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Abstract – This paper copes with the problem of nonlin-

ear Bayesian state estimation. A nonlinear filter, the Sliced

Gaussian Mixture Filter (SGMF), employs linear substruc-

tures in the nonlinear measurement and prediction model

in order to simplify the estimation process. Here, a spe-

cial density representation, the sliced Gaussian mixture den-

sity, is used to derive an exact solution of the Chapman-

Kolmogorov equation. The sliced Gaussian mixture density

is obtained by a systematic and deterministic approxima-

tion of a continuous density minimizing a certain distance

measure. In contrast to previous work, improvements of the

SGMF presented here include an extended system model and

the processing of multi-dimensional nonlinear subspaces.

As an application for the SGMF, cooperative passive target

tracking, where sensors take angular measurements from a

target, is considered in this paper. Finally, the performance

of the proposed estimator is compared to the marginalized

particle filter (MPF) in simulations.

Keywords: Bearings-only tracking, nonlinear estimation,

Rao-Blackwellization, Gaussian mixture, Dirac mixture

1 Introduction
Stochastic state estimation has a variety of applications, in-

cluding vehicle localization, speech processing, SLAM, or

target tracking [1]. For special cases of linear systems and

Gaussian densities, state estimation can be performed an-

alytically with the well-known Kalman filter. In case of

nonlinear system models, modifications to the Kalman fil-

ter, like the extended Kalman filter or the unscented Kalman

filter [2], exist. The results of the unscented Kalman filter

can be improved by a more sophisticated sample selection

from the Gaussian density, as shown in the Gauss filter [3].

All the above mentioned estimators have in common that

the estimated density is represented by a Gaussian. Another

well-known density representation is by means of samples,

as employed in particle filters [4]. Their advantage lies in

very simple processing, even for nonlinear systems. One

major drawback is that many samples may be needed, which

can become very computationally demanding, and thus, in-

tractable for high-dimensional problems.
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Figure 1: Visualization of cooperative passive target track-

ing with angular measurements.

In the special case of mixed linear/nonlinear systems,

the Sliced Gaussian Mixture Filter [5] can be used. Here,

linear substructures in the system and measurement model

are employed. This so-called Rao-Blackwellization leads

to conditionally linear estimation problems, which can be

handled efficiently, even for high-dimensional state-spaces.

This principle is also applied in the marginalized (or Rao-

Blackwellized) particle filter [6]. Rao-Blackwellization is

especially advantageous for high-dimensional linear parts

and low-dimensional nonlinear parts as, e. g., for simulta-

neous parameter and state estimation [6, 7].

Another application, which is regarded in this paper, is

cooperative passive target tracking with angular measure-

ments [1], also known as bearings-only tracking. Consid-

ering this application, the proposed estimator will be com-

pared to the marginalized particle filter that has already been

employed in this context [8].

Fig. 1 shows the principle of cooperative passive target

tracking: The sensors try to track a target with an unknown

trajectory by measuring angles to the target. It is only possi-

ble to determine the location of the target by measurements

from different sensor positions, which can be done either



with multiple or movable sensors. Within this paper, we

assume that measurements are taken by two dislocated sta-

tionary measurement devices.

The novelties of this paper include several enhancements

of the Sliced Gaussian Mixture Filter. Multi-dimensional

nonlinear problems can be considered by a systematic den-

sity approximation. Furthermore, the capability to cope with

correlated Gaussian system noise and extensions of the sys-

tem model allow a wider range of applications.

The paper is structured as follows: In the next section, the

concept of conditionally linear systems is outlined and the

considered system and measurement models are described.

In Section 3, the Sliced Gaussian Mixture Filter and the new

modifications are stated. Section 4 gives a short introduction

to cooperative passive target tracking. The performance of

the proposed filter is shown in Section 5. Here, the SGMF is

compared to the marginalized particle filter in a cooperative

passive target tracking simulation.

2 Problem Formulation
The main goal of an estimator is to obtain an accurate es-

timation of the system state xk ∈ Ω at every discrete time

step k in terms of a density function f(xk). For estimation,

a model of the system’s dynamic behaviour is needed. If

this model is based on general system equations and arbi-

trary density functions, the estimation problem can only be

solved approximatively.

However, for special types of systems, linear substruc-

tures can be exploited for a more efficient estimation pro-

cess. This method is known as Rao-Blackwellization [9].

