

Nelly Schuster

Coordinating Service Compositions

Model and Infrastructure for Collaborative Creation of Electronic Documents

Coordinating Service Compositions

Model and Infrastructure for Collaborative
Creation of Electronic Documents

by
Nelly Schuster

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2013
Print on Demand

ISBN 978-3-7315-0034-6

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 30. April 2013
Referenten: Prof. Dr. Stefan Tai, Prof. Dr. Schahram Dustdar

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Coordinating Service Compositions
Model and Infrastructure for Collaborative

Creation of Electronic Documents

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)
von der Fakultät für

Wirtschaftswissenschaften
des Karlsruher Institut für Technologie (KIT)

genehmigte
DISSERTATION

von

Dipl.-Ing. (FH) Nelly Angelina Schuster

Tag der mündlichen Prüfung: 30. April 2013
Referent: Prof. Dr. Stefan Tai

Korreferent: Prof. Dr. Schahram Dustdar
Karlsruhe, Mai 2013

Abstract

Collaborative document creation enables humans to solve complex problems in a team, to
exchange ideas, and to benefit from synergistic effects. Besides creating content, participants
often gather contents from different sources. The Web, for instance, offers configurable
and ever-changing data (e.g., multimedia contents, sensor data, maps) and services (e.g., for
graphical transformations, calculations) which can perform activities during collaborative
document creation. The composition of human contributions with data and services on the
Web into a document, however, involves high manual effort of participants.

Dependencies between activities and content need to be coordinated (e.g., through division
of labor, notifications, flow control), in order to avoid inconsistencies and additional effort
and, hence, to increase quality of collaboration. Coordination, however, is complicated as
often activities, participants, and required contents can not be defined completely in advance.

Tools for collaborative document creation, e.g., Web-based editors, do not support inte-
gration of contributions from the Web. Service oriented systems enable the integration of
contributions of heterogeneous participants, however, focus on coordination of activities in
structured and repeatable processes.

This thesis therefore introduces a novel model which maps contributions in collaborative
document creation on a service-oriented component model. Services might represent contri-
butions of humans; services, however, might also be an open number of software services
on the Web. The composition model on top of the component model enables participants to
flexibly compose these services into a document. Based on the evolving service composi-
tion, various coordination mechanisms can be applied which consider different requirements
of collaborative document creation.

In order to illustrate feasibility of this novel form of collaborative document creation, a
Web-based collaboration system was developed. In addition, two use cases were examined
which expose different requirements as regards document model, participants, communica-
tion, and coordination. The realization of the use cases are enabled through configuration and
extension points of the model. Thanks to its adaptability, the model can serve as framework
and starting point for the development of innovative tools which support different scenarios
of collaborative document creation through coordinated service compositions.

Zusammenfassung

Die gemeinsame Erstellung von Dokumenten ermöglicht das Erarbeiten komplexer Sach-
verhalte im Team, den Austausch von Ideen und das Nutzen von Synergieeffekten. Neben
der Entwicklung von Inhalten tragen Beteiligte häufig Inhalte aus unterschiedlichen Quellen
zusammen. Hierfür stellt beispielsweise das Web konfigurierbare oder sich ständig ändernde
Daten bereit (z.B. Multimedia-Inhalte, Sensordaten, Karten) sowie eine große Anzahl an Di-
ensten (z.B. zur grafischen Transformation, Berechnung), die Aufgaben während der gemein-
samen Dokumentenerstellung erfüllen können. Komposition von menschlichen Beiträgen
mit Daten und Diensten aus dem Web in ein Dokument ist jedoch mit hohem manuellem
Aufwand der Beteiligten verbunden. Abhängigkeiten von Aktivitäten und Inhalten im Doku-
ment müssen koordiniert werden (z.B. durch Arbeitsteilung, Benachrichtigungen, Ablaufs-
teuerung), um z.B. Inkonsistenzen und Mehraufwand zu vermeiden und somit die Qualität
der Zusammenarbeit zu verbessern. Die Koordination wird dadurch erschwert, dass häufig
vorab nicht bestimmbar ist, wer wann welche Beiträge erbringt.

Werkzeuge zur gemeinsamen Dokumentenerstellung, z.B. Web-basierte Editoren, unter-
stützen keine Integration von Beiträgen aus dem Web. Dienstorientierte Systeme ermögli-
chen zwar die Integration unterschiedlicher Beteiligter, erlauben aber insbesondere die Ko-
ordination von Aktivitäten in strukturierten, planbaren und wiederholbaren Prozessen.

Diese Arbeit stellt deshalb ein neuartiges Modell vor, das Beiträge zur gemeinsamen
Dokumentenerstellung auf ein dienstorientiertes Komponentenmodell abbildet. Bei Dien-
sten kann es sich hierbei sowohl um von Menschen erbrachte Leistungen handeln als auch
um eine offene Anzahl von Softwarediensten im Web. Das auf dem Komponentenmod-
ell aufbauende Kompositionsmodell ermöglicht es den Beteiligten, diese Dienste flexibel
in ein Dokument zusammenzusetzen. Basierend auf der sich entwickelnden Dienstkompo-
sition können verschiedene Koordinationsmechanismen angewandt werden, die spezifische
Anforderungen der gemeinsamen Dokumentenerstellung berücksichtigen.

Um die Umsetzbarkeit dieser neuartigen Form der gemeinsamen Dokumentenerstellung zu
illustrieren, wurden ein Web-basiertes Kollaborationssystem implementiert sowie zwei An-
wendungsfälle untersucht, die unterschiedliche Anforderungen bezüglich Dokumentenmod-
ell, Beteiligten, Kommunikation und Koordination aufweisen. Die Realisierung der Anwen-

iv

dungsfälle wurde durch die Konfigurierbarkeit und Erweiterbarkeit des Modells ermöglicht.
Dank dieser Anpassbarkeit kann das Modell als Rahmenwerk und Ausgangspunkt dienen
zur Entwicklung innovativer Werkzeuge, die verschiedenartige Szenarien der gemeinsamen
Dokumentenerstellung durch koordinierte Dienstkomposition unterstützen.

Danksagung

Wie die meisten anderen Dissertationen, ist auch meine nicht in alleiniger Arbeit im stillen
Kämmerchen entstanden. Deshalb möchte ich meinen Wegbegleitern zum Doktorgrad herz-
lichen Dank aussprechen.

Ich danke Prof. Dr. Stefan Tai für die engagierte Betreuung durch ausführliche Rück-
meldungen, hilfreiche Anregungen und Diskussionen, die vorbehaltlose Unterstützung in-
haltlicher und organisatorischer Art und das stete Interesse an der Thematik der Arbeit. Ste-
fan und das Team Ökonomie und Technologie der eOrganisation (eOrg) des Karlsruher In-
stituts für Technologie (KIT) haben dafür gesorgt, dass die Dissertationszeit sehr kurzweilig
war und angenehm verlief.

Ich danke Prof. Dr. Schahram Dustdar für seinen freundlichen Einsatz als Korreferent
sowie Prof. Dr. Andreas Oberweis und Prof. Dr. Karl-Heinz Waldmann, die das Prü-
fungskomitee vervollständigten.

Ich danke Dr. Christian Zirpins für die wertvolle inhaltliche und wissenschaftliche Be-
gleitung und das hilfreiche Feedback zur schriftlichen Ausarbeitung.

Ich danke allen momentanen und ehemaligen Mitgliedern des eOrg-Teams für die zahlrei-
chen Diskussionen und kritischen Anmerkungen zu Inhalt und Präsentation der Dissertation,
für die unkomplizierte Zusammenarbeit und sehr gute Teamatmosphäre. Ich danke meinen
Mitautoren Dr. Ulrich Scholten (DYNO-Pattern-Repository), Erik Wittern und Jörn Kuh-
lenkamp (kollaborative Service-Feature-Modellierung) sowie Raffael Stein und Studenten
(Demonstratoren). Es freut mich besonders, von Beginn an dabei gewesen zu sein und das
Team wachsen gesehen zu haben.

Ich danke Prof. Dr. Jens Nimis und den Kollegen vom FZI Forschungszentrum Informatik
und Karlsruhe Service Research Institute (KSRI) für Feedback und Inspiration in frühen
Phasen der Arbeit, sowie Rita Schmidt und Heike Döhmer für die großartige administrative
Unterstützung.

Ich danke meinem Diplomarbeitsbetreuer am IBM Forschungslabor in Zürich, Prof. Dr.
Olaf Zimmermann, mich darin bestärkt zu haben, dieses Vorhaben anzugehen, und die Ein-
führung in’s wissenschaftliche Arbeiten.

vi

Ich danke dem Karlsruhe House of Young Scientists (KHYS) für die Unterstützung des
kurzen Forschungsaufenthalts bei HP Labs in Palo Alto durch ein Stipendium.

Ich danke allen, die während der Arbeit, auf Konferenzen oder durch anonyme Reviews
von Publikationen Gedankenanstöße und Anregungen für diese Arbeit gegeben haben.

Ich danke meiner Familie und guten Freunden, die das Leben lebenswert machen.

Nelly Schuster

Contents

Abstract . i

Zusammenfassung . iii

Danksagung . v

Contents . vii

I Foundations 1

1 Introduction . 3
1.1 Motivation and Problem Statement . 3
1.2 Research Hypothesis and Contributions 6
1.3 Research Procedure and Thesis Organization 8

2 State of the Art and Related Work . 13
2.1 Service Composition . 14

2.1.1 Humans in Service Composition 16
2.1.2 Service Composition Styles . 19
2.1.3 Flexibility in Service Compositions 21

2.2 Collaborative Document Creation . 24
2.2.1 Electronic Documents . 25
2.2.2 Collaborative Creation of Electronic Documents 27
2.2.3 Collaboration Tools and Environments 28

2.3 Coordination . 31
2.3.1 Dependencies . 33
2.3.2 Coordination Mechanisms . 35

2.4 Conclusion . 37

II Solution Design 39

viii Contents

3 Design of Functional Solution Features 41
3.1 Activities and Participants . 41
3.2 Content Composition . 43
3.3 Participation . 44
3.4 Coordination . 46
3.5 Conclusion . 48

4 Component and Composition Model 51
4.1 Component Model . 51
4.2 Composition Model . 54
4.3 Conclusion and Discussion . 59

5 Participation and Coordination Model 63
5.1 Participation Protocol Framework . 64

5.1.1 Service Binding Protocols . 66
5.1.2 Service Execution Protocols . 67
5.1.3 Conclusion and Discussion . 70

5.2 Event Model . 72
5.3 Coordination Rule Mechanism . 76

5.3.1 Rules for Semi-Automation of Participation Protocols 80
5.3.2 Rules for Coordinating Collaboration-Specific Dependencies . . . 81
5.3.3 Suggestion of Rules . 82

5.4 Conclusion and Discussion . 83

III Implementation and Evaluation 85

6 Proof of Concept: Design and Implementation 87
6.1 Infrastructure Architecture . 88

6.1.1 Service Interfaces . 90
6.1.2 Mashup Registry . 91
6.1.3 Mashup Persistency . 96
6.1.4 Coordinator Service Messaging 100
6.1.5 Rule Engine . 104
6.1.6 Adapter Framework . 106

6.2 Collaboration Application and Graphical User Interface 109
6.2.1 Collaboration Application . 109
6.2.2 Graphical User Interface . 110
6.2.3 Service Adapters . 112

Contents ix

6.3 Conclusion and Discussion . 114

7 Use Case Studies . 119
7.1 Participatory Service Design . 120

7.1.1 Instantiation . 121
7.1.2 Discussion and Related Work 127

7.2 Community-Driven Pattern Repository 129
7.2.1 Instantiation . 130
7.2.2 Discussion and Related Work 137

7.3 Conclusion and Discussion . 139

IV Conclusion 147

8 Summary . 149

9 Future Research . 155

Bibliography . 159

List of Abbreviations . 173

List of Figures . 175

List of Tables . 177

Index . 179

Part I.

Foundations

1. Introduction

1.1. Motivation and Problem Statement

Human collaboration is crucial for creative and knowledge intense activities. For example,
scientists collaboratively author research publications or project proposals, software engi-
neers jointly model and code large systems, or IT management staff capture and discuss in-
cidents. Such collaborations often are situational, weakly structured, and highly interactive.
Further, documents play a critical role in such collaboration. On the one hand, individuals
communicate and coordinate with each other in order to reach a common goal, which is man-
ifested in an evolving but coherent document. On the other hand, documents provide a means
of communicating and sharing information [83] in a purpose-optimized, e.g., structured, an-
notated, graphically appealing, legally binding form of representation in order to share and
clarify individual points-of-view and dispute with targeted recipients [136].

A large range of collaborative document creation processes exist during which manifold
electronic documents are created. These processes include collaborative writing, model-
ing, knowledge management, and software documentation. To give an example, a project
proposal is a non-trivial document where several organizations contribute distinct parts of
the proposal document (e.g., an overview picture of the planned solution, a text describing
the contributions of the organization to the project) or perform specific activities like proof-
reading or publishing the document. Figure 1.1 shows an example project proposal during
development.

Such collaborations are characterized by the incremental evolution of content through in-
terrelated activities including ad hoc changes. In the beginning of the collaboration its activ-
ities and their exact order are not known, and therefore, equally the required knowledge and
skills as well as who participates at which point in time are unknown. Activities might be the
provisioning of new knowledge and data as well as the transformation (e.g., translation or
proofread) or publication of existing data. Activities are performed in a situational manner,
for instance, new subtasks might be identified during discussions among project partners.
Thus, not all document parts and activities can be explicitly modeled but may simply appear
during process execution.

In order to reach the goal, activities need to be coordinated. Coordination includes auto-
mated detection and avoidance of potential inconsistencies of shared resources (e.g., a section
in the document is edited by several authors) and the support of temporal dependencies (e.g.,

4 1. Introduction

publish

proofread

 Project Description

 Subtasks

 Cost Calculation

 Participating Organizations

Org. A designs and develops
innovative solutions for distributed
information systems in the Cloud.

write

insert

insert

 Org. A Org. B
Personnel 2000 1500
Traveling 300 200

Other 100 50
Total 2400 1750

contributions of participants

dependencies

Figure 1.1.: Project proposal writing as example of collaborative document creation.

a diagram of data can only be created after the data has been delivered, or the document can
only be published if it is proofread). For example, in the Information Technology Infrastruc-
ture Library (ITIL) [79] a number of key processes for IT service providers are described
like incident and problem management. The processes require situational collaborations be-
tween employees of the service providers, their clients, and possibly external experts. For
the management of knowledge bases, e.g., software pattern repositories, participants often
need to agree on a common structure of the patterns. The size of the group as well as a pro-
cess, however, are not prescribed. Accordingly, collaboration processes include a mixture of
well-structured parts which are known in advance and flexible and unexpected aspects [13].
Coordination mechanisms need to support this continuum.

Contents and data used and created throughout the collaboration might stem from differ-
ent sources. Sources might be humans, enterprise systems, or other documents, available in
manifold formats and structures. More and more services are offered on the Web providing
content or information which can be used in collaboration. Modern documents include in-
teractive contents like video, social media, or maps. Moreover, a lot of services exist which
solve problems or perform simple tasks for humans, e.g., language translators, layout or pub-
lishing services, or sensors. Using these services throughout the collaboration means that
activities are also performed by non-human participants. The integration of such content
and services is challenging, since they expose different data formats and interfaces. Such
content and services might change unexpectedly and uncontrolled by the human participants
of a collaboration. In the project proposal example mentioned above, data is included from
different sources, for instance, the project description paragraph and subtasks are written by
different persons, tables for cost calculation stem from a software system, and the descrip-
tion of the organization is extracted from the Web. The Web also offers a large number

1.1. Motivation and Problem Statement 5

of services and tools for humans to collaborate, communicate, or share and collaboratively
manage information, e.g., collaborative real time editors, chat applications, file shares, or
social networks. As a result, collaboration is performed, content delivered, and information
exchanged through various, often disconnected information channels. This might cause a
loss of information [89] or communication overhead.

Process-driven models and tools address coordination requirements of processes per-
formed by different participants. Using these solutions, participants model in advance who
is allowed to contribute what at which part of the document at which time. Process-driven
solutions coordinate the collaboration and increase efficiency. These approaches support
highly structured and routine processes, e.g., through workflow management systems. The
solutions do not allow for unplanned changes which are required especially in creative kinds
of collaboration. Various approaches strive to support flexible coordination of collaborative
processes (cf. [22][26][38][145]). These solutions, however, most often regard repeatable
business processes and do not consider documents.

The Web facilitates more flexible forms of collaboration and information consolidation. A
multitude of Web-based text processing and collaboration services facilitate cooperation of
geographically dispersed authors, e.g., Zoho1 or Google Docs2. Such services allow partic-
ipants to contribute anytime in any part of the document and enable flexibility regarding ad
hoc contributions and document structure. None of the quoted solutions, however, explicitly
supports coordination of activities. Most often, specific types of documents are supported,
e.g., text or spreadsheets. The integration of non-human participants into collaboration, how-
ever, is not enabled.

As regards integration of content, services, and communication channels into documents,
service-oriented computing (SOC) technologies are promising as they allow for the integra-
tion and composition of more flexible process-driven information systems and for mashing
up situational end-user applications [153][131]. SOC suits to integrate and compose het-
erogeneous services as reusable functional entities from different sources. SOC simplifies
ubiquitous access and provides the ability to flexibly scale as regards users and produced
data. A number of solutions for the integration of humans into service-oriented applications
exist (e.g., [120][99]). Available service composition models, however, offer coordination
means which are too rigid in order to support human collaboration. Service mashups enable
the end-user driven composition and integration of dynamic contents. Mashup approaches,
however, do not consider the collaborative creation of documents.

To summarize, collaboration on and mediated through documents comprises a range of
unstructured to structured human-driven processes. Solutions to support such collaborations
need to balance flexibility and coordination. Although SOC offers promising technologies

1http://docs.zoho.com/ (accessed January 2nd, 2013)
2http://docs.google.com/ (accessed January 2nd, 2013)

6 1. Introduction

for the flexible integration and composition of heterogeneous content into different types of
documents, service composition is not leveraged for collaborative document creation.

1.2. Research Hypothesis and Contributions

The hypothesis underlying this thesis is that the mapping of the case of collaborative docu-
ment creation on a service component and composition model facilitates (a) the integration
and composition of contributions provided by humans and software systems in such col-
laborations and (b) the coordination of such collaborations through mechanisms adapted to
the needs of the participants. The main idea is to represent documents as compositions of
services. Content provisioning, transformation, or publishing activities are mapped to ser-
vices delivering contents which can be composed into documents. Services are delivered
by humans or other kinds of sources like enterprise systems, other documents, or the Web.
The service compositions evolve over time as services are called, delivered, added, or re-
moved. Offering documents themselves as services enables their use and reuse in other tools
and collaborations. The composition of services into a document is driven by coordination
mechanisms which enable interactions between participants and manage dependencies in
collaborative document creation. Participants are enabled to define appropriate coordination
means for their specific collaboration scenario.

In order to proof the hypothesis, two main contributions are presented in this thesis: (a) a
novel collaboration model considering the nature of collaborative document creation and (b) a
collaboration system mapping the collaboration model on a software architecture. Figure 1.2
depicts an overview of the collaboration model. The collaboration model comprises five
parts building on each other as outlined in the following.

(a) Component Model

In the component model the fundamental elements of a collaboration based on and tar-
geted towards documents are identified. The objective of the component model is to
provide a uniform representation of human and non-human service providers and their
service types. Providers are potential participants of a collaboration offering resources
and services.

(b) Composition Model

The composition model on top of the component model allows for the representation of
document evolution and refinement. The composition model specifies how human coor-
dinators can compose activities of participants (i.e., content provisioning and transfor-
mation) and delivered results into an evolving, hierarchical document. The objective is

1.2. Research Hypothesis and Contributions 7

C
o

m
p

o
n

en
t

+

C
o

m
p

o
si

ti
o

n
 M

o
d

el

P
ar

ti
ci

p
at

io
n

 +

C
o

o
rd

in
at

io
n

 M
o

d
el

Component Model

Composition Model

Coordination Rule
Mechanism

Event Model

Participation
Protocol
Framework

Providers

Resources

Service Types

Services

Participants

Contributions

Results

Document Model

Event Types

ECA Rules Actions

Atomic Events

Composite Events

Operators

Binding Protocols
Execution Protocols …

Figure 1.2.: Overview of collaboration model.

to provide a novel mechanism for end-users to flexibly compose resources and activities
into one document.

(c) Participation Protocol Framework

The participation protocol framework enables the definition of participation protocols
for interactions between a coordinator and participants of a collaboration including ser-
vice binding and service execution protocols. The objective of the participation protocol
framework is to enable the flexible selection of protocols according to the use case re-
quirements. A set of protocols is presented which support different collaboration scenar-
ios.

(d) Event Model

The event model defines atomic and composite events which might occur during collab-
oration, i.e., changes of the service composition and execution of participation protocols.
The event model is extensible in order to be adaptable to a range of use cases.

(e) Coordination Rule Mechanism

An event-condition-action (ECA) rule mechanism enables participants to specify rules
reacting on events. Rules allow for coordination of collaborations, including the partial

8 1. Introduction

automation of participation protocols and the management of dependencies between ac-
tivities and results. Frequent dependencies between activities are identified and rules are
proposed to manage them.

The second contribution of this thesis is the design and implementation of the Web-based
collaboration system which maps the collaboration model on a software architecture follow-
ing paradigms of Representational State Transfer (REST). Central to REST is the notion
of interlinked resources, i.e., pieces of information, offered through uniform service inter-
faces [146, p. 55] which makes this architectural style a promising realization candidate.
The system provides an infrastructure including (a) a registry for service publication and
discovery, (b) a persistency to store collaboration results, (c) a messaging component to sup-
port participation protocols, (d) a rule engine which enforces coordination rules, and (e) an
adapter framework enabling developers to build adapters for external services. The archi-
tectural design of the infrastructure enables the implementation of a range of collaborative
document creation applications as it provides configuration and extension points, e.g., for
event and activity types, coordination rules, and communication channels for contributing to
a collaboration. The collaboration application complementing the infrastructure provides a
graphical front end for human participants of collaborative document creation.

The research procedure followed during design and development of collaboration model
and system as well as an overview of the thesis structure are presented in the following.

1.3. Research Procedure and Thesis Organization

Advancing the state of the art is a main output of research. Finding answers to boolean
questions allows for changing or advancing the body of knowledge as done in knowledge
(or evaluative) research. Complementary, practical research (or developmental research or
engineering) advances state of the art through designing and implementing solutions in order
to change the world in a particular domain or for a particular stakeholder (see [92][148]).
The work in this thesis is practical research, aiming for advancing state of the art in the area
of service computing through developing a new or improved technology for coordinating
service compositions which involve humans. This goal was pursued through following the
research procedure depicted in Figure 1.3. The left hand side of the figure presents the phases
followed throughout the thesis work. Results produced during these phases expand into the
parts and chapters of this thesis as presented on the right hand side. In the following, the
activities performed during the phases are described along with the contents of the parts and
chapters of this thesis document.

1.3. Research Procedure and Thesis Organization 9

Part I: Foundations

Part III: Implementation and Evaluation

Part II: Solution Design

Context and Motivation

Analyze state of the art and related work in service

composition and collaborative document creation

Chapter 2: State of the Art and

Related Work

Model Design

Design service-oriented collaboration model

Communication

Offer online prototype,

publish and disseminate results

Chapter 3: Design of Functional

Solution Features

Chapter 4: Component and

Composition Model

Chapter 5: Participation and

Coordination Model

Chapter 6: Proof of Concept:

Design and Implementation

Chapter 7: Use Case Studies

Chapter 1: Introduction

Research Procedure

Part IV: Conclusion

Thesis Structure

Chapter 8: Summary

Chapter 9: Future Research

research activity

thesis parts

thesis chapters

information flow

compilation

Development and Demonstration

Design infrastructure architecture, proof model and

infrastructure with prototype implementation

Objectives and Requirements

Define design features and criteria for a solution

Evaluation

Apply model and architecture to select use cases and

discuss solution

Figure 1.3.: Overview of research procedure and thesis structure.

• Context and Motivation

In order to capture the research context as well as to motivate the relevance of apply-
ing service composition for collaborative document creation, state of the art and related
work were investigated. Research and solutions in service composition as well as col-
laborative document creation were analyzed to cover a wide range of document types
and collaboration processes and present a versatile approach. Discussing ideas and so-
lutions throughout the thesis work in different related contexts like Web engineering,
computer-supported cooperative work (CSCW), process flexibility, or SOC improved
the understanding of the problem context and shaped the solution. The results are
documented in Chapter 2. The chapter shows that leveraging service composition for
human collaboration is novel and promising.

10 1. Introduction

• Objectives and Requirements

The context and motivation served as input for the inference of functional design fea-
tures which serve as objectives and requirements for the solution design. The design
features include fundamental elements of collaborative document creation, activities,
coordination demands, and structure and format of target documents. The design fea-
tures are presented in Chapter 3.

• Model Design

Based on the design features, the service-oriented collaboration model was designed
as outlined in Section 1.2. The solution design is presented in Chapters 4 and 5.

• Development and Demonstration

In this phase, a collaboration system comprising an infrastructure and application was
designed and implemented in a Web-based software prototype. The implementation of
the system serves as a proof of concept for both, the architecture as well as the collab-
oration model. The design and and implementation of infrastructure and application
are described in Chapter 6. The demonstration is part of the evaluation in this thesis as
it proofs general feasibility of the research.

• Evaluation

In the evaluation phase, the model and infrastructure were systematically applied to
select pilot use cases in order to demonstrate use of the collaboration model and system
for different kinds of collaborative document creation: participatory service design and
community-driven pattern documentation. Chapter 7 describes the implementation of
both use cases and the extensions they provide on the model as well as a discussion of
the met objectives and requirements as defined in Chapter 3.

• Communication

Parts of this work were disseminated in a set of peer-reviewed research publications
which are referenced throughout this thesis. The implementation is offered as an online
research prototype to the public.

All phases in the procedure were subject to iterations during the course of the work which
led to refinements of the corresponding output. As noticed by the authors of [92], con-
structing a system and observing its behavior helps understanding the research domain. The
iterations have led to cycles in the procedure followed in this thesis work represented by the
information flow arrows with backward direction in Figure 1.3. For instance, the model de-
sign was incrementally refined also during the subsequent phases, e.g., the implementation.

1.3. Research Procedure and Thesis Organization 11

As an example, a first version of the collaboration model involved a complex role model.
The evaluation in example use cases like collaborative project proposal writing or the pilot
use cases showed that a role model was not required.

The procedure resembles methodologies followed in design science, more precisely, the
design science research methodology described in [109]. The design science paradigm fo-
cuses on practical research, notably on research which attempts to create or improve artifacts
supporting humans in a specific domain (cf. [148]). Design science is in particular applied
in information systems research where systems are implemented in the frame of an organiza-
tion in order to improve “the effectiveness and efficiency of that organization” [57]. Central
to design science is developing and evaluating artifacts like constructs, models, methods, or
instantiations in order to understand a particular problem and proof solutions to this prob-
lem [57]. The focus in this thesis work is not the creation of an information system which
has to integrate business strategy, organizational structure as well as IT infrastructure [57].
Still, artifacts – the collaboration model and system – are created and evaluated which in-
volve people, technologies, structures and work systems as do information systems which
makes the design science a suitable analogy.

2. State of the Art and Related Work

Composition, collaboration, and coordination – the keywords of this thesis – are brought
together in this chapter. Service composition is a mechanism to build flexible and scalable
software for manifold application areas. Human collaboration is inherently flexible and often
results in composed documents which evolve over time through ad hoc interactions. Coordi-
nation is important for both, composition and collaboration: coordination mechanisms help
improving qualities of service composition executions and ensure correctness of conversa-
tions between services in service compositions. Similarly, coordination enables effectiveness
of collaboration and improves quality of documents produced during collaboration. This
chapter motivates the utilization of coordinating service compositions to support flexible col-
laborations resulting in a document. Related work as well as research gaps are presented.

As shown in Figure 2.1, the chapter starts with a discussion on service composition in Sec-
tion 2.1 which presents related work as regards humans in service compositions, composition
styles as well as flexible service composition. The section shows that service composition
research lacks an approach for human-driven, flexible service composition.

Section 2.2 introduces the case of collaborative document creation. Collaboration environ-
ments support composition of documents as well as basic coordination of human activities.
Support for the integration of non-human participants, however, is insufficient; the produced
documents are of rather static nature – a fact that motivates the use of service composition for
such applications. Section 2.3 presents a set of dependencies to be managed during collabora-
tive document creation as well as how coordination mechanisms used in service composition
can be applied to manage them.

Service Composition

Collaborative Document

Creation C
o

o
rd

in
a

ti
o

n

Coordinated Collaborative

Document Creation as Service

Compositions

Figure 2.1.: Overview of state of the art.

14 2. State of the Art and Related Work

2.1. Service Composition

Services are platform-independent autonomous distributed software-entities which perform
functionality ranging from simple contents provisioning to complex business processes.
Functionality is offered through a self-describing interface based on open standards to be
invoked by other software programs over the Internet [103]. The nature of services ranges
from enterprise applications to services delivering one piece of information on request. En-
terprise services often comply to quality metrics, e.g., as regards availability, performance,
or consistency. In contrary, services running on mobile phones or sensor-based services of-
fering real-time data might act context-dependent, e.g., change quality of service based on
the context.

The aggregation of services enables the provisioning of complex, distributed service-based
applications to the consumer. The functional aggregation of services is called service com-
position. Service composition enables the the maximization of service reuse [68][53], the
combination of functionality into a coherent larger service [7, p. 245ff.], or the creation of
(short-lived) situational applications [153] designed to meet specific end-user needs [59].
Service composition is applied to support a large variety of applications on different kinds of
devices. Figure 2.2 shows two exemplary applications. The (simplified) automated business
process for flight booking in Figure 2.2(a) involves stable software services which are ordered
and validated in a specification phase before being automatically executed. The example in
Figure 2.2(b) is a service-based collaboration for content production involving services like
content provisioning or translation. These services are composed and executed as needed
during runtime of the service composition.

Services and service compositions can be realized using specifications of the Web services
technology stack (WS-*). WS-* is a comprehensive set of partially standardized models and
protocols originally developed to solve enterprise application integration problems and to en-
able the Web as communication channel for distributed applications [7, p. 93]. WS-* includes
basic specifications for enterprise-level service-oriented architecture (SOA) like the Web Ser-
vices Description Language (WSDL) [144] for the description of service functionality, SOAP
for messaging [143], or languages for specifying and executing service compositions like the
Web Services Business Process Execution Language (WS-BPEL) [95].

WS-* is an effort in the evolution of technologies supporting information systems dis-
tributed in or between business organizations, e.g., cooperative business processes. Quality
aspects play an important role in the integration or composition of services in such systems.
Therefore, a large number of complementary and interoperable specifications exist support-
ing quality aspects like reliability of messaging, transactionality, or security (cf. [146]).

The standardization efforts of WS-* helped spreading technologies without central coordi-
nation [7, p. 233], thus, fostering automation and interoperability. In addition, the WS-* tech-

2.1. Service Composition 15

Flight availability
check service

Reservation
service

Billing service

Ticket generator
service

customer request

no availability or
cancelation by customer

flight selection

credit card details

billing successful

billing failed

cancelation by customer

(a) Automated business process example.

Content
service

Translation
service

Communication
service

Content
service

(b) Service-based collaboration example.

Figure 2.2.: Example service-based applications.

nologies are accepted and implemented by many companies which has led to a large number
of frameworks and tools supporting developers in realizing Web services. These tools range
from source code generators to notations which allow developers to specify service compo-
sitions on a business level, e.g., Business Process Model and Notation (BPMN) [102], and
hide the complexity of the WS-* technologies from the developer.

Originally, the term Web service was coined for services realized with WS-* standards.
However, alternative implementation styles for Web services exist, e.g., REST. REST is an
architectural style for distributed hypermedia systems [47]. REST abstracts design decisions
of the Web. Central to REST is the notion of a resource which is a piece of information which
can be uniquely identified [146, p. 55] and addressed using a Uniform Resource Identifier
(URI). A service provides access to these resources offering a uniform service interface,
e.g., create, read, update, and delete (CRUD) in the Hypertext Transfer Protocol (HTTP). On
request, a service provides representations of the underlying resource.

In order to compose RESTful services, representations might be complemented with meta
data in form of hyperlinks. This data informs the client about valid state transitions in
the service-based application, i.e., which services in the composition can be called next
by the client. This principle is known as Hypermedia as the Engine of Application State

16 2. State of the Art and Related Work

(HATEOAS) [47, p. 82]. Alternatively – or additionally – a service might aggregate re-
sources internally, offering one central interface to the client.

A RESTful application does not store state of an interaction with a client, rather, all state
information is transferred in messages. If session state is not stored, a service can be re-
covered faster in case of failure which improves reliability of the overall application. In
addition, scalability of the application is improved because servers do not need to persist
session state [146, p. 55].

REST is perceived to be easier to understand than the WS-* technologies because it is
based on well-known, standardized Web technologies, but also, because less design decisions
are to be made during designing RESTful service-based applications. Perceived usability,
however, decreases if advanced functionality or quality criteria are needed [108]. REST
does not provide enterprise-level quality of service which has to be implemented manually
if required. In addition, RESTful services are restricted to the uniform interface to which all
required functionality has to be mapped.

To summarize, both, WS-* and REST, have strengths and weaknesses. Which approach
to use depends on the requirements of the application. The reader is referred to [108][156]
for a detailed comparison of the approaches as regards concepts and technologies.

Independent of the architecture and technology used to realize services and service com-
positions, a multitude of service composition models exist for supporting different types of
service-based applications. The examples in Figure 2.2 visualize three aspects of service
composition models which are of particular interest for this thesis and expose related work
examined in the following sections:

1. In service-based collaboration applications, humans are involved as service consumers
and providers. State of the art for humans in service composition is outlined in Sec-
tion 2.1.1.

2. The composition of services ranges from flows of activities to layout-oriented compo-
sitions of resources provided by services. How activities and resources are composed
as well as dependencies between services can be specified is defined by service com-
position styles as presented in Section 2.1.2.

3. In service-based applications for collaboration, the required services can not always
be specified in advance which makes flexible life cycles of service-based applications
important. How flexibility is achieved in current approaches is shown in Section 2.1.3.

2.1.1. Humans in Service Composition

Humans are able to perform activities like transformation or computation or deliver infor-
mation which can not be done by a software service. Collaboration or business processes

2.1. Service Composition 17

frequently require the participation of humans for example for approvals [100] or the deliv-
ery of contents. Through representing human activities as services, they can be more easily
integrated and composed into work processes or collaborations which are realized through
service compositions. In addition, human capabilities and produced content can be made
explicit. The ability to reuse capabilities can be increased.

Composing software services and services provided by humans into service compositions
results in mixed service-oriented systems [120]. Services provided by humans differ from
software services in that their quality can not always be guaranteed, it might vary over time
and depends on the application domain or the skills of a person. Therefore, the composition
of different types of services performed by software and humans poses challenges on service
composition approaches like the adequate representation of services, providing suitable user
interfaces for service provisioning, enabling discovery of existing services, defining interac-
tion protocols catering for human behavior, and enabling required trust [40].

Various approaches exist addressing these challenges. As part of WS-*, the WS-Human-
Task specification [99] defines a human task as a service which is implemented by a person.
The service-oriented representation of human tasks allows them to be used in different envi-
ronments of different vendors (portability) as well as enables interactions of tasks which are
distributed across environments (interoperability). The specification supports coordination
mechanisms like reminders, the reassignment of tasks to other persons or groups during ex-
ecution time, or the definition of completion conditions. The specification of tasks, however,
has to be done by experts due to the complexity and multifaceted nature of tasks.

Based on WS-HumanTask, the WS-BPEL Extension for People (BPEL4People) [100] en-
ables the integration of human activities into business processes. BPEL4People, however,
uses the strict process-centric collaboration model of WS-BPEL which is not suitable for the
composition and coordination of services in dynamic human collaboration for the creation of
documents.

