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Abstract— A novel heart surface motion estimation frame-
work for a robotic surgery on a stabilized beating heart is
proposed. It includes an approach for the reconstruction and
prediction of heart surface motion based on a novel physical
model of the intervention area described by a distributed-
parameter system. Instead of conventional element methods, a
meshless method is used for a spatial and temporal decomposi-
tion of this system. This leads to a finite-dimensional state-space
form. Furthermore, the state of the resulting lumped-parameter
system, which provides an approximation of the deflection and
velocity of the heart surface, is dynamically estimated under
consideration of uncertainties both occurring in the system
and arising from noisy camera measurements. By using the
estimation results, an accurate reconstruction of heart surface
motion for the synchronisation of the surgical instruments is
also achieved at occluded or non-measurement points.

I. INTRODUCTION

A recent development, so called off-pump surgery, can
decrease the need for blood transfusion and morbidity of a
on-pump coronary artery bypass surgery such as stroke or
renal failure. With a particular area of the heart stabilized,
the surgeon can operate on a beating heart without use of a
heart-lung machine. However, some residual motion in the
stabilized area remains [1], demanding the concentration of
a surgeon on the heart motion during operation.

Some proposals have been made for a robotic surgery
system with the goal to assist a surgeon by operating on a
beating heart [2], [3]. This system consists of a measurement
unit, such as a camera, an instrument robot, that moves
surgical instruments according to the heart motion, control
and image stabilization units. It will take over the challenges
of the operation on a beating heart, such as the simultaneous
vision and action coordination, and gives a surgeon the
ability to dedicate his attention to the more complex tasks.

The main requirements on the robotic system for beating
heart surgery are high accuracy, adaptation to any patient,
and real-time operability. Hence, accurate measurements and
a method for motion estimation and prediction for each
point of interest on the heart surface are necessary. On the
other hand, this is in opposition with low computational
complexity and high speed.

For the estimation of heart motion, various approaches can
be found in the literature. In general, they can be classified
into methods based on the modeling of the heart as a physical
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Fig. 1. Schematic overview of the robotic surgery system for motion and
image synchronization during operations on a beating heart.

elastic body, and methods using other models. One of the
methods from the second group [4] is based on the extraction
of the respiration motion from the heartbeat motion using
electrocardiogram and lung airflow information. A further
approach of this group is described in [2], which applies
the motion model of the heart’s natural landmarks in order
to reconstruct the motion of the heart surface. The first
group dealing with physical elastic body models includes
the approach [5], [6], where a model of the heart is used for
the estimation of heart motion, and [7], [8], where a two-
dimensional model of the heart is proposed for magnetic
resonance (MR) image analyses of cardiac kinematics.

The significant difference between the two groups of
methods is that the ones based on the modeling of the heart
as elastic body can better reconstruct motion between mea-
surement points. The reason for this is that, by solving partial
differential equations (PDE) characterizing the system, more
accurate results can be achieved. This is because the physical
characteristics of the system are used. It is also possible to
reconstruct the heart motion at non-measurement points for
a long time and thus, to bridge long disturbances during
measurements when a sufficient physical model is provided.
Therefore, the number of sensors and their measurement
rates can be decreased. Also the interactions of the heart with
the medical instruments can be considered more precisely.
However, it should be pointed out that, unlike the other
methods, the model-based estimation of a system, as complex
as the heart, is computationally expensive and hardly possible
in real-time. Not only does the simulation using models
of complex geometry demand a lot of computational time,
but also the numerical solution of the PDE with solvers,
such as the finite-element (FEM), finite-volume (FVM) or
finite-difference (FDM) methods, generates system-related
response delays.



In this paper, a novel framework for estimation of the heart
surface motion for a robotic surgery system is presented.
The main contribution is the prediction and reconstruction
of the heart surface motion based on a new physical model
described by a distributed-parameter system whose spatial
and temporal decomposition is carried out by meshless
methods. The purpose of the suggested physical model is not
only to make a realistic reconstruction of heart motion but
also to reduce computation time by simplifying the complex
geometry of the heart.

