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Abstract—In distributed sensor networks, computational and
energy resources are in general limited. Therefore, an intelligent
selection of sensors for measurements is of great importance to
ensure both high estimation quality and an extended lifetime of
the network. Methods from the theory of model predictive control
together with information theoretic measures have been employed
to pick sensors yielding measurements with high information
value. We present a novel information measure that originates
from a scalar product on a class of continuous probability den-
sities and apply it to the field of sensor management. Aside from
its mathematical justifications for quantifying the information
content of probability densities, the most remarkable property
of the measure, an analogon of the triangle inequality under
Bayesian information fusion, is deduced. This allows for deriving
computationally cheap upper bounds for the model predictive
sensor selection algorithm and for comparing the performance
of planning over different lengths of time horizons.

I. INTRODUCTION

One of the tasks of a sensor network is to collect data
about a distributed physical phenomenon and to process the
gathered information in a data sink. Due to energy constraints,
not every sensor should be measuring at every time instance.
Furthermore, measurements lead to a high communication
load, which is very costly in terms of power consumption.
Therefore, it is of paramount importance to select only those
sensors for sensing that yield the highest information gain. The
sensor manager has to determine these sensors, considering
that the obtained information usually is corrupted by noise.
This can be achieved by employing a model-based approach
of predicting the impact of future measurements to the current
state estimate and assessing the expected information benefit
of certain sensor configurations [1], [2]. The configuration
with the highest information gain is selected for sensing, the
measurements are fused in the data sink, and at the next time
instance, the sensor manager repeats the selection based on
the updated state estimate.

There are two main challenges, sensor management has to
cope with:

1) The sensor manager has to assess the information gain
of a sensor configuration by means of an appropriate
information measure. The choice of this measure has a
strong impact on the quality of the overall state estimate.

2) The forward-looking sensor manager considers all pos-
sible sensor configurations in an exhaustive tree search

and evaluates their information gain. The complexity of
the model predictive approach makes it difficult to com-
pute the optimal solution under real-time constraints.

There are several methods to meet the first one of these chal-
lenges. For linear systems with Gaussian noise, covariance-
based objective functions are well suited to determine optimal
sensor configurations [3]. On the contrary, in nonlinear cases,
when dealing with arbitrary stochastic quantities, information
theoretic objective functions depending on the corresponding
probability densities are usually considered [4]. The most com-
mon information measures are the differential entropy [5] and
variations like the Kullback-Leibler divergence [6], the mutual
information [7], or the more general concept of f-divergence
[8]. The differential entropy, which is a generalization of
the discrete Shannon entropy [9], is in general not positive
for continuous densities and, hence, not consistent with the
discrete entropy in the context of information theory. A further
development of the differential entropy, the continuous Rényi
entropy [10], becomes non-unique through the choice of the
order . The Fisher information is a geometric approach to in-
formation theory, being a Riemannian metric on parameterized
probability densities, viewed as a finite-dimensional manifold.
The Fisher information is not applicable to general probability
densities, because the assumption of a finite parameterization
has to be regarded as a restriction.

To deal with the computational complexity of the ex-
haustive tree search, approximations by suboptimal pruning
strategies have been proposed [11]. Greedy sensor scheduling
techniques, only concerned with maximizing the information
gain of the next measurement, are another way to keep the
complexity of the sensor management feasible [12], [13].

In this paper, we present a novel information measure,
the log-ratio information measure, and show its relevance to
sensor management. In contrast to the Fisher information, the
proposed information measure, although featuring a geometric
interpretation, does not depend on a finite-dimensional repre-
sentation of probability densities. More precisely, this novel
measure stems from a norm on a vector space of general
continuous probability density functions [14].

The log-ratio information measure meets both of the above
challenges in sensor management. It rests firmly on a rigorous
mathematical framework and for that reason inconsistencies,



like negative values of the measure, are circumvented. The ge-
ometrical interpretation enables us to derive easily computable
bounds on the results of the optimal solution to the sensor
selection problem.

