, y) + 3∑
l=1 d1l exp(B1el+3 · r), (3.32)

Φz0(z) = 2∑
k=0 c

z0khzk (z) + (dz1+ exp(B1z) + dz1− exp(−B1z)). (3.33)
For the sources SA/B r0 and the leakages transversal to the radial plane LA/B r0 as well asfor the respective axial functions Sz0 and Lz0, identical expansion ansatzes are used, i.e.,(3.25)–(3.26) and (3.29)–(3.30).
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As a result, in both the SP3 and the diffusion method, the intra-nodal neutron flux, source,and transverse leakage are finitely represented in terms of only a small number of unknownparameters, the coefficients cnk , djl, s0k , lnk , and cznk , dzj±, sz0k , lznk . Thus, a numericalprocedure can be applied to solve the equations.
3.6 Previous nodal DYN3D models

Besides the newly developed trigonal methods, the reactor code DYN3D introduced in Sec-tion 1.2 comprises the hitherto existing neutronic models based on Cartesian and hexagonalgeometries. Different nodal expansion approaches are available for both geometry options[66, 67, 68].
3.6.1 The Cartesian-geometry DYN3D nodal expansion approaches

For reactor cores with square-geometry fuel assemblies, DYN3D offers both an SP3 trans-port and a diffusion option [9, 10, 11].
Due to the fact that all nodal edges are parallel to the Cartesian coordinate axes, a separatetreatment of all directions is easily manageable. Considering volume elements of the radialsize of a fuel assembly, such a purely one-dimensional ansatz is more accurate than a two-dimensional treatment of the radial plane, since the transverse leakage is described lessprecisely in the latter case. This effect diminishes with a reduction of the node size topin-cell level [62]. In the diffusion model, only the one-dimensional ansatz is implemented,while both the one-dimensional and the two-dimensional approaches are available for theCartesian SP3 method.
The transverse-leakage approximation in the purely one-dimensional approach is realizedfor every coordinate direction in a similar manner to the axial treatment derived in Sec-tion 3.4, so that three one-dimensional systems of SP3 equations or three one-dimensionaldiffusion equations have to be solved. Using the polynomials of (3.27)

hu0 (u) = 1,
hu1 (u) = 2√3 uau , (3.34)
hu2 (u) = √52 (12u2

a2
u
− 1),
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the neutron flux, source, and transverse leakage are represented as follows:
Φu
n(u) = 2∑

k=0 c
u
nkhuk (u) + 2∑

j=1 εnj
(
duj+ exp(Bju) + duj− exp(−Bju)), (3.35)

Su0 (u) = 2∑
k=0 s

u0khuk (u), (3.36)
Lun(u) = 2∑

k=0 l
u
nkhuk (u), (3.37)

where n = 0, 2 in case of SP3 (tilde omitted) and n = 0 in case of diffusion. u ∈ {x, y, z}denotes the respective coordinate direction. Bj and εnj apply analogously to Section 3.5.
In the two-dimensional approach, the one-dimensional ansatzes are simply combined forthe radial plane:

Φr
n(x, y) = ∑

u=x,y
( 2∑
k=0 c

u
nkhuk (u) + 2∑

j=1 εnj
(
duj+ exp(Bju) + duj− exp(−Bju))),

Sr0(x, y) = ∑
u=x,y

( 2∑
k=0 s

u0khuk (u)),
Lrn(x, y) = ∑

u=x,y
( 2∑
k=0 l

u
nkhuk (u)).

The axial treatment remains identical to the above approach.
3.6.2 The hexagonal-geometry DYN3D nodal expansion approaches

DYN3D comprises two hexagonal nodal expansion methods based on diffusion theory – themodels HEXNEM1 and HEXNEM2 [60, 63]. Similarly to the trigonal approach, the radialplane is not one-dimensionally separated to avoid the occurrence of singularities, so thata two-dimensional and a one-dimensional diffusion equation have to be solved.
In the radial plane, the outer normal unit vectors of the hexagonal nodal faces are

es1 = ( 10
)
, es2 = ( 12√32

)
, es3 = ( −12√32

)
,

es4 = ( −10
)
, es5 = ( −12

−
√32
)
, es6 = ( 12

−
√32
)

as illustrated in Figure 3.4. With the orthonormal ansatz polynomials
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Figure 3.4: Hexagon with normal vectors of the six nodal faces.
h0(x, y) = N̂0,
h1(x, y) = N̂1 xa,
h2(x, y) = N̂2ya,
h3(x, y) = N̂3( x2

a2 + y2
a2
)
− N̂4,

h4(x, y) = N̂5( x2
a2 − y2

a2
)
,

h5(x, y) = N̂6 xya2
and the appropriate normalization factors N̂k , k = 0, ..., 6, the following expansion ap-proaches hold for the HEXNEM1 method:

Φr0(x, y) = 5∑
k=0 c0khk (x, y) + 6∑

l=1 dsl exp(B1esl · r), r = (x, y)T ,
Sr0(x, y) = 5∑

k=0 s0khk (x, y),
Lr0(x, y) = 5∑

k=0 l0khk (x, y).
The nodal coupling, however, can be realized not only via the neutron currents at thenodal faces but also additionally via the hexagonal vertices. This extension leads to theHEXNEM2 method, which achieves higher accuracy than HEXNEM1. Hence, we have
Φr0(x, y) = 5∑

k=0 c0khk (x, y) + 6∑
l=1 dsl exp(B1esl · r) + 6∑

l=1 dcl exp(B1ecl · r), r = (x, y)T ,
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with the outer normal unit vectors of the hexagonal nodal vertices
ec1 = ( √3212

)
, ec2 = ( 01

)
, ec3 = ( −√3212

)
,

ec4 = ( −√32
−12

)
, ec5 = ( 0

−1
)
, ec6 = ( √32

−12
)
.

The axial direction of both methods is processed with the same expansion approachesas used for both the trigonal and the Cartesian geometry. Using the polynomials (3.34),the neutron flux, source, and transverse leakage are approximated via (3.35)–(3.37), where
u = z, n = 0, and Bj , ε0j as specified in Section 3.5.
A variation of the HEXNEM methods introducing tangentially weighted exponential basisfunctions was recently described by Christoskov and Petkov [37].



4
Solution of the SP3 Transport and Diffusion

Equations in Trigonal Geometry

In the previous chapters, the physical phenomena of the neutron transport are identifiedand translated into mathematical entities. A trigonal nodal scheme is proposed using thetransverse-integration procedure, which converts the original three-dimensional neutron
SP3 transport and diffusion equations into two-dimensional radial and one-dimensionalaxial sets of equations. All intra-nodal unknown functions are finitely represented in termsof only a small number of unknown parameters.
This chapter focuses on a rigorous analysis of the mathematical interrelations. The principleunknowns of the problem are the outgoing neutron partial currents at the faces of thenodal elements. Subject to the Legendre moments of the neutron flux, the outgoing partialcurrents are determined in Section 4.1. For each homogeneous node, the local response-matrix equations are derived in Section 4.2 allowing to calculate the moments of the node-interface outgoing partial currents in terms of the flux coefficients and the incoming partialcurrents. As the incoming partial currents are the outgoing partial currents of the adjacentnodes (shown in Section 4.3), the discrete representation of the equations leads naturallyto an iterative procedure, the inner iteration, which is performed for each energy group
g = 1, ..., G to solve the steady-state multi-group SP3 transport or diffusion problem for agiven source distribution. The calculation of the upward and downward neutron scatteringas well as of the neutron fission source is discussed in Section 4.4. The transverse neutronleakage is also treated as a source. It is shown in Section 4.5, how the transverse leakageof a node is calculated involving its adjacent nodal elements. Eventually, in Section 4.6, thenode-averaged flux is deduced from the neutron balance equations. The standard powermethod, called outer iteration, is used to compute successive estimates of the effectivemultiplication factor keff. Finally, the nodal thermal power densities P i are determined

47
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Figure 4.1: Block diagram of the inner and outer iteration scheme.
from the node-averaged neutron fluxes Φi0,g via

P i = G∑
g=1 κ

i
gΣif ,gΦi0,g, (4.1)

where κig and Σif ,g denote the usable energy produced per fission event and the macroscopicfission cross section, respectively. The total power generated by the core is the sum of thepower densities over all nodes V i. The block diagram in Figure 4.1 visualizes the innerand outer iteration scheme outlined above.
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In Section 4.7, specific simplifications in terms of the implementation are explained. Sec-tion 4.8 summarizes the implementation of the inner and outer iteration schemes in acompact algorithmic form.
The following facts will become evident by the end of this chapter:
• As the SP3 equations in within-group form are of diffusion type, the conventionaldiffusion solver structure can be retained also for the solution of the SP3 transportproblem.
• The inter-nodal neutron exchange ("coupling") is realized via the nodal face-averagedpartial currents.
• To simplify the input structure of the cross-section sets, higher-order scattering crosssections are not included in the present SP3 implementation. Identical cross-sectiondata are used in the DYN3D trigonal SP3 and diffusion models.
• Although only node-averaged neutron fluxes are finally used to determine relevantreaction rates, the accuracy of these node-averaged fluxes is strongly impacted bythe intra-nodal flux representation, which contains higher-order flux moments in the
SP3 approach.

4.1 Derivation of the neutron partial currents at nodal faces

In this section, expressions for the face-averaged partial currents of the trigonal nodes arederived. These partial currents are of particular importance since they realize the nodalcoupling and, therefore, contribute significantly to the inter-nodal neutron balance.
At first, we recall Fick’s law (3.1) and introduce the net current

J(r) := n · J(r) = J+(r)− J−(r) (4.2)
which is defined as the sum of the partial outward current J+ and the negative partialinward current J−. The unit vector n denotes the outer normal of the considered node.Hence, from (2.10) and (2.36)–(2.38), (2.50), we obtain the one-dimensional relations

J̃0(x) = −D0 ddx Φ̃0(x) = Φ1(x) = 12
ˆ 1
−1 p1(µ)Ψ(x, µ)dµ

= − 12
ˆ 0
−1 |µ|Ψ(x, µ)dµ︸ ︷︷ ︸=: J̃−0 (x)

+ 12
ˆ 1

0 µΨ(x, µ)dµ︸ ︷︷ ︸=: J̃+0 (x)
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and
J̃2(x) = −D2 ddx Φ̃2(x) = 35Φ3(x) = 35 12

ˆ 1
−1 p3(µ)Ψ(x, µ)dµ

= − 310
ˆ 0
−1 p3(|µ|)Ψ(x, µ)dµ︸ ︷︷ ︸=: J̃−2 (x)

+ 310
ˆ 1

0 p3(µ)Ψ(x, µ)dµ︸ ︷︷ ︸=: J̃+2 (x)
.

Note that the currents J̃n, J̃−n , and J̃+n are denoted with a tilde since they refer to the modifiedfluxes Φ̃n, n = 0, 2, of the SP3 approach. Using the angular neutron flux expansion (2.8) for
N = 3 and the definitions of the modified flux moments (2.43)–(2.44), the one-dimensionaloutwardly and inwardly directed partial currents can be approximated by

J̃+0 (x) = 12
ˆ 1

0 µΨ(x, µ)dµ
= 14Φ̃0(x)− 12D0 ddx Φ̃0(x)− 316Φ̃2(x),

J̃−0 (x) = 12
ˆ 0
−1 |µ|Ψ(x, µ)dµ = 12

ˆ 0
−1−µΨ(x, µ)dµ = 12

ˆ 1
0 µΨ(x,−µ)dµ

= 14Φ̃0(x) + 12D0 ddx Φ̃0(x)− 316Φ̃2(x),
J̃+2 (x) = 310

ˆ 1
0 p3(µ)Ψ(x, µ)dµ = 320

ˆ 1
0 (5µ3 − 3µ)Ψ(x, µ)dµ

= − 380Φ̃0(x) + 2180Φ̃2(x)− 12D2 ddx Φ̃2(x),
J̃−2 (x) = 310

ˆ 0
−1 p3(|µ|)Ψ(x, µ)dµ = 310

ˆ 0
−1−p3(µ)Ψ(x, µ)dµ

= 310
ˆ 1

0 p3(µ)Ψ(x,−µ)dµ = 320
ˆ 1

0 (5µ3 − 3µ)Ψ(x,−µ)dµ
= − 380Φ̃0(x) + 2180Φ̃2(x) + 12D2 ddx Φ̃2(x).

Generalization to multi-dimensional geometries gives
J̃±0 (r) = 14π

ˆ 2π
0
ˆ 1

0 µΨ(r, ±µ, φ)dµdφ = 14Φ̃0(r)∓ 12D0 n · ∇Φ̃0(r)− 316Φ̃2(r), (4.3)
J̃±2 (r) = 320π

ˆ 2π
0
ˆ 1

0 p3(µ)Ψ(r, ±µ, φ)dµdφ = − 380Φ̃0(r) + 2180Φ̃2(r)∓ 12D2 n · ∇Φ̃2(x).(4.4)
SP3 method – radial treatment: To average the incoming and outgoing partial currentsover the nodal faces perpendicular to the radial plane (recall Figure 3.3), line integrals
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Figure 4.2: Location of the linear functions gl describing the radial faces l = 1, 2, 3 ofnode A (a) and l = 4, 5, 6 of node B (b).
along the linear functions

g2(x) = √33 x + 13a, (4.5)
g3(x) = −√33 x − 13a, (4.6)
g5(x) = √33 x − 13a, (4.7)
g6(x) = −√33 x + 13a (4.8)

describing the respective faces l = 2, 3, 5, 6 have to be solved. Figure 4.2 shows thelocation of the sides l = 1, ..., 6 of the nodes A and B. Now, let
J̃±0l(x, y) = 14Φ̃A/B r0 (x, y)∓ 12D0 el · ∇Φ̃A/B r0 (x, y)− 316Φ̃A/B r2 (x, y),
J̃±2l(x, y) = − 380Φ̃A/B r0 (x, y) + 2180Φ̃A/B r2 (x, y)∓ 12D2 el · ∇Φ̃A/B r0 (x, y), l = 1, ..., 6

be the two-dimensional partial currents at the trigonal nodal faces with their particularunit outer vectors el of (3.19) and (3.20), respectively. Hence, the radial face-averaged
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zeroth moment partial currents are given by
J̃±01 = 1

aaz

ˆ az2
− az2
ˆ a2
− a2

J̃±01(√36 a, y)dy dz
= 1
a

ˆ a2
− a2

14Φ̃A r0 (√36 a, y)∓ 12D0 ∂∂x Φ̃A r0 (x, y)∣∣∣
x=√36 a −

316Φ̃A r2 (√36 a, y)dy, (4.9)
J̃±02 = 1

aaz

ˆ az2
− az2
ˆ √36 a
−
√33 a

J̃±02(x, g2(x))√1 + ( ddx g2(x))2dx dz
= 2√33a

ˆ √36 a
−
√33 a

14Φ̃A r0 (x, g2(x))± 14D0 ∂∂x Φ̃A r0 (x, y)∣∣∣
y=g2(x)

∓
√34 D0 ∂∂y Φ̃A r0 (x, y)∣∣∣

y=g2(x) − 316Φ̃A r2 (x, g2(x))dx, (4.10)
J̃±03 = 1

aaz

ˆ az2
− az2
ˆ √36 a
−
√33 a

J̃±03(x, g3(x))√1 + ( ddx g3(x))2dx dz
= 2√33a

ˆ √36 a
−
√33 a

14Φ̃A r0 (x, g3(x))± 14D0 ∂∂x Φ̃A r0 (x, y)∣∣∣
y=g3(x)

±
√34 D0 ∂∂y Φ̃A r0 (x, y)∣∣∣

y=g3(x) − 316Φ̃A r2 (x, g3(x))dx, (4.11)
and
J̃±04 = 1

aaz

ˆ az2
− az2
ˆ a2
− a2

J̃±04(−√36 a, y)dy dz
= 1
a

ˆ a2
− a2

14Φ̃B r0 (−√36 a, y)± 12D0 ∂∂x Φ̃B r0 (x, y)∣∣∣
x=−√36 a −

316Φ̃B r2 (−√36 a, y)dy, (4.12)
J̃±05 = 1

aaz

ˆ az2
− az2
ˆ √33 a
−
√36 a

J̃±05(x, g5(x))√1 + ( ddx g5(x))2dx dz
= 2√33a

ˆ √33 a
−
√36 a

14Φ̃B r0 (x, g5(x))∓ 14D0 ∂∂x Φ̃B r0 (x, y)∣∣∣
y=g5(x)

±
√34 D0 ∂∂y Φ̃B r0 (x, y)∣∣∣

y=g5(x) − 316Φ̃B r2 (x, g5(x))dx, (4.13)
J̃±06 = 1

aaz

ˆ az2
− az2
ˆ √33 a
−
√36 a

J̃±06(x, g6(x))√1 + ( ddx g6(x))2dx dz
= 2√33a

ˆ √33 a
−
√36 a

14Φ̃B r0 (x, g6(x))∓ 14D0 ∂∂x Φ̃B r0 (x, y)∣∣∣
y=g6(x)

∓
√34 D0 ∂∂y Φ̃B r0 (x, y)∣∣∣

y=g6(x) − 316Φ̃B r2 (x, g6(x))dx. (4.14)
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Similarly, the face-averaged second moment partial currents are obtained:
J̃±21 = 1

a

ˆ a2
− a2
− 380Φ̃A r0 (√36 a, y) + 2180Φ̃A r2 (√36 a, y)∓ 12D0 ∂∂x Φ̃A r2 (x, y)∣∣∣

x=√36 ady, (4.15)
J̃±22 = 2√33a

ˆ √36 a
−
√33 a
− 380Φ̃A r0 (x, g2(x)) + 2180Φ̃A r2 (x, g2(x))

± 14D0 ∂∂x Φ̃A r2 (x, y)∣∣∣
y=g2(x) ∓

√34 D0 ∂∂y Φ̃A r2 (x, y)∣∣∣
y=g2(x)dx, (4.16)

J̃±23 = 2√33a
ˆ √36 a
−
√33 a
− 380Φ̃A r0 (x, g3(x)) + 2180Φ̃A r2 (x, g3(x))

± 14D0 ∂∂x Φ̃A r2 (x, y)∣∣∣
y=g3(x) ±

√34 D0 ∂∂y Φ̃A r2 (x, y)∣∣∣
y=g3(x)dx, (4.17)

J̃±24 = 1
a

ˆ a2
− a2
− 380Φ̃B r0 (√36 a, y) + 2180Φ̃B r2 (√36 a, y)± 12D0 ∂∂x Φ̃B r2 (x, y)∣∣∣

x=√36 ady, (4.18)
J̃±25 = 2√33a

ˆ √33 a
−
√36 a
− 380Φ̃B r0 (x, g5(x)) + 2180Φ̃B r2 (x, g5(x))

∓ 14D0 ∂∂x Φ̃B r2 (x, y)∣∣∣
y=g5(x) ±

√34 D0 ∂∂y Φ̃B r2 (x, y)∣∣∣
y=g5(x)dx, (4.19)

J̃±26 = 2√33a
ˆ √33 a
−
√36 a
− 380Φ̃B r0 (x, g6(x)) + 2180Φ̃B r2 (x, g6(x))

∓ 14D0 ∂∂x Φ̃B r2 (x, y)∣∣∣
y=g6(x) ∓

√34 D0 ∂∂y Φ̃B r2 (x, y)∣∣∣
y=g6(x)dx. (4.20)

SP3 method – axial treatment: For the nodal faces parallel to the radial plane (seeagain Figure 3.3), the axial averaged partial inward (superscript –) and outward (superscript+) currents are determined in the conventional way. Accordingly, we have
J̃z±0+ := J±0,z= az2 = 14Φ̃z0(az/2)∓ 12D0 ddz Φ̃z0(z)∣∣∣z= az2 −

316Φ̃z2(az/2), (4.21)
J̃z±0− := J±0,z=− az2 = 14Φ̃z0(−az/2)± 12D0 ddz Φ̃z0(z)∣∣∣z=− az2 −