In the next section, the problem of reconstructing the
heart motion is described. The physical model of the heart
as a thin plate is proposed in Section III. In Section IV,
a short review of numerical solvers of PDEs is given in a
context of robotic surgery systems. Section V discusses the
spatial and temporal decomposition of the PDE. In Section
VI, the proposed model of the thin elastic plate is evaluated
in comparison with the analytic solution. Finally, estimation
of the motion of non-measurement points is evaluated in
an experiment on a pressure-regulated artificial heart (heart
phantom). The discussion of the framework for model-based
estimation closes with conclusions and an outlook on future
work.

II. PROBLEM FORMULATION

The part of the robotic surgery system considered here is
shown in Fig. 1. The fusion of measured data monitored by a
camera system during heart operation and a physical model
of the heart surface provided by the incorporation of a-priori
information leads to the reconstruction of the distributed
system of heart motion. The reconstructed information is
required for motion synchronization and image stabiliza-
tion. The estimation problem can be solved with filtering
approaches, surveyed in [9]. For linear cases, the Kalman
filter [10] and its derivatives can be used. In nonlinear cases,
nonlinear estimation procedures, e.g the particle filter [11],
the Gaussian Sum filter [12], should be applied. All these
estimators require a system description in lumped-parameter
state-space form.

At first, the motion of the heart surface should be char-
acterized as a distributed phenomenon by means of a PDE.
This formulation has to consider the physical characteristics
as well as specific material properties and external forces
that affect and deform the surface. Then, the distributed-
parameter system should be converted into lumped-parameter
form, which can be achieved by numerical methods for solv-
ing PDEs. This dynamic lumped-parameter system model
has to be transferred into the state-space form for estimating
the state of a distributed system, such as heart surface motion
in a robotic surgery system.

In order to meet the high demand for accuracy of the
measurement system for robotic surgery, measurements must
be taken on discrete points of the heart surface, as shown in
Fig. 2. These markers can be randomly distributed on the
heart surface. However, their systematic placement near the
intervention area leads to a higher accuracy of the proposed
framework and thus to a better feasibility, higher safety, and
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Fig. 2. Measurement system for accurate detection of heart motion.

more precise surgical interventions. The measured positions
of these points can be used as a-priori information for the
construction of the model, in order to avoid the matching or
additional registration of the model to the heart surface.

III. MODEL OF HEART SURFACE

In this section, the behavior of the heart surface as a
distributed phenomenon is formulated by means of a PDE.
For this purpose, after a brief analysis of the heart geometry,
the possible assumptions are justified and the thin plate
model of the heart surface is proposed.

The purpose of the heart surface modeling is to simplify
the complexity of the real system without serious loss in
behavior, so that all off-pump bypass surgery operations can
be perfomed with this approximation.

The geometry of the heart differs from patient to patient.
For that reason, some medical statistical studies were under-
taken in order to define the average heart wall dimensions,
calculated under consideration of different patients. In [13],
the average wall thickness of the left atrium is determined as
about 2.5mm. In [14], [15], the average left ventricle wall
is given as about 10mm. According to these studies, the
thickness of the heart walls of the left ventricle as well as the
left atrium is much smaller than their other two dimensions,
such as length or width.

Under consideration of the heart surface geometry, the
following assumptions are made to simplify the model of the
heart surface in the intervention area. The shape of this area
and boundary conditions are determined by a mechanical
stabilizer, attached to the heart for the limitation and stabi-
lization of the heart motion. This part of the heart surface
is assumed to be of square shape with simply supported
boundary conditions. The remaining out-of-plane deflections
of the heart surface [1] are less than the heart wall thickness.
Thus, the geometry of the heart and stabilization during
operation allow to model the heart surface as a thin plate.

The classical deflection behavior of thin plates assumes
that normals to the neutral surface of the undeformed plate
remain straight and normal to the neutral surface during
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Fig. 3. Description of boundary conditions for the model, where on the
boundaries Γ1, Γ2, Γ3, Γ4 the bending moments Mn and displacements ω

are imposed.

deformation or bending. Due to this so-called Kirchhoff
assumption, all three displacement components are expressed
in terms of the deflection in out-of-plane direction.

Because of small deformations due to the heart surface
stabilization and restriction of operation area, the assumption
that the thickness of the plate remains unchanged during the
plate deformation, is made. For the same reasons, the heart
surface can be treated as linear elastic, homogeneous, and
isotropic. The transverse normal stresses were assumed to be
negligible compared to the remaining non-zero stresses. The
force affecting the heart surface is considered as transverse.