This paper is structured as follows. Section II will explain
the mathematical formulation of the problem setup of sensor
scheduling and recursive state estimation in the Bayesian
framework. The conceptual ideas behind the log-ratio informa-
tion measure and the contributions are explained in Section III.
The measure is defined in Section IV and its most important
properties will be derived. In Section V, we apply the novel
measure to sensor scheduling by formulating an information
theoretic objective function based on this measure. Further-
more, we deduce the above mentioned upper bounds from the
properties illustrated earlier in Section IV. We conclude our
paper with the application of the measure to an example from
the field of target tracking in Section VI.

II. PROBLEM SETUP

In this paper, we focus on the application of sensor networks
to monitor spatially distributed physical phenomena in a
cooperative manner.

A. Sensor Selection

On the one hand, using all available sensor nodes at each
time step and fusing their estimates yields the most insight into
the system state. On the contrary, the resulting computational
and communication load will reduce the overall lifetime of
the network significantly. In order to find a tradeoff between
maximizing estimation quality and minimizing consumption of
resources, it is necessary to use only those sensors that provide
the most information. The sensor manager therefore aims
at maximizing the expected information gain E{R(z,,s,)}
about the internal state x, of the observed phenomenon,
where R is an information theoretic reward function and
s, = {st,...,s£} is a configuration of sensors that can be
applied at the next timestep. The reward function R judges
on the information gain of a particular sequence s;, depending
on the current state estimate x,. The cumulative reward of a
sequence of sensor configurations over a certain time horizon
N is given by

k+N
Ve N(Tpohg N Sppgn) = max B Z R(z;,s;) ¢, (D
Skik+N —k

where the notation ;.. y = (SgsSg41,---» S,y n) denotes a
sequence of sensor configurations and similarly for ;. . y.
Thus, by finding a sequence sy, » that fulfills (1), the sensor
manager aims at maximizing the expected cumulative infor-
mation gain over a certain time horizon. Bellman’s principle
of dynamic programming [15] can be applied to recursively
determine a solution for (1), which is then given as

E3
Skik+N

= argnéix [E{R@ka§k) + Vk+1,N@k+1;Na§k+1:N)}]

This solution of the maximization is the sequence of sensor
configurations that yield the maximum expected information
gain. At each time step, the sensor manager calculates an opti-
mal sequence, selects the first configuration of the sequence for
measuring, updates the current estimate of the internal system
state, and repeats the planning phase.

B. System and Observation Models

We assume that the spatial and temporal evolution of
the physical quantities is given by a discrete-time nonlinear
dynamic system model

Lry1 = a (g, wy,)

where vectorial quantities are indicated by underlining. The
system function g, maps the state x,, characterizing the
phenomenon at time step k, to the system state x,,, at
the next time step. Perturbations and model uncertainties are
subsumed by the system noise w,,. Boldface letters are used
to symbolize that these quantities are uncertain in a stochastic
sense. The time update can also be written by means of the
corresponding probability densities

fogr(@pq) = /Q Fi (@ |zp) fr(2y,) day, 2)

where f,;r denotes the probability density of the state transition
[16]. By this model-based approach, we are in a position to
predict the future evolution of the system state.

The predicted density can then be fused at the data sink
of the network with observations of the sensor nodes as they
become available. We describe the sensing modalities of each
sensor s € {1,..., M} by the measurement model

zsk :hsk (EkWQGk) °

Each observation z, is corrupted by a measurement noise
Vs, which is independent for different sensors. In terms
of probability densities, the fusion of the prior or predicted
density f; with an observation Zs, 1s performed by applying

Bayes’ rule

e ((ﬁ ): sk(zsk ng)f}:(gk)
R P By ) fE () iy,

where fg: (2, |2;,) is the likelihood function.

3)

III. KEY IDEA

To select a sensor for sensing, judging on the information
value of future measurements is of paramount importance. For
this purpose, we consider continuous probability densities as
elements of a vector space, which has been defined in [14].
This space comes equipped with an inner product inducing
a vector norm. Subsequently, we will utilize this norm as a
scalar measure of information on a certain set of probability
densities.

