KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000035091

The Sliced Gaussian Mixture Filter with Adaptive State Decomposition Depending on Linearization Error

Klumpp, Vesa; Beutler, Frederik; Hanebeck, Uwe D.; Fränken, Dietrich

In this paper, a novel nonlinear/non-linear model decomposition for the Sliced Gaussian Mixture Filter is presented. Based on the level of nonlinearity of the model, the overall estimation problem is decomposed into a severely nonlinear and a slightly nonlinear part, which are processed by different estimation techniques. To further improve the efficiency of the estimator, an adaptive state decomposition algorithm is introduced that allows decomposition according to the linearization error for nonlinear system and measurement models. Simulations show that this approach has orders of magnitude less complexity compared to other state of the art estimators, while maintaining comparable estimation errors.

Zugehörige Institution(en) am KIT Institut für Anthropomatik (IFA)
Publikationstyp Proceedingsbeitrag
Jahr 2010
Sprache Englisch
Identifikator ISBN: 978-0-9824438-1-1
URN: urn:nbn:de:swb:90-350914
KITopen-ID: 1000035091
Erschienen in Proceedings of the 13th International Conference on Information Fusion (Fusion 2010), Edinburgh, United Kingdom, 26-29 July 2010
Verlag IEEE, Piscataway
Seiten 8 S.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page