A research approach for the more flexible integration of human activities into service com-
positions is presented in [119][120]. The human-provided services (HPS) model and archi-
tecture allows for the design of personal services, the specification of tasks in a collaboration,
and the selection of suitable HPSs responsible for executing these tasks. Alternatively, the
availability of a task to be performed could be made public to the crowd and an interested
person could volunteer to participate using its existing or a newly created HPS. A focus of
HPS is on discovery and selection of services from the crowd based on social factors like
reputation, expertise, or interests. Persons can create collaboration contexts and flexibly add
activities to them which results in service sets controlled by interactions between humans and
services [119, p. 25]. Accordingly, the HPS concept is applied for collaboration use cases
like content sharing, ad hoc transformations, or business processes [121]. The composition of

18 2. State of the Art and Related Work

HPS to simple process flows through pipes is supported in [139], where the micro-blogging
service Twitter is used to coordinate communication between services and activities belong-
ing to the same software migration project. Service compositions in this case are considered
as contexts where services can be added as required rather than be specified in planned pro-
cesses.

Human capabilities, e.g., encapsulated in HPS, can be composed to a Social Compute
Unit (SCU) [39] representing capabilities of a team. SCUs are requested on demand to solve
a specific problem and exist only for the required time, e.g., collaborative problem solving
in a suitable team during incident management [130]. Like software services, SCUs can be
discovered and composed, e.g., with software services. The composition of HPSs and SCUs
with software services results in hybrid services, e.g., hybrid workflows, or in hybrid clouds
which are able to scale as regards participating services [42]. In order to create hybrid clouds,
the authors of [140] propose to represent human capabilities analogous to software service
capabilities, e.g., exposing an application programming interface (API) or information on
compute power, price, or location. On top of this representation, software developers can
compose human-based and software services which can then collaborate to solve complex
tasks.

While the approaches around HPS and SCU propose solutions for the composition of
human-provided and software services, there is no approach for collaborative document cre-
ation involving the integration of results, e.g., documents, which evolve during collaboration.

Inspired by social communities and service marketplaces, the authors of [34] propose so
called service communities which include sets of services contributed by community mem-
bers on a per-project base. The concept does not prescribe which type of services are allowed
in a service community and is therefore open to a large range of different service composi-
tions including services provided by humans. While integrating social community features
like tagging and communication services, the concept does not include a concept of compo-
sition of services which are part of a service community.

The authors of [67] describe the idea of utilizing human-provided services, called peo-
ple services, in crowdsourcing scenarios. On request of a service consumer, a specialized
platform aggregates a set of people services from an open set of volunteers. The platform co-
ordinates the services in order to satisfy quality criteria of the requester, such as correctness
of results or performance. Coordination mechanisms include selection of providers based
on reputation, quality forecasting, or offering incentives to providers. Coordination can be
performed based on requirements of a specific request. The platform, however, supports only
crowdsourcing as organizational setting and accordingly does not consider collaborative doc-
ument creation scenarios where participants collaborate or coordinators select specific ser-
vices.

2.1. Service Composition 19

To summarize, existing approaches for the integration of humans in service compositions
focus on the adequate representation of human activities in generic collaboration scenarios
frequently inspired by social computing. The solutions are most often based on concepts and
technologies of the WS-* stack, thus require detailed interface specifications for each service.
A number of solutions allow for the composition of human-based and software services,
however, lack composition models and coordination mechanisms in support of collaborative
document creation. Similar to service communities and several composition models using
HPS, a solution for collaborative document creation should consider a service composition as
a set of human-based and software services which can be flexibly combined and coordinated
as required during collaboration.

In general, service composition follows a composition style which specifies how services
are logically composed. Several styles exist which are outlined in the following.

2.1.2. Service Composition Styles

A service composition style defines the kind of interdependencies which can occur between
services in a service composition. Which service composition style is applied depends on
the requirements of the realized service-based application. A traditional application field of
service composition are business processes requiring a causal or temporal ordering between
activities represented as services. Another example is the graphical composition of widgets
involving services, e.g., weather forecast or stock market, on an integrated screen.

Once dependencies are defined according to a service composition style, they can be man-
aged in order to improve quality aspects of a composition, e.g., consistency, efficiency, and
performance. The management of dependencies is called coordination. Service composition
styles are closely related to and interdependent with coordination as they define how and
which dependencies can be specified. This section focuses on service composition styles. A
more detailed discussion on coordination as defined in this thesis and coordination mecha-
nisms is provided in Section 2.3.

A variety of service composition styles exist which can be characterized as flow-based and
resource composition styles.

• Flow-based composition styles model the data or control flow in service compositions.

Data flow styles focus on the correct data exchange between services. They can be
realized through wiring of services in order to connect the output of one service to
the input of another service, e.g., using pipes and filters [68], or through event-based
styles which organize the composition around the exchange of events through mes-
sages. Services can subscribe for specific event types and get notified in case events
of such types occur. This publish-subscribe communication style leads to concurrent

20 2. State of the Art and Related Work

processing which inhibits deterministic order of execution [19, p. 34]. There is usually
no explicit control flow.

Control flow styles are frequently used for the automation support of business pro-
cesses and borrow concepts and findings from the workflow automation domain [2].
Such styles enable the specification of a (partial) execution order among single service
executions, also called orchestration. Realization variants of control flow compositions
include complex workflows based on Unified Modeling Language (UML) activity di-
agrams or chart-like formalisms like petri-nets or π-calculus (see [7] for more details
on these approaches). Another realization approach are rule-based systems based on
events. Events serve as input for the specification of ECA rules capturing complex
dependencies between services.

• Resource composition styles focus on the composition of resources provided by ser-
vices in a composition. Service resources are frequently combined using grouping or
layout-based styles.

Grouping summarizes several services or service functions to a coherent one (cf. [68])
without establishing dependencies between them. An example for grouping is interface
grouping, e.g., a composition of several search services returns a composition of all
search results on request. Another example is the grouping of services by associating
them to the same context, e.g., a project or service community.

In the layout-based style, service output is ordered in a certain spatial representation
and provides the impression of documents or dashboards.

A large body of research work exists in the area of service composition styles. For clas-
sifications and comparisons of service composition models using and combining different
composition styles, the reader is referred to [27][41][64][68][137]. The majority of these
publications focus on flow-based composition suitable for process-centric applications. Re-
source composition styles can be found in service mashup approaches using widgets for
representing data from different services on one Web site, e.g., in the IBM Mashup Center3,
the composition of data-oriented services in portals for instance using the WS-* standard
Web Services for Remote Portlets (WSRP) [97], grouping of related services in service com-
munities [34], or grouping of HPS based on a collaboration context [139].

Combinations of both styles frequently occur. Many of these approaches, however, com-
pose software services only. For instance, a layout-based composition is combined with an
event-based composition to update the representation of a service based on an event (e.g., in
the IBM Mashup Center3).

3http://www.ibm.com/developerworks/lotus/products/mashups/ (accessed January 2nd, 2013)

2.1. Service Composition 21

Another example is artifact-centric composition, where services are composed in a flow-
based style and compose contents into (structured) business artifacts. Artifacts represent the
progress of the service composition towards a business goal [60]. Similarly, case handling
defines data objects as first-class citizens of a state-based process which can be used or filled
with values by activities [4]. Case handling and most artifact-centric approaches require
a model of the artifact before a composition can be executed. In collaborative document
creation, however, the artifact can not be defined beforehand. A suitable combination of
flow-based and resource composition styles for collaborative document creation is subject to
research in this work.

Service composition styles define how dependencies can be defined between services and
which dependencies can occur. A composition style, however, does not define when depen-
dencies as well as other parts of a composition are defined. Service compositions supporting
collaboration need to be flexible as regards the specification time of a composition. Ap-
proaches for achieving flexibility are described in the following.

2.1.3. Flexibility in Service Compositions

A service composition follows a life cycle during which it is specified and executed. Various
service composition life cycle models exist [132][152] describing the following phases: (1)
a requirements elicitation phase, (2) the abstract definition of one or more compositions of
activities including dependencies and the selection of one composition alternative, (3) a map-
ping of the selected composition on concrete services, and (4) the deployment and execution
of the composition, potentially including service composition monitoring.

An abstracted service composition life cycle including concrete steps is presented in Fig-
ure 2.3. During the three specification phases (1)-(3) the service composition is defined.
Once specified, the service composition can be executed, i.e., the services can be called as
designed in the specification. Specification as well as execution can be done manually by a
human, for instance, an expert or the end user, or automatically. Automated execution is per-
formed by a composition engine, e.g., a workflow engine. Such engines support correctness
and efficiency of the execution as well as enable monitoring and tracking abilities [7, p. 126]
in order to relieve users from manual tasks like invoking services. Automated specification
is not relevant in this thesis.

These life cycles are suitable to support classical design-time (or pro-active) service com-
positions which are modeled at a dedicated design-time [27], i.e., during steps (1)-(3). Spec-
ification at design-time is performed if a service-based application requires an elaborate and
reliable design by an expert before the service composition is executed, e.g., production
workflows, but also if service compositions are automatically generated by an algorithm.

22 2. State of the Art and Related Work

Specification

Execution

(1)

requirements

elicitation

(2)

abstract

definition of

one or more

compositions

(3)

mapping on

concrete service

composition

(4)

deployment

and execution

• identification of required

activities

• composition of abstract

services

• specification of

dependencies

• specification of data to be

exchanged • service discovery

• selection of suitable providers

• selection of suitable services

• performing bindings to concrete service

• execution of concrete

services

• execution of service

composition

• monitoring

Figure 2.3.: Abstracted service composition life cycle with separated specification and execution
phases.

Often, such compositions are required repeatedly in their form, for instance for business
processes. Design-time compositions in general involve stable services.

Applications exist, however, which require a flexible (or semi-structured) service compo-
sition, e.g., partial temporal ordering of services in a composition. User requirements might
change during execution of the composition or new requirements might occur, selected ser-
vices might become unavailable, new and better services might appear. Especially the service
environment on the Web is highly dynamic and continuously changing. Services might be
removed, change their interfaces or new services might be added. Service compositions in-
volving dynamic services need to flexibly cope with this dynamic service environment as
well as changing requirements of the consumer [27].

Flexibility in service compositions frequently is reached through (a) performing quick cy-
cles in the classical life cycles which is done in so called situational service compositions,
(b) soften the phases prescribed by the life cycle by moving specification tasks of one phase
to the next, or (c) using a composition style which comes with inherent flexibility during
execution time. Which approach to flexibility is suitable depends on the application require-
ments.

(a) Situational (or ad hoc) service compositions are dynamically created on demand of a
service requester. Such situational compositions are specified during quick cycles of
design and execution phases similar to iterations in agile software development. Situa-
tional compositions are useful if there are only few requests for the composite service in

2.1. Service Composition 23

its particular form or if some of the contained services are not stable [27]. Situational
service compositions can be considered as evolving, situational systems which are flexi-
bly adapted to changing needs. Examples for such compositions can be found in service
mashups which enable end-users to compose (dynamic) resources from the Web into
new applications which are created to be just as good as required and specifically serve
a situational purpose [153]. Similarly to mashups, the mashup tool environment itself
exposes a dynamic nature as new tools come to the market and other ones disappear.
Since mashups are not intended to support long-running, transactional processes, service
composers do not necessarily need to consider complex requirements like maintaining
consistency or correctness. Steps in the service composition life cycle covering these
aspects are skipped. Situational composition styles can also be found in the dynamic
environment of ubiquitous computing [18].

(b) In order to support flexible service compositions, the steps performed during specifica-
tion of a composition can be shifted to a later point in time. Softening the phases results in
execution-time service compositions in which specification steps like activity specifica-
tion, service selection or binding, as well as dependency specification can be done while
the composition or parts of it are executed. A large research community, mostly origi-
nating from workflow research, focuses on the adaptability of designed compositions of
activities, especially on the support of flexible business processes, not necessarily im-
plemented with service compositions. Flexibility generally is achieved through enabling
adaptability of modeled compositions as well as allowing late specification of parts of
the composition [145]. For studies on achieving flexibility in, mostly process-oriented,
compositions of activities, the reader is referred to [145][22].

Solutions for flexibility in service compositions frequently are also influenced by work-
flow research. Several solutions use or extend WS-BPEL. Approaches for adaptability
include the ability to add new activities to a process or change dependencies between ac-
tivities [145]. Late specification is realized through replacing an abstract task through a
concrete implementation at execution-time based on the execution context [5], dynamic
service selection [25] leveraging automated interpretation of user requirements [53], dy-
namic service binding [65], or the partial definition of composition models, e.g., using
templates [118] or generic nodes [25]. Since these approaches are independent of the
composition style, they are applicable to both, flow-based and resource service compo-
sitions.

A study of approaches to achieve flexibility in flow-based service compositions is pre-
sented in [64]. The study shows that flexibility as regards changes to process models or
instances like late specification or service selection at execution-time is well supported
in current approaches. In such compositions, flexibility highly depends on the way how

24 2. State of the Art and Related Work

flexible the relationships between the used services like constraints, mutual obligations,
or agreed performance levels are specified. Changes of relationships between services or
service interfaces still pose challenges on such process-oriented compositions [64].

(c) Using declarative or event-based composition styles enables intrinsic flexibility abilities.
For instance, the composition style in case handling enables the automated execution
of services as soon as they can be executed and not based on a pre-defined activity
flow [4]. Rule-based composition styles are declarative and provide a higher level of
modularization [63] than graph-based composition and therefore allow for the definition
of more flexible workflows [81], e.g., when applied to change flow dynamically during
run-time [31]. The maintenance overhead, however, is higher since the composition is
implemented in a decentralized manner.

Although a large body of research exists for supporting flexible service compositions, no
solution could be found for supporting collaborative document creation. Existing approaches
either use a flow-based approach neglecting the need for resource composition, or they re-
quire the specification of particular model parts, e.g., dependencies, in a too early phase
which makes them too rigid for supporting human collaboration. Resource service composi-
tions which aggregate services based on their membership to a context like in HPS collabo-
rations or service communities can be considered flexible as they enable adding or removing
services as required. Human collaboration, however, often requires a mechanism to specify
dependencies between tasks which is not provided by these approaches. Therefore, this the-
sis aims to find a suitable flexible life cycle for supporting collaborative document creation
which still allows for the definition and coordination of dependencies.

Service composition caters for a large range of applications. In this thesis, collaborative
document creation should serve as an application for completely new types of service com-
position. In the following section, the application and its existing support is discussed in
more detail.

2.2. Collaborative Document Creation

Collaborative document creation is a multifaceted case. Different collaboration scenarios ex-
pose varying requirements as regards document models, participants and their contributions,
communication, or coordination which need to be considered in collaboration systems. In or-
der to qualify the scenarios addressed in this thesis, the following sections describe (a) mod-
ern electronic documents as compositions of potentially distributed material in Section 2.2.1,
(b) the nature of creation processes of such documents in Section 2.2.2, and (c) state of the
art and related work for collaborative document creation support in Section 2.2.3.

2.2. Collaborative Document Creation 25

2.2.1. Electronic Documents

Since documents already existed before computers and the Web were invented, the under-
standing of the term document evolved over time. Formerly, documents were understood to
capture textual notes.

Modern electronic documents can be defined as units “consisting of dynamic, flexible,
nonlinear content, represented as a set of linked information items, stored in one or more
physical media or networked sites; created and used by one or more individuals in the facili-
tation of some process or project.” [122]. Documents allow for the integration of additional
document structures and content sources and types [20], evolve over time, and can be copied,
split into parts, and reused in various contexts. Kinds of documents range from transac-
tional to narrative, they might be targeted to humans (e.g., documentation) or computers
(e.g., source code) [52, p. 10f.]. New kinds of display devices and technologies, e.g., user
interfaces like speech or touch, change the experience of documents [101].

Documents in the Web age are compositions of potentially distributed and related material
in order to provide a uniform, purposeful view to the reader. The components are composed
and structured on content, behavior, and representation level.

• The content which is composed in documents might stem from different sources, e.g.,
from humans, enterprise systems, or the Web. Especially the Web opens up the pos-
sibility to produce new kinds of documents involving unforeseen kinds of content,
possibly composed on demand at time of representation. This content might have dif-
ferent media types and be subject to frequent changes which can not be controlled by
the original document authors. For instance, multimedia or hypermedia documents
like Web sites or mashups might involve data formats like videos, animations, or real-
time data, e.g., contributed by sensors. Documents might include user-created con-
tents like annotations, links, or comments which leads to the impression of a document
ecosystem rather than single documents [101]. The analysis of typical documents in
various domains like software engineering or research showed that the content in the
produced documents usually follows a particular logical document structure, which
possibly evolves during collaboration [129] and depends on the type of document to
be produced as well as the language used in the document, e.g., spoken or visual. A
common structure is a tree or hierarchy which can be found in many written documents
which are decomposed into chapters and sections, like books, technical documentation,
or project proposals. Another example structure is history-based like a forum thread.

• A document might include behavior like temporal models, user navigation models, or
rules which are part of a document. A temporal model [15] captures temporal inter-
dependencies between the elements in the document. For instance, in a presentation

26 2. State of the Art and Related Work

multiple slides are presented one after the other, connected through sequencing rela-
tionships. Hyperlinks allow authors to link documents or parts thereof and thus enable
navigation interactions for controlling the flow, e.g., in a presentation [15]. Transac-
tional documents like forms might be exchanged in a structured business process, al-
low for information reuse in steps of a business process as well as include rules which
might automate processes [52, p. 20ff.].

• A document also has a representation which includes formatting and fonts and is im-
portant for narrative documents targeted to a human audience. The document structure
is persisted, i.e., mapped to a physical structure or spatial model which describes the
arrangement of visual objects on the presentation screen [15]. This can be done in pro-
prietary or standard document models like XML or HTML. Tools like Web browsers
or word processors render various document models to create a uniform document
experience.

Orthogonal to the content, behavior, and representation levels are functionalities which are
associated with documents. Important functionalities are document management services
like backup, version control, synchronization, notification of updates, or application-specific
functionality like workflow, format, or presentation transformations. Functionality might
also include the management of a document life cycle which involves activities like review,
approval, or discussion performed by different participants. In addition, documents or parts
thereof – including incorporated functionality – need to be reused on various levels of gran-
ularity [15]. Documents might be reused as they are or modified before reuse. Reuse enables
the incremental change and evolution of documents [77] and leads to building variants and
versions of documents which need to be managed.

Functionalities for document management can be supported by specialized tools or envi-
ronments as presented in Section 2.2.3 or be directly included into documents making them
active. For instance, in [36], active properties including programming code for document
management can be injected into document operations or associated with whole documents.
Specific document models for the composition of hypermedia documents exist [46] which
enable reuse of media artifacts and higher level concepts like layout information or adaption
rules.

The Web offers an increasing number of services implementing such functionality, e.g.,
on-the-fly translations of documents or formatting. The Web also enables evaluation and
feedback for pieces of information by a large community, e.g., through social networks. Such
functionality is already incorporated into open Web-based knowledge bases like Wikipedia
and also proposed for “liquid publications” in the research domain where paper-like static
documents are still a daily occurrence [24].

2.2. Collaborative Document Creation 27

The creation and evolution of documents frequently is done in teams, groups, or by the
crowd. A number of services, tools, and collaboration environments exist supporting differ-
ent aspects of collaborative document creation like document composition, content integra-
tion, or coordination. The nature of collaborative document creation as well as existing tools
are outlined in the following sections.

2.2.2. Collaborative Creation of Electronic Documents

Collaboration can be defined as “the act of working together on a common task or goal”,
as opposed to working independently [14, p. 3]. Persons participate in a joint working pro-
cess [71, p. 20]. In a cooperation people are operating towards a joint goal or benefit, as
opposed to competing [14, p. 3][1]. Cooperating individuals produce a joint result, e.g.,
product or service [71, p. 21]. The terms cooperation and collaboration are often used inter-
changeably [14, p. 3][71, p. 21].

The focus of this thesis is on processes and activities where people perform together on
a common task (collaborate) in order to produce a joint result (cooperate). Collaboration
and cooperation both happen. In this thesis, the term collaboration is used as an umbrella
term for these kinds of activities. Collaborative document creation is a form of collaboration
where the goal of the participants is manifested in one or more electronic documents. As
opposed to a goal, which is the desired realization of a certain state, an outcome is the actual
realization [14, p. 14]. During collaboration, several outcomes might be produced. The
outcome of collaborative document creation are the actually created documents.

Collaborative document creation has been studied over the last couple of decades, espe-
cially in the area of collaborative writing and collaborative software development. The advan-
tages of collaborative vs. individual document creation include the improvement of document
quality, e.g., regarding mistakes, understandability and accuracy, as well as the ability to in-
tegrate and transfer various viewpoints, opinions, insights, and expertises (cf. [66][80][90]).
Documents serve different purposes like being official contracts, documenting circumstances,
representing real-world aspects, capturing common understanding of a fact, or enabling
knowledge transfer. Thus, collaborative document creation and evolution can be found in
manifold parts of an organization or everyday life, for instance in education, knowledge
management, software engineering [147], IT management [79], or research [66]. Created
document types range from written papers (e.g., business plans, specifications, requirements
documents, bug reports, meeting protocols), graphical models serving as visual representa-
tions of an aspect of the real world (e.g., architectural design models), to Web sites or source
code.

Collaborative document creation is an inherently social and iterative process [80] which
includes ad hoc or creative human interaction and is often driven by knowledge. While the

28 2. State of the Art and Related Work

outcome is clearly defined as a joint document, the nature of collaborative document creation
as regards team size or group organization, as well as coordination of activities and partici-
pants varies to a large extend. Like contents is distributed over different sources, tasks are dis-
tributed among team members. During collaboration, participating humans plan, coordinate
activities, discuss, and negotiate which requires communication. The tasks to be performed
during document creation can only roughly and tentatively be planned in advance [74]. Dur-
ing collaboration, communication and resource exchange between participants might lead to
changes in plans or tasks [71]. Still, coordination mechanisms are applied in order to enable
effectiveness and improve quality of documents produced during collaboration. For exam-
ple, a popular strategy during collaborative writing is the splitting of documents into parts
and assigning those parts to different participants [110]. Additional coordination mechanisms
are outlined in Section 2.3. Several tools and environments exist, supporting participants in
composing documents or coordinating dynamic collaboration processes as described in the
following.

2.2.3. Collaboration Tools and Environments

Collaborative document creation requires tools and environments which enable composition
of documents and integration of distributed, heterogeneous, reusable, and potentially dy-
namic resources into documents. Concurrent access to documents as well as dependencies
between activities need to be coordinated during collaboration in order to improve efficiency.
Accordingly, in the following, tools and environments for collaborative document creation
are examined as regards their composition and integration as well as coordination capabili-
ties.

Collaboration systems are often summarized under the term groupware which are “com-
puter-based systems that support groups of people engaged in a common task (or goal) and
that provide an interface to a shared environment” [44]. Collaboration systems often are
intended to exist as supplementals to off-line communication like face-to-face meetings or
phone conferences. Essentially, groupware for collaborative document creation provides a
common information space or workspace – an environment – for the team which allows
participants to access and modify joint documents [71, p. 46f.]. Document management
systems like Alfresco4, version control systems like Git5, or file shares like Dropbox6 enable
storing and sharing of documents belonging together in a project space. These environments,
however, allow for composition on the project space level rather than of documents which
might integrate heterogeneous contents. Reuse of document parts becomes cumbersome.

4http://www.alfresco.com/ (accessed January 2nd, 2013)
5http://git-scm.com/ (accessed January 2nd, 2013)
6http://www.dropbox.com/ (accessed January 2nd, 2013)

2.2. Collaborative Document Creation 29

Although a large number of document models provide a hierarchical document structure
or enable integration of multimedia, only few environments exist directly supporting the col-
laborative composition and integration of heterogeneous content from different sources. An
early approach for collaborative editors are collaborative compound document environments
as defined in [138] which compose editor instances including contents of different media
types. These editors might support different kinds of collaboration for a specific media type.
The approach focuses on the composition and extension of (collaboration) editors rather than
on content composition or the coordination of human activities during content composition.
The authors of [16] describe a framework for supporting users to retrieve and compose het-
erogeneous multimedia content resources from potentially arbitrary content sources into doc-
uments. However, while resources can be shared with others, nothing is said about support
for collaborative creation of resources or composite documents. Similarly, mashup environ-
ments [153] allow for the composition of resources from the Web like data or user interfaces
into dashboard-like, dynamic documents which include always up-to-date information. For
example, with Yahoo!Pipes7 users can combine several feeds into one feed. However, as
mashup approaches most often focus on situational and personal applications as opposed to
collaboration, they do not support coordination and human interaction.

Regarding coordination, a frequent feature of several mostly Web-based document pro-
duction environments is the management of concurrent access to documents or document
parts. Such environments can be distinguished into

(a) asynchronous environments implementing version control and pessimistic or optimistic
locking strategies on resources,

(b) synchronous environments allowing participants to access and modify the same docu-
ment simultaneously, and

(c) multi-synchronous environments which are able to switch between both styles during
collaboration [51, p. 162ff.].

Examples for asynchronous environments are version control systems like Git or Subversion8

which are used by large distributed teams of software developers. Version control systems
provide a centralized document repository which enables traceability of changes as well as
conflict resolution mechanisms in case of parallel changes on documents. A decentralized
approach for storing composed documents is implemented in E-Breaker [9], an environment
for collaborative software development. During development, participants decompose source
code into pieces and assign them to owners. Code pieces are stored locally at each participant
and synchronized in order to enable asynchronous collaboration. Version control systems are

7http://pipes.yahoo.com/pipes/ (accessed June 19th, 2012)
8http://subversion.apache.org/ (accessed January 2nd, 2013)

30 2. State of the Art and Related Work

often utilized for the creation of other documents than source code like documentation or
research publications [90]. MediaWiki9, on which Wikipedia is based, enables asynchronous
collaborative writing on one document avoiding conflicts of parallel writing using an opti-
mistic concurrency control. Examples for synchronous Web-based tools are Google Docs10,
Zoho11, or typewith.me12 which allow for real-time collaborative editing of rich text docu-
ments or spreadsheets. Such environments allow users to see what others see and do.

Coordination for concurrent access on the data level is well supported. A number of envi-
ronments support additional application-centric collaboration features for coordination like
sending notifications on updates [76][75], commenting on document or parts of it (e.g., in
Google Docs, MediaWiki), or reminders on tasks [76]. In several environments, the as-
signment of activities to participants is used to support higher-level coordination. An early
example, Quilt [76], uses role models for the management of permissions on activities on
the document like editing or reviewing. Similarly, E-Breaker [9] supports the assignment of
document parts, i.e., code fragments, to responsible participants as well as the flexible del-
egation of the ownership to other participants. Quilt and E-Breaker, however, do not cater
for the management of dependencies between activities. Management of lightweight col-
laboration processes like travel approvals through the integration of several sources into one
document is realized in [75]. Workflow management support systems allow for more sophis-
ticated process-oriented coordination of the creation of a document, e.g., orchestrating the
completion of a pre-defined form [17]. Such process-oriented tools, however, become too
rigid to enable human collaboration as described above. Most approaches do not consider
document compositions and reuse of document parts.

In order to support more flexible social workflows, e.g., during collaborative project report
creation, the authors of [35] propose to map human collaboration to software architecture
concepts. More precisely, human computation and data management activities are mapped
to (human) components; (human) connectors coordinate interactions between components.
Three collaboration patterns – social networks, shared artifacts (e.g., in Wikis), and crowd-
sourcing – are modeled using components and connectors and the flexibility of the patterns as
regards adaptations during collaboration is discussed. While the authors show that different
adaptation strategies required in collaboration can be reached in collaboration patterns, they
do not consider integration of non-human participants or specialized coordination mecha-
nisms for collaborative document creation.

Existing tools and environments are suitable for particular phases in a collaboration pro-
cess [10], meaning, they typically only support a limited set of interactions and limited co-

9http://www.mediawiki.org/ (accessed January 2nd, 2013)
10http://docs.google.com/ (accessed January 2nd, 2013)
11http://docs.zoho.com/ (accessed January 2nd, 2013)
12http://typewith.me/ (accessed January 2nd, 2013)

2.3. Coordination 31

ordination thereof. For instance, in order to create a project report, a distributed team uses
a group scheduling tool to find a suitable date (coordination). The discussion on the report
is performed using a telephone conferencing system or e-mail (communication). Finally, the
deliverable is collaboratively written using a real-time editor (co-production). Though sev-
eral specialized environments for collaborative document creation exist, collaboration par-
ticipants often use classical word processors made for single use and exchange documents
for collaboration through e-mail or a version control system [90]. The benefit of using spe-
cialized collaboration environments for document creation might not be obvious to them
(cf. [90]).

Collaboration tools and environments often are unintegrated which might result in error-
prone content copy-and-paste activities from one tool environment to the other. In addition,
using unintegrated tools hinders coordination, e.g., distribution of activities based on docu-
ment parts, and reuse since such environments often use different document formats. Another
reason might be that environments integrating different features like coordination and con-
tent production most often do not consider the user’s existing tool environment. Individuals
have to learn new tools other than their word processor which hinders adoption.

Statelets, an approach to coordinate collaboration across multiple collaboration tools is
proposed in [78]. Statelets is a programming language which offers developers to integrate
multiple software systems, e.g., groupware tools or social network services, which are used
during a collaboration process. The language allows developers to specify coordination rules
which consider context information (e.g., activities and participants in related projects) and
execute actions according to process phases or context (e.g., trigger a call of a groupware
API or e-mail to a particular participant). While coordination rules can be flexibly defined
for a specific use case, the approach does not consider coordination of atomic tasks during
collaborative document creation where content is integrated into a document.

This work aims at providing a first approach for supporting the composition and integration
of heterogeneous, potentially dynamic contents from different sources while allowing partic-
ipants to use their favorite editor or communication channel. In order to support coordination
during collaborative content composition, a generic approach for integrating coordination
mechanisms is investigated. A large set of coordination mechanisms exist for different pur-
poses. In the next section, a relevant set of dependencies and coordination mechanisms is
described.

2.3. Coordination

The term coordination is applied in several disciplines like computer science, organizational
theory, artificial intelligence, or psychology. Abstracting from those domains, coordination

32 2. State of the Art and Related Work

can be defined as the management of dependencies between activities and resources [28].
Without interdependencies, there is no need for coordination [84][70].

Coordination is closely related to composition since through composition, dependencies
between activities and resources are defined in order to create a coherent whole. Coordina-
tion allows for the management of dependencies in order to improve quality aspects of those
composed systems. Quality aspects include system characteristics like efficiency, consis-
tency, correctness, or performance. Coordination mechanisms can be automated in order to
reduce the human effort for coordination [123]. Coordination not only focuses on the process
of achieving a result but also might improve the quality of the outcome of a process itself,
for instance a document in a collaboration application.

Literature on WS-* distinguishes the terms composition and coordination [7, p. 250ff.].
The implementation of a service is done using service composition styles. The implemen-
tation often is internal, since it is hidden from clients. Coordination protocols are used to
precisely define allowed interactions with a service or between multiple services in order to
guarantee correctness and consistency of the service execution and involved data. Accord-
ingly, coordination protocols are coordination mechanisms which manage the external in-
teractions which are important for design-time service discovery and execution-time service
binding and thus need to be publicly visible [7, p. 205]. The order of invocations of services in
compositions has to comply to coordination protocols. The composition decides on the pos-
sible conversations. Therefore, Web service technologies often support both, coordination
protocol specification and composition definition. For instance, with WS-BPEL the internal
execution implementation can be specified as well as the external protocols supported by
the implemented service. Vice versa, in [135] an approach is presented to compose services
talking certain coordination protocols using the WS-BPEL composition model. As part of
WS-*, WS-Coordination is a framework for coordination protocols [96]. WS-Coordination
allows services to register as participants in coordination protocols as well as to establish a
context for an activity which follows a certain coordination protocol. The framework is pro-
tocol independent and can be extended with required protocols, e.g., atomic transactions with
WS-Atomic Transaction [94] or WS-BusinessActivity for complex business processes [98].

In this thesis, coordination is understood on a higher level than in service computing lit-
erature: coordination is any management of dependencies during all phases of the service
composition life cycle. Accordingly, adequate coordination means need to manage depen-
dencies (a) during specification of service compositions complementing service composition
styles as presented in Section 2.1.2 and (b) between services during execution, e.g., through
coordination protocols.

Lifting the meaning of coordination in service-based applications to a higher level en-
ables the specification of additional coordination means for supporting humans during the

2.3. Coordination 33

creation of service compositions as will be shown in the following sections. The goal in
this thesis is to support an extensible set of relevant dependencies for collaborative document
creation through existing coordination mechanisms rather than finding additional dependen-
cies or creating new coordination mechanisms. Therefore, a set of relevant dependencies in
collaborative document creation as well as coordination mechanisms in the field of service
composition are examined in the following sections.

2.3.1. Dependencies

Dependencies might exist between activities, between resources, or between resources and
activities. Resources can be understood as anything used or affected by activities like ma-
terials, efforts, actors, or states [28]. Two types of dependencies occurring during collabo-
rative document creation are examined in this thesis: temporal and resource interdependen-
cies [114]. Figure 2.4 provides an overview.

t

t

t

t

prerequisite

relation

simultaneity

constraint

task/subtask

relation

deadline

dependency

shared resource

dependency

producer/consumer

relation

content dependency

activity

resource (incl. actor)

Temporal Interdependencies Resource Interdependencies

Figure 2.4.: Overview of temporal and resource interdependencies.

• Temporal interdependencies influence the order in which activities need to be per-
formed.

The prerequisite relation denotes that one activity can only be performed when a cer-
tain other activity is finished or that a resource needs to be produced before it can be

34 2. State of the Art and Related Work

used [114]. For instance, a proofread activity has to be performed on a project proposal
before the document can be published or a language translation can only be done if the
text is written.

Simultaneity constraints prescribe that two activities need to execute at the same
time [84], e.g., synchronous collaboration is required.

A task/subtask relation exists if a set of tasks are required to fulfill an overarching
task [84], for instance, in order to provide a diagram on an issue, a data acquisition
task as well as a visualization task is required.

A deadline dependency can occur if a document has to be produced before a certain
deadline, for instance given by the institution where the project proposal is to be sub-
mitted.

• Resource interdependencies occur when resources are distributed among activities
[114].

Shared resource dependencies occur if two or more activities use the same resource
[84][114]. This resource could for example be a section which should be written or
proofread by two persons at the same time. A shared resource might also be the par-
ticipant executing an activity who has to perform other activities in parallel, i.e., a
dependency exists between an activity and a participant.

A producer/consumer relation exists if one activity creates input for another activ-
ity [84], for instance, a proofread activity depends on a writing activity which provides
a text as input in collaborative document creation. This dependencies includes the
usability dependencies which denotes that the output of the first activity has to be us-
able for the second [84]. For example, the text has to be written in a language the
proofreader understands.

The content dependency denotes that two or more resources are related as regards their
content, e.g., a picture and its description.

A survey about research on dependencies in service composition is provided in [87]. Simi-
lar to the dependencies found in coordination of human work, the author summarizes existing
dependencies to sequence dependencies (a service depends on the completion of execution
of another service) and data dependencies (a service depends on data provided by another
service). Sequence and data dependencies can be sorted into temporal and resource interde-
pendencies, respectively.

On the one hand, dependencies might constrain how activities can or should be executed.
Therefore, coordination mechanisms exist which aim to minimize dependencies or conflicts

2.3. Coordination 35

caused by dependencies. On the other hand, making dependencies explicit might provide op-
portunities, e.g., provide additional information or enable automation [28]. A set of relevant
coordination mechanisms and how they are supported in service composition is presented in
the following.

2.3.2. Coordination Mechanisms

Because of the generic notion of coordination, a large number of coordination mechanisms
exist for different purposes in different use cases. Several mechanisms might target to the
same generic coordination problem or might be used complementary for the same problem.
In many cases, one mechanism can be used to improve a number of different quality aspects.
For instance, mechanisms for traditional atomic transaction support aim to ensure atomicity
and isolation of operations, as well as consistency and durability of data.

In human collaboration, dependencies are managed through explicit coordination mech-
anisms supported with tools or artifacts and implicitly through the knowledge of the task
and team context [45]. For each collaboration, a different set of coordination mechanisms is
suitable. The focus in this thesis is the support of explicit coordination mechanisms through
coordinated service compositions. For example, service composition styles as introduced in
Section 2.1.2 offer combinations of mechanisms suitable to specific scenarios. In the fol-
lowing, coordination mechanisms supported by service composition models or collaboration
solutions are examined and classified regarding their support of the dependencies outlined in
the previous section.

For the management of temporal interdependencies in service-based applications different
mechanisms can be applied during execution of compositions.

