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Abstract— Estimating a user’s intention is central to close
human-robot cooperation. In this paper, the problem of per-
forming intention recognition with tree-structured Dynamic
Bayesian Networks for large environments with many features
is addressed. The proposed approach reduces the computational
complexity of inference O(bs) for tree-structured measurement
models with an average branching factor b and tree height s
to O(b̃s), where b̃ � b. The key idea is to switch between a
finite set of reduced system and measurement models in order
to restrict inference to the most important features. A model
predictive approach to online switching between the reduced
models is proposed that exploits an upper bound of the distances
of the reduced models to the full model. The effectiveness of
the proposed algorithm is validated in the intention recognition
for a humanoid robot using a telepresent household scenario.

I. INTRODUCTION

Recognizing a user’s intentions, plans, or actions based
on the observation of his interactive behavior is crucial for
the success of every-day close human-robot cooperation.
From a methodological standpoint, intention recognition is
the process of estimating the force driving a human’s actions
[1]. For example, in a kitchen setting, this corresponds to
estimating whether the user wishes to drink, cook, wash,
clean, etc., based on his location, manipulations, and object
interactions [2], cf. Fig. 1 (a). Two categories of approaches
may be distinguished: probabilistic and symbolic intention
recognition. In the former, a probability distribution over the
set of intentions is inferred [2]–[4]. In contrast, in symbolic
intention recognition, no account for the probability, but
rather the possibility of a plan is considered. Mixture forms
of both approaches exist, too. In this paper, a probabilistic
recognition is proposed as typically performed by using
Dynamic Bayesian Networks (DBN) [5] or a special case
thereof, Hidden Markov Models (HMM) [6]. The main chal-
lenges for these techniques are model construction, model
learning/adaption, and efficient online inference for non-
trivial tasks. In this paper, the problem of reducing a high
model complexity, due the usage of an increasing number of
features, i.e., DBN with tree-structured measurement models,
is addressed. The top left of Fig. 1 (b) shows such a DBN for
the kitchen setting with a large tree-structured measurement
model. In order to allow for natural reactive interaction with
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a robot, approximate inference is required. This problem
gains importance as with increasing levels of model detail,
the number of states and possible features, e.g., objects, will
inevitably grow.

II. RELATED WORK

Efficient online inference for intention recognition with
DBN corresponds to handling large Bayesian Networks
(BN). This problem is related to three main research ar-
eas: modeling and inference for structured BN, switching
systems, and active sensing. The most prominent approach
to handling large scale BN are Object-Oriented BN [7] and
Situation-specific BN [8], [9]. The former facilitates model-
ing BN by introducing reusable object and class structures
as well as relations between them. In [10], a first approach
to dynamic querying based on first-order logic is presented.
Situation-specific BN allow for constructing minimal query-
complete networks based on a knowledge base of network
fragments. None of these approaches addresses the case,
where the size of the deducible model is large and, e.g.,
a likelihood-based model reduction is sought.

In [11], Multinets are introduced that dynamically switch
the network’s structure based on a state estimate. Yet, the
approach is not aimed at reducing the underlying state
space model’s complexity, but at increasing classification
performance for automated speech recognition. In [11], the
future development is ignored when changing the network.
The approach is counterproductive if a network reduction
is desired, as it introduces an additional Markov chain for
guiding the model switch.

Regarding active sensing, the presented work may be
understood as a blend of a sensor selection problem for
large BN measurements systems [12] and model predictive
sensor scheduling/control, which is a well-understood prob-
lem for smaller models [13]–[16]. Yet, the latter differs from
the considered problem as no decentral computation under
energy constraints, but a complex model’s reductions needs
to be managed. In [12], an approach for selecting a sensor
subset based on an sensor synergy graph maximizing the
mutual information between the state and sensor subsets is
proposed. Note, that the specific difficulty for the intention
recognition lies in the complexity of the measurement system
and the consideration of too many sensor set combinations
will render this approach infeasible for large problems.

In this paper, a model switching approach is proposed to
reduce the computational burden of inference for DBN with
large tree-structured measurement models. The approach
switches models by selecting one model from a given finite



(a) Detectable features in the kitchen.

Eat | Drink | Wash | Clean | … 

Action 1 | Action 2 | … | Action 1 &2 | … 

Yes | No

Yes | No Grasp | Idle

„Taking“?

