
Extended Object Tracking based on
Combined Set-Theoretic and Stochastic Fusion

Marcus Baum and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics
Universität Karlsruhe (TH), Germany
mbaum@ira.uka.de, uwe.hanebeck@ieee.org

Abstract – In this paper, a novel approach for tracking ex-
tended objects is presented. The target object is modeled as
a circular disc such that the center and extent of the target
object can be estimated. At each time step, a finite set of po-
sition measurements that are corrupted with stochastic noise
may be available. Each position measurement stems from
an unknown measurement source on the extended object. In
contrast to existing approaches, no statistical assumptions
about the distribution of the measurement sources on the ex-
tended object are made. As a consequence, it is necessary to
deal with stochastic and set-valued uncertainties. For this
purpose, a novel combined stochastic and set-theoretic esti-
mator that employs random hyperboloids to express the un-
certainties about the true circular disc is derived.

Keywords: Target Tracking, Extended Objects, Set-
Theoretic and Stochastic Estimation, Sensor Data Fusion

1 Introduction
Standard target tracking methods usually consider the

tracking of a point source based on noisy measurements. In
doing so, it is assumed that the object extension is negligi-
ble in comparison to the sensor noise. However, with the
increasing resolution of modern sensors, this assumption is
often not valid anymore. As a consequence, target tracking
algorithms have to take into account that position measure-
ments may stem from different locations on the extended tar-
get object. Typically, scenarios for tracking extended objects
occur in military surveillance with radar devices [1, 2]. In
this context, extended object tracking methods are also used
for tracking a collectively moving group of point targets [2].
If the point targets move closely together compared to the
sensor resolution, it becomes hard to tackle the data associa-
tion problem. In this case, it is suitable to consider the group
of point targets as one single extended object, since there is
a high interdependency between position measurements.

There exists a variety of approaches for incorporating the
target extent into target tracking algorithms (for an overview
see [1]). For instance, in [3] the motion of the extended ob-
ject is modeled as one bulk that is characterized by a finite

set of individual components (like points on the object) de-
scribing physical parameters, e.g., Cartesian displacement.
In [4], the target geometry is modeled by means of a spatial
distribution. A further recent approach [2] is to model an
ellipsoidal object extension with random matrices that are
treated as additional state variables.

In this paper, the extended object, which may have an ar-
bitrary shape that is not known, is modeled as a circular disc
in the two-dimensional space. At each time step, a finite
set of noisy position measurements originating from arbi-
trary, unknown measurement sources on the extended tar-
get may be available. We only require these measurement
sources to be on the target surface. In contrast to existing
approaches, we do not impose any further (statistical) re-
strictions or assumptions on the distribution of the measure-
ment sources on the target. This is a major difference to all
existing approaches and highly relevant for real world ap-
plications. For instance, consider the tracking of a ship with
a high-resolution radar device. Due to the (unknown) com-
plex character and shape of the surface of the ship, it is un-
predictable which scattering center on the ship is responsible
for a particular measurement. It is therefore nearly impossi-
ble to determine a reasonable probability distribution for the
measurement sources.

The remainder of this paper is structured as follows: Af-
ter a problem description in Section 2, we first restrict the
problem in Section 4 to a static extended object, i.e., a non-
moving target with unknown but fixed location and extent.
Furthermore, we first consider noise-free measurements (see
Section 4.1) such that we can focus on the deterministic part
of the problem. It turns out that this deterministic part can
be formulated as a set-theoretic estimation problem. In Sec-
tion 4.2, we incorporate measurements that are corrupted
by stochastic noise, which requires a combined set-theoretic
and stochastic estimator. Thereupon, Section 5 considers
the tracking of an extended object whose position and shape
changes with time. Finally, in Section 6 we treat the case
that the number of received measurements depends on the
size of the extended object. The practicability of the new
approach is shown by means of simulations in Section 7.



2 Problem Setup
The problem is to track an extended target object based on

noisy position measurements stemming from the target sur-
face. The extended object can have an arbitrary shape that is
unknown. In this paper, the true shape of the target object is
modeled as the smallest circular disc including the extended
object. Hence, from a mathematical point of view, we con-
sider the problem of tracking a circular disc with unknown
radius and center in the two-dimensional space. A circular
disc with center

[
xc, yc

]T
and radius r is denoted with

K(xc, yc, r)=
{[

x, y
]T∈ IR2 |(x−xc)2 + (y−yc)2 ≤ r2

}
.

