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Abstract — Applying the Kalman filtering scheme to
linearized system dynamics and observation models does
in general not yield optimal state estimates. More pre-
cisely, inconsistent state estimates and covariance ma-
trices are caused by neglected linearization errors. This
paper introduces a concept for systematically predicting
and updating bounds for the linearization errors within
the Kalman filtering framework. To achieve this, an
uncertain quantity is not characterized by a single prob-
ability density anymore, but rather by a set of densities
and accordingly, the linear estimation framework is gen-
eralized in order to process sets of probability densities.
By means of this generalization, the Kalman filter may
then not only be applied to stochastic quantities, but
also to unknown but bounded quantities. In order to
improve the reliability of Kalman filtering results, the
last-mentioned quantities are utilized to bound the typi-
cally neglected nonlinear parts of a linearized mapping.

Keywords: Imprecise probabilities, sets of densities,
credal sets, Bayesian state estimation, set-theoretic
state estimation, linearization errors.

1 Introduction

Many practical applications entail the problem of in-
ferring insight to unknown quantities that cannot di-
rectly be measured. Furthermore, the description of
the underlying system dynamics and the obtained ob-
servations in general involve uncertainties, which are
commonly modeled as random quantities. This means
that an uncertain state variable is corrupted by stochas-
tic noise with known probability density function. The
generic Bayesian inference scheme then embodies an op-
timal solution to the state estimation problem. Un-
fortunately, this scheme represents more a theoreti-
cal solution than a practical one, as arbitrary densi-
ties generally do not allow a finite parameterization
and nonlinear state estimation is computationally in-
tractable. To overcome this issue, approximation tech-
niques are employed to the densities or the models in
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Figure 1: Kalman filter methods only consider linear
parts of nonlinear system and observation models. The
proposed method will incorporate the nonlinearities by
means of set-valued descriptions. This is achieved by
combining stochastic and set-valued quantities through
sets of densities.

order to be able to perform state estimation on-line. Of
course, reliable state estimates then cannot be guaran-
teed anymore. However, for linear models perturbed
by Gaussian noise, the Kalman filter [1] provides an
optimal closed-form solution, where the state estimate
can uniquely be parameterized by the conditional mean
and covariance matrix. The simple processing of these
parameters is the reason why the Kalman filter has also
become a well-accepted approach for nonlinear systems.
For that purpose, the process and measurement models
are linearized either by a Taylor series expansion, as it
is done for the extended Kalman filter [2], or by a linear
regression analysis, for which the unscented Kalman fil-
ter [3] is a candidate. Especially, the former approach
suffers from inconsistent estimates [4]. The regression-
based filters generally calculate an additional lineariza-
tion noise, in order to preserve consistency at the cost of
less informative results [5]. Of course, consistency here
strongly depends on properly chosen regression points.

The focus of this paper is to offer a method for con-
sidering linearization errors systematically. This will



also enable us to assess the impact of these errors on
the obtained state estimates. To achieve this, we will
avail ourselves of concepts from set-membership state
estimation. These approaches have evolved besides the
Bayesian estimation techniques and provide guaranteed
state estimates, i.e., sets to which the true state be-
longs. Essentially, intervals [6] and ellipsoidal sets, as
used in [7], [8], and [9], are employed to model these
unknown but bounded quantities.

As illustrated in Figure 1, the key idea of this paper
consists in a combination of Bayesian and set-valued
estimation concepts, where the former technique, i.e.,
the Kalman filter, is applied to the linear parts of a
mapping and the latter concept is meant to account
for the usually neglected nonlinear parts. In doing so,
a state estimate will then be given as a combination
of a stochastic and an unknown but bounded quantity.
Such a state estimate can neither be described by a sin-
gle probability function nor by a single set. To solve this
issue, we make use of the theory of imprecise probabil-
ities [10], from which generalizations of Bayesian state
estimation have, for example, been derived in [11, 12].
For our purpose of bounding linearization errors within
the Kalman filtering framework, sets of probability den-
sities [13, 14] will serve as proper characterizations of
uncertain quantities. We will start this paper with
a thorough derivation of linear state estimation with
sets of densities, which lays the ground for processing
guaranteed bounds for linearization errors through the
Kalman filter.

