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Abstract— The sample-based recursive prediction of discrete-
time nonlinear stochastic dynamic systems requires a regular
reapproximation of the Dirac mixture densities characterizing
the state estimate with an exponentially increasing number
of components. For that purpose, a systematic approximation
method is proposed that is deterministic and guaranteed to
minimize a new type distance measure, the so called modified
Cramér-von Mises distance. A huge increase in approximation
performance is achieved by exploiting structural independencies
usually occurring between the random variables used as input
to the system. The corresponding prediction step achieves
optimal performance when no further assumptions can be made
about the system function. In addition, the proposed approach
shows a much better convergence compared to the prediction
step of the particle filter and by far fewer Dirac components
are required for achieving a given approximation quality. As a
result, the new approximation method opens the way for the
development of new fully deterministic and optimal stochastic
state estimators for nonlinear dynamic systems.

I. INTRODUCTION

The estimation of a system state from noisy measurements
is a common engineering problem and various techniques have
been proposed for solving it. Probably the best established
state estimator is the Kalman filter, which is optimal for
estimating the first two moments of a linear system [1].
As most systems are nonlinear, several extensions to the
Kalman filter have been published [2], but still the degree
of nonlinearity and especially the shape of the densities to
be estimated remain somehow limited [3], [4]. There are
several other approaches, like the SGMF [5] or Fourier
densities [6] and the family of particle filters, which are
much less limited in this context. Particle filters [7], from the
family of Monte Carlo methods, do approximate the moments
of any given density by drawing random samples from it.
They have reached great popularity because of their ease of
implementation. While particle filters greatly differ [8] in
the insertion of new measurements, the prediction step is the
same for most variants.

The sample-based density representation used in the particle
filter implies several disadvantages. Since the samples are
drawn randomly, a relatively poor convergence is achieved
and therefore, the number of samples required for an adequate
approximation quality is usually high.

Dirac mixture densities [9] on the other hand are gener-
ated by systematically minimizing a distance measure. The
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Fig. 1: The particle filter (left) selects random pairs of particles
from the densities f(x1) and f(x2), while the proposed
method (right) deterministically approximates the joint state
space of the two densities. The system function is then applied
to the result of each.

resulting approximation is deterministic and of high quality,
so that only few Dirac mixture components are necessary.
In addition to that, a discrete density representation has
several advantages, such as the ability to solve the stochastic
prediction analytically for most cases, which make this density
representation beneficial for the use in nonlinear filters. Major
problems that may arise in sample-based Bayesian estimators
are the approximation of continuous densities by means
of sample-based densities [10], [11] and the reduction of
the number of samples used [12], while maintaining an
appropriate representation quality of the state estimate.

The deterministic approximation to be deduced is derived
from the Localized Cumulative Distribution and the modified
Cramér-von Mises distance measure presented in [13], [14].
This technique allows for arbitrary approximations of contin-
uous and discrete densities. The focus of the presented work
is on the special case where the density to be approximated
is completely described by several stochastically independent
densities of lower dimension. Furthermore, the work is limited
to Dirac mixture densities for simplification, although this
limitation can be easily lifted.

II. PROBLEM FORMULATION

In this paper, a novel approach for systematically calculat-
ing an approximation of the joint density of several indepen-
dent random variables is presented. Such an approximation
can be used in the prediction step of a Bayesian estimator.
The prediction step is defined by the Chapman-Kolmogorov
equation

fp(z) =
∫
δ (z−a(x)) f(x) dx , (1)



with a system function a(·), a posterior density fp(z), and
a prior density f(x). Here, the focus lies on the prior
density f(x) assumed to be composed of independent lower-
dimensional Dirac mixture densities

f(x) = 1f(1x) · 2f(2x) · . . . · Rf(Rx) ,

where the lower-dimensional densities rf(rx) are represented
as Dirac mixtures and x =

[
1xT , 2xT , . . . ,RxT

]T
. Each lower-

dimensional density might for example represent a noise
density or the density of a system state that is stochastically
independent from the rest. A Dirac mixture density with L
components is given by

f(x) =
L∑
i=1

ωi δ (x− xi) ,

with positive weights ωi, which sum up to 1, and locations

xi =
[
x

(1)
i , x

(2)
i , . . . , x

(N)
i

]T
, where xji is the jth component

at xi for i = 1, . . . , L Dirac components and N dimensions.
The exact solution of Equation (2) is a Dirac mixture, where

the number of components is the product of the number of the
components of the lower-dimensional densities. For several
consecutive prediction steps, e.g., a combination of a prior
state estimate and a stochastic noise term, this leads to an
exponential growth in the number of Dirac components. As a
result of this, the application of the system function to those
densities quickly gets computationally unfeasible. Thus, a
reduction of Dirac mixture components is needed.