316Φ̃z2(−az/2), (4.22)
J̃z±2+ := J±2,z= az2 = − 380Φ̃z0(az/2) + 2180Φ̃z2(az/2)∓ 12D2 ddz Φ̃z2(z)∣∣∣z= az2 , (4.23)
J̃z±2− := J±2,z=− az2 = − 380Φ̃z0(−az/2) + 2180Φ̃z2(−az/2)± 12D2 ddz Φ̃z2(z)∣∣∣z=− az2 . (4.24)

Diffusion method: With respect to diffusion theory, an analogous relation holds for thenet current
J0(x) = −D0 ddxΦ0(x) = Φ1(x) = J+0 (x)− J−0 (x)
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with the incoming and outgoing partial currents
J±0 (x) = 14Φ0(x)∓ 12D0 ddxΦ0(x),

which finally gives the same expressions for the radial and axial face-averaged partialcurrents (4.9)–(4.14) and (4.21)–(4.22) by just assuming the terms comprising the secondflux moment Φ̃2 zero.
In the following, the overbar and the tilde on the face-averaged partial currents are omitted,i.e.,

J±nl := J̃±nl,

Jz±n± := J̃z±n±, n = 0, 2, l = 1, ..., 6.
4.2 Response-matrix representation of the neutron partial

currents

SP3 method – radial treatment: Let
JA±n =

 J±n1
J±n2
J±n3

 and JB±n =
 J±n4

J±n5
J±n6

 , n = 0, 2, (4.25)
be the vectors of the face-averaged partial currents (4.9)–(4.20) of the previous section forthe respective trigonal nodal orientations A and B in the radial plane. Applying the fluxexpansion approaches (3.23) and (3.24) for Φ̃A/B r

n to the relations (4.9)–(4.20) results inthe independence of the averaged partial currents on the nodal orientation. By the useof the particular polynomial bases (3.21) and (3.22), the local coordinate system is simplyrotated. Thus, we define
J±n := JA±n ≡ JB±n . (4.26)

Writing the flux expansion coefficients in the vector forms
cn =


cn0
cn1
cn2
cn3

 , n = 0, 2, and dj =
 dj1

dj2
dj3

 , j = 1, 2,
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the linear algebraic system of equations

J±n = P±n0c0 + P±n2c2 + Q±n1d1 + Q±n2d2, n = 0, 2, (4.27)
is obtained for the SP3 approach with the matrices

P±nm =
 pnm,0 2p±nm,1 0 p±nm,3

pnm,0 −p±nm,1 −p±nm,2 p±nm,3
pnm,0 −p±nm,1 p±nm,2 p±nm,3

 , (4.28)

Q±nj =
 q±nj,1 q±nj,2 q±nj,2

q±nj,2 q±nj,1 q±nj,2
q±nj,2 q±nj,2 q±nj,1

 , n,m = 0, 2, j = 1, 2, (4.29)
and their respective entries
pnm,0 = N0ηnm = ηnm,

p±nm,1 = √312 N1(ηnm ∓ δnm√3Dn
a

) = √22 (ηnm ∓ δnm
√3Dn
a

)
,

p±nm,2 = 14N2(ηnm ∓ δnm√3Dn
a

) = √62 (ηnm ∓ δnm
√3Dn
a

)
,

p±nm,3 = 16N3(ηnm ∓ δnm√3Dn
a

)
−N4ηnm = 2√153 (

ηnm ∓ δnm
√3Dn
a

)
−
√153 ηnm

and
q±nj,1 = (ηn0 ε0j + ηn2 ε2j ∓ 12εnjDnBj) exp (√36 aBj

)
,

q±nj,2 = 2√33aBj (ηn0 ε0j + ηn2 ε2j ± 14εnjDnBj)
(exp (√36 aBj

)
− exp (− √33 aBj

))
with

η00 = 14 , η02 = − 316 , η20 = − 380 , η22 = 2180 . (4.30)
Note that P+

nm ≡ P−nm for n 6= m.
In the system of equations (4.27), the vectors dj can be eliminated. Considering the equa-tions only for the inwardly directed partial currents, the exponential terms comprising djcan be expressed by J−n and the polynomial terms, i.e.,

Q−n1d1 + Q−n2d2 = J−n − P−n0c0 − P−n2c2 =: Rn, n = 0, 2.
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Thus, we have (
d1
d2
) = ( Q−01 Q−02

Q−21 Q−22
)−1(

R0
R2
)
. (4.31)

The matrices Q±nj are nonsingular, symmetric, real, and circulant. Circulant matrices ofthe same size have the property of multiplicative commutativity. In addition, the product ofcirculant matrices is circulant [39, s. 3.3]. By means of these matrix properties, the inversionof the block matrix in (4.31) can be simplified as follows:(
Q−01 Q−02
Q−21 Q−22

)−1 gen.= (
Q−01−1 + Q−01−1Q−02S−1S Q−21Q−01−1 −Q−01−1Q−02S−1S

−S−1S Q−21Q−01−1 S−1S
)

Q−njcircul.= (
Q−22S−1 −Q−02S−1
−Q−21S−1 Q−01S−1

)

=: ( QI01 QI02
QI21 QI22

)
with the so-called Schur complement

SS := Q−22 −Q−21Q−01−1Q−02
and the circulant matrix

S := Q−01Q−22 −Q−02Q−21.
Hence, we get

d1 = QI01(J−0 − P−00c0 − P−02c2) + QI02(J−2 − P−20c0 − P−22c2), (4.32)
d2 = QI21(J−0 − P−00c0 − P−02c2) + QI22(J−2 − P−20c0 − P−22c2). (4.33)

Accordingly, the matrices
S =

 s1 s2 s2
s2 s1 s2
s2 s2 s1

 , S−1 =
 š1 š2 š2

š2 š1 š2
š2 š2 š1

 ,

and
QI
nj =

 qInj,1 qInj,2 qInj,2
qInj,2 qInj,1 qInj,2
qInj,2 qInj,2 qInj,1

 (4.34)
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contain the entries

s1 = q−01,1q−22,1 + 2q−01,2q−22,2 − q−02,1q−21,1 − 2q−02,2q−21,2,
s2 = q−01,1q−22,2 + q−01,2(q−22,1 + q−22,2)− q−02,1q−21,2 − q−02,2(q−21,1 + q−21,2),
š1 = s1 + s2

s21 + s1s2 − 2s22 ,
š2 = −s2

s21 + s1s2 − 2s22 ,
qInj,1 = (−1)( n2 +j−1)(q−n′j ′,1š1 + 2q−n′j ′,2š2),
qInj,2 = (−1)( n2 +j−1)(q−n′j ′,1š2 + q−n′j ′,2(š1 + š2)),

where
n, n′ = 0, 2, j, j ′ = 1, 2 with

n′ = n, j ′ = j if mod(n2 + j, 2) = 0
n′ 6= n, j ′ 6= j, otherwise .

By the use of (4.32)–(4.33), the partial outward currents J+n can eventually be expressed asfunctions of the partial inward currents J−n . Hence, the algebraic system of radial response-matrix equations
J+n = P+

n0c0 + P+
n2c2 + Q+

n1d1 + Q+
n2d2= Vn0c0 + Vn2c2 + Wn1J−0 + Wn2J−2 (4.35)

holds with the matrices
Wnj := Q+

n1QI0j + Q+
n2QI2j , (4.36)

Vnm := P+
nm −Wn1P−0m −Wn2P−2m, n,m = 0, 2, j = 1, 2. (4.37)

The neutron current formulation based on the response-matrix method is a common tech-nique in nodal approaches (see, e.g., [143, 150, 154, 160]).
SP3 method – axial treatment: The axial partial currents are proceeded in the samemanner. Inserting the flux expansion approach (3.28) into the relations (4.21)–(4.24) givesthe linear algebraic systems of equations

Jz±n = Pz±
n0 cz0 + Pz±

n2 cz2 + Qz±
n1 dz1 + Qz±

n2 dz2
and, eliminating dzj , the response-matrix equations

Jz+n = Vz
n0cz0 + Vz

n2cz2 + Wz
n1Jz−0 + Wz

n2Jz−2 , n = 0, 2, (4.38)
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with the vectors
Jz±n = ( Jz±n+

Jz±n−

) (4.39)
and

czn =
 czn0

czn1
czn2

 , dzj = ( dzj+
dzj−

)

as well as the matrices
Pz±
nm = ( pznm,0 pz±nm,1 pz±nm,2

pznm,0 −pz±nm,1 pz±nm,2
)
, (4.40)

Qz±
nj = ( qz±nj,1 qz±nj,2

qz±nj,2 qz±nj,1
)
, (4.41)

QzI
nj = ( qzInj,1 qzInj,2

qzInj,2 qzInj,1
)
, where (

QzI01 QzI02
QzI21 QzI22

) := ( Qz−01 Qz−02
Qz−21 Qz−22

)−1
, (4.42)

and
Wz
nj := Qz+

n1 QzI0j + Qz+
n2 QzI2j , (4.43)

Vz
nm := Pz+

nm −Wz
n1Pz−0m −Wz

n2Pz−2m, n,m = 0, 2, j = 1, 2, (4.44)
where

pznm,0 = ηnm,

pz±nm,1 = √3(ηnm ∓ δnmDnaz ),
pz±nm,2 = √5(ηnm ∓ δnm3Dn

az

)
,

qz±nj,1 = (ηn0 ε0j + ηn2 ε2j ∓ 12εnjDnBj) exp (12azBj),
qz±nj,2 = (ηn0 ε0j + ηn2 ε2j ± 12εnjDnBj) exp (− 12azBj),
sz1 = qz−01,1qz−22,1 + qz−01,2qz−22,2 − qz−02,1qz−21,1 − qz−02,2qz−21,2,
sz2 = qz−01,1qz−22,2 + qz−01,2qz−22,1 − qz−02,1qz−21,2 − qz−02,2qz−21,1,
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šz1 = sz1

sz12 − sz22 ,
šz2 = −sz2

sz12 − sz22 ,
qzInj,1 = (−1)( n2 +j−1)(qz−n′j ′,1šz1 + qz−n′j ′,2šz2),
qzInj,2 = (−1)( n2 +j−1)(qz−n′j ′,1šz2 + qz−n′j ′,2šz1)

with ηnm from (4.30) and again
n, n′ = 0, 2, j, j ′ = 1, 2 with

n′ = n, j ′ = j if mod(n2 + j, 2) = 0
n′ 6= n, j ′ 6= j, otherwise .

Diffusion method: Considering the diffusion theory approach and inserting the radialflux expansion ansatzes (3.31)–(3.32) for ΦA/B r0 into the relations (4.9)–(4.14) for the re-spective diffusion modification and, accordingly, (3.33) for Φz0 into (4.21)–(4.22), we obtainthe reduced linear algebraic system of equations
J(z)±0 = P(z)±00 c(z)0 + Q(z)±01 d(z)1

with the matrices P(z)±00 and Q(z)01 of (4.28)–(4.29) and (4.40)–(4.41), respectively. Expressingthe partial outward currents J(z)+0 by the partial inward currents J(z)−0 , we get
J(z)+0 = P(z)+00 c(z)0 + Q(z)+01 d(z)1= V(z)00c(z)0 + W(z)01 J(z)−0 (4.45)

with the matrices
W(z)01 := Q(z)+01 Q(z)−0j −1

,

V(z)00 := P(z)+00 −W(z)01P(z)−00 ,

where
Q−0j−1 =

 q̌01,1 q̌01,2 q̌01,2
q̌01,2 q̌01,1 q̌01,2
q̌01,2 q̌01,2 q̌01,1

 (4.46)
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with
q̌01,1 = q01,1 + q01,2

q201,1 + q01,1q01,2 − 2q201,2 ,
q̌01,2 = −q01,2

q201,1 + q01,1q01,2 − 2q201,2
and

Qz−0j −1 = ( q̌z01,1 q̌z01,2
q̌z01,2 q̌z01,1

) (4.47)
with

q̌z01,1 = qz01,1
qz01,12 − qz01,22 ,

q̌z01,2 = −qz01,2
qz01,12 − qz01,22 .

4.3 Nodal boundary conditions

So far, expressions are derived to determine the nodal partial currents in terms of the fluxexpansion coefficients. By means of these averaged inwardly and outwardly directed partialcurrents, information between one trigonal prismatic element and its five neighboring nodesis exchanged ("nodal coupling"). We, therefore, recall Section 2.5, in which the approximateboundary conditions for the SP3 and the diffusion approach are derived.
Conferring the deficiencies of homogenization theory outlined in Section 3.1, the interac-tion between adjacent regions has to be described in an equivalent manner to obtain aglobal power distribution with a homogenized reactor representation identical to the cor-responding heterogeneous representation. Without the use of discontinuity factors, thisequivalence may not be guarantied. However, in consequence of the lack of adequate dis-continuity factors for the SP3 transport theory, continuous surface-averaged neutron fluxesare assumed leading to continuous partial currents at nodal interfaces.
Let V j be an adjacent node of V i, then the interface condition (2.56) together with Fick’slaw (3.1) give the continuity of the nth moment neutron currents

ni · ∇Jin(r) = ni · ∇Jjn(r), r ∈ ∂V ij = V i ∩ V j , n = 0, 2, (4.48)
with respect to the SP3 approach. The unit outer normal vector ni of the node V i is directedtowards V j .
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In the case that a boundary of a node V i is part of the outer core boundary, the Marshak-like boundary conditions (2.58)–(2.59) have to be applied. With the SP3 approximationof the partial currents (4.3)–(4.4), the incoming partial currents at the exterior boundary
∂V iext can be expressed as

J̃−,i0 (r) = 14π
ˆ 2π

0
ˆ 0
−1 |µ|Ψb(r, µ, φ)dµdφ, (4.49)

J̃−,i2 (r) = 320π
ˆ 2π

0
ˆ 0
−1 p3(|µ|)Ψb(r, µ, φ)dµdφ, r ∈ ∂V iext . (4.50)

Assuming the particular class of the incident angular flux at the boundary
Ψb(r,Ω) = τ(r)Ψi(r, −Ω), r ∈ ∂V iext , ni ·Ω < 0, (4.51)

with an arbitrary albedo function τ , and ni denoting the outer unit normal vector of V i at
∂V iext , the above conditions (4.49)–(4.50) can be rewritten as

J̃−,i0 (r) = 14π
ˆ 2π

0 τ0(r) ˆ 1
0 µΨi(r, µ, φ)dµdφ,

J̃−,i2 (r) = 320π
ˆ 2π

0 τ2(r)ˆ 1
0 p3(µ)Ψi(r, µ, φ)dµdφ.

Note that τn can optionally be chosen unequally for different moments n = 0, 2. Thus,taking again (4.3)–(4.4) into account, the incoming neutron currents at an exterior boundary
∂V iext of the node V i can be determined via the outgoing partial currents of the same node,i.e.,

J̃−,in (r) = τn(r)̃J+,in (r), r ∈ ∂V iext , n = 0, 2. (4.52)
This relation can also be expressed in terms of the neutron flux. Hence, applying (4.3)–(4.4)to (4.52), the outer boundary conditions

12(1 + τi0)Di0 ni · ∇Φ̃i0(r) = (1− τi0)(− 14Φ̃i0(r) + 316Φ̃i2(r)), (4.53)12(1 + τi2)Di2 ni · ∇Φ̃i2(r) = (1− τi2)( 380Φ̃i0(r)− 2180Φ̃i2(r)), r ∈ ∂V iext , (4.54)
are obtained.
SP3 method – radial treatment: Considering the radial currents, let V il be the adjacentnode of V i which is located in radial direction el referring to the vectors (3.19)–(3.20),
l = 1, ..., 6. The above interface condition (4.48) can be rewritten to describe the continuity
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of the radial neutron currents as follows:
el · ∇Jin(x, y) = el · ∇Jiln(x, y), (x, y) ∈ ∂V iil .

Hence, with (4.2) and particularly regarding the face-averaged incoming partial currents,we obtain
J−,inl = J+,iln l±3,

where l = 1, 2, 3 and l = 4, 5, 6, respectively. Hence, with the vector notation (4.25)–(4.26), the above continuity of the radially incoming and outgoing partial currents can beexpressed via
J−,in = J+,iln , n = 0, 2. (4.55)

With regard to the outer boundary, the albedo function τn of (4.52) is now assumed constanton each exterior nodal face ∂V iext for all V i, which means that τn is to be a stepwise constantfunction along the outer core boundary. Thus, with
τin := τn(r), r ∈ ∂V iext ,

the condition
J−,in = τinJ+,in , n = 0, 2, (4.56)

holds for the face-averaged radial partial currents. Particularly, we have
τin =


1, for reflective boundary conditions0, for vacuum boundary conditions
−1, for zero-flux boundary conditions (4.57)

for every nodal element V i and every energy group g, whose index is omitted here.
SP3 method – axial treatment: Analogously, for an axial upper adjacent node V ia anda lower adjacent node V ib , the interface conditions

Jz−,in± = Jz+,ia/bn∓ (4.58)
and the outer boundary conditions

Jz−,in± = τinJ
z+,i
n∓ (4.59)



4.4 Determination of the nodal neutron source 63
are obtained for the axial partial currents defined in (4.39), where n = 0, 2.
Diffusion method: Considering only the zeroth moment n = 0, both the interface con-ditions (4.55), (4.58) and the exterior boundary conditions (4.56), (4.59) also hold for thepartial currents J(z)±,i0 derived from diffusion theory when applying the conditions (2.61)and (2.62), respectively. The expressions (4.53)–(4.54) accordingly reduce to the outerboundary condition

12(1 + τi0)Di0 ni · ∇Φi0(r) = −14(1− τi0)Φi0(r), r ∈ ∂V iext .