„Close“?

„Action 
(combinations)“

„Intentions“

Yes | No

Yes | No Grasp | Idle

„Taking“?

„Close“?

Yes | No

„Approaching“?

Yes | No

„Object 1“? Yes | No

„Object 2“?

…
Distance in m

Distance in m

Distance in m Velocity im m/t

Distance in m Velocity im m/t

...

... ... ... ... ... ...... ...

...

Schematic large model

...

A

= H

xk-1 xk

y1,k y2,k y3,k y4,k

a1,k a2,k



= 

 yk

k-1 k
M

k M
k

BN of compacted model and default notation BN of two reduced models

(b) Full model M and two reduced models Mi
k .

Fig. 1. In (a), features corresponding to measurements of the leaf nodes of the reduced models’ BN in (b) are depicted. In (b), a coarse illustration of
a full model (left) and two detailed reduced models (red, blue) is given. The correspondence between both models are marked by boxes. The red arrows
show the course of this paper: starting from a large full model, it is decomposed and the small canonical models are derived and used for inference.

set of models online at each time step. Fig. 1 (b, right)
shows how a large DBN for intention recognition may be
understood as a composition of reduced models. The pro-
posed approach is model predictive as it takes the future state
evolution into account. Based on the current state as well as
the system and measurement models, it predicts subsequent
states for a fixed horizon. The model selection problem
for the next time step is solved, using a reward function
based on the predicted states, encoding the requirement of
little loss in estimation quality due to the model reduction,
and accounting for the computational savings by a reduced
model. To this end, a novel approximate upper bound [17] of
the difference in posterior estimates is employed. The rest of
this paper is structured as follows. First, state estimation for
the full model, when collapsed into an HMM, is presented
in Sec. III, and a detailed problem definition is given in
Sec. IV. The model selection problem is formalized based on
the reduced models, in Sec. V-VIII. In the following sections
the exact and approximate model selection based on a novel
upper bound are presented and evaluated in Sec. IX.

III. STATE ESTIMATION

In this paper, dynamic systems with discrete-valued hidden
state xk ∈ X := {1, . . . ,M} and measurements ŷk ∈
Y := {1, . . . , L} for discrete time steps k ∈ N ∪ {0} are
considered. This is a simple DBN and equivalent to an HMM
[5]. Each measurement corresponds to a fixed combination
of features yi,k, e.g., (distances× velocities× object× . . .).
State estimation in such a model (cf. [5]) corresponds to
calculating the predicted probability distributions, i.e., the
distributions for state xk given all measurements ŷ1:k−1,

ξ
k|1:k−1

= [P (xk = 1|ŷ1:k−1) · · ·P (xk = M |ŷ1:k−1)]
T

(1)

and the posterior probability distribution after measuring ŷk,

ξ
k|1:k = [P (xk = 1|ŷ1:k) · · · P (xk = M |ŷ1:k)]T . (2)

Using (2) and a state transition matrix Ak ∈ RM×M

Ak := ((P (xk+1 = j |xk = i) ))ij ,

where the transition probabilities depend on a specific model,
the predicted density ξ

k+1
is calculated by

ξ
k+1|1:k = AT

k · ξk|1:k . (3)

In the filter step, ξ
k+1|1:k is fused with ŷk+1 according to

ξ
k+1|1:k+1

= c · diag(Hk(:, ŷk+1)) · ξk+1|1:k , (4)

with c := 1/(1T
M ·diag((Hk(:, ŷk))·ξk+1|1:k) a normalization

factor, asserting that ξk+1|1:k+1 is a valid probability distribu-
tion. In (4), Hk := ((P (yk = j |xk = i) ))ij , Hk ∈ RM×L
denotes the matrix of observation probabilities given the
state. Note, that (4) needs to be slightly changed to include
continuous measurements. With an output vector ξy

k
, the

model is then given byM = {ξ
k
, ξy
k
,Ak,Hk}. Inference in

this type of DBN/HMM corresponds to alternating prediction
(3) and filter steps (4).

IV. PROBLEM DEFINITION

In many realistic settings, hundreds of features ought to
be fused to obtain a state estimate, i.e., an intention estimate.
Following Sec. III, a linear growth in the number of features
yields an exponential growth in the size of the measurement
matrix Hk, rendering online inference intractable.