Thanks to these assumptions, the complexity of the heart
surface model is decreased, and hence, a three-dimensional
problem reduces to one involving only two dimensions.

According to the classical Kirchhoff thin plate theory,
the static behavior of an homogeneous, isotropic, thin plate
under bending is given by the Lagrange equation [16]. For
the dynamic case the PDE describing the deflection of the
heart surface by means of thin plate, shown in Fig. 3, can
be written in the form

∇
4
ω(x,y, t)+ρhω̈(x,y, t) =

p(x,y, t)
D

,

(x,y) ∈Ω1 = (0,1)2, t ≥ 0 ,
(1)

where ω denotes the deflection of the middle layer of the
heart surface in z-direction, ρ is the material density of the
heart, ∇ is the Nabla operator, p is the transverse load, h is
the thickness of it and

D =
Eh3

12(1−ν)2

is the bending stiffness of the heart area, which depends on
the Young’s modulus E and Poisson’s ratio ν .

Considering the solution in a normalized domain Ω =
[0,1]2, taking into account the mechanical stabilization of the
operation area, the following boundary and initial conditions

ω(x,y, t) = gD = 0, (x,y) ∈ Γ1∪Γ2∪Γ3∪Γ4, t ≥ 0,

Mn(x,y, t) = gN = 0, (x,y) ∈ Γ1∪Γ2∪Γ3∪Γ4, t ≥ 0
(2)

have to be imposed. Here, gD is referred to as a Dirichlet
boundary condition and gN , specifying a condition on the
derivative, is the Neumann boundary condition. Mn are
bending moments of a section of the plate perpendicular to
the direction of the normal n to the boundary. The boundaries
of the plate are defined as

Γ1 = {(x,y) : 0≤ x≤ 1, y = 0} ,

Γ2 = {(x,y) : x = 1, 0≤ y≤ 1} ,

Γ3 = {(x,y) : 0≤ x≤ 1, y = 1} ,

Γ4 = {(x,y) : x = 0, 0≤ y≤ 1} .

and shown in Fig. 3. The applied bending moments are given
by

Mn =−D
{

ν∇
2
ω +(1−ν)·(

cos2
α

∂ 2ω

∂ 2x
+ sin2

α
∂ 2ω

∂ 2y
+ sin2α

∂ 2ω

∂x∂y

)}
,

(3)

where α is the angle between the plate surface and the
normal of the boundary.

IV. MESHLESS METHODS FOR PARTIAL
DIFFERENTIAL EQUATIONS

This section deals with the analysis of different meshless
methods regarding the application for model-based estima-
tion in a robotic surgery system. After a brief description
of the differences between meshless methods and classical
methods for solving PDEs, their advantages and drawbacks
are discussed.

A. Overview of methods

A variety of meshless methods was considered in [17],
[18], [19], [20]. The obvious advantage of these methods in
comparison to traditional numerical methods, such as FEM,
FDM, or FVM, is that no information on the relationship
between the nodes is required and thus no element mesh
is needed. Since meshless discretization techniques are only
based on a set of points, these methods are better suited
to handle changes in geometry of the domain of interest
[20]. Thus, by application of meshless methods in heart
modeling, the changes of the heart surface, caused by sur-
gical interventions, can be traced more precisely. Another
advantage is easier adaptive analysis. In particular, when the
mesh becomes extremely skewed or compressed because of
large deformations or discontinuities, an adaptive remeshing
or a node refinement must be performed in order to maintain
reasonable numerical accuracy. In conventional methods,
the enrichment is difficult due to the need for element
connectivity. In meshless methods it can be achieved by
adding or removing points.

Without the need for a predefined mesh, the meshless
methods result in higher computational efficiency and better
accuracy by handling of large deformations or disconti-
nuities. Concerning the robotic surgery system, they can



contribute to easier adaptation of the model to any patient,
give flexibility in handling surgical interventions, and reduce
the time for initialization of the robotic surgery system.