4.4 Determination of the nodal neutron source

Consider the general neutron source (3.5) of the SP3 equations (3.3)–(3.4) in within-groupform
S̃0,g(r) = ∑

g′<g
Σs0,gg′(Φ̃0,g′(r)− 2Φ̃2,g′(r)) + ∑

g′>g
Σs0,gg′(Φ̃0,g′(r)− 2Φ̃2,g′(r))

+ 1
keffχg

G∑
g′=1 νΣf ,g′

(Φ̃0,g′(r)− 2Φ̃2,g′(r)) (4.60)
comprising a downward and an upward scattering term as wells as a term describing theneutron fission. In the course of the iteration process, the particular neutron source termsaveraged over the nodal volumes have to be calculated. Let, therefore,

Φ̃n,g = 1
V

˚
V

Φ̃n,g(r)dV = 1
A4

¨
A4

Φ̃A/B r
n,g (x, y)dA = 1

az

ˆ az2
− az2

Φ̃z
n,g(z)dz, (4.61)

S̃0,g = 1
V

˚
V
S̃0,g(r)dV = 1

A4

¨
A4
S̃A/B r0,g (x, y)dA = 1

az

ˆ az2
− az2

S̃z0,g(z)dz (4.62)
be the formal definitions of the node-averaged neutron flux and source, n = 0, 2, with thenodal height az , the trigonal node area A4 = √3a24 , and the nodal volume V = A4az .According to the source representation of (4.60), the average neutron source

S̃0,g = S̃sd,g + S̃su,g + 1
keffχgS̃f (4.63)

is split into the respective averaged downscattering term
S̃sd,g := ∑

g′<g
Σs0,gg′(Φ̃0,g′ − 2Φ̃2,g′), (4.64)
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the upscattering term
S̃su,g := ∑

g′>g
Σs0,gg′(Φ̃0,g′ − 2Φ̃2,g′), (4.65)

and the fission source term
S̃f := G∑

g′=1 νΣf ,g′(Φ̃0,g′ − 2Φ̃2,g′), (4.66)
which are determined via the average neutron flux moments Φ̃0,g and Φ̃2,g.
SP3 method – radial treatment: In addition to the average neutron source, the coeffi-cients of the source expansions have to be determined. Let, therefore,

s0,g =


s00,g
s01,g
s02,g
s03,g


be the coefficient vector of the radial polynomial source representation (3.25). Applying(3.25) to the radial neutron source (3.10), multiplying by the polynomials hA/Bk of (3.21)–(3.22), and integrating over the respective trigonal area yields expressions for the sourcecoefficients in relation to the neutron flux coefficients cn,g of (3.23)–(3.24), n = 0, 2. Usingthe property of orthogonality of hA/Bk , we obtain

s0,g = ssd,g + ssu,g + 1
keffχgsf (4.67)

with
ssd,g := ∑

g′<g
Σs0,gg′(c0,g′ − 2c2,g′), (4.68)

ssu,g := ∑
g′>g

Σs0,gg′(c0,g′ − 2c2,g′), (4.69)
sf := G∑

g′=1 νΣf ,g′(c0,g′ − 2c2,g′). (4.70)
SP3 method – axial treatment: In z direction, the coefficients

sz0,g =
 sz00,g

sz01,g
sz02,g


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of the respective axial source expansion (3.29) are related to the axial flux coefficients czn,gof (3.28) as follows:

sz0,g = szsd,g + szsu,g + 1
keffχgszf , (4.71)

where
szsd,g := ∑

g′<g
Σs0,gg′(cz0,g′ − 2cz2,g′), (4.72)

szsu,g := ∑
g′>g

Σs0,gg′(cz0,g′ − 2cz2,g′), (4.73)
szf := G∑

g′=1 νΣf ,g′(cz0,g′ − 2cz2,g′). (4.74)
Diffusion method: Considering the neutron source (3.7) of the diffusion equation (3.6)

S0,g(r) = ∑
g′<g

Σs0,gg′Φ0,g′(r) + ∑
g′>g

Σs0,gg′Φ0,g′(r) + 1
keffχg

G∑
g′=1 νΣf ,g′Φ0,g′(r),

we have
S0,g = ∑

g′<g
Σs0,gg′Φ0,g′︸ ︷︷ ︸=:Ssd,g

+∑
g′>g

Σs0,gg′Φ0,g′︸ ︷︷ ︸=:Ssu,g
+ 1
keffχg

G∑
g′=1 νΣf ,g′Φ0,g′︸ ︷︷ ︸=:Sf

. (4.75)

for the respective average source. According to the derivation above, the polynomial diffu-sion theory source coefficients are approximated as follows:
s(z)0,g = ∑

g′<g
Σs0,gg′c(z)0,g′︸ ︷︷ ︸=:s(z)

sd,g

+∑
g′>g

Σs0,gg′c(z)0,g′︸ ︷︷ ︸=:s(z)
su,g

+ 1
keffχg

G∑
g′=1 νΣf ,g′c(z)0,g′︸ ︷︷ ︸=:s(z)

f

. (4.76)

4.5 Determination of the nodal transverse neutron leakage

In consequence of the decoupling of the solution space of the DYN3D SP3 transport anddiffusion method into the radial plane and the axial direction by transverse integration, theneutron leakage in the respective transverse direction or plane is described by the SP3transverse leakages (3.11) and (3.14) as well as the terms (3.15) and (3.16) in case of thediffusion approach. In addition to the scattering and fission terms of Section 4.4, thesenodal transverse leakages are formally treated as neutron sources as well.
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In Section 3.5, equations (3.26) and (3.30), the axial and radial neutron leakages are ap-proximated by polynomials of maximum order two. It is shown in the following that thepolynomial coefficients can be determined by the average transverse leakages of the con-sidered node and its respective radial and axial nodal neighbors. These average transverseleakages can then be represented in terms of face-averaged partial currents, which play acentral role in the DYN3D inner-iteration algorithm.
SP3 method – radial treatment: Hence, considering the SP3 approach, the averagedneutron leakage of the node V i transverse to the radial plane is obtained by integrating
L̃r,in of (3.11) over the trigonal area Ai4 of the node. Applying the divergence theorem to
the vector field Fz :=

 00
∂
∂z Φ̃i

n

 and Fick’s law (3.1) yields
L̃
r,i
n = 4√33(ai)2

¨
Ai4
L̃r,in (x, y)dA

def.(3.11)= − 4√3Di
n3(ai)2aiz
˚

V i

∂2
∂z2 Φ̃i

n(x, y, z)dV
= − 4√3Di

n3(ai)2aiz
˚

V i
∇ · Fz dV

div.thm.= − 4√3Di
n3(ai)2aiz
‹
∂V i

Fz · n dS
= − 4√3Di

n3(ai)2aiz
(¨

Ai4,z= aiz2
+¨

Ai4,z=− aiz2
)
∂
∂z Φ̃i

n(x, y, z)dA
Fick’slaw (3.1)= 4√33(ai)2aiz

(¨
Ai4,z= aiz2

+¨
Ai4,z=− aiz2

)
J̃z,in (x, y, z)dA

= 1
aiz

(
Jz+,in+ − Jz−,in+ + Jz+,in− − J

z−,i
n−
)

= 1
aiz

2∑
l=1 (Jz+,in − Jz−,in )l, n = 0, 2, (4.77)

where J̃z,in (r) =
 001

 · J̃in(r). Evidently, like the partial currents Jz±,in± of (4.21)–(4.24),
the average transverse leakages L̃r,in are independent of the nodal orientations A/B. Next,consider a node V i and its in direction el adjacent node V il . In Figure 4.3, the locationsof the respective radial nodal faces l are illustrated in consideration of the different nodalorientations A and B. See further the vectors given in (3.19)–(3.20) to recall the unit outernormals el of the faces l. Assuming the same continuity requirements at material interfaces
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Figure 4.3: Location of the nodal faces l of adjacent nodes with the respective orientations
A and B.

for the second derivative of the flux with respect to the coordinate z as for the flux itself,the general relations
∂2
∂z2 Φ̃i

n(r) = ∂2
∂z2 Φ̃il

n(r), (4.78)
Di
n ni · ∇

( ∂2
∂z2 Φ̃i

n(r)) = Dil
n ni · ∇

( ∂2
∂z2 Φ̃il

n(r)), r = (x, y, z) ∈ ∂V iil , (4.79)
hold according to the flux interface conditions (2.55) and (2.56) for n = 0, 2. Hence, with(3.11) and the assumption of an identical node height aiz = ailz , the interface conditions

1
Di
n
L̃r,inl (x, y) = 1

Diln
L̃r,iln l±3(x, y), (4.80)

el · ∇L̃r,inl (x, y) = −el±3 · ∇L̃r,iln l±3(x, y), (x, y) ∈ ∂V iil , n = 0, 2, (4.81)
result from the above relations (4.78)–(4.79) for the transverse leakages L̃r,inl at the in-terfaces l between two adjacent nodal elements V i and V il , l = 1, 2, 3 and l = 4, 5, 6,respectively. Let now the point with the coordinates (xl, yl) be the center of the nodalface l, then the occurring derivatives can be approximated by the respective differencequotients

el · ∇L̃r,inl (x, y)∣∣∣(x,y)=(xl,yl) ≈ L̃
r,i
nl − L̃

r,i
n√36 ai , (4.82)

where L̃r,inl denotes the mean transverse leakage of the faces l. From (4.81) and (4.82), weconsequently get
L̃
r,i
nl − L̃

r,i
n = −(L̃r,iln l±3 − L̃r,iln

)
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and, with (4.80) eventually,
L̃
r,i
nl = Di

n

Di
n +Diln

(
L̃
r,i
n + L̃

r,il
n
)
, l = 1, ..., 6, n = 0, 2. (4.83)

In case the nodal boundary ∂V iext coincides the exterior boundary, the Marshak-like bound-ary conditions (2.58)–(2.59) are considered taking the particular class (4.51) of the incidentflux into account. Assuming again the same conditions for the second derivative of the flux
∂2
∂z2 Φ̃i

n as for the flux itself, the outer boundary conditions (4.53)–(4.54) can be rewrittenwith respect to the transverse leakages in an analogous manner to the aforementionedinterface conditions. Thus, for a point (x, y) ∈ ∂V iext on the nodal face l at the exteriorboundary, the following outer boundary transverse-leakage conditions hold:
12(1 + τi0) el · ∇L̃r,i0l (x, y) = (1− τi0)(− 14Di0 L̃

r,i0l (x, y) + 316Di2 L̃
r,i2l (x, y)),12(1 + τi2) el · ∇L̃r,i2l (x, y) = (1− τi2)( 380Di0 L̃

r,i0l (x, y)− 2180Di2 L̃
r,i2l (x, y)).

According to (4.82), the occurring derivatives are approximated, and we get
√3
ai (1 + τi0)(L̃r,i0l − L̃r,i0 ) = (1− τi0)(− 14Di0 L̃

r,i0l + 316Di2 L̃
r,i2l ),

√3
ai (1 + τi2)(L̃r,i2l − L̃r,i2 ) = (1− τi2)( 380Di0 L̃

r,i0l − 2180Di2 L̃
r,i2l ).

With
α in := √3

ai (1 + τin),
βikn := 14Di

k
(1− τin),

γi := α i0α i2 + 2120α i0βi22 + α i2βi00 + 1516βi00βi22,
the average transverse leakage from an exterior nodal face l can eventually be determinedvia

L̃
r,i0l = 1

γi
(
α i0(α i2 + 2120βi22)L̃r,i0 + 34α i2βi20L̃r,i2 ), (4.84)

L̃
r,i2l = 1

γi
( 320α i0βi02L̃r,i0 + α i2(α i0 + βi00)L̃r,i2 ). (4.85)

As stated initially in this section, the leakage transversal to the radial plane is representedby the polynomial expansion approach (3.26). Hence, four polynomial leakage coefficients
link , k = 0, ..., 3, have to be determined for both moment indices n = 0, 2. For a node with
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the orientation A or B, we have

L̃
r,i
n = 4√33(ai)2 3∑

k=0 l
i
nk

ˆ √36 ai
−
√33 ai
ˆ √33 x+ 13ai
−
√33 x− 13ai

hAk (x, y)dy dx
= 4√33(ai)2 3∑

k=0 l
i
nk

ˆ √33 ai
−
√36 ai
ˆ −√33 x+ 13ai
√33 x− 13ai

hBk (x, y)dy dx,
L̃
r,i
n1 = 1

ai
3∑

k=0 l
i
nk

ˆ ai2
− ai2

hAk (√36 a, y)dy,
L̃
r,i
n 2/3 = 1

ai
3∑

k=0 l
i
nk

ˆ √36 ai
−
√33 ai

hAk (x, g2/3(x))√1 + ( ddx g2/3(x))2dx,
L̃
r,i
n4 = 1

ai
3∑

k=0 l
i
nk

ˆ ai2
− ai2

hBk (−√36 a, y)dy,
L̃
r,i
n 5/6 = 1

ai
3∑

k=0 l
i
nk

ˆ √33 ai
−
√36 ai

hBk (x, g5/6(x))√1 + ( ddx g5/6(x))2dx,
where gl(x), l = 2, 3, 5, 6, refers to the linear functions describing the radial faces l (seeequations (4.5)–(4.8)). Analogously to the neutron currents, the transverse neutron leakagescan be expressed independently of the nodal orientation A/B. With the vectors

L̃
r,i
n :=


L̃
r,i
n

L̃
r,i
n1
L̃
r,i
n2
L̃
r,i
n3

 ≡


L̃
r,i
n

L̃
r,i
n4
L̃
r,i
n5
L̃
r,i
n6


and

lin =


lin0
lin1
lin2
lin3

 ,

the linear system of equations
N0 0 0 0
N0 √36 N1 0 16N3 −N4
N0 −

√312N1 −14N2 16N3 −N4
N0 −

√312N1 14N2 16N3 −N4

 lin =


1 0 0 01 √2 0 √1531 −
√22 −

√62 √1531 −
√22 √62 √153

 lin = L̃
r,i
n
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holds for n = 0, 2. Thus,

lin =


1
N0 L̃

r,i
n2√33N1 (2L̃r,in1 − L̃r,in2 − L̃r,in3)2

N2 (L̃r,in3 − L̃r,in2)13( 16N3−N4) (L̃r,in1 + L̃
r,i
n2 + L̃

r,i
n3 − 3L̃r,in )

 =


L̃
r,i
n

√26 (2L̃r,in1 − L̃r,in2 − L̃r,in3)
√66 (L̃r,in3 − L̃r,in2)

√1515 (L̃r,in1 + L̃
r,i
n2 + L̃

r,i
n3 − 3L̃r,in )

 .

(4.86)
In summary, taking L̃r,in of (4.77) as well as L̃r,inl of (4.83) in case of an interfacial boundaryor (4.84)–(4.85) in case of an exterior into account, we see from (4.86) that the transverseleakage of a node V i can be approximated by the axially incoming and outgoing partialcurrents of the element itself together with those of the respective radially adjacent nodes.
SP3 method – axial treatment: For the z direction, the neutron leakage into the radialplane is to be considered. With L̃z,in of (3.14), the average leakage perpendicular to theaxial direction is obtained in an analogous manner to the derivation of (4.77) as follows:

L̃
z,i
n = 1

aiz

ˆ aiz2
− aiz2

L̃z,in (z)dz
def.(3.14)= − 4√3Di

n3(ai)2aiz
˚

V i

( ∂2
∂x2 + ∂2

∂y2
)Φ̃i

n(x, y, z)dV
div.thm.= − 4√3Di

n3(ai)2aiz
‹
∂V i

(Fx + Fy) · n dS
Fick’slaw (3.1)= 4√33(ai)2aiz

(¨
Ai1

+¨
Ai2

+¨
Ai3
)(

J̃x,in (x, y, z) + J̃y,in (x, y, z))dA
= 4√33ai 3∑

l=1
(
J+,inl − J

−,i
nl
)

= 4√33ai 3∑
l=1 (J+,in − J−,in )l, n = 0, 2, (4.87)

where Fx :=


∂
∂x Φ̃i

n00
, Fy :=

 0
∂
∂y Φ̃i

n0
 as well as J̃x,in (r) =

 100
 · J̃in(r) and J̃y,in (r) =

 010
 · J̃in(r). The denotation Ail, l = 1, 2, 3, generally refers to the three surface areas

of the node V i parallelly aligned to the z coordinate axis (recall Figure 3.3). By reasonof the equivalence relation of the radial partial currents (4.26), also L̃
z,i
n is independentof the nodal orientation. We now define again an axial upper adjacent node V ia and a
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lower adjacent node V ib relative to the considered node V i. Assuming also here the samecontinuity conditions at axial interfaces for the second derivatives of the flux as for the fluxitself, the relations( ∂2

∂x2 + ∂2
∂y2

)Φ̃i
n(r) = ( ∂2

∂x2 + ∂2
∂y2

)Φ̃ia/b
n (r),

Di
n ni · ∇

( ∂2
∂x2 + ∂2

∂y2
)Φ̃i

n(r) = Dia/b
n ni · ∇

( ∂2
∂x2 + ∂2

∂y2
)Φ̃ia/b

n (r), r = (x, y, z) ∈ ∂V iia/b ,

and consequently, with (3.14) and the assumption ai = aia/b ,
1
Di
n
L̃
z,i
n a/b = 1

Dia/b
n

L̃
z,ia/b
nb/a, (4.88)ddz L̃z,in (z)∣∣∣

z=± aiz2 = ddz L̃z,ia/bn (z)∣∣∣
z=∓ aia/bz2 (4.89)

are obtained according to (2.55)–(2.56) for n = 0, 2, where
L̃
z,i
n a/b := L̃z,in (±aiz2 ) (4.90)

denotes the mean transverse leakage at the upper (a) and lower (b) nodal interface. Withthe approximation of the occurring derivative
ddz L̃z,in (z)∣∣∣

z=± aiz2 ≈
L̃
z,i
n a/b − L̃

z,i
n

±aiz2 , (4.91)
we get

L̃
z,i
n a/b − L̃

z,i
n = −(L̃z,ia/bnb/a − L̃

z,ia/b
n

)
from (4.89) and eventually, with (4.88),

L̃
z,i
n a/b = Di

n

Di
n +Dia/b

n

(
L̃
z,i
n + L̃

z,ia/b
n

)
, n = 0, 2. (4.92)

In the case that the upper or lower nodal boundary ∂V iext is part of the exterior boundary,the relations (4.53)–(4.54) derived from the Marshak-like boundary conditions have to beapplied analogously to the lateral case. With the aforementioned assumptions, the outerboundary transverse-leakage conditions
12(1 + τi0)(± ddz L̃z,i0 (z))∣∣∣

z=± aiz2 = (1− τi0)(− 14Di0 L̃
z,i0 (±aiz2 ) + 316Di2 L̃

z,i2 (±aiz2 )),
12(1 + τi2)(± ddz L̃z,i2 (z))∣∣∣

z=± aiz2 = (1− τi2)( 380Di0 L̃
z,i0 (±aiz2 )− 2180Di2 L̃

z,i2 (±aiz2 ))
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hold with a stepwise constant albedo function τin. Hence, using (4.90) and the approxima-tion (4.91), we obtain
1
aiz

(1 + τi0)(L̃z,i0a/b − L̃z,i0 ) = (1− τi0)(− 14Di0 L̃
z,i0a/b + 316Di2 L̃

z,i2a/b),1
aiz

(1 + τi2)(L̃z,i2a/b − L̃z,i2 ) = (1− τi2)( 380Di0 L̃
z,i0a/b − 2180Di2 L̃

z,i2a/b).
Finally, with

αz,in := 1
aiz

(1 + τin),
βikn := 14Di

k
(1− τin),

γz,i := αz,i0 αz,i2 + 2120αz,i0 βi22 + αz,i2 βi00 + 1516βi00βi22,
the average transverse leakage of an axial outer node boundary is determined via

L̃
z,i0a/b = 1

γz,i
(
αz,i0 (αz,i2 + 2120βi22)L̃z,i0 + 34αz,i2 βi20L̃z,i2 ), (4.93)

L̃
z,i2a/b = 1

γz,i
( 320αz,i0 βi02L̃z,i0 + αz,i2 (αz,i0 + βi00)L̃z,i2 ). (4.94)

The leakage transversal to the axial direction is approximated by the polynomial approach(3.30). Considering
L̃
z,i
n = 1

aiz

2∑
k=0 l

z,i
nk

ˆ aiz2
− aiz2

hzk (z)dz,
the occurring leakage coefficients

lz,in =
 lz,in0

lz,in1
lz,in2


are obtained from the simple linear system of equations 1 0 01 √3 √51 −

√3 √5
 lz,in =


L̃
z,i
n

L̃
z,i
na

L̃
z,i
nb

 ,
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which yields the relations

lz,in =


L̃
z,i
n

√36 (L̃z,ina − L̃z,inb)
√510 (L̃z,ina + L̃

z,i
nb − 2L̃z,in )

 , n = 0, 2. (4.95)
Hence, the coefficients of the transverse leakage of a node V i with respect to the z directioncan be expressed by the terms (4.92) and (4.93)–(4.94) in case of a nodal interface andan exterior boundary, respectively. Finally, with (4.87), the leakage transversal to theaxial direction is approximated by the incoming and outgoing radial partial currents of theelement itself and its upper and lower adjacent nodes.
Diffusion method: Taking the diffusion theory instead of the SP3 approach into con-sideration, the polynomial transverse-leakage coefficients l(z),i0 can be determined from thesame relations (4.86) and (4.95), respectively. The average nodal transverse leakages Lr,i0and Lz,i0 are calculated from the perpendicular partial currents via (4.77) and (4.87), whereasthe average transverse leakages at nodal interfaces Lr,i0l , l = 1, 2, 3, and Lz,i0a/b are obtainedfrom (4.83) and (4.92). However, the expressions for the average transverse leakages fromexterior boundaries simplify to

Lr,i0l = α i0
α i0 + βi00L

r,i0 ,
Lz,i0a/b = αz,i0

αz,i0 + βi00L
z,i0

with
α i0 := √3

ai (1 + τi0),
αz,i0 := 1

aiz
(1 + τi0),

βi00 := 14Di0 (1− τi0).
4.6 Determination of the nodal neutron flux

To compute the nodal power distribution within the reactor core in the end of the neutroniccalculation via equation (4.1), the node-averaged fluxes Φ0 have to be known for each nodeand each energy group. Regarding the SP3 transport method, this means that the modified
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nodal flux moments Φ̃n, n = 0, 2, have to be determined as we have
Φ0 = Φ̃0 − 2Φ̃2. (4.96)

4.6.1 Formal derivation of the node-averaged flux and the polynomial flux
coefficients

Consider, therefore, the three-dimensional system of SP3 equations (3.3)–(3.4), which hasto be integrated over the node volume V . Applying the divergence theorem, we get
−D0

‹
∂V

n · ∇Φ̃0(r)dS + Σr0˚
V

Φ̃0(r)dV − 2Σr0˚
V

Φ̃2(r)dV =˚
V
S̃0(r)dV ,

−D2
‹
∂V

n · ∇Φ̃2(r)dS − 25Σr0˚
V

Φ̃0(r)dV + (45Σr0 + Σr2)˚
V

Φ̃2(r)dV
= −25

˚
V
S̃0(r)dV .

