
Nonlinear Measurement Update and Prediction:
Prior Density Splitting Mixture Estimator

Andreas Rauh, Kai Briechle, and Uwe D. Hanebeck Member, IEEE

Abstract— In this paper, the Prior Density Splitting Mix-
ture Estimator (PDSME), a new Gaussian mixture filtering
algorithm for nonlinear dynamical systems and nonlinear
measurement equations, is introduced. This filter reduces the
linearization error which typically arises if nonlinear state and
measurement equations are linearized to apply linear filtering
techniques. For that purpose, the PDSME splits the prior prob-
ability density into several components of a Gaussian mixture
with smaller covariances. The PDSME is applicable to both
prediction and filter steps. A measure for the linearization error
similar to the Kullback-Leibler distance is introduced allowing
the user to specify the desired estimation quality. An upper
bound for the computational effort can be given by limiting
the maximum number of Gaussian mixture components.

I. INTRODUCTION

Common techniques for state and parameter estimation
for nonlinear systems with stochastic uncertainties rely on
the discretization of the state space using fixed or variable
grids and particle filters, see e.g. [1]–[4]. These techniques
are only applicable to low-dimensional systems since the
computational effort increases exponentially with the dimen-
sion of the state space. Major problems are the necessity
for adaptive grid sizes as well as variable numbers of grid
points and particles to ensure successful recursive filtering.
Since the estimated probability density function (PDF) is
represented by small numbers of particles in domains with
small probability, resampling techniques are unavoidable to
guarantee sufficient estimation quality for all possible states.

Other methods for recursive, nonlinear filtering rely on the
approximation of PDFs by parameterizable functions. Typ-
ically, Gaussian PDFs defined by mean and covariance are
assumed. Furthermore, algorithms using exponential PDFs
have been investigated in related work [5]. For nonlinear
systems, the assumption of a Gaussian PDF is always sub-
optimal if multi-modal or asymmetric PDFs which are sig-
nificantly different from a Gaussian have to be represented.

One possibility to calculate the mean and covariance of
Gaussian approximations of the posterior PDF is the nu-
merical integration of the exact non-Gaussian posterior PDF
which is defined by the formula of Bayes [6], [7]. Usually,
this involves integration of non-Gaussian PDFs over infinite
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intervals of a multi-dimensional state space. To avoid numer-
ical integration, Gaussian filters often rely on one of the fol-
lowing approximations. (i) It is assumed that the prior PDFs
of the state variables, their nonlinear transformations by the
measurement or state equations, and the noise densities are
jointly Gaussian distributed [8]. (ii) Nonlinear system models
are replaced by linearized measurement and state equations
to apply the so-called Extended Kalman Filter (EKF) and to
approximate the posterior density. The well-known Kalman
filter [9] corresponds to the exact solution of Bayesian state
estimation for linear systems with white Gaussian noise.

In this paper, a new approach of improving the estimation
quality of Gaussian mixture filtering algorithms [10], which
are based on the linearization of the measurement and
state equations, is introduced. For each component of the
prior PDF (represented by a Gaussian mixture density), the
corresponding posterior is approximated after linearization
of both the measurement and state equations. If a measure
quantifying the approximation quality exceeds a user-defined
bound, the number of prior density components is increased
by a novel splitting procedure. During splitting selected terms
of the Gaussian mixture are subdivided into components with
smaller covariances. For other algorithms based on splitting
or merging of PDFs, see e.g. [11], [12].

In Section II, a precise problem formulation is given. In
Section III, an overview of the proposed filtering algorithm is
presented. Some measures for the distance between PDFs are
reviewed in Section IV to determine the estimation quality of
the proposed algorithm. In Section V, the new Prior Density
Splitting Mixture Estimator (PDSME) is presented. The filter
step for nonlinear models of measurement processes is de-
rived in the Subsections V-A to V-D. In Subsection V-E, the
prediction step of the PDSME is described for nonlinear state
equations. In Section VI, selected examples are presented
to demonstrate the performance of the PDSME. Finally, in
Section VII, the paper is concluded.

II. PROBLEM FORMULATION

In this paper, Bayesian state estimation for multi-
dimensional nonlinear discrete-time systems is considered.
These systems consist of (nonlinear) state equations

xk+1 = ak (xk)+wk (1)

and (nonlinear) models of measurement processes

ŷk = hk (xk)+ vk (2)

with ak : D 7→ Rn, ak ∈ C1(D,Rn), hk : D 7→ Rz, hk ∈
C1(D,Rz), and D ⊂ Rn open.