• Prerequisite relations might block the progress of a composition. Most approaches in
service composition (e.g., WS-BPEL) apply sequencing as coordination mechanism
for automating prerequisite relations. Automation can also be enabled using notifi-
cations via publish/subscribe. For example, actors could be notified on released data
locks or a successor of an activity can be notified about the completion of the activity.
Tracking enables participants to inspect the current state of the execution [84] and re-
act on changes in the execution. Tracking in service compositions can for instance be
enabled through service composition monitoring approaches.

• Simultaneity constraints are supported through scheduling the parallel execution of
services. Spatial composition styles, e.g., in mashups, might execute all services at
the same time. Flow-based approaches like WS-BPEL support the definition of par-
allel execution sequences. If simultaneously executed activities access or modify the
same resources collaboratively, synchronization mechanisms are required to manage

36 2. State of the Art and Related Work

this shared resource dependency. In collaborative document editing, synchronization
can for example be realized through What You See Is What I See (WYSIWIS) mech-
anisms [134].

• Task/subtask relations in general can be managed through goal selection and task de-
composition where an overall goal is decomposed into subgoals which are performed
as tasks by participants [84]. Task decomposition is inherent to service composition,
where each service performs one activity to meet a collaborative objective. For in-
stance, spatial composition styles enable the decomposition of tasks, i.e., delivery of
resources, based on a planned resource structure. Division of labor, a coordination
principle in collaboration [110][80], is supported naturally through assigning different
service providers to services in the composition.

• Deadline dependencies can be supported by service composition models through
scheduling [86] as well as monitoring activities which enables to interfere in case
the deadline might not be met. No service composition model could be found which
supports reminders for services provided by humans.

Resource interdependencies can be managed as follows.

• Shared resource dependencies might violate consistency requirements of an applica-
tion when causing lost updates or dirty reads. As described in Section 2.2.3, a num-
ber of different concurrency mechanisms exist addressing this problem in collabora-
tive document creation. An extensive overview of standard and research coordination
mechanisms for data consistency and recovery in service compositions is presented
in [50]. The mechanisms include advanced transaction mechanisms, relaxed lock-
ing techniques, data dependency analysis as well as modularization strategies. The
focus of the approaches presented in the survey is to ensure consistency or reliabil-
ity in process-centric compositions where the “all or nothing” (atomicity) property is
required. Besides modularization, these mechanisms therefore are suitable to only a
limited extent for service-based collaboration support. Assignment of responsibilities
for resources or tasks or sequencing of activities based on their association to resources
are alternative coordination mechanisms for shared resource dependencies.

• Similarly to prerequisite relations, producer/consumer relations can be managed with
notifications, e.g., updates of resources can be propagated to interested parties. In ser-
vice composition models, producer/consumer relations often are solved through data
flow approaches, i.e., sequencing. Standardization of formats enables usability and
understandability of resources exchanged between producer and consumer [84]. Stan-

2.4. Conclusion 37

dardization of languages and protocols allows participants to interact independently of
a coordinating or translating intermediary [7, p. 132ff.].

• Content dependencies are specific to collaborative document creation and therefore not
considered in service composition approaches. The update of one resource might cause
an inconsistent other resource. In general, content interdependencies can be supported
through notifications if a resource is updated or sequencing for requesting an update of
one resource if the other updates.

Table 2.1 shows an overview of the presented dependencies and coordination mechanisms
based on the general coordination mechanisms provided in [84].

Table 2.1.: Dependencies and coordination mechanisms (extended version of [84]).
Dependency Coordination Mechanism
Temporal Interdependencies
prerequisite relation sequencing, notification, tracking/monitoring
simultaneity constraint scheduling, synchronization
task/subtask relation goal selection, task decomposition, division of labor
deadline dependency scheduling, monitoring, reminders
Resource Interdependencies
shared resource depen-
dency

modularization, transactions, locking, data dependency anal-
ysis, task and resource assignment, sequencing

producer/consumer re-
lation

notification, sequencing, usability through standardization

content dependency notification, sequencing

Coordination mechanisms applied during service composition focus on the execution
phase. The coordination of the (collaborative) specification of service compositions has
been considered in service engineering methods. For example, in [62], a design process is
described for the collaborative creation of service compositions which considers negotiations
of different stakeholders. The coordination of flexible, human-driven service compositions
in order to support collaborative document creation, however, has not been studied.

2.4. Conclusion

Collaborative document creation involves the distribution of work on several human and
non-human participants as well as the composition of produced results into a document.
During collaboration, communication protocols and coordination mechanisms are applied

38 2. State of the Art and Related Work

depending on the requirements of the particular collaboration. Service-oriented technologies
naturally seem to fit to support collaborative document creation, as they allow for flexible
coordinated composition of loosely-coupled, distributed services. The previous sections,
however, showed that several challenges have to be tackled as regards coordinating service
compositions for collaborative document creation.

• Humans can be integrated into service compositions as discussed in Section 2.1.1. Po-
tentially, an unlimited number of software services participate in a collaborative docu-
ment creation process. A solution thus should be scalable as regards participants. The
specification of a dedicated service interface for each service allows for precise defini-
tions of service capabilities. The prescription of a uniform interface for all human and
non-human services, however, might result in higher scalability as regards participants.
The mapping of participants of collaborative document creation processes to a uniform
interface is addressed in this thesis.

• Flow-based and resource composition styles exist as well as combinations of both to
support structured or situational applications as shown in Sections 2.1.2 and 2.1.3. In
collaborative document creation, resources need to be composed into a document as
well as activities for delivering resources need to be flexibly coordinated. Existing ser-
vice composition styles, however, often neglect the need for resource composition, or
they require the specification of model parts in a too early phase making them too rigid
for supporting collaborative document creation. A style supporting collaborative doc-
ument creation should allow service compositions to flexibly evolve over time as new
services are added or executed and deliver resources. The design of such a composition
style is tackled in this thesis.

• A number of coordination mechanisms allow for the management of dependencies
between services, e.g., through notifications or sequencing, as shown in Section 2.3.
Most of these mechanisms are applicable to the execution phase of a service composi-
tion and can potentially be applied for collaborative document creation. Collaborative
document creation processes, however, require coordination mechanisms for the exe-
cution as well as the specification phase of a composition. In addition, different co-
ordination mechanisms are required for different scenarios of collaborative document
creation. The design of a solution for flexible coordination is addressed in this thesis.

In order to address the challenges, design features for a collaboration model based on
service composition are derived as presented in the following chapter.

Part II.

Solution Design

3. Design of Functional Solution Features

The set of design features described in this chapter frame and demonstrate the concept of the
solution which is provided by this thesis work. Section 3.1 defines which types of collabo-
ration participants and activities are considered in this thesis in order to allow for a uniform
representation of human and non-human participants. Section 3.2 introduces the mechanism
allowing human participants to compose activities and created results into an evolving docu-
ment. The specification of a composition can be coordinated based on the intended document
structure. Section 3.3 provides a frame for communication protocols to involve participants
depending on the use case. The protocols allow human as well as non-human participants to
contribute to a collaboration. Finally, Section 3.4 describes the approach to enable flexible
coordination of dependencies. The provided coordination mechanism is flexible as it can be
extended and configured to suit to (a) a specific collaboration, e.g., through automation of a
particular dependency, and (b) different use cases of collaborative document creation.

3.1. Activities and Participants

Activities performed by participants are the basic building blocks of a collaboration. The
design features detailed in this section and summarized in Table 3.1 consider the nature of
activities and participants in collaborative document creation.

During collaboration, participants play roles based on their abilities and expertise, or their
position in the organizational hierarchy. Roles are associated with responsibilities and rights.
Participants might perform several roles in a collaboration or change roles during collab-
oration [133]. In different use cases of collaborative document creation, different roles
can be identified. For example, typical roles in collaborative writing are writer, consul-
tant, editor, and reviewer [110]. The creation of models in systems or service design in-
volves various stakeholders and experts like analysts, (service) providers, domain experts,
and users [48][115]. During modeling, these stakeholders take different roles like modeler,
facilitator, technical support, or gatekeeper (cf. [115] for a literature analysis about collabo-
rative modeling as regards roles). These roles can be summarized to two basic roles: roles
which are responsible for coordination and moderation of the group process and roles which
are responsible for the content. The collaboration model therefore supports coordinator and
contributor roles (DF 1-1). In the following, participants playing a coordinator role are called
coordinators, participants playing a contributor role are called contributors.

42 3. Design of Functional Solution Features

Activities performed during collaboration include content production tasks like creating,
refining, reviewing, approving, or publishing contents, performed by contributors, as well
as coordination tasks like planning workflows, selecting participants, and division of work
(cf. [80][110]). The collaboration model enables human and non-human contributors, i.e.,
software services, to execute content production tasks (DF 1-2) in order to enable dynamic
and static data sources like sensors or data bases to act as contributors during collaboration.
Software services like translators provide functionality or transform content. Both types of
services, data and functionality, are supported by the solution.

Software services in general are heterogeneous in their nature, ranging from atomic to
composite services. Activities can be considered atomic when they can not be subdivided.
The contributions they can provide in collaborative service creation are restricted to atomic
activities. As regards content production tasks, the collaboration model supports atomic
content production activities (DF 1-3). The integration of complex services and activities is
subject of future work.

Table 3.1.: Design features for activities and participants.
ID Design Feature Rationale
DF 1-1 Support of coordinator and contrib-

utor roles.
Coordinator and contributor are ba-
sic roles required in collaboration
scenarios.

DF 1-2 Integration of human and non-
human participants providing data
and functionality.

More and more software services
support humans in their daily work
(cf. Section 2.2.1). Static and dy-
namic data sources act as content
providers.

DF 1-3 Support for atomic content produc-
tion activities.

Collaborative document creation in-
volves content production tasks
(cf. [80][110]).

A collaboration is considered as a composition of activities performed by humans and non-
human service providers. The activities produce or refine content which is input to documents
which incrementally evolve during collaboration. How content is composed is described in
the following.

3.2. Content Composition 43

3.2. Content Composition

Through activities, participants contribute to a document which acts as a container for con-
tent. Several activities are performed by different participants over time in order to provide
and refine document parts. Table 3.2 summarizes the design features for content composition
which align composition of activities and content contributed by activities.

In order to coordinate the process of collaborative document creation, a goal selection and
task decomposition mechanism is applied. The existence of a document for a specific purpose
is selected as goal. Coordinators decompose the expected document into parts to be delivered
or refined. Subsequently, coordinators can identify activities to be performed in order to cre-
ate and update document parts. Activities are assigned to contributors following the division
of work principle and the separate writers strategy as described in [110]. The process can,
however, not be completely planned in advance and document structure and content evolve
over time. The collaboration model therefore allows coordinators to incrementally structure
a document over time, use the evolving structure to identify tasks as well as integrate content
contributions into the structure (DF 2-1).

During collaboration, as introduced in Section 2.2.1, documents are composed on three
levels: content, behavior, and representation. The composition of behaviors and represen-
tations as opposed to content composition was examined in other works like [21]. The be-
havioral model, e.g., a temporal model in a hypertext presentation, makes a document more
complicated. As the document itself is not in the focus of this thesis, rather the collaboration
and composition of contents and activities, the support of behavioral model composition is
subject of future work.

The content in documents is composed following a document model or format, e.g.,
HTML, Office Open XML as used in Microsoft Office, or TeX. Modern documents involve
dynamic contents of different types and structures [122]. Different types of document models
and formats are used in different use cases. In addition, participants of a collaboration might
use different tools for collaboration using different document models. In order to provide a
solution for a range of collaboration types and allow participants to use their existing tool
environment, e.g., a word processor or e-mail, the collaboration model is document model
independent (DF 2-2).

Finally, documents or parts thereof – including incorporated functionality – potentially are
reused as outlined in Section 2.2.1. Reuse in current document models of the Web often is dif-
ficult since the languages and models used do not separate content and representation. Thus,
components or document structure can not be easily extracted. The collaboration model pro-
vides a possibility to reuse content independently of its representation as contribution to other
documents (DF 2-3).

44 3. Design of Functional Solution Features

Table 3.2.: Design features for content composition.
ID Design Feature Rationale
DF 2-1 Enable incremental structuring of

documents and mapping of activi-
ties and content to structure.

Structure evolves over time. En-
ables coordination mechanisms di-
vision of work and separate writers
strategy.

DF 2-2 Independence of document model. Different document models are used
in different collaborations. Enable
integration with user’s tool environ-
ment.

DF 2-3 Support reuse of produced content. Content might be interesting in
other collaborations. Copy-paste is
time-consuming and error-prone.

Required activities for content production and refinement are deduced from the evolving
document structure. These activities can then be assigned to participants responsible to per-
form them. Once assigned, participants can start performing the activity. In the following
section, design features for participation, i.e., assigning participants and performing activi-
ties, are described.

3.3. Participation

Participation is the execution of communication activities performed to integrate content into
an evolving document. Activities are performed by coordinators and contributors. Table 3.3
summarizes the design features for participation.

Figure 3.1 presents a snapshot of a collaboration during the creation of a project proposal.
The project proposal contains document parts specified by coordinators and associated with
activities as described in the previous section. During collaboration, participants in the role
of contributors are associated with the activities they are responsible for. In the beginning of a
collaboration, not all required activities and potential contributors are known. Therefore, as-
sociating contributors should be possible any time during the collaboration. The association
of a contributor and an activity can follow different protocols. For instance, a coordinator
might search and find a suitable participant for an activity in a repository, e.g., an expert
system or a repository of software services, and assign the contributor to the activity. In a
project proposal project as exemplified in Figure 3.1, the team of contributors is clear which
makes searching for a suitable contributor unnecessary. Another form of participation is ap-
plied in open source projects, where humans volunteer in performing activities. Therefore,

3.3. Participation 45

translate

transform

write

proofread

collaboration

software service as contributor

human contributor

coordinator

atomic activity

participant-activity association

structured document

coordination

access on document parts

Figure 3.1.: Snapshot of collaborative project proposal creation.

the collaboration model enables a set of different association protocols which allow for find-
ing contributors and associating them with an activity flexibly during collaboration (DF 3-1).
These protocols map on human interaction but are also understandable by software service
providers.

Having associated an activity and a contributor, the contributor can perform the activity
and create or refine one or more document parts. The contributor might start performing the
activity by itself or it might be asked to perform, e.g., by a coordinator. Activities possess
a state, e.g., started or executed. The execution of activities influences state of document
parts which might be delivered or refined. Making the state of activities and document parts
explicit enables the coordinators to track progress of the collaboration. Execution protocols
interrelate activity states with document part states and ensure correctness of activity execu-
tions as regards the states (DF 3-2).

Activities are performed in parallel by different contributors. Besides contributing con-
tents, contributors might require to access existing parts of the composed contents. A con-
tributor might be the consumer of content produced by another resulting in a producer/con-
sumer relation as described in Section 2.3.1. For instance, a translation service requires the
text to be translated as input. A person responsible for writing a summary requires the whole
document as context in order to provide an adequate contribution. The collaboration model
therefore stores documents centrally allowing write and read access to document parts to all
participants. Since not all parts of a document might be relevant to a participant or should be
accessed by the participant, a coordinator defines the parts to be accessed by the participant
during collaboration. (DF 3-3)

46 3. Design of Functional Solution Features

Table 3.3.: Design features for participation.
ID Design Feature Rationale
DF 3-1 Support different protocols for find-

ing contributors and associating
them to activities.

Different forms of involvement of
contributors exist.

DF 3-2 Support execution protocols which
associate execution of activities with
document part states.

Support state tracking as coordina-
tion mechanism (cf. Section 2.3).

DF 3-3 Enable participants to access (parts
of) the document and use it as input.

Participants might need to consume
content to perform their activity.

Participation addresses the involvement of single contributors performing activities. In a
collaboration, a team of participants works in parallel on the same goal which causes depen-
dencies between activities. Design features for coordination mechanisms supporting these
dependencies are presented in the following section.

3.4. Coordination

Participation looks at the single contributor who eventually delivers contents. Coordination
is required, when considering a larger number of participants and potentially interrelated
activities. As described in Section 2.3, a large number of dependency types exist in collabo-
rative document creation which can be addressed by different coordination mechanisms. A
set of coordination mechanisms is already applied through the design features described in
the previous sections:

• Task/subtask relations are managed through decomposition of the document into parts
which are associated with activities required to create and transform them.

• Association of activities to different contributors, i.e., task assignment, enables division
of labor. Division of labor is a mechanism to avoid shared resource dependencies as
regards time of participants. In addition, division of labor allows participants to work
in parallel which speeds up the collaboration process [110][115].

• In order to enable coordinators to track progress of the collaboration, parts and activi-
ties possess a state which can be observed. Producer/consumer relations are supported
through a blackboard approach which enables consumers to access all output created
by producers.

3.4. Coordination 47

The assignment of activities to different contributors throughout the collaboration and the
parallel execution of activities which produce and consume contents of the same document,
however, pose additional coordination requirements on the solution to manage producer/con-
sumer relations, shared resource dependencies as well as content dependencies. Table 3.4
summarizes the design features to support coordination for these dependencies.

In order to provide one mechanism to enable management of many dependency types,
the collaboration model defines an extensible event model (DF 4-1). Anything which hap-
pens during collaboration, e.g., the association of a new contributor, the identification of an
activity, or the update of a document part, might be considered an event. Events serve as
notification mechanism for producers who inform consumers about new input contents. Par-
ticipants can subscribe to event types of other participants or document parts, e.g., to receive
updates of a specific document part.

Listening to events and acting accordingly might become cumbersome for coordinators.
In order to improve efficiency and reduce manual coordination effort, the collaboration
model enables coordinators to define rules throughout the collaboration which allow for
(semi-)automation of coordination mechanisms (DF 4-2). The solution enables coordinators
to specify dependencies and rules specific for their collaboration, i.e., to tailor the coordina-
tion support according to their needs. For instance, the collaborative creation and infilling
of a form possibly requires a controlled process whereas the writing of a scientific project
proposal is more flexible without any specified process. Rules might automate the protocols
for participation of single contributors, for instance, ask them to perform the activity as soon
as they are associated with the activity. Sequencing as a coordination mechanism to man-
age prerequisite or producer/consumer relations or content dependencies can be automated
through asking a contributor to perform an activity only after another activity is finished.
Through events, inconsistencies can be avoided if coordinators are informed about potential
inconsistencies when they are detected. Even not occurring events could be used to send
reminders as a coordination mechanism for deadline dependencies.

Table 3.4.: Design features for coordination.
ID Design Feature Rationale
DF 4-1 Provide extensible event model to

support notification as base coordi-
nation mechanism.

Coordination of dependencies
enhances effectiveness [44] and
potentially speeds up collabo-
ration [110][115]. Notification
supports a large set of coordination
requirements.

Continued on next page

48 3. Design of Functional Solution Features

Table 3.4 – Continued from previous page

ID Design Feature Rationale
DF 4-2 Allow coordinators to specify rules

based on events for different coordi-
nation mechanisms.

Rules enable automation which re-
duces manual coordination effort.
Different use cases expose different
coordination requirements.

3.5. Conclusion

The design features described in the previous sections capture the functional design of the
solution. The design features integrate requirements and features extracted from the domain
of collaborative document creation having service composition in mind.

A number of requirements in collaborative document creation are not considered in this
thesis. Version control is an important feature to enable traceability and rollback. A large
number of mechanisms exist for version control. In this thesis, however, traceability and
version control are not examined. Support of transactions and exception handling in such
collaborations is not provided by the collaboration model. Design and development of com-
pensation logic is complex in workflow systems; in Web services, standards emerge [7, p.
272]. In the collaboration model, compensation logic partially can be managed by humans
who might define specific rules. The same holds true for exception handling during the col-
laboration process. Transactions and exception handling on an infrastructure level is out of
scope of this thesis. Security, e.g., through role-based access, is not realized in the solution.
Security and role model requirements differ for each collaboration application. Selecting and
applying suitable solution approaches is open to future work.

Understanding the semantics of documents which are (re)used in different contexts or by
different persons is difficult as there might be various views and opinions which are not
made explicit or missing background information. Therefore, face-to-face communication
is still required in order to clarify document or document fragment meaning because direct
communication allows participants to ask further questions as required [56]. The target of the
collaboration model presented in this thesis is therefore to supplement direct communication
rather than to replace it.

In the following two chapters, the design features are mapped to the service-oriented col-
laboration model. Table 3.5 provides an overview of the mapping between the design fea-
tures and the model realizing them. How the design features for activities, participants, and
composition are realized, is described in Chapter 4. The realization of participation and
coordination is detailed in Chapter 5.

3.5. Conclusion 49

Table 3.5.: Mapping of design features to collaboration model.
Design Features Realization in Collaboration Model
Activities and Participants Component Model (Section 4.1)
Content Composition Composition Model (Section 4.2)
Participation Participation Protocol Framework (Section 5.1)
Coordination Event Model (Section 5.2),

Coordination Rule Mechanism (Section 5.3)

4. Component and Composition Model

Service composition serves as implementation technology for the design features described
in Chapter 3. The nature of and assumptions on the elements to be composed in a service
composition are captured in a component model [7, p. 256]. An assumption is for instance
that all components are implemented using the same technologies. The component model
presented in Section 4.1 assumes that elements to be composed expose a uniform interface
regardless of being delivered by a human or software. A uniform interface potentially allows
for the reduction of technical effort when replacing a participant, e.g., a Web service which is
not available anymore, and the construction of collaboration systems which can automatically
create and handle a large number of interfaces to services provided by humans.

In order to aggregate components into service-based applications, dependencies between
components are defined using composition styles as outlined in Section 2.1.2. The com-
position model presented in Section 4.2 represents the aggregation of services which are
delivered by human and non-human service providers in order to collaboratively create a
document. Differently from the existing solutions, the composition can evolve during collab-
oration since the composition model allows coordinators to select and specify dependencies,
providers, and services as required during execution of the composition. In addition, the use
case of collaborative document creation is leveraged in order to enable coordination of the
composition process itself: services aggregate contents into a document which is then used
by coordinators to identify and specify new required activities.

4.1. Component Model

Services realize activities which are performed by participants of the collaboration. The
component model describes the nature of services which can serve as basic building blocks
of a service composition. Figure 4.2 presents a schematic overview of the component model,
described using a UML class diagram.

Central to the component model is the service which represents a generic Web-accessible
software entity able to perform an activity, more precisely, atomic content production activity
as defined in design feature 1-3. A service might for instance provide statistical data, illustrate
data as a diagram, send a document to a blog, or translate a text into another language. Each
service possesses a serviceId which is a unique global identifier of a service. The optional
serviceDescription carries an informal description of the activity that the service performs

52 4. Component and Composition Model

C
o

m
p

o
n

e
n

t
+

C

o
m

p
o

si
ti

o
n

M

o
d

e
l

P
ar

ti
ci

p
at

io
n

+

C

o
o

rd
in

at
io

n

M
o

d
e

l

Component Model

Composition Model

Coordination Rule Mechanism

Event Model

Participation Protocol Framework

Providers

Resources

Service Types

Services

Figure 4.1.: Contribution “component model”. In the component model the fundamental elements of a
collaboration based on and targeted towards documents are identified. The objective of the component
model is to provide a uniform representation of human and non-human service providers and their
service types. Providers are potential participants of a collaboration offering resources and services.

written by the service provider. In order to address a service and request it, it provides a URI
which denotes its physical location.

A service is associated with a number of resources. A resource is a container for any kind
of content in an arbitrary format ranging from textual data to pictures or videos. In addition
to content, a resource possesses a unique resourceId. In this thesis, a resource is understood
as the output of a service rather than a requirement of a service to be able to execute, e.g.,
hardware resources. A resource might change over time.

A service manages the resources it possesses, i.e., provides them on request, updates,
or deletes them. Each service exposes a uniform functional service interface for resource
management. Calling the createOrUpdate() method on a service requests the creation of
one or more new associated resources, or the update of existing ones. The delete() method
requests the deletion of associated resources. Which resources are to be created, updated, or
deleted is specified as parameter value of the methods.

The request() method allows service callers to retrieve the associated resource(s), e.g., to
use them as parts in a collaboratively created document. Since services provided by hu-
mans might take time for their response to a request, the collaboration model provides an
asynchronous communication protocol which is described in more detail in Section 5.1. A
service might require input values in order to execute. For example, a search service requires
a search string, or a human providing a text summary of a document requires the previous
chapters of a document as input. A request might therefore come with an input parameter
value or input parameter references to other services which can be requested by the service
provider. The input is handled individually by services. For example, a service provided
by humans might request all referenced services, store the requested resources locally, and
present them on a graphical user interface (GUI) to the human provider.

4.1. Component Model 53

+createOrUpdate(resourceId : String)
+delete(resourceId : String)
+request()

-serviceId : String
-serviceDescription : String
-URI : String

Service

+createService(typeId : String)

-providerId : String
-profile : String
-URI : String

Provider

*

1

-typeId : String
-typeName : String

Service Type

* *

*

1

-resourceId : String
-content : String

Resource
**

Figure 4.2.: Component model.

With each service, a service type is associated which characterizes the service in detail.
Several services might exist with the same service type. A service type comes with a unique
typeId and a typeName. Figure 4.3 presents an exemplary taxonomy of service types which
captures activity types potentially performed during collaborative document creation.

A variety of service types for content provision, transformation, and publication exist
which integrate human-based activities, automated mechanisms as well as external Web
sources as defined in design feature 1-2. Content provision services, e.g., human-based au-
thoring or content retrieval, provide existing or newly created contents which can be directly
used in documents. Content transformation services, e.g., layout or language translation,
produce content based on existing content which the retrieve as input resources. Publishing
and approval services perform functional activities based on provided input resources. Such
services might send content to external targets, e.g., e-mail addresses or Web servers.

Each service is offered by a provider which might, for instance, be a person, a Web infor-
mation system, or an organization. A provider can offer several services of different service
types. The required providerId is a unique identifier of a provider, the URI defines the address
where a provider can be reached. An optional profile describes the skills and capabilities of
a provider. A provider might offer service types without having associated concrete services

54 4. Component and Composition Model

Service Type

Provide Content Transform Content Publish Content

Store on Server Publish to BlogSend E-mailProvide Table of ContentWrite Text Draw Picture

Generate DiagramTranslate Review Layout

Generate PDF Generate HTML

Do Spell CheckCheck Consistency

Approve Content

Figure 4.3.: Exemplary service type taxonomy for collaborative document creation.

of these types. The service types show the ability of a provider to perform certain tasks. To-
gether with the profile, the information about associated service types can be used to match
against requirements during a service selection procedure, e.g., during collaboration. The
createService() method of a provider can be used to request the creation of a new service of a
certain service type. This functionality is especially useful if a human is selected as provider
but does not yet provide a concrete service.

Services as defined in the component model can be aggregated in order to produce a doc-
ument composed of the resources they provide. The composition model presented in the
following defines how services as well as resources are integrated in order to achieve a co-
herent document.

4.2. Composition Model

During collaboration, contributors perform activities to provide content to a joint document.
These activities are represented as services as defined in the component model in the previ-
ous section. The composition model presented in the following defines how these services
and their associated resources can be composed into an evolving document during collabo-
ration. A simplified version of the composition model is described in [128]. A composition
can be seen as both, activity composition and content composition, i.e., integrates activities
performed by different participants as well as resources provided by the services. Figure 4.5
presents the composition model described in a UML class diagram.

The creation of a service composition according to the composition model is done by
coordinators. Coordinators plan which content is expected, which activities, i.e., services,
are required, as well as associate providers with certain activities. Providers performing

4.2. Composition Model 55

C
o

m
p

o
n

e
n

t
+

C

o
m

p
o

si
ti

o
n

M

o
d

e
l

P
ar

ti
ci

p
at

io
n

+

C

o
o

rd
in

at
io

n

M
o

d
e

l

Component Model

Composition Model

Coordination Rule Mechanism

Event Model

Participation Protocol Framework

Participants

Contributions

Results

Document Model

Figure 4.4.: Contribution “composition model”. The composition model on top of the component
model allows for the representation of document evolution and refinement. The composition model
specifies how human coordinators can compose activities of participants (i.e., content provisioning and
transformation) and delivered results into an evolving, hierarchical document. The objective is to pro-
vide a novel mechanism for end-users to flexibly compose resources and activities into one document.

associated services play contributor roles. The separation of coordinator and contributor roles
is done according to design feature 1-1 to represent different capabilities and responsibilities
of participants. A human can play both roles in a collaboration.

The goal of collaborative document creation is the creation of an electronic document for a
particular purpose. A document can thus be considered the intended result of a collaboration.
The composition model makes the result a first-class citizen of the collaboration. To start a
service composition, one or more coordinators create a document structure representing the
intended result structure and, in the course of collaboration, dynamically refine the structure
through moving, adding, or deleting expected (sub)results. More precisely, they compose the
document as an ordered tree of results which they expect or require to be delivered during
collaboration. Concrete results could for instance be certain text sections. Each result has a
unique resultId as well as exactly one parent (which is not itself) except the root result which
has no parent result. Each result might contain an arbitrary number of subresults which
can be added or removed during collaboration as required. The hierarchical structure might
represent the logical structure of a document, e.g., if chapters and sections are associated with
respective results. A hierarchical structure of a document prescribes the way how to interpret
information presented in the document [52, p. 465]. A number of reference models for
assembling documents exist, many of them structure their content components hierarchically.
In addition, in most written documents and many multimedia presentations hierarchies of
parts can be found [112][21]. The tree structure maps to other structures like flat or flow
structures thus enables a range of document models.

A result is in a resultState. Which result states exist in a concrete composition depends on
the collaboration application realized through the composition. Example states are “identi-
fied”, “created”, or “updated”. Some applications might require an “approved” state denoting

56 4. Component and Composition Model

+createOrUpdate(resourceId : String)
+delete(resourceId : String)
+request()

-serviceId : String
-serviceDescription : String
-URI : String

Service

-contributionId : String
-contributionDescription : String
-contributionState : Integer
-input : Object

Contribution
*0..1

+createService(typeId : String)

-providerId : String
-profile : String
-URI : String

Provider

*

1

Input

-typeId : String
-typeName : String

Service Type

* *

*

1

*

1

-resultId : String
-resultState : Integer

Result

0..1

-subresult
*

1

*

*

-input*

*

-output*

Figure 4.5.: Composition model.

a certain quality of the result. The result state is changed during collaboration through ser-
vices or coordinators. More details on how the state might be changed during collaboration
are provided in Section 5.1.

Results are services as defined in the component model denoted through the inheritance
relationship shown in Figure 4.5. Therefore, results might possess a resource which con-
tains content created and revised by contributors during collaboration. Results, however, can
only possess one resource. Examples for content types are text, pictures, videos, footnotes,
links/references, table of contents and other tables, or maps. The composition model there-
fore allows participants to create hierarchical documents which might contain any kind of
content and does not prescribe a concrete document model as defined in design feature 2-2.

4.2. Composition Model 57

In order to access parts, i.e., results, of a document, clients access the request() method de-
fined in the uniform interface of results. Documents or document parts can thus be reused
in other documents as specified in design feature 2-3. Providers of these services are the
coordinators of the results.

Having defined a number of expected results, coordinators identify contributions required
to deliver and refine result content. A contribution is a placeholder for a concrete activity
to be performed by a service during collaboration. Each result node might associate an
arbitrary number of contributions, for instance, one for delivery of resource content and one
for proofreading it. Placeholders for real services are useful, e.g., if at time of identification
of a required activity no concrete service can be found yet. Contributions enable flexible
selection and replacement of services during collaboration.

Contributions contain a unique contributionId as well as a contributionDescription of the
activity to be performed. The description is accompanied with a service type and might
be written by a coordinator to help participants carry out their activity. The contribution
state captures state of the activity and helps coordinators to track state of the collaboration.
Like the resultState, the contributionState depends on the concrete collaboration application.
Example contribution states are “planned”, “assigned”, “idle”, or “terminated”. The state is
changed during participation of a concrete service as described in more detail in Section 5.1.

As an example service composition, Figure 4.6 shows a snapshot of the project proposal
document decomposed into chapters and sections associated with contributions to write, in-
sert, proofread, or publish results.

Project Proposal

Subtasks

Project Description Cost Calculation Participating
Organizations

write insert insert

 result

 contribution

 input/output

 services

proofread publish

Figure 4.6.: Example composition of results and contributions with assigned services.

With each contribution, a concrete service might be associated which is responsible for
providing an atomic activity related to the collaboration, i.e., produce new result content,
or transform or publish existing result content. This service follows the component model
as presented in the previous section. Providers of these services become contributors of the
collaboration. Since services can be associated during composition execution, contributions
enable late binding of services.

58 4. Component and Composition Model

Coordinators might assign results as input to contributions. When calling the associated
service, references to these input results are provided as parameter values for the requested
service. The service can then request the content whenever needed through the request()
method of the result. Sending references instead of contents allows associated services to
retrieve content only when they need it. Content might be updated between a service request
and a response. A service might check for content updates on its own. Alternatively or
additionally to the input result references, a contribution might possess an input value which
is sent to the service as parameter value of the request.

Which results are created or updated by the service associated with the contribution is
specified by the coordinators through the output association of a contribution with a result.
A service provides content via the update() method of the result which writes the content to
the according resource(s). A service thus can deliver more than one result in a collaboration,
for instance, writing a project description and drawing the project overview picture.

To summarize, coordinators perform several steps during creation of the service compo-
sition. Figure 4.7 provides an overview of the steps sorted into the phases followed by the
classical service composition life cycle presented in Section 2.1.3.

• identification of results and result structures

• identification of required contributions (activities)

• specification of input/output resources (data to be exchanged)

Requirements
elicitation, abstract
definition of service

composition

• service discovery (for contributions)

• selection of suitable providers and services

• performing bindings to concrete service according to participation protocols

Mapping on
concrete

composition

• execution of concrete services according to participation protocols Deployment and
execution

t

Figure 4.7.: Steps performed during service composition.

The steps performed during service composition do not follow a life cycle, rather each
step can be performed as soon as minimum constraints are fulfilled. Coordinators start with
identifying results and specifying an initial result structure. As soon as at least one result, e.g.,
the root result, is identified, coordinators can specify contributions which define the required
activities. Required input and output results for these contributions can be specified now or at
a later time during collaboration. Results and contributions can be added, moved, or removed

4.3. Conclusion and Discussion 59

anytime during collaboration which enables incremental structuring of evolving documents
as required during collaboration and defined in design feature 2-1. The described steps are
part of the requirements specification as well as abstract service composition definition.

As soon as a contribution is identified, mapping on concrete services can be started. This
includes potentially the discovery of suitable service providers and services, the service selec-
tion as well as the service binding based on participation protocols as defined in Section 5.1.
Services can be unbound or replaced with other services during collaboration. Service exe-
cution can start as soon as one concrete service is bound.

The life cycle of the service composition thus does not follow predefined phases. Rather,
all specification steps can be performed during service composition execution which enables
the flexibility of composition required for collaborative document creation.

4.3. Conclusion and Discussion

The component and composition model defined in the previous sections realize the design
features specified in Chapter 3 as summarized in Table 4.1.

Table 4.1.: Realization of design features through component and composition models.
ID Design Feature Realization
DF 1-1 Support of coordinator and

contributor roles.
Coordinators define service composition.
Contributors are service providers delivering
results.

DF 1-2 Integration of human and non-
human participants providing
data and functionality.

Service types provided by humans and non-
humans are supported by the uniform service
interface.

DF 1-3 Support for atomic content
production activities.

Services manage resources which they can
provide as contributions on request.

DF 2-1 Enable incremental structur-
ing of documents and map-
ping of activities and content
to structure.

Result tree capturing document structure can
be modified throughout collaboration. Re-
sults are associated with contributions and ac-
tivities.

DF 2-2 Independence of document
model.

Each result resource in a document might
have a different document model and format.

DF 2-3 Support reuse of produced
content.

Results are services which provide document
content on request.

60 4. Component and Composition Model

The design decision for a uniform service interface in the component model has several
implications for the application. On the one hand, a uniform interface restricts functionality
of the services which are able to participate in a service composition. On the other hand, as
all activities performed during collaboration are considered to be atomic, the simple interface
suffices as it covers a large range of activities required in collaborative document creation.
New services can be easily created without having to specify a detailed service description
which potentially increases the number of available services.

The component model defines services as technology independent components. This en-
ables the creation of adapters for existing services with different technologies, e.g. adapters
to heterogeneous data sources or functionalities on the Web or in the enterprise. In addition,
adapters with user interfaces for humans can be created which uniformly enable humans to
manage the services they provide. Finally, plug-ins created for existing editors or adapters
to other channels, e.g., e-mail, allow humans to provide their services using their existing or
preferred tool environment. The development and reuse of adapters is simplified also through
the uniform interface.