2 Linear State Estimation with
Sets of Densities

Before we will explicate how to increase the reliability of
Kalman filtering techniques when dealing with nonlin-
ear system and measurement models, some preparatory
work is required. This section is intended to lay a sound
ground for combining stochastic and set-membership
descriptions of uncertain quantities. Quite intuitively,
this will lead us to imprecise probabilities. In the course
of this generalization of classical probability theory, an
uncertain quantity will not be characterized by a sin-
gle probability density function anymore, but rather
by a set of densities [12, 13]. Initially, this concept has
been employed to allow for a simultaneous treatment of
stochastic and systematic errors [14], whereas the latter
ones are meant to subsume unknown but bounded dis-
turbances. The extension of this concept to lineariza-
tion errors then lies in the focus of Section 3.

Even though state estimation with sets of densities
has been established for arbitrary densities and arbi-
trary models in [14], we here restrict our discussion to
Gaussian densities and linear models. This means more
precisely that we consider the Kalman filtering scheme
and extend it to unknown but bounded uncertainties.
Then, a quantity Z can additively be affected by both

a zero-mean Gaussian random noise w ~ N (0, C) with
covariance matrix C € R™ "™ and an unknown but
bounded perturbation d € D C R", i.e.,

z=r+w-+d.

Throughout this paper, vectors are indicated by under-
lining and random variables are denoted by boldface
letters. In order to simplify further considerations, we
assume that the statistics of w do not depend on the
outcomes of d. For a moment, let d be fixed, then
the uncertain quantity x is normally distributed with
N(z+d, C). But, since d is unknown and only specified
by its membership to the set D, we cannot identify a
certain distribution for x. Instead, we obtain a set

{N(&+d,C)|deD} (1)
of distributions, each of which is a seriously possible
candidate for the true distribution of . This justifies
and even requires to consider the entire set as a char-
acterization of . For the following discussions in this
paper, we refer to the set of Gaussian densities that
corresponds to the set (1) of distributions.

Apparently, the vector d only affects the expected
value, hence the set consists of translated Gaussian den-
sities with the same covariance matrix. This implies
that this set can be parameterized by the related set
X ={2+d| d e D} of means and the covariance ma-
trix C. In order to generalize the Kalman filter to sets
of means and to preserve computational tractability, el-
lipsoidal sets have proven to be particularly appropriate
for this purpose. An ellipsoid

£@X)={zeR" | (@-"X'z-) <1} (2)
is defined by a midpoint ¢ € R™ and a nonnegative
definite shape matrix X € R™*". So, by using an ellip-
soid D = £(0, X) to describe the unknown but bounded
errors, the set of Gaussian densities is uniquely param-
eterized by the ellipsoid X = £(&, X) of means and the
covariance matrix C. This provides us with an intu-
itive interpretation: The matrix X subsumes all un-
known but bounded uncertainties and C encapsulates
all stochastic uncertainties. We will see in Subsections
2.1 and 2.2 that these uncertainties remain distinguish-
able after propagating and filtering.

Ellipsoidal representations especially involve the ad-
vantage that affine transformations can easily be com-
puted by

AE(E,X)+b=E(AE+b AXAT) (3)
for any A € R™*™ and b € R™. For our further con-
siderations, it will also be necessary to calculate the
Minkowski sum of two ellipsoids, which means the ele-
mentwise summation. Unfortunately, this sum does in
general not yield an ellipsoid anymore. However, it can



again easily be enclosed by an ellipsoid. Such an outer
approximation is given by

£(21,X1) B E(29, X2) CE(G +80.X(p) . (4)
where the matrix X(p) is calculated from
X(p) = (1+p HXi + (1+p)Xs
for any p > 0 [9]. This scalar can for example be set to
p = trace(Xy)? - trace(Xy) "7 . (5)

Then, the enclosing ellipsoid has minimal sum of
squares of semi-axes, i.e., the trace of X(p) is minimal.
In [9], other optimality criteria for p can be found. With
this brief survey of ellipsoidal calculus, we are now in a
position to depict the Kalman prediction and filtering
steps generalized to ellipsoidal sets of means.