Most applications allow for a hierarchical fusion of fea-
tures as shown in Fig. 1. Exploiting conditional independen-
cies between the features and introducing additional non-
measurable random variables enables a decomposition of
the measurement matrix Hk. The resulting graphical model,
e.g., in Fig. 1 (b, right), is a Bayesian Network (BN) with
the features’ variables as leaf nodes. The computational
complexity of inference for discrete BN depends on the
nodes’ state size and the number of nodes. The dependency
on the state size is less relevant, as a growth in xk can
be reduced by state compression, i.e., aggregation of states
into so-called superstates [18], and if state transitions allow
a decomposition, sparse matrix operations may reduce the
computational effort drastically.

The problem is the growth in the number of features, i.e.,
nodes. The measurement systems considered here correspond



to trees rooted at xk. For simplicity, it is assumed that they
are b-ary trees of average height s and average branching
factor b. If the computation for the model selection is
negligible and the b-ary tree can be decomposed into r
subtrees of identical size rooted at xk. Only one subtree is
used at a time, yielding a model with (b/r)s � bs leaf nodes.

V. REDUCED MODELS

In order to obtain the aforementioned computational sav-
ings, a finite set of M reduced models {Mi}i=1,...,M is
assumed to be given. Each Mi

k is defined by

Mi
k = {ξi

k
, ξy,i
k
,Ai

k,H
i
k} ,

with k the time index, xik ∈ X i ⊂ X , |X i| � |X | and
measurements ŷk ∈ Yi ⊂ Y , |Yi| � |Y|. This implies
Ai
k ∈ R|X

i|×|X i|, Hi
k ∈ R|X

i|×|Yi| and a definition of
xik w.r.t. ξik. These sets may be determined manually, based
on domain knowledge, or automatically by using algorithms
for detecting lumps or decompositions in the transition or
measurement matrix, cf. [18], [19]. Depending on the model
choice uk = i at time k, the respective model Mi

k is used
for the state estimation. As an example, in Fig. 1 the full
system would be replaced, e.g., by the given blue and red
Mj

k depending on uk.
Regarding the implementation, the state spaces that do not

align due to the omission of some part of the X may be
zero-padded. Using sparse operations and proper indexing
will still save the computation.

VI. MODEL SELECTION

The key idea of the proposed approach is to choose
Mi

k most similar to the full model M. The corresponding
distance is determined by the difference in the posterior
density ξk+1|1:k+1 based on the common prior estimate
ξk|1:k. Selecting the model online corresponds to solving the
following optimization problem

u∗k = arg max
uk,0

max
µk,1:N

N∑
n=1

gn(ξk,1:n, µk,n(ξk,1:n))︸ ︷︷ ︸
J(ξ

k,1
)

. (5)

Here, ξ
k,1:n

denotes the predicted state estimate for n

steps into the future based on the estimate at time step
k. For the sake of brevity, ξ

k,n
:= ξ

k,1:n
is defined.

In (5), J(ξ
k,1

) is the default cumulative reward function
and gn(ξk,n, µk,n(ξk,n)) is a one-step objective function
mapping to scalar reward values. The variable µk,n corre-
sponds to the selection policy, i.e., µk,n(ξk,n) maps the state
distributions ξ

k,n
to the model choice u∗k,n. The outcome

of (5) is the model choice u∗k = u∗k,0(ξk,0) to be applied
to the system. After solving (5), inference using the selected
modelMi

k ∼ u∗k is performed as described in Sec. III and the
selection problem is solved for the next time step k + 1. In
the next section, a reward function for the reduction problem
will be proposed and the efficient solution of this problem for
a finite N step horizon in each time step k will be addressed.

VII. ONE-STEP OBJECTIVE FUNCTION

In order to solve (5), a one-step objective function has
to be chosen for determining in each time step one reduced
model Mi

k. Note, that there is a wealth of cost functions
starting from information-theoretic criteria [20] to arbitrary
cost functions in form of Gaussian mixtures [13], [15]. As
the aim of this paper is to approximate M by Mi

k, the
most obvious cost function is the distance between M and
Mi

k. In [17], a distance measure for HMM was derived,
which may be used to determine the difference in predicted
posterior ξik,n+1 given the common prior estimate ξk,n for
the considered Mi

k. The following norms defined for S =
((sij)) ∈ RM×L and t = [t1 . . . tM ]T are used for obtaining
these results

||t||1 =
∑
o|to| , ||S||1 = max

p

∑
o|sop| .