The key idea here is to decompose the estimation prob-

lem by dividing the state vector into a nonlinear substate

xn
k ∈ R

s and a linear substate xl
k ∈ R

r.

In this paper, we assume the following structure of the

discrete-time system model, as proposed in [6],

x
l
k+1 = Al

k(xn
k )xl

k + al
k(xn

k ) + w
l
k

x
n
k+1 = An

k (xn
k )xl

k + an
k (xn

k ) + w
n
k ,

(1)

where the noise terms w
l
k and w

n
k are zero mean, white, and

Gaussian distributed with the following covariance matrix

Cov

{[
w

l
k

w
n
k

]}
= Cw

k =

[
Cwll

k Cwln
k

Cwnl
k Cwnn

k

]
.

Note that throughout this paper, random variables are de-

noted by bold face lower-case letters. The system matrices

Al
k( · ) and An

k ( · ) for the linear and nonlinear subspace de-

pend on the nonlinear substate vector xn
k . The nonlinear part

of the system model is represented by al
k( · ) and an

k ( · ), re-

spectively. Furthermore, the measurement model is given by

ŷ
k

= Hk(xn
k )xl

k + hk(xn
k ) + vk , (2)

where ŷ
k

is the measurement at time step k. Here, the noise

term vk is assumed to be white and Gaussian distributed

with zero mean and covariance matrix Cv
k. The measure-

ment matrix Hk( · ) depends on the nonlinear substate xn
k

and hk( · ) represents the nonlinear dependency.

For these systems, the estimation problem for one filter

and prediction step can be solved analytically by employing

Dirac mixture
xn

k
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Figure 2: Density approximation: (a) A Gaussian mixture

density over the complete state space is approximated by a

sliced Gaussian mixture density. (b) Marginal density over

the nonlinear subspace, which is approximated by a Dirac

mixture density.

a special density representation, the sliced Gaussian mixture

density. This density was introduced in [5], where the pro-

cessing of a more restricted model was discussed.

3 The Sliced Gaussian Mixture Filter
In this section, we review the Sliced Gaussian Mixture Filter

(SGMF) as described in [5]. In addition, several extensions

are introduced that are necessary for the application to co-

operative passive target tracking. These extensions include:

• A more general structure of the system model allowing

for a wider range of applications,

• system noise correlated between the linear and nonlin-

ear subspace,

• and the handling of a multi-dimensional nonlinear sub-

space during the density approximation.

3.1 Density representation

By using a special density representation, the estimation

problem based on the nonlinear system (1) and (2) can be de-

composed into a (conditionally) linear and a nonlinear prob-

lem. This density function consists of a Dirac mixture in the

nonlinear subspace xn
k and a Gaussian mixture in the lin-

ear subspace xl
k. To be more specific, the so-called sliced

Gaussian mixture density is represented as follows:

f(xl
k, xn

k ) =

M∑

i=1

αi
k δ(xn

k − ξi

k
)

︸ ︷︷ ︸
Dirac mixture

f(xl
k| ξ

i

k
)

︸ ︷︷ ︸
Gaussian mixture

, (3)

where δ( · ) denotes the Dirac delta distribution. The scalar

M represents the number of density slices and ξi

k
∈ R

s can

be regarded as the positions of the individual density slices.



Table 1: Filter Step: Parameters of the estimated density.

Conditionally linear subspace

γij
k ← N

(
ŷ

k
−Hi

kµlij

k
−hk(ξi

k
),Hi

kC
lij
k Hi

k

T
+Cv

k

)

µlij

k
← µlij

k
+ Kk

(
ŷ

k
−Hi

kµlij

k
− hk(ξi

k
)
)

C
lij
k ← C

lij
k −KkH

i
kC

lij
k

with Kk = C
lij
k Hi

k

T
(
Cv

k + Hi
kC

lij
k Hi

k

T
)
−1

Table 2: Prediction Step: Parameters of the predicted den-

sity.

