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Abstract— Most existing approaches for tracking of the
beating heart motion assume known cardiac kinematics and
material parameters. However, these assumptions are not re-
alistic for application in beating heart surgery. In this paper,
a novel probabilistic tracking approach based on a physical
model of the heart surface is presented. In contrast to existing
approaches, the physical information about heart kinematics
and material properties is incorporated and considered in
an estimation of the heart behavior. An additional advantage
is that the time-dependencies and uncertainties of the heart
parameters are efficiently handled by exploiting simultaneous
state and parameter estimation. Furthermore, by decomposing
the state into linear and nonlinear substructures, the compu-
tational complexity of the estimation problem is reduced. The
experimental results demonstrate the high performance of the
method proposed in this paper. The solution of the parameter
identification problem allows a personalized physical model and
opens up possibilities to apply the physics-based tracking of the
heart surface motion in a clinical environment.

I. INTRODUCTION

Beating heart operations are still a challenging task for
surgeons. A robotic surgery system will assist a surgeon
during an operation on a beating heart by tracking heart
surface motion and synchronizing surgical instruments.

For an application in a robotic surgery system, a variety
of tracking approaches exists in related work [1]-[4]. In
contrast to other approaches, the physics-based tracking [3],
[4] guarantees a physically correct prediction of the heart
behavior. This tracking is based on a physical heart model
and thus, exploits additional background information about
the physical characteristics of the heart. However, in case of
an incorrect model or false parameters [5], the physics-based
tracking fails.

Therefore, the parameter identification problem is one of
the most important issues concerning the estimation and
tracking of heart surface motion. The main goal is the
estimation of the system parameters from observed mea-
surements, such that the predicted response of the heart
model is close to the real heart behavior. A common way
is to determine the parameters from preoperative data [6],
[7]. Employing the preoperative detected parameters for an
intraoperative physical model can lead to instabilities and
inaccuracies of physics-based tracking. The reason for this
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is changing clinical environment, tissue properties and heart
dynamics after preoperative planning. Therefore, for beating
heart operations, an adjustment of the parameters featured in
the intraoperative physical model is necessary for reducing
the gap between the predicted response of the model and the
real heart behavior. Until now, a personalized heart model
for physics-based tracking in a robotic surgery on a beating
heart has not been proposed [3], [4]. The main challenge of
an intraoperative parameter identification is that the state and
parameter estimation leads to a high-dimensional nonlinear
estimation problem. Even an originally linear parameter sys-
tem becomes nonlinear when the system state is augmented
with the model parameters. An efficient solution of this
problem is a prerequisite for real-time functionality of a
robotic surgery system.

The novelty of this paper is the systematic probabilistic
approach for physics-based tracking and parameter identi-
fication that aims to be applied in intraoperative medical
applications. The model and measurement uncertainties are
considered. By decomposing the state into linear and non-
linear substructures, the computational complexity of the
estimation problem is reduced. A further advantage of this
approach is an incorporation of the a-priori known physical
constraints in the identification of the model parameters.

The remainder of this paper is structured as follows:
Section II gives an overview of the probabilistic physics-
based tracking approach proposed in this paper. In Section
III, the system and measurement models for physics-based
tracking of heart surface motion are formulated. Section IV
considers the initialization of the system model. The system
decomposition into linear and nonlinear substructures and
simultaneous state and parameter identification procedures
are derived in Section V. The performance of the proposed
approach is demonstrated by simulations and experiments in
Section VI. Finally, the paper closes with a conclusion and
an outlook to future work.

II. SYSTEM OVERVIEW

As an introduction to our probabilistic physics-based tracking
approach, this section will give an overview of existing state
and parameter estimation methods. A motivation for their
extension and further development will also be given.

For tracking heart surface motion, the heart kinematics
should be predicted by means of an estimation approach.
For that purpose, the system model should be calibrated
by identifying the parameters and stochastic uncertainties of
the system. Generally, there exist two methods for the state
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Fig. 1. Methods for the state and parameter estimation regarding physics-
based tracking in a robotic surgery system.

and parameter estimation of a distributed-parameter system
(DPS) [81]:

1) strict separation of the parameter identification prob-

lem from state estimation and

2) simultaneous state and parameter estimation.