With the node-averaged terms Φ̃n of (4.61) and S̃0 of (4.62) as well as by the use of Fick’slaw (3.1), the relations
1
V

‹
∂V

n · J̃0(r)dS + Σr0Φ̃0 − 2Σr0Φ̃2 = S̃0,1
V

‹
∂V

n · J̃2(r)dS − 25Σr0Φ̃0 + (45Σr0 + Σr2)Φ̃2 = −25 S̃0
are obtained. The occurring surface integrals can be expressed in terms of the averagedvalues of the partial inward and outward currents at the nodal faces (cf. (4.9)–(4.24) withthe overbar and tilde omitted). Thus, we have

1
V

‹
∂V

n · J̃n(r)dS = 4√33a2az
(
aaz

3∑
l=1 (J+nl − J−nl) + √34 a2((Jz+n+ − Jz−n+) + (Jz+n− − Jz−n−)))

= 4√33a 3∑
l=1 (J+n − J−n )l + 1

az

2∑
l=1 (Jz+n − Jz−n )l, n = 0, 2,

which yields the integral balance equations
4√33a 3∑

l=1 (Jnet0 )l + 1
az

2∑
l=1 (Jz net0 )l + Σr0Φ̃0 − 2Σr0Φ̃2 = S̃0, (4.97)

4√33a 3∑
l=1 (Jnet2 )l + 1

az

2∑
l=1 (Jz net2 )l − 25Σr0Φ̃0 + (45Σr0 + Σr2)Φ̃2 = −25 S̃0. (4.98)
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Conferring (4.2) and using the algebraic expressions (4.35) and (4.38), the net currents inthe above equations (4.97)–(4.98) are given via

Jnet0 = J+0 − J−0 = V00c0 + V02c2 + (W01 − I)J−0 + W02J−2 , (4.99)
Jnet2 = J+2 − J−2 = V20c0 + V22c2 + W21J−0 + (W22 − I)J−2 (4.100)

and
Jz net0 = Jz+0 − Jz−0 = Vz00cz0 + Vz02cz2 + (Wz01 − I)Jz−0 + Wz02Jz−2 , (4.101)
Jz net2 = Jz+2 − Jz−2 = Vz20cz0 + Vz22cz2 + Wz21Jz−0 + (Wz22 − I)Jz−2 , (4.102)

where I denotes the corresponding identity matrix. Hence, integrating equations (3.3)–(3.4)over the node volume yields the nodal neutron balance equations Φ̃0Φ̃2
 = 1Σr0Σr2

( 45Σr0 + Σr2 2Σr025Σr0 Σr0
)

×

 S̃0 − 4√33a ∑3
l=1(Jnet0 )l − 1

az
∑2

l=1(Jz net0 )l
−25 S̃0 − 4√33a ∑3

l=1(Jnet2 )l − 1
az
∑2

l=1(Jz net2 )l
 , (4.103)

where the node-averaged flux moments Φ̃n can be determined from the flux coefficients cnand czn, the incoming currents J−n and Jz−n as well as from the node-averaged neutron source
S̃0.
SP3 method – radial treatment: Besides the average neutron flux moments, also thecoefficients of the series expansions of the neutron flux have to be determined. Considertherefore the radial plane at first. Applying the expansion approaches of the flux (3.23),(3.24), the source (3.25), and the transverse-leakage terms (3.26) to the inhomogeneoussystem of SP3 equations (3.8)–(3.9), multiplying by hA/Bk of (3.21) and (3.22), and integratingover the respective trigonal node area, relations between the flux coefficients cnk , thesource coefficients s0k , and the transverse-leakage coefficients lnk , n = 0, 2, k = 0, ..., 3,are obtained. Using the property of orthogonality of the polynomials hA/Bk , we have

Σr0(c0k − 2c2k ) = s0k − l0k + δ0k 4D0
a2 N3

N0 c03
= s0k − l0k + δ0k 16√15D0

a2 c03,
−25Σr0c0k + (45Σr0 + Σr2)c2k = −25s0k − l2k + δ0k 4D2

a2 N3
N0 c23

= −25s0k − l2k + δ0k 16√15D2
a2 c23,
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where δ0k denotes the Kronecker delta. Hence, the radial flux coefficients can be deter-mined via(
c0k
c2k

) = 1Σr0Σr2
( 45Σr0 + Σr2 2Σr025Σr0 Σr0

)(
s0k − l0k + δ0k 16√15D0

a2 c03
−25s0k − l2k + δ0k 16√15D0

a2 c23
)
, (4.104)

k = 0, ..., 3.
SP3 method – axial treatment: Accordingly, we obtain the coefficients(

cz0k
cz2k

) = 1Σr0Σr2
( 45Σr0 + Σr2 2Σr025Σr0 Σr0

) sz0k − lz0k + δ0k 12√5D0
a2
z

cz02
−25sz0k − lz2k + δ0k 12√5D2

a2
z

cz22
 , (4.105)

k = 0, 1, 2,
for the axial series expansion of the neutron flux (3.28).
Diffusion method: With regard to diffusion theory, the three-dimensional diffusion equa-tion (3.6) integrated over the node volume V gives an integral balance relation, which canbe rearranged to the equation for the node-averaged neutron flux

Φ0 = 1Σr0
(
S0 − 4√33a 3∑

l=1 (Jnet0 )l − 1
az

2∑
l=1 (Jz net0 )l), (4.106)

representing the diffusion-theory equivalent to (4.103), with the net currents
J(z) net0 := J(z)+0 − J(z)−0 = V(z)00c(z)0 + (W(z)01 − I)J(z)−0 .

Note that the identity matrices I have different sizes for the above radial and axial equa-tions. For the flux expansion coefficients, the following relations hold:
c0k = 1Σr0

(
s0k − l0k + δ0k 16√15D0

a2 c03
)
, k = 0, ..., 3, (4.107)

cz0k = 1Σr0
(
sz0k − lz0k + δ0k 12√5D0

a2
z

cz02
)
, k = 0, 1, 2. (4.108)

4.6.2 Exponential weighting of the polynomial flux coefficients

From Section 4.4, we infer that the calculation of the average neutron source S̃0,g of (4.63)via (4.64)–(4.66) is based on the node-average fluxes Φ̃n,g, which means that the exponentialfunctions of the flux expansions (3.23), (3.24), and (3.28) are indirectly considered. However,the determination of the neutron source coefficients s0,g of (4.67) and sz0,g of (4.71) via
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(4.68)–(4.70) and (4.72)–(4.74) solely takes the polynomial part, i.e., only the coefficients
cn,g and czn,g of the flux expansion, into account.
SP3 method – radial treatment: To overcome this limitation, the radial flux coefficients
cn,g are additionally updated involving the exponential impact as follows:

c∗nk = 4√33a2
ˆ √36 a
−
√33 a
ˆ √33 x+ 13a
−
√33 x− 13a

hAk (x, y)Φ̃A r
n (x, y)dy dx

= 4√33a2
ˆ √33 a
−
√36 a
ˆ −√33 x+ 13a
√33 x− 13a

hBk (x, y)Φ̃B r
n (x, y)dy dx, k = 0, ..., 3. (4.109)

Hence, applying (4.32)–(4.33), the matrix equation
c∗n = cn + MT

n1d1 + MT
n2d2= cn − Tn0c0 − Tn2c2 + Un1J−0 + Un2J−2 (4.110)

is obtained with
Unj := MT

n1QI0j + MT
n2QI2j , (4.111)

Tnm := Un1P−0m + Un2P−2m, n,m = 0, 2, j = 1, 2,
and

Mnj =
 mnj,0 2mnj,1 0 mnj,3

mnj,0 −mnj,1 −mnj,2 mnj,3
mnj,0 −mnj,1 mnj,2 mnj,3

 , (4.112)
where

mnj,0 = 4√33 N0εnj (ωj,1 − ωj,21) = 4√33 εnj (ωj,1 − ωj,21), (4.113)
mnj,1 = 4√33

√312 N1εnj (ωj,1 − ωj,22 + ωj,31) = 2√63 εnj (ωj,1 − ωj,22 + ωj,31),
mnj,2 = 4√33 14N2εnj (ωj,1 − ωj,22 + ωj,31) = 2√2εnj (ωj,1 − ωj,22 + ωj,31),
mnj,3 = 4√33 εnj

(16N3(ωj,1 − ωj,23 + ωj,32 − 5ωj,4)−N4(ωj,1 − ωj,21))
= 4√53 εnj

(2(ωj,1 − ωj,23 + ωj,32 − 5ωj,4)− (ωj,1 − ωj,21))
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holds with the exponential terms
ωj,1 = 1

aBj
exp (√36 aBj

)
,

ωj,21 = 2√33a2B2
j

(exp(√36 aBj
)
− exp (− √33 aBj

))
,

ωj,22 = 4√33a2B2
j

(2 exp (√36 aBj
) + exp (− √33 aBj

))
,

ωj,23 = 2√33a2B2
j

(5 exp (√36 aBj
)
− 2 exp (− √33 aBj

))
,

ωj,31 = 8
a3B3

j

(exp(√36 aBj
)
− exp (− √33 aBj

))
,

ωj,32 = 8
a3B3

j

(3 exp (√36 aBj
) + 2 exp (− √33 aBj

))
,

ωj,4 = 16√33a4B4
j

(exp(√36 aBj
)
− exp (− √33 aBj

))
.

Note that the structural composition of the matrices Mnj is identical to the matrix compo-sitions of P±nm by reason of the polynomial structure of hA/Bk (compare (3.21), (3.22)).
SP3 method – axial treatment: In axial direction, the update of the polynomial fluxcoefficients czn,g is analogously realized via

cz∗nk = 1
az

ˆ az2
− az2

hzk (z)Φ̃z
n(z)dz, k = 0, 1, 2. (4.114)

Hence, we have
cz∗n = czn − Tzn0cz0 − Tzn2cz2 + Uz

n1Jz−0 + Uz
n2Jz−2 (4.115)

with the respective matrices
Uz
nj := Mz T

n1 QzI0j + Mz T
n2 QzI2j , (4.116)

Tznm := Uz
n1Pz−0m + Uz

n2Pz−2m, n,m = 0, 2, j = 1, 2,
and

Mz
nj = ( mz

nj,0 mz
nj,1 mz

nj,2
mz
nj,0 −mz

nj,1 mz
nj,2

)
, (4.117)
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where

mz
nj,0 = εnjωzj,11, (4.118)

mz
nj,1 = √3εnj (ωzj,12 − ωzj,21),

mz
nj,2 = √5εnj (ωzj,11 − ωzj,22 + ωzj,3),

and
ωzj,11 = 1

azBj

(exp(12azBj)− exp (− 12azBj)
)
,

ωzj,12 = 1
azBj

(exp(12azBj) + exp (− 12azBj)
)
,

ωzj,21 = 2
a2
zB2

j

(exp(12azBj)− exp (− 12azBj)
)
,

ωzj,22 = 6
a2
zB2

j

(exp(12azBj) + exp (− 12azBj)
)
,

ωzj,3 = 12
a3
zB3

j

(exp(12azBj)− exp (− 12azBj)
)
.

Diffusion method: With respect to diffusion theory, the exponentially weighted updateof the polynomial flux coefficients reduces to
c(z)∗0 = c(z)0 − T(z)00c(z)0 + U(z)01J(z)−0 , (4.119)

where the occurring matrices are defined as
U(z)01 := M(z)T01 Q(z)I0j ,
T(z)00 := U(z)01P(z)−00

with M(z)01 of (4.112), (4.117) and its components m(z)01,k recalling that ε01 = 1.
4.6.3 Explicit formulation of the node-averaged flux

A closer inspection of the relations (4.61) and (4.109), (4.114) for k = 0 reveals the identities
c∗n0 ≡ cz∗n0 ≡ Φ̃n, n = 0, 2,

based on the fact that hA/B0 (x, y) = h0(z) = 1. From this it follows that the expression (4.103)derived to calculate the average neutron flux moments Φ̃0 and Φ̃2 represents only an implicitformula since the determination of the neutron net currents Jnet0 and Jz net0 requires the zerothflux coefficients cn0 and czn0 (compare (4.99)–(4.102)). In the following, a respective explicit
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computation approach is derived, which significantly improves the convergence behaviorof the iterative procedure and reduces the computation time. However, the clear matrixequation structure has to be broken.
SP3 method – radial treatment: Substituting Φ̃0 = c∗00 and Φ̃2 = c∗20 in (4.110) gives

Φ̃0 = c00 +m01,0(− r00,0c00 − r00,3c03 − r02,0c20 − r02,3c23 + q̂01 3∑
l=1 J

−0l + q̂02 3∑
l=1 J

−2l)
+m02,0(− r20,0c00 − r20,3c03 − r22,0c20 − r22,3c23 + q̂21 3∑

l=1 J
−0l + q̂22 3∑

l=1 J
−2l),

(4.120)
Φ̃2 = c20 +m21,0(− r00,0c00 − r00,3c03 − r02,0c20 − r02,3c23 + q̂01 3∑

l=1 J
−0l + q̂02 3∑

l=1 J
−2l)

+m22,0(− r20,0c00 − r20,3c03 − r22,0c20 − r22,3c23 + q̂21 3∑
l=1 J

−0l + q̂22 3∑
l=1 J

−2l)
(4.121)

with mnj,0 of (4.113) and
q̂nj := qInj,1 + 2qInj,2,

rnm,0 := 3(q̂n1p0m,0 + q̂n2p2m,0),
rnm,3 := 3(q̂n1p−0m,3 + q̂n2p−2m,3), n,m = 0, 2, j = 1, 2,

where pnm,0, p−nm,3, qInj,1, and qInj,2 are entries of the matrices P−nm of (4.28) and QI
nj of(4.34). Note that only the first and the last components of the respective flux coefficientvectors cn appear in the above equations, which can be traced back to the fact that thestructure of the matrices QI

n′jP−nm is identical to the matrix structures of P±nm with vanishingsums of the middle columns (see (4.28)). With the matrix
R = ( 1−m01,0r00,0 −m02,0r20,0 −m01,0r02,0 −m02,0r22,0

−m21,0r00,0 −m22,0r20,0 1−m21,0r02,0 −m22,0r22,0
)

and its determinant
det R = (1−m01,0r00,0 −m02,0r20,0)(1−m21,0r02,0 −m22,0r22,0)

− (m01,0r02,0 +m02,0r22,0)(m21,0r00,0 +m22,0r20,0),
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the coefficients c00 and c20 can be extracted from (4.120)–(4.121) as follows:(

c00
c20

) = 1det RR−1
 Φ̃0 −m01,0b0 −m02,0b2Φ̃2 −m21,0b0 −m22,0b2

 ,

where
b0 := −r00,3c03 − r02,3c23 + q̂01 3∑

l=1 J
−0l + q̂02 3∑

l=1 J
−2l,

b2 := −r20,3c03 − r22,3c23 + q̂21 3∑
l=1 J

−0l + q̂22 3∑
l=1 J

−2l.
Finally, with δnk denoting the Kronecker delta, we obtain

cn0 = m̂n00Φ̃0 + m̂n20Φ̃2 + ∑
k=0,2

(
m̂nk3ck3 + ĥnk

3∑
l=1 J

−
kl
)
, n = 0, 2, (4.122)

with
m̂nk0 := 1det R(δnk + (−1)δnk (mn′1,0r0k ′,0 +mn′2,0r2k ′,0)),

where
n, n′, k, k ′ = 0, 2 with

n′ = n, k ′ = k, if n = k

n′ 6= n, k ′ 6= k, otherwise (4.123)
and

m̂nk3 := m̂n00(m01,0r0k,3 +m02,0r2k,3) + m̂n20(m21,0r0k,3 +m22,0r2k,3),
ĥnk := −m̂n00(m01,0q̂0k +m02,0q̂2k )− m̂n20(m21,0q̂0k +m22,0q̂2k ).