Cond. linear subspace Nonlinear subspace

µlij

k+1
←Ali

k µlij

k
+al

k(ξi

k
) µnij

k+1
←Ani

k µlij

k
+an

k (ξi

k
)

C
ij
k+1 ←

[
Ali

k C
lij
k Ali

k

T
Ali

k C
lij
k Ani

k

T

Ani
k C

lij
k Ali

k

T
Ani

k C
lij
k Ani

k

T

]
+ Cw

k

Discrete marginal density The marginal density func-

tion characterizing the system state in the nonlinear sub-

space is given by the following Dirac mixture density:

f(xn
k ) =

M∑

i=1

αi
kδ(xn

k − ξi

k
),

M∑

i=1

αi
k = 1 , (4)

where αi
k ∈ R+ and ξi

k
∈ R

s are the weights and positions

of the Dirac distribution δ( · ). Conditioned on a particu-

lar value of the nonlinear subspace, the estimation problem

turns out to be a linear problem. Roughly speaking, for a

set of discrete values for x
n
k , the estimation problem can be

solved by a set of linear estimators as shown in Sec. 3.2.

Continuous marginal density In general, the density

along the individual slices can be represented by any con-

tinuous density function. In this work, Gaussian mixture

densities are employed as a universal approximator for arbi-

trary density functions. The density function for the linear

subspace xl
k is given by

f(xl
k| ξ

i

k
) =

Ni∑

j=1

βij
k N

(
xl

k − µlij

k
,Clij

k

)
,

Ni∑

j=1

βij
k = 1 ,

(5)

with βij
k ∈ R+, µlij

k
∈ R

r, C
lij
k ∈ R

r×r denoting the

conditional weight, conditional mean and conditional co-

variance matrix of the j-th component of the attached Gaus-

sian mixture density of the i-th slice. Here, it is important

to emphasize that all the density parameters are conditioned

on the location ξi

k
of the density slices.

3.2 Filter and Prediction Step

In this section, the equations for a combined filter and pre-

diction step are derived. The filter step is performed on a

sliced Gaussian mixture density, followed by the prediction

step. The predicted density f̃p(xl
k+1, x

n
k+1) for the next

discrete time step k + 1 can be determined by substitut-

ing Bayes’ formula into the Chapman-Kolmogorov equa-

tion, according to

f̃p(xk+1) =

∫

Ω

fT (xk+1|xk) ck · f
L(ŷ

k
|xk)fp(xk)

︸ ︷︷ ︸
fe(x

k
)

dxk .

In view of the system model (1) and the measurement

model (2), the transition density fT ( · ) and likelihood

fL( · ) are given by

fT (xk+1|xk) = N

([
xl

k+1−Al
k(xn

k )xl
k−al

k(xn
k )

xn
k+1−An

k (xn
k )xl

k−an
k (xn

k )

]
,Cw

k

)

fL(ŷ
k
|xk) = N

(
ŷ

k
−Hk(xn

k )xl
k−hk(xn

k ),Cv
k

)
.

The prior density function fp(xk) at time step k is repre-

sented by a sliced Gaussian mixture according to (3) that

consists of a conditional Gaussian mixture in the linear sub-

space described in equation (5). This leads to

f̃p
(
xk+1

)
=ck

∫

Rr

∫

Rs

fT (xl
k+1, x

n
k+1|x

l
k, xn

k )fL(ŷ
k
|xl

k, xn
k )

M∑

i=1

αi
kδ(xn

k−ξi

k
)

Ni∑

j=1

βij
k N

(
xl

k−µlij

k
,Clij

k

)
dxn

k dxl
k

(6)

with a normalization constant ck.

Applying the sifting property of Dirac’s delta distribu-

tion to (6) results in the following Gaussian mixture density

f̃p( · ) at time step k + 1

f̃p
(
xk+1

)
=

M∑

i=1

Ni∑

j=1

νij
k+1N

([
xl

k+1−µlij

k+1

xn
k+1−µnij

k+1

]
,Cij

k+1

)
,

(7)

where the weighting coefficients νij
k can be derived by

νij
k+1 = αi

kβij
k γij

k /
(∑M

i=1

∑Ni

j=1 αi
kβij

k γij
k

)
.

The means µlij

k+1
and µnij

k+1
and the covariance matrix C

ij
k+1

are given in Table 1 and Table 2 and described in more detail

in the following. In order to keep the equations short, the

following abbreviations are used:

Ali
k := Al

k(ξi

k
), Ani

k := An
k (ξi

k
), Hi

k := Hk(ξi

k
) .

Filter Step In the filter step, the Gaussian components

of the slices are updated according to the likelihood. For

fixed xn
k , the problem is linear, and thus, the posterior den-

sity can be calculated according to the Kalman filter equa-

tions. The estimated mean µlij

k
, the estimated covariance

C
lij
k , and the new weights γij

k are shown in Table 1. Af-

ter the filter step, the density representation is still in sliced

Gaussian mixture form. If there is no measurement, γij
k will

be equal to 1 and µlij

k
,Clij

k remain unchanged.