B. Classification of meshless methods

While the major difference between meshless methods
comes from the techniques for interpolating trial and test
functions, only general groups of them will be taken into
account here. According to computational modeling, the
meshless methods may be categorized into two different
classes: those, where the use of background cells is necessary
for the integration, and those, where no mesh is required at
all. A method in a first class is Smoothed Particle Hydrody-
namics (SPH) [21], [22]. Here the predefinion of particles
for their volumes or masses still requires some kind of
cells. Furthermore, the Element-Free Galerkin Method (EFG)
[23], based on the global Galerkin Weak Formulation, needs
background cells for the integration of system matrices. The
second class contains the following meshless methods: the
Meshless Local Petrov-Galerkin Method (MLPG) [24], the
Spectral Method (SM) [25], and the Collocation Method
(CM) [26]. Without need for cells the latter methods are
better suited for adaptation and enrichment. They will now
be analyzed regarding to their application for robotic surgery
system.

1) Meshless Local Petrov-Galerkin Method: The MLPG
method is based on the definition of simple subdomains,
thus, avoiding the background cells. Contrary to the EFG,
where the trial and test functions are chosen from the same
function space, in MLPG the nodal trial and test functions
can be different. This makes the MLPG method very flexible.
Hence, when the Dirac delta distribution is used as the test
function, the local CM without numerical integration results.
This is the simplest form of the MLPG. Setting the Heaviside
function as test function leads to an integration over regular
boundaries in order to construct the stiffness matrix. Despite
higher complexity in comparison to the use of the Dirac delta
distribution as test function, a better accuracy and stability
can be achieved. The drawback of using the Heaviside
function is the higher amount of computations for solving of
PDEs because of the non-symmetrical stiffness matrix and
the need for integration.

2) Spectral Method: The SM is known as highly accurate
solver for PDEs [20]. The fundamental principle of these
methods is to use a set of very smooth and global basis
functions, such as polynomials, to represent the approximate
solution of the PDE through the evaluation of the derivative
of this solution. Frequently, orthogonal polynomials, such as
Chebyshev polynomials, are used as basis functions along
with the corresponding Chebyshev points. The special ar-
rangement of grid points is defined through minimal-energy
configurations associated with the inverse linear repulsion
between these points. According to [25], the effect of using
these clustered points on the accuracy of the interpolation
is dramatic. Thus, the main drawback of these methods for
the described robotic surgery system is the use of a special
arrangement of grid points for achieving high precision.

Because there is only access to accurate measurements on
some points of the heart surface, as shown in Fig. 2, the
cluster of points cannot be chosen freely.

3) Collocation Method: The CM makes the approxima-
tion of the dependent variables by suitable polynomials or
functions according to their values in the collocation points,
corresponding to a suitable discretization of the space vari-
able. Supposing that the error vanishes at certain collocation
points, this method has three major advantages. Since no
integration is required, the construction of the final system
of equations is efficient. Moreover, the shape functions are
only evaluated at nodes rather than at integration points
as in other methods. Due to the fact that only the points
are considered, the refinement and adaptive analysis can
be realized very fast. Furthermore, this method efficiently
deals with nonlinearities [27]. However, the precision and
existence of a solution strongly depends on the distribution
and amount of collocation points.

C. Summary
All in all, the three methods MLPG, SM, CM can be seen

as suitable for modeling of the heart surface, regarding the
model-based estimation in robotic surgery system. In this
paper, we focus on the modeling of the heart surface as the
thin plate with CM. Other methods, such as MLPG or SM,
will be evaluated in further research.

Finally, it should be noted, that SPH and CM are often
referred to as strong form solutions, while EFG and MLPG
are based on the weak form solutions. Despite the fact
that the discretized equation systems based on the weak
form are more stable and can give much more accurate
results [17], the methods referred to as strong form solutions
are very suitable for real-time applications because of low
computational complexity. For all methods, the selection of
the best number of nodes is of paramount importance for
solving time-dependent problems, as increasing the number
of nodes reduces the interpolation error but increases the
error related to time integration.

V. SOLUTION OF PARTIAL DIFFERENTIAL
EQUATIONS

This section covers the conversion of the PDEs (1) and (2)
into a set of ordinary differential equations (ODE). For this
purpose, the spatial and temporal decomposition is carried
out by solving of PDEs with a non-symmetric collocation
method.

This method is described in [26], where the author com-
ments on its superior performance in terms of computational
complexity and accuracy when compared to finite difference
methods.