By strictly separating the parameter identification problem
from the state estimation, the system is calibrated before
estimating the heart kinematics, as shown in Fig. 1(a). The
calibration procedure incorporates a-priori knowledge about
the physical system, such as physical constraints on model
parameters. Then, if the heart surface motion is described
by a linear system, by assuming the parameters of the
system as known and time-independent, it is sufficient to
use the Kalman filter to obtain the best possible estimate for
the system state. However, due to inaccuracy of the model
calibration or when the heart parameters changes over a
cardiac cycle, large estimation errors can arise. The heart
surface motion prediction, based on a model with incorrect
parameters, will strongly deviates from the true state.

A remedy for this problem is the simultaneous state
and parameter estimation, presented in Fig. 1(b). In this
case, by considering the state and parameter uncertainties
simultaneously, we significantly increase the performance
of the prediction and thus, of the physics-based tracking.
Moreover, the time-dependence of the parameters can be
handled systematically. However, the task of simultaneous
state and parameter estimation of a distributed-parameter sys-
tem, such as the heart, is very challenging. The main reason
is that the required spatial resolution leads to large-scale
models with a high number of state variables. In addition, an
augmentation of the system state with the model parameters
leads to a nonlinear estimation problem. As a consequence,
the computational cost of the estimation becomes prohibitive.
Furthermore, the stability of the estimation is strongly de-

pendent on the initial estimates of the physically constrained
system parameters.

Therefore, in order to avoid the instabilities of the simul-
taneous state and parameter estimation due to poor initial
estimates, we propose a pre-calibration of the system, as
presented in Fig. 1(c). For achieving an efficient simulta-
neous state and parameter estimation, the large-scale system
model describing the heart motion is decomposed into linear
and nonlinear substructures. Moreover, by incorporating the
physical constraints on the model parameters into the esti-
mation process, we guarantee the convergence of estimates.

III. PHYSICS-BASED DESCRIPTION
OF HEART SURFACE MOTION

Before the mathematical background of the approach for
parameter identification is explained, this section will for-
mulate the system and measurement models for physics-
based tracking of the heart surface motion. For reducing
the dimensionality of the heart model, we constrain the
tracking to the intervention area. By assuming that the heart
surface in this area behaves like a linear elastic physical body
with isotropic material structure, the heart dynamics can be
approximately characterized by a discrete system equation,
or system model [3], [4], [7]
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represents the discrete states of the heart movement at
sequential time steps tx41 and t;. These states describe
cardiac kinematics, such as three-dimensional displacement
of the heart surface and its velocity on N, points. The error
term w;, ~ N (0, C}’) is a white zero-mean Gaussian noise
with covariance C) € RON=*6N:  The unknown model
parameters influencing the computation of the system matrix
A, € R®N=x6Ne and input matrix B, € RV=*Nu are
denoted by the vector

0. = [py, @1k, aop, Ep,vi)" . 3)

These parameters describe physical characteristics of the
heart surface, such as material density p,, Rayleigh damping
coefficients vy, oo, Young’s modulus Ey, and Poisson’s
ratio vy. According to [4], the system input &, = [ﬁ;f, Q;CF}T
contains the known forces ék and boundary conditions g, .

Assuming that the discrete-time measurements of the heart
kinematics are provided by a camera system, the measure-
ment model relates the obtained observations g, € R” at
time step k to the state z; € R"= by

4)

where H;, € RE*6N= represents the measurement matrix [4]
and v, ~ N (0,C}) is a white zero-mean Gaussian noise
with covariance CY € RE*L.

As a result, the heart surface motion description is given
in a discrete finite-dimensional state-space form, which is

¥, =Hpz, + v,



required for solving estimation problems. For the physics-
based tracking of the heart surface motion, an accurate
prediction is essential. The quality of the prediction depends
strongly on the model quality and parameters.

IV. MODEL CALIBRATION

The calibration procedure presented in this section deter-
mines model parameters, so that the predicted response of the
deterministic heart model is close to the true heart behavior.
The goal of this procedure is to provide initial estimates of
the model parameters for simultaneous state and parameter
estimation.

The calibration makes use of observations % Uy, of the heart
surface motion over N time steps of an 1n1t1allzat10n time
interval. For fitting the heart model to the measurement data,
we apply the weighted least-squares approach by minimizing
the cost function [9]

1N
200=33" [l

where the weighting matrix Q;, € RE*% is assumed to be
positive definite with

lalPge -+ = a™ (Qu)

Here, y, < R’ stands for the predicted values corresponding
to the parameter vector 0.