SP3 method – axial treatment: Analogously, the relation(
cz00
cz20

) = 1det RzR
z−1
 Φ̃0 −mz01,0bz0 −mz02,0bz2Φ̃2 −mz21,0bz0 −mz22,0bz2


describing the respective axial case can be derived, which gives the expression

czn0 = m̂z
n00Φ̃0 + m̂z

n20Φ̃2 + ∑
k=0,2

(
m̂z
nk2czk2 + ĥznk (Jz−k+ + Jz−k−)), n = 0, 2, (4.124)
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for the axial zeroth flux coefficients. Here, we have
Rz = ( 1−mz01,0rz00,0 −mz02,0rz20,0 −mz01,0rz02,0 −mz02,0rz22,0

−mz21,0rz00,0 −mz22,0rz20,0 1−mz21,0rz02,0 −mz22,0rz22,0
)
,

bz0 := −rz00,2cz02 − rz02,2cz22 + q̂z01(Jz−0+ + Jz−0− ) + q̂z02(Jz−2+ + Jz−2− ),
bz2 := −rz20,2cz02 − rz22,2cz22 + q̂z21(Jz−0+ + Jz−0− ) + q̂z22(Jz−2+ + Jz−2− ),

and
q̂znj := qzInj,1 + qzInj,2,

rznm,0 := 2(q̂zn1pz0m,0 + q̂zn2pz2m,0),
rznm,2 := 2(q̂zn1pz−0m,2 + q̂zn2pz−2m,2), n,m = 0, 2, j = 1, 2,

with pznm,0 and pz−nm,2 of (4.40), qzInj,1 and qzInj,2 of (4.42), and mz
nj,0 of (4.118), as well as

m̂z
nk0 := 1det Rz

(
δnk + (−1)δnk (mz

n′1,0rz0k ′,0 +mz
n′2,0rz2k ′,0))

allowing for (4.123), and
m̂z
nk2 := m̂z

n00(mz01,0rz0k,2 +mz02,0rz2k,2) + m̂z
n20(mz21,0rz0k,2 +mz22,0rz2k,2),

ĥznk := −m̂z
n00(mz01,0q̂z0k +mz02,0q̂z2k )− m̂z

n20(mz21,0q̂z0k +mz22,0q̂z2k ).
Radial/axial combination: Considering now all net currents (4.99)–(4.102), with

gnkj := 3vnk,j , j = 0, 3,
ŵnk := (wnk,1 + 2wnk,2)− δnk ,
gznkj := 2vznk,j , j = 0, 2,
ŵz
nk := (wz

nk,1 + wz
nk,2)− δnk ,

the sums of the radial and axial net currents can now be expressed as
3∑
l=1 (Jnet

n )l = ∑
k=0,2

(
gnk0ck0 + gnk3ck3 + ŵnk

3∑
l=1 J

−
kl
)
, (4.125)

2∑
l=1 (Jz net

n )l = ∑
k=0,2

(
gznk0czk0 + gznk2czk2 + ŵz

nk (Jz−k+ + Jz−k−)), n = 0, 2, (4.126)
where vnk,0, vnk,3, vznk,0, vznk,2 and wnk,1, wnk,2, wz

nk,1, wz
nk,2 denote entries of the first andlast columns of the matrices Vnk , Vz

nk and Wnj , Wz
nj (compare (4.36), (4.37), (4.43), (4.44)).
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Note the partly modified indexing: j = 1 corresponds to k = 0 and j = 2 corresponds to
k = 2. Like the matrices Q+

nj , Qz+
nj and QI

nj , QzI
nj of (4.29), (4.34), (4.41), (4.42), the matrices

Wnj and Wz
nj are circulant. Furthermore, the matrices Vnk and Vz

nk feature the structureof the respective matrices P±nk and Pz±
nk of (4.28), (4.40). Hence, the properties of constantcolumn sums of Wnj and Wz

nj as well as the properties of vanishing sums of the middlecolumns of Vnk and Vz
nk are used. Now, applying first the relations (4.122) and (4.124)to the above expressions (4.125)–(4.126) and second the latter net current equations tothe (4.103), the following system of equations is finally derived to explicitly calculate theaverage neutron flux moments: Φ̃0Φ̃2

 = 1
α00α22 − α02α20

(
α22 −α02
−α20 α00

)(
κ0
κ2
) (4.127)

with
κ0 := S̃0 − β00c03 − β02c23 − βz00cz02 − βz02cz22

−γ00 3∑
l=1 J

−0l − γ02 3∑
l=1 J

−2l − γz00(Jz−0+ + Jz−0− )− γz02(Jz−2+ + Jz−2− ),
κ2 := −25 S̃0 − β20c03 − β22c23 − βz20cz02 − βz22cz22

−γ20 3∑
l=1 J

−0l − γ22 3∑
l=1 J

−2l − γz20(Jz−0+ + Jz−0− )− γz22(Jz−2+ + Jz−2− )
as well as
α00 := Σr0 + 4√33a (g000m̂000 + g020m̂200) + 1

az
(gz000m̂z000 + gz020m̂z200),

α02 := −2Σr0 + 4√33a (g000m̂020 + g020m̂220) + 1
az

(gz000m̂z020 + gz020m̂z220),
α20 := −25Σr0 + 4√33a (g200m̂000 + g220m̂200) + 1

az
(gz200m̂z000 + gz220m̂z200),

α22 := 45Σr0 + Σr2 + 4√33a (g200m̂020 + g220m̂220) + 1
az

(gz200m̂z020 + gz220m̂z220),
βnk := 4√33a (gn00m̂0k3 + gn20m̂2k3 + gnk3),
βznk := 1

az
(gzn00m̂z0k2 + gzn20m̂z2k2 + gznk2), n, k = 0, 2,
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and
γnk := 4√33a (gn00ĥ0k + gn20ĥ2k + ŵnk ),
γznk := 1

az
(gzn00ĥz0k + gzn20ĥz2k + ŵz

nk ), n, k = 0, 2.
Diffusion method: Turning towards the diffusion theory approach, we substitute Φ0 =
c(z)∗00 in the equations of (4.119) and obtain

Φ0 = c00 +m01,0(− r00,0c00 − r00,3c03 + q̂01 3∑
l=1 J

−0l),
Φ0 = cz00 +mz01,0(− rz00,0cz00 − rz00,2cz02 + q̂z01

3∑
l=1 J

z−0l )
or, equivalently,

c00 = m̂000Φ0 + m̂003c03 + ĥ00 3∑
l=1 J

−0l, (4.128)
cz00 = m̂z000Φ0 + m̂z002cz02 + ĥz00(Jz−0+ + Jz−0− ) (4.129)

with
q̂01 := q̌01,1 + 2q̌01,2,
r00,0 := 3q̂01p00,0,
rnm,3 := 3q̂01p−00,3,

q̂z01 := q̌z01,1 + q̌z01,2,
rz00,0 := 2q̂z01pz00,0,
rznm,2 := 2q̂z01p−z00,2,

and
m̂(z)000 := 11−m(z)01,0r(z)00,0 ,
m̂003 := m̂000m01,0r00,3,
m̂z002 := m̂z000mz01,0rz00,2,
ĥ(z)00 := −m̂(z)000m(z)01,0q̂(z)00 ,
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where p(z)00,0, p−00,3, pz−00,2 and q̌(z)01,1, q̌(z)01,2 are entries of the matrices P(z)−

nm of (4.28), (4.40)and Q(z)−0j −1 of (4.46), (4.47), respectively. Finally, equation (4.106) can be rewritten in theexplicit form
Φ0 = 1

α00
(
S0 − β00c03 − βz00cz02 − γ00 3∑

l=1 J
−0l − γz00(Jz−0+ + Jz−0− )) (4.130)

with
α00 := Σr0 + 4√33a g000m̂000 + 1

az
gz000m̂z000,

β00 := 4√33a (g000m̂003 + g003),
βz00 := 1

az
(gz000m̂z002 + gz002),

γ00 := 4√33a (g000ĥ00 + ŵ00),
γz00 := 1

az
(gz000ĥz00 + ŵz00).

Determining the average nodal neutron flux moments via (4.127) and (4.130), the first fluxcoefficients cn0 and czn0 can subsequently be calculated by the use of the relations (4.122),(4.124) and (4.128), (4.129). However, they serve only as auxiliary quantities.
4.7 Simplifying implementation assumptions

In the previous sections, the equations to solve the steady-state multi-group SP3 transportand diffusion problem are derived. The differences between the SP3 and the diffusionapproaches are gradually presented.
In the SP3 theory described in Section 2.4.3 and the subsequent mathematical processing,the second-moment removal cross sections Σir2,g and diffusion coefficients Di2,g are requiredin addition to the zeroth-moment quantities Σir0,g and Di0,g (cf. definitions (2.31) and (2.38),(2.50)). As shown in Table 4.1, Σir2,g and Di2,g comprise the higher within-group scatteringcross sections Σis2,gg and Σis3,gg. Linear anisotropic scattering is enclosed indirectly inconsequence of the applied transport correction, i.e., the scattering cross section Σis1,gg iseliminated. For the sake of simplicity, Σis2,gg and Σis3,gg are not included in the current
SP3 implementation. Hence, identical cross-section data are used in the DYN3D trigonal
SP3 and diffusion models, which benefits the general cross-section set input structure. InTable 4.2, the diffusion coefficients and removal cross sections implemented in DYN3D aresummarized.
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Zeroth-moment data according to SP3 and diffusion theoryΣir0,g = Σit,g − Σis0,gg
Di0,g = 13Σir1,g = 13(Σit,g−Σis1,gg) (without transport correction)
Di0,g = 13(Σit,g−∑G

g′=1 Σis1,g′g) = 13Σitr,g (with transport correction)
Second-moment data for SP3 theoryΣir2,g = Σit,g − Σis2,gg
Di2,g = 935Σir3,g = 935(Σit,g−Σis3,gg)

Table 4.1: Diffusion coefficients and removal cross sections of the within-group SP3transport and diffusion theory without and with transport correction.
Zeroth-moment data according to SP3 and diffusion implementationΣir0,g = Σia,g +∑G

g′=1
g′ 6=g Σis0,g′g ≡ Σit,g − Σis0,gg

Di0,g = 13Σitr,gSecond-moment data for SP3 implementationΣir2,g = Σia,g +∑G
g′=1 Σis0,g′g ≡ Σit,g

Di2,g = 935(Σia,g+∑G
g′=1 Σis0,g′g) ≡ 935Σit,g

Table 4.2: Diffusion coefficients and removal cross sections implemented in the DYN3Dcode.
In contrast to the diffusion equation (2.52), the SP3 equations (2.45)–(2.46) contain thesecond flux moment Φ̃2 in addition to the zeroth flux moment Φ̃0, i.e., the neutron flux isdependent on the polar angle θ = cos−1 µ of the direction of neutron motion (see Figure 2.2and equation (2.8)). In this manner, the trigonal DYN3D SP3 calculation model can stillreproduce anisotropy effects higher than linear even if Σisn,gg are neglected for n ≥ 2, whilethe diffusion model suffers from the limitation of capturing maximum linear anisotropic fluxbehavior based on the applied transport-corrected diffusion coefficient.
With the Cartesian DYN3D SP3 model, significant improvements were obtained comparedto the corresponding diffusion calculations [9, 11], notwithstanding the use of the reducedcross-section input set described above. This performance is shown and discussed inChapter 5 for the trigonal-geometry DYN3D models.
4.8 Algorithmic summary

Sections 4.1–4.6 present a precise derivation of all relevant mathematical interrelationsconcerning the neutron currents, the neutron sources, the neutron transverse leakages, andthe neutron flux moments as well as the respective interface and boundary conditions. In
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Quantity Initial value
k0eff 1
Φ̃i 00,1 1000Φ̃i 00,g, g > 1 1Σir0,g ∑g′<g Σis0,gg′Φ̃i 00,g′Φ̃i 02,g 0
ci 0n,g 0
cz,i 0n,g 0
S̃
i 0
f

∑G
g′=1 νΣif ,g′Φ̃i 00,g′

si 0f 0
sz,i 0f 0
J+,i 0n,g

14 Φ̃i 0
n,g

Jz+,i 0n,g
14 Φ̃i 0

n,g
J−,i 0n,g from J+,i 0n,g via (4.55), (4.56)
Jz−,i 0n,g from Jz+,i 0n,g via (4.58), (4.59)

Table 4.3: Initial values of the numerical SP3 (n = 0, 2) and diffusion (n = 0) procedures.
this section, the sequences of implementation are summarized in a compact algorithmicform describing the inner and outer iteration schemes in detail (recall the overview blockdiagram of Figure 4.1 as a general guideline).
For all nodal volume elements V i and all energy groups g, the geometrical dimensions aiand aiz , the diffusion coefficients Di

n,g as well as the cross sections Σirn,g, Σis0,gg′ , νΣif ,g,
κigΣif ,g, the fission spectrum χ ig, and the albedos τin,g are given for n = 0, 2. In Table 4.3, theinitial values of the numerical procedures are listed. For the diffusion method, naturally,only quantities for n = 0 are needed.
The inner iteration loop is interrupted after a fixed number of iterations maxin (typicallythere is no need for more than five). The outer iteration cycle stops as soon as the fissionsource term S̃f and the multiplication factor keff meet some predefined tolerance criteria.
Algorithms 4.1 and 4.2 outline the iterative procedures for the DYN3D SP3 transportmethod, while Algorithms 4.3 and 4.4 summarize the respective DYN3D diffusion method.In the course of the numerical procedure, every calculation step is performed for all nodes
V i.
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Algorithm 4.1 Outer iteration scheme of the nodal neutron flux calculation using the steady-state SP3 transport method
Require: ai, aiz , Di

n,g, Σirn,g, Σis0,gg′ , νΣif ,g, κigΣif ,g, χ ig, εf , εk , ∀i = 1, ..., I , ∀g, g′ = 1, ..., G,
n = 0, 2

1: Initialize k (0)eff = k0eff, Φ̃i(0)
n,g = Φ̃i 0

n,g, ci(0)
n,g = ci 0n,g, cz,i(0)

n,g = cz,i 0n,g , S̃
i(0)
f = S̃

i 0
f , si(0)

f = si 0f ,
sz,i(0)
f = sz,i 0f , J±,i(0)

n,g = J±,i 0n,g , Jz±,i(0)
n,g = Jz±,i 0n,g , ∀i, ∀g, n = 0, 2.2: it = 13: repeat4: Determine li(it)nk,g from Jz±,i(it−1)

n,g via (4.86), ∀i, ∀g, k > 0, n = 0, 2.5: Determine lz,i(it)nk,g from J±,i(it−1)
n,g via (4.95), ∀i, ∀g, k > 0, n = 0, 2.

6: Determine S̃i(it)su,g from Φ̃i(it−1)
n,g′ via (4.65), ∀i, ∀g, g′ > g.7: Determine si(it)0k su,g from ci(it−1)
nk,g′ via (4.69), ∀i, ∀g, g′ > g, k > 0.8: Determine sz,i(it)0k su,g from cz,i(it−1)
nk,g′ via (4.73), ∀i, ∀g, g′ > g, k > 0.9: for g = 1 to G do

10: Determine S̃i(it)sd,g from Φ̃i(it−1)
n,g′ via (4.64), ∀i, g′ < g.11: Determine si(it)0k sd,g from ci(it−1)
nk,g′ via (4.68), ∀i, g′ < g, k > 0.12: Determine sz,i(it)0k sd,g from cz,i(it−1)
nk,g′ via (4.72), ∀i, g′ < g, k > 0.

13: Determine S̃i(it)0,g from S̃
i(it)
sd,g, S̃i(it)su,g, k (it−1)eff , S̃i(it−1)

f via (4.63), ∀i.14: Determine si(it)0k,g from si(it)0k sd,g, si(it)0k su,g, k (it−1)eff , si(it−1)0k f via (4.67), ∀i, k > 0.15: Determine sz,i(it)0k,g from sz,i(it)0k sd,g, sz,i(it)0k su,g, k (it−1)eff , sz,i(it−1)0k f via (4.71), ∀i, k > 0.16: Determine ci(it)nk,g from si(it)0k,g, li(it)nk,g via (4.104), ∀i, k > 0, n = 0, 2.17: Determine cz,i(it)nk,g from sz,i(it)0k,g , lz,i(it)nk,g via (4.105), ∀i, k > 0, n = 0, 2.
18: Inner iteration (Algorithm 4.2): Compute Φ̃i(it)

n,g , ci(it)n0,g, cz,i(it)n0,g , J±,i(it)n,g , Jz±,i(it)n,g , n = 0, 2.
19: Update ci(it)nk,g from ci(it)n,g , J−,i(it)n,g via (4.110), ∀i, k > 0, n = 0, 2.20: Update cz,i(it)nk,g from cz,i(it)n,g , Jz−,i(it)n,g via (4.115), ∀i, k > 0, n = 0, 2.21: end for22: Determine S̃i(it)f from Φ̃i(it)

n,g via (4.66), ∀i.23: Determine si(it)0k f from ci(it)nk,g via (4.70), ∀i, k > 0.24: Determine sz,i(it)0k f from cz,i(it)nk,g via (4.74), ∀i, k > 0.
25: Compute multiplication factor k (it)eff = ∑I

i=1 (S̃i(it)f

)2
∑I

i=1 S̃i(it)f S̃
i(it−1)
f

.

26: it = it + 1
27: until

√1
I
∑I

i=1
(
S̃
i(it)
f −S̃

i(it−1)
f

S̃
i(it−1)
f

)2
≤ εf and ∣∣∣∣ k (it)eff −k (it−1)eff

k (it−1)eff
∣∣∣∣ ≤ εk

28: Determine Φi0,g from Φ̃i
n,g via (4.96), ∀i, ∀g.29: Determine node-averaged thermal power densities P i from Φi0,g via (4.1), ∀i.
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Algorithm 4.2 Inner iteration scheme of the nodal neutron flux calculation using the steady-state SP3 transport method
Require: ai, aiz , Di

n,g, Σirn,g, τin,g, maxin, ∀i = 1, ..., I , ∀g = 1, ..., G, n = 0, 2
1: Receive ci(it)nk,g, cz,i(it)nk,g , S̃i(it)0,g , J−,i(it−1)

n,g , Jz−,i(it−1)
n,g , ∀i, k > 0, n = 0, 2, from outer iterationloop (Algorithm 4.1).

2: Initialize ci(1)
nk,g = ci(it)nk,g, c

z,i(1)
nk,g = cz,i(it)nk,g , S̃

i(1)0,g = S̃
i(it)0,g , J−,i(0)

n,g = J−,i(it−1)
n,g , Jz−,i(0)

n,g =
Jz−,i(it−1)
n,g , ∀i, k > 0, n = 0, 2.3: in = 14: while in ≤ maxin do5: Determine Φ̃i(in)

n,g from ci(in)
nk,g, cz,i(in)

nk,g , S̃i(in)0,g , J−,i(in−1)
n,g , Jz−,i(in−1)

n,g via (4.127), ∀i, k > 0,
n = 0, 2.

6: Determine ci(in)
n0,g from Φ̃i(in)

n,g , ci(in)
nk,g, J−,i(in−1)

n,g via (4.122), ∀i, k > 0, n = 0, 2.
7: Determine cz,i(in)

n0,g from Φ̃i(in)
n,g , cz,i(in)

nk,g , Jz−,i(in−1)
n,g via (4.124), ∀i, k > 0, n = 0, 2.8: Determine J+,i(in)

n,g from ci(in)
n,g , J−,i(in−1)

n,g via (4.35), ∀i, n = 0, 2.9: Determine Jz+,i(in)
n,g from cz,i(in)

n,g , Jz−,i(in−1)
n,g via (4.38), ∀i, n = 0, 2.10: Obtain J−,i(in)

n,g from J+,i(in)
n,g via (4.55), (4.56), ∀i, n = 0, 2.11: Obtain Jz−,i(in)

n,g from Jz+,i(in)
n,g via (4.58), (4.59), ∀i, n = 0, 2.12: in = in+ 113: end while14: Return Φ̃i(it)

n,g = Φ̃i(in)
n,g , ci(it)n0,g = ci(in)

n0,g, cz,i(it)n0,g = cz,i(in)
n0,g , J±,i(it)n,g = J±,i(in)

n,g , Jz±,i(it)n,g = Jz±,i(in)
n,g ,

∀i, n = 0, 2, to outer iteration loop.
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Algorithm 4.3 Outer iteration scheme of the nodal neutron flux calculation using the steady-state diffusion theory method
Require: ai, aiz , Di0,g, Σir0,g, Σis0,gg′ , νΣif ,g, κigΣif ,g, χ ig, εf , εk , ∀i = 1, ..., I , ∀g, g′ = 1, ..., G

1: Initialize k (0)eff = k0eff, Φ̃i(0)0,g = Φ̃i 00,g, c(z),i(0)0,g = c(z),i 00,g , Si(0)
f = Si 0f , s(z),i(0)

f = s(z),i 0
f , J(z)±,i(0)0,g =

J(z)±,i 00,g , ∀i, ∀g.2: it = 13: repeat4: Determine l(z),i(it)0k,g from J(z)±,i(it−1)0,g via (4.86), (4.95), ∀i, ∀g, k > 0.
5: Determine Si(it)su,g from Φi(it−1)0,g′ via (4.75), ∀i, ∀g, g′ > g.6: Determine s(z),i(it)0k su,g from c(z),i(it−1)0k,g′ via (4.76), ∀i, ∀g, g′ > g, k > 0.7: for g = 1 to G do8: Determine Si(it)sd,g from Φi(it−1)0,g′ via (4.75), ∀i, g′ < g.9: Determine s(z),i(it)0k sd,g from c(z),i(it−1)0k,g′ via (4.76), ∀i, g′ < g, k > 0.

10: Determine Si(it)0,g from Si(it)sd,g, Si(it)su,g, k (it−1)eff , Si(it−1)
f via (4.75), ∀i.11: Determine s(z),i(it)0k,g from s(z),i(it)0k sd,g, s(z),i(it)0k su,g, k (it−1)eff , s(z),i(it−1)0k f via (4.76), ∀i, k > 0.12: Determine c(z),i(it)0k,g from s(z),i(it)0k,g , l(z),i(it)0k,g via (4.107), (4.108), ∀i, k > 0.

13: Inner iteration (Algorithm 4.4): Compute Φi(it)0,g , c(z),i(it)00,g , J(z)±,i(it)0,g .14: Update c(z),i(it)0k,g from c(z),i(it)0,g , J(z)−,i(it)0,g via (4.119), ∀i, k > 0.15: end for16: Determine Si(it)f from Φi(it)0,g via (4.75), ∀i.17: Determine s(z),i(it)0k f from c(z),i(it)0k,g via (4.76), ∀i, k > 0.
18: Compute multiplication factor k (it)eff = ∑I

i=1 (S̃i(it)f

)2
∑I

i=1 S̃i(it)f S̃
i(it−1)
f

.