2.1 Prediction

The Kalman prediction step requires linear system dy-
namics

Ty = Apz, +Bruyy, (6)

which characterize the time evolution of the system
state x; given an input u,. In this paper, we confine
ourselves to discrete-time models. In order to account
for stochastic uncertainties, the standard Kalman fil-
ter now processes a normally distributed state estimate
z§ ~ N(ij,C%) through this model (6), where the
noise-corrupted signal u;, is composed of the known in-
put 4, and an additive zero-mean white Gaussian noise
w,, ~ N (0, C}"). The mapping (6) is thereby applied to
the means 2} and @y, in order to obtain the predicted
mean &} 4+1- The covariance matrix of the predicted
state estimate &} 41 1s computed from

Ch., = AyCA} + B,C!'B; . (7)

The aspired extension towards unknown but bounded
errors implies that the mean Zj of the state estimate
7 is not unique anymore, but rather is given by an
ellipsoid X¢ = £(¢),,X%) of “possible” means. Also,
the input @, can now be additionally affected by an
error term d;, € Dy, = £(0,Dy), i.e.,

Uy, = Uy, + Wy + dy,

The impact of d;, on the input can be interpreted as a
set

U, = {ty, +d;, | di, € Di} = E(@, Dy)

of possible inputs. The set of predicted means is then
given by

eq. (6
xp, LY A X @ Byl

LY £(Ay 2, ArX{AT) © E(By ity BD;BY)

eq. (4)
E(QZHaXZH) )

(8)

where the latter ellipsoid is an outer approximation of
Xy, with

Xp . =(1+p HALXAL + (14 p)BiDB; .

Finally, the predicted state },_, is characterized by the
set £(¢p, 1, X} 1) of means and the covariance matrix
Ccy 41, Which together form a set of translated Gaussian
densities.

2.2 Filtering

The prior or predicted state estimate, given by the set
E(2y,X}) of means and the covariance matrix C}, can
then be fused with a specific measurement Qk’ which is
related to the system state through a linear measure-
ment model

gk:gk‘FQk"‘Qk:Hka + v, +eg -

This measurement can be affected by a zero-mean white
Gaussian noise v, ~ N(0,C}) and — in contrast to
the standard Kalman filter assumptions — also by an
unknown but bounded perturbation e, € &;. Again,
we characterize this error term by an ellipsoid & =
£(0,Eg) and regard the set

Ve =A{i, —er e, €&} =€, Er),

as a set of “possible” observations. Following the train
of thought of the previous subsection, the standard
Kalman filter equation

a5 = (I-KpHy)z, + Ki g, (9)
for the mean now generalizes to the Minkowski sum

xe eq-:(9)

. (3 ~
e ( )8((I—Kka) &, (1=K Hy) XP (I- K Hy) )

@ E(7,, KnErK})

eq. (4)
C &G X%),

(I-KiHy) £, X)) © Ki £(7,, Ex)

(10)
where I is the unit matrix and Ky is the Kalman gain

K, = CJH; (C} + HyC)H[) ™" .

The shape matrix X§ of the outer approximation (10)
is computed from

Xi = (1+p (I - KeHp)XP(I - KiHy)"
+ (14 p)KiEeK]
where p can be determined by (5). The estimated co-

variance matrix is obtained from the common Kalman
filter equation

¢ — CP — K H,CP . (11)



Apparently, introducing unknown but bounded er-
rors into the Kalman filtering scheme has turned out to
be quite straightforward. Here, only the equations for
the predicted and filtered mean have to be generalized
to Minkowski sums. At each time step, the state esti-
mate is given by a set of translated Gaussian densities
with the same covariance matrix. Contrary to nonlin-
ear models and estimators, the unknown but bounded
and the stochastic uncertainties remain distinguishable
from each other: The former are represented by the
matrix X and the latter are given by the covariance
matrix Cg. For a thorough derivation of this concept
refer to [14].