The specification of a uniform service interface for all services enables an easier replace-
ment of services in a collaboration. Change to another service might be useful if persons
providing services leave the team and an activity needs to be replaced, or Web services are
not available anymore. In addition, the reusability of services is improved since the semantics
for requesting activities are the same for all activities [142].

The composition model enables a new way of service composition. On the one hand, the
document to be composed is a composition of resources which are exposed through service
interfaces. The hierarchical grouping of resources into documents provides an intuitive but
powerful model to the participants of collaborations as it enables coordination of collabo-
ration through division of labor based on the document structure. The document model is
inherently dynamic allowing the inclusion of functionality and contents of any format. On
the other hand, the definition of contributions and association of services providing resources
enables the composition of activities. The model therefore supports the fact that activities
are distributed among team members and content is distributed over different sources. As
described in Section 2.1.2, existing service composition styles often focus on either the exe-
cution of activities and the management of their dependencies or the composition of resources
in a document.

The requirement of flexibility posed on the composition model by the case of collaborative
document creation, is addressed through allowing specification of any part of the composi-
tion during execution. Due to the evolving nature of collaboration, the composition can not
be completely specified in a dedicated design phase and instantiated in an execution phase.
Rather, the composition continuously evolves during execution of a collaboration, i.e., re-

4.3. Conclusion and Discussion 61

sults and contributions are added or removed, services are associated with contributions, and
participants eventually execute services and deliver results. The collaboration manifests as
the instantiation of the composition model. Existing artifact-centric approaches combining
different composition styles require a model of the artifact before the composition can be
executed and most often follow a certain data format.

The specification of complete models facilitates the automated execution of composi-
tions [64]. Automation of compositions is desired, e.g., in order to automate business pro-
cesses using workflow engines [3]. In flow-based styles, for example, the composed services
should be automatically executed in the right order. The automated execution of composi-
tions for collaborative document creation is difficult as the model continuously changes and
evolves. In addition, the composition model does not allow for the specification of dependen-
cies between activities. The specification and automation of such dependencies is supported
by the coordination model introduced in the following chapter.

Several approaches exist which target automated service composition, e.g., based on se-
mantic technologies (cf. [41]). The composition for collaborative document creation, how-
ever, is team and collaboration specific and the requirements of the participants might change
throughout the collaboration. Coordinators identify and define requirements depending on
the state of the collaboration, i.e., the contents produced, having the collaboration goal in
mind. Automation mechanisms would have to understand state and goal of the collaboration.
Complete automation therefore is difficult, if not impossible. Still, there is room for partial
automation where the desired degree of automated composition depends on the use case.
If, for example, participants want to create a number of documents with the same document
structure, e.g., patterns in a pattern repository or bug fix descriptions, participants might wish
to have a template mechanism at hand which automatically creates expected results as well
as activities to create these results. In collaborations involving an open, unique document
structure, automation might not be required or desired.

In the presented composition model, the human coordinator is the primary force driving the
collaboration. The coordinator can distribute the required activities among participants. As
soon as contributors are involved and services are executed, dependencies between activities
or produced resources might occur which need to be coordinated. In the following chapter,
the participation and coordination model is presented which (a) specifies protocols for the
integration and execution of services and (b) addresses these coordination requirements.

5. Participation and Coordination Model

Human and non-human participants offer atomic activities of different types which are repre-
sented as services in the component model. Results produced or revised during service exe-
cution can be composed into a hierarchical, evolving document according to the composition
model. In order to integrate services, coordinators need to communicate with them, e.g., ask
human providers for commitment or request Web services to perform an activity. The inte-
gration of and communication with services or service providers follows well-defined partic-
ipation protocols. As described in Section 3.3, the nature of required and supported protocols
for participant integration and activity execution varies in different collaboration scenarios.
In order to support different collaborative document creation use cases, Section 5.1 presents
a participation protocol framework and an initial set of participation protocols. Within this
framework, collaboration system providers can flexibly specify the protocols to be supported
by their system. While existing coordination protocols and protocol frameworks, e.g., for
WS-*, target non-human services the participation protocol framework enables the integra-
tion of human and non-human participants alike. Participation protocols can be automated
as they are well-defined. Automation might be especially interesting for software services as
they follow the same conversation sequence for each request.

While participation protocols support the coordination as regards the conversations be-
tween coordinators and providers, the event model (Section 5.2) and the coordination rule
mechanism (Section 5.3) facilitate the automation of participation protocols as well as depen-
dency management. For each associated service, participation protocols are executed which
access document result elements, potentially in parallel. The execution of protocols might
result in inconsistencies, e.g., if temporal or resource dependencies exist. Thus, each change
of a state in a collaboration, e.g., during execution of a participation protocol, is denoted with
an event. Specified rules might react on events and automatically perform activities. This au-
tomation reduces the manual effort of human coordinators during collaboration. In order to
support a larger range of dependencies and protocols for different use cases, the event model
and the rule mechanism can be configured and extended by collaboration system providers
but also by coordinators of a collaboration.

64 5. Participation and Coordination Model

5.1. Participation Protocol Framework

C
o

m
p

o
-

n
e

n
t

+

C
o

m
p

o
-

si
ti

o
n

M

o
d

e
l

P
ar

ti
ci

p
at

io
n

 +

C
o

o
rd

in
at

io
n

 M
o

d
el

Component Model

Composition Model

Coordination Rule Mechanism

Event Model

Participation
Protocol
Framework

Binding Protocols
Execution Protocols

…

Figure 5.1.: Contribution “participation protocol framework”. The participation protocol framework
enables the definition of participation protocols for interactions between a coordinator and participants
of a collaboration including service binding and service execution protocols. The objective of the
participation protocol framework is to enable the flexible selection of protocols according to the use
case requirements. A set of protocols is presented which support different collaboration scenarios.

Participation protocols define conversation sequences during interactions of coordinators
and providers or services. For instance, a human provider and a coordinator communicate in
order to agree on the contribution the provider performs in the collaboration. In project teams
it might be common practice for a project coordinator to delegate tasks to team members who
have to perform them. In other teams, participants might first negotiate or be free to decline
an assigned task. The inclusion of human and software service providers at the same time
requires the technical support of participation protocols which can be handled by both types
of service providers.

The activity to be performed is the context of this interaction between coordinator and
provider or service. The participation protocols define valid states of an activity and state
transitions of the activity in a collaboration. In the collaboration model, an activity is mani-
fested through the contribution element of the composition model. A contribution maintains
the state of the activity in the contributionState field. Participants of a collaboration, i.e.,
coordinators or providers, are able to access the contribution state or change it according to
the participation protocols.

Figure 5.2 shows a schematic overview of the main states in the life cycle of a contribution.
As soon as a participant identifies the need for a contribution, he creates a contribution ele-
ment, for instance, to proofread the project proposal. Eventually, a service needs to be bound
to the collaboration which ensures the provider’s commitment to contribute a certain service
for the collaboration as well as the consent of the coordinator. For instance, a person is asked
if he is willing to proofread the project proposal collaboration. If the person accepts, the

5.1. Participation Protocol Framework 65

created bound executed

service

binding

protocols

service

execution

protocols

deleted

state

extension point

state transition

Figure 5.2.: Overview of participation protocols in contribution life cycle.

proofreading service he provides is bound to the proofreading contribution. Such protocols
for binding of a service to a contribution are called binding protocols.

In Web services, the activity of binding is also called service selection. Service selection
specifies how and when a concrete service is bound to a composition [7, p. 267ff.]. In static
binding, the endpoint of a service is specified directly in the composition. Dynamic binding,
where the endpoint of the service is looked up at a directory or calculated based on a specified
query just before execution, eases replacement of services. Service selection looks at binding
procedures from the composition’s viewpoint, which is the viewpoint of the coordinator in
the case of collaborative document creation. The binding of services provided by humans,
however, also involves interactions of the coordinator with the service providers and thus
requires adoption of binding protocols, e.g., for negotiation.

From the state “bound”, a contribution can transfer to state “executed”. This is performed
through execution protocols, i.e., the bound service is requested to be performed. As an
example, the coordinator decides that the project proposal is ready to be proofread and calls
the service associated with the according contribution. In this case, the person delivers the
results asynchronously. In case a software service is involved, the response to the service
call might be synchronous. During all stages, a contribution can be deleted, e.g., if it is not
required anymore.

The dashed boxes in Figure 5.2 are placeholders for participation protocols which are
implemented in concrete collaboration systems in order to ensure correct state transfers of
contributions during communication. These boxes are extension points in the collaboration
model. In the following, a set of basic participation protocols are proposed which enable
the participation of providers and their services in a collaboration. Earlier versions of the
participation protocols are described in [128].

The basic participation protocols are described using a slightly modified version of the
diagram type used in the WS-Coordination protocols WS-BA [98] and WS-AT [94] and
described as coordination protocol graph (CPG) in [72]. The nodes of this directed graph are
states, the edges denote messages which are exchanged by the participating entities which

66 5. Participation and Coordination Model

lead to state transitions of the communicating parties. Messages can originate from different
parties which is denoted by dashed and solid lines. The diagram type is chosen as it allows for
the graphical representation of messages from different participants and the effects of those
messages on a state in one diagram. The following protocol snippets are part of the overall
contribution life cycle and therefore do not present an explicit starting or ending node. As
opposed to the CPG, the protocol flow might contain cycles, e.g., it might return to the state
“created”. In addition, a (human) coordinator might want to decide which step in the protocol
to take next. Therefore, more than one outgoing edge with the same participant is allowed
for a node.

5.1.1. Service Binding Protocols

Service binding is the association of a service to a contribution. Service binding can be
initiated by coordinators or service providers which implies different protocols, namely (a)
coordinator-initiated service binding and (b) self-service binding of a provider.

(a) Coordinator-initiated service binding protocol. A coordinator might choose a provider
suitable for a contribution in his collaboration and ask the provider to participate. Fig-
ure 5.3 shows this coordinator-initiated service binding protocol. Having created a con-
tribution, the coordinator associates the contribution with a provider, where the contri-
bution state is “binding open”. According to the protocol, the coordinator then asks a
provider for binding a service which changes the contribution state to “asked for bind-
ing”. The binding request can be aborted by the coordinator, which transfers the contri-
bution back to the state “binding open”. A service provider might decline or accept the
binding request. A contribution is then “bound” with the service. In case the binding is
not required anymore or another service should be bound, the binding can be completely
deleted by the coordinator. Variations of the protocol might exist, e.g., that deleting a
binding is also allowed for the provider.

created
binding

open

asked for

binding
bound

ask for binding

abort

delete binding

decline

accept

coordinator

provider

associate

provider

Figure 5.3.: Coordinator-initiated binding protocol.

(b) Self-service binding protocol. A provider might volunteer for a contribution and apply
for it following a self-service binding protocol. In this case, the coordinator has to decide

5.1. Participation Protocol Framework 67

whether to accept the application as shown in Figure 5.4. Self-service binding might be
useful in human collaboration where for instance participants discussed and allocated
activities verbally.

created
binding

open

asked for

binding
bound

ask for binding

abort

delete binding

decline

accept

coordinator

provider

associate

provider

Figure 5.4.: Self-service binding protocol.

If both protocols are to be implemented in a single collaboration system, the contribution
needs to store additional state information, e.g., whether provider or coordinator already ac-
cepted a binding request. More complex binding protocols could involve resource allocation
or negotiation mechanisms, e.g., to choose the best or best available service or negotiate addi-
tional conditions. Especially for services provided in the enterprise, authorization protocols
might be useful.

5.1.2. Service Execution Protocols

Once bound, a service can be requested and eventually deliver, transform, publish, or approve
result content. In the following a set of protocols is described regulating the service execution
communication: (a) The service request-response protocol defines how performing a contri-
bution influences a result. (b) The service request-response protocol can be extended with
approval. (c) The input retrieval protocol allows service providers to retrieve the existing
result contents which is declared as input to the contribution.

(a) Service request-response protocol. The execution of a service influences the state of the
results it has to deliver or refine. The result state is captured in the resultState attribute
in result element of the composition model. Which results a service has to work on, is
specified in the composition model through the output association of a contribution to
results. A contribution might thus deliver several results in one execution or execute sev-
eral times in order to provide all results its contribution is associated with. For instance,
one person might be responsible for providing texts for the main part of the project pro-
posal which is split into several results. The according contribution is associated with
all of those results through the output association. The person, however, can deliver one
result after the other through providing its service several times.

68 5. Participation and Coordination Model

Figure 5.5(a) shows the life cycle of a contribution which influences the life cycle of a
result. The corresponding result life cycle is shown in Figure 5.5(b). The dotted arrows
denote influences of the execution of service A on the result life cycle. Another service
B might also influence the result. The life cycle of service B is not shown in the figures.

bound executedrequested
bind service create or

update content

request
service

update content

request service
request service

created

(a) Contribution life cycle.

identified
content
created

identifiedcontent
updatedcreate content update content

update content

service A

service B

(b) Result life cycle.

Figure 5.5.: Service request-response protocol.

As soon as a contribution is bound with a service, service A in the example, a coordinator
might request the execution of the service by calling its request() method. The contribu-
tion which captures the protocol state for the service is transferred to state “requested”.
The contribution can be requested again, e.g., if the contributor does not react until a
specified point in time. Being requested, a service provider eventually produces contents
and contributes it to the corresponding result. The result turns to state “content created”
or “content updated” if content was already created, e.g., through another contribution.
In state “executed” the contribution can be called again through the coordinator or exe-
cuted again through the service provider, e.g., for updates of a text. A repeated request
can be used as a reminder for human services. Publishing activities do not have an impact
on the result life cycle.

As an example, a service bound to a contribution is requested to deliver the project de-
scription. As soon as the service provider creates the content, i.e., the project description,
the result changes to state “created”. The “update content” activity of a service might
update one to all output result contents of the contribution associated with the service.

The service request-response protocol allows for the decoupling of request and response.
A service might provide several logically coupled results by responding to one service
call, e.g., writing the abstract and the summary of a document. Furthermore, provider
respond synchronously (for software services) or asynchronously (for human services).

5.1. Participation Protocol Framework 69

(b) Service request-response protocol with approval. The approval of a result or the decla-
ration of a contribution to be finished might be important to ensure quality, e.g., through
the four-eyes principle. Special approval service types are used in the following to realize
approval protocols. The service request-response protocols are extended with additional
states. Figure 5.6(b) shows a result whose content is originally created by a service A.
Figure 5.6(a) presents the contribution life cycle of the approval service B responsible
for approving the result.

bound executedrequested completed
bind service approve

content

request
service

approve content

request service

close

request service

created

(a) Contribution life cycle of approval service B.

identified
content

created
identifiedcontent

updated

identified
content

approved

create
content

update content

approve content approve content

update content

update content
service A

service B (approval)

service C (update)

coordinator (influenced

by service C)

(b) Result life cycle.

Figure 5.6.: Service request-response protocol with approval.

Accordingly, the execution of the approval service B triggers the transfer of the corre-
sponding result to state “content approved”. As soon as another service, e.g., service
C in the figure, updates the approved result, approval service B is called again by the
coordinator as denoted by the red arrows. Optionally, a contribution might be closed
by a coordinator when it is not required anymore or the coordination considers it to be
finished.

(c) Input Retrieval Protocol. Services might need to retrieve input like parts of the result
content which already exists. For instance, a translation service needs as input the text
it has to translate. A human translator might also require additional context information,
e.g., already translated content, in order to produce high quality content. Input might
also contain configuration parameters for a service, e.g., keywords or values. Reading
the input means navigating through the result tree. Each request to an input result returns
the content of the resource associated with this result as well as URIs to other results

70 5. Participation and Coordination Model

associated with this result (e.g., subresults) which can also be requested by the provider.
This way, the service can retrieve as many input results as required. The input might
be read during any state of the contribution life cycle. Access control mechanisms like
authorization protocols or role models might be implemented on top.

The input retrieval protocol is inspired by the HATEOAS principle of REST[47, p. 82],
although no application state is changed in the first place. Service providers can decide
which result contents they would like to retrieve. They can execute the protocol at any
time. Transferring content in a parameter value at the time of the service request could
possibly result in a service working on outdated data. The provider also does not need
to store result content, e.g., if he decides to work on the contribution at a later point in
time. The provider just needs to know one result URI which is provided through the
input relationship associated with the contribution. The document structure is not need
to be known. The protocol thus works with flat or hierarchical models.

5.1.3. Conclusion and Discussion

The participation protocol framework realizes the design features specified in Chapter 3 as
shown in Table 5.1.

Table 5.1.: Realization of design features through participation protocol framework.
ID Design Feature Realization
DF 3-1 Support different protocols for find-

ing contributors and associating them
to activities.

Participation protocol framework al-
lows for integration of different use
case specific service binding protocols.

DF 3-2 Associate execution of activities with
document part states.

Execution protocols manage associa-
tion between contribution state and re-
sult state.

DF 3-3 Enable participants to access (parts
of) the document and use it as input.

Results are services which can be ac-
cessed through requesting them using
an input retrieval protocol.

The participation protocol framework is a simple framework for the integration of service
providers into a collaboration. Depending on the use case to be supported by a specific col-
laboration system, suitable protocols are selected or defined for the system and implemented,
e.g., using a protocol engine. All participants in a collaboration need to support the speci-
fied participation protocols. Besides the described example protocols, collaboration systems

5.1. Participation Protocol Framework 71

could implement sophisticated authentication protocols or protocols for pushing result con-
tents to participating providers.

Unifying the protocols in a collaboration eases the integration of new participants which
is required in collaborative document creation where the contributions and participants can
not be specified in advance. The specification of protocols allows collaboration systems to
(semi-)automate protocol execution depending on the use case or participant. For example,
services might automatically be requested when they change to state “bound”. Software ser-
vices might themselves perform automated execution, e.g., automatically accept requests for
bindings or decline them in case they are overloaded. Automation of protocols is described
in the following sections.

As described in Chapter 4, flexible participation is realized through the fact that specifica-
tion can be performed during execution of the service composition. The conversations can
therefore be started at any time during collaboration. The collaboration is started as soon as
the first result node is created. The document itself is seen to be constantly evolving during
collaboration. Thus, the shown protocols do not include a “finish” state of a result. Still,
collaboration system designers might specify protocols for the protocol framework which
involve such a state for a result.

The participation protocol framework is inspired by the WS-Coordination framework [96].
The main difference between the frameworks is the interactions they focus. Besides sim-
ple interactions, WS-Coordination protocols potentially support long-running transactions,
mainly focused on non-human participants. The protocols might involve several participants.
Participation protocols as presented in the previous sections are restricted to coordinating in-
teractions between two participants for the goal of service binding or service execution. The
participation protocols allow coordinators to integrate humans and software services alike.
Complex interactions between several participants, however, are not considered in the cur-
rent version of the framework. The participation protocols, however, are lightweight because
no complex, long-running conversations are required in order to bind a service or provide a
result. As no specific logic is required for deciding the next steps, the implementation of the
protocols should be straight-forward.

WS-Coordination provides a context for communication which is created through a ded-
icated activation service on request of one participant. In the participation protocol frame-
work, the contribution element builds the context for the definition of protocols for allocating
and requesting participants as well as executing work. In WS-Coordination, the context is
exchanged between participants through messages. In contrary, in the participation protocol
framework, a shared data approach is applied where all participants can access the contribu-
tion. Contributions are resources which capture the state of conversations. Participants do
not have to store state information of a conversation. As the contribution captures the state of

72 5. Participation and Coordination Model

a conversation centrally as a resource, services themselves can be stateless. This potentially
allows for better reusability (e.g., higher level services like “writing” can be offered instead
of “writing abstract for project proposal X”). Service providers, however, have to be able to
observe the contributions they are responsible for. Coordinators are enabled to access and
track conversation state of all contributions in a collaboration. State tracking is a coordina-
tion mechanism which can be applied for collaborative document creation to track progress
of a collaboration.

In WS-Coordination, a registration service allows a Web service to register for a specific
activity in a specific context using a particular coordination protocol. A Web service may
engage for a number of activities at the same time. Similarly, in the participation protocol
framework, providers might also participate in a number of activities for binding and execut-
ing services. Registration for a specific activity therefore is similar to binding a service to
a contribution. The binding in the participation protocol framework might follow different
protocols.

Participation protocols technically enable providers to be bound and to contribute to a
collaboration. In a collaboration, a large range of conversations happen, potentially at the
same time. These conversations might depend on each other or influence the same results.
Coordination mechanisms enable the management of dependencies. During state changes
of contributions and results, events are emitted which can be used for these coordination
mechanisms, e.g., to reduce manual coordination efforts for the coordinator. The following
section presents the event model.

5.2. Event Model

C
o

m
p

o
-

n
e

n
t

+

C
o

m
p

o
-

si
ti

o
n

M

o
d

e
l

P
ar

ti
ci

p
at

io
n

 +

C
o

o
rd

in
at

io
n

 M
o

d
el

Component Model

Composition Model

Coordination Rule Mechanism

Event Model

Participation Protocol Framework

Event Types

Atomic Events

Composite Events

Figure 5.7.: Contribution “event model”. The event model defines atomic and composite events which
might occur during collaboration, i.e., changes of the service composition and execution of participation
protocols. The event model is extensible in order to be adaptable to a range of use cases.

5.2. Event Model 73

Activities in a collaboration might be of interest for other participants in a collaboration.
For instance, a coordinator might want to track the state of a collaboration through monitor-
ing which contributions are provided and which are open. A coordinator might want to send
reminders to services of open contributions, e.g., to manage deadline dependencies. Coor-
dination should be automated in order to reduce manual coordination efforts. As a basis for
automation serves an event mechanism based on the participation protocols presented in the
previous section as well as the activities performed by coordinators during composition of
results and contributions as described in Section 4.2.

An event is “anything that happens, or is contemplated as happening” [82]. An event refers
to the change of a state of a real or virtual object or attribute of an object [19, p. 48]. Types
of events range from physical or technical events occurring with a high frequency to business
or human-triggered events [19, p. 85f.]. Figure 5.8 presents the structure of atomic event
types in the collaboration model. An extract of the structure is published in [128]. Instances
of the event types are emitted during collaboration, e.g., caused by coordination activities
which change state of service bindings or service response activities. Each state change in
the participation protocols triggers an event.

-event ID
-timestamp

Abstract Event

Content Approved

Contribution Requested

-result

Content Created or Updated

-service

Asked for Binding

-result

Contribution Created

-service

Bound

-contribution

Service Binding

-service
-contribution

Service Execution
-service

Binding Deleted

-service

Binding Declined Result Created

Contribution Executed Contribution Completed

-result

Result Structure

Result Deleted

-old parent result
-new parent result

Result Moved

Timer

-service

Service Associated

Figure 5.8.: Atomic event types for collaborative document creation.

74 5. Participation and Coordination Model

The model follows established techniques for event definition (cf. [19]). Accordingly, each
event type inherits from an abstract event type and includes a unique ID and a timestamp
denoting the time of emission. In addition, each event exposes context-specific information
like its source or the result which was changed. Events of the type service binding are emitted
during the service binding protocols presented in the previous section. Events of the type
service execution capture all events of the result and contribution life cycles during execution
of a service. Changes on the overall result tree structure, e.g., creating or moving results,
are denoted by events of the type result structure. Events of the type timer are emitted at
specified points in time. New event types can be added by collaboration system designers
as required through inheriting abstract event. Adding new event types might be required if
additional participation protocols are implemented defining new states and transitions.

In addition to atomic events, derived or composite events [82] might be captured during
collaboration. Derived events are events which are generated by a method based on the
occurrence or non-occurrence of other events. For instance, an event might be triggered if a
certain contribution was not executed until a certain point in time. The event is derived from
the absence of an event.

Composite events mark a more complex situation and are derived events which connect
atomic events. During collaborations, event streams of atomic events are produced which
are continuously queried by event processing engines in order to detect event patterns [19,
p. 18ff.] representing complex situations. A number of event specification languages exist to
define event patterns. For example, event patterns can be defined using event algebras, also
called composition-operator-based languages [43, p. 49ff.], which specify dependencies and
constraints for a set of events [19, p. 109]. Dependencies like sequences are defined using
operators over event types or event data. Alternative languages are, for example, data stream
query and production rule languages (cf. [43, p. 56ff.] for a detailed discussion).

Event patterns in the collaboration model are specified using an event algebra since such
languages are perceived to be intuitive and easy to use for developers [43, p. 69]. The lan-
guage, which is inspired by [19, p. 110f.], supports only few operators in order to minimize
potential misinterpretations and misunderstandings of patterns by collaboration participants.
An early version of the language is published in [128]. The language is designed to provide
an initial mechanism to detect complex situations in collaborative document creation rather
than to be all-embracing and formally correct. Sufficiency and usability of the specified
mechanism needs to be evaluated in collaboration scenarios in future work.

Event pattern specification is based on the operators conjunction, disjunction, sequence,
and negation which are supported by all existing composition-operator-based languages [43,
p. 51]:

5.2. Event Model 75

• A ∧ B defines a conjunction which denotes that both, an event of type A and an event
of type B, have to occur in order to fulfill the event pattern regardless of the order of
their occurrence.

• A ∨ B defines a disjunction which denotes that either an event of type A or an event of
type B has to occur in order to fulfill the event pattern.

• A→ B defines a sequence which denotes that the pattern is detected if an event of type
A is followed by an event of type B.

• ¬A defines a negation which denotes the non-occurrence of an event of type A during a
specified time window. The absence of an event might denote a potential inconsistency,
e.g., if an update of a diagram was denoted by an event but not the update of the
describing text.

In addition, conditions on the attribute values of an event type might be specified. For
example, A(id=“123”) describes an event pattern for an event of type A with the ID 123. In
the following, such event types are called conditioned.

Operators can be combined to construct more complex event patterns. For example, the
pattern A → (B ∨ C) describes an event pattern where an event of type A is followed by
either an event of type B or of type C [19, p. 110]. Events of type timer can be specified in
an event pattern using the template Timer(year-month-day-hour-minute). For example, the
event Timer(2013-06-01-8-30) is detected on June 1st, 2013 at 8.30am. The event Timer(*-
--14-00) is detected every day at 2pm.

Additionally, the following assumptions are made for the event model.

• An event stream comprises all events of exactly one collaboration. Events in an event
stream are ordered based on their time of occurrence.

• If two event types are connected with an operator, e.g., A ∧ B, any event of arbitrary
type might occur in between the events of type A and type B, unless otherwise specified
through a negation, e.g., A ∧ B ∧ ¬ C.

• If an event pattern contains a negation, the pattern implicitly defines a time window in
which the negation holds. The time window starts when the first event matching the
pattern is detected, and ends when the last required event or an event of the negated
event type is detected. For example, for the event pattern A → (B ∧ ¬ C) the time
window starts as soon as an event of type A is detected and expires as soon as an event
of type B is detected denoting the successful derivation of the composite event.

76 5. Participation and Coordination Model

Atomic and composite events denote situations in a collaboration which are made explicit
through the extensible event model. As defined in design feature 4-1, events support basic
coordination as they can be seen as a notification on a situation which might require action
from a coordinator or provider. More sophisticated coordination means can be based on
events in form of rules. The coordination rule mechanism is presented in the following
section.

5.3. Coordination Rule Mechanism

C
o

m
p

o
-

n
e

n
t

+

C
o

m
p

o
-

si
ti

o
n

M

o
d

e
l

P
ar

ti
ci

p
at

io
n

 +

C
o

o
rd

in
at

io
n

 M
o

d
el

Component Model

Composition Model

Coordination
Rule Mechanism

Event Model

Participation Protocol Framework

ECA Rules Actions

Operators

Figure 5.9.: Contribution “coordination rule mechanism”. An ECA rule mechanism enables partici-
pants to specify rules reacting on events. Rules allow for coordination of collaborations, including the
partial automation of participation protocols and the management of dependencies between activities
and results. Frequent dependencies between activities are identified and rules are proposed to manage
them.

The service composition supported by the component and composition model defined in
Chapter 4 as well as the participation protocols enable manual execution of a service compo-
sition supporting collaboration. The specification and execution of the service composition
is mainly driven by the coordinators of a collaboration. The coordination rule mechanism de-
scribed in this section enables, on the one hand, the reduction of manual coordination effort
through (semi-)automation. On the other hand, the mechanism supports additional coordina-
tion means based on events occurring during collaboration.

Figure 5.10 depicts potential dependencies occurring during collaborative creation of a
project proposal which might need to be coordinated. Several persons provide input to the
project description which poses a shared resource dependency on the result. A content de-
pendency exists between the project description and the project overview picture. Once the
project description is updated, the project description has to be aligned. In the example, a
Web service inserts the profile descriptions of the participating organizations. A translation
activity performed on these descriptions requires them as input which denotes a producer/-

5.3. Coordination Rule Mechanism 77

proofread

publish

 Project Description

 Subtasks

 Cost Calculation

 Participating Organizations

Org. A designs and develops
innovative solutions for distributed
information systems in the Cloud.

write

insert
 Org. A Org. B
Personnel 2000 1500
Traveling 300 200

Other 100 50
Total 2400 1750

10th of August

 Project Overview Picture

translate insert contributions of participants

dependencies

Figure 5.10.: Dependencies during collaborative creation of a project proposal document.

consumer relation between the activities. Finally, the document should not be published
before it is proofread – a prerequisite relation.

In order to manage such dependencies, coordinators can specify coordination rules which
are handled by a coordination rule engine. A rule consists of a set of events as defined in
the previous section, a set of conditions, and a set of actions. The set of conditions might be
empty. At least one event and one action are required.

• Event patterns are specified as presented in Section 5.2. If an event pattern matches,
i.e., an atomic or composite event occurs, the rule is activated, conditions are checked,
and actions are executed.

• Conditions are functions over events, event attributes, and environment variables. A
function might check whether an attribute conforms to a specific value, e.g., whether
the event occurred in a specific time interval or the event refers to a certain result. In
addition, conditions might be arbitrary functions performing calculations or checking
attribute values. The return value of the functions are either “true” or “false”. A
condition might be composed of a set of conditions which are concatenated through
conjunctions or disjunctions. If the condition is evaluated to true, actions are executed
according to the rule specification.

• Actions are automated activities triggered by a rule. Actions either emit derived events
or they call services according to the participation protocols.

Only one event can occur at a time. Events are placed into a queue which is processed by
the rule engine on a first in first out basis. The rule engine is push-based, i.e., whenever an
event occurs all rules are selected which match this event. Potentially, not all events in an
event pattern are fulfilled. Rules with partially fulfilled event patterns are annotated with a
note and a timestamp that the event was already detected. Rules in which the event pattern is

78 5. Participation and Coordination Model

completed are checked for their conditions. If the condition returns false, nothing happens.
If the condition returns true or no condition exists, all actions of the rule are executed. The
event is deleted from the queue.

During execution of rules, several conflicts or inconsistencies might occur. Loops might
omit termination, e.g., if events triggering a rule are also emitted in the action part of the
rule. General possible resolution mechanisms for loops include static analysis of rules before
execution as well as restricting the cascading level of rules [30].

A pragmatic resolution mechanism is to forbid the creation of rules which listen to the
same event as emitted in the action. Another example conflict is a loop which occurs if an
update of a service triggers the update of another service, which again triggers an update of
the first service. Such loops might be required, e.g., if two interdependent results should be
kept up to date. The scenario can be avoided if human services and coordinators are involved
which can control the execution of the rule. As soon as both services are automated software
services, however, the rule might cause problems.

Different execution orders of rules might result in different states of results or contribu-
tions. For instance, two rules listen to the same event and both rules change the state of
the same contribution, one to “bound” the other to “binding open”. In order to avoid such
conflicts, a static analysis approach could be applied which checks rules at their creation in
order to avoid conflicts with already existing rules. Alternatively, the creator of rules might
prioritize rules [30]. The usability of rule prioritization for end-users as the intended target
group of the collaboration model, however, has to be examined.

Analysis of rule bases and mechanisms to ensure termination as well as avoid conflicts
caused by the execution order, i.e., ensure confluence, is and has been subject to research,
especially in the active database domain [106]. Evaluation of applicability of existing ap-
proaches or design of new mechanisms is out of scope in this thesis.

Rules are specified by coordinators over the event types as described in Listing 5.1 using
the Extended Backus-Naur Form (EBNF) [61].

(* Specification of rule: *)

rule = ` ON ', event, [` IF ', condition], ` DO ', action ;

(* Specification of event pattern according to the event model: *)

event = [¬] atomic-event | [¬] conditioned-event

| [¬] composite-event ;

atomic-event = ? atomic event type ? ;

conditioned-event = atomic-event, (, ? event attribute ?, =,

`"', ? value ? ,`"',) ;

composite-event = [(], event, operator, event, [)] ;

5.3. Coordination Rule Mechanism 79

operator = → | ∧ | ∨ ;

(* Specification of conditions: *)

condition = simple-condition | composed-condition ;

composed-condition = [(], condition, (` AND '|` OR '),

condition, [)] ;

simple-condition = atomic-event, `.', ? event attribute ? ,

(=|!=|>|<|=>|=< , `"', ? value ? , `"'

| `[', timestamp,`,', timestamp, `]'

| ? function with parameters ? ;

(* Specification of actions: *)

action = simple-condition | composed-condition ;

simple-action = ? function with parameters ? ;

composed-action = action, ` AND ', action ;

Listing 5.1: Rule language specified in EBNF.

As described in the event model in the previous section, an event pattern can either contain
a single atomic event or a composite event. Both, an atomic or a composite event can be
negated using the symbol ¬. An atomic-event is of an atomic event type as specified
in the event model. For the specification of a composite-event, the operator symbols
defined in the previous section for concatenating events can be used: → for sequence, ∧ for
conjunction, and ∨ for disjunction. The optional condition might be simple composed. A
simple-condition contains one function. A composed-condition concatenates several
conditions using the operators AND for conjunction or OR for disjunction. In a condition,
event attributes can be used for filtering using the dot operator, e.g., to listen for bound events
concerning a particular contribution. The expression operators =, !=, >, <, =>, =< can be
used for comparing an attribute to a value. For instance, e1.id=“123” matches if the ID
attribute of the e1 event has the value “123”. A condition might also call a function with
specific parameters which evaluates to true or false. A condition might specify a time frame
in which the event pattern has to be fulfilled using a start and an end timestamp. A rule
might trigger one or more actions. The simple-action specifies a function to be called,
for instance, a request to a particular service. A composed-action composes two or more
simple actions using the AND operator.

Rules are either generic or collaboration-specific. Generic rules apply for all collaborations
of the same type which can be supported by the same collaboration system. Collaboration-
specific rules support coordination of one collaboration and are defined by the coordinator(s)
of this collaboration. A collaboration system employs a mixture of generic and collaboration-

80 5. Participation and Coordination Model

specific rules. The required rules differ for each use case and potentially for each single
collaboration. Features supported by rules are (a) the (semi-)automated execution of partic-
ipation protocols mainly supported by generic rules, (b) the specification and coordination
of collaboration-specific dependencies, and (c) the detection and management of potential
inconsistencies through suggesting or generating rules. In the following, an exemplary set of
rules is presented for these features.

5.3.1. Rules for Semi-Automation of Participation Protocols

The participation protocols presented in Section 5.1 prescribe steps to be followed for binding
and invoking a service. In order to support a human coordinator in execution of these steps,
service binding and invocation can be performed automatically by a coordination engine
implemented in a collaboration system. A semi-automation, i.e., the automation of a subset
of the steps required to complete a protocol execution, can be reached through configuring
the coordination engine with the following rules (adapted version of the automation rule
specified in [128]).

ON ServiceAssociated

DO askForBinding(ServiceAssociated.contribution)

ON Bound

DO requestContribution(Bound.contribution)

These rules are triggered as soon as an event of type ServiceAssociated or Bound is
detected. An event of type ServiceAssociated is emitted whenever a coordinator adds a
service to a contribution. The first rule is activated and subsequently the rule engine calls
as action the askForBinding method which sends a message to the associated service ask-
ing it for acceptance of the binding according to the service binding protocol. As soon as
a binding is accepted, i.e., an event of type Bound is detected, the second rule calls the
requestContribution method. This method calls the associated service.

A human coordinator can restrict this behavior through extending the rules, e.g., if a
specific service should not be called automatically. The following rule prevents the exe-
cution of the action if the bound service has the ID publish. The specified rule becomes
collaboration-specific.