Prediction Step In Table 2, the predicted means µlij

k+1

in the linear subspace and µnij

k+1
in the nonlinear subspace for

the next discrete time step k + 1 are given. Here, the slices

are converted to a Gaussian mixture (7) over the complete



state space, according to the system model.

3.3 Reapproximation Step

In order to perform the processing in a recursive way, the

Gaussian mixture density (7) resulting from the combined

filter and prediction step must be reapproximated by a sliced

Gaussian mixture (3). Here, the density function being ap-

proximated is assumed to be a Gaussian mixture given as

follows

f̃(xl
k, xn

k ) =
N∑

j=1

wj
kN

([
xl

k

xn
k

]
−

[
µlj

k

µnj

k

]
,Cj

k

)
, (8)

with the vectors xl
k, µlj

k
∈ R

r and xn
k , µnj

k
∈ R

s. The

weights wj
k are all positive and add up to 1. Futhermore, the

covariance matrices C
j
k ∈ R

(r+s)×(r+s) are given by

C
j
k =

[
C

lj
k C

lnj
k

C
nlj
k C

nj
k

]
.

The density reapproximation step is a central part in the

SGMF and essential for high quality estimation. Thus, a

systematic and deterministic approximation procedure has

to be chosen in order to reduce approximation errors.

The approximation is performed in two steps: First, the

approximation of the marginal density in nonlinear subspace

by a Dirac mixture density and then, the extension of the

result to sliced Gaussian mixtures over the complete state

space.

Approximation of nonlinear subspace For the ap-

proximation of the marginal density f̃(xn
k ) by a Dirac mix-

ture density (4), a systematic approximation approach is im-

portant. Using deterministic algorithms that minimize a cer-

tain distance measure, better approximation results can be

achieved and fewer Dirac components are needed in com-

parison to random sampling. For the sliced Gaussian mix-

ture representation, this results in fewer slices.

Different algorithms for approximation can be employed.

A sequential algorithm is described in [10], which is based

on a reduction of a cumulative distance measure over all

one-dimensional marginals. Other approximation meth-

ods for one-dimensional densities yield optimal results at

the cost of higher runtime [11] whereas general multi-

dimensional problems are excessively computationally de-

manding. In [2] and [3], a Gaussian is approximated by

samples along the principal axes of the covariance matrix.

This can be done very efficiently, but only single Gaussian

components can be approximated in contrast to the complete

Gaussian mixture f̃(xn
k ), and thus, more sample points are

needed. For efficient approximation of a Gaussian density

with several components, the method presented in [10] is

used in this paper.

The approximation quality between the given Gaussian

mixture density and the sliced Gaussian mixture approxima-

tion can be evaluated by certain distance measures, e.g., the

Cramér-von Mises distance based on the localized cumula-

tive distribution [12]. By defining a threshold, the number

of slices can be increased, until the desired approximation

quality is obtained. Thus, it is guaranteed that the approxi-

Table 3: Parameters of the conditional Gaussian mixture

density in linear subspace at slice position ξi

k
.

Conditionally linear subspace

βij
k ←

1
b
wj

kN
(
ξi

k
− µnj

k
,Cnj

k

)

µlij

k
← µlj

k
+ K

(
ξi

k
− µnj

k

)

C
lij
k ← C

lj
k −KC

nj
k KT

with b =
∑N

p=1w
p
kN

(
ξi

k
−µnp

k
,Cnp

k

)

K = C
lnj
k

(
C

nj
k

)
−1

Filter step Prediction step

GM
reduction

GM
reduction

Density
approx.

Figure 3: Processing steps of the SGMF.

mation remains sufficient while always using the minimum

number of slices needed.

Extension to complete state space f̃(xl
k| ξ

i

k
) denotes

the resulting conditional Gaussian mixture density in linear

subspace, determined by an evaluation of the true joint den-

sity f̃( · ) at the position ξi

k
of the i-th Dirac impulse. So, this

conditional density represents the i-th slice. The parameters

of the conditional Gaussian mixture in linear subspace are

calculated according to Table 3. By this means, the Gaussian

mixture density f̃(xl
k, xn

k ) can be efficiently and determinis-

tically approximated by a sliced Gaussian mixture represen-

tation. The density reapproximation step is shown in Fig. 2.