At each time step k, the parameters of the true circular
disc are denoted with a three-dimensional vector p̃

k
=[

x̃c
k, ỹc

k, r̃k

]T
, whose components consist of the center and

radius of the smallest circle enclosing the target object.
We consider the problem of estimating p̃

k
, which is not

directly observable. Instead, at each time step k, a finite set
of two-dimensional position measurements {ẑk,j}

nk
j=1 may

be available. Each of these individual measurements ẑk,j

is the noisy observation of a two-dimensional point z̃k,j ,
named measurement source, which is known to lie in the
true circular disc K(p̃

k
), i.e.,

z̃k,j ∈ K(p̃
k
) and ẑk,j = z̃k,j + wk,j , (1)

where wk,j denotes two-dimensional additive white obser-
vation noise1 that models a random Cartesian displacement.
The probability distribution of the measurement noise wk,j

is assumed to be known. On the other hand, the measure-
ment source z̃k,j is totally unknown such that we do not
know which point on the extended object was actually mea-
sured by ẑk,j . Hence, the measurement model suffers from
a set-valued uncertainty and a stochastic uncertainty. Note
that neither the measurement source z̃k,j on the extended
object nor the number of measurements nk at time step k
are assumed to be drawn from a particular probability dis-
tribution. Nonetheless, later we will also consider the case
that the number of measurements nk depends on the size of
the extended object.

The position as well as the shape of the extended object
may vary over time. The temporal evolution of the (small-
est) circular disc, which includes the extended object, is
modeled by means of a so-called extended motion model that
captures both the motion and the extent of the target object
(details are given Section 5).

3 Getting Intuition: Known Extent
In order to obtain some insights on combined set-theoretic

and statistical estimation of extended objects, we first con-
sider the special case of estimating the unknown but fixed
location of a target object with known, fixed extent. For the
sake of an intuitive explanation, we omit the detailed formu-
las in this section. Details can be found in Remark 6 as a
special case of the general problem.

1Note that all random variables are printed bold face in this paper.

If the extent of the target object is known, the true ra-
dius r̃ of the smallest enclosing circle of the target is also
known and the unknown center

[
x̃c, ỹc

]T
is desired. We first

only consider noise-free measurements ẑk such that ẑk ∈
K(
[
x̃c, ỹc, r̃

]T ) holds, which is equivalent to
[
x̃c, ỹc

]T ∈
K(
[
ẑT

k , r̃
]T

). Hence, all possible centers
[
x̃c, ỹc

]T
that are

consistent with ẑk are an element of a circular disc with cen-
ter ẑk and radius r̃. This set is called measurement solution
set. At a fixed time step k, the accumulated knowledge about
the true center is given by the intersection of all measure-
ment solution sets that are available so far. This set is called
solution set. Unfortunately, the exact solution set is in gen-
eral not a basic geometric shape such that recursive compu-
tation is intractable. It is therefore common in set-theoretic
estimators [5] to bound the exact solution set conservatively
with a basic geometric shape. In this particular case, it is
suitable to represent the solution set as a circular disc again.
In doing so, whenever a new measurement is received, the
intersection between the corresponding measurement solu-
tion set and the current solution set has to be bounded con-
servatively with the smallest possible circular disc. With an
increasing number of measurements, the radius of the solu-
tion set shrinks and the center of the solution set approaches
the true center.

If ẑk is a noisy measurement of z̃k according to ẑk =
z̃k + wk, the knowledge about z̃k is given by the random
variable ẑk − wk. As a consequence, a measurement ẑk

yields a random measurement solution set, namely a circular
disc, with random center ẑk−wk but fixed radius r̃. The so-
lution sets then become random circular discs, whose center
and radius are random. At each time step, the random mea-
surement solution set has to be intersected with the current
random solution set (conditioned on non-emptiness). Thus,
a combined set-theoretic and stochastic estimator [6, 7] is
obtained. With an increasing number of measurements, the
set-valued and stochastic uncertainties vanish.

4 Static Extended Object
4.1 Noise-free Measurements

In case of estimating both the location and extent of a
static extended object for given measurements not corrupted
by noise, we assume w.l.o.g. that at each time step k one
position measurement ẑk = z̃k ∈ IR2 is given. Each ẑk

represents a point that is known to lie in the true smallest
enclosing circle of the target object K(p̃), i.e., ẑk ∈ K(p̃).

In the following, we derive a set-theoretic estimator [5]
for the parameters p̃ ∈ Ω := IR2 × IR+ of the true circular
disc K(p̃) based on the measurements ẑk. Consider a partic-

ular measurement ẑk =
[
xm

k , ym
k

]T
at time step k. We know

that the true circular disc K(
[
x̃c, ỹc, r̃

]T ) includes ẑk, i.e.,

ẑk ∈ K(
[
x̃c, ỹc, r̃

]T ). Hence, for a given measurement ẑk,

we can conclude that
[
x̃c, ỹc, r̃

]T
is an element of the set of



all feasible parameter vectors{[
xc, yc, r

]T ∈ Ω | (xm
k −xc)2+(ym

k −yc)2 ≤ r2
}

. (2)

This set is also called measurement solution set and denoted
by ∆m

k . In fact, ∆m
k is a cone oriented along the r–axis with

apex
[
xm

k , ym
k , 0

]T
and perpendicular cone angle.