ON Bound

IF Bound.service!="publish"

DO requestContribution(Bound.contribution)

5.3. Coordination Rule Mechanism 81

5.3.2. Rules for Coordinating Collaboration-Specific Dependencies

A second use case for coordination rules is the management of collaboration-specific depen-
dencies. This section provides a set of rules which can be built with the rule mechanism and
might be useful during collaboration as explained in Section 3.4.

As introduced in Section 2.3, prerequisite relations, i.e., the requirement that one activity
can only be performed when another activity is finished, or producer/consumer relations, i.e.,
that one activity creates input for another activity, might occur. Such dependencies can be
handled through task sequencing or notifications. The following rule reacts on the creation or
update of a specific result – the result with ID project description – in order to request
the contribution with ID translate.

ON ContentCreatedOrUpdated(result="project description")

DO requestContribution("translate")

The rule can also help to manage content dependencies where two results interrelate. These
rules are specific to the collaboration and have to be created for each dependency if coordi-
nation of the dependency is desired. Fully automating such dependencies is difficult as they
require an understanding of the content of the artifact. The combination of the sequencing
rule with rule-based automated service requests in one collaboration could cause a request to
the translate service before potential result content for the project description is provided.

In order to manage temporal dependencies in a restricting way, i.e., disallow the execution
of particular actions, a collaboration system could decouple the intent to request a service
from the actual request [128]. Events of type ContributionRequested could be interpreted
as the intention to request the contribution. An event of type ContributionRequested is
emitted as soon as the coordinator requests a contribution, but before the call is sent to the
associated service. The rule engine can then be configured with rules constraining the request
of specific services unless particular events have occurred.

At each occurrence of an event of type ContributionRequested, the following rule
requests the service specified in the event (adapted version from the rule presented in [128]).

ON ContributionRequested

DO requestService(ContributionRequested.service)

In order to introduce restrictions, the rule can be extended with conditions, for instance,
if a prerequisite relationship holds, e.g., the publish service should only be performed after
the proofread was done. As extension, the coordinator adds a condition to the rule which
prevents the execution of the service call to the publish service and a rule which only executes
the service if the proofread already updated some content:

82 5. Participation and Coordination Model

ON ContributionRequested

IF ContributionRequested.service!="publish"

DO requestService(ContributionRequested.service)

ON ContributionRequested(service="publish") ∧
ContentCreatedOrUpdated(service="proofread")

DO requestService(ContributionRequested.service)

The rule mechanism enables the specification of reminders in order to improve manage-
ment of deadline dependencies. For instance, if the result with ID cost calculation

section in the project proposal is not created or updated until February, 18th in 2013, the
contribution with the ID cost calculation is requested. The rule does not ensure deadline
accordance, however, the coordinator is free in defining times for reminders.

ON Timer(2013-02-18-00-00) ∧
¬ ContentCreatedOrUpdated(result="cost calculation section")

DO requestContribution("cost calculation")

5.3.3. Suggestion of Rules

Shared resource dependencies may lead to inconsistencies during the collaboration when
results are accessed simultaneously by two or more services. The coordination engine can
help the human coordinator through detecting potential inconsistencies and suggesting rules
to avoid them.

The output relation of a contribution to a result as defined in the composition model in
Section 4.2 specifies which results, hence resources in the document, the associated service
is allowed to update. The event model could contain an event for the association of a con-
tribution with a result. Whenever an event of this type occurs, a rule might check whether
another contribution already associates the result. The rule engine might warn the user and
suggest a rule for task sequencing as shown in the previous section. The input relation of a
contribution to a result defines which results an associated service might request as input. In
order to avoid inconsistent reads and a service working on outdated input data, a rule might
check on association of the contribution with the result whether the result is associated as out-
put of another contribution. The action of the rule might warn the coordinator and propose a
task sequencing rule.

The definition of powerful rules for the detection of additional rules for shared resource
dependency management is subject of future work.

5.4. Conclusion and Discussion 83

5.4. Conclusion and Discussion

The event model and coordination rule mechanism defined in the previous sections realize
the design features specified in Chapter 3 as shown in Table 5.2.

Table 5.2.: Realization of design features through event model and coordination rule mechanism.
ID Design Feature Realization
DF 4-1 Provide extensible event model to

support notification as base coordi-
nation mechanism.

New atomic events can be added to the
event model presented in Section 5.2.

DF 4-2 Allow coordinators to specify rules
based on events for different coordi-
nation mechanisms.

Coordination rule mechanism defines
a language to specify ECA rules
and a rule engine enabling rule-
based participation protocol automa-
tion and collaboration-specific coordi-
nation mechanisms.

The event model presented in Section 5.2 in combination with the coordination rule mech-
anism allows collaboration systems to reduce required effort of human coordinators through
semi-automation of protocols as well as the management of collaboration-specific depen-
dencies in service compositions. While participation protocols support the coordination as
regards the binding and execution of services in a composition, the coordination rule mech-
anism adds dependency management between participating services. A discussion on the
participation protocol framework is provided in Section 5.1.3.

The configuration of coordination mechanisms to support different use cases can be per-
formed by collaboration system providers or by coordinators of collaborations. Collabora-
tion system providers can use the event model and actions as they are designed. Alternatively,
they might create new event types and define action types which suit particular requirements
of collaborations to be supported with the designed system. These event and action types
are base for the rules which can be specified in the collaboration system. Collaboration sys-
tem providers might also specify particular rules, e.g., for protocol automation, which are
applied throughout the system. Finally, collaboration system providers specify the available
participation protocols for a system. The specifications in the collaboration system frame the
activities which can be performed by participants of a system. Coordinators might configure
coordination through specifying rules.

ECA rules originally were applied in the context of active databases [106] but also have
been used for exception handling in workflows or on application-level to express reactive and

84 5. Participation and Coordination Model

adaptive behaviors and enable developers to tailor applications to their domain needs [30].
Moreover, ECA rules are used in knowledge management since humans are familiar with
thinking in ECA rules and at the same time ECA rules allow for formal representation in
systems [12, p. 73]. In addition, the combination of event-driven with service-oriented ar-
chitectures enables the implementation of agile and adaptive business processes based on
service composition [19, p. 38]. In the collaboration model, the rule mechanism enables
flexible configuration and specification of collaboration-specific behavior, e.g., a rule can
be added or removed anytime during collaboration by a human coordinator. Services are
loosely coupled via rules. This flexibility is useful to support evolving, hardly predictable
service compositions as described in the composition model. The flexibility, however, might
result in conflicts and inconsistencies. A large set of rules might diminish usability for the
human coordinators. The rule language is powerful which complicates its use for human
coordinators. Mechanisms for efficient rule management and conflict handling usable for
collaboration participants are subject of future work.

Rules allow for automation of tasks in a collaboration. Automation can be defined as the
automated execution of tasks which could be performed by humans [104]. On the one hand,
automation supports coordination tasks of human coordinators, e.g., through rules which no-
tify about dependencies and potential inconsistencies or automatically make service calls.
On the other hand, automation increases coordination overhead, e.g., if software services are
included to perform specific tasks. Collaboration system providers have to design protocols
which can be understood and supported by all participants, humans and non-humans. Which
tasks should be automated has to be decided for each use case, or even collaboration. Differ-
ent aspects might influence this decision (cf. [105]). For example, the mental and physical
workload of participants might be decreased through automation. On the other hand, partic-
ipants might loose awareness of events happening during collaboration. Additional criteria
are costs of automation, e.g., in case of wrong automation rules, or trust in automated systems
by the end-user [105]. The rule mechanism aims to support semi-automation and dependency
management rather than full automation of processes. In the collaboration model, the end-
user can co-decide on the degree of automation. For example, participants can decide which
steps in the protocols to automate. This might have a positive effect on trust as long as the
rule base stays usable.

To examine whether the collaboration model is feasible and can be implemented using
service composition technologies, an infrastructure and a collaboration application realize a
version of the collaboration model as presented in the following chapter.

Part III.

Implementation and

Evaluation

6. Proof of Concept: Design and Implementation

This chapter introduces the design and implementation of a collaboration system which
demonstrates feasibility of the collaboration model. The collaboration model is mapped
on a software architecture and implemented in a Web-based software prototype. The system
contains the collaboration infrastructure realizing data source and application logic of the
system and the collaboration application realizing a user front end which illustrates how to
use the infrastructure to support humans during collaborative document creation. Besides
the collaboration model features, the infrastructure supports the implementation of various
adapters, e.g., for Web services which serve as input sources to collaborations. Figure 6.1
presents an overview of the software architecture.

������������	
���������	

������

��������������
������

��������������

������������	 �	������������

����������������	�������

������ ��������	�

������

!������

�����	�����

"��#����

�������	�

����� ���

	��� �
	��

����� ���

������

���
��

����������

����
�� ������

������
�� ���������� ����
���� �������� ��� ����

��������

��� 	���
�

���������� ��� �������
��

!����$	��	�

������������	�
���������	���	����

������ ���
	��

��������

��� 	���

�

���	��

���
	�

���
��
��

����� ��		

����������� ��		

������ ���
	��

������

��������������

Figure 6.1.: Architecture overview of the collaboration system.

The collaboration application on the upper part of the figure provides a GUI for coordina-
tors to create result structures as well as for human contributors to provide services. Software
services can be provided through external adapters as shown on the right hand side. As part
of the collaboration infrastructure, the mashup persistency stores result structures created by
coordinators as well as rules associated with a collaboration. The term “mashup” in the name
of the component stems from the fact that the documents are service compositions which are

88 6. Proof of Concept: Design and Implementation

created by the end-users suiting their current need. The coordinator service messaging com-
ponent provides a Web service interface to the results in the mashup persistency which is
used by contributors (e.g., using service adapters or the collaboration application) to retrieve
and update result contents. In addition, the coordinator service messaging component is re-
sponsible for executing participation protocols, e.g., calls services on request of a coordinator
through the collaboration application. To perform this functionality, the coordinator service
messaging component accesses the mashup registry to retrieve information about providers,
services, and their endpoints. The mashup registry allows providers to register and offer
services, e.g., through an adapter or the collaboration application. The coordinator service
messaging component might send events to the rule engine, e.g., in case of state changes in a
protocol or changes on the result tree. The rule engine, which is configured with rules by the
coordinators, analyzes the rules and might execute actions using the the coordinator service
messaging component. The infrastructure components are detailed in Section 6.1, followed
by an overview of the application and select adapters in Section 6.2.

A guiding principle during design and development of the collaboration system was to
use mature standards and existing technologies and components where possible. Another, in
some cases contradictory, guiding principle was to design the collaboration system adaptable
as regards the extension and specialization points of the collaboration model. The collabora-
tion system thus represents a compromise between these two guiding principles.

Earlier versions of the collaboration infrastructure and application are described in [126]
and [127].

6.1. Infrastructure Architecture

The infrastructure is designed as distributed hypermedia system using the REST architectural
style [47]. REST uses simple, yet proven abstractions and has a low adoption barrier [108]
and might therefore support scalability as regards involved participants and adapter develop-
ers. Web standards and technologies like HTTP, URI, or XML are used to realize the REST
principles. On the one hand, the Web provides a large number of heterogeneous resources
which could be utilized in collaboration. On the other hand, if documents realized during
collaboration are offered through Web technologies they might be more easily spread and
reused on the Web.

RESTful systems realize the principles (a) resource identification, (b) manipulation of
resources through representations, (c) self-descriptive messages, and (d) HATEOAS [47,
p. 82]. When using Web technologies, each resource is identified and addressed through
a URI. Resources can be accessed and manipulated through a uniform interface with a fixed
set of operations. In HTTP, these operations are PUT (create or update resource), GET (re-
trieve state of resource), POST (update state), and DELETE (remove). The operations are

6.1. Infrastructure Architecture 89

performed using representations of resources including data, e.g., the current state of the re-
source, and meta-data describing the data, e.g., its format. Each message is self-descriptive,
i.e., contains all information required for the execution of a request, e.g., an update of a re-
source state. State of the application can be changed through following hyperlinks included
in representations [47, p. 86ff.]

In the design of the collaboration infrastructure, contributions are represented as resources
which can be accessed at their URI and manipulated through a uniform interface. Results pro-
duced during collaboration are represented as resources as well. A collaboration consists of
a set of such resources which are composed by end-users in a flexible manner. Contributions
are requested and performed through exchanging resource representations which change the
state of contribution and result resources. Following the guiding principle to reuse mature
standards, communication is performed using a subset of standard HTTP verbs. Messages
are formatted in XML format.

Storage and manipulation of resources as well as maintenance of application state is sup-
ported by four infrastructure components. The components realize collaboration model fea-
tures as follows.

• The mashup registry enables providers to publish profiles and service types according
to the component model described in Section 4.1. Coordinators can search and find
suitable providers and services. The registry supports human and software-based ser-
vices alike. In addition, the registry is responsible for storing state of service binding
protocols.

• The mashup persistency stores resources of result documents produced during service
composition and serves as a central access point for all participants to the collaboration
results.

• The coordinator service messaging component supports correct execution of service
execution protocols, e.g., accessing document parts as well as implements communi-
cation with providers. The component implements the set of basic protocols defined in
Section 5.1.

• The rule engine component allows coordinators to specify rules as well as executes
them on occurrence of events following the coordination rule mechanism specified in
Section 5.3.

In addition to the four infrastructure components, the collaboration system offers an
adapter framework which enables developers to implement service adapters according to the
component model. The infrastructure components and the adapter framework are described
in Sections 6.1.2 to 6.1.6.

90 6. Proof of Concept: Design and Implementation

6.1.1. Service Interfaces

Service providers are responsible for delivering services on demand. The infrastructure pre-
scribes the interface service providers and services have to offer in order to contribute in a
collaboration. The design of the interface involved the following considerations.

• The interface should represent providers offering several resources through a service
interface according to the component model described in Section 4.1.

• The interface should provide access to provided resources, i.e., implement the request()
method of the service class in the component model. If the resource is not yet available,
the same method should request its creation to avoid that requesters need to distinguish
between requesting a creation or an update of a resource.

• Providers should be able to update the resource if it is requested, e.g., adapt it to the
collaboration it is requested for, and return it asynchronously. Asynchronous response
is especially useful for human providers.

• Since results also are represented as resources, the URI scheme should represent the
result structure for navigation in the result tree.

The infrastructure design differentiates between service instances and providers. Service
instances are resources which can be accessed at a unique URI using a uniform API and
represent a contribution in a collaboration. Providers are responsible for offering this API.
Providers might be humans or software systems.

Service instances can be accessed using their URI. Each URI follows the scheme {pro-

vider URI}/{mashup ID}/.../{contribution ID}. The scheme represents the result
tree structure of the mashup the contribution is associated with. The entry point for each
query is {server URI}/{mashup ID}/ where mashup ID is replaced with the unique iden-
tifier of the mashup. The results on the first level of the result structure are appended ac-
cording to the scheme {server URI}/{mashup ID}/{result ID}/ where result ID is
replaced with the unique identifier of the result. Accordingly, for subresults, the scheme
{server URI}/{mashup ID}/{result ID}/ {result ID} is used. Three dots (/.../)
in URIs represent an arbitrary number of result IDs in the path representing a deep result
structure.

Table 6.1 shows the provider API available for service instances which contains one single
operation. The operation is used by coordinators to request or create a service instance.
In order to implement the request() method of the service class in the component model, a
service instance can be requested using PUT on its URI. In HTTP, traditionally the GET
operation is used to “retrieve a representation of a resource” [116, p. 97]. For the request of a

6.1. Infrastructure Architecture 91

service instance, however, the PUT method is chosen because a request changes the state of a
resource according to the service execution protocols. For example, a request might change
the state of a service instance from bound to requested. A service instance thus represents the
execution of one contribution in one collaboration. The PUT operation contains information
about the contribution to be delivered, e.g., service type or input results. If a service instance
at the given URI does not exist, the PUT operation causes the creation of the service instance
through the provider.

Table 6.1.: Provider API.
Operation URI or Template Description
PUT {provider

URI}/{mashup

ID}/.../{con-

tribution ID}

Request a result as contribution. Asyn-
chronously responds to requester. Creates re-
source if it does not exist.

Having received a request, a service instance performs the contribution which might in-
volve calls to external Web services or software systems or human activities. The result of
these activities are sent back to the coordinator in an asynchronous manner. A detailed dis-
cussion of the interactions between coordinators and service instances and the exchanged
information is provided in Section 6.1.4.

Existing services which should be used to contribute in collaborations need to be encap-
sulated into adapters. In addition, adapters for human-provided service instances might be
required which enable humans to use their favorite tool for service provisioning. Adapters
might add support for storing a copy of the mashup or automatically managing participation
protocols. Section 6.1.6 discusses those additional features and presents a framework for
developers to construct adapters.

Coordinators of a collaboration need to find providers and service instances for participa-
tion in their collaboration. Similarly, service providers might want to find data on collabora-
tions they could participate in. Therefore, information about available mashups and providers
is stored in a mashup registry as described in the following section.

6.1.2. Mashup Registry

SOAs commonly provide a service registry in order to allow service providers to publish
and advertise their services. Potential clients can discover those services [7, p. 151]. An
example is Universal Description Discovery & Integration (UDDI), a standardization effort
for a registry for services primarily described using WS-* standards [93]. Services regis-

92 6. Proof of Concept: Design and Implementation

tered in UDDI are categorized, e.g., according to the business they support or to user de-
fined taxonomies. This categorization allows clients to browse lists of services similar to
yellow pages. In addition, UDDI stores detailed technical information on how to invoke a
service [7, p. 175]. A registry for services and APIs provided with arbitrary technologies is
ProgrammableWeb13.

Allowing coordinators of a collaboration to find potential participants and learn how to
invoke them is a desired feature in the collaboration system. Accordingly, the infrastructure
contains the mashup registry. The design of the mashup registry involved the following
considerations.

• Existing registries mainly focus on software services. The mashup registry should
allow to store information on services provided by humans as well as software services.

• The registry should contain informal information about providers allowing coordina-
tors to search for capabilities. Additionally, the registry should store structured data
required to address and invoke a service instance.

• The mashup registry should enable publication of information on open contributions
or collaborations where anyone can participate. This information could be used by
human providers to volunteer to participate in specific collaborations.

• Services instances which are registered in a registry have a state, e.g., they are re-
quested for a particular collaboration. These states represent the state of participation
protocols. Information about service states is therefore also relevant to coordinators
and thus should be stored in the registry for lookup.

• The mashup registry should be realized using REST principles, more precisely Web
technologies. This approach promises easier access to, manipulation of, and naviga-
tion through registry entries. In addition, the Web browser already provides a basic
interface for humans to navigate through and search in the registry.

According to these design considerations, the mashup registry presented in this section is
responsible for (a) enabling service and mashup discovery and addressing as well as (b) me-
diating service binding protocols through storing state information of services. The mashup
registry consists of a database as well as accessors providing a REST API to the records
stored in the database. Figure 6.2 presents the domain model of the mashup registry which
is mapped on the database structure. The stored elements support the two responsibilities of
the registry as described in the following.

13http://www.programmableweb.com/ (accessed January 2nd, 2013)

6.1. Infrastructure Architecture 93

ServiceType

-serviceTypeId : String

-documentServiceClass : Integer

-description : String

Provider

-providerId : String

-name : String

-description : String

-endpoint : String

ServiceInstance

-serviceId : String

-description : String

-name : String

-servicePath : String

Contribution

-contributionId : String

-state : Integer

-providerOk : Boolean

-coordinatorOk : Boolean

Mashup

-mashupId : String

*

*

*

1

*

*

Figure 6.2.: Domain model of the mashup registry.

• Service discovery is supported based on the storage of descriptions of provider pro-
files and service types. The registry offers interfaces for service providers to store
and publish descriptions of service types they offer. In addition, the registry enables
coordinators to search and find service providers.

Providers are stored along with a description of their profile as well as an endpoint to
address them during service execution. The endpoint can be changed anytime during
collaboration which decouples the provider and the mashup and makes it easier to
relocate a provider.

Service types provide a description as well as a document service class which repre-
sents the characteristics of a service with respect to a collaboration. The service type
follows an open taxonomy of service types. Example service types are content provi-
sioning and transformation. Providers might associate with service types they provide.

Components for participant discovery in human collaboration include expert systems
or mechanisms like selection based on shortest to-do list. Often, participants are found
in face-to-face communication. A sophisticated approach for service discovery is not a
main focus of this thesis. Therefore, coordinators are supported by a simple capability-
based discovery and selection approach based on the categorization of offered services
according to their service type.

In addition to the generic providers and service types, the registry stores elements as-
sociated with a collaboration as service instances. Two types of service instances exist,

94 6. Proof of Concept: Design and Implementation

mashups and contributions. Mashups are stored in order to allow potential providers
to search for and find collaborations they wish to participate in. An interested provider
could navigate to open contributions in a mashup and apply for them through setting
the state according to the binding protocol. Contributions represent concrete services
delivered in a collaboration.

The abstract class service instance defines attributes for mashups and service instances
stored in the registry. Each service instance has a name, a description, and a servi-
cePath. In combination with the endpoint of the provider, the servicePath represents
the full address to the service instance which can be used to call the service instance.
If the endpoint of the service provider changes, the provider does not have to update
the address information of all provided service instances.

• The registry additionally acts as a mediator for the interaction between coordinator and
provider during the execution of the service binding protocols. For example, coordina-
tors and providers interact when a coordinator asks a provider to accept a contribution.
For each contribution, an entry is stored in the registry along with a state attribute
which represents the current state of the contribution. Whoever initiates the interaction
in a protocol, associates a contribution with a provider. Parties indicate their agreement
for the binding as a flag of the contribution. The flag coordinatorOk (providerOk) is
used in order to denote that the coordinator (provider) agrees with the binding or not.

Which states a contribution can have depends on the protocol logic followed by the
participants. The registry, however, is not able to ensure that the contribution state is
correctly set. The control of the protocol is left to protocol engines which might extend
the registry. The infrastructure as described in this thesis implements the coordinator-
initiated binding protocol as well as the self-service binding protocol as described in
Section 5.1.1.

Since all states of all contributions are stored in the registry, providers do not have
to store contribution states. As a result, providers are decoupled and independent of
protocol changes which might occur during collaboration. In addition, storing contri-
bution states in a registry separate from the collaboration contents allows participants
to retrieve personal to-do lists across collaboration systems with different persistencies.
Coordinators can inspect contribution state and decide on further actions, e.g., request-
ing the contribution. In addition, coordinators might publish open contributions across
collaboration system boundaries.

Changes to the state of a contribution are not pushed to providers or coordinators.
Therefore, the registry provides an interface to query all binding requests, e.g., by a
provider.

6.1. Infrastructure Architecture 95

The registry can be accessed via a REST API. The interface provides access to the repre-
sentations of various resources and provides standard REST operations in order to manipulate
the resources. The resource classes are mashup, contribution, provider, and service type. For
each resource class, a container resource exists enabling access to the complete set of re-
sources of the class. Each resource (container resources and all individual resources) can
be addressed and accessed via a dedicated URI. The URIs of the container resources are
supposed to be globally known. All other URIs of individual resources are communicated
within resource representations and must not be constructed by clients as the underlying
URI schema might change at any time. The messages exchanged during communication,
e.g., for setting a contribution state, with the registry are representations of the resources in
well-defined content types. The representations are hypermedia documents in XML format
including links for navigation, e.g., from a list of mashups to a single mashup. The API
operations of container resources and resources are listed in Table 6.2.

Table 6.2.: Registry API for container and individual resources.
Operation URI or Template Description
GET /{container

resource name}

Retrieve a (possibly empty) list of resources.
Results can be restricted by specifying query pa-
rameters. A specific resource can be searched
for by specifying its ID as a query parameter.
The list includes a short description and the re-
source URI of each resource. The return status
is always OK if the URI is correct.

POST /{container

resource name}

Create a new individual resource. Requires the
representation of a resource as input and returns
the representation of the created resource. The
return status is OK if the resource could be cre-
ated. The status might be FORBIDDEN, e.g., if
a resource already exists or representations are
not consistent.

GET /{container

resource

name}/{resource

ID}

Retrieve a representation of the resource with all
details. Might lead to UNKNOWN status.

Continued on next page

96 6. Proof of Concept: Design and Implementation

Table 6.2 – Continued from previous page

Operation URI or template Description
PUT /{container

resource

name}/{resource

ID}

Update the individual resource. Requires the
representation of a resource as input and re-
turns the representation of the updated resource.
Might lead to UNKNOWN status. Might lead to
FORBIDDEN status, e.g., if the representation
message is not consistent.

DELETE /{container

resource

name}/{resource

ID}

Delete the resource. Might lead to UNKNOWN
status.

Choosing the REST architectural style for the realization of the registry brings advantages
like easy navigation for participants in order to find information, e.g., between providers and
service types. In addition, the GET function for containers implements a search functionality
which can be tailored by providing search parameters. The implementation of clients with
user interfaces should be easy since the interface is limited to a small number of functions.
Human providers can then easily add their information in natural language. Since the registry
is implemented as a hypermedia system, it potentially can be distributed as long as the entry
point URI is known to clients.

The registry is implemented as a J2EE application running on an Apache Tomcat Web ap-
plication container14. All data records are stored in MySQL15 database using the Hibernate16

persistency framework.
The registry enables service and mashup discovery and managing binding protocols.

Mashups themselves are stored in the mashup persistency as described in the following.

6.1.3. Mashup Persistency

The mashup persistency represents the data layer of the infrastructure architecture and is
responsible for storing all elements belonging to a collaboration. The design of the mashup
persistency involved the following considerations.

• The mashup persistency should store (a) collaboration structures, i.e., results with as-
sociated contributions and coordinators according to the composition model presented

14http://tomcat.apache.org/ (accessed January 2nd, 2013)
15http://www.mysql.de/ (accessed January 2nd, 2013)
16http://www.hibernate.org/ (accessed January 2nd, 2013)

6.1. Infrastructure Architecture 97

in Section 4.2, and (b) unstructured content of created documents, e.g., text, model
fragments, or multimedia. As regards storing the structure of collaborations, the per-
sistency is realized based on a traditional relational database design. A reason for this
decision is that the database has to store data with sophisticated dependencies which
is not expected to change frequently in its structure, e.g., the result hierarchy and asso-
ciation to other model elements like contributions. Additional arguments are the high
maturity of publicly available relational database systems. In addition, frameworks and
tools for object-relational mapping, code generation, and version control of stored data
could be used for implementation. Relational databases are able to store large texts
as potentially required in document content. Additional file formats, e.g., pictures or
videos, can be stored on Web servers and referenced from within the result structure.

• Together with the result structure, the mashup persistency should store rules belonging
to a mashup. Data of one mashup can be managed and accessed at a central location,
e.g., by the collaboration applications which represents all information on a mashup in
one GUI. In addition, the rule engine described in Section 6.1.5, for which an existing
component was used, does not store rules in case of shutdown. As the rule engine does
not come with a database, the database in the persistency can be used.

The described functionality of the mashup persistency is used by a number of infrastruc-
ture components as shown in Figure 6.1. The mashup persistency offers an interface to the
collaboration application to create and modify result structures as well as associate contribu-
tions. The rule engine stores and loads rules from the persistency. In addition, the coordinator
service messaging accesses the persistency to retrieve and write results through a service in-
terface.

Figure 6.3 shows the domain model of the persistency which is based on the conceptual
collaboration model presented in Section 4.2. Instances of the domain model elements are
stored in tables. The elements are described in the following.

• A document service in general represents an atomic activity which can be executed and
provides a resource as outcome. The resource can be any document fragment. Since all
information on a document service is stored in the mashup registry as service instance,
the persistency only contains a link to the entry in the registry in the service ID field.
Document services might be called by actions in a rule or emit events. A document
service either is a contribution or a result.

• A contribution represents the participation in a collaboration by means of performing
an atomic activity. As soon as a contribution entry is created in the persistency, an entry
for this contribution is published in the registry and associated through the service ID

98 6. Proof of Concept: Design and Implementation

Result

-resultId : String

-title : String

-description : String

-contentSnippet : String

-type : String

-layoutWidth : Integer

-layoutHeight : Integer

-state : String

-isComment : Boolean

Mashup

-isAwake : Boolean

-subResult

*

Contribution

-contributionId : String

*

Participant

-providerId : String

-userId : String

-participantId : String

-provider 0..1

*
provide

DocumentService

-serviceId : String

Action

-title : String

-description : String

-type : Integer

Rule

-title : String

-description : String

-condition : String

Event

-title : String

-age : Integer

-type : Integer

1..*

observe

1..* enforce

-target* call

*

control

-source*

emit

*

*

0..1

access

-coordinator

1

*

coordinate

Parameter

-parameterId : String

-name : String

-input : Boolean

-output : Boolean

-value : String

Figure 6.3.: Domain model of the mashup persistency.

with the persistency entry. Details on a contribution, e.g., a task description, thus are
stored only in the registry.

A contribution is associated with a set of parameters which link them to input re-
sults required to carry out the task. Some parameters associate results which might
be changed during service execution. In addition, parameters might specify a value
required to perform the activity, e.g., a search string for a search service.

• A participant might act as a provider of a contribution and/or as a coordinator for a
result. Participants might be associated with a provider stored in the registry as well as
a user in a collaboration application.

• A result represents the outcome of an activity that is carried out by one or more par-
ticipants of the collaboration, the providers. A result is associated with exactly one
coordinator who is responsible for associating contributions and providers. A coordi-
nator might also delegate coordinator responsibilities to other participants.

Besides a title and description, a result might specify layout information like height
and width in order to position the result in a user interface. The result might be in a

6.1. Infrastructure Architecture 99

state according to the participation protocols. If the content of a result is a comment,
the result might be skipped for publication.

A result is a leaf of a document and stores document contents produced and changed
throughout the collaboration by contributions in a contentSnippet. The type of contents
might indicate characteristics that could be useful for processing, e.g., rendering. A
result is a document service, i.e., the content of each result is accessible by means of
REST service calls as explained in the following section.

A mashup is the root of a document. A mashup can be asleep meaning that processing
of rules for the mashup is shut down in order to allow for sensitive design activities.
The awake state of a mashup can be changed by coordinators through the collaboration
application.

• A rule is stored along with a meaningful title and description as well as a condition. On
startup of the rule processor, the rule engine retrieves all rules for a mashup and loads
them into the memory of the rule processor. A rule is associated with at least one action
and one event. An action can be of type request or accept binding. An event might
have a document service as source. In addition, it has an age and a type according to
the event model presented in Section 5.2. The infrastructure implementation realizes
various event types representing states in binding and execution protocols.

The mashup persistency was implemented through the generation of an Eclipse Modeling
Framework (EMF)17 model from the UML domain model. The EMF model served as input
to the persistency framework Hibernate which generates tables as well as accessor classes in
Java to create, update, delete, and version content in the tables. Data is stored in a MySQL
database. As regards formats of contents, the infrastructure supports storage of text with
a maximum of 4 billion characters. Multimedia content can be included through storing
hyperlinks in the contentSnippet. Queries on the contents are not supported in the current
implementation.

Version control of result data of is realized in an earlier version of the mashup persistency
in order to enable traceability and reversability of changes. At each change, the persistency
stores an entry of the current state of the object as well as the changes required to return to
the previous entry as delta. While versions are stored, mechanisms on top, e.g., roll-back of
changes, are left to future work.

The persistency is a representation of collaboration state as regards result structure, as-
sociated contributions, and participants. The provisioning of results through providers is
supported by the coordinator service messaging component described in the following sec-
tion.
17http://www.eclipse.org/modeling/emf/ (accessed January 2nd, 2013)

100 6. Proof of Concept: Design and Implementation

6.1.4. Coordinator Service Messaging

The coordinator service messaging is responsible for ensuring correct and consistent state
transitions regarding execution of participation protocols. This includes (a) supporting input
retrieval by providers, (b) sending requests to service instances, and (c) managing responses
of requested service instances. The design of the coordinator service messaging component
involved the following considerations.

• Results might contain subresults. Complete result structures might be reused in other
collaborations. The component therefore should provide a mechanism to access a sub-
tree of a result structure as service.

• Result content might be sensitive. Therefore, authorization mechanisms are required
for read and write requests on results.

• In order to be able to reuse results in other collaborations, they should be offered as
services with the same interface as services offered by external providers.

Figure 6.4 presents an overview of the coordinator service messaging component as well as
its interrelations with other infrastructure components and services. The parts of the service
messaging component are described in the following.

Call Handler

Coordinator Service Messaging

Mashup Persistency

Rule

Engine

Result

Server R
E

S
T

Adapter

Collaboration

Application

R
E

S
T

1 2

3

4

5

7

6

Message

Builder

8

9
9

Contribution

Client

method call

Web service call

component interaction

Figure 6.4.: Overview of the coordinator service messaging component.

As part of the coordinator service messaging component, the result server provides a REST
API for accessing result content stored in the mashup persistency during processing of input
retrieval protocols and service responses. Accordingly, result contents can be retrieved and
manipulated through a service interface. The API enables contributors to read and write result

6.1. Infrastructure Architecture 101

contents during a collaboration. The result structure and attributes can not be changed via the
API but using the mashup persistency. Users of the API are service providers contributing to
the collaboration as well as the collaboration application.

The result server dynamically creates URIs for results. The URIs follow the URI scheme
presented in Section 6.1.1. Each GET request on a result URI returns a hypermedia document
including the actual content of the result as well as a list of URIs of all child results which
enables the traversal through the result tree structure. A PUT request updates the contents of
the result. A DELETE request removes result content.

Figure 6.4 illustrates the flow of interactions between the components during requests on
results content. Interaction 1 denotes the receipt of a request, e.g., a GET on a specific result.
As soon as receiving a request, the result server directs the request to the call handler (inter-
action 2). The call handler is responsible for checking whether the requester is authorized.
Authorization can be implemented in at least two ways.

• First, the call handler emits events for result service requests to the rule engine which
checks for authorization based on ECA rules (interaction 4). The rule engine might
check whether the requester is associated with a contribution which points to the re-
quested result. In addition, role-based access control or constraints like separation of
duties (two results might be written only by two different providers) or temporal re-
striction of accessing a result might be implemented using rules [23]. The rule engine
might access an external authentication component to check proof access and authen-
tication rights.

• In the second realization variant, authorization is based on the association of the re-
quester as provider to a contribution which has the requested result either as input or
output. The call handler checks this constraint and allows the request or rejects it.

While the first variant is more powerful, coordinators are required to specify authorization
rules for all results, contributions, or participants they define in their collaboration. In ad-
dition, the rule base grows with each created element in the mashup persistency and needs
to be managed by coordinators in order to stay up to date and consistent. This might result
in a coordination overhead and reduce usability. The rule engine needs to be extended with
additional event and action types. Therefore, and since authorization is not a main focus of
this thesis, the latter variant is realized in the infrastructure.

After authorization, the call handler requests the message builder (interaction 3) which is
responsible for constructing the response message for the requester. If the authorization is
positive, the message builder accesses the mashup persistency and performs the requested
activity, i.e., retrieve, create, update, or delete result content (interaction 5). The message
builder might emit events, e.g., on update of a result (interaction 6), to the rule engine.

102 6. Proof of Concept: Design and Implementation

Finally, the response message is handed over to the contribution client (interaction 7)
which sends it to the requester (interaction 8), i.e., a provider or a collaboration application.

Interactions 1 to 8 describe how input retrieval protocols can be handled by the infrastruc-
ture. In the following, more details on service execution are presented. Service instance calls
might be triggered either by a human coordinator through the collaboration application or
by a rule in the rule engine (interaction 9). Figure 6.5 shows an overview of the activities
performed by the coordinator service messaging component and an adapter during execution
of a service request/response protocol. The adapter is a provider which executes custom code
to perform an activity, e.g., calls a Web service.

1) Finish handshake using the mashup registry.

2) Receive trigger to request contribution from rule

engine or from collaboration application; GET URI of

contribution from registry.

Coordinator Service Messaging Adapter

4) GET all required results from coordinator service

messaging; create request and copy values.

3) Copy contents into parameter values and PUT

contribution request to adapter.

5) Notify custom adapter code about new request.

6) Receive trigger to reply to request from custom

adapter code.

7) Check result completeness, copy to values and

PUT contribution to coordinator service messaging.

8) Copy all parameter values to result contents and

potentially send event to rule engine.

Figure 6.5.: Sequence of interactions between the coordinator service messaging component and a
provider adapter for service execution.