19: it = it + 1
20: until

√1
I
∑I

i=1
(
S̃
i(it)
f −S̃

i(it−1)
f

S̃
i(it−1)
f

)2
≤ εf and ∣∣∣∣ k (it)eff −k (it−1)eff

k (it−1)eff
∣∣∣∣ ≤ εk

21: Determine node-averaged thermal power densities P i from Φi0,g via (4.1), ∀i.
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Algorithm 4.4 Inner iteration scheme of the nodal neutron flux calculation using the steady-state diffusion theory method
Require: ai, aiz , Di0,g, Σir0,g, τi0,g, maxin, ∀i = 1, ..., I , ∀g = 1, ..., G

1: Receive c(z),i(it)0k,g , Si(it)0,g , J(z)−,i(it−1)0,g , ∀i, k > 0, from outer iteration loop (Algorithm 4.3).
2: Initialize c(z),i(1)0k,g = c(z),i(it)0k,g , Si(1)0,g = Si(it)0,g , J(z)−,i(0)0,g = J(z)−,i(it−1)0,g , ∀i, k > 0.3: in = 14: while in ≤ maxin do5: Determine Φi(in)0,g from c(z),i(in)0k,g , Si(in)0,g , J(z)−,i(in−1)0,g via (4.130), ∀i, k > 0.
6: Determine c(z),i(in)00,g from Φi(in)0,g , c(z),i(in)0k,g , J(z)−,i(in−1)0,g via (4.128), (4.129), ∀i, k > 0.7: Determine J(z)+,i(in)0,g from c(z),i(in)0,g , J(z)−,i(in−1)0,g via (4.45), ∀i.8: Obtain J(z)−,i(in)0,g from J(z)+,i(in)0,g via (4.58), (4.59), ∀i.9: in = in+ 110: end while11: Return Φi(it)0,g = Φi(in)0,g , c(z),i(it)00,g = c(z),i(in)00,g , J(z)±,i(it)0,g = J(z)±,i(in)0,g , ∀i, to outer iteration loop.





5
Verification Analysis

This chapter focuses on the analysis of the performance of the trigonal SP3 and diffu-sion models with particular regard to mesh refinement analyses. Diverse two-dimensionalhexagonal test and benchmark problems with different material compositions are studied.
Section 5.1 gives an introductory overview of potential sources of errors in reactor calcu-lations. In Section 5.2, the DYN3D diffusion method on trigonal geometry is verified usinga fine-mesh diffusion reference solution. The respective verification of the trigonal DYN3D
SP3 method is presented by means of a fine-mesh SP3 transport problem. Furthermore,the performances of both trigonal DYN3D models are compared against a higher transportsolution using the latter benchmark problem to demonstrate the potential superiority ofthe DYN3D SP3 method over the diffusion model. All test problems of this section aredefined for the use of assembly-homogenized cross sections. The trigonal DYN3D SP3 anddiffusion methods are further verified against detailed-geometry full-transport references inSection 5.3. Three full-core and single-assembly test problems are considered involving, ineach example, cases with weak and strong anisotropy effects. The few-group cross-sectiondata sets are homogenized from assembly down to pin-size level. Section 5.4 evaluatesthe computation times with respect to solution approaches and nodal refinement levels.
The following facts will become evident by the end of this chapter:
• The verification analysis of both trigonal DYN3D models based on mathematicalbenchmarks provides proof of their methodological reliability.
• The superiority of the SP3 transport over the diffusion model can be clearly demon-strated by means of an academic benchmark especially prepared to magnify transporteffects.
• Considering physical test problems with detailed-geometry full-transport referencesolutions, the superposition of errors complicates the analysis of the accuracy of93
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the methods. However, the trigonal SP3 model achieves significantly better agree-ment with the reference solutions than the trigonal diffusion approach in cases withpronounced anisotropy effects.
5.1 Evaluation of error sources

Recalling the main steps of reactor calculations outlined in Section 1.1, the correspondingintrinsic simplifications and approximations naturally entail specific deficiencies. This inturn necessitates an examination of the contribution of each assumption to the total error.Of course, errors in measurement and nuclear-data evaluation of the microscopic crosssections compiled in data bases such as ENDF (cf. Figure 1.1) exist and, in case ofdeterministic lattice calculations, uncertainties resulting from the complicated resonance(self-shielding) treatment are present. These errors will affect the accuracy in modelingthe behavior of a real reactor. However, all of these errors evidently must be present alsoin the benchmark reference solutions to be considered in this chapter, so that they areirrelevant for the subsequent analyses. Thus, only the following categories of error sources[43, 93, 120, 145] subsequent to the lattice calculation have to be discussed:
• the spatial-homogenization effect that results from the averaging, i.e., the flux-volumeweighting of the macroscopic cross sections applying the fluxes calculated by thelattice code, and
• an error resulting from averaging macroscopic cross sections over energy intervals(groups), which produces few-group homogenized data from continuous-energy ormulti-group cross sections ("group-collapsing").

For both items, it should be noted that the lattice calculations are usually carried outin an infinite lattice environment (zero-current boundary conditions) producing a certainspace-dependent neutron spectrum. However, the few-group homogenized cross sectionsgenerated in this spectrum are later used with ambient core conditions, i.e., a differentactual core spectrum. This can also lead to a relevant error contribution.
While the aforementioned types of error sources are merely cross-section related, thefollowing items directly concern the methods developed in the present work:
• the transport effect emerging from the quality and reactor-specific validity of thediffusion or higher-order approximation to the transport equation, i.e., the ability torepresent anisotropy effects, and
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Figure 5.1: Error sources in the data flow of reactor physics calculations.
• the spatial-discretization effect in consequence of the employed nodal method, i.e., themethodological sophistication of the intra-nodal flux approximation, and the appliedspatial mesh.

In Figure 5.1, an illustration of the errors in the reactor calculation data flow is provided.
As the phenomena described above can hardly be isolated in a reactor calculation, theyall interfere with each other and complicate the analysis of the accuracy of the methodsthemselves.
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Material 1 2 3 4 5
D0,1 1.383200 1.382990 1.395220 1.394460 1.395060
D0,2 0.386277 0.389403 0.386225 0.387723 0.384492Σa,1 + Σs0,21 2.48836e-2 2.62865e-2 2.45662e-2 2.60117e-2 2.46141e-2Σa,2 6.73049e-2 8.10328e-2 8.44801e-2 9.89671e-2 8.93878e-2Σs0,21 1.64977e-2 1.47315e-2 1.56219e-2 1.40185e-2 1.54981e-2Σf ,1 1.86139e-3 1.81560e-3 2.36371e-3 2.31026e-3 2.50773e-3Σf ,2 3.48111e-2 3.50622e-2 4.91322e-2 4.95721e-2 5.31856e-2
νΣf ,1 4.81619e-3 4.66953e-3 6.04889e-3 5.91507e-3 6.40256e-3
νΣf ,2 8.46154e-2 8.52264e-2 1.19428e-1 1.20497e-1 1.29281e-1

Table 5.1: Cross-section data for the VVER-1000 two-group benchmark [22].
5.2 Verification against mathematical benchmarks

The reliability of the trigonal DYN3D models is demonstrated by means of academicalbenchmarks in this section, applying reference solutions produced by other codes whichuse exactly the same assembly-homogenized cross sections as input to DYN3D.
Since identical cross-section data and exterior boundary conditions are used for boththe DYN3D and the respective fine-mesh reference calculations, the occurrence of errorsowing to spatial-homogenization and energy-averaging effects is eliminated. The meshrefinement studies of Sections 5.2.1 and 5.2.2 additionally exclude transport effects and,therefore, specifically identify spatial-discretization errors. In the limit of infinitely finemesh spacing, the spatial-discretization error approaches zero.
5.2.1 Fine-mesh diffusion benchmark for VVER-1000

A VVER-1000-type core benchmark, provided in the work of Chao and Shatilla [22], isconsidered to verify the consistency of the implementation of the trigonal diffusion methodDYN3D-TRIDIF. The core is loaded with 163 fuel assemblies having a typical VVER-1000assembly pitch1 of 23.6 cm. 25 assemblies have control-rod (CR) clusters inserted. InTable 5.1, the two-group assembly-homogenized cross-section data are given for the fivefuel types, which were generated by Knight and Chao [21, 84, 85] using fuel configurationand material data based on an existing PWR benchmark specified by Koebke et al. [90]. Thereflector region outside the fuel assemblies is not explicitly modeled. It can be representedby albedos at the core boundary. Chao and Shatilla provided solutions for the VVER-1000 benchmark applying two different albedos for the problems corresponding to vacuum(τ0 = 0) and more realistic (τ0 = 0.6) boundary conditions (cf. expression (4.57)). In this
1The distance between the centers of two adjacent fuel assemblies is called assembly pitch.
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Figure 5.2: Core configuration of the VVER-1000 benchmark. Normalized power dis-tribution obtained by DIF3D and relative errors (%) determined by DYN3D-TRIDIF fordifferent mesh refinements.
work, the vacuum boundary case is exemplified to demonstrate the performance of DYN3D-TRIDIF by means of the more extreme example with higher flux gradients. The fine-meshdiffusion reference solution was generated by the finite-difference code DIF3D [40] applyingthe given coarse-mesh cross sections. Both power distribution and multiplication factorwere extrapolated from DIF3D runs with the subdivisions of 384 and 486 triangles perhexagon.
A mesh refinement study is performed with DYN3D-TRIDIF. In Figure 5.2, the normalizedpower distribution of a 60◦ sector of the VVER-1000 core and the respective relative errorsconsidering nodal refinements from 6 to 6144 triangles per fuel assembly (FA) are depicted.The corresponding effective multiplication factors obtained by DYN3D-TRIDIF and therespective deviations from the DIF3D reference multiplication factor2, denoted by δkeff , aswell as the maximum and root mean square (RMS)3 power differences in comparison to the

2The difference in keff is calculated via δkeff = keff−keff,ref
k2eff,ref × 1e5 pcm.

3The RMS value of a set of I power differences {P1−P1,ref, ..., PI−PI,ref} is given by √ 1
I
∑I

i=1(Pi − Pi,ref)2.This analogously applies to fluxes.
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Method No. of trigonal keff δkeff Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRIDIF 6 1.008968 245 14.7 7.424 1.007461 96 5.2 2.796 1.006887 40 1.9 1.0384 1.006650 16 0.8 0.41536 1.006544 6 0.3 0.26144 1.006493 1 0.2 0.1DYN3D-HEXNEM1 1.007074 58 5.8 2.9DYN3D-HEXNEM2 1.006540 5 1.3 0.6DIF3D (ref.) 1.006485
Table 5.2: VVER-1000 benchmark: Effective multiplication factors keff, maximum andRMS power differences – DYN3D-TRIDIF and DYN3D-HEXNEM1/2 in comparison tothe DIF3D reference.

reference values are displayed in Table 5.2. High relative errors in the power distributionof more than 10 % in the subdivision case of 6 nodes per assembly can be observed in theoutermost core region (material 5). On account of the vacuum boundary conditions and thefact that material 5 features the highest fission cross sections, the neutron flux suffers astrong gradient at the core boundary. The largest deviation occurs in the corner assembliesof the core, since three assembly sides face the vacuum boundary. Furthermore, it can beseen that the central zone, with 7 out of 19 fuel assemblies of the innermost three assemblyrings of the core having control-rod clusters inserted, shows rather high power deviationsin a coarse nodalization due to the accumulation of local flux minima resulting from thecontrol absorbers. While the power distribution is overestimated by DYN3D-TRIDIF inthe outer core assemblies, there is an underestimation in the core center. Such a convexdeviation behavior is simply a compensation effect resulting from normalization and wasalso observed by other authors [28, 37, 63]. (A concave deviation shape is also possible.Curvature and magnitude of the effect depend on the particular core configuration.) With 6trigonal nodes per assembly, DYN3D-TRIDIF only reasonably reproduces strong local fluxgradients in this extreme example. Applying further mesh refinement, however, significantlyreduces the spatial-discretization error. The mean power difference decreases by a factorof two to three with every higher level of refinement. Using a fine nodalization, verygood agreement between DYN3D-TRIDIF and the reference solution is achieved. Both theeigenvalue and the power distribution spatially converge to the reference values.
Hence, the functional reliability of the trigonal DYN3D diffusion model is proven.
In Table 5.2, also the results obtained by the DYN3D hexagonal diffusion methods HEX-NEM1 and HEXNEM2 are summarized. The discrepancies in keff and the nodal power
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Material 1 2 3Σt,1 0.025 0.025 0.075Σs0,11 0.013 0.024 0.0Σs1,11 0.0 0.006 0.0
νΣf ,1 0.0155 0.0 0.0

Table 5.3: Cross-section data for the one-group benchmark by Hébert [73].
distributions between the models DYN3D-TRIDIF, DYN3D-HEXNEM1, and DYN3D-HEXNEM2 can be traced back to the fact that the hexagonal DYN3D flux expansionansatzes differ from the trigonal approach in both the polynomial and exponential part (seeSection 3.6.2). Due to only an incomplete set of polynomials and only three exponentialterms, the trigonal method is weaker than its hexagonal analogon. HEXNEM2 features themost sophisticated approach. However, in the present case, DYN3D-TRIDIF outperformsthe accuracy of HEXNEM1 already with a refinement of 24 nodes, HEXNEM2 with arefinement of 384 nodes. More detailed information concerning the behavior of DYN3D-HEXNEM2 relating to this VVER-1000 benchmark problem is provided in the work byGrundmann and Hollstein [63].
The author would like give the supplementary information that, applying realistic bound-ary conditions (τ0 = 0.6), the DYN3D-TRIDIF results agree significantly better with thereference solution already in case of coarse nodalization. The maximum power differencesare by about a factor of two smaller than the values presented in this extreme example.
5.2.2 Fine-mesh SP3 academic benchmark

For the verification of the trigonal SP3 method DYN3D-TRISP3, a one-group benchmarkwith anisotropic scattering is considered, which was originally proposed by Hébert for var-ious one-dimensional-geometry cases and two-dimensional Cartesian geometry [70] andfurther developed for hexagonal-geometry problems [73]. This benchmark does not rep-resent a real-life problem. The 30◦ core sector consists of one type of hexagonal fuelassemblies and two types of reflector assemblies with an assembly pitch of 32.9 cm. Theone-group coarse-mesh cross-section data are given in Table 5.3. Whereas material 2allows solely scattering, material 3 features pure absorption. Thus, the neutron flux isdominated by a strong migration process in direction towards the absorber. In such a case,the importance of a method capable of representing anisotropic flux behavior becomes obvi-ous. Using these cross sections and vacuum outer boundary conditions, the SP3 transportreference solution has been obtained by the code TRIVAC [75] applying finite-elementdiscretization and quadratic flux expansion. The TRIVAC results converged well already
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Figure 5.3: Core configuration of the Hébert benchmark. Normalized neutron flux distri-bution obtained by TRIVAC (SP3 option) and relative errors (%) determined by DYN3D-TRISP3 for different mesh refinements.
Method No. of trigonal keff δkeff Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 6 1.001100 77 2.5 1.724 1.000085 -25 1.9 1.096 0.999939 -39 1.4 0.7384 1.000039 -29 0.9 0.41536 1.000156 -18 0.5 0.26144 1.000238 -10 0.3 0.1TRIVAC - SP3 (ref.) 1.000330
Table 5.4: Hébert benchmark: Effective multiplication factors keff, maximum and RMS fluxdifferences – DYN3D-TRISP3 in comparison to the TRIVAC (SP3) reference.

with a small number of lozenges per hexagon. The reference solution used here has beengenerated with 300 lozenges per assembly [124].
Similar to the study by Chiba [28], DYN3D-TRISP3 calculations have been run to evalu-ate and compare the neutron fluxes and effective multiplication factors. In Figure 5.3, thenormalized flux distribution of the considered core sector and the respective relative errorsare depicted. Also here, a mesh refinement study is performed. In Table 5.4, the effectivemultiplication factors obtained from the DYN3D-TRISP3 calculations with nodal refine-ments from 6 to 6144 triangles per fuel assembly are given and compared to the TRIVACreference value. Furthermore, the maximum and RMS flux differences are evaluated. There
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is an overestimation of the nodal flux distribution in the core center and a respective under-estimation in the reflector regions due to compensation effects of the applied normalization.However, a general good agreement between DYN3D-TRISP3 and the reference solutionis achieved.
By demonstrating spatial convergence of both the DYN3D-TRISP3 multiplication factorsand the flux distributions to the fine-mesh TRIVAC SP3 reference solution in this section,the methodological reliability of the trigonal DYN3D SP3 model can be conceived asverified.
5.2.3 Fine-mesh SP5 academic benchmark

In this section, the latter academic benchmark problem is used to compare the trigonalDYN3D SP3 transport and diffusion models with a higher transport reference solutionobtained by the TRIVAC code now using the SP5 option (plus again a finite-elementdiscretization of 300 lozenges per hexagon and quadratic flux expansion) [124]. Hébert[73] especially prepared the cross-section data given in Table 5.3 to magnify transport andanisotropic effects. The capability of diffusion theory to capture extreme anisotropic fluxbehavior is expected to be poor.
As already discussed in Section 2.3, the SPN solution is generally not equivalent to the PNsolution and therefore increasing N does not in any case provide a more accurate result.However, it is common experience that the maximum potential accuracy is obtained around
SP5 or SP7 [119]. On this account, the fine-mesh TRIVAC SP5 solution is considered areasonable reference solution.
The development of two methods based on different approximations of the transport equationbut using identical underlying spatial discretization allows a comparative analysis of bothmethods with regard to transport effects. As very similar nodal flux expansions are appliedto DYN3D-TRISP3 and DYN3D-TRIDIF (cf. Section 3.5), the spatial-discretization errorbecomes negligible when considering identical trigonal refinement levels. In any case, thespatial-discretization error approaches zero in the limit of infinitely fine mesh spacing.
DYN3D-TRISP3 and DYN3D-TRIDIF calculations have been run applying the refinementsfrom 6 to 6144 trigonal nodes. In Figure 5.4, the normalized flux distribution of the consid-ered core sector and the respective relative errors for the coarse nodalization of 6 and thefine nodalization of 6144 triangles per assembly are depicted. The effective multiplicationfactors and the deviations from the TRIVAC reference as well as the maximum and RMSflux differences for both trigonal models are summarized in Table 5.5 listing all refine-ment levels. For the hexagonal DYN3D methods, the results are also given. Especially
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Figure 5.4: Core configuration of the Hébert benchmark. Normalized neutron flux distri-bution obtained by TRIVAC (SP5 option) and relative errors (%) determined by DYN3D-TRISP3 and DYN3D-TRIDIF for the nodalizations 6 and 6144.