In this work, the reduction of the joint density f(x),
which is composed of several independent Dirac mixture
densities, is presented. Here, the approximated density is
calculated directly from the densities 1f(1x), . . . ,Rf(Rx)
without explicit calculation of the joint density f(x) by
exploiting its separability.

In Figure 1, the approximation is shown in the context
of the prediction step, where the system function maps two
independent densities to the predicted density f(z). On the
left hand side, the particle filter is shown. Here, the prediction
step (2) is solved by selecting pairs of samples from the prior
and the noise density and applying the system function on
each pair. This process can be interpreted as an approximation
of the joint density 1f(1x) · 2f(2x). While the particle filter
does give reasonably good results for large numbers of Dirac
components, it may perform poorly when only a few samples
are available as a lot of information is not accounted for in
the random selection. On the right hand side, the proposed
method is visualized. The algorithm reduces the joint Dirac
mixture density to a representation with fewer components.
This approximation is then propagated through the system
function.

The approximation method proposed in this paper is based
on the minimization of a global distance measure between a
generalized definition of the cumulative distribution of the
joint density and its approximation. The result is calculated
deterministically and is optimal according to a specific
distance measure, the modified Cramér-von Mises distance,

which will be presented in the next section. The use of a
global distance measure guarantees that all information in
the joint density is taken into account.

III. LOCALIZED CUMULATIVE DISTRIBUTION AND THE

MODIFIED CRAMÉR–VON MISES DISTANCE

For comparing the given true Dirac mixture density with its
approximation, a suitable distance measure is needed. As the
cumulative distribution is ambiguous for multi-dimensional
densities, a unique generalization of the cumulative distri-
bution like the one described in [13] is defined for later
employment in a distance measure:

Definition III.1 (Localized Cumulative Distribution)
Let x be a random vector with x ∈ IRN , which is
characterized by an N–dimensional probability density
function f(x) : IRN→ IR+. The corresponding Localized
Cumulative Distribution (LCD) is defined as

F (m, b) =
∫

IRN
f(x)K(x−m, b) dx , (2)

with b ∈ IRN
+ and F (., .) : Ω→ [0, 1], Ω ⊂ IRN× IRN

+ .

In this paper, the kernels to be used are of Gaussian type
defined by

K(x−m, b) =
N∏
k=1

exp

(
−1

2

(
x(k) −m(k)

)2
b2

)
with a one-dimensional width parameter b.

Based on these Gaussian kernels, the LCD of the Dirac
mixture in (3) is given by

F (m, b) =
∫

IRN
f(x)K(x−m, b) dx

=
L∑
i=1

wi

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2

 .

This expression can be extended to the LCD of the product
f̃(x) = 1f̃(1x)·2f̃(2x)·. . .·Rf̃(Rx) of R Dirac mixtures, where
the tilde denotes the density before approximation. Due to the
separability of the kernels, we get the LCD F̃ for f̃ , which
is just the product of the individual LCDs

F̃ (m, b) =
R∏
r=1

rF̃ (rm, b) ,

where m = [1mT , 2mT , . . . ,RmT ]T .
Based on the definition of the Localized Cumulative

Distribution and the Cramér–von Mises Distance, the distance
measure required for the calculation of the approximation of
a joint density is presented in the following definition.

Definition III.2 (Modified Cramér–von Mises Distance)
The distance D between two densities f̃(x) : IRN → IR+ and



f(x) : IRN → IR+ is given in terms of their corresponding
LCDs F̃ (m, b) and F (m, b) as

D =
∫

IR+

w(b)
∫

IRN

(
F̃ (m, b)− F (m, b)

)2

dm db , (3)

where w(b) : IR+ → [0, 1] is a suitable weighting function.

Intuitively, the LCD represents the mass of a density in
a region described by the kernel’s shape and position. This
distance measure compares two densities by the representation
of their masses for every possible kernel width and position
and allows, due to the smoothing implied through the use
of Gaussian kernels, for the comparison of Dirac mixtures.
For that purpose, the integral of the squared difference
between the LCD of the true density f̃(x) and the LCD
of its approximation f(x) is employed. In order to calculate
the distance measure, an integration over the kernel position
m as well as over the kernel width b has to be performed.