The solution set ∆e
k for the true parameter vector p̃ given

the measurements ẑ1, . . . , ẑk can be computed recursively
according to

∆e
k = ∆e

k−1 ∩∆m
k (3)

with ∆e
1 := ∆m

1 .

Example 1. In Figure 1a, an extended object with a rectan-
gular shape is shown. Furthermore, the first two measure-
ments ẑ1 and ẑ2 are depicted by red markers. The bounds
of the corresponding cones ∆m

1 and ∆m
2 in the parameter-

space are shown in Figure 1b. The entire sets ∆m
1 and ∆m

2

are given by all points that lie “above” the plotted bounds.
Since ẑ1 and ẑ2 both lie in the true circular disc, the true
parameters are elements of ∆e

2 = ∆m
1 ∩ ∆m

2 . Figure 1c
and 1d illustrate an example of the solution set ∆e

4 for four
received measurements. The red markers in Figure 1c indi-
cate the positions of the received measurements in the two-
dimensional state-space. The discs K(p̃

4
),K(p1

4
) and K(p2

4
)

are examples for feasible circular discs. K(p1

4
) represents

the smallest enclosing circle of the given measurements. In
this example, K(p̃

4
) is the true disc, since it is the smallest

disc which includes the rectangular extended object. In Fig-
ure 1d, the bound of the set ∆e

4 and the parameters of the
example discs are depicted. Note that ∆e

4 is neither a cone
nor any other basic geometric object.

The result of an estimation procedure is typically a point
estimate, i.e., a single value, rather than a set. Justified by
the following Remark 1, the apex2 of ∆e

k can serve as a
proper point estimate for p̃.

Remark 1. If the measurements cover the entire area of the
target in the course of time, with an increasing number of
measurements, the apex of ∆e

k (the unique point in ∆e
k with

the smallest r–coordinate) converges to the parameter vector
p̃ of the smallest enclosing circle K(p̃) of the target object.

The exact recursive computation of ∆e
k is computation-

ally intractable since there is in general no proper parametric
description of the set ∆e

k. Note that the intersection of two
cones in the form of Equation (2) is not a cone again. In or-
der to tackle this problem, we make use of the fact, that the
intersection of a cone and a hyperboloid (see Definition 1)
can be approximated conservatively by a hyperboloid. This
novel approximation allows recursively bounding ∆e

k with
hyperboloids such that the convergence property stated in
Remark 1 is preserved.

Definition 1 (Hyperboloid of Revolution). The upper sheet
of a two-sheeted circular hyperboloid of revolution is given
by

2In this paper, the apex of a set S ⊂ Ω denotes the unique point with
the smallest r–coordinate in S.
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Figure 1: Set-theoretic estimation of an extended object.

H(xe, ye, ze, a) := {
[
xc, yc, r

]T ∈ IR3 | r ≥ ze and

(xc − xe)2 + (yc − ye)2 + a2 ≤ (r − ze)2}
with xe, ye, ze ∈ IR and a ∈ IR+.

Remark 2. A hyperboloid H(xe, ye, ze, a) has the following
properties (see Figure 2a):
• the focus is F =

[
xe, ye, ze

]T
,

• the apex is located at A =
[
xe, ye, a + ze

]T
,

• the cone angle is orthogonal, and
• the hyperboloid is oriented along the r–axis.

Definition 2. A hyperboloid of the form H(xe, ye, 0, a)
is abbreviated with H(xe, ye, a). Furthermore, the set
C(xe, ye) := H(xe, ye, 0, 0) is a cone oriented along the
r–axis whose apex lies on the xcyc–plane.

A set-theoretic estimator for the parameters p̃
k

of the true
circular disc can be constructed in the following way:

Set-Theoretic Estimator (STE) 1
• Solution Set

The solution set is given by a hyperboloid H(pe
k
) with

pe
k

=
[
xe

k, ye
k, ae

k

]T
. H(pe

k
) is a conservative approxi-

mation of the exact solution set ∆e
k, i.e., ∆e

k ⊂ H(pe
k
).

• Measurement Solution Set
A measurement ẑk yields a measurement solution set
C(ẑk) (see Equation (2)), i.e., ∆m

k = C(ẑk).
• Fusion

Fusing H(pe
k−1

) with C(ẑk) results in H(pe
k
), whereas

H(pe
k−1

) ∩C(ẑk) ⊂ H(pe
k
) .
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(a) A hyperboloid with apex A and
focus F .