The basic idea of collocation methods is to use a set of
very smooth and global basis functions φ j(p), j = 1, . . . ,N,
such as polynomials, to approximate the solution of the PDE.
Thus, the plate deflection in z-direction ω i at collocation
point i is approximated via

ω
i(p, t) =

N

∑
j=1

c j(t)φ j(p), p ∈ R , (4)



where N is the total number of collocation points and c j
are the weighting coefficients to be determined. The basis
functions, depending on space, are infinitely smooth and are
given as

φ j(p) = ϕ
(∥∥pi−ξ j

∥∥)= ϕ(r), i, j = 1, . . .N , (5)

where ϕ(r) is positive-definite univariate basic function,
Ξ = {ξ1, . . . ,ξN} presents its center points, and P =
{p1, . . . , pN} ⊂ Ω are collocation points. In the following,
inverse multiquadrics

ϕ(r) =
1√

1+(e · r)2

are used with the scaling parameter e > 0 as positive-definite
basis function for interpolation. A small value of e produces
flat basis functions, whereas a large value of e leads to very
steep functions. The accuracy of the fit will improve with
decreasing e, while the stability will decrease, resulting in
less reliable numerical results.

Substituting the finite expansion (4), containing the spatial
and temporal decomposition of the PDE solution, the system
of PDEs (1) and (2) is converted to the ODE system.

VI. STATE-SPACE FORM

This section is devoted to the derivation of the discrete-
time system and measurement equations for the purpose of
estimation of the heart surface motion.

A. System Equation

The unconditionally and absolutely stable implicit Euler
integration method is used for time-discretization of ODEs
describing the dynamic behavior of the heart surface area,
modeled by means of a thin plate. The discretization of the
plate deflection in z-direction is carried out according to the
standard backward difference approximation

∂ω i(x,y, t = tk+1)
∂ t

≈
ω i

k+1−ω i
k

∆t
,

where ∆t is the sampling time, the superscript i and the
subscript k in ω i

k denote the value of the distributed system
at collocation point i and at time step k. The substitution of
the approximation of the plate deflection in z-direction ω i

k+1
and ω i

k via (4) into (1) and (2) leads to the following system
equation

xk+1 = Akxk +Bkuk+1 +wk , (6)

where the state vector

xk =
[
ck,β k

]T
(7)

is the vector of the unknown weighting coefficients c j and
their time derivatives β j at time step k. The vector wk
represents the noise and modeling errors.

The matrices Ak and Bk and the input vector uk+1 are
determined by the linear system equation AL

Au
AMn

xk+1 =

 f
gD
gN

 . (8)

Furthermore, the construction of this system is considered
for every partition of the state vector (7) at time step k +1.
For that purpose, the set of collocation points in a domain
Ω = [0,1]2 is split into a set Ω1 of interior collocation points
and a set Γ1∪Γ2∪Γ3∪Γ4 of boundary points.

For the partition of the state vector ck+1, corresponding
to the out-of-plane deflection of heart surface, the matrices
Au and AMn describe the displacement of boundary nodes
pi ∈ Γ1∪Γ2∪Γ3∪Γ4 and are defined as

(Au)i j =
[
ϕ

(∥∥∥p−ξ

∥∥∥) , 0
]∣∣∣p=pi , ξ=ξ j ,

(AMn)i j =
[
BMnϕ

(∥∥∥p−ξ

∥∥∥) , 0
]∣∣∣p=pi , ξ=ξ j ,

(9)

where ξ j ∈ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. Because of mechanical sta-
bilization of the heart during operation, the operation area
was assumed to have time-independent, simply supported
boundary conditions. Therefore, the differential operator BMn

of bending moments (3) is given as

BMn =−D
{

ν∇
2 +(1−ν)·(

cos2
α

∂ 2

∂ 2x
+ sin2

α
∂ 2

∂ 2y
+ sin2α

∂ 2

∂x∂y

)}
.

The matrix AL determines the displacement of internal nodes
pi ∈Ω1 = (0,1)2 and is generated as

(AL)i j =
[
ϕ

(∥∥∥p−ξ

∥∥∥) , −T ϕ

(∥∥∥p−ξ

∥∥∥)]∣∣∣p=pi , ξ=ξ j ,

where ξ j ∈ Ω1, T denotes the sampling time. The force
vector contains the approximation of the deflection in z-
direction at the time step k(

f
)

i
= ϕ

(∥∥∥p−ξ

∥∥∥)∣∣∣p=pi , ξ=ξ j c j (t = tk) .