3 Sets of Densities for Bounding
Linearization Errors

Because they are in general easy to implement and
require only low computational resources, Kalman fil-
tering techniques are also widely applied to nonlinear
system dynamics and observation models. In order to
achieve this, linear approximations of the underlying
nonlinearities have to be determined. One should then
be prepared for inconsistent and non-optimal estima-
tion results. Some Kalman filter derivatives attempt
to overcome this issue by adding an extra linearization
uncertainty [5], i.e., by enlarging the covariance matrix.
However, the choice of this linearization noise in gen-
eral involves some ambiguity and, of course, lineariza-
tion errors cannot simply be described stochastically.
Instead, we now derive a concept that provides us with
systematic bounds on linearization errors.

3.1 The Idea Behind

The trouble with nonlinear system and measurement
functions is that Gaussian random quantities will not be
Gaussian anymore. E.g., quadratic measurement mod-
els can result in multi-modal densities. In general, the
resulting density can be an arbitrary one providing no
finite parameterization. So, the reason to revert the
true density back to a Gaussian one is its simple pa-
rameterization and processing. This implies that the
nonlinear part gN°"i" in a mapping

z=g(z) = ¢""(z) + ¢~ (z)

of an uncertain quantity « is therefore omitted in or-
der to preserve Gaussianity. This is done implicitly,
whenever Kalman filter derivatives are deployed.

As illustrated earlier in Fig. 1, the key idea now con-
sists in replacing gN°"i"(x) by a set that bounds the
nonlinear parts properly. That means, the unknown
but bounded part, i.e., the set, is intended to account
for the typically neglected nonlinearities. Of course, lin-
earization errors cannot, in general, be bounded over
the whole domain. Hence, we consider these errors
only over the most probable region of x, which means
the most interesting “uncertainty region” around the

(12)

state estimate Z. More precisely, we calculate the error
bounds over a confidence set in which the true state lies
with a predefined probability level P.

Remark. FEssentially, we refer to the Bayesian view-
point of confidence sets (also called credible sets or
Bayesian confidence sets). The level P then states the
probability with which the confidence set covers the true
state.

For an n-dimensional Gaussian random vector & ~
N(&,C), the confidence set to a certain probability
level P is given by an ellipsoid

{ze€R" | (@-)TC\(z—2) <s} .

The parameter s can be determined by means of the dis-
tribution of the squared Mahalanobis distance, which
is that of a chi-squared variate with n degrees of free-
dom (see [7, pp. 524-525]). So, the scalar s depends on
the chosen probability P and the dimensionality n. Ac-
cording to (2), the confidence ellipsoid can then be writ-
ten as £(Z,s - C), which corresponds to certain sigma
bounds of the error around Z. Fig. 2(a) depicts a confi-
dence set for a one-dimensional Gaussian density. Over
this set, linearization errors can be bounded by a set

gNonlin(é*(i’S . C)) g L.

This set £ then acts as an unknown but bounded per-
turbation, so that (12) becomes

g(z) ~ g"™(z) + L,

which implies that g(x) is now approximated by a set
of translated Gaussian densities. Compliant with Sec-
tion 2, we will employ ellipsoidal bounds £ = £(0, X)
for the linearization errors. With the probability P,
the linearization error does not exceed the set £. This
implies that, to the same probability level P, the corre-
sponding confidence set of the nonlinearly transformed
state estimate (12) is then bounded by a set

gLin((‘:) o gNonlin(E) g gLin(E) @ 5(9’ X)

with &€ = £(&,s - C). The latter confidence set is the
Minkowski sum of the covariance ellipsoid £(Z, sé) and
the error bound £(0,X), where Z and C are the new
mean and covariance matrix after applying g™ to x.
More precisely, we have obtained a set of Gaussian den-
sities. Thereby, £(Z,X) is to be interpreted as a set of
means and s - C describes bounds for the stochastic un-
certainties. To the chosen probability P, the matrix X
characterizes the maximal impact of the neglected non-
linearities and s - C the maximum stochastic error. For
the one-dimensional case, Fig. 2(b) shows the overall
set bounding the maximum error on the state estimate
with the probability P.