0

1

2

3

4

5

0 1 2 3 4 5
0

2

4

(b) A cone C(
ˆ
2.5, 2

˜T
) and a hy-

perboloid H(
ˆ
4, 2, 1

˜T
).
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(c) Approximated intersection. (d) xcyc–plane for fixed r =
1.8.

Figure 2: Approximating the intersection of a cone and a
hyperboloid with a hyperboloid.

The function, which maps pe
k−1

and ẑk to pe
k
, is de-

noted with G1(·) so that

pe
k

= G1(ẑk, pe
k−1

) with pe
1

=
[
ẑ1

0

]
. (4)

• Point Estimate
The point estimate for p̃ at time step k is given by the
apex pe

k
of H(pe

k
).

A proper function G1(·) can be constructed on the basis of
the following Theorem 1, which is based on the observation
that the intersection of the bounds3 ∂H(pe

k−1
) and ∂C(ẑk)

is a hyperbola lying in a plane perpendicular to the xcyc–
plane (see Figure 2).

Theorem 1. Given are a cone C(ẑk) and a hyperboloid
H(pe

k−1
). Furthermore, let

d :=
√

(x̂m
k − xe

k−1)2 + (ŷm
k − ye

k−1)2

denote the distance between the vectors
[
x̂m

k , ŷm
k

]T
and[

xe
k−1, y

e
k−1

]T
. If the following condition

d > ae
k−1 (5)

holds, the hyperboloid H(pe
k
) with[

xe
k

ye
k

]
=

[
x̂m

k

ŷm
k

]
+ ae

k · 1
d (
[
xe

k−1

ye
k−1

]
−
[
x̂m

k

ŷm
k

]
) (6)

ae
k = 1

2 (d + (ae
k−1)

2

d ) (7)

3The operator ∂ denotes the bound of a set.

has the following properties:

1. The apex of C(ẑk) ∩ H(pe
k−1

) (i.e., the unique point
with the smallest r–coordinate in C(ẑk) ∩ H(pe

k−1
))

coincides with the apex pe
k

of H(pe
k
).

2. The intersection of ∂C(ẑk) ∩ ∂H(pe
k−1

) is a hy-
perbola that lies in a plane E with normal vector[
xe

k−1 − x̂m
k , ye

k−1 − ŷm
k , 0

]T
and position vector pe

k
.

3. E ∩ ∂H(pe
k
) = ∂C(ẑk) ∩ ∂H(pe

k−1
)

4. C(ẑk) ∩H(pe
k−1

) ⊆ H(pe
k
)

Proof. Can be shown with basic algebraic rules.

Remark 3. Condition (5) states that the projection of the
apex of C(ẑk) ∩H(pe

k−1
) onto the xcyc–plane lies on the

segment from
[
x̂m

k , ŷm
k , 0

]T
to
[
xe

k−1, y
e
k−1, 0

]T
. An equiv-

alent condition is the requirement that the r–coordinate of
the apex of C(ẑk) ∩H(pe

k−1
) is greater than ae

k−1.

Definition 3. The function G1 : IR2 × IR3 → IR3 in Equa-
tion (4) is defined as

G1(ẑk, pe
k−1

) =

{
G∗1 (ẑk, pe

k−1
) if Condition (5) holds

pe
k−1

otherwise

in which G∗1 : IR2 × IR3 → IR3 denotes the total function
defined by Equation (6) and (7) that maps ẑk and pe

k−1
to pe

k
.

Remark 4. Condition (5) holds if and only if the disc with
the minimal radius in the current solution set (which is given
by the apex) does not include the received measurement. If
Condition (5) holds, the incorporation of the measurement
increases the r–coordinate of the apex of the current solu-
tion set and thus increases the minimal possible radius. On
the other hand, if Condition (5) does not hold, the disc with
the minimal radius in the solution set already includes the
received measurement.

From Remark 4 it follows, that the apex of H(pe
k
), namely

pe
k
, converges to the parameters of the true disc K(p̃) if for

each time step k, the future measurements ẑl with l ≥ k
cover the entire extended object. Hence, the approxima-
tion performed with G1(·) preserves the convergence prop-
erty stated in Remark 1 and is thus valid. Furthermore, this
property justifies to choose pe

k
from H(pe

k
) as a point esti-

mate.

Example 2. Figure 3b depicts an example of the resulting
hyperboloid H(pe

4
) in the parameter-space after four mea-

surements. The disc K(pe

4
) (see Figure 3a), does not include

all received measurements, because H(pe

4
) is a conservative

approximation of the true solution set ∆e
4, i.e., pe

4
∈ H(pe

4
) but

p
4
/∈ ∆e

4. Nonetheless, p̃ is an element of H(pe

4
).