The train of thought legitimating this approach is as follows:
In a general vector space, a norm quantifies the length of a
vector, or alternatively, how far away from the zero element



Fig. 1. The information fused from two sensors by applying Bayes’ rule
(left side) can be interpreted as addition in a vector space (right side).

the vector is. In terms of probability densities, the zero ele-
ment becomes the uniform density. It characterizes a random
quantity with the least information value, since every outcome
of the experiment has the same probability of occurance.
Accordingly, by taking the norm of a probability density,
we rate on how much the density differs from the density
of the uniform distribution. Resting upon this mathematical
background, certain properties of the proposed information
measure, e.g., positiveness, are guaranteed.

Another crucial property, which can be derived from the
underlying vector space framework, is an analogon of the
triangle inequality in the Euclidean space. In the space of
probability densities, the Bayesian data fusion (3) is under-
stood as adding two vectors, depicted in Fig. 1. The triangle
inequality for the log-ratio information measure allows us to
derive upper bounds on the recursive solution of the model pre-
dictive sensor selection algorithm and also allows for relating
model predictive planning over different time horizons. For
additive Gaussian measurement noise, there exists a closed-
form solution of these upper bounds, which can be calculated
in real time.

IV. INFORMATION MEASURE

In this section, we are going to give the definition of the
log-ratio information measure N and show its most important
properties, which will then be applied to the task of selecting
sensors for measurements in Section V.

Since the log-ratio information measure originates from a
norm on a space of probability densities, it quantifies the
length of a vector in this space. We can interpret it geometri-
cally as a measure of information on probability densities. It is
guaranteed that N is always positive and a triangle inequality
holds for the addition defined in this vector space, because N
stems from a true norm.

Definition 1. Let f : Q — R be a probability density
function, i.e., a non-negative function with unit integral and
let log(f) € L%(S2), where §) denotes a probability space with
finite measure (). We define the information measure of f

L]

Remark 1. Of course, there is some ambiguity involved with
the choice of the bounded space €2, but if it is chosen large

J;g)rdmg. @

enough, all information about the participating densities will
be captured. In our definition, we require the logarithm of the
density to be square-integrable on €. This is to ensure that all
integrals in the definition exist. One could drop this condition
and just add the constraint, “if all integrals exist”, just like in
the definition of the differential entropy [5].

Example 1. In order to get an idea of how the log-ratio
information measure behaves, let

1 1 -,
x ——exp(—=x C 'z
flz) = P xp ST )

be a two-dimensional axis-aligned multivariate Gaussian den-
sity with covariance matrix

_ (11 0
(v o)

and mean 0. The square of the log-ratio information measure
of fis
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with

and a similar second summand. As the integrals remain
constant when we choose () to be symmetrical around zero,
maximizing the information gain would correspond to maxi-
mizing

1 1
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TG
together with
1
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We will now prove the properties for N mentioned in
Section III. The fact that N is a norm on a certain space of
probability density functions follows from the construction via
an inner product in [14], [17]. Our proof of the properties we
consider here is a standalone version of that argumentation.

Theorem 1. The information measure N from Definition I
satisfies the following properties for all f and g as in the
definition
« N(f) =0,
o N(f) =0 ifand only if f is the uniform distribution on
Q, and
e N(f-g) < N(f) + N(g), where f-g is defined via
pointwise multiplication of f and g.



For a proof, see Appendix I.

Remark 2. The scaling factor in Bayesian data fusion has
no influence on the information measure of the fusion of two
probability densities, because we only consider quotients of
probability densities in the definition of N. This is the reason,
why in Theorem 1 we merely considered f-g and not

f(2)-g(z)
[ fz)-g(z)dz

as would be the result of the Bayesian data fusion rule (3).

Example 2. The Shannon-entropy of a discrete random vari-
able X with range H is defined as

H(X):=—_ p(x)logp(x) .
TEH
For the discrete entropy, the uniform distribution on H forms
an upper bound for the entropy of any other random variable
X with same range. It holds

H(X) <log|H|,

where |H| denotes the number of elements in # and equality
holds if and only if X is the uniform distribution on H
[5]. When generalizing the discrete entropy to continuous
probability densities, this bound is no longer true for the
differential entropy.