In the following, we will show that the error bounds
can be propagated through Kalman prediction and fil-
tering steps and that still a certain probability level can
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Figure 2: (a) The “uncertainty region” around the esti-
mated mean 2, is given by a multiple of the covariance
ellipsoid. (b) “Uncertainty region” for a set of densities:
For every element in the set of densities, a covariance
ellipsoid has to be considered, the union of these, writ-
ten as a Minkowski sum, gives an outer approximation
of the true confidence set.
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be guaranteed, to which the maximal linearization er-
ror lies within these bounds. In particular, only the
bounding sets for the nonlinear parts need to be pro-
cessed through the Minkowski sums (8) and (10). At
each time step, the a priori defined probability level P
is used to determine the region over which the lineariza-
tion errors are to be bounded. For the prediction step,
this concept will be detailed in Subsection 3.2 and the
derivation of error bounds for the observation model
will then be elucidated in Subsection 3.3.

3.2 Prediction

Given that linearization errors from previous processing
steps are incorporated in the current state estimate z,
with respect to a certain probability level P, we aspire
to maintain this level, when approximating the system
function

&1;;1 = a(z}, up)

linearly and predicting the system state. The current
estimate zj, is hereby characterized by a set of means
&(&;,X$), which accounts for the linearization errors
made so far, and the covariance matrix Cj, determined
through the linearized mappings. The “uncertainty re-
gion” of xj then consists of the Minkowski sum

0. = £(5.X3) @ £(0, 5 Cf)

where £(0,s - Cf) is the P confidence region for the
stochastic deviations. For the uncertain input

U, = U +wy ,

perturbations can be bounded with respect to the same
probability level P by an ellipsoid Uy, := E(1y,, § - CY).
The linearization errors of an approximation

ay (2, uy) = Ay, + Bruy + by,
over the considered regions yield a set
{Qk(gkaﬂk) - (Akgk + Bkﬂk +bk) |§k S Ckaﬂk € uk} .

A bound for this set can, for example, be determined
by taking the elementwise supremum

R} = sup
2 €Ck
g €EUR

[Qk@/m@k) — (Agzy, + Bryy, + bk)}

and infimum Ek, respectively.  This yields an n-
dimensional rectangle, which itself can be interpreted
as the Minkowski sum of n one-dimensional ellipsoids.
So, an enclosing ellipsoid £(7};, RY) is obtained through
an outer approximation (4). A simpler but more con-
servative bound is a ball £(0,r - I) with radius

r= suwp @y (zy, wy) — (Arzy, + Bruy + b)) ||,
wp €U
where the maximal possible error is used as bound in
every direction.
The result of the Kalman prediction step now be-
comes the set

Xl&rl = (Akg(i%XZ) + Bk@]g +bk) S¥ g(fg, RZ)
= S@Z-H’ XZ-H) © E(ry, RY)

of means containing the linearization errors and the
covariance matrix C}_,. &, is computed from (8),
where we here, for the sake of simplicity, assumed that @
is not additionally affected by an unknown but bounded
perturbation. C}, 41 is given by the Kalman filter equa-
tion (7).

3.3 Filtering

Similarly, linearization errors for the measurement
mapping will be taken into account by the filtered state
estimate xj. The set of estimated means is thereby
given by the elementwise sum

i = zh + Ki[§, — (Hiz), + by, +17)]

for every z} in the set £(z},XY}) of predicted or prior
means and for every [Z in & (ﬁZ, RZ), where the former
set bounds the previously made linearization errors and
the latter set characterizes the errors arising from the
approximation

@k = hy(zy) + v, = Hiyzy + b, + v,

of the nonlinear observation model . Both, £(z}, X})
and E(77, R}) refer to the same probability level P. In



order to determine & (7}, R}'), we consider the P confi-
dence region of the measurement result gk, ie., V=
£(0,5- CY). So, with probability P, there exists an

b, =Dy (zp) + v -
This implies the inclusion

9, — by (zy) € Vi . (13)
By X,f, we denote the set of all z, fulfilling this in-
clusion. The maximal linearization error can then, for
example, be bounded by the elementwise supremum

Ry = sup [hy(zp) — (Hpzp +by)]

heyvh
Ty EX)

and infimum Eéﬁ respectively. Again, this rectangle can
be enclosed by an ellipsoid £(71, R}).