Remark 5. A related problem is the minimal enclosing cir-
cle problem [8]. These algorithms are not feasible for the
problem under consideration, since they are not suitable to
be computed recursively with random points and do not sup-
ply all feasible circles.
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Figure 3: Outer-bounding the true solution set.

4.2 Noisy Measurements
The next step is to consider the problem of estimating

a static extended object from measurements corrupted by
stochastic noise. W.l.o.g. we assume that at each time
step one (noisy) position measurement ẑk is available.
The measurement ẑk is a noisy observation of the mea-
surement source z̃k according to (see Section 2): z̃k ∈
K(p̃

k
) and ẑk = z̃k + wk. The term wk denotes white

measurement noise. Since the measurement source is un-
known, no prior information about z̃k is available. Thus,
the knowledge about z̃k is given by the random vector
ẑk − wk and we obtain the condition ẑk − wk ∈ K(p̃

k
),

which holds if and only if p̃
k
∈ C(ẑk − wk). As a con-

sequence, the measurement solution sets become random
cones ∆m

k = C(ẑk − wk). In analogy to Equation (3),
a recursive update scheme is given by ∆e

k = ∆e
k−1 ∩∆m

k

but now ∆e
k and ∆m

k are random sets. As in Section 4, there
is no parametric description of ∆e

k such that we have to per-
form a conservative approximation with hyperboloids again.
In this manner, a combined set-theoretic and stochastic es-
timator that uses random sets to capture the set-valued and
stochastic uncertainty can be constructed.

Stochastic and Set-Theoretic Estimator (SSTE) 1
• Random Solution Set

The uncertainty about the current state is expressed
with a random hyperboloid H(pe

k
), where pe

k
=[

xe
k, ye

k, ae
k

]T
is a random vector. In the following, we

assume that pe
k
∼ N (p; p̂e

k
, Ce

k).
• Random Measurement Solution Set

ẑk yields an uncertain cone C(zk) with zk := ẑk−wk.
We assume that zk ∼ N (z; ẑk, Cz

k).
• Fusion

H(pe
k
) is the result of approximating the intersection

H(pe
k−1

) and C(zk) according to

pe
k

= G1(zk, pe
k−1

) and pe
1

=
[
z1

0

]
. (8)

• Point Estimate
A proper point estimate at time step k is given by p̂e

k
with covariance matrix Ce

k.

(a) State space with noisy measure-
ments and estimated disc.

(b) 90%–covariance ellipsoid and
mean p̂e

4
(blue dot) of pe

4
.

Figure 4: Estimation of a static circular disc given noisy
measurements.

In contrast to the deterministic case, the function G1(·) in
Equation (8) has to be evaluated stochastically, i.e., the ar-
guments are random variables. In general, the distribution
of pe

k
cannot be computed in closed form for given distribu-

tions of zk and pe
k−1

, since G1(·) is a nonlinear function.
Nevertheless, the distribution of pe

k
can be approximated

with a Gaussian distribution by employing the prediction
step of a nonlinear stochastic state estimator. Therefore, it
is useful to rewrite Equation (8) as pe

k
= G1(bk) with bk =[

(zk)T , (pe
k−1

)T
]T

. The mean and covariance matrix of bk

are given by
[
(ẑk)T , (p̂e

k−1
)T
]T

and diag(Cz
k, Ce

k−1). Note
that due to the assumption of white measurement noise, the
cross covariance matrices of zk and pe

k−1
are zero matrices.

Since G1(·) is not differentiable due to a case distinction in
its definition, linearization is not possible such that state es-
timators based on deterministic sampling like the Gaussian
Filter [9] and the UKF [10] are suitable.

Example 3 (UKF). Figure 4 illustrates the result of SSTE 1
after receiving four measurements with measurement noise
Cz

k = diag(0.2, 0.4). The unscented transformation [10]
was used to evaluate Equation (8). Figure 4a shows the
state-space with the measurements, the σ–covariance el-
lipses of Cz

k and the point estimate K(p̂e

4
) (black). Figure 4b

depicts the three-dimensional parameter-space (for hyper-
boloids) with the mean and 90%–covariance ellipsoid of pe

4
.

Remark 6. If the true radius r̃ is known, the probability den-
sity function f(pe

k
) of pe

k
in SSTE 1 can be updated (at each

time step) with the true radius by computing the posterior
pdf f(pe

k
|{ae

k ≤ r̃}) what corresponds to truncating infeasi-
ble values. Note that for ae

k > r̃ there is no disc with radius
r̃ in H(pe

k
). In this way, the estimator described intuitively

in Section 3 is obtained. The two-dimensional random solu-
tion set for the desired center is K(xe

k, ye
k,
√

(r̃)2 − (ae
k)2)

given that ae
k ≤ r̃. In this context, see also Figure 2d.