In our case, the information measure is bounded from below
by 0, which is the measure of the uniform distribution on 2.

Although N is defined through a double integral, there is
a reformulation of the measure in terms of simple integrals.
In fact, the reformulation shows where precisely the square-
integrability of the logarithm of the density comes into play.

Theorem 2. Let [ be as in Definition 1, then the following
equation holds for N(f)

N(f)? = 2
20(8) [ llog £(2)]*dz -2 [ / logf(a:)dx} ,

where i is the measure on the probability space ().

Proof: The proof follows from expanding

f(z) )} ’
log (
{ f(y)
and using the fact that € has finite mass p(Q2) < co. [ |

V. SENSOR SCHEDULING

In this section, we apply the log-ratio information measure
to the sensor selection problem. For simplicity reasons, we
only consider selecting one sensor s; at each time step
for measuring, although our approach can be generalized to
selecting a subset of sensors for measurement at each time
step k. This can be achieved by filtering the prior density
of the current state estimate with the likelihoods of multiple
sensors (Sg1, - - - , Skn) following Bayes’ rule (3) and taking the
expectation over the respective measurements. The following
results remain unchanged.

A. Information Gain

As mentioned in the introduction, the task of the sensor
manager is to select sensors for sensing whose measurements
have high expected information. Let fj be the density repre-
senting the current state estimate. We then denote the posterior
density by f¢ , which is obtained by filtering the predicted
density f} with the likelihood stk of sensor s

1
f;fk @k@sk) = af}j(&k) : st,c (zsk |z),)

as described in Section II. For the sake of simplicity, we
abbreviate z,, by z, whenever we consider the expectation
over all possible measurements. We describe the expected
information gain after filtering the density of the current state
estimate with measurements z;, from sensor s; as

B, (N(S( - | 20))} = / NS (- | 2o f(ze)dz, - (5)

Maximizing (5) leads to maximizing the expected infor-
mation gain in the next time step. Because we do not only
want to maximize the gain of information in the next time
step, but also anticipate future measurements and maximize
the expected information gain over an horizon of length IV,
we apply methods from model predictive control [18].

The recursive equation derived from Bellman’s principle of
optimality [15], [18] for the expected information gain over
N time steps is described by

Vi(fx) ==
mae[Ex, (N, (- | 20) + Via (75, 1200}] ©

with terminal gain
Vi (fir) = max Bz {N(f5 (- | 2x))}] (7

for the last time step. It is important to note that from time
step k + 1 on, we do not predict the state estimate using
the Chapman-Kolmogorov equation (2). While this can be
done, our emphasis is on the information gain of future
measurements.

B. Upper Bounds on the Log-Ratio Measure

Finding a sensor configuration that maximizes the objective
function (6) is in general computationally infeasible when
dealing with continuous probability densities and because of
the recursive nature of the equation. For real-time applications,
it is therefore of high importance to obtain easily computable
bounds on the solution of (6) and to keep the recursion depth
as moderate as possible with regard to estimation quality. In
this section and the next section, we present upper bounds on
the value of Vj, as well as deduce upper bounds for the loss
of performance when regarding shorter time horizons in the
sensor management algorithm (6). To make the idea behind
the calculations clear, we show all results for planning over
horizons of length 1 and 2. By induction over the number of
planning steps the time horizon can be extended arbitrarily.