3.4 Gaussian Mixture Reduction

For multiple processing steps in the Sliced Gaussian Mix-

ture Filter, the number of overall Gaussian components in-

creases with every density approximation. Let Nk be the

number of Gaussian mixture components in the time step k
and M the number of Dirac mixture components (slices).

Then, Nk = M ·Nk−1 = Mk−1 ·N1 since each slice con-

sists of Nk Gaussian mixture components. In order to limit

the exponentially increasing number of components, a com-

ponent reduction on the individual slices is applied.

In general, the component reduction can take place be-

fore or after the density approximation. With a reduction

before density approximation, a tradeoff between accuracy

and execution time can be made. Component reduction af-

ter density approximation limits the maximum number of

Gaussian components and thus, prevents exponential growth

in computation time. The processing and possible compo-

nent reduction steps are visualized in Fig. 3. Different ap-

proximation algorithms with a wide range of complexity and

approximation quality exist, e.g., [13, 14, 15].



4 Cooperative Passive Tracking
A variety of passive sensors, e. g., infrared sensors, electro-

optical sensors, ESM sensors, and jammed radar, deliv-

ers angular-only measurements. In such applications, es-

timation methods in general suffer from the fact that the

range component of the state for a non-stationary target re-

mains unobservable as long as the platform carrying the sen-

sor is not maneuvering. One way to overcome this prob-

lem is a change of state space into non-Cartesian coordi-

nates as, e. g., modified polar or log polar coordinates that

effectively decouple the observable states from the non-

observable ones, see [16] for a comparison.

Alternatively, observability can be achieved via so-called

cooperative passive target tracking, i.e., by the use of sev-

eral dislocated passive sensors. Then, one may apply, as

a first possible approach, a Kalman filter based on pseudo-

Cartesian measurements. These can be obtained from the

angular measurements by triangulation, where various ap-

proaches to determine the corresponding covariance are

known [17]. The resulting measurement model is a linear

one. Such an approach is fairly simple, yet has to cope

with possibly non-synchronous measurements from differ-

ent sensors, missed detections, or problems arising if the

target is close to the baseline formed by the sensors.

The problem of missed detections arises from the fact that

the target detection probability of a real sensor is always

Pd < 1. Thus, there may exist time steps, where at least one

of the involved sensors cannot provide measurement data.

In contrast to the transformation of the angular measure-

ments into Cartesian coordinates, one can, as a second ap-

proach, directly process the measured angles which leads to

a nonlinear measurement model. However, this approach is

more accurate and therefore chosen to be investigated in this

paper.

As prerequisite for the measurement and system model

discussed in the following subsections, the overall state vec-

tor is defined by xk = [pk, qk, ṗk, q̇k, ωk]
T

. It is decom-

posed into a linear substate xl
k = [ṗk, q̇k]

T
representing the

target’s velocity and a nonlinear substate xn
k = [pk, qk, ωk]

T

representing the target’s position and turn rate. Note that we

only consider the two-dimensional [p, q] plane, i.e., the tar-

get’s altitude is disregarded.

4.1 Measurement Model

For the measurement model, we assume that m sensors at

positions

x
(i)
S =

[
p
(i)
S , q

(i)
S

]T
, i = 1, . . . ,m

take angular measurements originating from the target.

Hence, at each time step k, a measurement ŷ
k

consists of

m angles

ŷ
k

=
[
ϕ

(1)
k , . . . , ϕ

(m)
k

]T

provided by the m sensors, respectively.

Referring to the measurement model given in (2), the

measurement function hk(xn
k ), which takes the nonlinear

substate containing the target’s position as input parameter,

is given by

hk(xn
k ) =

[
h

(1)
k (xn

k ), . . . , h
(m)
k (xn

k )
]T

, (9)

where

h
(i)
k (xn

k ) = atan2
(
qk−q

(i)
S ,pk−p

(i)
S

)
, i = 1, . . . ,m .

atan2(y, x) is Matlab notation and defined as the angle be-

tween the positive x-axis and the point given by the coordi-

nates [x, y]T. It can be recognized that there is no depen-

dency on the linear substate xl
k for angular measurements,

so Hk(xn
k ) ≡ 0.

Since the sensors act independently of each other, the

measurement noise vk has a diagonal covariance matrix. If

one or more sensors cannot deliver measurement data due

to, e.g., missed detections, only the available data will be

taken into account for the measurement function. Hence,

the filter step operates with a reduced dimensionality of ŷ
k

and hk( · ).