A human coordinator or a rule trigger the call of a contribution. Subsequently, the con-
tribution client retrieves the servicePath of the contribution and the endpoint of the provider
from the registry and sends a PUT request to the composed URI according to the API defined
in Section 6.1.1. As shown in Listing 6.1 the message sent with the PUT request includes
references to the results which might be received as input as well as the results which are
allowed to be written by the adapter.

The adapter can now retrieve result contents as described previously from the coordinator
service messaging component (interaction 1 in Figure 6.4). The adapter might call external
Web services. When the adapter finished producing results associated with the contribution,
it pushes the content via PUT to the output results specified in the request message (inter-

6.1. Infrastructure Architecture 103

action 1 in Figure 6.4). The coordinator service messaging processes the PUT request as
described previously, starting with interaction 2 and might then set the state of the contribu-
tion in the registry according to the protocol used during collaboration, e.g., “responded”.

<ContributionRequest >

<Service title="write description" contributionId="writeDescription">

<Description >pls write project description </Description >

</Service >

<Parameter name="input" in="true" out="false">

<value>http://kit.edu/mashup -manager/projectProposal </value>

</Parameter >

<Parameter name="output" in="false" out="true">

<value>http://kit.edu/mashup -manager/projectProposal/

projectDescription </value>

</Parameter >

</ContributionRequest >

Listing 6.1: Example message for service request.

To summarize, the service execution, i.e., request and response of a service instance, are
decoupled and can be performed asynchronously, for instance, if a human provider has to
write a paragraph of a document. In addition, the decoupling allows providers to PUT several
results for one contribution at different times. A PUT on the results can be repeated, e.g., if
a provider produced an updated version of the content.

The previously described behavior of the coordinator service messaging is about result
retrieval as well as service request and response. In order to allow for reuse of results, the
infrastructure needs to support the interface described in Section 6.1.1 for results. The PUT
method of each result therefore is overloaded. Based on the message sent with the PUT
request, the call handler decides on the response. In case of a contribution request message
like the one presented in Listing 6.1, the call handler triggers an asynchronous response to
the specified results. In case the message specifies an update of a result resource as response
to a request, the call handler triggers an update of the result.

To summarize, the collaboration service messaging component provides the interface as
shown in Table 6.3. The interface allows the execution of services as well as the reuse of
produced results.

Table 6.3.: API of the coordinator service messaging component.
Operation URI or Template Description
GET /{mashup URI}

/.../{result

ID}

Retrieve resources of a result, i.e., result con-
tent. Returns a representation of mashup, result,
or NOT FOUND in case resource does not exist.

Continued on next page

104 6. Proof of Concept: Design and Implementation

Table 6.3 – Continued from previous page
Operation URI or template Description
PUT /{mashup URI}

/.../{result

ID}

Update content of the result at the given path.
The message contains a result representation in-
cluding contents. Might lead to UNKNOWN
status.

DELETE /{mashup URI}

/.../{result

ID}

Delete content of a result at the given path.
Might lead to UNKNOWN status.

PUT /{mashup URI}

/.../{result

ID}

Request a result as contribution. Asyn-
chronously responds to requester. Returns NOT
FOUND in case resource does not exist.

The realization of the service execution protocols is complex, since the protocols have to
represent the asynchronous working style of humans. Pushing outcomes to a mashup requires
access and rights management mechanisms in order to ensure that only results are written
which the provider is allowed to write. Authorization is realized in a limited version based
on input and output parameters. Future developments of the infrastructure might include
advanced authorization and access right mechanisms.

The coordinator service messaging component enables contributors to access results in
a collaboration. Contributors, however, are only allowed to create, update, or delete result
contents. A result can only be deleted from a mashup by coordinators which might decrease
usability of the approach. In a future design of the component, creation or deletion of results
might be feature of the REST API.

The component supports the example protocols for input retrieval as well as service
request-response protocol described in Section 5.1.2. In order to realize additional service
execution protocols, e.g., with approvals, the call handler has to be extended with additional
logic.

The coordinator service messaging component is realized as Java application and de-
ployed in an Apache Tomcat servlet container. The coordinator service messaging com-
ponent supports interaction protocols for coordinating communication between coordinators
and providers. In the following, the rule engine is described which supports the specification
of additional coordination requirements.

6.1.5. Rule Engine

The rule engine is responsible for driving automatic enforcement of rules specified during
collaboration. The rule engine monitors messages, checks the occurrence of particular event

6.1. Infrastructure Architecture 105

patterns, and triggers the sending of messages as a consequence. The design of the rule
engine involved the following considerations.

• An existing engine for executing rules should be used, since the development of a
sophisticated rule engine is not focus of this thesis. Different collaboration use cases
require different rules, event types, and actions to be performed. The engine should
therefore provide an interface to create rules as well as specify event types and actions.

• The rule engine should offer an API to submit events, e.g., to be accessed by the
coordination service messaging component.

• Coordinators of a collaboration should be enabled to start or stop the processing of
rules for a specific collaboration.

Figure 6.6 shows an overview of the internal components of the rule engine as realized in
the collaboration infrastructure. For the realization of the rule engine, the complex event pro-
cessing (CEP) engine ESPER18 was chosen because it allows developers to specify own event

Rule Engine
extension point

storage

method call Mashup Persistency

Rule
Processor

events

Event Store

Engine API

actions

Collaboration Application

Ev
en

t
A

P
I

Coordinator
Service

Messaging

Figure 6.6.: Overview of the rule engine.

types as classes including event attributes as well as actions performing collaboration-specific
functionality. ESPER promises to provide real-time event pattern detection and action exe-
cution. In addition, ESPER provides a rule specification language – the Event Processing
18http://esper.codehaus.org/(accessed January 2nd, 2013)

106 6. Proof of Concept: Design and Implementation

Language (EPL). Originally designed for sophisticated high-frequency event streams, EPL
is a rich language addressing different demands of coordination rules like logical and tempo-
ral event correlation.

The rule engine provides two interfaces, the engine API and the event API.

• The engine API allows collaboration applications to start and stop rule processing for
specific mashups as well as add and modify rules. Rules are mapped to EPL. Future
versions of the rule engine might check the rule for compliance or consistency before
storing them in the mashup persistency.

• Through the event API, event messages can be sent to the engine, e.g., by the coordi-
nator service messaging component.

Rules as well as events are correlated to rule processors, i.e., for each collaboration ex-
actly one rule processor exists. Separated rule processors allow coordinators to start and stop
processing of rules for one collaboration without affecting other collaborations in a collab-
oration system. The rule processor is able to process complex events. If a rule processor is
stopped, events for the collaboration might be stored in an event store. The infrastructure
defines a set of event types, e.g., ServiceResponded and ContributionBound, as well as an
action type able to send service calls to service instances. The infrastructure, however, can
be extended with additional events and action types as required.

The rule engine supports simple processing of rules like sequencing or reminders. Future
versions of the rule engine might offer the event API as a service interface allowing the engine
to listen for additional events from outside of the application [30]. These events might allow
collaborations to react on triggers coming from external systems or services, e.g., project
management tools.

The rule engine is implemented as Java application using the ESPER API and deployed
– together with the mashup persistency and coordinator service messaging – on an Apache
Tomcat servlet container. The four infrastructure components described in the previous sec-
tions are implemented in a running prototype and support the coordination of collaboration.
The implementation of adapters for participating providers is supported with a framework as
described in the following.

6.1.6. Adapter Framework

The adapter framework is a Java programming framework that allows developers to write
custom adapters, connecting different kinds of data sources or interactive applications to
mashups. Adapters built with the adapter framework can be hosted on servlet containers like
Apache Tomcat. Figure 6.7 presents an overview of the adapter framework architecture. The

6.1. Infrastructure Architecture 107

adapter API allows for programmatic access to the contribution store, the registry services,
and the messaging services as explained in the following.

Adapter
Framework

Contribution
Store

Contrib. DB

Mashup
Registry

Coordination
Service

Messaging

R
ES

T Service
Messaging R

ES
T

Registry Services

extension point

storage

Web service call

R
ES

T

Adapter API

Figure 6.7.: Overview of the adapter framework.

In the contribution store, an adapter might store a copy of (parts of) mashups the provider
participates in. Result content can then be evolved by providers in the contribution store
and transferred back to the collaboration at a later point in time. In addition, content can be
accessed when the collaboration server is not reachable.

The adapter framework offers a REST API to the stored mashup copies which is presented
in Table 6.4.

Table 6.4.: Service instances API.
Operation URI or Template Description
GET {provider

URI}/{mashup

ID}/.../{result

ID}

Retrieve resources of a result, i.e., result con-
tent. Returns a representation of mashup, result,
or NOT FOUND in case resource does not exist.

Continued on next page

108 6. Proof of Concept: Design and Implementation

Table 6.4 – Continued from previous page

Operation URI or template Description
PUT {provider

URI}/{mashup

ID}/.../{result

ID}

Update content of the result at the given path.
The message contains a result representation in-
cluding contents. Might lead to UNKNOWN
status.

DELETE {provider

URI}/{mashup

ID}/.../{result

ID}

Delete content of a result at the given path.
Might lead to UNKNOWN status.

Developers can build GUIs like text editors for different adapters using the API. Each
result can be retrieved, updated, or deleted at the URI which represents the path to the result in
the mashup structure. In addition, the collaboration infrastructure might push result content
to adapters, e.g., in case of content updates.

The registry services provide access to the mashup registry in order to register the provider,
service types, and service instances as well as query state of service instances. Service in-
stances might be asked for binding by a coordinator which is denoted by the state asked-
ForBinding in the service instance registry entry. Adapters might respond to this request
automatically, e.g., through setting the state to bound. This feature is especially useful for
automated software services. The adapter framework allows developers to enable automated
binding through a configuration parameter.

The adapter framework provides basic functionality for communication with the infras-
tructure which can be extended in future work. Service instances have a state according to
the collaboration they are used in. They are accessible at a specific URI which represents
their location in the mashup structure. Service instances therefore can not easily be reused.
Future versions of the adapter framework might provide support for copying or moving re-
sources in order to reuse it in several collaborations. In addition, the adapter framework
supports management of contributions of one provider. Editors, however, might require to
be utilized by several users or tenants. Multi-tenancy should therefore be supported by fu-
ture versions of the adapter framework. The creation of adapters with the adapter framework
can only be done by software developers. Future work could address an adapter framework
which can be configured by end-users.

Examples for service adapters are clients for humans (e.g., e-mail, Web client, rich client,
mobile applications) or adapters to Web services or enterprise systems. Example service
adapters for humans and software systems are presented in Section 6.2.3.

6.2. Collaboration Application and Graphical User Interface 109

How the infrastructure components can be used to create a collaboration application in-
cluding a GUI for human coordinators and contributors is illustrated in the following sec-
tions.

6.2. Collaboration Application and Graphical User Interface

Humans are the primary participants of a collaboration. They require an easy to use graphi-
cal interface enabling coordinators to outline document structures as well as contributors to
provide results. The collaboration application leverages the infrastructure to realize an in-
terface for human coordinators and contributors. While the collaboration application allows
humans to use the infrastructure, adapters provide access to Web services which can perform
valuable contributions to a collaboration. In the following sections, first an overview of the
collaboration application is given followed by a discussion of three select service adapters.

6.2.1. Collaboration Application

Figure 6.8 presents an overview of the collaboration application architecture as described in
the following.

Provider API

Graphical User Interface

Collaboration Application Manager

Mashup Editor
UI

Service Editor UI
User Manager

UI

Mashup Editor
Manager

User Manager

User DB

Service Editor
Manager

storage

method call

Web service call

Coordinator
Service

Messaging

Mashup
Persistency

Rule Engine
Mashup
Registry

P
ro

vi
d

er

A
P

I

Figure 6.8.: Overview of the collaboration application.

The collaboration application manager offers a user manager to store users of the systems
as well as support login functionality. Once a coordinator is logged in, the mashup editor
manager enables him to (a) create a result hierarchy and assign contributions in the mashup

110 6. Proof of Concept: Design and Implementation

persistency, (b) create rules and start/stop the rule engine for a collaboration in the rule en-
gine, (c) perform steps in execution protocols like requesting services through the coordinator
service messaging component as well as (d) store contributions and update contribution state
according to participation protocols in the mashup registry.

While the mashup editor is used by coordinators, the service editor manager supports con-
tributors of a collaboration. Once logged in, contributors can (e) request contributions they
are assigned to as well as open contributions in the registry and update their state according
to binding protocols, and (f) react to service requests. In order to receive service requests,
e.g., by the coordinator service messaging component, the service editor manager offers a
provider interface as described in Section 6.1.1.

6.2.2. Graphical User Interface

Coordinators and human providers access the collaboration application through their Web
browser. The Web GUI integrates various components supporting document coordination,
service provisioning, and user management use cases. The project proposal use case is used
in the following to clarify the use cases supported by the application.

In order to support the collaboration, the application offers three GUIs.

• Fundamentally, the user management user interface (UI) allows all participants to log
into the environment or register as a new user.

• Using the mashup editor UI, coordinators carry out the main document creation tasks.
Figure 6.9 shows a screenshot of the experimental mashup editor GUI.

The coordinator of the collaboration uses the document coordination tab. The edi-
tor represents and visualizes mashups from different perspectives of structure, partic-
ipants, and document content. On the left hand side, mashups can be created, each
representing a collaboration. In the figure, the coordinator selects the project proposal
mashup. In the element lists panel, the coordinator defines the tree structure of the
proposal document. In the element details panel, the coordinator identifies and as-
signs a provider who is able to write a motivation for the project proposal providing a
description of the task.

An overview of all participants and their contributions is presented in the participating
providers panel. In the coordination rules panel the coordinator is enabled to specify
rules using a graphical dialog interface for frequent rules, e.g., sequencing where a
proofread service is called whenever the motivation is delivered. The rule engine for
the mashup can be started by pushing the arrow button below the mashup list on the
left side.

6.2. Collaboration Application and Graphical User Interface 111

Figure 6.9.: Screenshot of the mashup editor UI.

The overall document structure including available contents is presented in the mashup
document panel on the right side.

• In order to support contributors in providing services, the environment offers a service
editor UI. Figure 6.10 shows a screenshot of the editor where the contributor received
a request for writing the motivation for the project proposal.

In the contributions panel on the left hand side, the service editor UI presents a per-
sonal to-do list of the logged in user including state of the contributions. The service
editor supports the coordinator-driven binding protocol as described in Section 5.1.1.
In the element lists and element details panels, an overview of the mashup as well as
more information on the contribution are given. In the mashup document panel, the
contributor can answer the service request through an HTML form.

The collaboration application manager component is implemented as Java Web applica-
tion, hosted on an Apache Tomcat server. The user interface components are implemented
using Google Web Toolkit19.

19https://developers.google.com/web-toolkit/ (accessed January 16th, 2013)

112 6. Proof of Concept: Design and Implementation

Figure 6.10.: Screenshot of the service editor UI.

The collaboration application exemplifies the utilization of the collaboration infrastructure
as regards coordination and human participants. A collaboration, however, might additionally
involve software services which require adapters. Exemplary service adapters are described
in the following.

6.2.3. Service Adapters

Adapters can be built for software services but also for humans, e.g., as plug-ins to editors
or in order to support various communication channels. The adapter framework was used to
build three different adapters which are discussed shortly in the following.

• The e-mail adapter exemplifies the use of the adapter framework for building com-
munication channels. The e-mail adapter provides a frond end allowing contributors
to register as service providers providing their e-mail address. The adapter creates an
entry in the mashup registry for the provider. A scheduler of the adapter periodically
requests the mashup registry for new contributions the provider is associated with. As
soon as a request for contribution is detected, an e-mail is sent to the e-mail address of
the provider. The adapter contains an e-mail server which acts as sender of the e-mail.
The provider can answer this request using a keyword in the e-mail which is detected

6.2. Collaboration Application and Graphical User Interface 113

by the adapter. The adapter writes the answer into the registry. On receiving a service
request, the adapter first retrieves all input results, wraps them into a text and sends
this text to the e-mail address of the provider. The provider can again answer with an
e-mail, providing the result at a labeled position in the e-mail.

The adapter is built using the Google App Engine20 which already provides an e-mail
server as well as a database to store user data. A large set of features of the adapter
framework, e.g., result content retrieval, could be used which made the implementation
straightforward.

• The Web services adapter serves as proof that Web services can be adapted with au-
tomated binding and service response. The adapter requests pictures for a keyword
from the flickr API21. On deployment, the adapter registers as provider at the mashup
registry as well as registers a service type for providing pictures. A scheduler peri-
odically requests the mashup registry for new contributions the provider is associated
with. If these contributions are in state “askedForBinding”, the binding is automati-
cally accepted by the adapter. A coordinator might now request the service. A request
contains a parameter value with a search term which is required by the adapter as well
as a result on which the picture should be written. Having requested a picture from
the flickr API, the adapter writes the hyperlink of the picture back to the result. Thus,
on each request, the adapter potentially returns a different picture. On each request,
another keyword can be provided.

As for the e-mail adapter, several features of the adapter framework were used during
implementation, e.g., automated registration and binding.

• The Web cam adapter connects a service providing pictures which change frequently.
As example Web service the Webcams.travel API 22 was chosen. Changes of the pic-
tures are not under the control of the coordinator. In order to reduce the dependency on
the Web service, the adapter caches pictures on the Web. As outlined in Section 6.1.3,
media contents like pictures are referenced as hyperlinks in the persistency and need
to be stored elsewhere. They are only loaded if the collaboration application requests
it. A second feature of the adapter is the ability to set back the picture in the mashup
to an older version, for example if the quality or motive of the source changes.

Accordingly, the adapter is realized with two modes. In the normal mode, as soon as
the adapter is called by the coordinator service messaging component, it retrieves the
most actual picture from the Web cam service, uploads it to Amazon Simple Storage

20https://developers.google.com/appengine/ (accessed January 16th, 2013)
21http://www.flickr.com/services/api/ (accessed January 16th, 2013)
22http://de.webcams.travel/developers/ (accessed January 16th, 2013)

114 6. Proof of Concept: Design and Implementation

Service (S3)23, and replies the hyperlink of the picture on S3 to the coordinator service
messaging. The adapter then starts a scheduler which periodically queries the Web
cam service for new versions of the picture. If an update is detected, the update is
propagated to the coordinator service messaging. In this mode, the mashup always
includes the most actual version of the Web cam picture depending on the chosen
scheduler time.

The stop and setback mode allows coordinators to choose an older version of the pic-
ture stored in S3 and to stop the scheduler. A parameter value sent with the request to
the adapter defines the selected picture version.

The three adapters illustrate that during adapter development different requirements as re-
gards coordinator demands or Web service behavior and quality have to be taken into account.
A service adapter might provide different access modes for the adapted service. The creation
of an adapter thus involves software engineering activities and can not be performed by end
users on demand. The creation of adapters, however, is eased with the adapter framework.

6.3. Conclusion and Discussion

The previous sections demonstrate how to realize the collaboration model by means of
service-oriented infrastructure technologies including RESTful Web services, complex event
processing, and rich Web 2.0 applications. The fundamental parts of the collaboration model
are realized as discussed in Table 6.5.

Table 6.5.: Realization of collaboration model components through the collaboration infrastructure.
Collaboration
Model Component

Realization

Component model
(Section 4.1)

Components are realized as providers exposing a RESTful inter-
face for delivering service instances. Adapters to existing Web
services or for human channels can be created using the adapter
framework. Providers support atomic activities which return one
or more results. A result is either text or a hyperlink. Compo-
nents can be published and discovered in the mashup registry.

Continued on next page

23http://aws.amazon.com/de/s3/ (accessed January 16th, 2013)

6.3. Conclusion and Discussion 115

Table 6.5 – Continued from previous page

Collaboration
Model Component

Realization

Composition model
(Section 4.2)

Result structures including identified required contributions and
input/output relations are stored as mashups in the mashup per-
sistency. The infrastructure accepts and stores any content in
textual format or a hyperlink as result. If specific formats are re-
quired, collaboration applications require renderers to represent
the content. Contributions are associated with providers in the
mashup registry.

Participation proto-
col framework
(Section 5.1)

The mashup registry stores the contribution state. Providers and
coordinators set the state according to binding protocols. Stor-
ing the state centrally in the registry allows providers to retrieve
personal to-do lists. Service execution protocols are performed
by the service messaging component which communicates with
providers. Execution is based on navigation through result struc-
tures which might result in communication overhead. Results
are sent in a response message and stored as values in the per-
sistency rather than as references. While copying contents might
produce complex and hardly manageable knowledge bases, it en-
ables to develop variants and improvements of contents suitable
to different collaborations. If a service is not available anymore,
the contents is still stored in the mashup.

Event model
(Section 5.2)

The rule engine architecture enables the definition of event types
as classes with attributes. The infrastructure provides basic event
types. Developers can, however, add events types as required.
Events are input to the rule engine which is able to detect com-
posite events.

Coordination rule
mechanism
(Section 5.3)

The rule engine supports the creation of rules as well as starting
and stopping rule execution for specific mashups. The infras-
tructure provides one action type for executing service requests.
The rule engine, however, is open for additional action types. Se-
quence and automation rules are evaluated in the infrastructure.

The infrastructure was designed following principles of REST. Services in REST are
resources which makes the paradigm artifact-oriented and suitable to represent composite
documents. Resources possess a state which can be changed during activities. The composi-

116 6. Proof of Concept: Design and Implementation

tion of stateful resources ideally maps to the composition of result documents created during
a number of activities. The usage of REST, however, comes with a number of consequences.

In the presented infrastructure, entities communicate with each other through service in-
terfaces. The communication is an ad hoc dialog between distributed services. Interactions
are not planned or prescribed but rather follow standardized interaction protocols. REST
principles like HATEOAS and addressability of resources naturally enable this style of com-
munication as no indirection is introduced by using a central instance like a service bus [11].
The interaction protocols, however, are complex and produce overhead as regards communi-
cation between provider and coordinator. This complexity is due to enabling asynchronous
call-by-value service responses required for human participation as well as enabling access to
results via the same service interface in order to enable reusability. Related work as regards
RESTful service composition [107][6] realize easier to implement communication proto-
cols. These approaches, however, do not support ad hoc communication between services
but modeled composition of resources where interactions are planned in advance. Complex-
ity can be partially managed through (semi-)automating communication and encapsulating
communication in adapter logic. For example, all input results are pushed automatically to
the provider adapter which offers a user interface.

Standardization of the provider interface results in the fact that already existing services
also need to be supported with an adapter implementing the protocols, even those which
already come with a REST API. Standardization, however, also enables developers to build
service adapters which can be reused in different collaborations. Assuming a community of
users and open registries, the adapter framework is one approach to foster a growing set of
available service adapters on the Web for different use cases. Using uniform interfaces and
media types for protocols thus can help to scale as regards participants in a collaboration as
the contract for interaction is clear [141]. Uniform interfaces enable loose coupling between
services and coordinator which allows services to evolve without braking the interface and to
be more easily replaced. For human participants, adapters can be integrated into software like
editors or social network platforms or provided as specialized application for mobile phones.
Adapters can be integrated into the favorite working environment of providers. Clients can
potentially be multi-tenant providing interaction channels for more than one person.

Service composition helps to increase the reuse of services [68]. Since contributions are
associated with a collaboration rather than concrete resources, however, reuse of resources is
difficult. For example, a particular dataset created by a human participant is delivered through
a contribution in a collaboration. If the dataset should be reused in another collaboration,
coordinators can not use the same contribution, since the contribution has a state and path
according to the first collaboration. The coordinator of the second collaboration has to create
a new contribution and request the human, e.g., in the description, to provide the data set. The

6.3. Conclusion and Discussion 117

provider decides how to reuse the resource. For example, the provider could create a service
type for the dataset. An adapter could then automatically create a new contribution for each
service request with this service type. Since transformation services, e.g., translators, can
be represented as providers offering service types, they can be more easily reused. For each
use in a collaboration, simply a new contribution is created, e.g., representing the translation
with input parameters for a specific collaboration.

Web technologies – in contrary to WS-* technologies and standards – do not natively sup-
port enterprise-level qualities like reliable messaging, security, or transactions [108]. Desired
qualities most often have to be implemented matching specific system requirements. Since
quality insurance is not main focus of the collaboration infrastructure, most of these qualities
were not realized in the implementation. Accordingly, for example, essentially every partic-
ipant could access and write result content without being entitled. Messages, e.g., service
requests, might get lost before reaching their target or message content might be changed by
an intruder. In order to generate a product version of the infrastructure and the adapter frame-
work which is accepted by users, required qualities have to be analyzed and implemented.

As regards related work of the infrastructure, a number of approaches exist adopting REST
for the representation of business processes [73][151][117] or process documents [17] in or-
der to support flexibility and Web scalability [128]. The focus of these approaches, however,
is not on flexible collaborative document creation. The collaboration application can be seen
as domain-specific mashup tool [29] supporting specific types of collaborative document cre-
ation. Mashup tools in general allow end users to flexibly compose resources [153]. Existing
tools, however, do not focus on support of collaborative composition of resources to facilitate
collaborative document creation.

In order to show that the collaboration model and system are applicable to a range of
different use cases, two pilot use case demonstrators were developed. The following sections
present focus and realization details of the two use cases.

7. Use Case Studies

The proof of concept presented in the previous chapter showed feasibility of the presented
collaboration model. In order to demonstrate applicability of the collaboration model and
infrastructure to different kinds of collaborative document creation, model and infrastruc-
ture were systematically applied to two pilot use cases: participatory service design and
community-driven pattern creation. The results are two concrete software architectures and
prototypes augmented with different participation protocols, coordination rules, event types,
and service types. The use case studies were accomplished in an exploratory, analytical way
rather than in an experimental field study. Both studies were performed in cooperation with
domain experts in order to get a realistic insight into the applicability of the model.

In the design features of the collaboration model presented in Chapter 3 several assump-
tions are made, e.g., regarding participating roles, hierarchical documents, or atomic content
production activities. The pilot use cases examine the assumptions as summarized in Ta-
ble 7.1.

Table 7.1.: Aspects for use case studies and their evaluation.
Aspect Examination
roles (DF 1-1) Which roles are involved? Are coordinator and contributor

roles sufficient for the use case?
participants (DF 1-2) Which kind of providers are involved – humans and/or soft-

ware service providers? How does integration of software
services benefit the use case?

activities (DF 1-3) Which activities are performed during collaboration? Are
atomic content production activities sufficient?

artifact structure and
evolution (DF 2-1)

How is the result document structured? Can the structure be
used for the identification of activities?

document model
(DF 2-2)

Which document model and formats are required? Is docu-
ment model independence advantageous?

reuse (DF 2-3) Are produced document parts reused? Is reuse of results
applicable?

Continued on next page

120 7. Use Case Studies

Table 7.1 – Continued from previous page

Aspect Examination
binding protocols
(DF 3-1)

How are participants bound to activities? Which binding
protocols are instantiated? Is openness as regards participa-
tion protocols a desired design feature?

resource and activity
states (DF 3-2)

How are activities related to artifact parts? Which execution
protocols are instantiated? Is state tracking used?

document access
(DF 3-3)

Do participants consume existing document parts?

events (DF 4-1) Is the event model used or extended? Is the event model
including atomic events sufficient?

dependencies and rules
(DF 4-2)

Are rules used? Which dependencies are managed through
rules? Is the rule model sufficient?

Each of the following Sections 7.1 and 7.2 provides first a short motivation for the studied
use case, followed by a detailed description of the collaboration scenario and the instantiation
of the collaboration model including implemented participation protocols, event types, and
rules. Section 7.3 concludes with a discussion of the use cases as regards the design features.

7.1. Participatory Service Design

Models in software or service engineering serve as communication and discussion media
to improve quality of designs as well as allow co-workers to obtain a common view of a
product, process, or service. Through modeling, co-workers can improve the understanding
of complex aspects using a visual representation. For instance, engineers create different
types of models in order to capture important issues of a project, facilitate collaboration and
coordination as well as to enable automation of activities [136].

The focus of the use case described in this section is participatory service design where
service design models are created in a collaborative way. In the examined case of partici-
patory service design, services are considered as primarily non-technical offerings of value-
propositions to customers [150]. The use case is published in [149]. The following expla-
nations advance and discuss the results presented in the publication in the context of the
collaboration model and system.

Participatory service design allows for the involvement of different stakeholders in the role
of service providers and service consumers into the analysis, design, and development of ser-
vices [55][58]. As an example, stakeholders in service design in the public sector include
citizens, municipalities, and corporations. Participation of different stakeholders during the

7.1. Participatory Service Design 121

design life cycle promises to better address the interests and needs of all parties involved dur-
ing design. Accordingly, participation might improve customer satisfaction and adherence
to relevant policies and laws [55]. Involving different stakeholders, however, is a complex
task [149]. “In service design, stakeholders typically are represented by groups of experts,
including software engineers, infrastructure providers, decision-makers, and legal experts.
These stakeholders collaborate with each other, contributing specific knowledge. Results of
the collaboration are manifested in one or more design artifacts (such as documents or code),
which correspondingly address the diversity of relevant service aspects, including technical,
business-related, or legal ones. Participatory service design can thus be seen as the process
of coordinating a set of stakeholders, where each stakeholder is represented by one or more
experts and contributes to the creation of design artifacts” [149].

7.1.1. Instantiation

In order to illustrate participatory service design, the collaboration scenario as well as the
service design method chosen for this use case study are outlined in the following. As already
several methods and models exist for service design in general, one method is selected to be
extended with collaboration features. Subsequently, the instantiation of the collaboration
model for participatory service design is described, followed by a short presentation of the
prototype implementation.

Collaboration Scenario

The service design method selected for the use case study is service feature modeling [150]
during which a document called service feature model (SFM) is produced. According to the
concept described in [149], SFMs are created during a dedicated modeling phase. The result
of service feature modeling is a design artifact including multiple design and implementation
alternatives for different aspects of a service, e.g., a set of authentication mechanisms which
can be used in the implementation of a service. Design and implementation alternatives are
captured in a hierarchical structure of features and feature attributes. During a subsequent
configuration phase, experts choose the design alternatives to be realized, e.g., a concrete
authentication mechanism, based on requirements and constraints, e.g., that a service has to
be delivered electronically. The result of the configuration phase is an artifact representing
one single service design.

The creation of one single artifact which contains dedicated parts, i.e., features, including
knowledge of different domains makes service feature modeling an ideal candidate for this
use case study. The use case study realizes collaborative service feature modeling during the
modeling phase where a service feature diagram as a graphical representation of an SFM is

122 7. Use Case Studies

created. In the collaboration scenario, an organizational unit is in charge of the design of a
new service. The organizational unit wishes to involve expertise from other, potentially or-
thogonal organizational units, e.g., for service features on legal, budget, or compliance, and
therefore appoints a coordinator. The coordinator acts as a caretaker who identifies responsi-
bilities and assigns them to individuals as well as supports communication and coordination
between participants [111]. During collaboration, diverse participants contribute model parts
for different aspects to a single SFM.

An example for collaborative service feature modeling is given in Figure 7.1 where a ser-
vice is designed to enable employees to access their social security insurance record. Besides
the service engineer acting as project coordinator, a legal expert is involved who contributes
knowledge in terms of legal and security aspects. A cost estimation service contributes at-
tribute values for electronic and postal record delivery. For a more detailed description on
service feature modeling in general the reader is referred to [149][150].

GR01 service

Security / Legal

Security / Legal

Proof of
authenticity

Authorization

Legal expert
Cost estimation

service

Delivery cost
Value = 0,45

Delivery cost
Value = 0,02

Stamp &
signature

Digital
signature

Online
registration

Personal
appearance

call
CostEstimationService

/cost/electronic

call
LegalExpert

call
CostEstimationService

/cost/postal

Record delivery
method

Postal Electronic

Delivery cost Delivery cost

Service engineer

Feature
Key:

Attribute type Attribute

= mandatory
feature

= optional
feature

= XOR = OR

= Requires

= Excludes

Figure 7.1.: Example of an SFM composed of services (source: [149]).

7.1. Participatory Service Design 123

Application of the Collaboration Model

The component model presented in Section 4.1 is instantiated as follows. Providers are
human experts or software services who contribute services to deliver or refine results to be
included into the overall SFM. Resource content delivered by services are simple attribute
values or complex SFMs including feature trees. Attribute values represent measurable, non-
functional characteristics of a feature and are primitive data types [149].

The composition model presented in Section 4.2 is adapted and extended for the instanti-
ation of the overall collaboration model to service feature modeling as shown in Figure 7.2.

Service Contribution

Result

*0..1

Attribute value

SFM

*

1

*

-input*-output *

*

0..1

-subresult

*

1

*

Figure 7.2.: Adapted and extended composition model for collaborative service feature modeling
(based on [149]).

Suitable to the resources offered by the providers, the results to be produced and refined
during collaboration are either SFMs or attribute values. SFMs might contain subresults. For
instance, the overall service in Figure 7.1 is an SFM containing the “security/legal” SFM. As
attribute values are simple data types, they cannot be further decomposed.

For service binding in the use case study, the coordinator-initiated binding protocol as
presented in Section 5.1.1 is instantiated which enables a top-down collaboration where a
coordinator decides on participant selection. The service request/response protocol is used
as presented in Section 5.1.2. Accordingly, SFMs are assigned to responsible participants of
a collaboration who eventually deliver their results. Activities include creation and revision
of results.

During collaboration, several collaboration-specific dependencies exist which are sup-
ported using extensions of the event model and the definition of domain-specific rules: (a)
cross-tree relationships, (b) attribute type dependencies, and (c) attribute provisioning depen-
dencies.

124 7. Use Case Studies

(a) Cross-tree relationships. Cross-tree relationships between features denote that one fea-
ture either requires or excludes the existence of another feature in a configuration. For
example, a cross-tree relationship exists between the “electronic” record delivery and
the “stamp & signature” authentication mechanism denoting that the one excludes the
other [149]. In order to avoid inconsistencies caused through changes or deletion of a fea-
ture which is part of a cross-tree relationship, the modeler of the affected feature should
be informed about changes. Accordingly, the event model described in Section 5.2 is ex-
tended with the event types FeatureUpdated and FeatureDeleted [149] as depicted
in Figure 7.3. In addition, a notify action is added to the actions of the rule mechanism.

Abstract Event

-event ID : Integer
-timestamp : Date

Feature Updated

-feature : SFM

Feature Deleted

-feature : SFM

Attribute Type Updated

-type : AttributeType

Attribute Type Deleted

-type : AttributeType

Modeling Phase Finished

Figure 7.3.: Additional events for collaborative service feature modeling.

Cross-tree relationships originally are defined between features in the document model,
the SFM. In order to manage cross-tree relationships through the ECA rule mechanism,
they are translated to rules as soon as they are created in the document model, i.e., as
soon as a result including a cross-tree relationship is created. As an example, in case the
“electronic” delivery is changed to “postal”, the relationship becomes obsolete and its
author, the legal expert who defined the relationship in the document model, is notified
as defined in the following rule (adapted version from [149]). The terms in quotes in the
following rules are unique IDs.

ON FeatureUpdated(feature="electronic")

∨ FeatureDeleted(feature="electronic")

DO notify("legal expert");

(b) Attribute type dependency. In an SFM, attribute types can be specified to define common
characteristics of attributes like the unit for costs in the insurance record example [149].
An attribute might be of a specific type which denotes an attribute type dependency be-
tween an attribute and its type. Several attributes might use the same type. Changes of an
attribute type can lead to inconsistencies, for instance, if the attribute type “delivery cost”
is changed from “Euro / delivered record” to “Euro / month”. In such cases, all affected

7.1. Participatory Service Design 125

modelers of attributes, in the example the service engineer, need to be informed [149].
Accordingly, the event model is extended with the event types AttributeTypeUpdated
and AttributeTypeDeleted as depicted in Figure 7.3. As soon as an attribute is cre-
ated in the document model, i.e., a result including an attribute is created, an ECA rule
is instantiated. The notified modelers might then request the services delivering the at-
tribute values for updates. The following rule implements this behavior for the described
example (adapted version from [149]).