Throughout this paper, the system noise wk and the mea-
surement noise vk are normally distributed with fw,k (wk) =
N
(

µ
w,k

,Cw,k

)
and fv,k (vk) = N

(
µ

v,k
,Cv,k

)
, resp., where

N
(

µ,C
)

denotes a Gaussian PDF with mean µ and co-
variance C.

The estimation process can be subdivided into filter and
prediction steps. In the filter step, the state estimate is
updated according to the formula of Bayes

f e
x,k

(
xk|ŷk

)
=

f p
x,k (xk) fv,k

(
ŷk−hk (xk)

)
∫

Rn
f p
x,k (xk) fv,k

(
ŷk−hk (xk)

)
dxk

(3)

by considering the measured data ŷk [6], [7]. Prior knowledge
about uncertainties of the state vector xk is described by the
density f p

x,k (xk). Equation (3) provides the exact solution for

the posterior PDF f e
x,k

(
xk|ŷk

)
.

According to formula (3), the exact posterior PDF
f e
x,k

(
xk|ŷk

)
does not remain Gaussian for nonlinear measure-

ment equations hk (xk), even if both f p
x,k and fv,k are Gaussian.

The analytic expression for the posterior PDF is becoming
more and more complicated with each additional measured
value used for the recursive update of the state estimate.

Furthermore, the theoretically exact solution of the pre-
diction step, handling the dynamics of nonlinear state equa-
tions (1), involves the evaluation of multi-dimensional con-
volution integrals

f p
x,k+1

(
xk+1

)
=
∫
Rn

f e
x,k(xk) fw,k

(
xk+1−ak(xk)

)
dxk . (4)

In general, the predicted PDF f p
x,k+1

(
xk+1

)
can only be

computed numerically. Analytic solutions only exist for a few
special cases such as Gaussian or Gaussian mixture densities
f e
x,k (xk) with linear functions ak (xk).

To avoid numerical evaluation of multi-dimensional con-
volution integrals, efficient methods for the approximation
of the PDFs (3) and (4) are derived in the following.
Although, the case of Gaussian system and measurement
noise is considered, the generalization to non-Gaussian noise
described by Gaussian mixture representations is straight-
forward yielding a weighted superposition of the results
obtained for Gaussian noise.

To describe the posterior PDF f e
x,k

(
xk|ŷk

)
, approximations

using Gaussian mixture densities

f e
x,k

(
xk|ŷk

)
=

L

∑
j=1

f e, j
x,k (xk)

=
L

∑
j=1

ω
e, j
x,k

exp

[
− 1

2

∥∥∥xk−µe, j
x,k

∥∥∥2(
Ce, j

xx,k

)−1

]
√

(2π)n
∣∣∣Ce, j

xx,k

∣∣∣
(5)

with a variable number of L components are determined.
Analogously, the predicted PDF f p

x,k+1

(
xk+1

)
is approximated

by a Gaussian mixture defined by the weighting factors
ω

p, j
x,k+1, the means µ p, j

x,k+1
, and the covariances Cp, j

x,k+1.

III. THE PROPOSED FILTERING ALGORITHM: PDSME
In this Section, an overview of the proposed PDSME is

given. For both the filter and prediction step three compo-
nents of the algorithm are defined. These components are a
splitting procedure for the prior density, the calculation of a
filter step for Gaussian mixtures using a bank of EKFs, and
the merging of posterior Gaussian mixture components. To
simplify the introduction of these components, only the filter
step (upper part of Fig. 1) is described in this Section. The
prediction step (lower part of Fig. 1) consists of the same
three components.
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Fig. 1. Overview of the PDSME algorithm: linearized filter step (upper
part) and linearized prediction step (lower part).

First, for each component of the prior PDF described
by a Gaussian mixture with L ≥ 1 components, a measure
quantifying the linearization error is computed. This measure
compares the approximated posterior PDF to the exact result
of the estimation step. The approximation is calculated after
replacement of the nonlinear measurement equation hk (xk)
by its linearization hk (xk), evaluated at the means µ p, j

x,k
, j =

1, . . . ,L, of the prior PDF. The measure for the linearization



error, which is similar to the Kullback-Leibler distance [13],
is minimized by splitting components of the prior PDF to
achieve a user-defined estimation quality.

Second, the filter step is evaluated for each Gaussian
mixture component using a bank of EKFs. This leads to
a Gaussian mixture representation of the density after the
measurement update. For nonlinear measurement models,
the number of mixture components is usually increased
compared to the prior PDF.