IV. EVALUATION AND MINIMIZATION

OF THE DISTANCE MEASURE

Expanding the expression in (4) and then using the integral
over the LCDs of two one-dimensional Dirac components

∞∫
−∞

Fx(m, b)Fy(m, b) dm

=
√
π bwx wy exp

(
− (x− y)2

4b2

)
leads to the following theorem:

Theorem IV.1 For the LCDs of the product of R Dirac

mixtures F̃ (m, b) =
R∏
r=1

rF̃ (rm, b) and the approximating

Dirac mixture F (m, b) with the weighting function

w(b) =

{
1

bN−1 b ∈ [0, bmax]
0 elsewhere

, (4)

the following expression for the distance D holds

D =

bmax∫
0

b π
N
2

(
R∏
r=1

rP1 − 2
R∏
r=1

rP2 + P3

)
db , (5)

with

rP1 =

rM∑
i=1

rM∑
j=1

rwi
rwj exp

(
−1
4 b2

rN∑
k=1

(
ry

(k)
i −

ry
(k)
j

)2
)
,

rP2 =

rM∑
i=1

L∑
j=1

rwi vj exp

(
−1
4 b2

rN∑
k=1

(
ry

(k)
i − x

(k+Kk)
j

)2
)
,

P3 =
L∑
i=1

L∑
j=1

vi vj exp

(
−1
4 b2

N∑
k=1

(
x

(k)
i − x

(k)
j

)2
)
,

where ry
i

denotes the locations of the rM Diracs weighted
by rwi in the rN -dimensional Dirac Mixture rf̃ . xi are the

Dirac positions in the N -dimensional Dirac mixture f being
weighted by vi. The expression

Kk =
k−1∑
l=1

lN

describes the position, respectively the axes, of the r-th Dirac
mixture in the N -dimensional space of the complete density.

PROOF. The theorem can be proven by first expanding the
square in Definition (III.2) and then integrating over m. �

In order to calculate the optimal Dirac mixture regarding
Theorem IV.1, the Dirac locations and weights have to be
determined. For simplification, the weights of the approximat-
ing Dirac mixture are assumed to be equal, i.e., wi = 1

L , so
only the Dirac locations remain to be computed. Given this
simplification, there is still a high-dimensional optimization
problem left. In this paper, a quasi-Newton optimization
called limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm [15] is applied. In order to perform the
optimization, a gradient has to be provided to the optimizer.

Theorem IV.2 The gradient of the distance measure in
Theorem IV.1 with respect to the locations x of the Dirac
components is given by

∂D

∂x
(η)
ξ

=

bmax∫
0

b π
N
2

 ∂P3

∂x
(η)
ξ

− 2
∂
(
KηP2

)
∂x

(η)
ξ

R∏
r=1
r 6=Kη

rP2

db ,

where Kη is defined as

Kη = max

{
k :

(
k∑
r=1

rN

)
< η

}
.

PROOF. As rP1 is constant, only rP2 and P3 have to be
differentiated, which is straightforward. �

V. COMPUTATIONAL COMPLEXITY

The formulae for the distance measure in Theorem IV.1 and
its gradient in Theorem IV.2 still require a one-dimensional
integration over the variable b. This integration could be
performed analytically by simply expanding the product of
sums in rP1 and rP2, which basically results in a summation
of terms of the form

∫
b exp

(−1
4b2

)
db. Unfortunately, the

expansion causes an exponential growth in the number of
summands. This would give an implementation of the analytic
solution of the integral over b a computational complexity of

O(N ·
R∏
r=1

rM2) for
R∏
r=1

rP1 ,

O(N · L ·
R∏
r=1

rM) for
R∏
r=1

rP2 ,

O(N · L2) for P3 ,

which equals the complexity that would occur if the complete
joint density was first created in order to be reduced
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Fig. 2: A reduction of the joint density of two one-dimensional Dirac mixtures. (a) from 10× 10 Diracs (blue) to 10 Diracs
(red), (b) from 50× 50 Diracs (blue) to 97 Diracs (red), (c) from 110× 110 Diracs (blue) to 97 Diracs (red).

afterwards. It is obvious that although the computation
of rP1 can be omitted, the computational complexity of
this solution is challenging for a reasonable number of
components in the Dirac mixtures rM and any large R. A
more promising approach is the implicit evaluation of the
distance measure that avoids the expansion that causes the
high complexity. A downside of such an approach is that a
numerical integration for D becomes necessary. Fortunately,
b exp