If the support of the measurement noise wk is bounded,
SSTE 1 converges to the true circular disc plus the bounded
support. Otherwise, in general SSTE 1 does not converge



to a fixed point. This is a direct consequence of the mea-
surement model (1), which does not allow to tell set-valued
and stochastic uncertainties apart. There are two possibil-
ities to cope with this behavior. First, one can assume the
noise to be bounded and subtract the (known) support af-
terwards from the estimated circular disc. This subtraction
can be performed in a purely geometric fashion. In doing
so, SSTE 1 converges to the true circular disc. The sec-
ond solution, which is employed in Section 6, is to incor-
porate further knowledge that allows to separate set-valued
and stochastic uncertainties.

5 Dynamic Extended Object
In order to track an extended object that moves and varies

its shape over time, random solution sets have to be prop-
agated through an (extended) motion model. To capture
translations along the r–axis (which models the scaling of
the true disc), it becomes necessary to represent solution sets
with hyperboloids of the form H(

[
xe

k, ye
k, ze

k, ae
k

]T ) instead

of H(
[
xe

k, ye
k, ae

k

]T ). The suggested estimator for tracking
an extended object SSTE 2 is sketched in the following. A
more detailed description of the particular components is
given subsequently.

Stochastic and Set-Theoretic Estimator (SSTE) 2
• Random Solution Set

The random solution set is represented with a random
hyperboloid H(pe

k
), where pe

k
∼ N (p; p̂e

k
, Ce

k). Note
that throughout the rest of this paper, the parameter
vector pe

k
is of the form

[
xe

k, ye
k, ze

k, ae
k

]T
.

• Random Measurement Solution Set
The measurements {ẑk,j}

nk
j=1 at time step k lead

to random cones C(zk,0), . . . , C(zk,nk
) where

zk,j := ẑk,j −wk,j .
• Prediction

The predicted random solution set H(pp
k
) results from

propagating H(pe
k−1

) through the extended motion
model given by Equation (9).

• Fusion
H(pe

k
) is the result of bounding

⋂
j C(zk,j) ∩H(pp

k
)

conservatively. Furthermore, pe
1

=
[
zT

1 , 0, 0
]T

.
• Point Estimate

A proper point estimate of p̃
k

is given by the expected

apex of H(pe
k
). With B2 :=

1 0 0 0
0 1 0 0
0 0 1 1

, the

point estimate is given by B2p̂
e

k
with covariance ma-

trix B2C
p
kBT

2 .

In order to propagate a random solution set to the next
time step, it must be ensured that the propagated set is again
a hyperboloid. In this paper, we therefore only consider lin-
ear extended motion models of the form

p
k

= Akp
k−1

+ Bk(ûk−1 + vk−1) , (9)

0

1

2

3

4

5

0 1 2 3 4 5
0
1
2
3
4
5

(a) A cone C(
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) and a hy-
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(b) Approximated intersection.

Figure 5: Approximating the intersection of a cone and a
hyperboloid (brown) with a hyperboloid (red).

which map the parameters p
k−1

of the circular disc at time
step k − 1 to the parameters p

k
at time step k. The zero-

mean Gaussian distributed random vector vk−1 models in-
put noise and ûk−1 denotes the deterministic system input.
Furthermore, we assume that Ak = diag(A∗

k, 1) where A∗
k

is a two-dimensional rotation matrix. Note that Equation (9)
defines a congruent mapping from p

k−1
to p

k
for given

vk−1. Consider the random solution set H(pe
k−1

) at time
step k−1. Each point in H(pe

k−1
) specifies a feasible circu-

lar disc that has to be propagated through the extended mo-
tion model given by Equation (9). Due to the special form
of Equation (9), the set AkH(pe

k−1
) + Bk(ûk−1 + vk−1) is

again a hyperboloid H(pp
k
) with parameter vector

pp
k

=
[
Ak 0
0 1

]
pe

k−1
+
[
Bk

0

]
(ûk−1 + vk−1) . (10)

Since Equation (10) is linear, pp
k

is Gaussian distributed,
in case pe

k−1
is Gaussian distributed and vk−1 is Gaussian

noise. The mean and covariance matrix of pp
k

can be com-
puted with the well-known Kalman filter prediction step:

p̂p

k
=
[
Ak 0
0 1

]
p̂e

k−1
+
[
Bk

0

]
ûk−1, and (11)