The myopic sensor manager aims at maximizing the expec-
tation of

N/ C- T z) s ®)

over all future measurements. Applying the results of Theo-
rem 1, we obtain the estimate

N(fe, (- | 2,)) SN+ N (2l )

for the log-ratio information measure. The first summand on
the right hand side does not depend on the measurements z,,
anymore. Hence, we can derive the upper bound

max[B; {N(f7, (- | 20))}]

9
<N(fk)+maX[Ezk{N (2] - ®

}]

for the myopic sensor manager.
Now we will provide a similar result for the solution Vj; o
of (6) for N = 2,
Vi (fr) =
HiE:X [Eik {N(f k (

N z) + Vierr2(f5, (- | 20)) )]

with terminal information gain

Vir12(f5, (- | 2) =
HSI%X{EE’“H{N( sesnpt ‘§k>§k+1))}} :
For Vj11 2, the inequality N(f - g) < N(f) + N(g) gives
Vier1,2(f5, (- | 2))

Srsrzi)f[Ezk{N(f (- |§k))}

+E.,, {NUE, Gl - D}

and as the first summand N(f, ( -
Sk41 OF Zp 1, We have

| z1)) does not depend on

Vier12(f5, (- | 2x))
<N(fE( |§))
s (MUKt )]

Insertion of the above result into V}, o yields

Viea(fr) < H;E:X[E;k@N(ffk( | zp))}]

+ max {Egkﬂ {N(]”SL,C+1 (Zgal - ))H

Sk+1

(10)

for the planning performance with length 2. The inequality in
(10) can be made easier to compute by further estimating

’ \ék))}]
< 2N(ff) + max (B, {2N(f3 (23] -

max[E; {2N(/f5, (

N3

with the same argumentation as for the myopic sensor manager
by just applying the inequality for the log-ratio information
measure again. The overall bound on V}, 5 is

Vie2(fr) <2N(fk)+max[Ezk{2N (zi] -

)}]
+maX{Eék+1{N(f9k+1(§k+1| . ))H '

Sk+4+1

These bounds can be calculated iteratively for arbitrary
recursion depths in the planning algorithm. Note that in the
case of additive Gaussian measurement noise, the log-ratio
information of the likelihood can be calculated in closed form
and the upper bound in (10) is inexpensive to compute even
in real-time applications.

If the measurement models for each sensor s; are of the
form

z, =h, (T

Sk

k)'+1ysk7

with mutually independant additive noise terms v, , the prob-
ability density of obtaining measurement z,, conditioned on
the system state x; for sensor sj is given by

(o lzy) = For (2, — he, (22)) -
In case of white Gaussian noise v, , the likelihood simply is
f;‘;@ (zsk |£k) = N(Zsk - hsk (Qk)7 C)
and N(fL: (2, | - )) can be calculated as a function of the
value z,, and the measurement model A, (z;), as sketched

for a two dimensional Gaussian density in Example 1.

C. Sensor Manager Decision Rule

In this section, we propose a decision rule for a sensor
manager based on the estimates in (10) for comparing the
performance of the myopic selection algorithm and the plan-
ning with horizon length 2. The myopic sensor manager aims
at maximizing

E. AN(fS, (- lz0))}

over all possible sensors. The upper bound for the sensor
manager with time horizon 2 we deducted in (10) is

Viea(fr) < QH;%X[E@ {N(for (- | 2))}]

+ max {Eng{N(stkH(ék+1| . ))}]

Sk+1

and when calculating the difference to the solution of the
greedy planning V}, 1, we obtain

Vea(fi) = 2Vir < max[Ex, | {N(% (2ol - )]
(1D

as an upper bound for the performance loss when applying the
myopic sensor manager.

A sensor manager exploiting these bounds would at time
step k compute the upper bound in (11) and make a decision
based on this bound whether or not to calculate V}, 5 or Vj ;.
It could be possible to exploit prior knowledge about the



observed phenomenon and the sensor network by defining a
threshold ¢ for the decision rule. If the bound on the expected
performance loss for planning over a shorter time horizon
is above ¢p, the sensor manager should employ the longer
planning horizon. If the expected performance loss is below
€0, the loss of perfomance is bounded by ¢( and small enough
to still ensure a reasonable estimation quality and hence the
computationally cheaper myopic planning can be used, as
summarized in Fig. 2. This decision rule enables the sensor
manager to avoid the time-consuming recursive scheduling
calculations as often as possible.