In order to ensure the physical meaning of the model
parameters, the physical constraints are incorporated into the
calibration procedure. By fitting the model to the observa-
tions, only the parameters from the bounded intervals are
considered.

It is known that since the weighted least-squares approach
uses iterative methods for finding a minimum, only local
minima are typically found. Therefore, by means of simul-
taneous state and parameter estimation, the accuracy of the
parameter identification can be improved.
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V. SIMULTANEOUS STATE AND PARAMETER ESTIMATION

The simultaneous state and parameter estimation of the
heart surface motion copes with the changes of the heart
parameters during a surgical operation. For this purpose, the
parameter vector is included as an additional part of the state
vector. As a result, the augmented system model is generally
high-dimensional and nonlinear in the augmented state. The
Bayesian estimation framework allows recursively process-
ing the state of a nonlinear dynamic system by incorporating
the observed measurements. Therefore, conventional estima-
tion techniques can be used to estimate the parameter and
states simultaneously. An approach for simultaneous state
and parameter estimation, to be applied in physics-based
tracking of the heart surface motion, is proposed in this
section.

The state-space model of the heart surface motion derived
in Section III contains a conditionally linear system equation
(1). The parameter vector (3) and the input vector are
assumed as random processes. Exploiting the decomposition
of this equation into linear and nonlinear substructures by

means of Rao-Blackwellization [10], we reduce the estima-
tion problem and execute the estimation in an efficient way.
For prediction, the Gaussian estimator (GE) introduced in
[11], [12] is applied. For efficiency of the estimation, only
the nonlinear part is processed by GE in an approximate
fashion. Since the measurement equation is linear (4), the
Kalman filter measurement update equations can be used.

A. Prediction Step

For efficiency of the estimation, the augmented state can be
decomposed into linear and nonlinear substructures, similar

to [8], [12] .
z), = [ il } : ©)

where the linear substructure z! = x,;, contains the state de-
scribing the heart kinematics, which is given in equation (2).
The nonlinear substructure ™ = @, consists of parameters
(3) influencing the computation of the system matrices. The
state z, is assumed to be Gaussian distributed. The mean
and covariance of the estimated state are defined as

; ,U'n . Qnn Cn,l
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Similar to [12], the system equation (1) is formulated as a
conditionally linear model in the form

Zpy1 = Py +1 9 z' +w, ,
Bk(Qk)Hk Ak(gk)
g(z™) H(z™)

where the matrix Py characterizes the space and time-
dependence of the parameter vector 8,, given in equation (3).
This matrix turns to an identity matrix I if a random walk
model of the spatially independent parameters is assumed.
The covariance matrix of additive noise process w,, is
defined as .
- [§ 5
0 C7
Then, the M -dimensional Gaussian density of the nonlinear
part of the state f(x™) is approximated with a Dirac mix-
ture density based on the deterministic sampling approach
presented in [11]

L
x )%Zw(;(g"fﬁzl)
i=1

with L = M - (D—1)+1, where D is the number of sampling
points with weights w = % Furthermore, the first and second

moments of the predicted state are calculated according to
[12] by
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Fig. 2. Simulation for evaluating the quality of the parameter estimation using simultaneous state and parameter estimation by means Gaussian estimator.
The mean of RMSE éz (solid line) and the error variance Cg (dashed line) for the estimated parameters are computed over 50 simulations with random
selection of start values. After a certain transition time the Gaussian estimator offers an accurate estimation of both parameters.

where the weight w; is defined as ws = 1/D. The vectors
p?, C7% are the components of the predicted joint density
approximated with a Gaussian mixture

L
f(z) =) w-N(z—p,Ci7)
=1

with mean and covariance [12]

wo=g() +Hp!) - p(ud)
Ci* =H(u")-C'" - (H(p")".
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The matrix C!" represents the second moment of the
conditional density

fla'z") = N(z' — p(z"),C'") (6)
with mean and covariance
pa") =p'+Ctro (e @t -
¢!l = ¢ht — ¢t (crmyTh ot
B. Filtering

The filter step or measurement update fuses the predicted
state estimate with the measurement information. Since the
measurement equation is linear, we apply the Kalman filter
step [13] according to

ue =+ Ky (3, - et ), Cf = (1- HiK,) CF

where .
K = CJH] (HO{H] + ) "

Here, I is an identity matrix and C}, is the covariance matrix
of the measurement noise.