Cp
k =

[
Ak 0
0 1

]
Ce

k−1

[
Ak 0
0 1

]T

+
[
Cv

k−1 0
0 0

]
. (12)

The fusion step of SSTE 2 consists of approximating the
intersection of H(pp

k
) and the cones C(ẑk,j) conservatively

with a hyperboloid H(pe
k
). This intersection can be per-

formed recursively by setting pe
k,0

:= pp
k

and computing the
hyperboloid H(pe

k,j
) that bounds H(pe

k,j−1
) ∩C(ẑk,j) (for

1 ≤ j ≤ nk). The parameters of the random solution set at
time step k are then given by pe

k
:= pe

k,nk
. A proper function

G2(·) that maps ẑk,j and pe
k,j−1

to pe
k,j

can be constructed
by means of Theorem 2 which is actually an extension of
Theorem 1 to hyperboloids that may be translated along the
r–axis. Theorem 2 is based on the observation that the inter-
section of ∂C(ẑk,j) and ∂H(pe

k,j−1
) is a hyperbola lying in

a plane (see Figure 5). In contrast to Theorem 1, this plane



does not have to be perpendicular to the xcyc–plane.

Theorem 2. Given are a cone C(ẑk,j) and a hyperboloid
H(pe

k,j−1
). Furthermore, let

d :=
√

(x̂m
k,j − xe

k,j−1)2 + (ŷm
k,j − ye

k,j−1)2

denote the distance between the vectors
[
x̂m

k,j , ŷ
m
k,j

]T
and[

xe
k,j−1, y

e
k,j−1

]T
. If the following condition
d > ze

k,j−1 + ae
k,j−1 (13)

holds, then the hyperboloid H(pe
k,j

) with[
xe

k,j

ye
k,j

]
=

[
x̂m

k,j

ŷm
k,j

]
+ 1

d (mrapex+c)(
[
xe

k,j−1

ye
k,j−1

]
−
[
x̂m

k,j

ŷm
k,j

]
)(14)

ze
k,j = m2rapex + mc (15)

ae
k,j = rapex − ze

k,j (16)

in which m = ze
k,j

d , c = d + (ae
k,j−1)

2−(ze
k,j−1)

2

2d and

rapex =
{
− c

m−1 if m2 − 1 6= 0
− c

2m if m2 − 1 = 0
has the following properties:

1. The apex of C(ẑk,j)∩H(pe
k,j−1

) is
[
xe

k,j , y
e
k,j , rapex

]T
,

whereas rapex = ae
k,j + ze

k,j .

2. ∂C(ẑk,j) ∩ ∂H(pe
k,j−1

) is a hyperbola
that lies in a plane E with normal vector[
xe

k,j−1 − x̂m
k,j , y

e
k,j−1 − ŷm

k,j , z
e
k,j

]T
and position

vector
[
xe

k,j , y
e
k,j , rapex

]T
.

3. E ∩ ∂H(pe
k,j

) = ∂C(ẑk,j) ∩ ∂H(pe
k,j−1

)

4. C(ẑk,j) ∩H(pe
k,j−1

) ⊆ H(pe
k,j

)

Proof. Can be shown with basic algebraic rules.

Remark 7. In analogy to Condition (5) in Theorem 1, Condi-
tion (13) states that the projection of the apex of C(ẑk,j) ∩
H(pe

k,j−1
) onto the xcyc–plane lies on the segment from[

x̂m
k,j , ŷ

m
k,j , 0

]T
to
[
xe

k,j−1, y
e
k,j−1, 0

]T
.

Definition 4. The function G2 : IR7 → IR4 is defined as

G2(ẑk,j , p
e
k,j−1

) =


G∗2 (ẑk,j , p

e
k,j−1

) if (13) holds[
ẑk,j

0

]
if ze

k,j−1+

ae
k,j−1 < 0

pe
k,j−1

otherwise

in which G∗2 : IR7 → IR4 denotes the total function specified
by Equations (14) - (16) that maps ẑk,j and pe

k,j−1
to pe

k,j
.

6 Incorporating Knowledge about
the Number of Measurements

In analogy to SSTE 1 in Section 4.2, SSTE 2 does not
converge in general. Here, we cope with this behavior by
incorporating further knowledge about the radius of the true
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(a) State space: true (blue), estimated (red) and predicted (blue dashed)
circular disc plotted over time. Black dots indicate measurements.
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Figure 6: Tracking an extended object: Simulation.

circular disc. A realistic assumption, which is often used in
tracking algorithms for extended targets, is that the number
of measurements received from the target object at a par-
ticular time step depends on its size. For instance, [2] sug-
gests a Poisson distribution with an expectation proportional
to the area of the extended target. Here, we assume that
a conditional probability density f(nk|rk), which specifies
the number of measurements depending on the current ra-
dius of the extended object is available. In order to incorpo-
rate this knowledge into the estimation procedure SSTE 2,
we maintain an addition random variable re

k that captures
the knowledge about the true radius obtained from the num-
ber of measurements nk. The accumulated knowledge at
time step k is given by the random vector