Hence, a merging step is introduced as the third com-
ponent of the PDSME to reduce redundancy in the density
representation as well as the number of mixture components.
The merging step is the prerequisite to use the PDSME
recursively. It prevents an unlimited growth of the number of
Gaussian mixture components. An upper bound for the com-
putational effort can be specified by limiting the maximum
number of components approximating the posterior PDFs.

For the purpose of recursive state estimation, this filter step
is followed by a sequence of further filter and prediction
steps, resp. As shown in the lower part of Fig. 1, the
prediction step consists of the same components as the filter
step. In Section V, further details on the calculation of both
the filter and prediction step of the PDSME are given.

IV. DISTANCE BETWEEN PROBABILITY DENSITIES

Calculating a measure for the distance between the exact
PDF f (x) and its Gaussian approximation f (x) is one of
the main aspects of the PDSME. This section gives a brief
summary of some measures similar to the Kullback-Leibler
distance [13] that can be used for this purpose.

The Kullback-Leibler distance between two PDFs f (x)
and f (x) is defined by

DKL
(

f‖ f
)

:=
∫
Rn

f (x) ln
(

f (x)
f (x)

)
dx (6)

or, alternatively, by DKL
(

f‖ f
)
. Obviously, the Kullback-

Leibler distance is not symmetric, i.e., DKL
(

f‖ f
)
6=

DKL
(

f‖ f
)

because this distance measure depends upon the
support of the two PDFs that are compared. Symmetry can
e.g. be achieved by the arithmetic average

J
(

f , f
)

:=
1
2
(
DKL

(
f‖ f
)
+DKL

(
f‖ f
))

(7)

of DKL
(

f‖ f
)

and DKL
(

f‖ f
)
, see Jeffreys’ distance in [14],

or by the resistor-average distance [15]

R
(

f , f
)

:=

(
1

DKL
(

f‖ f
) +

1
DKL

(
f‖ f
))−1

. (8)

For identically normalized PDFs f (x) and f (x), the
Kullback-Leibler distance is always non-negative, i.e.,
DKL

(
f‖ f
)
≥ 0 and DKL

(
f‖ f
)
≥ 0 hold. Then, DKL

(
f‖ f
)
=

DKL
(

f‖ f
)
= 0 also only holds for f (x)≡ f (x). In this paper,

identical normalization of the exact and approximated poste-
rior mixture components is not guaranteed. Thus, alternative,
non-negative definitions (corresponding to cost functions to
be minimized) are required which provide information about

the components of the prior PDF which are mapped worst
onto the posterior.

The definition (6), and therefore also (7) and (8), involve
the integration of the exact, non-Gaussian posterior PDF
f (x) defined by the formula of Bayes. Since these integrals
can only be evaluated analytically for a few special cases and
since symmetry is of minor importance in this application,
the definition

D2i
(

f‖ f
)

:=
∫
Rn

f (x)
(

ln
(

f (x)
f (x)

))2i

dx (9)

with i ∈ N, obtained by modification of (6), is introduced.
It allows to detect the mixture component with the largest
deviation between f (x) and f (x). In the following, only
the case i = 1 is considered. As shown in Subsection VI-A,
the value of this integral can be calculated analytically
for polynomial and trigonometric measurement equations
(involving sine and cosine) as a linear combination of the
moments of the Gaussian density f (x).

V. PRIOR DENSITY SPLITTING MIXTURE ESTIMATOR

In the Subsections V-A to V-D, the filter step of the
PDSME is described. Then, in Subsection V-E, the prediction
step of the PDSME is presented.

A. Linearization Error in the Filter Step

At the beginning of the filter step, the linearization error
D2

(
f e, j

x,k‖ f e, j
x,k

)
according to (9) is calculated for each com-

ponent f p, j
x,k (xk), j = 1, . . . ,L, of the prior density f p

x,k (xk).
The Gaussian mixture component

jmax := argmax
j=1,...,L

{
D2

(
f e, j

x,k‖ f e, j
x,k

)}
(10)

is identified and split into LR components with smaller
covariances to reduce the linearization error. Splitting is
applied as long as the total linearization error

D2,sum :=
L̃

∑
j=1

D2

(
f e, j

x,k‖ f e, j
x,k

)
≥ ε1 (11)

and the maximum linearization error D2,max ≥ ε2 of the
Gaussian mixture with the increased number of L̃ = L +
LR − 1 components exceed bounds ε1 and ε2 representing
the approximation quality specified by the user.