A way to determine the set X}* for the inclusion (13)
is to define auxiliary linear equations, which are es-
pecially used in the context of set-membership state
estimation [8, 9]. Such an auxiliary equation y, =
H{z, + b" fulfills

{hy(zy) + v | v € Vie} C E(HRzy, + 0%, L)

for every z;, € R™ and a nonnegative definite L € R™*".
Reversely, for a concrete measurement § ) this gives the
implication

¥, — hy(zy) € Ve = 9, — (Hjz), +0%) € £(0,Ly)
Thus, the inclusion

{z, e R" | U, — I (zp) € Vi }
C{z, eR" [, — (Hiz;, +b") € £(0,Ly)} =: &}

holds and yields the set X,?. The auxiliary function
can also be used to compute a bound £(#f, R}!) for the
maximum linearization error by considering the differ-
ences

[(H} 2y +07) = (He 2y, + )]

over X,?, instead of [ﬁk(gk) - (Hk Zp, +bk)]. With the
determined ellipsoidal error bound, a new set of esti-
mated states can then be calculated by

(I - KpHp) XY + Ky

with &P = £(2,X}) and Vi = £(§, — by, — 74, Re).
The covariance of the set of estimated Gaussian den-
sities is still given by the standard equation (11). Be-
cause of the linearization, this matrix still can be un-
derestimated, but the set of means, i.e., the bounds for
linearization errors, enables us to compute a guaran-
teed confidence set with respect to the a priori defined
probability level P.

4 A Brief Guide for Specific
Kalman Filter Derivatives

This section provides a short survey on specific Kalman
filter derivatives in order to unveil where linearization
errors are hidden.

4.1 Extended Kalman Filter

The extended Kalman filter [2] appears to be the most
apparent method for applying Kalman filtering tech-
niques to nonlinear state estimation. For that purpose,
differentiable system and measurement functions are
approximated by first-order Taylor series expansions.
Such an expansion of a nonlinear mapping z = g X (z) is
evaluated at the current state estimate Z, i.e.,

g

; )
Az
Lp=z
z=2

z=g(x)=g,(2)+ <a

).

(Az)®

The linear approximation of g

with Az, = (z —
then yields

As a result, a system or measurement mapping is ap-
proximated by its Jacobian matrix at &} or &}, respec-
tively, and all higher-order terms are neglected. The in-
fluence of the higher-order terms can be described, for
example, by the Cauchy or Lagrange form of remain-
der, with which the nonlinear part can be bounded over
the “uncertainty region” X around the state estimate.
Such a bound can, for example, be calculated by means
of Hessian matrices from

1 .
Ry = sup 5T |l — &l
zeEX

where T is given by

0%g
Oz;0z; . H

N
sup

T =
i,j=126%

and z, is the ith component of x. With the concept
derived in Section 3, the bounds for the remainder can
now be taken into account and be processed through
prediction and filtering steps.