Method No. of trigonal keff δkeff Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 6 1.001100 -17 3.7 1.824 1.000085 -118 3.2 1.396 0.999939 -133 2.7 1.0384 1.000039 -123 2.2 0.81536 1.000156 -111 1.8 0.76144 1.000238 -103 1.5 0.6DYN3D-TRIDIF 6 0.973001 -2820 18.5 8.224 0.971983 -2921 20.0 9.096 0.971902 -2929 20.4 9.3384 0.972064 -2913 20.5 9.31536 0.972220 -2898 20.4 9.36144 0.972322 -2888 20.2 9.3DYN3D-HEXNEM1 0.973931 -2727 20.0 9.3DYN3D-HEXNEM2 0.972710 -2849 21.0 9.4TRIVAC - SP5 (ref.) 1.001271
Table 5.5: Hébert benchmark: Effective multiplication factors keff, maximum and RMS fluxdifferences – DYN3D-TRISP3, DYN3D-TRIDIF, and DYN3D-HEXNEM1/2 in comparisonto the TRIVAC (SP5) reference.
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in the outer reflector region, DYN3D-TRISP3 superiorly represents the flux distributionin comparison to DYN3D-TRIDIF (and also DYN3D-HEXNEM1/2) by more than an or-der of magnitude. Recalling Section 1.3, diffusion theory requires the migration processto be scattering collision dominated. In material 3, this requirement is not fulfilled withthe consequence that the DYN3D diffusion models fail with an error in flux of about 20 %.DYN3D-TRISP3 performs reasonably well in a coarse nodalization with a maximum fluxdeviation of 3.7 % in the inner reflector region. The maximum error is diminished to 1.5 % ina fine nodalization showing an overall good performance. The differences in keff are signif-icantly reduced from almost 3000 pcm by the DYN3D diffusion methods to about 100 pcmby the DYN3D SP3 approach.
Hence, the concluding statement of this section is: By means of the present academicbenchmark, anisotropy effects are quantitatively identified and the superiority of the trig-onal DYN3D SP3 method over the respective diffusion model is clearly demonstrated.
A further remark shall be made on the assessment of trigonal nodalizations of differing sizeor hexagonal nodalizations with different underlying flux expansions. Here, the effect of thespatial-discretization error has to be considered in addition to the transport error. Sucheffects superpose and may impact the degree of agreement in different directions, e.g., acci-dental error compensation is possible [93]. The findings that DYN3D-TRIDIF shows resultscloser to the reference solution for 6 nodes per assembly than with a finer nodalization andthat DYN3D-HEXNEM2 agrees less well with the reference than DYN3D-HEXNEM1,are examples of such phenomena.
5.3 Verification against detailed-geometry full-transport-

theory problems

In this section, further comparison studies are performed to verify the trigonal DYN3Dmodels. Realistic and detailed-geometry full-transport-theory problems are investigated.In contrast to the cases of Section 5.2, spatial-homogenization and energy-averaging effectsoccur in addition to spatial-discretization and transport effects.
The employed few-group cross-section data sets are homogenized from assembly levelin Section 5.3.1 to one sixth of an assembly in Section 5.3.2 down to pin-size level inSection 5.3.3.
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Figure 5.5: Simplified HTGR core models without (a) and with (b) control rods.

Figure 5.6: Geometry of the two-dimensional fuel-reflector model (30◦ core profile).
5.3.1 HTGR core

A two-dimensional simplified core of the prismatic-fuel-type high-temperature gas-cooledreactor (HTGR), which was developed by the Idaho National Engineering and Environ-mental Laboratory (INEEL) in the frame of the Next Generation Nuclear Plant (NGNP)project [118], is considered the reference. The core is loaded with 102 fuel assemblies em-bedded in an inner and outer graphite reflector occupying 61 and 102 assembly positions,respectively. The assembly pitch is 36 cm. Further core parameters are provided in thework of Rohde et al. [136].
Two core models – with and without inserted control rods – are analyzed. The NGNP coredesign comprises control rod channels which are asymmetrically aligned in several fueland outer reflector elements. For the case study without inserted control rods, however, allassemblies are modeled without any control rod channels. In the case of inserted controlrods, only fuel assembly rod channels are taken into account, reflector control rods areneglected. Instead of an asymmetrical composition, a central alignment of the control rodsis furthermore assumed for the sake of simplicity. In Figure 5.5, the considered HTGR coregeometries are illustrated. To model the reflector regions, a diagonal section of the corehas been used as shown in Figure 5.6.
Considering a core temperature of 1200 K, the verification analysis has been performed asfollows. First, full-core heterogeneous reference solutions have been obtained using the
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Group Upper group energy(MeV)1 1.500e12 2.2313 8.210e-14 5.530e-35 4.805e-56 4.000e-67 6.250e-78 3.500e-79 2.800e-710 1.400e-711 5.800e-812 3.000e-8

Table 5.6: 12-energy-group structure for the HTGR analysis.
continuous-energy Monte Carlo code Serpent [109, 110]. The Monte Carlo calculationshave been performed with 500 inactive and 1000 active neutron cycles and 60,000 neutronhistories per cycle (cf. Section 2.2.1). For the present test cases, this is consideredsufficient. Second, homogenized cross-section sets required for the nodal analysis havebeen created also using the Serpent code. The cross sections have been generated forhexagonal assemblies in an infinite environment (reflective boundary conditions) in 12energy groups [51]. The group structure shown in Table 5.6 is a predefined subset ofthe CASMO-4 [135] basic 70-group energy structure and consists of 3 fast, 2 resonance,and 7 thermal energy groups. A relatively large number of thermal groups is believedto be sufficient to properly account for thermal upscattering events. It should be noted,however, that an optimization of the energy group structure for HTGR applications hasnot been performed [52]. Finally, 30◦-symmetry-sector DYN3D calculations with vacuumexterior boundary conditions have been run using the few-group constants generated bythe Serpent code.
In Figure 5.7, the Serpent outputs of the thermal-flux distributions for both consideredcases are presented.
Case without control rods: In Figure 5.8, a 30◦ sector of the considered HTGR corewithout control rods is depicted exemplarily showing the relative errors in the radial powerdistribution obtained by DYN3D-TRISP3 and DYN3D-TRIDIF for the subdivisions of 6and 96 nodes per hexagonal assembly. In Table 5.7, the effective multiplication factorsand the differences from the Serpent reference value4 as well as the maximum and RMS

4The standard deviation of keff in the Serpent calculations is about 0.0002.
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Figure 5.7: Serpent thermal-flux distribution of the simplified HTGR core without (a) andwith (b) inserted control rods. Indication of the 30◦ core radius.

Figure 5.8: HTGR core without control rods: Normalized power distribution obtained bySerpent and relative errors (%) determined by DYN3D-TRISP3 and DYN3D-TRIDIF forthe nodalizations 6 and 96.
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Method No. of trigonal keff δkeff Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 6 1.317994 115 1.4 0.924 1.319332 192 1.1 0.796 1.320052 233 0.9 0.6384 1.320375 252 0.9 0.6DYN3D-TRIDIF 6 1.318244 129 1.4 0.924 1.319642 210 1.2 0.896 1.320383 252 1.0 0.7384 1.320707 271 0.9 0.6DYN3D-HEXNEM1 1.321472 315 0.3 0.2DYN3D-HEXNEM2 1.322347 366 0.7 0.4Serpent (ref.) 1.316010
Table 5.7: HTGR core without control rods: Effective multiplication factors keff, max-imum and RMS power differences – DYN3D-TRISP3, DYN3D-TRIDIF, and DYN3D-HEXNEM1/2 in comparison to the Serpent reference.

power differences are summarized for the trigonal DYN3D SP3 and diffusion models andadditionally for the hexagonal DYN3D diffusion methods. Nodal refinements from 6 to 384triangles per assembly are considered. Additionally, the graphs in Figure 5.9 represent thenormalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of DYN3D-TRISP3/TRIDIF and Serpent along the core radius at an angle of 30◦ (in Figure 5.7,an indication of this radius is given). For the fast and the resonance fluxes, the energygroups 1, 2, 3 and 4, 5 are collapsed, respectively. The flattening of these curves in theinner (r < 145 cm) and outer (r > 229 cm) reflector regions due to missing fission sourcesand dominant neutron downscattering into thermal energy groups is shown. Accordingly,pronounced peaks in the thermal flux, combining groups 6 to 12, are identified in thereflector zones adjacent to the fuel. For DYN3D, the trigonal discretization of 96 nodesper assembly has been chosen. In this manner, flux values at 113 mesh points have beenextracted and interpolated along the radius. Only one curve per collapsed energy group,however, is displayed for DYN3D-TRISP3/TRIDIF, since no visible difference betweenthe DYN3D SP3 and diffusion fluxes can be perceived. Generally, a good agreementbetween the different DYN3D methods and the Monte Carlo reference is demonstrated.The deviations in keff are about 200 pcm for the trigonal approaches, the RMS differencein power is generally less than 1 %. Also the fast-, resonance-, and thermal-flux curves ofDYN3D-TRISP3/TRIDIF agree very well with the Serpent flux reference shapes.
The trigonal DYN3D SP3 method predicts the reference solution better than the trigonalDYN3D diffusion method. However, in this rather isotropic case, the degree of improvementis very marginal.
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Figure 5.9: HTGR core without control rods: Normalized neutron flux distribution alongthe 30◦ core line obtained by Serpent and DYN3D-TRISP3/TRIDIF (96 nodes per as-sembly).
The hexagonal-geometry DYN3D diffusion models agree well with the reference power dis-tribution in this example due to the intra-nodal flux ansatzes, which are more sophisticatedin the hexagonal than in the trigonal approaches.
The phenomenon that a coarse trigonal nodalization gives better multiplication factors inthis case than calculating with a higher nodal resolution can be traced back to coincidentalerror compensation. The same argumentation applies to the general results of DYN3D-HEXNEM1 and DYN3D-HEXNEM2.
Case with control rods: In Figure 5.10, a 30◦ symmetry sector of the HTGR corewith inserted control rods is depicted. Also here, the relative errors in the radial powerdistribution obtained by DYN3D-TRISP3 and DYN3D-TRIDIF for the nodalizations of 6and 96 triangles per assembly are shown. The effective multiplication factors and themaximum and RMS power differences from the Serpent Monte Carlo reference solution forthe nodal subdivisions from 6 to 384 triangles per assembly are listed in Table 5.8. Thegraphs in Figure 5.11 show the normalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of DYN3D-TRISP3/TRIDIF and Serpent along the core radius at an
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Figure 5.10: HTGR core with inserted control rods: Normalized power distribution ob-tained by Serpent and relative errors (%) determined by DYN3D-TRISP3 and DYN3D-TRIDIF for the nodalizations 6 and 96.

Method No. of trigonal keff δkeff Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 6 0.997185 -1360 4.1 2.024 0.992167 -1851 3.7 1.796 0.990934 -1972 3.5 1.7384 0.990648 -2000 3.4 1.7DYN3D-TRIDIF 6 0.995924 -1484 4.0 1.924 0.990937 -1971 3.6 1.896 0.989744 -2088 3.5 1.9384 0.989494 -2112 3.4 1.9DYN3D-HEXNEM1 0.991483 -1918 3.2 1.7DYN3D-HEXNEM2 0.989681 -2094 3.4 2.1Serpent (ref.) 1.011090
Table 5.8: HTGR core with inserted control rods: Effective multiplication factors keff,maximum and RMS power differences – DYN3D-TRISP3, DYN3D-TRIDIF, and DYN3D-HEXNEM1/2 in comparison to the Serpent reference.
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Figure 5.11: HTGR core with inserted control rods: Normalized neutron flux distributionalong the 30◦ core line obtained by Serpent and DYN3D-TRISP3/TRIDIF (96 nodes perassembly).
angle of 30◦ (see Figure 5.7 (b)) considering a refinement of 96 nodes per assembly. In thereflector regions, naturally, the same physical effects are observed than in the case withoutcontrol rods. The fuel region (145 < r < 229 cm), evidently, shows a different behavior andcan be divided into the following three zones (cf. Figure 5.10 for clarification):
• zone 1: a symmetry boundary line between two fuel assemblies with inserted controlrod (145 < r < 166 cm),
• zone 2: a line from corner to corner through the center of a fuel assembly withinserted control rod (166 < r < 208 cm), and
• zone 3: a symmetry boundary line between two fuel assemblies without control rod(208 < r < 229 cm).

Concerning zones 1 and 3, the considered radius is located on graphite material withfuel rods (and coolant channels) in the immediate vicinity. Hence, fission and scatteringfrom fast to resonance energies lead to an increase of the fast and the resonance neutronflux. The thermal flux, naturally, decreases from the reflector to the fuel region caused by
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absorption. Due to the presence of boron carbide (B4C) in the close vicinity of zone 1, thefluxes in this zone are generally lower than in zone 3. However, in zone 2, one centricallymodeled control rod is diagonally cut, which results in strong local flux minima in themiddle of the region. Certainly, neither DYN3D-TRISP3 nor DYN3D-TRIDIF is capableof reproducing those narrow minima, caused by the absorber rod, especially in the thermalflux, as DYN3D uses cross sections that are homogenized over the much broader fuelassembly. Therefore, this discrepancy is not a shortcoming of the SP3 transport or diffusionmethod but of the homogenization procedure. As a consequence, DYN3D underestimatesthe flux outside zone 2. This behavior is also reflected in the corresponding assemblypowers. In a coarse nodalization, the nodal power distribution is generally underestimatedin the 30◦ region as a result of the overestimation of the power in the inner corner assemblydue to compensation effects of the applied normalization. The maximum power differencewith about 4 % occurs in the assembly with the largest distance to the absorber assemblies.In this region, the highest power density occurs, which is connected to a strong thermal-flux gradient in direction to the inner reflector. The deviations in power and also thedifferences in keff of about 2000 pcm are generally rather high as a result of the significantflux gradients.
Discontinuity factors can remedy such a situation. However, the use of discontinuity fac-tors is generally not considered in this work since the underlying theory has only beenestablished for the diffusion method (cf. Section 3.1). In view of the precise comparisonof the performance of the trigonal DYN3D SP3 and diffusion models, simply applyingdiffusion-theory discontinuity factors to the SP3 method may reproduce the SP3 resultsinconsistently and generate an additional error source (although a general improvement ofthe results could be expected).
The conclusion which can be drawn from the full-core HTGR calculations is that DYN3D-TRISP3 produces better results compared to DYN3D-TRIDIF. However, the improvementsare marginal when using assembly-homogenized cross sections in such a strongly hetero-geneous material configuration. The anisotropy effect simply becomes unpronounced. Withuse of cross sections homogenized over smaller nodes, the SP3 effect is expected to appearmore emphasized.
5.3.2 HTGR fuel block with control rod

In this section, the cross-section data are homogenized for six regions within an assembly.
A simplified single HTGR control rod fuel block of the aforementioned prismatic NGNPdesign [118] is considered taking the real asymmetric rod channel position into account. InFigure 5.12, the single assembly HTGR model is depicted. We investigate the two cases
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Figure 5.12: Simplified single HTGR control rod fuel assembly model with indication ofsix homogenized-cross-section regions.

Figure 5.13: HTGR single assembly without inserted control rod: Normalized powerdistribution obtained by Serpent and relative errors (%) determined by DYN3D-TRISP3and DYN3D-TRIDIF for the nodalizations 6 and 384.
with and without inserted control rod. Here, the advantage of a method based on trigonalgeometry over a purely hexagonal method is obvious.
Considering a core temperature of 1200 K, the heterogeneous reference solutions as wellas the homogenized cross-section sets have been generated again by the Monte Carlocode Serpent [109, 110]. The cross sections have been created on an infinite assemblylevel (reflective boundary conditions) in a 12-energy-group structure (cf. Table 5.6) andextracted for six congruent trigonal regions (see Figure 5.12) [51].
Case without control rod inserted: The Monte Carlo normalized power distributionreference values for the case without inserted control rod as well as the relative errorsobtained by the trigonal DYN3D SP3 and diffusion models applying reflective boundaryconditions are depicted in Figure 5.13. A refinement study is performed up to 1536 nodesper assembly, i.e., 256 nodes per homogenized trigonal region. However, only the nodal-izations of 6 and 384 triangles per assembly are presented in this figure. Note that the
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Method No. of trigonal kinf δkinf Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 6 1.418970 -4 0.3 0.224 1.418985 -4 0.2 0.196 1.418995 -3 0.2 0.1384 1.419001 -3 0.2 0.11536 1.419006 -3 0.2 0.1DYN3D-TRIDIF 6 1.418970 -4 0.2 0.224 1.418984 -4 0.2 0.196 1.418993 -3 0.2 0.1384 1.419000 -3 0.2 0.11536 1.419004 -3 0.2 0.1Serpent (ref.) 1.419060

Table 5.9: HTGR single assembly without inserted control rod: Infinite multiplicationfactors kinf, maximum and RMS power differences – DYN3D-TRISP3 and DYN3D-TRIDIFin comparison to the Serpent reference.
Serpent solutions are not absolutely symmetric owing to statistical imprecision. In addition,the infinite multiplication factors and their relative deviations from the reference value5 aswell as the maximum and RMS power differences for DYN3D-TRISP3 and DYN3D-TRIDIFare summarized in Table 5.9 for the full refinement study. In Figure 5.14, the graphs of thenormalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of DYN3D-TRISP3/TRIDIF and Serpent along the horizontal central assembly line are additionallydepicted for the refinement level of 384 nodes, i.e., 16 triangles in the horizontal profile.The fluxes are collapsed in the same manner as presented in Section 5.3.1. As we considera reflective environment, the flux shapes, naturally, are rather flat for this case. Due to aconcentration of fuel on the left side, a moderate increase in the fast flux and a respectiveslight decrease in the thermal flux is observed. The helium filled control rod channel onthe right hardly influences the neutron flux. The decrease in power in this region evidentlyresults from the relatively small average fission cross sections. A very good agreementbetween the DYN3D methods and the Monte Carlo reference is obtained already for thecoarsest nodalization with a difference in kinf in the single-digit range and a maximumdifference in power of 0.3 % and less. With increasing mesh refinement, the power minimumin the helium channel region is superiorly represented by the DYN3D SP3 method (cf.Figure 5.13). However, this effect is rather marginal. The overall performance of DYN3D-TRISP3 and DYN3D-TRIDIF is very similar in this case as a consequence of the overallisotropic flux behavior.

5The standard deviation of kinf in the Serpent calculations is about 0.0002.
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Figure 5.14: HTGR single assembly without inserted control rod: Normalized neutron fluxdistribution along the horizontal central assembly line obtained by Serpent and DYN3D-TRISP3/TRIDIF (384 nodes).

Figure 5.15: HTGR single assembly with inserted control rod: Normalized power distri-bution obtained by Serpent and relative errors (%) determined by DYN3D-TRISP3 andDYN3D-TRIDIF for the nodalizations 6 and 384.
Case with inserted control rod: In Figure 5.15, the Serpent reference normalizedpower distribution as well as the relative errors obtained by DYN3D-TRISP3 and DYN3D-TRIDIF are depicted for the inserted-control-rod case. In Table 5.10, the infinite multipli-cation factors and the relative deviations from the reference value as well as the maximumand RMS power differences for both trigonal DYN3D models are listed. The graphs ofthe normalized shapes of the fast-, resonance-, and thermal-group neutron fluxes of the
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Method No. of trigonal kinf δkinf Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 6 0.565346 14108 10.3 4.924 0.543393 6182 4.3 2.296 0.534428 2945 2.1 1.5384 0.531467 1876 2.3 1.51536 0.530908 1674 2.3 1.5DYN3D-TRIDIF 6 0.553963 9998 7.5 4.224 0.531493 1885 2.7 1.996 0.522590 -1329 2.9 1.9384 0.519903 -2300 3.1 2.21536 0.519599 -2409 3.1 2.2Serpent (ref.) 0.526272

Table 5.10: HTGR single assembly with inserted control rod: Infinite multiplication factors
kinf, maximum and RMS power differences – DYN3D-TRISP3 and DYN3D-TRIDIF incomparison to the Serpent reference.

trigonal DYN3D methods and Serpent along the horizontal central assembly line are dis-played in Figure 5.16. Here, separate curves are shown for DYN3D-TRISP3 and DYN3D-TRIDIF as small differences can be perceived in this example. Due to the presence ofboron carbide (B4C), a so-called black absorber, there is a general decrease in the fluxtowards the absorber resulting in a vanishing thermal flux in the domain of the control rod(5.0 < r < 14.5 cm). Using cross sections homogenized over regions of the size of onesixth of the considered assembly, the circular control-rod region (cf. Figure 5.12) is "artifi-cially provided with some fuel" in the DYN3D calculation. Hence, DYN3D is not capableof reproducing the existent gradients in the resonance and thermal flux, which is not ashortcoming of the intrinsic method but of the homogenization procedure itself. However,the finer the spatial refinement is chosen, the less pronounced this effect becomes. Thisreflects in the power profile with an error of about 10 % in case the node size equals thesize of the homogenized region. For a finer nodalization, DYN3D-TRISP3 reduces theerror to less than 1 % in the control rod node and performs superior to DYN3D-TRIDIF.
In case of the coarsest nodalization, DYN3D-TRIDIF represents the reference solutioncloser than DYN3D-TRISP3 due to coincidental error cancellation.
Regarding the multiplication factors, a convergence of the DYN3D SP3 results towards theMonte Carlo solution is clearly evident. However, the results are far away from the Serpentreference. The remaining deviation (about 1700 pcm) must be caused by a combination ofthe deficiencies of the SP3 approach with spatial-homogenization/energy-averaging er-rors. Discontinuity or superhomogenization (SPH) factors can reduce such discrepancies.However, they have deliberately not been used in the present calculations (cf. Section 3.1).
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Figure 5.16: HTGR single assembly with inserted control rod: Normalized neutron fluxdistribution along the horizontal central assembly line obtained by Serpent, DYN3D-TRISP3, and DYN3D-TRIDIF (384 nodes).
The bottom line of this HTGR single-assembly study is that DYN3D-TRISP3 delivers aperformance superior to DYN3D-TRIDIF in regions with extreme flux gradients, especiallyif applying fine nodalization. A refinement of the cross-section homogenization areas wouldemphasize this effect.
5.3.3 VVER-1000-like fuel assembly

In the previous subsections, the performance of the trigonal DYN3D models is analyzed re-quiring cross sections homogenized on assembly or quasi-assembly size. Now, an exampleis investigated using cross sections homogenized on pin-cell level.
A single hexagonal fuel assembly with two different material compositions is chosen. Bothfuel assembly types consist of 151 fuel pins and 18 guide tubes. In one case, 6 burnable-absorber pins are introduced. The used materials as well as the fuel rod geometry and thefuel pin pitch6 are typical for a VVER-1000 fuel assembly (a detailed description is givenin [115]). However, the diameter of the guide tubes is scaled down to fit the nodalizationgrid. The guide tubes and the space between the pins are filled with unborated water.