B. Splitting of the Prior Density Function

To reduce the on-line computational effort, the splitting
library required for replacement of f p, jmax

x,k (xk) by LR compo-
nents with smaller covariances, has been optimized off-line,
such that a standard normal distribution of a scalar variable
can be replaced by a Gaussian mixture approximation with
LR components. This splitting library is defined by the
weighting factors ωR,ζ , means µR,ζ , and standard deviations
σR,ζ for all ζ = 1, . . . ,LR.

Example V.1 For LR = 4, a set of parameters of a splitting
library is given in Tab. I. In Section VI, these parameters are
used to demonstrate the performance of the PDSME. �



TABLE I
SPLITTING LIBRARY WITH LR = 4 MIXTURE COMPONENTS.

ζ 1 2 3 4
ωR,ζ 0.093 0.407 0.407 0.093
µR,ζ −1.407 −0.447 0.447 1.407
σR,ζ 0.675 0.675 0.675 0.675
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Fig. 2. Reduction of the linearization error by prior density splitting.

Example V.2 In Fig. 2, the key idea of the PDSME to
reduce the linearization error by splitting the prior PDF into
a Gaussian mixture with smaller covariances is shown. First,
a Gaussian PDF with µ

p
x,k = 0.0 and σ

p
x,k = 1.0 is replaced

by LR = 4 Gaussian mixture components with the parameters
from Tab. I. Second, the linearization of the measurement
equation ŷk = x2

k + vk at the means µ
p, j
x,k , j = 1, . . . ,L, is

depicted for both representations of the PDF, i.e., for L = 1
and L = 4. Third, the corresponding linearization errors

are shown for each component of the PDF with µv = 0.0,
σv = 0.5, and ŷk = 0.75. In this example, the maximum
linearization error D2,max is reduced from 69.162 to 1.150.
Furthermore, the total error D2,sum is reduced from 69.162
to 2.305 by splitting of the prior PDF into 4 components. �

For a non-axis-parallel Gaussian mixture component, char-
acterized by ω

p, jmax
x,k , µ p, jmax

x,k
, and Cp, jmax

xx,k , splitting is per-
formed according to

ω
p,α1,...,αn
x,k = ω

p, jmax
x,k ·

n

∏
i=1

ωR,αi , (12)

µ
p,α1,...,αn
x,k

= Pp, jmax
xx,k ·

µR,α1
...

µR,αn

+ µ
p, jmax
x,k

, and (13)

Cp,α1,...,αn
xx,k = Pp, jmax

xx,k ·diag


σ2

R,α1
...

σ2
R,αn


 ·
(

Pp, jmax
xx,k

)T
, (14)

where Pp, jmax
xx,k denotes the Cholesky decomposition of Cp, jmax

xx,k .
The original component f p, jmax

x,k (xk) of the prior density is
replaced by (LR)n components denoted by the indices αi =
1, . . . ,LR with i = 1, . . . ,n. The increase in the number of
mixture components can be limited if splitting is restricted
to selected components of the state vector.

C. Calculation of the Filter Step

In the filter step (upper part of Fig. 1), the measurement
equation hk (xk) is replaced by its linearization

hk (xk) ≈ hk (xk) := H j
0

(
µ

p, j
x,k

)
+H j

1

(
µ

p, j
x,k

)
· xk (15)

at the means µ p, j
x,k

, j = 1, . . . ,L, of all components of the prior
density f p

x,k (xk) with

H j
1 := H j

1

(
µ

p, j
x,k

)
=

∂hk (xk)
∂xk

∣∣∣∣
xk=µ

p, j
x,k

(16)

and

H j
0 := H j

0

(
µ

p, j
x,k

)
= hk

(
µ

p, j
x,k

)
−H j

1

(
µ

p, j
x,k

)
·µ p, j

x,k
. (17)

Using a bank of EKFs, the approximation N
(

µe, j
x,k

,Ce, j
xx,k

)
of

each component of the posterior PDF is given by the mean

µ
e, j
x,k

= µ
p, j
x,k

+Kk ·
(

ŷk−H j
0−H j

1µ
p, j
x,k
−µ

v

)
(18)

and the covariance

Ce, j
xx,k = Cp, j

xx,k−KkH j
1Cp, j

xx,k (19)

with

Kk := Cp, j
xx,k

(
H j

1

)T
[

H j
1Cp, j

xx,k

(
H j

1

)T
+Cv

]−1

. (20)