For the second partition of the state vector β
k+1

, correspond-
ing to the velocity of the motion out-of-plane direction, the
block of matrix AL for internal nodes pi ∈ Ω1 = (0,1)2 is
generated as follows

(AL)i j =
[
Lϕ

(∥∥∥p−ξ

∥∥∥) , ϕ

(∥∥∥p−ξ

∥∥∥)]∣∣∣p=pi , ξ=ξ j .

The differential operator L depends on the sampling time T

L =
T ∇4

ρh
.

So does the force vector(
f
)

i
= ϕ

(∥∥∥p−ξ

∥∥∥)∣∣∣∣p=pi , ξ=ξ j β j (t = tk)+
Tuk+1

Dρh
.

By solving the linear system (8) for vector coefficients xk+1,
the deflection ωk+1 of the heart surface in z-direction and its
velocity at time step k + 1 can be determined by means of
the approximation (4).



B. Measurement Equation

In this section, the discrete-time measurement equation,
based on the camera measurements, is derived.

Since the displacements of the markers are observed
and used to improve the estimated state, distributing more
markers on the heart surface leads to higher accuracy in the
estimation.

A relation between the measurements of marker displace-
ments ŷ = [yz,yx,yy]

T and the state vector xk is given in the
form

ŷ = Hk xk +υ , (10)

where Hk is the measurement gain matrix and υ defines the
measurement uncertainties. The matrix Hk for the measured
displacement in z-direction yz = ω at time step k is deter-
mined by the equation

ŷz = ΦΦΦ

(∥∥∥p−ξ

∥∥∥)cT
k , (11)

where Φ is the matrix of radial basic functions (5).
The displacements parallel to the undeformed middle layer

of the plate in the x- and y-direction, yx and yy, at a distance
z from the neutral surface can be expressed by

yx =−z
∂ω

∂x
, yy =−z

∂ω

∂y
. (12)

It is clearly shown here that all three displacement com-
ponents are expressed in terms of the deflection vector ω ,
due to the Kirchhoff assumption. From this it follows that
the measurement gain matrix Hk for the computation of the
displacements of the heart surface in the x- and y-direction,
approximated by

ŷx =−z
∂ΦΦΦ

(∥∥∥p−ξ

∥∥∥)
∂x

cT
k ,

ŷy =−z
∂ΦΦΦ

(∥∥∥p−ξ

∥∥∥)
∂y

cT
k

(13)

contains the spatial derivatives of the radial basic function.
Thus, the PDE (1), describing the distributed phenomenon,

such as heart surface motion, was converted by employ-
ing the meshless collocation method from an infinite-
dimensional state-space form into a discrete-time lumped-
parameter form. Then, under consideration of endogenous
uncertainties, e.g., modeling errors, noise of control function
f , and uncertainties by the definition of boundary conditions,
this system was converted into the finite-dimentional state-
space form, which is required for solving of estimation
problems. Due to the fact that the system equation (6) and
the measurement equation (10) are linear, it is sufficient to
use the Kalman filter to obtain the best possible estimate for
the system state characterizing the motion of heart surface.

VII. SIMULATION RESULTS

In this section, the performance of the proposed modeling
framework will be demonstrated by means of a simulation
and an experiment.

Fig. 4. Experimental setup for the evaluation of the proposed modeling
framework.

First, the simulation results of a small heart area modeled
by a thin plate are presented and compared with the exact
solution of the thin plate’s deformation. The purpose of this
simulation is to evaluate the accuracy of the non-symmetric
collocation meshless method employed for a conversion of
the heart surface model into lumped-parameter form.

The collocation points are initialized by use of the coor-
dinates of the discrete measurement points attached to the
heart phantom, as shown in Fig. 4.