C. Physical Constraints

For ensuring the physical meaning of the model parameters,
the part of a probability distribution function of the parameter
estimates " ~ N (u”,C"’”) that violates the physical
constraints f(z™ |[{a < ™ < b}) is discarded. The vectors
a and b define the bounds of the physical parameters. The

probability density of the state z;, is given by a truncated
Gaussian distribution

i .n : A2 i =2 =
z",z) = 7
CEEY 0 elsewhen , ™
where f(z", ') stays for the joint density of the linear and
nonlinear part of the state. The normalization factor d is

defined as
+oo b
d:/ / f(@", 2" dz™ da' .

The first two moments of the f*(z",z!) can be computed
analytically according to [13].

For enforcing the physical constraints after the prediction
step, the joint density f(z",z') = fP(z™, z!) is represented
by the predicted joint density. After the filter step, the
updated joint density f(z",z!) = f¢(z", ') is truncated.

VI. EVALUATION

The performance of the proposed approach is evaluated
in simulations and an experiment on a pressure-regulated
artificial heart. At first, the convergence of the estimated
parameters to the true values is confirmed in simulations.
Then, after describing the experimental setup, we analyze
the proposed simultaneous state and parameter identification
approach by evaluating the accuracy of physics-based track-
ing. By comparing the predicted results with highly accurate
measurements, we check the accuracy of the obtained pre-
diction.

A. Simulation

In the simulation, we consider the three-dimensional physics-
based model of the heart surface motion proposed in [4].
The linear part of the system state ! € R%® describes
the heart kinematics, such as the three-dimensional position
and the velocity of the heart surface. The nonlinear
part " € RS contains unknown model parameters
9. = |[py, ok, aop, Ep,vi]T given by equation (3).
Further, we assume the material density p, of the heart, the
damping coefficients o, and g, the Young’s modulus



Fig. 3. Experimental setup for the evaluation of the physics-based tracking
approach in an experiment with an artificial heart phantom.

E; and the Poisson’s ratio v; as random variables.
The true parameters of the monitored physical system
are defined as p = 0.052kgm™3, a; = 6.096 Ns>m™!,
as = 0.001 Ns?2m~!, E = 10000 MPa, v = 0.0407. The
system noise of the linear part of the state is assumed
with the covariance CZ = diag{0.01,...,0.01} mm?2.
The system noise of the parameters is given by Cﬁ" =
diag {0.0004, 0.0025, 0.0025, 10000, 0.0001 }, [C‘,ﬁn] =
diag {kg?um, (N2s?m~1)2, (Ns?m~1)2, MPa?, 1}.

The measurement noise variance is Cj =
diag {0.02,...,0.02} mm?.

The estimation quality of the GE is evaluated in
n = 50 Monte Carlo runs, where the initial estimates of the
parameters are randomly chosen in every run. The value of
every parameter is drawn from the normal distribution, which
is defined by the mean corresponding to the true parameter
value. The covariances of these distributions are CJ'"" =
diag {0.09,0.001,0.001, 1000000, 0.0001}, [C}""] =
diag {kg?pm, (Ns?m~1)2, (Ns?m~1)2, MPa®,1}.

The root-mean-square error (RMSE) is computed over all
Monte Carlo runs 7 and is defined by mean and variance

~0 1 i ~e 0 1 i 9 ~0 2
€ = — E Zk,r _Qtrue ’ Ck = E (ﬁkr,r - ek,r)

n n—1
r=1 r=1

for every time step k. The results of the simulation are shown
in Fig. 2. It is obvious that the parameters estimated by GE
converge to the true parameter values after a certain transition
time. Therefore, the proposed estimator successfully detects
the uncertain parameters.

B. Experiment

The aim of the experiment is the evaluation of the predic-
tion quality of physics-based tracking. Since the parameters
of the real system are unknown, the accuracy of the predic-
tion is evaluated in comparison to the measurements.