The result of the filter step is therefore a Gaussian mixture

f e
x,k (xk) =

L

∑
j=1

ω
e, j
x,k N

(
µ

e, j
x,k

,Ce, j
xx,k

)
(21)



with the weighting factors

ω
e, j
x,k =ω

p, j
x,k

√√√√√
∣∣∣Ce, j

xx,k

∣∣∣∣∣∣Cp, j
xx,k

∣∣∣ exp

[
−1

2

∥∥∥µ
e, j
x,k
−µ

p, j
x,k

∥∥∥2(
Ce, j

xx,k

)−1

]

·
exp
[
− 1

2

∥∥∥ŷk−H j
0−H j

1µe, j
x,k
−µ

v

∥∥∥2

(Cv)−1

]
√

(2π)z |Cv|
.

(22)

D. Merging of Posterior Mixture Components

In the merging step, groups of two or more overlapping
Gaussian mixture components of the posterior PDF are
replaced by a single Gaussian component, if the additional
error introduced by this merging step is negligible.

For that purpose, all possible candidates for replacement
are determined: After interpreting the components f e, j

x,k (xk),
j = 1, . . . ,L, of the Gaussian mixture f e

x,k (xk) as the vertices
of a complete graph G , the Mahalanobis distance [16]

Mi, j =
∥∥∥µ

e,i
x,k
−µ

e, j
x,k

∥∥∥2(
Ce,i

xx,k+Ce, j
xx,k

)−1 (23)

between two different Gaussian mixture components f e,i
x,k (xk)

and f e, j
x,k (xk), i 6= j, is assigned to the corresponding edge

of G . All edges with Mi, j > εM are deleted from G . The
Gaussian mixture components belonging to each maximal
connected subgraph Cξ of the remaining graph G ′, are
replaced by a Gaussian approximation f̃ e,ξ

x,k (xk) with the same
mean and covariance [17], [18].

To find out whether these replacements are acceptable the
integral quadratic distance

Dquad,ξ =
∫
Rn

 ∑
j∈Cξ

f e, j
x,k (xk)− f̃ e,ξ

x,k (xk)

2

dxk (24)

is calculated for each subgraph Cξ . This distance measure is
preferred over the Kullback-Leibler-like distances discussed
in Section IV, because the integrand of (24) can be rewritten
analytically as a Gaussian mixture, if the approximation
error between a Gaussian and a Gaussian mixture density
is calculated. Hence, this integral can always be solved
analytically. In contrast to (24), all Kullback-Leibler-like
distances contain the logarithm of a Gaussian. Therefore, in
the merging step, the Kullback-Leibler-like distances always
have to be integrated numerically.

E. Calculation of the Prediction Step

Up to now, only the filter step of the PDSME, consisting
of the calculation of a measure for the linearization error,
the splitting of the prior density, the calculation of the mea-
surement update, and the merging step has been discussed.
In this subsection, the prediction step of the PDSME, see the
lower part of Fig. 1, is described. Analogously to the filter
step, the state equation is approximated by a linearization

ak (xk)≈ ak (xk) := A j
0

(
µ

e, j
x,k

)
+A j

1

(
µ

e, j
x,k

)
· xk (25)

at the means µe, j
x,k

.
The linearization error corresponding to (9) is

D2

(
f p, j

x,k+1‖ f p, j
x,k+1

)
=
∫
Rn

f p, j
x,k+1

(
xk+1

)(
ln

(
f p, j

x,k+1
(
xk+1

)
f p, j
x,k+1

(
xk+1

)))2

dxk+1

(26)

with the approximated component

f p, j
x,k+1

(
xk+1

)
=
∫
Rn

f e, j
x,k (xk) fw

(
xk+1−ak (xk)

)︸ ︷︷ ︸
f p, j

x,k,k+1(xk,xk+1)

dxk (27)

of the predicted PDF and the exact component

f p, j
x,k+1

(
xk+1

)
=
∫
Rn

f e, j
x,k (xk) fw

(
xk+1−ak (xk)

)︸ ︷︷ ︸
f p, j
x,k,k+1(xk,xk+1)

dxk . (28)

Due to the convolution integral, the exact predicted density
can only be evaluated numerically for nonlinear state equa-
tions ak (xk). Therefore, the linearization error

D2

(
f p, j

x,k,k+1‖ f p, j
x,k,k+1

)
=
∫
Rn

∫
Rn

f p, j
x,k,k+1

(
xk,xk+1

)
·

·

(
ln

(
f p, j

x,k,k+1
(
xk,xk+1

)
f p, j
x,k,k+1

(
xk,xk+1

)))2

dxk+1dxk

(29)

in the prediction step is defined for the approximation of
the exact joint PDF component f p, j

x,k,k+1

(
xk,xk+1

)
in (28) by

the Gaussian mixture component f p, j
x,k,k+1

(
xk,xk+1

)
in (27).