At each time step k:

thresh < max,, ., {EEHI {N(fSLkH (2pq1! - ))H
if thresh > ¢¢ then

sy < argmax Vi o(fx) \\ Plan over horizon 2

else
sy < argmax Vi 1(fx) \\ Plan greedy
end if
Fig. 2. 'The sensor manager calculates the bound from (11) and depending

on the results, the optimal sensor SZ is determined.

VI. SIMULATION

In this section, we evaluate the performance of the log-ratio
information measure by applying it to an example from the
field of target tracking.

A. Setup

As an example application, we consider the tracking of
a vehicle observed by a small sensor network consisting of
distance and bearing sensors over ten time steps [2], [12]. The
task of the sensor manager in this scenario is to select one
sensor for measuring at each time step. The nonlinear model
of the vehicle kinematics is assumed as follows

Tit1 T v - cos(Py) wi
. Y
Yol | = | Yk | + [vk-sin(@y) | + |wp, ]|
@
Pri1 Py a3 Wy

where [z, yr|T denotes the two-dimensional position of the
vehicle, ®; the vehicle’s orientation, v, the speed of the
vehicle, oy, steering angle applied, and w,;, denotes stochastic
additive white Gaussian noise. The initial state estimate is
represented by a Gaussian density with mean £, = 0 and
covariance matrix Cy = diag[v/5 m, /5 m, /5 rad].

The nonlinear observation models for the distance sensors
and the bearing sensors are

23k = \/(:L.k - xsk)Z + (yk - ysk)2 + Vs,

and

N Yk — Ysy,
Zs, = arctan Yk = Vs ) 4 Vs, »
Ty — mSk

&

y/m —_—>
S
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Fig. 3. Sample trajectory of the vehicle. The distance sensors are depicted
by circles and the bearing sensors by stars.

respectively, where [z, ,ys,]T is the position of sensor sy.
For the distance sensor, we assume additive white Gaussian
noise v,, with standard deviation o,, = v/0.2 m and also for
the bearing sensor with standard deviation o5, = +/0.01 rad.
The state estimation is performed by means of the extended
Kalman filter.

We compare a myopic sensor manager maximizing the
expected information gain in terms of the log-ratio information
measure with a sensor manager that selects the sensor maxi-
mizing the information gain in terms of the differential entropy
[1], [2] and with a sensor manager that randomly selects a
sensor for sensing. The log-ratio information measure for the
first sensor manager is computed via the Simpson integration
rule, using the formula in Theorem 2.

B. Results

In Fig. 3, a sample trajectory for the vehicle and in Fig. 4,
the root-mean-square error (rmse) of the target position for
each sensor manager for 30 runs are depicted. The log-ratio
manager outperforms both the sensor manager maximizing
the entropy and the random manager in terms of the error in
the estimation of the target position. In Fig. 5, we compared
a myopic sensor manager with a sensor manager using a
planning horizon of length two as proposed in Section V.
We see that the forward looking sensor manager clearly
outperforms the myopic sensor manager and is able to offer a
nearly constant estimation quality over several time steps with
measurements from only one sensor at each time step.

C. Choices of the Space §2

The choice of the space {2 may influence the computational
complexity of the integration in the definition of the log-ratio
information measure. Since we are dealing with logarithms
of probability densities, an inadequate choice of 2 could
result in numerical instabilities. In our simulations we have
experimented with several different alternatives for €.

Instead of a fixed region (2, we choose (2 to be of variable
size with variable position. For linear systems or for linearized



rmse/m —

Fig. 4. Average rmse over 30 sample runs. The rmse of the sensor
manager employing differential entropy is depicted as a dashed-dotted line, the
random manager as a dashed line with cross markers and the sensor manager
employing the log-ratio measure as a solid line with diamond markers. All
sensor managers planned greedy, i.e., with planning horizon of length one.

systems, we selected () to be a interval of n—sigma bounds
around the mean of the current predicted state estimate in
every dimension. So if the predicted estimate in the above
example is characterized by a mean and covariance