4.2 Linear Regression Kalman Filter

A well-known example for linear regression Kalman fil-
ters [5] is the unscented Kalman filter [3]. These fil-
ters determine statistical linearizations of the nonlin-
ear system and measurement functions by means of a
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Figure 3: First component of Z;. In blue, the center of
the set of means is depicted. The bounds are drawn red.
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Figure 4: Determinant of X§.

certain number L of regression points {z;}, which are
usually taken around the mean of the actual state es-
timate, i.e., inside the “uncertainty region”. For these
points, the function values of the considered nonlinear-
ity z; = g(z;) are calculated in order to obtain the set
{wi,z;,2;} of regression points with weights w;. Es-
sentially, mean and covariance matrix of the new state
estimate are then computed from the regression points.
The underlying linear mapping in general remains hid-
den to the user. As explicated in [5], this linear mapping
is obtained as the solution of

L

{A, b} = argmin E wi -Q;f e,
A “ 1
1=

where the weighted sum of squared errors e, = Y, —
(Az; + b) is minimized. This least-squares problem is
solved by
A=C].C,) and b=2-A-%

with z = Zf:l Wi Ty, 2= 25:1 wi 2, Cpa = ZiLzl wi
(z;—2)-(z;—2)", and C,, = Zf:l wi(z;—)-(2;—2)".
Through the obtained linear mapping, the mean and
the covariance matrix of the tranformed state estimate
are evaluated. In order to achieve more consistent es-
timates, an additional zero-mean linearization noise is
generally added [5], whose covariance matrix is

L
* T
k:§ Wi €& -
i=1

Instead of using this stochastical description of lin-
earization errors, which only bases on a few sample
points, one can employ systematic bounds: The results
from Section 3 can be applied in order to attain guar-
anteed bounds for these errors.

5 Example

In this section, we will discuss the presented idea by
means of a two-dimensional example. More precisely,
we investigate the soft symmetric spring equation

1

. 3
+r—-2®=0.
x X 6$

By time-discretization, we obtain the model

(1) (2) (1)
T = LS = A o + [Ty
Lrt1 %(xk ) - Ty L

of the process dynamics with step-size At. We assume
that this discrete-time system is perturbed by a (zero-
mean) white noise process w;, ~ N(0, C}) with covari-
ance matrix C}’. The measurements are modeled by

+

Y, =Ly + v,

affected by the additive noise v, ~ N(0,C}) with co-
variance matrix C} = [ %! %, |. The extended Kalman
filter then uses a linearized model

£k+1 = f(gka At) ~ Ak&k +bk ’
where the matrix Ay is the Jacobian

1 At

A=Ir = A 21

of f. In the simulation, linearization errors have been

Property Notation  Value
Discretization step size At 0,001
Filter step size At 0,2
Number of steps - 20000
Initial estimate it o1%
Initial covariance Cs diag[1 1]
Initial state ellipsoid X9 0

Covariance matrix diag[0.05 0.05]

Table 1: Simulation parameters - soft spring equation.

bounded over 3o confidence regions. The results are
presented in Fig. 3, where only the first component
of the state is shown. The interval bounds are the
Minkoski sum (compare to Fig. 2(b)) of the set of means
and the 30 confidence region at each time step. The pa-
rameters of this simulation run are listed in Table 1. In
Fig. 4, the determinant of the shape matrix X3 of the
ellipsoid of means is plotted, which is proportional to
the volume of the ellipsoid. It can be seen that the
bounds for the linearization errors become small, when
the system behaves linearly, and increase, when nonlin-
ear changes in the state are more dominant.



6 Conclusions and Future Work

In order to apply the easy-to-implement and compu-
tationally feasible Kalman filter to arbitrary systems,
the underlying process and observation models are lin-
earized. Instead of neglecting the nonlinear parts, we
have proposed a method, which enables us to bound
these “inconvenient” parts by ellipsoidal sets. Since lin-
earization errors cannot be considered over the entire
domain, they are only enclosed over the most probable
regions, which correspond to a certain probability level.
This implies that linearization errors are interpreted as
unknown but bounded perturbations, which can eas-
ily be incorporated into the Kalman filtering scheme as
stated in Section 2. The resulting state estimate of this
generalized Kalman filter is then given by a set of trans-
lated Gaussian densities, where the corresponding set
of means accounts for the unknown but bounded uncer-
tainties and the covariance matrix characterizes the lin-
early processed stochastic uncertainties. This Kalman
filter for ellipsoidal sets provides the advantage of be-
ing easy to implement, since only one additional matrix
calculation is required at each time step.