After this simplification, there is almost no difference to
the filter step, except for that fact, that the joint density
depends upon the state variables X =

[
xT

k , xT
k+1
]T with

dim(X) = 2n. Again, the component jmax of f e
x,k (xk) with

the largest linearization error D2,max is replaced by (LR)n

Gaussian mixture components with smaller covariances. The
parameters of each component of the predicted density are

ω
p, j
x,k+1 = ω

e, j
x,k , (30)

µ
p, j
x,k+1

= A j
0 +A j

1µ
e, j
x,k

+ µ
w

, and (31)

Cp, j
xx,k+1 = A j

1Ce, j
xx,k

(
A j

1

)T
+Cw . (32)

Afterwards, a merging step as in Subsection V-D is applied.

VI. SIMULATION RESULTS

A. Scalar Filter Step

The filter step of the PDSME by splitting the prior PDF
to reduce the linearization error (9) is demonstrated for the
scalar quadratic measurement equation

ŷk = x2
k + vk (33)

with Gaussian measurement noise vk. A Gaussian prior
density with µ

p
x,k = 1.0 and σ

p
x,k = 1.0 is assumed. In Fig. 3,

the result of the filter step is shown for a fixed measured
value ŷk = 0.75 and Gaussian measurement noise with µv =
0.0 and σv = 0.5. In the diagrams, the comparison of the



approximated filter step to the exact posterior density is
shown, after splitting the prior density into L = 400 mixture
components. For L = 1, the result of the PDSME is equivalent
to a standard EKF.
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Fig. 3. Comparison of the exact posterior density (dashed lines) to a
Gaussian mixture approximation (solid lines) in the filter step.

As mentioned in Section IV, for polynomial measurement
equations (33), the linearization error

D2

(
f e, j

x,k‖ f e, j
x,k

)
=

∞∫
−∞

f p, j
x,k (xk) fv

(
ŷk−hk (xk)

)︸ ︷︷ ︸
f e, j

x,k

·

·

(
−1

2

(
ŷk−hk (xk)

σv

)2

+
1
2

(
ŷk− x2

k
σv

)2)2

dxk

is expressed in terms of moments of the Gaussian PDF f e, j
x,k.

B. Scalar Prediction Step

In the prediction step, the nonlinear transformation

xk+1 = x2
k +wk (34)

of a random variable xk with additive Gaussian system
noise wk is considered. In this example, a Gaussian PDF
f e
x,k (xk) with µe

x = 1.4 and σ e
x = 0.8 has been assumed. The

noise wk is described by µw = 0.0 and σw = 0.1. In Fig. 4, the
result of the prediction step of the PDSME shows that already
for L = 52 the numerically calculated exact predicted PDF
and its Gaussian mixture approximation are almost identical.
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Fig. 4. Comparison of the exact predicted density (dashed lines) to
approximations with different numbers of mixture components (solid lines).

VII. CONCLUSIONS

In this paper, an efficient Gaussian mixture filtering algo-
rithm has been proposed. This algorithm provides a solution
for both the prediction and filter step. In contrast to other
Gaussian mixture filtering algorithms, in which nonlinear
measurement and state equations are replaced by lineariza-
tions at the means of the prior density components, the

PDSME is characterized by systematically splitting the prior
density function using a pre-calculated optimized library of
replacement densities. The components to be split into terms
with smaller covariances, are selected by a Kullback-Leibler-
like measure for the linearization error. Re-approximation of
the prior density by a Gaussian mixture with an increased
number of components with smaller covariances reduces the
linearization error and therefore improves the approximation
quality, which can be specified by the user. By limiting the
maximum number of mixture components, the maximum
computational effort can also be specified. If the number of
mixture components used by this algorithm is not limited,
the result of the PDSME converges to the exact Bayesian
state estimation. For finite numbers of mixture components,
the quality of the PDSME is always superior to the Extended
Kalman Filter, which only uses a single Gaussian component
for the approximation of the posterior density.
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