The triangle inequality and ||S t||1 ≤ ||S||1 · ||t||1 hold.
a) Upper Bound of the Filter-Step: Given a predicted

density, the difference between the posterior density ξk,n
obtained from using M and Mi

k may be upper-bounded.
To bound the effect of the filter steps [17],

F (Hi
k)ŷk

:= diag(Hi
k)(:, ŷk)) (6)

is defined in accordance with the notation in (4) and

F(Hi
k) :=

[
F (Hi

k)1; . . . ;F (Hi
k)L

]
. (7)

The matrices (6) are the likelihoods, as used in (4), for a
specific measurement ŷk. Using (6), all likelihoods, i.e., the
likelihoods for all L possible observations, are collected into
(7). In the following, the abbreviation FF = F(Hk) for M
and Fi = F(Hi

k) for Mi
k are used. The above description

allows for upper-bounding the difference in the impact of the
filter step (4) for M and Mi

k and w.r.t. to all measurements

||ξ
k,n
− ξi

k,n
||

1

≤ c1 ||ξk,n−1
− ξi

k,n−1
||

1
+ c2 ||FF − Fi||1︸ ︷︷ ︸

=d(ξ
k,n

,ξi
k,n

)

, (8)

with ci ≥ 1 constants. The proof for (8) can be found in
Sec. XI. The intuitive meaning of this upper bound is that
the difference in posterior distributions can be bounded by
the difference of the prediction results and a term considering
the differences in the measurement models. A nice property
of (8) is that the expensive computation ||FF − Fi||1 may
be performed a priori offline and only ||ξ

k,n−1
− ξi

k,n−1
||

1
needs to be calculated online during the solution of (5). As
the measurement impact is accounted for in the bound, ξ

k,n
is approximated by predicting ξ

k,n−1
only. The ci may be

used to alleviate for overly different measurement models.
b) Approximate Upper Bound of Filter-Step: As men-

tioned earlier, the matrices Fi often cannot be used due to its
mere size |L|·|N |. For discrete feature combinations, e.g., for
4 binary features, one obtains |L| = 24 combinations. This
number will grow exponentially with the number of distinct
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Fig. 2. Entire search tree for horizon t = 3. Using Alg. 1 all but the
red nodes are pruned and not calculated. The used selections and resulting
densities correspond to nodes and edges of the tree.

observations, thereby rendering any approach to determine
any FF or Fi intractable for large problems.

As can be seen in Fig. 1 (b, right), there exist intermediate
fusion results obtained during the hierarchical fusion of
measurements, e.g., Take Plate. These intermediate estimates
combine semantically coupled sets of observations. As (5)
depends on predicted future measurements and the prediction
according to the models will correlate semantically coupled
measurements, an approximate measurement model is pro-
posed by using the structure of Hk and Hi

k, respectively.
This approximation drastically reduces the number of nodes,
as it corresponds to reducing the tree height. In Fig. 1, the
proposed approximation corresponds to approximating the
measurement model by removing all nodes up to a certain
level of information fusion, e.g., a certain tree height or
aggregation level, as the aj,k in Fig. 1 (b, right/lower left).

The upper bound is then calculated w.r.t. the reduced
measurement matrices H̃k and F̃i = F (H̃i

k). Here, H̃k

corresponds to an approximate measurement tree consisting
of intermediate nodes only. To account for the approximation
loss and complexity of the measurement system, an addi-
tional cost function is introduced into (5)

p(ξ
k,n

) = pk,n ∈ R .
The entries of the cost vector pk,n reflect the size of the
respective reduced model, e.g., for the experiments in Sec. IX
a normalized number of nodes was used.

c) Summarized Step Objective function: The one-step
objective function for the model selection problem is

gn(ξk,n, µk,n(ξk,n)) = αd(ξ
k,n
, ξi
k,n

)+p(ξi
k,n

)+β . (9)

Here, α and β are suitable constants guaranteeing that
the cost function is negative, which will be used in the
implementation, described in Sec. VIII.