4.2 System Model

As overall system model, we assume a coordinated turn

model, which includes a constant velocity model with white

noise acceleration for the straight motion [18]. Therefore,

the state vector xk contains an angular turn rate ωk with

ωk > 0 denoting a counterclockwise turn. Since it is part

of the state vector, the turn rate is unknown and has to be

estimated, which implies a nonlinear system model.

According to the investigated model, one has for the

equations of motion in the [p, q] plane p̈k = −ωk q̇k and

q̈k = ωkṗk. We can now determine the system matrices for

the linear and the nonlinear subspace by applying the coor-

dinated turn model to the time-discrete system model (1) as

follows:

Al
k(xn

k ) =

[
cos(ωkT ) − sin(ωkT )
sin(ωkT ) cos(ωkT )

]

and

An
k (xn

k ) =




T si(ωkT ) −T co(ωkT )
T co(ωkT ) T si(ωkT )

0 0


 ,

where T = tk+1 − tk denotes the duration of a time step.

The si and the co function are defined by

si(x) =

{
sin x

x
, x 6= 0

1, x = 0
, co(x) =

{
1−cos x

x
, x 6= 0

0, x = 0
.

Notably, the system matrices depend on the nonlinear sub-

state vector, more precisely merely the turn rate ωk. For the

general system functions al
k( · ) in the linear subspace and

an
k ( · ) in the nonlinear subspace, we obtain al

k(xn
k ) = 0 and

an
k (xn

k ) = x
n
k .

Because of the white noise acceleration assumption, the

covariance of the system noise is given by

Cw
k =

[
ρ2

kQ0 04×1

01×4 T 2a2
ωk

]
,

where the factors ρk and aωk affect the acceleration of the

translatory and the rotary motion, respectively. Furthermore,
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Figure 4: Illustration of cooperative passive target tracking

with angular-only measurements: The target’s true trajec-

tory (⋆) is tracked by two sensors at the displayed posi-

tions (�). Angular-only measurements are transformed to

pseudo-Cartesian measurements with displayed means (×)

and covariances (◦). Due to Pd < 1, triangulation is not

possible in all time steps.

the matrix Q0 is given by

Q0 =

[
T · I2 T 2/2 · I2

T 2/2 · I2 T 3/3 · I2

]
,

where I2 denotes the 2×2 identity matrix. Note that the sys-

tem noise includes correlation between the linear subspace

and the nonlinear subspace, which is one of the main reasons

for the extension of the Sliced Gaussian Mixture Filter.

5 Simulation Results
We consider a cooperative passive target tracking scenario

as illustrated in Fig. 4: The target’s true trajectory is an

S-shaped curve shown as gray stars for time step k = 0
till time step k = 39. In order to initialize the simula-

tion (see below) and to visualize the angular measurements

along with their uncertainties, the measured angles and the

measurement covariance are transformed to Cartesian coor-

dinates by a triangulation-based method. These so-called

pseudo-Cartesian measurements are displayed with green

crosses and ellipses. Note that they are only used for vi-

sualization purposes as well as setup of the prior state and

not during simulation runs. With a target detection proba-

bility of Pd < 1, there are cases where triangulation is not

possible.

Example 1 (Simulation Setup)
In this first example, we consider two sensors, which take
angular-only measurements, located at positions

x
(1)
S

= [0 km, 0 km]T and x
(2)
S

= [10 km, 0 km]T .

Each sensor has a target detection probability of Pd = 0.95
and a measurement error with a standard deviation of 1.5◦.
We choose the remaining parameters as follows: time step
duration T = 2 s, initial target velocity v0 = 300 m/s, ρ2

k =
9.6236 m2 s−3, and a2

ωk = 0.0144 s−4.
The simulation is initialized in the following way: The posi-

tion components of the prior density, which is Gaussian dis-

tributed, are equivalent to the pseudo-Cartesian measure-
ment at time step k = 0. The velocity components are ob-
tained by two-point differencing described in [18] and the turn
rate is set to zero with a standard deviation of 45◦/s.

5.1 Marginal Density Representation

In Fig. 5, the estimation process with respect to Exam-

ple 1 is illustrated. For the SGMF, we use 512 slices and

for the MPF, we use 1024 and 2048 particles. Only the two-

dimensional marginal density in the [p, q] plane is depicted.