1) Experimental Setup:

Physics-based tracking of the heart surface motion
is evaluated by measuring the motion of the pressure-
regulated artificial heart. Its 3D motion is reconstructed

based on three camera views provided by a trinocular
camera system shown in Fig. 3. The cameras are
placed at a distance of 0.5 m from one another. Their
focal length is about 35 mm and the field of view is
12.8 x17.0 cm. The high resolution of 1920 x1080 pixel
allows an accurate 3D reconstruction. The covariance of
the measurement noise is C} = diag {0.01,...,0.01} mm?
in all three directions. The motion of the artificial heart
is approximated by the physics-based model proposed in
[4]. The initial values of the unknown physical parameters
0 = [p,a1, a2, E,v|T are determined by the weighted
least-squares calibration procedure, proposed in Section
IV. The initial estimates of the physical parameters
are assumed as p = [1291,0.55,0.02, 24,0.33] T,
[u”] = [kgm ™3 Ns?m~! Ns?m~! MPa,1]. The
process noise of the linear part of the state
describing the heart kinematics is assumed with the
covariance Cﬁl = diag {0.012,...,0.012} mm?.
The system noise of the parameters is given by
C?" = diag{100,0.0025,0.0025,1,0.0001}, [C?"] =
diag {kg2 um, (Ns?m~1)2, (Ns?m~1)2, MPa?, 1}. The
lower bound a = [0.5,0,0,0.08,0]7 and upper bound
b = [20000,1,1,26,0.5]7 for estimating the parameter
values by means of truncation (7) are derived according
to information provided by a manufacturer of the artificial
heart. The a-priori known physical constraints are also
considered. Then, the state vector gﬁc € R1%8 that describes
the displacement and velocity of the heart surface and the
physical parameters ! € R® are estimated simultaneously
by GE. The input vector is determined by the atrial pressure,
which can be monitored in cardiac surgery by a central
line catheter [14]. In the test environment, the pressure
inside the artificial heart is measured by a pressure sensor.
For evaluation of the prediction quality of the proposed
physics-based tracking approach, we consider the prediction
error, whose mean and covariance are defined as an absolute
deviation of the predicted state Z} from the observed
measurements of the heart surface position Qk € R™. The
dimensionality of the measured state is defined by m = 42.
This way, we check if the accuracy of the proposed system
model is comparable with the measurement accuracy.

2) Experimental Results: The estimated
physical  parameters converge to the vector
0 = [1306, 0.554, 0.59,24.95,0.32] T, [é] =
[kgm =3, Ns?m~!, Ns?m~!, MPa,1] with  uncertainties

C’ = diag{0.2,0.006,0.006,0.63,0.0019}, [C] =
diag {kg?um, (Ns?m~1)2, (Ns?m~1)2, MPa®,1}.

In Fig. 4, the state prediction error computed over
m = 42 observed states is visualized at every time step. In
order to emphasize the high quality of simultaneous state
and parameter estimation, we compare the results provided
by the Kalman filter assuming that the parameters of the
model are exactly detected by the calibration procedure.
For GE, the mean of the state prediction error computed
over all time steps is about 0.041 mm, whereas the Kalman
Filter produces the error of about 0.0823 mm. Therefore,
the performance of the physics-based tracking is improved
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Fig. 4. Evaluation of the prediction quality of the physics-based tracking in experiment on a artificial pressure-regulated heart. The mean €7, and variance
C} of the RMSE is computed over the number of observations. The simultaneous state and parameter estimation by means the Gaussian estimator is more

accurate than the results provided by Kalman filter.

by the simultaneous state and parameter estimation using
GE. Accuracy may be further increased by obtaining a more
realistic physical model of the artificial heart motion.

The computation time for the processing of a high-
dimensional nonlinear estimation problem containing 175
state variables is on average 374 ms. The Kalman filter
needs 105 ms for processing of a linear containing 170 state
variables. The efficiency of the nonlinear estimation can be
increased by a parallel computing.

VII. CONCLUSIONS

In this paper, a physics-based probabilistic approach for
tracking the heart surface motion is presented. It aims to
be applied in beating heart surgery. In contrast to existing
approaches, the physical background information about com-
plex heart dynamics and material properties is considered
in the prediction of the heart behavior. Furthermore, the
uncertainties of the system dynamics, model parameters, and
measurements are handled in a systematic way by exploiting
simultaneous state and parameter estimation. Moreover, the
efficient solution of the estimation problem is proposed by
decomposing the state into linear and nonlinear substruc-
tures. The experimental results are very promising, and by
further parallelization, real-time processing can be achieved.

The solution of the parameter identification problem al-
lows for a personalized physical model that can be calibrated
during an operation on a beating heart. As a consequence,
this opens up possibilities to apply probabilistic physics-
based tracking of the heart surface motion in a clinical
environment.
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