Of course, a set of densities cannot be regarded as a
precise state estimate, since every element in the set is
an equally acceptable candidate to model the stochastic
uncertainty surrounding the true state. So, we do not
obtain better estimation results, but we attain more re-
liable results and we gain insight into the robustness
and sensitivity towards linearization errors, i.e., this
concept allows for a robust Bayesian analysis and sen-
sitivity analysis. The processed error bounds can assist
in assessing the estimation quality on-line and figuring
out when approximations break down.

Prospective research will in particular focus on dis-
cretization errors, when discrete-time models are gen-
erated from partial differential equations. Accordingly,
for sampling-based approximations of densities, this
paper may also provide a basis for incorporating dis-
cretization errors. Furthermore, more efficient ways to
calculate the bounds in Subsection 3.2 and 3.3 will be
evaluated. For example, the use of sparse grids seems
promising, especially when the functions are of bounded
variation, so that the effect of nonlinearities can be as-
sessed by means of a few sample points.

7 Acknowledgments

This work was partially supported by the German Re-
search Foundation (DFG) within the Research Train-
ing Group GRK 1194 “Self-organizing Sensor-Actuator-
Networks”.

References

[1] R. E. Kalman, “A New Approach to Linear Fil-
tering and Prediction Problems,” Transactions of
the ASME - Journal of Basic Engineering, no. 82
(Series D), pp. 35-45, 1960.

[2] H. W. Sorenson, “Least-Squares Estimation: From
Gauss to Kalman,” IEEFE Spectrum, vol. 7, pp. 63—
68, 1970.

[3] S.J. Julier and J. K. Uhlmann, “Unscented Filter-
ing and Nonlinear Estimation,” in Proceedings of
the IEEE, vol. 92, no. 3, Mar. 2004, pp. 401-422.

[4] D. Bizup and D. Brown, “The Over-Extended
Kalman Filter - Don’t Use It!” in Proceedings of
the Sizth International Conference on Information
Fusion. (Fusion 2008), 2003, pp. 40-46.

[5] T. Lefebvre, H. Bruyninckx, and J. D. Schutte,
“Kalman Filters for Non-linear Systems: A Com-
parison of Performance,” International Journal of
Control, vol. 77, no. 7, pp. 639-653, May 2004.

[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter,
Applied Interval Analysis: With Examples in Pa-
rameter and State Estimation, Robust Control and
Robotics. London: Springer, 2001.

[7] F. C. Schweppe,
Prentice-Hall, 1973.

Uncertain Dynamic Systems.

[8] F. L. Chernousko, State Estimation for Dynamic
Systems. CRC Press, 1994.

[9] A. Kurzhanski and 1. Vélyi, FEllipsoidal Calculus
for Estimation and Control. Birkhauser, 1997.

[10] P. Walley, Statistical Reasoning with Imprecise
Probabilities, ser. Monographs on Statistics and
Applied Probability. London: Chapman and Hall,

1991, vol. 42.

[11] A. Benavoli, M. Zaffalon, and E. Miranda, “Reli-
able Hidden Markov Model Filtering through Co-
herent Lower Previsions,” in Proceedings of the
12th International Conference on Information Fu-

sion (Fusion 2009), Jul. 2009, pp. 1743-1750.

B. Noack, V. Klumpp, D. Brunn, and U. D.
Hanebeck, “Nonlinear Bayesian Estimation with
Convex Sets of Probability Densities,” in Proceed-
ings of the 11th International Conference on Infor-
mation Fusion (Fusion 2008), Cologne, Germany,
Jul. 2008, pp. 1-8.

[13] D. R. Morrell and W. C. Stirling, “Set-Valued
Filtering and Smoothing,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 21, no. 1, pp.

184-193, Jan. 1991.

B. Noack, V. Klumpp, and U. D. Hanebeck,
“State Estimation with Sets of Densities consid-
ering Stochastic and Systematic Errors,” in Pro-
ceedings of the 12th International Conference on
Information Fusion (Fusion 2009), Seattle, Wash-
ington, July 2009.