ON AttributeTypeUpdated(type="delivery cost")

∨ AttributeTypeDeleted(type="delivery cost")

DO notify("service engineer")

(c) Attribute provisioning dependency. Cross-tree relationships and attribute type depen-
dencies are content dependencies based on the document model used in service fea-
ture modeling. A third type of dependency to be managed is the attribute provisioning
dependency. Attribute provisioning dependencies are prerequisite relations motivated
from a process perspective. Attribute values allow modelers to include real-time data
or complex calculations into the model. Such services should be invoked during the
configuration phase which succeeds the modeling phase in order to allow participants
to decide based on the most actual values [149]. Services might, however, not be able
to push updates to the SFM on their own. Therefore, an event of a the newly defined
type ModelingPhaseFinished is used which denotes the end of the modeling and the
beginning of the configuration phase. A project coordinator can emit the event of type
ModelingPhaseFinished manually, e.g., through an external channel to a modeling
tool. The event of type ModelingPhaseFinished might trigger a rule which requests
all contributions delivering an attribute value. Alternatively, or additionally, a coordina-
tor might specify rules which request those services at a certain point in time, e.g., every
morning at 8am. The following rules coordinate both alternatives. Such rules can be
defined by human coordinators throughout the collaboration. Alternatively, the rules can
automatically be created by the collaboration system as soon as attribute value providers
are bound to a contribution and deleted if the binding is removed [149]. The following
rule is a slightly adapted version of the rule presented in [149].

ON ModelingPhaseFinished

DO requestContribution("benchmark");

ON Timer(*-*-*-08-00)

DO requestContribution("benchmark");

126 7. Use Case Studies

The listed dependencies and rules are not claimed to be complete. Rather, the rules are
found suitable to avoid inconsistencies during collaborative service feature modeling [149].

Implementation

The prototype system supporting collaborative service feature modeling is designed as shown
in Figure 7.4. As part of the collaboration server, the SFM manager fulfills functionality of
the mashup persistency as described in Section 6.1.3. Besides storing results and offering
them as services through the model interface, the SFM provides the model integrator which
parses SFMs on delivery or update before storing them in the SFM persistency. The model
integrator communicates with the coordination engine.

Collaboration server

Adapter

REST modeler
interface

Coordination
interface

Adapter

REST modeler
interface

Coordination
interface

SFM manager

Model interface

Model Integrator

SFM
persistency

Coordination engine

Coordination
interface

Rule
repository

Rule creator

Rule engine

Contribution
/ Service
mapping

Protocol engine

Adapter

Model interface

Coordination
interface

Rule interface

Event interface

Service &
user

repository

SFM designer

Web services

Figure 7.4.: Architecture of a system for collaborative service feature modeling (source: [149]).

The coordination engine fulfills the functionalities of the rule engine (Section 6.1.5) and
the coordinator service messaging (Section 6.1.4). Accordingly, the coordination engine
provides an interface to listen for events and an interface to create rules. For example, as
soon the model integrator in the SFM manager detects the update of a feature in an SFM, it
sends an event to the coordination engine using the event interface. In addition, the model

7.1. Participatory Service Design 127

integrator might automatically create rules using the rule interface, e.g., if it detects a new
cross-tree relationship which should be managed automatically. Rules are stored in the rule
repository and fed into the rule engine. If the rule engine detects an event pattern, it causes
an action, e.g., requests a service. The protocol engine provides the functionality of the
coordinator service messaging component described in Section 6.1.4 and manages service
calls.

The service and user repository in combination with the contribution/service mapping
repository represents the mashup registry as presented in Section 6.1.2. Accordingly, the
service and user repository stores available providers and their capabilities. The contribu-
tion/service mapping repository stores contributions and associated concrete services in a
separate repository.

Contributors can access the collaboration server using adapters. Adapters include Web ser-
vices as attribute value providers. In addition, for a user front end with modeling capabilities
for SFMs, an adapter is built to the existing Eclipse-based SFM designer [149]. The SFM
designer adapter enables coordinators to create expected results, and select and associate ex-
perts from the service and user repository. The SFM designer adapter also allows service
providers to contribute their results.

7.1.2. Discussion and Related Work

The presented use case study demonstrates the application of the collaboration model for
the collaborative integration of diverse design issues into a coherent design artifact, an SFM.
Parallel work in collaborative modeling can improve efficiency. One of the challenges of
collaborative modeling, however, is the integration of sub-model parts which are contributed
by participants in parallel into one coherent model [115]. Accordingly, in this use case study,
model parts are represented as services which are delegated to experts who can independently
contribute to a central uniform design artifact. The application of the collaboration model to
participatory service design results in the following findings.

• The use case study exposes a hierarchically organized form of collaboration in a team
of experts. Participants act in the roles modeler, coordinator, and attribute service
provider. Further roles, e.g., specified in a specific role model, are not required in the
use case. Human participants are experts which are selected according to responsi-
bilities and knowledge. The coordinator decides whom and how many participants to
integrate. Accordingly, the coordinator-driven participation protocols proposed in the
collaboration model can be used. While modeling in smaller groups is more efficient
and the participation most often is higher, the integration of more experts increases the
quality and completeness of the model [115]. Experience on optimal group size for

128 7. Use Case Studies

modeling with the presented approach might be gained in field studies. The collabora-
tion model does not delimit the number of participants.

• Modeling SFMs in their graphical notation is a complex task mainly performed in-
dependently by single responsible persons. Modelers use suitable editors to perform
this task. The delivery of the result SFM is a contribution to the collaboratively cre-
ated central SFM which might have dependencies with other SFMs. The delivery can
therefore be represented as an atomic activity, and thus, coordination mechanisms can
be applied on the activity. No complex, domain-specific activities need to be intro-
duced into the collaboration model. In an atomic activity, an SFM including several
features can be contributed. This is realized through separating the document model
from the service composition model: Although SFMs include a hierarchy of features,
they are not mapped on a result in a one-to-one relationship. Rather, subtrees of an
overall SFM are mapped on results. Therefore, the tree structure of the SFM itself
does not necessarily correspond to the tree structure of the service composition model.
Coordinators can identify complete SFMs representing an aspect of the service design
and assign them to an expert for the aspect. The reusability of results is improved
since complete modeled aspects can be integrated into the design models of different
services. The separation of document and composition model, however, introduces an
indirection in the treatment of rules. Relationships in the document model need to be
constantly synchronized with the rule base. A specialized software component needs
to keep relationships and rules consistent.

• In order to support domain-specific dependencies, a set of simple event types are speci-
fied. The dependency management mainly focuses on the prevention of inconsistencies
in SFMs. Potential domain-specific inconsistencies are detected through rules which
are automatically created by a software component. Responsible participants are noti-
fied and can resolve possible conflicts. The rules do not resolve inconsistencies because
the considered dependencies are content dependencies which can only be resolved by
humans understanding the semantics of the model. A large set of rules might be cre-
ated by participants and automatically by the collaboration system. Future versions of
the collaboration application should consider rule management functions adapted to
the use case.

• The integration of software services is used in two respects. First, modelers are enabled
to use their preferred tool, e.g., the SFM designer, to perform the complex task of
modeling the SFM they are responsible for. Plug-ins for such tools can be created
with the adapter framework. Second, the ability to integrate software services appears
to be convenient for the integration of dynamic data or complex calculations into the

7.2. Community-Driven Pattern Repository 129

model. Dynamic data like benchmarks or sensor data can be kept up to date more
easily. For each software service, however, a distinct adapter needs to be implemented
which might impair usability of the approach.

A similar approach to collaborative service feature modeling is used in [32] where UML
models are created by distributed software engineering teams. UML models can be decom-
posed by software engineers into fine-grained model parts. Model parts can then be modified
by distributed participants. As collaborative service feature modeling, this approach en-
ables hierarchical breakdown of models, event-based notifications, and coordination mecha-
nisms for the management of concurrent access and dependencies between model parts [149].
In [154], a model and tool allow SOA architects to collaboratively capture SOA design deci-
sions and their alternatives. Coordination support is provided during the decision phase in the
form of dependencies between decisions similar to the cross-tree relationships in service fea-
ture modeling. The instantiation is implemented in a wiki and supports textual descriptions
in a predefined document model. Both approaches, however, “do not (yet) support assign-
ment of modeling parts through a coordinator to responsible participants and do not enable
the integration of contents provided by software services into the models” [149].

To summarize, the use case study focuses on the integration of contents delivered by in-
dividual experts into a coherent model as well as the integration of software services. The
applied participation protocols reflect a hierarchical, coordinator-driven collaboration. The
following use case, on the contrary, targets at an open, community-driven model of collabo-
ration which still implements mechanisms for coordination.

7.2. Community-Driven Pattern Repository

Design patterns capture frequently used solutions for common problems in order to com-
municate those solutions. Pattern descriptions usually are structured uniformly, including
the problem description, the description of the solution to the problem, consequences of ap-
plying the solution, examples for application as well as dependencies to other patterns. In
pattern repositories sets of patterns in a certain application domain can be collected using
a community-driven, collaborative approach. Plenty of pattern collections exist, addressing
various contexts and levels of application. For instance, the authors of [49] present a col-
lection of patterns for reusable solutions in object-oriented software design which serve as
blueprints for software developers. The patterns constitute classes as well as relationships or
interactions between them.

The focus of the use case study described in the following is a community-driven pattern
repository for a specific type of patterns, service network management patterns. The use

130 7. Use Case Studies

case study is published in [125]. The following explanations advance and discuss the results
presented in the publication in the context of the collaboration model and system.

7.2.1. Instantiation

The following sections introduce service network management patterns and well as describe
the pattern repository for such patterns and the instantiation of the collaboration model for
this use case.

Collaboration Scenario

Service network management involves activities to design a platform which hosts and offers
software applications as services. In particular, platform architects need to realize suitable
structures and control mechanisms in order to exploit network effects [125]. For example,
successful service platform operators like Salesforce and Netsuite leverage economic net-
work effects to improve their portfolio of offered services on the one hand and grow the
customer base on the other hand. The Dynamic Network Notation (DYNO) can be used
by platform operators to model platforms as regards their control mechanisms and network
effects [124]. As described in [125], service network management patterns capture expe-
rience of successful and unsuccessful service network management approaches in order to
enable platform operators and researchers to learn from and to share knowledge on best prac-
tices. Descriptions of service network management patterns are organized according to the
structure presented in Table 7.2. The table also introduces the “communicate the number of
subscribed users” pattern as an example. A detailed description of service network manage-
ment patterns is provided in [125].

Table 7.2.: Service network management pattern structure and example (based on [125]).
Name Description
Pattern ID Unique pattern identifier.
Pattern Name Meaningful name of the pattern, e.g., communicate the number of

subscribed users pattern
Version Version number.
Authors The authors that contributed to the pattern, followed by the release

version in brackets.
Status Under revision, released.
Pattern Type Pattern or anti-pattern.

Continued on next page

7.2. Community-Driven Pattern Repository 131

Table 7.2 – Continued from previous page

Name Description
Intent Description of the addressed service network management problem.

For example, the “communicate the number of subscribed users”
pattern provides a solution for raising network effects that shall be
exploited to grow the user base.

Applicability Description of the contexts where the pattern can be applied includ-
ing preconditions.

Solution Detailed description of the pattern, its accomplishment, limitations,
etc. For example, the “communicate the number of subscribed
users” pattern proposes to publish the current number of platform
users, thus, apply an informational control mechanism, which moti-
vates new users to register at the platform and consume services.

Diagram Graphical representation of the pattern.
Consequences Description of pros, cons, and limitations.
Sources If code for parts or all of a pattern can be downloaded at a URI, this

URI is included here, accompanied by additional information e.g.,
license information and deployment guides.

Examples Real life examples.
Included Patters Cross reference to included patterns.
Related
Patterns

Cross reference to closely related patterns. For example, a re-
lated pattern of the “communicate the number of subscribed users”
pattern is the “award a bonus” pattern which applies a motiva-
tional control mechanism to enforce growth of the user base. The
“consumer-sided network effect” pattern combines a set of patterns
for growing the user base.

When capturing a reusable base of knowledge on service network management in an open
pattern repository, platform operators could profit from experience in different market seg-
ments. Authors of pattern descriptions could benefit from the continuous advancement of
their suggested pattern through the community. Therefore, the knowledge base needs to be
open to any user willing to contribute knowledge. This openness, however, comprises the risk
of low-quality contributions [125]. As suggested in [125], a pattern repository should there-
fore enable a community to initiate and evolve individual patterns until they are generally
accepted.

The collaboration scenario in this use case study aims to support openness as regards
participants and contributions on the one hand and, on the other hand, enable coordination

132 7. Use Case Studies

mechanisms to improve quality of contributions. In the collaboration scenario, members of
the community create, revise, and approve patterns in the specified, but extensible structure.
During collaboration, community members play different roles [125]. Contributors deliver
content according to their expertise, e.g., textual descriptions or diagrams, for a pattern.
Existing patterns or parts thereof can be reviewed and updated by revisers. Any community
member can play these roles. To assure quality of patterns, approvers are required to state
that a pattern is valuable and sufficiently described in its current version. An approval can
be made at any time throughout the collaboration by any community member. Approvals are
performed by service providers in order to avoid bottle necks at the coordinator as well as
enable community-based approval.

Each member of the community can create a pattern in the repository. The creator of an
initial pattern is appointed as coordinator of this pattern who specifies coordination mech-
anisms for the pattern [125]. For instance, a coordinator might assure that the author of a
solution description is notified whenever an update to a diagram happens. The coordinator
might delegate description tasks to certain community members. For instance, the coordina-
tor might assign a revision task to a community member who might be interested in revising.

Application of the Collaboration Model

In order to support the described collaboration scenario, the component model presented in
Section 4.1 is instantiated as follows. Providers are human experts who deliver, refine, or
approve service network management patterns or parts thereof. Providers produce text or
figures as result resource content. Results might be delivered through various channels, for
instance, e-mail, a DYNO editor, or a Web front end. In addition, an ID generator can be
used to create unique pattern IDs. Adapters to services from the Web might provide example
texts or connect source code repositories.

The composition model presented in Section 4.2 is extended as shown in Figure 7.5. The
results to be composed are descriptions of patterns including diagrams and text. Important
contributions for service network management patterns are the provisioning of parts of the
pattern description (e.g., pattern ID, intent, solution) through contributors, the revision of
these parts through revisers, and the approval of a pattern document through approvers.

As regards binding protocols, the pattern repository is configured with the self-service
binding protocol as well as the coordinator-initiated binding protocol as presented in Sec-
tion 5.1.1. On the one hand, interested and committed community members can ask the
coordinator for binding to a contribution they want to provision. On the other hand, coordi-
nators still might invite specific service providers, e.g., for approving or revising a suggested
pattern [125].

7.2. Community-Driven Pattern Repository 133

1

*

Pattern

Text

Diagram

1

*

1

*

Service Contribution

Result

*0..1

*

-input*-output *

*

Figure 7.5.: Extended composition model for the pattern repository (based on [125]).

As an example, Figure 7.6 shows parts of the “communicate the number of subscribed
users” pattern as composition of results, contributions, and services. In this figure, the pattern
contains a pattern ID provided by a software service, a description of the pattern intent written
by a human participant, examples retrieved from Web sites, as well as a diagram modeled in
DYNO. In addition, the pattern has review, approve, and publish contributions.

Communicate the Number of
Subscribed Users Pattern

Pattern ID Intent Diagram

insert write insert

 result

 contribution

 services

review approve Examples

insert

publish

Figure 7.6.: Example service network pattern composed of services (based on [125]).

The execution of services is managed through different request/response protocols for
different result types. Pattern results, i.e., root nodes of the result tree, can be identified,
approved by a number of services with type approval as well as released as shown in Fig-
ure 7.7(a). The transition to state “released” is performed by the coordinator, supported by
rules as shown later in the section. The state “released” denotes an agreement of the commu-
nity on the quality of the pattern. Once in state “released”, no changes or approvals can be
made to the pattern or any of the subresults.

The transition from state “approved” to “identified” is performed automatically through
a rule as any subresult of the pattern is added or updated, for example service A updates

134 7. Use Case Studies

identified approved identifiedreleased
approve publish

approve

update content

(a) Result life cycle of pattern.

identified
content
created

identifiedcontent
updatedcreate

content

update content

update content

(b) Result life cycle of text or diagram as subresult of pattern.

executedrequested
bind
service

approverequest
service

request service
request service

service A

service B (approval)

service C (approval)

coordinator (influenced

by service A)

created bound

(c) Contribution life cycle of approval.

Figure 7.7.: Service execution protocol.

the subresult in Figure 7.7(b). The contribution life cycle of an approval is presented in
Figure 7.7(c) which is associated with service B of type approval. An approval can only be
executed on request of the coordinator. If a pattern is transferred from state “approved” to
“identified”, the approval is requested again in order to proof that the pattern is still valid.

As shown in Figure 7.7(b), all text and diagram results follow the standard service re-
quest/response protocol presented in Section 5.1.

The rule mechanism described in Section 5.3 is used in the pattern repository to (a)
semi-automate service binding and request/response protocols and (b) manage collaboration-
specific dependencies [125].

(a) Semi-automation of participation protocols. The protocols involve several coordina-
tor activities which are automated by the coordination engine through the definition of
generic, globally defined rules in the repository. Full automation of participation proto-
cols can not be supported by the rules since participating providers potentially perform
their contributions manually. The first generic rule enables the automated acceptance
of service requests from providers. All binding requests from providers should be ac-
cepted by default. Thus, the new event type BindingRequested is defined. Whenever

7.2. Community-Driven Pattern Repository 135

a provider asks for binding according to the service binding protocol, an event of type
BindingRequested is emitted. On every occurrence of such an event, if the contribu-
tion is not already bound (the state “bound” is assumed to have the integer value 2 in
the rule), the requested binding is automatically accepted by the rule, i.e., the requesting
service is bound to the requested contribution. The automated acceptance is instantiated
through the following generic rule (adapted version of the rule presented in [125]).

ON BindingRequested

IF BindingRequested.contribution.contributionState!=2

DO acceptBinding(BindingRequested.service,

BindingRequested.contribution)

The action acceptBinding is an extension to the actions of the rule mechanism which
communicates with the registry to set the state of the contribution. As the accept-

Binding action also changes state, an event is emitted denoting that the contribution is
bound [125]. The following generic rule is executed as soon as an event of type Bound

is detected and automatically triggers a service request of the bound service. In the
example, the bound contributor is requested to write the solution section of the pattern.
The rule is an adapted version of the rule presented in [125].

ON Bound

DO requestContribution(Bound.contribution)

(b) Collaboration-specific dependency management. The rule mechanism allows coordina-
tors to define rules for managing dependencies in specific patterns. In the following,
rules for managing content dependencies and approval processes are presented. Pattern
coordinators should add those rules to the rule engine for their pattern. “In order to allow
for comparable quality and design methodology of all patterns in a repository, a reposi-
tory might provide a template instantiating these rules which can be used for the creation
of a new pattern. This template should be combined with a template for structuring
patterns” [125]. Still, a coordinator might define additional, individual rules.

During collaboration, content dependencies exist between parts such that updates of parts
of a pattern might cause inconsistencies in other parts. A content dependency exists for
example between a solution and a diagram section of a pattern. In case a diagram is
updated, the solution section has to be checked for up-to-dateness; if the solution section
is updated, the diagram section has to be checked. The following rules request the con-
tribution for revising the solution section if the diagram is updated and the contribution
for revising the diagram if the solution section is updated [125]. The terms in quotes

136 7. Use Case Studies

denote unique IDs of results or contributions. The rules are adapted versions of the rules
presented in [125].

ON ContentCreatedOrUpdated(result="diagram")

DO requestContribution("solutionRevision")

ON ContentCreatedOrUpdated(result="solution")

DO requestContribution("diagramRevision")

The rule mechanism helps participants in identifying potential semantic inconsistencies
in pattern contents. The participants are in charge of resolving inconsistencies.

In order to allow coordinators to officially declare a pattern as accepted by the commu-
nity, the collaboration scenario envisages a pattern approval process. In an initial setting,
three participants need to approve a pattern such that the pattern can be transferred in state
“released”. Appointing three approvers is assumption-based and subject to optimization
in future work [125]. Until approved, the pattern state is under revision. In the collab-
oration scenario, as soon as a pattern is released, it is published on a Web site. In order
to implement the approval process, a rule listens on events of type ContentApproved

which are emitted as soon as a service of type approval updates a pattern. If three events
of type ContentApproved are detected one after the other without a content update of
any section in the pattern in between, the action requests the contribution for publishing
the pattern. The following rule is an adapted version of the rule presented in [125].

ON ContentApproved

→ (ContentApproved ∧ ¬ ContentCreatedOrUpdated)

→ (ContentApproved ∧ ¬ ContentCreatedOrUpdated)

DO requestContribution("publish")

The presented rule automates the transition of a pattern state from “approved” to “re-
leased” as defined in the service execution protocols in Figure 7.7. Coordinators can
configure individual rules for automating this transition.

Implementation

For the implementation of the pattern repository, the collaboration infrastructure and applica-
tion presented in Chapter 6 is adapted to the required protocols. The collaboration application
could be used as front end. A screenshot of the front end is shown in Figure 7.8.

7.2. Community-Driven Pattern Repository 137

Figure 7.8.: Coordination view of a pattern in the demonstrator showing the “consumer-sided network
effect pattern”.

7.2.2. Discussion and Related Work

In the presented use case study the collaboration model is instantiated for the creation of ser-
vice network management patterns in a community-based pattern repository. Pattern reposi-
tories in general allow for the aggregation of experience as they are open to communities of
practice such that everybody can contribute. Studies in the field of online content produc-
tion in wikis have shown that also in open communities participants coordinate in order to
improve quality of produced content or manage conflicts [69]. Popular coordination mech-
anisms in this field are discussions about documents as well as the leadership of a few par-
ticipants who control contributions to documents. Accordingly, the use case study presents
a pattern repository which aims to be open for contributions but also involves coordination
mechanisms like notifications or an approval process with the goal to assure quality of in-
dividual patterns as well as of the repository as a whole. Still, discussion about particular
patterns in order to coordinate pattern evolution is not realized in the use case study. The
application of the collaboration model to the case of a community-driven pattern repository
results in the following findings.

• The use case study envisages a coordinator for each pattern who identifies results and
rules for the pattern. The manual coordination overhead can be reduced through pro-
viding a pattern template at pattern creation time. The template ideally includes (a) the

138 7. Use Case Studies

initial pattern structure as presented in Table 7.2 as a result tree, (b) an agreed-upon
number of approval contributions for the pattern, and (c) generic rules for managing
content dependencies and implementing the approval process. Accordingly, a generic
approach for templates in order to automate the creation of expected results needs to
be considered in future work.

• In contrary to the result structure in the use case study for participatory service de-
sign, the result structure of a pattern is a flat list with one root node where each result
represents a section of the pattern description. The result structure is used to identify
required content delivery and revision tasks for each text and diagram section. In addi-
tion, approval tasks are identified for each pattern. A contributor potentially provides
all sections or a large subset of sections for a pattern at the same time. A suitable
collaboration application thus should provide an integrated editor which allows con-
tributors to provide a set of contributions at once. In addition, a future version of the
collaboration application should support automated binding to a specific provider for
all sections of a pattern with only one binding request.

• The design of the pattern repository involves complex design decisions. For example,
the approval process is distributed over several collaboration model parts. First, a pat-
tern is associated with a number of approval contributions associated with services of
type approval which update the pattern resource. Second, the pattern follows a newly
defined service request/response protocol. Third, rules manage the approval process
through semi-automating participation protocols. Additional suitable designs of the
approval process might exist. During design of a coordination mechanism, the differ-
ent nature of the collaboration model components have to be considered. For example,
protocols are standardized for all coordinators in a collaboration system. Protocols
might be implemented using globally defined rules or a protocol engine. Changes of
protocols affect all coordinators in the collaboration system. Collaboration-specific
rules affect a particular pattern and allow coordinators to define individual coordina-
tion mechanisms. In the use case study, one design decision is to provide the general
ability to approve a pattern before it can be released through a protocol. The number
of required approvals can be flexibly defined by a coordinator through collaboration-
specific rules.

• Contributors can use different channels to provide a service, e.g., use their favorite
text editor. In addition, an adapter for the DYNO editor could allow participants to
update pattern diagrams directly in the appropriate editor and submitting from the ed-
itor to patterns. The results might be delivered by the participants in any format. In
order to ensure uniformity as regards representation of patterns, however, guidance or

7.3. Conclusion and Discussion 139

a mechanism to ensure format conformity should be introduced in future versions of
the infrastructure.

A number of online pattern repositories in various contexts exist. In addition, the concept
of exchanging ideas on patterns in a collaborative knowledge base is not new. For instance,
the Portland Pattern Repository (PPR)24, a repository for patterns in software development,
came with the first wiki which allowed programmers to easily exchange and edit software
design pattern ideas and information. The PPR, however, does not come with structuring or
approval functionality [125]. In [91], an interactive pattern repository for inter-organizational
business processes is described which allows for a steadily growing pattern base. The authors
“define an extensive pattern meta-model, including classes for pattern descriptions with visu-
alizations and relationships between patterns” [125]. Similar to the use case study presented
in this section, roles and a pattern review process are defined where a defined number of
community members need to accept the pattern. The authors of [91], however, do not de-
scribe community-driven collaborative authoring of patterns, integration of external services,
e.g., from software systems or the Web, as well as support of channels for participants [125].
Web- or groupware-based approaches for collaborative management of architectural knowl-
edge artifacts like patterns, e.g., [8][155], are well suited for informed decision making dur-
ing design. These approaches, however, do not allow for the integration of external sources,
do not form a community-driven approval process, or support flexible coordination of artifact
dependencies [125].

To summarize, the use case study focuses on the community-driven contribution of con-
tents to a service network management pattern repository – reflected by the applied and
automated participation protocols – while implementing coordination means towards quality
assurance of patterns like an approval process. The instantiation, however, exposes shortcom-
ings as regards usability. For example, the potential complexity of rules to be added might
reduce usability and efficiency of pattern creation. Future work should therefore address the
implementation of a template mechanism supporting automated instantiation of rules.

7.3. Conclusion and Discussion

The use case studies show feasibility of the design features captured in Chapter 3 as well as
demonstrate applicability of the collaboration model to different collaboration scenarios with
different coordination requirements. Table 7.3 summarizes the conclusions drawn from the
use case studies.

24http://c2.com/ppr/ (accessed January 22nd, 2013)

140 7. Use Case Studies

Table 7.3.: Summary of use case studies.
Participatory
Service Design

Community-
driven Pattern
Repository

Conclusion

Roles (DF 1-1): Which roles are involved? Are coordinator and contributor roles suffi-
cient for the use case?
coordinator, mod-
eler, attribute value
provider

coordinator, content
creator, content
reviser, approver

The separation into coordinator and con-
tributor roles are sufficient in both use
case studies. While the coordinator role
is required in participatory service de-
sign, the separation of roles might be
needless in the pattern repository since
every participant might take any role.

Participants (DF 1-2): Which kind of providers are involved – humans and/or software
service providers? How does integration of software services benefit the use case?
humans and soft-
ware service
providers

mainly humans
through different
channels, poten-
tially software ser-
vice providers

The integration of software services is
useful in participatory service design,
whereas the support of multiple chan-
nels enabled through service-orientation
is considered useful during the creation
of patterns.

Activities (DF 1-3): Which activities are performed during collaboration? Are atomic
content production activities sufficient?
coordination, con-
tent creation, re-
view

coordination, con-
tent creation, re-
view, approval,
publication

For the studied use cases, different types
of atomic content production activities
as defined in the collaboration model are
sufficient.

Continued on next page

7.3. Conclusion and Discussion 141

Table 7.3 – Continued from previous page

Participatory
Service Design

Community-
driven Pattern
Repository

Conclusion

Artifact structure and evolution (DF 2-1): How is the result document structured? Can
the structure be used for the identification of activities?
complete SFMs
are used to identify
activities

activities are iden-
tified per pattern
part

The identification of activities can be
performed based on the document struc-
ture in both use case studies. The map-
ping of the document model and the re-
quired activities, however, has to be de-
liberated for each use case as it might
not be possible to map one-to-one.

Document model (DF 2-2): Which document model and formats are required? Is docu-
ment model independence advantageous?
SFMs (complex,
hierarchical mod-
els), attribute val-
ues (simple types)

text, diagrams in a
predefined, yet ex-
tensible flat struc-
ture

The use case studies expose differ-
ent document models which can be
both mapped to a hierarchical structure.
The document models include hetero-
geneous contents, e.g., text, models, or
figures. Document model independence
therefore is a suitable design feature of
the collaboration model.

Reuse (DF 2-3): Are produced document parts reused? Is reuse of results applicable?
reuse of complete
SFMs desired in
different service
design projects

composition/reuse
of complete pat-
terns in other pat-
terns desired

In both use cases, the reuse of larger
compositions is desired rather than reuse
of atomic document parts. In order to
better support reuse of a desired sub-
set of all results, suitable knowledge
management mechanisms, e.g., search,
should be developed in future work.

Continued on next page

142 7. Use Case Studies

Table 7.3 – Continued from previous page

Participatory
Service Design

Community-
driven Pattern
Repository

Conclusion

Binding protocols (DF 3-1): How are participants bound to activities? Which binding
protocols are instantiated? Is openness as regards participation protocols a desired design
feature?
participation is
driven by co-
ordinator, i.e.,
coordinator-
initiated protocols
are used

self-service pro-
tocols are used
in addition to
coordinator-
initiated protocols

The use cases instantiate different par-
ticipation protocols in order to support
different characteristics of coordination.
Therefore, openness as regards binding
protocols can be considered an adequate
design feature.

Resource and activity states (DF 3-2): How are activities related to artifact parts? Which
execution protocols are instantiated? Is state tracking used?
standard execution
protocols and states
used; state track-
ing can be used
as coordination
mechanism to man-
age service design
project

additional pattern
states and proto-
cols; state tracking
might inform co-
ordinators of open
contributions

Different execution protocols are instan-
tiated, making openness as regards exe-
cution protocols an adequate design fea-
ture. State tracking might be useful for
coordinators in both cases. Suitable UIs
are required.

Document access (DF 3-3): Do participants consume existing document parts?
access to existing
parts not neces-
sarily required by
modelers

participants require
access to existing
pattern description
parts in order to
keep the pattern de-
scription consistent

Access to document parts is required in
at least one use case study in order to
keep the overall document consistent.

Continued on next page

7.3. Conclusion and Discussion 143

Table 7.3 – Continued from previous page

Participatory
Service Design

Community-
driven Pattern
Repository

Conclusion

Events (DF 4-1): Is the event model used or extended? Is the event model including
atomic events sufficient?
additional
collaboration-
specific atomic
events

no additional events In both use case studies, atomic events
are sufficient input for the specified
rules. The ability to create new event
types is required in one use case study.

Dependencies and rules (DF 4-2): Are rules used? Which dependencies are managed
through rules? Is the rule model sufficient?
collaboration-
specific rules add
value in that they
inform about poten-
tial inconsistencies

rules for semi-
automation and
management of
content dependen-
cies and approval
processes

The rule model is used in both use case
studies to create adequate rules for dif-
ferent purposes.

The use case studies represent instantiations of the collaboration model in order to proof
general applicability to different types of collaboration. Although the use case studies only
provide first insights into the suitability of the collaboration model for the collaboration sce-
narios, they still show strengths and weaknesses of the service-oriented collaboration model
for different scenarios.

In addition to the results summarized in Table 7.3, the use case studies showed that the
collaboration model can be tailored to support different collaboration scenarios with different
coordination requirements. The main differences of the use cases are listed in the following.

• The studies differ in the organization of participants. Participatory service design in-
volves a number of experts in an organization who are well known to the team. In ad-
dition, software services might participate. Contributions, however, are assumed to be
controlled by coordinators. A community-driven repository potentially involves per-
sons which do not necessarily know each other. As a result the quality of contributions
might differ which results in approval processes realized in the community-pattern
repository. Still, participation protocols for both use cases could be implemented.

• The documents created during collaboration differ as regards their document model.
In participatory service design, complex hierarchical models are composed. In the

144 7. Use Case Studies

community-driven pattern repository, a pattern contains a flat list of text and figures.
Still, the integration of results into one document could be realized in both use cases
since both could be mapped to the hierarchical result structure.

• Communication and desired degree of automation differs for both use cases as a result
of the different organization of participants. In participatory service design, communi-
cation is coordinator-driven and automation of participation protocols is a non-desired
feature. Coordinators wish to select the participants and to keep control on the con-
tributions of the participants. In the community-driven pattern repository, anyone can
contribute. Accordingly, also self-service binding is allowed. Semi-automation is es-
sential in the pattern repository to reduce manual effort of coordinators as well as
allow for open participation. Still, complete automation is not desired, since humans
contribute content manually. Both communication and automation requirements could
be supported through the participation protocol framework and rules.

• Coordination requirements for participatory service design address the avoidance of
inconsistencies in the models which is complex as interdependencies are contained
inside the model. Service models potentially grow large. Therefore, management of
dependencies inside the model is considered an important coordination mechanism.
Although the patterns expose a less complex content structure, the pattern repository
also supports notification of participants on potential inconsistencies. The focus, how-
ever, is on the approval process which is an approach towards quality-insurance of
contents. In both cases, the coordination requirements could be realized through rules.

In order to enable adaptability, the collaboration model defines components which can
be extended or adapted to the specific needs of a use case. This concept borrows from the
hot spot concept in object-oriented framework design where hot spots are variation points
in frameworks [113]. The hot spots in the collaboration model allow collaboration system
providers to add service types, results, event types, or action types. In addition, collaboration-
specific service binding and execution protocols can be defined. The collaboration system
provider can configure the collaboration system with generic rules. Finally, adapters for
different communication channels can be developed exposing service interfaces and encap-
sulating service interactions. For all of these collaboration model components, a standard
solution is provided which can be reused.

Besides collaboration system providers, coordinators might tailor the collaboration system
to their needs through specifying collaboration-specific rules. This customization can be
performed after initial design of the collaboration system or even during use of the system
during collaboration.

7.3. Conclusion and Discussion 145

The hot spots are accompanied by a set of prescribed collaboration model parts. The
component model specifies uniform interfaces for services and providers. The composition
model prescribes result and contribution interfaces. In addition, the distinction between co-
ordinator and contributor roles is prescribed. Although collaboration system providers might
add protocols, particular states in these protocols are prescribed by the participation protocol
framework. The rule mechanism defines that only ECA rules might be specified.

In both use case studies, the intended collaboration scenarios could be realized with these
standardized components. Several prescribed components, however, provide a suboptimal
solution. For example, in both use case studies, notifications are used to inform human
participants about potential inconsistencies. Notification denotes a unidirectional communi-
cation whereas the interaction of services using the request/response protocol is bidirectional.
Future work should therefore address protocols and protocol framework extensions for addi-
tional communication mechanisms like publish/subscribe.

A number of models and prototypes for cooperative work exist in the research fields of
human-computer interaction (HCI) and CSCW which can be tailored. The authors of [37]
study collaboration during tailoring of the individual software environment or shared in-
frastructures for organizations, e.g., helping out or sharing use experiences. An approach
for composing cooperative work tools from a small set of existing components is presented
in [85]. The authors of [88] discuss the possibilities to enable end-user tailoring: (a) cus-
tomization, i.e., selecting from predefined configuration options, (b) integration, i.e., adding
new functionality through linking predefined components, and (c) extension, i.e., implement-
ing new functionality at given extension points. The mentioned solutions aim to enable end-
users or organizations to adapt their working environment to their needs. In contrary to
end-user tailoring, the reason for adaptability of the collaboration model in this thesis is to
enable the support of different collaboration use cases indicating that coordinating service
composition is a suitable mechanism to support flexible collaborative document creation.

Besides demonstrating adaptability, the use case studies show that collaboration system
providers need to go through a requirement analysis and design phase. A collaboration sys-
tem is a software application which has to be carefully designed. The collaboration model
should be supplemented with design guidelines, e.g., for the realization of particular coordi-
nation mechanisms like an approval process. Relevant design decisions might be examined
through the execution of additional use case studies. Having predefined components at hand,
however, the initial design of collaboration systems is straightforward and realizable in a
short amount of time.

Having discussed the evaluation in which the collaboration model and architecture are
applied to select use cases, the following chapters summarize the contributions of this thesis
as well as present directions for future work.

Part IV.

Conclusion

8. Summary

The research described in this thesis examines coordination of service compositions in sup-
port of human collaboration. The presented solution is based on the hypothesis that the
mapping of collaborative document creation on a service composition model enables the inte-
gration of human-based and software services into collaborations as well as the coordination
of collaborations through mechanisms adapted to the needs of the participants. Reasons and
motivation for this hypothesis origin in the state of the art as regards service composition,
human collaboration, and coordination presented in Chapter 2. Current service composi-
tion approaches, however, suit to support well-structured collaboration but do not facilitate
flexible coordination of collaborative document creation.