VIII. EFFICIENT SOLUTION

The optimization problem (5) may be solved by calculat-
ing the reward function (9) recursively for a fixed horizon

N . Defining µk,n(ξk,n) = uk,n, the recursion starts with

J(ξ
kmN

) = gn(ξk,N , uk,N )) . (10)

For n < N , the reward function is computed by

J(ξ
k,n

)

= gn(ξk,n, uk,n) + max
uk,n+1

{
J(ξ

k,n+1
, uk,n+1)

}
. (11)

Solving this recursive optimization problem in its most naive
form consists of searching the tree of all possible model
sequences of length N , see Fig. 2 (all nodes). Since it is
possible to bound the quality of a path by the reward
function, the solution to the above problem may be found
by applying a modified version of Probabilistic Branch and
Bound (MPAB) [13]. The MPAB is listed in Alg. 1. Similar
to [13], it is assumed that g < 0. In Alg. 1, initially several
flags need to be initialized per node N . For example, the
upper bound J needs to be set to 0. The flag indicating
whether the upper bound J may be improved, i.e., is the
search path exhausted, needs to be set to FALSE, and the flag
for storing, if the node was visited, needs to be set to FALSE,
too. During the execution of the algorithm, the cumulative
reward as calculated by Alg. 1, needs to be stored. Expanding
the children corresponds to instantiating the consecutive
child nodes for uk in the search tree. Their prior density
is obtained by using the estimate of the parent node and the
Mi

k corresponding to the chosen uk. After determining the
posterior density, the reward J is calculated for each child
and the rewards of the parent nodes are updated. This means
that (3) needs to be calculated for M and Mi

k.
Using Alg. 1, the search through the entire search tree is

avoided and fewer nodes need to be expanded, Fig. 2 (red
nodes only). In the best case, the number of nodes in the
search that ought to be expanded is only M ·N .

Algorithm 1 Modified Probabilistic Branch-and-Bound [13]
while not ( N .exhausted ) do

while ( N .visited ) do
C ← Non-leaf child of N with max.J
Recurse with N ← C

end while
// Expand best search path
if recursion level < horizon then
C ← Instantiate child nodes of N
for all Children of C of N do
C.J ← g(C)
C.exhausted ← FALSE

end for
Update N .J

else
C.exhausted ← TRUE
Update parent( N ).J

end if
end while
N .visited ← TRUE



Fig. 3. Left: Human with head and hand tracking devices and data glove. Right: example impressions of the 1st person view of the virtual environment.
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Fig. 4. Mean l1-difference between the estimates using the full model and
the proposed approach for a typical every day activity sequence.

IX. EXPERIMENTS

The proposed approach shall be used for recognizing the
user’s intentions, plans, or actions based on the observation
of his interactive behavior in a household setting by a
humanoid robot assisting the user. In Sec. IX-A, a telepresent
virtual household setting will be introduced and in Sec. IX-B,
the experiments are described and analyzed.

A. Telepresent Virtual Household Setting

In the experiments, an extended range telepresence system
[21] was used. The specific system enables the user to move
in a virtual 1:1-scale kitchen model of the original household.
While moving, head and hand positions are tracked by
an acoustic tracking system. The noise characteristics are
similar to what the vision system of a real robot may achieve.
Besides the position data, the user’s grasping activity is
measured by means of a cyber-glove device. The user in
the real world and example impression of the first-person
view of the kitchen inside the household setting can be seen
in Fig. 3. This test environment has several advantages: (a)
the test person naturally moves in the virtual kitchen just
like in the real kitchen, (b) interaction with objects (dishes,
glasses, pots etc.) and appliances is natural, e.g., cupboard
doors may be opened by grasping and pulling the handle.

B. Experimental Task

For the experiments, a test person performed an every-
day sequence: lay table, prepare a meal, and clean dishes.
In detail, the test person moves to the other side of the room,
picks up some dinner ware, and brings it to the table in the
kitchen. Then, cooking ingredients are fetched in order to
put them into a cooking pot. The pot is put onto the stove.
Later, the dinner ware on the table is picked up and carried
over to the sink basin and put into the dishwasher.

In order to validate the proposed approach for varying
model sizes, two full models MA−B of different size were
created with small and large number of nodes. The models
are structurally similar to Fig. 1, but consist of different

TABLE I
NUMBER OF NODES FORMA−B AND RESPECTIVEMi

k .