[
(pe

k
)T , re

k

]T
.[

(pe
k−1

)T , re
k−1

]T
can be propagated through the extended

motion model according to[
pp

k
rp

k

]
=

Ak 0 0
0 1 0
0 0 1

[pe
k−1

re
k−1

]
+

Bk

0
b
(3)
k

 (ûk−1 + vk−1)

in which b
(3)
k denotes the third row of Bk. Again, we as-

sume that
[
(pe

k−1)T , re
k−1

]T
is Gaussian distributed such

that
[
pp

k
, rp

k

]T
is also Gaussian distributed and can be com-

puted with the Kalman filter prediction step.

The prediction
[
(pp

k
)T , rp

k

]T
can be updated with

{ẑk,j}
nk
j=1 to obtain the posteriori pdf of

[
(pe

k
)T , re

k

]T
(given nk) in the following way:

1. With pe
k,0

:= pp
k

and pe
k,j

= G2(zk,j , p
e
k,j−1

), the joint

pdf of
[
(pe

k
)T , re

k

]T
:=
[
(pe

k,nk
)T , re

k

]T
can be com-

puted (see SSTE 2).
2. Compute the posterior pdf f(pe

k
, re

k | nk) with Bayes’



rule
f(pe

k
, re

k | nk) = c · f(nk | rk) · f(pe
k
, re

k) ,

where c is a normalization constant.
3. Compute the posterior pdf

f(pe
k
, re

k | nk, {ae
k + ze

k ≤ re
k})

what corresponds to truncating infeasible values. This
constraint arises from the fact that if ae

k + ze
k > re

k,
there is no disc with radius re

k in H(pe
k
). The (trun-

cated) pdf can easily be approximated with a Gaussian
distribution, in case f(pe

k
, re

k | nk) is Gaussian (formu-
las for pdf truncation are given in [11]).

A proper point estimate for the radius is given by E[re
k] and

a point estimate for the center is given by E[
[
xe

k, ye
k

]T ] and

covariance matrix Cov[
[
xe

k, ye
k, re

k

]T ]. Note that if re
k is

deterministic, the special case of known radius is obtained
(see Remark 6).

7 Simulation
Figure 6 shows the result of a simulation run in which the

true extended object is in fact a circular disc. At each time
step, the measurement source z̃k,j is sampled uniformly
from the true circular disc and the measurement noise
wk,j is Gaussian with zero mean and covariance matrix

diag(
[
0.04, 0.04

]T ). Note that SSTE 2 does not exploit any
knowledge about the distribution of z̃k,j , which is assumed
to be unknown. The number of measurements nk produced
by the true circular disc with radius r is approximately
Gaussian distributed, i.e., nk ∼ N ∗(nk; 5r, 0.4), where
N ∗ denotes the Gaussian distribution with truncated neg-
ative values. Furthermore, a Gaussian prior pdf of re

1 with
mean 2 and variance 0.06 is given. The extended motion
model is given by (9) with Ak = Bk = diag(

[
1, 1, 1

]T ),

ûk−1 =
[
2, 0, 0

]T
and Cv

k = diag(
[
0.02, 0.06, 0.001

]T ).
Figure 6a depicts a snippet of the state-space including the
true disc (blue) for several time steps. The point estimates
at each time step are plotted as red circles. Dashed circles
represent the predicted circular disc. The estimated circular
disc does not necessarily include all measurements, since the
measurements are noise corrupted. In general, the higher the
measurement noise, the more measurements lie outside the
estimated disc. Figure 6b depicts the estimation error of the
radius in percent |E[re

k] − r̃k|/r̃k for the first 50 time steps
averaged over 1000 simulation runs. The overall average
radius estimation error is 7.71%. Figure 6c shows the esti-
mation error ‖E[[xe

k, ye
k]T ] − [x̃c

k, ỹc
k]T ‖2 for the center for

the first 50 time steps averaged over 1000 runs.

8 Conclusions and Future Work
In this paper, a novel method for tracking extended ob-

jects based on noisy position measurements was presented.
In contrast to existing approaches, no assumptions about
the distribution of the measurement sources on the extended
object have been made. Therefore, a novel combined set-
theoretic and stochastic estimator that uses random hyper-

boloids to express the uncertainty about the location and
extent of the target object was derived. Future work will
be concerned with extending the proposed method to higher
dimensions and other geometric shapes like ellipsoids and
rectangles.
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