Because of the assumption that the operation area is
mechanically stabilized, a square plate describing the heart
area of size a = b = 10cm is considered. The thickness of
the plate h = 10mm corresponds to the average value of the
left ventricle wall thickness. During simulations, the elastic
plate with Poisson’s ratio ν = 0.3 and Young’s modulus E =
10920Nm−2 is subjected to a uniformly distributed trans-
verse dynamic load p = p0 θ(t) with the frequency 1.17Hz
corresponding to the average heartbeat rate for adults. The
plate under the peak load p0 = 10Pa and its deflections in
the z-direction are presented in Fig. 5. Because the frequency
of the excitation is small in comparison to the natural
circular frequency of the plate, the displacements correspond
to those obtained from the static loading. The values of
simulated deformation in the z-direction are compared to the
deformations determined by the Navier solution for simply
supported rectangular plates discussed in [16]

ω(x,y) =
16p0

π6D

∞

∑
m=1

∞

∑
n=1

sin mπx
a sin nπy

b

mn(m2

a2 + n2

b2 )2
,

where m and n are odd integers, which influence the accuracy
of the solution by determining the number of series terms.
By setting m = n = 11, a high accuracy is achieved in the
analytical solution. As illustrated in Fig. 6, the maximum
error occurs near the boundary. In the middle of the plate
there is a displacement of about 4mm with the absolute error
of about 5 µm. The high accuracy of reconstruction in the
middle of the plate is of significant importance because of the
possibility to restrict this area by means of the mechanical
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Fig. 5. Simulated deformation in z-direction of simply supported thin plate
under transverse load.

stabilizer. The root mean square error of the maximum
deflection is 8 µm.

Therefore, by the conversion of the heart surface model
into lumped-parameter form with the non-symmetric collo-
cation method, a high accuracy of reconstruction is achieved.

In the following experiment, the evaluation of the esti-
mation is demonstrated. The goal is the reconstruction of
heart surface motion at non-measurement points using both
a physical model and measurements obtained by a camera
system. It is important to note that the uncertainties arising
from noisy measurements and occurring in the physical
model are considered.

For the purpose of evaluation, the pressure-regulated heart
phantom is controlled by a sinusoidal dynamic load with
the frequency of 1.2Hz and an amplitude of about 100hPa.
The setup of the experiment is shown in Fig. 4, where the
stabilization device is attached to the heart surface. The
parameters of the heart phantom were assumed to be time-
invariant and exactly known. The Kalman filter is used to
obtain the state estimate for the linear system, characterizing
the motion of the heart surface phantom. For z-direction, the
estimated solution and its 3σ -bound at a non-measurement
point is visualized in Fig. 7. The reconstruction of the
heart surface motion at a point whose measurements were
not considered by the estimation corresponds well to the
measurements.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel framework for the estimation of heart
surface motion based on a physical model is proposed. The
purpose is the synchronization of surgical instruments during
operations on a mechanically stabilized beating heart.

Thanks to the assumptions based on the geometry of the
heart and a mechanical stabilization of a beating heart during
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Fig. 6. Distribution of absolute error in z-direction compared to the exact
solution for simply supported thin plate under transverse load.

operation the reduction of the three-dimensional modeling
problem to a two-dimensional one is possible. This leads
to a lower computational complexity of the heart surface
model and thus, contributes to the real-time operability of
the robotic surgery system.

Furthermore, new methods for the conversion of a
distributed-parameter system, describing heart surface mo-
tion, to a lumped-parameter system required for model-
based estimation, were introduced. Applying these methods
in robotic surgery applications provides novel prospects to
efficient robotic surgery on the beating heart. Since meshless
methods are only based on a set of points, they are well suited
to handle changes in the geometry of the model. This allows
precise tracing of the changes of the heart surface caused
by surgical interventions. Thanks to remeshing or adaptation
analysis without the need of connection information between
the points, there is the possibility of a simple adaptation
of the model for any patient and even on the complex
geometries of the heart.

The performance of one of the proposed modeling ap-
proaches was demonstrated by comparing simulation results
with the exact analytic solution and high accuracy was
achieved. This framework was evaluated with model-based
estimation by means of the Kalman filter in an experiment
involving a pressure-regulated heart phantom. It should be
noted, that for the high accuracy of the model, exact in-
formation about the control function, boundary conditions,
and parameters of the distributed system is required. Thus,
for the adaption of the model to any patient, the uncer-
tainties of the force affecting the heart surface, modeling
parameters, and approximations errors should be taken into
account. Therefore, the derived model should be used with
combined parameter and state estimation approaches in order
to reconstruct the deflection of the heart surface on any point.
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