No. Nodes MA/B M1
k M2

k M3
k M4

k
small 305 243 229 179 191
large 611 299 229 275 497

numbers of fragments, cf. Tab. II. For example, in Fig. 1 two
action fragments- (take dinnerware and bring dinnerware to
dishwasher) are shown. Each fragment is associated with a
set of objects, e.g., dishes, cups, pots, etc., and planes that
play a role in the manipulation of these objects, e.g., putting
a pot onto the stove. All Mi

k used more than 100 features
to obtain an estimate for 10 and 15 intentions.

For each full model MA−B , sets four of reduced models
Mi

k were created. The respective numbers of nodes are
given in Tab. I. The results in terms of computational savings
and approximation quality for all model pairs are given in
Tab. II. The results using MA−B is denoted by default and
the results using Mi

k for look ahead horizons h = 2 and
h = 3 are denoted by MP. For the two horizons, the average
number of nodes, the approximation error as the average
l1-distance between the full model’s posterior density and
the approximation, as well as the average time per step are
given. This time corresponds to the DBN inference only and
excludes the time for calculating the switch.

For the small experiment, the error distribution over time is
depicted in Fig. 4. Over the entire trajectory the error remains
modest, i.e., the intention is estimated as using full model.
The error is noteworthy only after the initialization and when
repeated switching occurs, e.g., around t = 100.

The statistics in Tab. II show that the proposed approach
even with the shorter horizon already speeds up inference.
This holds even though for the small experiment, each re-
duced modelMi

k contains more than 50% of the full model,
cf. Tab. I. For the large model—the actual field of application
of the proposed approach—the switched approach is one
order of magnitude faster than if the default fullM was used.
For the investigated application, i.e., intention recognition in
close human-robot-cooperation, interactive cooperation can
be achieved with this speed-up.

X. CONCLUSIONS

In this paper, an approach for efficient estimation of
the user’s intention with tree-structured Dynamic Bayesian
Networks for large environments with many features is
addressed. The approach is shown to yield large speed-ups
that allow for integrating large-scale intention, plan, and
action recognition into close human-robot-cooperation and
the consideration of drastically larger environments. The



TABLE II
MODEL SIZE OF THE UNDERLYING DBN IN THE NUMBER OF NODES, AVERAGE RUNTIME, AND ERROR WITH STANDARD DEVIATION.

Small Full Large Full
Model Model

#Nodes l1-Error Time in s #Nodes l1-Error Time in s
Default 305 - 0.023 611 - 0.222

MP, h = 2 229.32 0.005 ± 0.00019 0.018 246.63 0.017 ± 0.00196 0.018
MP, h = 3 205.09 0.065 ± 0.00683 0.015 247.83 0.024 ± 0.00200 0.019

effectiveness of the proposed algorithm is validated in the
intention recognition for a humanoid robot by using a telep-
resent virtual household scenario. As future work, it remains
to be investigated whether the model predictive approach
may yield benefits for online adaption of Object-Oriented
BN or Situation-specific BN, how the model decomposition
and parameter identification may be automated, as well as
how models with a decomposition into a large number of
reduced models may be handled.

XI. PROOF

Let Fi := F(Hi
k), i = 1, 2, be given. The altered result

from in [17] in (8) holds as

||ξ1
k,n
− ξ2

k,n
||

1
≤ ||F1ξ1

k,n−1
− F2ξ2

k,n−1
||1

and due to F1ξ2
k,n−1

−F1ξ2
k,n−1

= 0, simple rearrangement,
as well as the application of the triangle inequality

||(F1ξ1
k,n−1

− F1ξ2
k,n−1

) + (F1ξ2
k,n−1

− F2ξ2
k,n−1

)||
1

≤ ||F1ξ1
k,n−1

− F1ξ2
k,n−1

||1 + ||F1ξ2
k,n−1

− F2ξ2
k,n−1

||
1

≤ L · ||(ξ1
k,n−1

− ξ2
k,n−1

)||
1

+ ||F1 − F2||1 ,
because ||F1||1 ≤ L for the maximum number of observa-
tions and ||ξ2

k,n−1
||

1
= 1 and ξ2

k,n−1
is a normalized density.
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