(−1
4b2

)
is bounded and smooth on the interval [0, bmax],

which also holds for the complete expressions rP1, rP2, P3,
and the required products. This makes D in Equation (6)
suitable for numerical integration. The advantage of the
implicit solution is demonstrated in the following. While
expanding the terms results in an exponential growth of
complexity, a simple function evaluation for the terms in
Theorem IV.1 and Theorem IV.2 can be performed in
polynomial time. So, given the use of q integration points,
the total complexity for the computation of the numerically
solved integral dramatically drops to

O(q ·N ·
R∑
r=1

rM2) for
R∏
r=1

rP1 ,

O(q ·N · L ·
R∑
r=1

rM) for
R∏
r=1

rP2 ,

O(q ·N · L2) for P3 ,

which enables an efficient evaluation by the optimizer.

VI. SIMULATIONS

In this section, several simulations will be presented,
demonstrating the functionality and performance of the
proposed Dirac mixture approximation algorithm.

A. Dirac Mixture Approximation

The first simulation displays the result of the reduction of a
joint density composed of two one-dimensional Dirac mixture
densities. For the two densities, a Dirac approximation of
two one-dimensional Gaussian densities with 10, 50, and

110 Dirac components is used. The resulting joint density is
reduced to 10 Dirac components for the first and 97 equally
weighted Dirac components for the other two runs. Figure 2
displays the joint density in blue and its reduction in red. As
expected, the approximation is similar to the approximation
of a two-dimensional normal distribution shown in [14].

B. Runtime Measurements

To demonstrate the speedup achieved by the implicit
evaluation of the distance measure, a second simulation
is performed. The simulation consists of a MATLABTM

implementation of Theorems IV.1 and IV.2. A reduction
to L = 97 Dirac components is performed for different
one-dimensional Dirac mixtures spanning a two- to fourteen-
dimensional space. The Dirac mixtures are chosen to have
10 to 110 components per dimension with a step size of 20.
The Dirac components of all one-dimensional densities are
equally weighted and their locations are chosen to minimize
the distance to a standardized normal distribution as proposed
in [14]. A total of 12 simulation runs is performed on an
Intel(R) Core(TM)2 Quad CPU Q9300 @ 2.5GHz running
Linux 64 bit and MATLAB 2009aTM, computing four runs at
a time with one run on each core. The averaged results are
depicted in Figure 4. For numerical integration, an adaptive
Lobatto quadrature, which uses less integration points for
smoother integrands, with an absolute maximum error of 10−6

is applied [16]. The number of integration points used varies
from about 130 for all dimensions at ten Dirac components
to about twelve integration points for all dimensions at 110
Dirac components as shown in Figure 3. The reduction of
integration points for larger numbers of Dirac components
is a result of the increasing smoothness of the integrands
in IV.1 and IV.2 for the given Dirac mixtures and will not
hold for every possible Dirac mixture. It may be regarded
as a beneficial side effect of this reduction that for a large
number of Dirac components the displayed simulation does
even slightly surpass the run times predicted in Section V.
Finally, the optimizer itself has to be taken into account as
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Fig. 4: Runtime measurements for a reduction to L = 97 Dirac components, averaged over 12 simulation runs. (a) Runtime
of the complete reduction, (b) Averaged runtime of the numerical integration (> 10 000 runs), (c) Number of optimizer steps
executed.
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Fig. 3: The number of integration points required in the
runtime simulation decreases, as the number of Dirac com-
ponents increases due to the increasing smoothness of the
integrand in the Theorems IV.1 and IV.2.

the optimization process does take about 100 to 200 iterations
for the given simulation. This factor of the runtime is still a
major caveat.

C. Stochastic Prediction

The third simulation uses the presented results to implement
the prediction step for a simple system. The system function
represents an omnidirectional vehicle moving at constant
speed. The three-dimensional system state consists of an
x,y-position and a movement direction α. The system function xk+1

yk+1

αk+1

 =

 xk + vxk + 10 sin(αk + vαk )
yk + vyk + 10 cos(αk + vαk )
αk + vαk

 (6)

is disturbed by noise vk, represented with 27 sample points
generated from a Gaussian density with covariance matrix
diag(0.3, 0.3, 0.15) using the scheme described in [14].