The positions of the slices and particles before filtering are

visualized as black dots. The re-weighted slices and par-

ticles after filtering are shown as orange dots; their size is

determined according to the likelihood.

It can be seen from Fig. 5(a) that already a low number

of slices is effectual to provide an accurate position estimate

(shown as blue squares) with the SGMF. Although the num-

ber of particles is twice the number of slices, the distribution

of the slices is more regular than the distribution of the par-

ticles shown in Fig. 5(b). For this example, at least 2048

particles are needed to provide a distribution which is sim-

ilar to the distribution of the slices. This is illustrated in

Fig. 5(c).

5.2 Estimation Performance

Two simulations for Example 1 have been carried out in

order to present the estimation performance of the SGMF

compared to the MPF illustrated in Fig. 6 and Fig. 7. The re-

sults for both simulations were obtained by 100 Monte Carlo

runs, each one over 39 time steps. After density approxima-

tion, Gaussian mixture reduction has been applied using the

algorithm described in [13].

First simulation In Fig. 6, the root mean square er-

rors (RMSE) of the target’s position, velocity and turn rate

are shown for the SGMF using M = 512 slices (solid red

lines) and the MPF using 2 ·M = 1024 particles (dashed

blue lines). Since a maximum of Nk = 2 Gaussian mix-

ture components per slice has been chosen, the SGMF runs

with up to Nk ·M = 1024 elementary components. Before

density approximation, components with a small weight are

discarded, so that 90% of the Gaussian mixture’s probability

mass is left. One can clearly see that the SGMF outperforms

the MPF for position, velocity, and turn rate accuracy. The

maximum near time step 20 in Fig. 6(a) is due to the fact that

the target is close to the baseline formed by the two sensors.

Second simulation In Fig. 7, the RMSE of the target’s

position, velocity and turn rate are illustrated for the SGMF

using M = 256 slices (solid red lines) with a maximum of

Nk = 5 Gaussian mixture components per slice. Thus, up

to Nk ·M = 1280 elementary components are used for the

SGMF. As the MPF runs with M = 2048 particles (dashed

blue lines) each one attached with a single Gaussian density

in the linear subspace, less elementary components are em-

ployed for the SGMF. Nevertheless, the performance of the

SGMF is superior compared to the performance of the MPF

especially regarding the position error in Fig. 7(a).

The improved performance is due to the systematic and

deterministic approach of the SGMF, which has advantages



Figure 5: Visualization of density approximation and filtering: Measurement means (×) and covariances (◦), Dirac mixture

before filtering (•), re-weighted Dirac mixture after filtering (•), true positions (⋆, −−), and estimated trajectories (�, −−)

using (a) SGMF with 512 slices, (b) MPF with 1024 particles, and (c) MPF with 2048 particles.

Figure 6: RMSE of (a) position, (b) velocity, and (c) turn rate based on 100 Monte Carlo simulations and a target detection

probability of Pd = 0.95 for SGMF using 512 slices (−−) and MPF using 1024 particles (−−).

compared to a randomized one, especially when using a sim-

ilar number of samples.

6 Conclusion and Future Work
In this paper, the estimation of nonlinear systems with con-

ditionally linear substructures by means of the Sliced Gaus-

sian Mixture Filter was shown. A special density represen-

tation, the sliced Gaussian mixture density, allows the exact

solution of the filter and prediction step. The deterministic

and systematic approximation of arbitrary Gaussian mixture

densities by sliced Gaussian mixture densities allows better

approximations by using less components compared to ran-

dom sampling.

The extensions of the proposed estimator in this paper in-

clude correlated system noise over the complete state space

and an enhanced system model. Furthermore, the density

approximation was applied to multi-dimensional nonlinear

subspaces. All these extensions allow a much wider variety

of applications of the filter.

In the application of cooperative passive target tracking,

the SGMF is compared to the marginalized particle filter.

Simulations show better estimation performance due to the

systematic density re-approximation and the exact solution

of the prediciton step.

Future work includes the combination of density approx-

imation and the filter step. This allows approximation of

the estimated density after the filter step, which can reduce

the number of needed components for density approxima-

tion and can prevent degeneration. Such degeneration can

occur, if the likelihood has only few or no mutual support

with the prior density slices. Another extension is the ap-

plication to completely nonlinear models by linearization of

weakly nonlinear parts, which can be accomplished by the

extended Kalman filter in a straightforward manner.
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