~D
Ty, €11 C12 €13
~p _ | oD p_
Ty =19 | ,» Cp=|ca1 ca2 ca3| ,
o €31 C32 C33
we define
o [5P ~D
Q=2 —n-ci1,2, +n-cil
o [5P ~p
Qo = [gp —n-Ca2, Yy +1n-C20 ,
[P 5P
Q3 := [<I>k—n-033,<1>k+n-033] s
and Q := Q; x Q9 x Q3 with a suitable choice of n. In

our simulations, n = 3 gave the best results with the best
numerical stability.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced a novel geometrically motivated in-
formation measure and shown its advantages over measures
of information derived, e.g., from the differential entropy.
The log-ratio information measure is a generalization of the
concept of determining lengths of vectors to the infinite-
dimensional space of probability density functions. Because of
its geometrical foundation, it fulfills a variant of the triangle
inequality and it is ensured that the log-ratio information
measure is always positive. We have applied the log-ratio
information measure to the field of sensor management and
derived upper bounds on the information gain in a recursive
sensor selection algorithm. Furthermore, we have formulated
an easily computable decision rule for the sensor manager on
how to judge on the loss of estimation quality when planning
over shorter time horizons.

rmse/m ——

Fig. 5. Average rmse over 50 sample runs. A greedy sensor manager
maximizing the expected log-ratio information gain (solid line) is compared
with a sensor manager maximizing the information gain in the log-ratio
information measure over a planning horizon of length 2 (dashed line).

Future work will be concerned with applying the log-
ratio information measure to decentralized sensor management
approaches [19]. The estimate in (9) offers a distinction
between the current state estimate and the information value
of the measurements. In a decentralized sensor network, each
sensor could have a different state estimate and could also lack
knowledge about all possible sensor configurations for sensing.
This estimate allows to deal with both cases separately, so it
is possible to find bounds on the estimation error and also on
the planning error made by each sensor.

In real applications with nonlinear system and observation
models, the probability densities of uncertain quantities can
not be processed efficiently in the Bayesian framework. It is
therefore necessary to approximate these densities by more
tractable ones. There are several different methods of approxi-
mating densities and the particular choice of the approximation
is of high relevance to the quality of state estimation. It is
therefore important to consider the actual approximation, and
the errors made by it, in the sensor selection algorithm. With
a metric constructed from the log-ratio information measure,
it is possible to assess the quality of the sensor manager
with respect to concrete realizations of the employed state
estimation procedure.

Finding efficient approximations of the log-ratio information
measure will be subject to further research. The numerical in-
tegration in the definition of the log-ratio information measure
may be be too time-consuming for real-world applications,
where decisions have to be made in tenths of seconds by
possibly low power embedded systems. Particle methods like
the ones proposed in [20], [21], [22] will offer ways to reduce
the complexity of the calculations.



APPENDIX I

PROOF OF THEOREM 1:

2
Since [log (]fcg ;)} > 0 ae. for all f as in definition 1, we
have N(f) > 0.

Let N(f) = 0, then {log

) 2
&)} = 0 a.e. on Q and it
follows that

and hence % = 1 ae. on Q x €. Thus,

f(z) = f(y) almost everywhere and so f is constant on
). Because we demanded the densities to have unit integral,
we can conclude that f is the uniform distribution on (2.
Furthermore, the triangle inequality

o f e ()
// {log( >+log(gg§)] dzdy

)2 +N(g)?
(

()

2 (N(f) +N(g))*

holds for N, where the inequality a) follows from the fact that

/ / log (f(x)) - lo
QJa ()
which is proven analogously to the Cauchy-Schwarz inequality

in general Hilbert spaces [23]. We assume that both f # 1
and g # 1, since if for example f = 1 we would have that

log (%) = 0 and hence N(f) = 0 and the inequality holds.

Let @ := N(f) and 8 := N(g) and because of the above
assumption we have « # 0 and 8 # 0. From

//F4ﬂ3§$$ﬂ3w
L L) e )
+ =5N(9)*
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it follows that

S e <55

< ENU) + SN(g)* = 2N(f)N(g)

we obtain

v

\ =

)
)

)
1=

) dxdy

<

g (g(y)> dzdy < N(f)-N(g) ,

B

holds and the proof is complete. ]
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