6The distance between the centers of two adjacent fuel pins is called fuel pin pitch.
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Figure 5.17: 60◦ sectors of a VVER-1000-like fuel assembly without (a) and with (b) afuel/gadolinium pin.
In Figure 5.17, 60◦ symmetry sectors of the two test cases – without and with burnable-absorber (fuel/gadolinium) pin – are illustrated.
The two-dimensional heterogeneous reference solutions have been generated by the HE-LIOS 1.10 lattice transport code [18], which solves the transport equation by a methodbased on current coupling and collision probabilities. The transport calculations havebeen performed in 190 neutron energy groups. For the DYN3D pin-level calculations, arefinement of 1536 trigonal nodes has been chosen. With this nodalization, one fuel pin orguide tube is radially represented by six trigonal elements. We have the following regions:
• triangles containing one sixth of a higher enriched UO2 fuel pin (4.4 % 235U) andunborated water (H2O),
• triangles containing one sixth of a lower enriched UO2 fuel pin (4.0 % 235U) andunborated water (H2O),
• triangles containing one sixth of a fuel/gadolinium pin (3.6 % 235U + 5.0 % Gd2O3)and unborated water (H2O),
• triangles containing one sixth of a guide tube (Zr alloy) and unborated water (H2O),
• inner triangles containing only unborated water (H2O), and
• peripherical triangles containing only unborated water (H2O).

The macroscopic cross sections required for DYN3D have also been generated by theHELIOS code, using reflective assembly boundary conditions and allowing for ambient
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Group Upper group energy(MeV)1 2.0000e12 2.23133 8.2085e-14 9.1188e-35 1.3007e-46 3.9279e-67 6.2506e-78 1.4572e-7
Table 5.11: 8-energy-group structure for the VVER analysis.

Method No. of trigonal kinf δkinf Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 1536 1.421852 -43 2.4 0.9DYN3D-TRIDIF 1536 1.422373 -18 2.0 0.8HELIOS (ref.) 1.422729
Table 5.12: VVER-1000-like fuel assembly without fuel/gadolinium pin: Infinite multipli-cation factors kinf, maximum and RMS power differences – DYN3D-TRISP3 and DYN3D-TRIDIF in comparison to the HELIOS reference.

effects. They have been extracted for the aforementioned regions in the 8-energy-groupstructure shown in Table 5.11, which is considered appropriate for light-water reactors[13, 120]. Finally, the DYN3D calculations have been performed also using reflectiveexterior boundary conditions.
Case without burnable-absorber pins: In Figure 5.18, the HELIOS reference normal-ized power distribution as well as the relative errors obtained by DYN3D-TRISP3 andDYN3D-TRIDIF are presented for the case without absorber pin. The infinite multiplica-tion factors and the relative deviations from the reference value as well as the maximum andRMS power differences for both trigonal DYN3D models are summarized in Table 5.12. Dueto the wide (and unrealistic) inter-assembly water gap of the present assembly model, thehighest power values are located in the outermost area of the assembly with the power peakin the outer corner pins as a result of extensive moderation in the junction area of three ad-jacent assemblies. This maximum nodal power value is well predicted by DYN3D-TRISP3with 0.0 % error, whereas DYN3D-TRIDIF shows a slight deviation of -0.4 %. However, themaximum error in power of the trigonal DYN3D methods occurs in the opposite node ofthe corner pin. Here, the DYN3D diffusion method shows a better local representation ofthe reference value with -2.0 % deviation in comparison to -2.4 % determined by DYN3D-TRISP3, which is simply a compensation effect. Globally, the trigonal DYN3D methods
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Figure 5.18: VVER-1000-like fuel assembly without fuel/gadolinium pin: Normalizedpower distribution obtained by HELIOS and relative errors (%) determined by DYN3D-TRISP3 and DYN3D-TRIDIF.
slightly overestimate the relatively low power values in the inner assembly region andunderestimate the higher powers in the outer area. A general good agreement, however,between DYN3D and the HELIOS reference is achieved. Both trigonal DYN3D methodsshow similar results with δkinf values in the lower double-digit range and an average devi-ation in power of less than 1 % as a consequence of the rather negligible anisotropic effectsin the neutron flux.
Case with burnable-absorber pins: The HELIOS reference normalized power distri-bution as well as the relative errors obtained by the trigonal DYN3D SP3 and diffusionmodels for the case with the strong absorbing fuel/gadolinium pin are shown in Figure 5.19.The infinite multiplication factors and the respective deviations from the reference value aswell as the maximum and RMS power differences for DYN3D-TRISP3 and DYN3D-TRIDIFare summarized in Table 5.13. The DYN3D diffusion method reproduces the reference so-lution with an error of almost 9 % in the nodes containing gadolinium material (highlighted
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Figure 5.19: VVER-1000-like fuel assembly with fuel/gadolinium pin: Normalized powerdistribution obtained by HELIOS and relative errors (%) determined by DYN3D-TRISP3and DYN3D-TRIDIF.

Method No. of trigonal kinf δkinf Max. diff. RMS diff.nodes per FA (pcm) (%) (%)DYN3D-TRISP3 1536 1.287081 -858 4.8 1.4DYN3D-TRIDIF 1536 1.278561 -1361 8.8 2.0HELIOS (ref.) 1.301624
Table 5.13: VVER-1000-like fuel assembly with fuel/gadolinium pin: Infinite multiplica-tion factors kinf, maximum and RMS power differences – DYN3D-TRISP3 and DYN3D-TRIDIF in comparison to the HELIOS reference.
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in orange), whereas, with the DYN3D SP3 method, this error is reduced to less than 5 %.Also in the immediate vicinity of the absorber pin, DYN3D-TRISP3 superiorly predicts thepower distribution. The global performance, however, is comparable to the aforementionedcase. With regard to the multiplication factors, the DYN3D SP3 approach reduces thedifference in kinf by 500 pcm.
The rather high deviations in kinf can be reduced by the use of pin-cell discontinuity factors(CDFs) or superhomogenization (SPH) factors. However, this is generally abandoned inthis work (cf. Section 3.1).
The fact that DYN3D-TRIDIF shows results in the inner assembly area slightly closerto the reference solution than DYN3D-TRISP3 can be explained by the superposition ofthe transport error with the spatial-homogenization and group-collapsing effects. Such afortunate error cancellation in low-order methods was also observed by Kozlowski et al.[93].
The bottom line of this simplified VVER-1000 single-assembly study is that the performanceof the DYN3D SP3 method is superior to the respective diffusion method in regions withsignificantly pronounced flux gradients resulting in anisotropic neutron transport behavior.
5.4 Computation times

This section gives an overview of the computational effort of the test cases analyzed in thischapter.
As the computation times depend not only on the computer performance of the used pro-cessor but also on the DYN3D input requirements like the number of inner iterations andparticular outer iteration stop criteria (cf. Section 4.8), the following review should beconsidered in a relative manner rather than absolutely.
In Tables 5.14–5.18, the DYN3D computation times are summarized for the VVER-1000and the Hébert benchmarks considered in Section 5.2 as well as for the HTGR core andfuel-block examples and the VVER-1000-like single assembly of Section 5.3. Note thatthe respective cases with and without inserted absorber do not significantly differ fromeach other. All calculations have been run on a 2.8 GHz computer (Intel(R) Core(TM)2)using a maximum number of inner iterations maxin of 3 to 5 (cf. Algorithms 4.2 and 4.4) aswell as outer iteration tolerance criteria εf and εk of 1e-7 or 1e-8 (cf. Algorithms 4.1 and4.3).
The main conclusion of this overview is that the trigonal DYN3D SP3 calculations aregenerally about four times more expensive than the respective diffusion runs. This can be
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Method No. of trigonal Computation timenodes per FADYN3D-TRIDIF 6 < 1 s24 < 1 s96 6 s384 41 s1536 243 s6144 1359 s ≈ 22.7 minDYN3D-HEXNEM1 < 1 sDYN3D-HEXNEM2 < 1 s
Table 5.14: Computation times required for the VVER-1000 benchmark calculations.

Method No. of trigonal Computation timenodes per FADYN3D-TRISP3 6 < 1 s24 < 1 s96 2 s384 14 s1536 107 s6144 949 s ≈ 15.8 minDYN3D-TRIDIF 6 < 1 s24 < 1 s96 < 1 s384 3 s1536 24 s6144 255 s ≈ 4.3 minDYN3D-HEXNEM1 < 1 sDYN3D-HEXNEM2 < 1 s
Table 5.15: Computation times required for the Hébert benchmark calculations.

Method No. of trigonal Computation timenodes per FADYN3D-TRISP3 6 29 s24 159 s96 899 s ≈ 15.0 min384 5662 s ≈ 94.4 minDYN3D-TRIDIF 6 7 s24 37 s96 196 s ≈ 3.3 min384 1379 s ≈ 23.0 minDYN3D-HEXNEM1 1 sDYN3D-HEXNEM2 2 s
Table 5.16: Computation times required for the HTGR core calculations.
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Method No. of trigonal Computation timenodes per FADYN3D-TRISP3 6 < 1 s24 1 s96 7 s384 48 s1536 386 sDYN3D-TRIDIF 6 < 1 s24 < 1 s96 2 s384 12 s1536 86 s

Table 5.17: Computation times required for the HTGR single-assembly calculations.
Method No. of trigonal Computation timenodes per FADYN3D-TRISP3 1536 100 sDYN3D-TRIDIF 1536 22 s

Table 5.18: Computation times required for the VVER-1000-like single-assembly calcu-lations.
traced back to the fact that DYN3D-TRISP3 solves a 2×2 system of equations for the fluxmoments Φ0 and Φ2 in comparison to only a single equation for Φ0 in the DYN3D-TRIDIFapproach. It is further found that a mesh refinement step increases the calculation time byroughly a factor of seven. In addition to the quadrupling of the number of nodal elementswith every higher level of refinement, the convergence behavior of the implemented solverdeteriorates (cf. outer iteration schemes of Algorithms 4.1 and 4.3).
Depending on the core configuration to be calculated, one has to deliberate about whetherthe diffusion or SP3 approximation to the transport equation is the appropriate choiceconsidering both the potential gain in accuracy in a certain discretization and the spentcomputation time.





6
Conclusions

This thesis focuses on the simplified P3 (or SP3) and diffusion approximations to theneutron transport equation. The SP3 transport and diffusion equations are solved in thescope of a nodal method based on trigonal geometry and are implemented in the reactorcode DYN3D. Here, the main results are summarized and possible areas of future researchare suggested.
6.1 Summary

The reliable safe operation of nuclear reactors is highly dependent on the ability to pre-cisely determine the neutron flux, from which reactivity feedback coefficients as well ascriticality, power, and temperature distributions are derived. A reactor, however, is a com-plex object in terms of its geometry, its composition, and the nuclear data involved. Thisrenders a whole-core neutron transport calculation practically impossible. In Chapter 1,the main steps of reactor calculations are outlined and the three-dimensional nodal reactordynamics code DYN3D is introduced.
The neutron flux in a reactor is governed by several mechanisms by which neutrons can begained or lost from the system, such as streaming effects as well as scattering, absorption,and fission events. Balancing these mechanisms against the time rate of change in theneutron density yields the neutron transport equation, which is presented in Chapter 2.Distinguishing between Monte Carlo and deterministic methods, an overview of differentsolution approaches to the transport equation is given. It is shown that the simplified PNmethod allows an efficient solution technique, which is applicable to full-core calculations.The simplified PN equations are derived leading to both the SP3 and diffusion equationsand revealing the main difference between both methods: the inclusion of higher-orderneutron flux moments in the SP3 approach. This fact involves the capability of the SP3
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method to describe anisotropic neutron migration processes, while merely the zeroth fluxmoment is taken into account in diffusion theory and only linear anisotropy effects canbe reproduced by using the transport-corrected diffusion coefficient. A further advantageof the SP3 approach becomes evident in Chapter 2: The SP3 equations in within-grouprepresentation form a pair of coupled diffusion-type equations, which enables the use ofvery similar solution strategies of both the SP3 and diffusion approaches.
In Chapter 3, the nodal reactor analysis concept is introduced. Nodal methods providea framework for determining the three-dimensional neutron flux distribution throughoutthe reactor core, which avoid high computational costs. For reactor cores with hexagonalfuel assemblies, the capability of mesh refinement is an obvious advantage of a nodalmethod based on trigonal geometry. Furthermore, this geometry is particularly relevantfor the modeling of asymmetric fuel assemblies as they can be found in high-temperaturereactor cores. Analyzing also the previously existing DYN3D models, it is shown that thenodal approaches implemented in DYN3D can be regarded as hybrid forms of two classesof common nodal methods encompassing the advantages of both approaches and, hence,providing a highly efficient code. The DYN3D nodal methods are based on the transverse-integration procedure and use a combination of polynomial and exponential ansatzes toexpand the unknown functions of the neutron flux.
Chapter 4 of this thesis focuses on the rigorous analysis of the mathematical interrela-tions. In the context of the development of numerical solution procedures for the SP3transport and diffusion equations in trigonal geometry, the nodal face-averaged partialneutron currents are important quantities since they significantly contribute to the inter-nodal neutron balance by realizing the nodal coupling. The response-matrix equations arederived to calculate the moments of the node-interface outgoing partial currents leading toan iterative procedure involving inner and outer iteration cycles from which the nodal fluxesare determined. Although only node-averaged neutron fluxes are finally used to derive rel-evant reaction rates, the accuracy of these node-averaged fluxes is strongly impacted bythe intra-nodal flux representation, which is known to be more sophisticated in the SP3transport than in the diffusion approach.
A compact verification analysis of the performance of the trigonal DYN3D SP3 transportand diffusion models is presented in Chapter 5. With particular regard to mesh refinementstudies, diverse hexagonal test and benchmark problems with different material compo-sitions are investigated. By means of mathematical benchmarks defined for the use ofassembly-homogenized cross sections, the spatial convergence of the DYN3D diffusionand SP3 results to the corresponding fine-mesh reference solutions provides proof of theirrespective functional reliability. The superiority of the SP3 over the diffusion model is
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demonstrated by means of an academic benchmark especially prepared to magnify trans-port effects. To investigate examples related more closely to practical applications, testproblems with detailed-geometry full-transport reference solutions are analyzed in addi-tion. Due to various error sources, such as homogenization effects and the assumptionof an infinitely periodic lattice during cross-section generation, deviations of the DYN3Dresults from the reference solutions are inevitable. In the frame of their methodologicalpossibilities, however, the results of the trigonal DYN3D models developed in this workagree well with the considered reference solutions. The question to which degree an errorshould be minimized, e.g., by refining the nodal mesh, has to be posed in the context ofeach specific core configuration – considering the potential gain in accuracy subject to thecomputational costs.
It should be emphasized that, as yet, none of the worldwide well-established core analy-sis codes comprises a multi-group SP3 transport theory model based on nodal triangularmeshes, which combines the advantage of the capability to capture anisotropic transporteffects with the possibility of mesh refinement for hexagonal fuel assembly geometries.Therefore, the present work constitutes a significant contribution to the nodal-code devel-opment from which benefits may be expected throughout the community and ensures thatDYN3D remains a world-wide competitive reactor code.
To summarize and conclude this thesis: The development of two methods based on differentapproximations of the transport equation using identical underlying spatial discretizationallows a profound comparative analysis of both methods with regard to their mathemat-ical derivations, nodal expansion approaches, solution procedures, and most importantlytheir physical performance. From the latter aspect, the following main conclusion can bedrawn: The trigonal DYN3D SP3 model achieves significantly better agreement with thereference solutions than the trigonal DYN3D diffusion approach in cases with pronouncedanisotropy effects. The gain in accuracy obtained by the SP3 model increases with the useof cross sections homogenized over smaller nodes. The improvements provided in this thesisare particularly relevant to the modeling of reactor cores with fuel assemblies comprisingabsorber material such as inserted control rods or burnable absorbers.
6.2 Recommendations for future work

In addition to the application of the newly available code to further investigating practicalproblems in reactor physics like those mentioned above, areas for future development fallinto the following groups:
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• the reduction of the computational costs,
• the increase of flexibility of the discretization, and
• the enhancement of the physical and mathematical approaches.

Due to a considerable computational burden, nodal calculations on a very fine mesh arecertainly not practical in the near term for full-core analyses. In addition to the possible ap-plication of acceleration methods, the computational costs could be simply but significantlyreduced if it was possible to apply a refinement locally. In this manner, a fine resolutioncould be used in regions with strong anisotropy effects, whereas a coarse nodalization maybe sufficient elsewhere. A hybrid use of the SP3 transport and diffusion methods, similarto the work by Lee and Downar [106], could be added to the aforementioned approach.
With respect to the discretization, a more flexible mesh refinement could be implemented.The present trigonal models only allow the number of nodal rows within one trigonal nodeto be 2m, m ∈ N. A user-defined number of such rows would enable the representationof more realistic fuel assembly compositions. In this manner, e.g., the VVER-1000 fuelassembly of Figure 5.17 (page 117) could be modeled without the unrealistic periphericalwater nodes.
Enhancement of the physical and mathematical approaches of the trigonal DYN3D diffusionand SP3 models could be achieved, e.g., via the incorporation of higher-order anisotropicscattering beyond the first-moment within-group scattering cross section in the SP3 imple-mentation and the application of assembly and pin-cell discontinuity factors, while pointingout that, as yet, ADFs for the SP3 theory have not been defined. Furthermore, an improvedinter-nodal coupling by averaging the partial currents over subdivisions of the trigonal nodefaces could be derived and the flux expansion could be upgraded via higher-order poly-nomial and/or additional exponential basis functions, similar to the DYN3D-HEXNEM2ansatz or the approach by Christoskov and Petkov [37].
Finally, this work should be extended to the applicability of time-dependent phenomena,since this is indispensable for reactor safety analysis.
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