The simulation compares the particle filter and the exact so-
lution of the prediction to the proposed method by calculating
four time steps. The initial system state estimate is given by
a single Dirac component placed at the coordinates [0, 0, 0]T .
This state estimate is, as described by the system function (7),
first disturbed by the system noise and then predicted through
the system function. The resulting system state estimate at
the second time step consists of 27 Dirac components and
the process is repeated for each of those until the fourth
time step, when the total number of Dirac components is
274 = 531 441 is reached. The position components of the
exact solution are depicted in Figure 5 (c). For each prediction
step, the mean and the covariance of the systems state are
calculated. A comparison is then employed by calculating
the absolute error on a selection of those moments for the
proposed method for 10, . . . , 110 Dirac components. In order
to get a meaningful comparison, the particle filter is then used
to calculate the same simulation with an increasing number
of particles until the same RMSE, averaged over 1 000 runs,
is reached as for the proposed method. While two exemplary
runs of the simulation are displayed in Figures 5 (a) and (b),
the result of the comparison is depicted in Figure 6 and 7. A
maximum of 1 000 000 particles has been chosen in order to
limit the runtime of the simulation, as that amount of particles
is reasonably large for a three-dimensional state space for the
given simulation. The figures show that for different moments
and time steps, the number of particles required can be as
low as 42 for Cxx which makes a factor of 4.2 to more
than the cap of 1 000 000 for several other moments. It is a
noticable fact that the result of the proposed method seems
to degrade from time steps three to four compared to the
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Fig. 5: Position component of the third simulation for 90 Dirac components: The five colors are the starting value (purple)
and the four time steps (black, red, green, and blue). (a) Exemplary particle filter run, (b) Proposed prediction step, (c) Exact
solution.

particle filter. This is due to a systematic error introduced by
the proposed method that does not affect the particle filter,
which will be referred to in the conclusion. Nevertheless, the
number of components saved by using the proposed method
is significant.

VII. DISCUSSION

In this paper, a novel approach to the deterministic reduc-
tion of the joint density of stochastically independent random
variables represented by Dirac mixtures and the application in
the prediction step of a stochastic state estimator is presented.
The systematic Dirac locations are obtained by minimizing a
modified version of the Cramér-von Mises distance measure,
which is the result of the use of an alternative to the
classical cumulative distribution called Localized Cumulative
Distribution (LCD). Due to the computationally intensive
nature of the distance measure, a suitable approximation
is found, which uses an implicit evaluation. As a result, a
dramatic speedup is achieved and for the approximation, the
curse of dimensionality on the number of Dirac components
in the joint density is eliminated. It is then shown by two
simulations that the implicit evaluation even slightly surpasses
the predicted speedup for the calculation of the approximation.
In addition, the sampling itself outperforms a particle filter in
a comparison over the RMSE of the mean and the covariance
matrix.

The proposed approach is, in contrast to the particle filter,
capable of maintaining the shape of a density even if only few
Dirac components are used. The capability to use a sampling
of the system noise with only few samples available opens
great possibilities for applications such as learning scenarios.
In addition to this, there are many fields in science and
engineering where the generation of samples is expensive
or even impossible for a large amount of samples or the
calculation of the prediction step is of high computational

complexity, so only very few samples can be used [17],
[18]. It is also possible to easily expand the presented
work to continuous, e.g., Gaussian, densities and therefore
to approximate combinations of continuous and discrete
densities, like those used in the SGMF [5]. In order to achieve
that expansion, the LCDs of the continuous densities, as
presented in [14] for a Gaussian case, have to be used for
the terms rP in Theorem IV.1.

In addition, the optimization procedure cannot only be
extended to minimizing the distance measure under constraints
such as equal covariances or other moments. It is also simple
to exclude certain regions from the approximation or to
include additional information about the system function.

Future work has to be directed towards the development of a
similar filtering step. In addition to this, a further improvement
of the prediction step regarding the systematic error implied
by the systematic approximation has to be investigated. Of
course, the systematic error cannot be eliminated completly
when a systematic approximation is used. Still, a promising
approach for reducing the systematic error is the inclusion of
the system function in the optimization process. This would
give the advantage of enabling the prediction of even strongly
nonlinear systems and still maintain high-quality results like
the ones shown in the simulations.
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Fig. 6: Number of particles against number of Dirac components that yield the same mean RMSE for the first moment for
the time steps k = 3 and k = 4.
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Fig. 7: Number of particles against number Dirac components that yield the same mean RMSE for selected covariance entries
for the time steps k = 3 and k = 4.
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