Collaborative document creation is a complex case as it involves activities performed by
different human and non-human providers and the integration of heterogeneous content from
different sources. Participants have different experiences and demands as regards the col-
laboration tool or channel. Often, activities, participants, and required contents can not be
defined completely in advance. Still, interdependencies between activities require coordi-
nation. In addition, collaboration processes usually are unique and not repeatable as each
collaboration follows a different purpose.

In order to address this complexity while still supporting a large number of use cases, this
thesis proposes a collaboration model which addresses (a) the integration of human and non-
human sources and participants into the same collaboration, (b) a service composition style
allowing compositions of resources and activities to flexibly evolve over time, and (c) the
ability to coordinate service compositions for different use cases of collaborative document
creation throughout their life cycles. The collaboration model consists of five model parts
which are uniquely combined to address these challenges as summarized in the following.
The model parts can be tailored by collaboration system providers to support specific use
cases as well as to design collaboration systems which balance flexibility and control for
participants of a collaboration.

• The component model presented in Section 4.1 maps contributions provided by human
and non-human participants on a service-oriented model and represents participants
and their activities using a uniform interface. Existing solutions for the integration
of human services into service compositions focus on the adequate representation of
service capabilities and require a specification of the service interface through service

150 8. Summary

providers. Models and tools using a uniform representation for all composed entities,
e.g., Yahoo!Pipes25, focus on software services only. The component model represents
resources as managed output of services which can be retrieved on request and, thus,
allows for the representation of content production or transformation activities. The
uniform interface enables easier replacement of services as well as faster creation of
human-based services, since less design decisions are required and humans do not have
to create a interface specification. The low complexity of the interface with only few
methods potentially eases integration of services through humans. Humans might de-
cide to integrate software services to automate certain activities during collaboration,
e.g., gathering of sensor data, analytical processing of data, or calculations – summa-
rized as information analysis and acquisition automation [105]. The decision which
steps to automate depends on factors like mental workload which might be decreased
through automation, skill degradation through delegating work, or reliability of the
service [105]. The decision therefore has to be made from case to case. A shortcoming
of the component model is that potentially not all activities required during collabora-
tion can be mapped on the interface. Adapters are required for existing services. Both
aspects restrict openness of the solution regarding contributors.

The component model can be adapted by collaboration system providers through spe-
cialization of the service type taxonomy. Specialization might enable participants to
perform collaboration specific search for services or to realize rules based on specific
services types, e.g., for approval. In addition, collaboration system providers might
develop adapters, e.g., for specific communication channels. The model enables flex-
ibility for participants in a collaboration as it supports human as well as non-human
providers. The activities, however, are prescribed to content production activities as
well as the methods of the uniform interface.

• Based on the service-oriented component model, the composition model presented
in Section 4.2 introduces a novel service composition style allowing participants to
flexibly evolve and coordinate resource and activity compositions. Existing service
composition models focus on the coordination during the execution phase of service
compositions and often require too early specification of aspects like service binding.
The composition can be performed based on the decomposition of a collaboration goal
into required results and the association to contributions of service providers. Such,
the composition enables the intuitive coordination of human collaboration through di-
vision of labor reducing shared resource dependencies. Using the composition model,
coordinators may bind and execute services during all phases of a collaboration. Thus,

25http://pipes.yahoo.com/pipes/ (accessed June 19th, 2012)

151

the collaboration model does not distinguish design and execution time. The com-
position model is independent of the document model as long as the model can be
mapped on the hierarchical structure of results. Document parts, however, might be
accessed by an arbitrary number of participants at the same time which might result in
conflicts and inconsistencies. Concurrency mechanisms need to be applied in order to
avoid inconsistencies of shared resources. The composition model is restricted to an
asynchronous collaboration model.

As regards adaptation of the composition model, collaboration system providers can
specialize result types. In the composition model, the task order is open, allowing
coordinators to flexibly evolve the document structure and the required tasks during
collaboration. An open number of services can be requested and performed at any
time. This flexibility is restricted through the method for structuring a document using
a prescribed set of few high-level abstractions – results, contributions, and services.
Following this method produces a certain kind of hierarchically structured documents
which does not suit all but many creative collaborations.

• The coordination of interactions between participants, i.e., service providers and co-
ordinators, is enabled through the participation protocol framework presented in Sec-
tion 5.1. Using the framework, protocols for service binding and execution can be
created which support the integration of human and non-human participants alike. Ex-
isting protocol frameworks enable complex interactions of several participants, how-
ever, do not focus on the communication between humans and software services. The
participation protocol framework already comes with a set of protocols. Additional
protocols can be easily specified using the extension points of the framework. As all
participants need to follow the specified protocols, automation of protocols is possible.
Similar to the automation of information acquisition and analysis through the integra-
tion of non-human participants, the decision to automate protocols – which is an au-
tomation of action implementation [105] – has to be decided from case to case based
on considerations of risks and costs of the automation [105]. In addition, automation
can be implemented on different degrees, e.g., automate a single transition in a proto-
col. The framework does not facilitate complex interactions between more than two
participants. Interactions between contributors without coordinator is not supported.
As non-human participants are assumed to perform simple content delivery tasks, the
communication with them can be mapped on simple protocols. Contrary, the simple
protocols enable non-human participation in the first place. These simple protocols,
however, do not represent the complexity of human communication protocols. Com-
plex interactions between human participants, e.g., discussions or negotiations, have
to be performed outside the system.

152 8. Summary

As regards adaptation of the participation protocol framework, collaboration system
providers can define protocols which start and end with a state specified by the frame-
work. The protocols in the collaboration system then control the execution of com-
munication between participants. The collaboration system providers decide on the
degree of flexibility of the participants, e.g., through defining several protocols partic-
ipants can choose from.

• On top of the composition model and participation protocols, the event model (Sec-
tion 5.2) and the coordination rule mechanism (Section 5.3) define a solution to en-
able flexible coordination of different use cases of collaborative document creation.
Existing solutions in service compositions focus on the coordination of repeatable
processes. Groupware systems support coordination of humans, but do not explic-
itly facilitate integration of non-human participants. In addition, they do not focus on
providing collaboration-specific coordination means. All activities performed during
service composition potentially result in an event which is input to ECA rules. In ad-
dition, events stemming from external systems might be integrated. Coordinators can
specify ECA rules for different coordination mechanisms like reactions to changes in
the composition, detection of potential inconsistencies of shared resources in a doc-
ument, approval processes based on the flow of service executions, or automation of
participation protocols. As has been shown in the use case studies, different degrees of
automation can be reached through rules, depending on the requirements of the appli-
cation. In general, humans are familiar with thinking in ECA rules, e.g., for knowledge
representation. At the same time rules allow for formal representation of knowledge
in systems [12, p. 73]. The complexity of rule representation as well as the potentially
large number of rules to be managed, however, might decrease usability. In addition,
verification, e.g., as regards organizational regulations, and traceability within a col-
laboration are complicated.

Collaboration system providers can adapt the event model and coordination rule mech-
anism through the specification of additional event and activity types. In addition, they
might define rules which are applied to all collaborations in the collaboration system,
e.g., for automation of protocols. Participants might specify any ECA rule suitable to
their coordination requirements. They are, however, constrained to the available action
and event types and their attributes.

In order to examine the feasibility of the solution, one variant of the collaboration model
is realized in an infrastructure and collaboration application as presented in Chapter 6. The
realization partially implements REST principles like uniform interfaces for services to be
integrated and HATEOAS for communication of produced content, assignment of document

153

parts to responsible participants, or navigation through existing documents. The collabora-
tion application allows humans to create and evolve service compositions through a GUI,
thus, hiding service interfaces and protocol logic. While REST suits to realize services and
artifact-oriented service compositions, qualities like security or reliability have to be designed
and implemented for a product solution. Realization of the protocols using REST principles
causes communication overhead which has to be encapsulated in front ends and adapters.

Two use case studies – participatory service design and community-driven pattern reposi-
tory – are presented in Chapter 7. The use case studies show that tailoring of model and in-
frastructure to different use cases through collaboration system providers are feasible. Poten-
tial advantages through the service-oriented approach include the integration of data sources
and the tool environment of users. The complexity of collaborative document creation, how-
ever, requires an elaborate analysis and design phase for collaboration systems.

The aspects discussed previously result in a number of future research directions to ad-
vance the contributions in future work. These directions are described in the following chap-
ter.

9. Future Research

The research described in this thesis can be developed in different directions including evolu-
tion and optimization of the contributions presented in this thesis as well as complementary
research directions. A number of potential future work activities, mainly targeting optimiza-
tion of the contributions, is outlined in the discussion and conclusion sections of the previous
chapters. A selection of research directions is summarized in the following.

• Examine and Support Additional Collaboration Requirements

The use case studies illustrate heterogeneity of the collaboration requirements in differ-
ent collaboration scenarios. Research in future work could examine the applicability of
the service composition for additional requirements, e.g., in additional use case stud-
ies. For example, collaborative creation of slide sets or source code demand support
for document models with non-hierarchical structures. In addition, collaboratively cre-
ated presentations or multi-media documents involve temporal oder behavioral models
which could be integrated into the collaboration model. Additional investigations in-
clude the application of the presented solution to different workgroup structures, from
hierarchical with a central leader to peer-to-peer, the development and assessment of
additional communication channels as well as the integration of real-time sensor data
through adapters.

Communication is a common coordination mechanism during collaboration especially
in open, community-driven document creation like in pattern repositories [69]. Fu-
ture work should therefore examine the integration of classical communication mech-
anisms in the presented collaboration model, e.g., synchronous discussion in chats, or
annotation and comments. Version control and traceability can be considered a coor-
dination mechanism. Future work could therefore examine a version control mecha-
nism suitable for evolving compositions of services including suitable UIs. Besides
the extension of the collaboration model as regards coordination mechanisms for con-
currency control, the set of participation protocols could be extended with additional
social communication protocols like negotiation or notification. During collaborations,
different collaboration mechanisms might be used in different phases [13]. Future re-
search could investigate if and how seamless transitions between different collabora-
tion mechanisms can be supported by the presented solution.

156 9. Future Research

• Optimize Coordination Rule Mechanism

Besides optimization of the component or composition models, e.g., through support-
ing additional collaboration mechanisms as described above, the rule model demands
optimization in two respects. First, the definition and management of coordination
rules might be too complex for participants. Examining and ensuring usability for
ECA rules, especially the management of interdependent rules, is an open research
topic in general. As a first step, common rules required or applied during collabora-
tion could be examined, e.g., in additional use case studies. These rules might then be
reused and configured by collaboration participants, e.g., leveraging a dialog UI.

Second, implicit relationships between rules might exist which might result in conflicts
or undesired side effects. For example, different execution orders of rules might result
in different states of results or contributions. A first step towards addressing this issue is
the identification of general as well as collaboration model specific potential conflicts.
As outlined in Section 5.3, existing approaches like static analysis or prioritization of
rules could then be applied or adapted.

• Evaluate Use Case Studies in Field

The empirical evaluation of the presented or additional use case studies in order to
evaluate their usability and suitability appears to be a logical next step. Results of em-
pirical studies might be used to improve the collaboration model in general, or examine
if humans are able to understand and handle evolving documents including dynamic
contents. Evaluation of CSCW systems, however, is difficult as the reproduction of
social, economical, organizational, and motivational aspects and influences of collab-
oration in a lab situation is almost impossible [54]. Evaluation of such systems is a
research area on its own. Research as regards this thesis towards these goals could
be the application of selected collaboration model features in different collaboration
scenarios in order to evaluate and improve their usability, e.g., the ability to create
adapters, events or rules.

• Refine Framework for Collaboration Applications

As described in Section 7.3, the collaboration model and infrastructure provide a set of
components which can be used and tailored by collaboration system providers. In this
respect, the collaboration model resembles frameworks in software engineering which
optimally provide reusable software components while supporting suitable adaptation
to specific application requirements [33]. The focus of the research described in this
thesis is the examination of the applicability of service composition for different sce-
narios of collaborative document creation, rather than the design of a framework. Fu-

157

ture work, therefore, includes the examination of usability and suitability of the collab-
oration model as framework, e.g., through evaluating design decisions by instantiation
of additional collaboration use case studies. Additional use case studies might help in
identifying and refining required components and hot spots of the framework.

• Address Legal, Privacy, and Security Questions

In order to collaborate, members of different organizations might apply collaboration
systems on the Web or in the Cloud offered by independent, third party providers.
A number of legal as well as privacy and security issues exist during collaborative
creation of documents on the Web. Assuming that the presented collaboration infras-
tructure is offered as a service on the Web, these issues need to be addressed in order
to enable trust in and increase benefit of the presented solution for inter-organizational
collaboration. The collaboration model enables a new kind of dynamic, composed
documents which is not considered by current law. For example, during collaborative
creation of offerings, humans add parts to documents created by others which requires
clarification of liabilities, e.g., in case of illegal document contents.

Collaboration systems on the Web frequently realize multi-tenancy and isolate data of
different tenants, i.e., organizations. Collaborating persons from different organiza-
tions, however, might want to use and share specific data of one tenant. Collabora-
tion systems, e.g., a Cloud-enabled implementation of the collaboration model, should
therefore ensure that particular data can be exchanged whereas other data stays iso-
lated. In addition, collaboration system providers should secure the system such that
even the provider can not access data, e.g., in order to create activity logs. Existing
solutions like encryption, anonymization, or role and access right models need to be
adapted to usable privacy and security mechanisms with good performance for novel
distributed systems on the Web.

To conclude, this thesis presents a novel solution for coordinating service compositions in
support of collaborative document creation. The solution supports the flexible composition
and coordination of activities and contents contributed by human and non-human providers
into collaboratively created documents. The presented collaboration model is a promising
approach for the development of collaboration systems which balance flexibility and coordi-
nation as required in many cases of human collaboration. Open research directions, however,
show that further challenges need to be tackled in order to advance the presented results to
usable, practicable, and accepted solutions, potentially leading to a new understanding of
flexible collaboration support and dynamic documents.

Bibliography

[1] “cooperation”. Oxford Dictionaries. April 2010. Oxford University Press.
http://oxforddictionaries.com/definition/cooperation (accessed April 16th, 2012).

[2] W. v. d. Aalst, M. Dumas, and A. H. M. t. Hofstede. Web Service Composition Lan-
guages: Old Wine in New Bottles? In Proceedings of the 29th Conference on EU-
ROMICRO, EUROMICRO ’03, pages 298–305, Washington, DC, USA, 2003. IEEE
Computer Society.

[3] W. v. d. Aalst, A. H. M. T. Hofstede, and M. Weske. Business Process Management:
A Survey. In Proceedings of the 2003 International Conference on Business Process
Management, BPM’03, pages 1–12, Berlin, Heidelberg, 2003. Springer-Verlag.

[4] W. v. d. Aalst, M. Weske, and D. Grünbauer. Case handling: a new paradigm for
business process support. Data & Knowledge Engineering, 53(2):129–162, 2005.

[5] M. Adams, A. ter Hofstede, D. Edmond, and W. v. d. Aalst. Worklets: A Service-
Oriented Implementation of Dynamic Flexibility in Workflows. In On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, volume 4275
of Lecture Notes in Computer Science, pages 291–308. Springer, 2006.

[6] R. Alarcon, E. Wilde, and J. Bellido. Hypermedia-Driven RESTful Service Com-
position. In Proceedings of the 2010 International Conference on Service-oriented
Computing, ICSOC’10, pages 111–120, Berlin, Heidelberg, 2011. Springer-Verlag.

[7] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju. Web Services - Concepts, Archi-
tectures and Applications. Data-Centric Systems and Applications. Springer, 2004.

[8] M. A. Babar and I. Gorton. A Tool for Managing Software Architecture Knowledge.
In Proceedings of the Second Workshop on SHAring and Reusing Architectural Knowl-
edge Architecture, Rationale, and Design Intent, SHARK-ADI ’07, Washington, DC,
USA, 2007. IEEE Computer Society.

[9] N. Baloian, F. Claude, R. Konow, and S. Kreft. E-Breaker: Flexible, Distributed Envi-
ronment for Collaborative Authoring. In Proceedings of the 2009 13th International
Conference on Computer Supported Cooperative Work in Design, CSCWD ’09, pages
173–178, Washington, DC, USA, 2009. IEEE Computer Society.

160 Bibliography

[10] J. Becker, K. Bergener, and M. Voigt. Supporting Creative Group Processes - Group-
ware for Communication and Coordination. In AMCIS 2010 Proceedings. Paper 94,
2010.

[11] J. Becker, M. Matzner, and O. Müller. Comparing Architectural Styles for Service-
Oriented Architectures – a REST vs. SOAP Case Study. In Information Systems De-
velopment, pages 207–215. Springer US, 2010.

[12] C. Beierle and G. Kern-Isberner. Methoden wissensbasierter Systeme: Grundlagen,
Algorithmen, Anwendungen. Computational Intelligence. Vieweg+Teubner Verlag,
2008.

[13] A. Bernstein. How Can Cooperative Work Tools Support Dynamic Group Process?
Bridging The Specificity Frontier. In Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, CSCW ’00, pages 279–288, New York, NY,
USA, 2000. ACM.

[14] R. P. Biuk-Aghai. Patterns of Virtual Collaboration. PhD thesis, University of Tech-
nology, Sydney, 2004.

[15] S. Boll, W. Klas, and U. Westermann. Multimedia Document Models: Sealed Fate
or Setting Out for New Shores? Multimedia Tools and Applications, 11(3):267–279,
2000.

[16] P. Bottoni and R. Genzone. A Resource-Based Framework for Interactive Composition
of Multimedia Documents. In Proceedings of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS ’11, pages 271–276, New York,
NY, USA, 2011. ACM.

[17] J. M. Boyer, C. F. Wiecha, and R. P. Akolkar. A REST Protocol and Composite
Format for Interactive Web Documents. In Proceedings of the 9th ACM Symposium
on Document Engineering, DocEng ’09, pages 139–148, New York, NY, USA, 2009.
ACM.

[18] J. Brønsted, K. M. Hansen, and M. Ingstrup. Service Composition Issues in Pervasive
Computing. IEEE Pervasive Computing, 9(1):62–70, 2010.

[19] R. Bruns and J. Dunkel. Event-Driven Architecture: Softwarearchitektur für ereignis-
gesteuerte Geschäftsprozesse. Springer, 2010.

[20] M. K. Buckland. What is a “Document”? Journal of the American Society for Infor-
mation Science, 48(9):804–809, 1997.

[21] D. C. A. Bulterman and L. Hardman. Structured Multimedia Authoring. ACM Trans-
actions on Multimedia Computing, Communications, and Applications (TOMCCAP),
1(1):89–109, 2005.

Bibliography 161

[22] T. Burkhart and P. Loos. Flexible Business Processes-Evaluation of Current Ap-
proaches. Proceedings of Multikonferenz Wirtschaftsinformatik MKWI 2010, pages
1217–1228, 2010.

[23] F. Casati, S. Castano, and M. Fugini. Managing Workflow Authorization Constraints
through Active Database Technology. Information Systems Frontiers, 3(3):319–338,
Sept. 2001.

[24] F. Casati, F. Giunchiglia, and M. Marchese. Liquid Publications: Scientific Publica-
tions meet the Web. Technical Report DIT-07-073, Dep. of Information and Commu-
nication Technology, University of Trento, Italy, December 2007.

[25] F. Casati and M.-C. Shan. Dynamic and adaptive composition of e-services. Informa-
tion Systems, 26(3):143–163, 2001.

[26] S. Ceri, F. Daniel, M. Matera, and A. Raffio. Providing flexible process support to
project-centered learning. IEEE Transactions on Knowledge and Data Engineering,
21(6):894–909, 2009.

[27] D. Chakraborty and A. Joshi. Dynamic Service Composition: State-of-the-Art and
Research Directions. Technical Report TR-CS-01-19, Dep. of Computer Science and
Electrical Engineering, University of Maryland, Baltimore, USA, December 2001.

[28] K. Crowston. A Taxonomy of Organizational Dependencies and Coordination Mech-
anisms. Working paper series, MIT Center for Coordination Science, 1994.

[29] F. Daniel, M. Imran, S. Soi, A. De Angeli, C. R. Wilkinson, F. Casati, and M. March-
ese. Developing Mashup Tools for End-Users: On the Importance of the Application
Domain. International Journal of Next-Generation Computing, 3(2), 2012.

[30] F. Daniel and G. Pozzi. An Open ECA Server for Active Applications. Journal of
Database Management (JDM), 19(4), 2008.

[31] U. Dayal, M. Hsu, and R. Ladin. Business Process Coordination: State of the Art,
Trends, and Open Issues. In Proceedings of the 27th Very Large Databases Conference
(VLDB 2001), pages 3–13, 2001.

[32] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora. Enhancing collaborative syn-
chronous UML modelling with fine-grained versioning of software artefacts. Journal
of Visual Languages and Computing, 18(5):492–503, 2007.

[33] S. Demeyer, T. D. Meijler, O. Nierstrasz, and P. Steyaert. Design Guidelines for “Tai-
lorable” Frameworks. Communications of the ACM, 40(10):60–64, 1997.

162 Bibliography

[34] N. Desai, P. Mazzoleni, and S. Tai. Service Communities: A Structuring Mechanism
for Service-Oriented Business Ecosystems. In Digital EcoSystems and Technologies
Conference, 2007. DEST ’07. Inaugural IEEE-IES, pages 122 –127, February 2007.

[35] C. Dorn, R. N. Taylor, and S. Dustdar. Flexible Social Workflows: Collaborations as
Human Architecture. IEEE Internet Computing, 16(2):72–77, 2012.

[36] P. Dourish, W. K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Petersen, M. Sal-
isbury, D. Terry, and J. Thornton. A Programming Model for Active Documents.
In Proceedings of the 13th annual ACM Symposium on User Interface Software and
Technology, UIST ’00, pages 41–50, New York, NY, USA, 2000. ACM.

[37] S. Draxler and G. Stevens. Supporting the Collaborative Appropriation of an Open
Software Ecosystem. Computer Supported Cooperative Work, 20(4-5):403–448,
2011.

[38] S. Dustdar. Caramba – A Process-Aware Collaboration System Supporting Ad hoc
and Collaborative Processes in Virtual Teams. Distributed and Parallel Databases,
pages 45–66, 2004.

[39] S. Dustdar and K. Bhattacharya. The Social Compute Unit. IEEE Internet Computing,
15(3):64–69, May 2011.

[40] S. Dustdar, D. Schall, F. Skopik, L. Juszczyk, and H. Psaier. Socially Enhanced Ser-
vices Computing: Modern Models and Algorithms for Distributed Systems. Springer,
2011.

[41] S. Dustdar and W. Schreiner. A Survey on Web Services Composition. International
Journal of Web and Grid Services, 1(1):1–30, 2005.

[42] S. Dustdar and H. Truong. Virtualizing Software and Humans for Elastic Processes
in Multiple Clouds – a Service Management Perspective. International Journal of
Next-Generation Computing, 3(2):109–126, 2012.

[43] M. Eckert. Complex Event Processing with XChangeEQ. PhD thesis, Ludwig-
Maximilians-Universität München, December 2008.

[44] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: Some Issues and Experiences.
Communications of the ACM, 34:39–58, January 1991.

[45] A. Espinosa, J. Lerch, and R. Kraut. Explicit vs. Implicit Coordination Mechanisms
and Task Dependencies: One Size Does Not Fit All. In Team cognition: Under-
standing the factors that drive process and performance, pages 107–129. American
Psychological Association, 2004.

Bibliography 163

[46] Z. Fiala, M. Hinz, K. Meissner, and F. Wehner. A Component-Based Approach for
Adaptive Dynamic Web Documents. Journal of Web Engineering, 2(1):58–73, 2003.

[47] R. T. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[48] P. Frederiks and T. van der Weide. Information modeling: The process and the required
competencies of its participants. Data & Knowledge Engineering, 58(1):4–20, 2006.

[49] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[50] L. Gao, S. D. Urban, and J. Ramachandran. A Survey of Transactional Issues for Web
Service Composition and Recovery. International Journal of Web and Grid Services,
7(4):331–356, 2011.

[51] A. Gerlicher. Computer-Supported Cooperative Work (CSCW) – kollaborative Sys-
teme und Anwendungen. In Kompendium Medieninformatik, X.media.press, pages
143–195. Springer Berlin Heidelberg, 2007.

[52] R. J. Glushko and T. McGrath. Document Engineering: Analyzing and Designing
Documents for Business Informatics and Web Services. MIT Press, Cambridge, Mass,
2005.

[53] E. M. Goncalves da Silva, L. Ferreira Pires, and M. J. van Sinderen. Dynamic Com-
position of Services: Why, Where and How. In Proceedings of the Second Interna-
tional Workshop on Enterprise Systems and Technology (I-WEST 2008), Enschede,
The Netherlands, pages 73–85, Portugal, May 2008. INSTICC Press.

[54] J. Grudin. Groupware and Social Dynamics: Eight Challenges for Developers. Com-
munications of the ACM, 37(1):92–105, 1994.

[55] A. Hartman, A. N. Jain, J. Ramanathan, A. Ramfos, W.-J. Van der Heuvel, C. Zirpins,
S. Tai, Y. Charalabidis, A. Pasic, T. Johannessen, and T. Grønsund. Participatory De-
sign of Public Sector Services. In Proceedings of the First International Conference on
Electronic Government and the Information Systems Perspective, EGOVIS’10, pages
219–233, Berlin, Heidelberg, 2010. Springer-Verlag.

[56] M. Hertzum. Six Roles of Documents in Professionals’ Work. In Proceedings of the
Sixth European Conference on Computer Supported Cooperative Work, pages 41–60,
Norwell, MA, USA, 1999. Kluwer Academic Publishers.

[57] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, 2004.

164 Bibliography

[58] S. Holmlid. Participative, co-operative, emancipatory: From participatory design to
service design. 1st Nordic Conference on Service Design and Service, 2009.

[59] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth. Enterprise Mashups:
Design Principles towards the Long Tail of User Needs. In Proceedings of the 2008
IEEE International Conference on Services Computing - Volume 2, SCC ’08, pages
601–602, Washington, DC, USA, 2008. IEEE Computer Society.

[60] R. Hull. Artifact-Centric Business Process Models: Brief Survey of Research Results
and Challenges. In On the Move to Meaningful Internet Systems: OTM 2008, volume
5332 of Lecture Notes in Computer Science, pages 1152–1163, Berlin, Heidelberg,
2008. Springer-Verlag.

[61] ISO/IEC. ISO/IEC 14977:1996(E). Information technology – Syntactic metalanguage
– Extended BNF. Online. http://standards.iso.org/ittf/PubliclyAvailableStandards/
s026153_ISO_IEC_14977_1996(E).zip (accessed January 12th, 2013), 1996.

[62] M. Janssen and R. Feenstra. Socio-Technical Design of Service Compositions: A
Coordination View. In Proceedings of the 2nd International Conference on Theory
and Practice of Electronic Governance, ICEGOV ’08, pages 323–330, New York,
NY, USA, 2008. ACM.

[63] J.-Y. Jung, J. Park, S.-K. Han, and K. Lee. An ECA-based framework for decentral-
ized coordination of ubiquitous web services. Information and Software Technology,
49(11-12):1141–1161, 2007.

[64] M. Kapuruge, J. Han, and A. Colman. Support for Business Process Flexibility in
Service Compositions: An Evaluative Survey. In Proceedings of the 2010 21st Aus-
tralian Software Engineering Conference, ASWEC ’10, pages 97–106, Washington,
DC, USA, 2010. IEEE Computer Society.

[65] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and A. Buchmann. Ex-
tending BPEL for Run Time Adaptability. In Proceedings of the Ninth IEEE Interna-
tional EDOC Enterprise Computing Conference, EDOC ’05, pages 15–26, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[66] J. Katz and B. R. Martin. What is research collaboration? Research policy, 26(1):1–
18, 1997.

[67] R. Kern, C. Zirpins, and S. Agarwal. Managing Quality of Human-Based eServices.
In Service-Oriented Computing — ICSOC 2008 Workshops, pages 304–309, Berlin,
Heidelberg, 2009. Springer-Verlag.

Bibliography 165

[68] R. Khalaf and F. Leymann. On Web Services Aggregation. In Technologies for E-
Services, volume 2819 of Lecture Notes in Computer Science, pages 1–13. Springer
Berlin / Heidelberg, 2003.

[69] A. Kittur and R. E. Kraut. Beyond Wikipedia: Coordination and Conflict in Online
Production Groups. In Proceedings of the 2010 ACM Conference on Computer Sup-
ported Cooperative Work, CSCW ’10, pages 215–224, New York, NY, USA, 2010.
ACM.

[70] M. Klein. Coordination Science: Challenges and Directions. In Coordination Tech-
nology for Collaborative Applications, volume 1364 of Lecture Notes in Computer
Science, pages 161–176, London, UK, 1998. Springer-Verlag.

[71] M. Koch. Unterstützung kooperativer Dokumentenbearbeitung in Weitverkehrsnetzen.
PhD thesis, München, Techn. Univ., 1997.

[72] O. Kopp, B. Wetzstein, R. Mietzner, S. Pottinger, D. Karastoyanova, and F. Leymann.
A Model-Driven Approach to Implementing Coordination Protocols in BPEL. In
Business Process Management Workshops, volume 17 of Lecture Notes in Business
Information Processing, pages 188–199. Springer Berlin Heidelberg, 2009.

[73] S. Kumaran, R. Liu, P. Dhoolia, T. Heath, P. Nandi, and F. Pinel. A RESTful Archi-
tecture for Service-Oriented Business Process Execution. In Proceedings of the 2008
IEEE International Conference on e-Business Engineering, pages 197–204, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[74] K. Kuutti. Activity theory as a potential framework for human-computer interaction
research. Context and consciousness: Activity theory and human-computer interac-
tion, pages 17–44, 1996.

[75] A. Lamarca, W. K. Edwards, P. Dourish, J. Lamping, I. Smith, and J. Thornton. Tak-
ing the Work out of Workflow: Mechanisms for Document-Centered Collaboration.
Proceedings of the Sixth European Conference on Computer Supported Cooperative
Work (ECSCW’99), (September):12–16, 1999.

[76] M. D. P. Leland, R. S. Fish, and R. E. Kraut. Collaborative Document Production
Using Quilt. In Proceedings of the 1988 ACM Conference on Computer-Supported
Cooperative Work, CSCW ’88, pages 206–215, New York, NY, USA, 1988. ACM.

[77] D. M. Levy. Document Reuse and Document Systems. Electronic Publishing,
6(4):339–348, 1993.

166 Bibliography

[78] V. Liptchinsky, R. Khazankin, H.-L. Truong, and S. Dustdar. Statelets: Coordination
of Social Collaboration Processes. In Proceedings of the 14th International Con-
ference on Coordination Models and Languages, COORDINATION’12, pages 1–16,
Berlin, Heidelberg, 2012. Springer-Verlag.

[79] J. Long. ITIL Version 3 at a Glance: Information Quick Reference. Springer Publish-
ing Company, Incorporated, 1st edition, 2008.

[80] P. B. Lowry, A. Curtis, and M. R. Lowry. Building a Taxonomy and Nomenclature of
Collaborative Writing to Improve Interdisciplinary Research and Practice. Journal of
Business Communication, 41(1):66–99, 2004.

[81] R. Lu and S. Sadiq. A Survey of Comparative Business Process Modeling Approaches.
In Proceedings of the 10th International Conference on Business Information Systems,
BIS’07, pages 82–94, Berlin, Heidelberg, 2007. Springer-Verlag.

[82] D. Luckham and W. R. Schulte. Event Processing Glossary – Version 2.0. Event
Processing Technical Society, July 2011.

[83] N. Lundberg and T. I. Sandahl. What do artifacts mean to us in work. Proceedings
of the 22nd Information Systems Research Seminar in Scandinavia, pages 363–372,
1999.

[84] T. Malone and K. Crowston. The Interdisciplinary Study of Coordination. ACM Com-
puting Surveys (CSUR), 26(1):87–119, 1994.

[85] T. W. Malone, K.-Y. Lai, and C. Fry. Experiments with Oval: A Radically Tailorable
Tool for Cooperative Work. Transactions on Information Systems (TOIS), 13(2):177–
205, 1995.

[86] J. E. McGrath. Time, Interaction, and Performance (TIP) : A Theory of Groups. Small
Group Research, 22(2):147–174, May 1991.

[87] G. Monsieur. Pattern-based coordination in process-based service compositions. PhD
thesis, Katholieke Universiteit Leuven, 2010.

[88] A. Mørch. Computers and design in context, chapter Three Levels of End-User Tailor-
ing: Customization, Integration, and Extension, pages 51–76. MIT Press, Cambridge,
MA, USA, 1997.

[89] H. Motahari-Nezhad, C. Bartolini, S. Graupner, S. Singhal, and S. Spence. IT Sup-
port Conversation Manager: A Conversation-Centered Approach and Tool for Man-
aging Best Practice IT Processes. In Proceedings of the 2010 14th IEEE International
Enterprise Distributed Object Computing Conference (EDOC ’10), pages 247 –256,
October 2010.

Bibliography 167

[90] S. Noël and J.-M. Robert. Empirical Study on Collaborative Writing: What Do Co-
authors Do, Use, and Like? Computer Supported Cooperative Work, 13(1):63–89,
2004.

[91] A. Norta, M. Hendrix, and P. Grefen. A Pattern-Knowledge Base Supported Estab-
lishment of Inter-organizational Business Processes. In On the Move to Meaningful
Internet Systems 2006: OTM 2006 Workshops, volume 4277 of Lecture Notes in Com-
puter Science, pages 834–843. Springer Berlin Heidelberg, 2006.

[92] J. F. Nunamaker, Jr., M. Chen, and T. D. M. Purdin. Systems Development in Infor-
mation Systems Research. Journal of Management Information Systems, 7(3):89–106,
1990.

[93] OASIS. UDDI Spec Technical Committee Draft Version 3.0.2. Online.
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm (accessed January 15th, 2013), 2004.

[94] OASIS. Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.1.
Online. http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec/wstx-wsat-1.1-spec.html
(accessed August 31st, 2012), 2007.

[95] OASIS. Web Services Business Process Execution Language Version 2.0. Online.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (accessed July 03rd, 2012),
2007.

[96] OASIS. Web Services Coordination (WS-Coordination) Version 1.1. Online.
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
(accessed July 4th, 2012), 2007.

[97] OASIS. Web Services for Remote Portlets Specification v2.0. Online.
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.html (accessed October 03rd,
2012), 2008.

[98] OASIS. Web Services Business Activity (WS-BusinessActivity) Version 1.2.
Online. http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec.html (accessed August
31st, 2012), 2009.

[99] OASIS. Web Services – Human Task (WS-HumanTask) Specification Version
1.1. Online. http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html (accessed
July 03rd, 2012), 2010.

[100] OASIS. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1.
Online. http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html (accessed Octo-
ber 01st, 2012), 2010.

168 Bibliography

[101] B. Olsen, N. Lund, and G. Hartvigsen. Leaving twentieth-century understanding of
documents – From book to eBook to digital ecosystem. In 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST), pages 600 –605, April
2010.

[102] OMG. Business Process Model and Notation (BPMN) Version 2.0. Online.
http://www.omg.org/spec/BPMN/2.0/ (accessed September 28th, 2012), January
2011.

[103] M. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Direc-
tions. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE 2003)., pages 3 – 12, December 2003.

[104] R. Parasuraman and V. Riley. Humans and Automation: Use, Misuse, Disuse,
Abuse. Human Factors: The Journal of the Human Factors and Ergonomics Soci-
ety, 39(2):230–253, 1997.

[105] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A Model for Types and Levels
of Human Interaction with Automation. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 30(3):286–297, May 2000.

[106] N. W. Paton and O. Díaz. Active Database Systems. ACM Computing Surveys (CSUR),
31(1):63–103, 1999.

[107] C. Pautasso. Composing RESTful Services with JOpera. In Proceedings of the 8th
International Conference on Software Composition, SC ’09, pages 142–159, Berlin,
Heidelberg, 2009. Springer-Verlag.

[108] C. Pautasso, O. Zimmermann, and F. Leymann. RESTfulWeb Services vs. “Big”
Web Services: Making the Right Architectural Decision. In Proceedings of the 17th
International Conference on World Wide Web, WWW ’08, pages 805–814, New York,
NY, USA, 2008. ACM.

[109] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. A Design Science Re-
search Methodology for Information Systems Research. Journal of Management In-
formation Systems, 24(3):45–77, 2007.

[110] I. Posner and R. Baecker. How People Write Together. In Proceedings of the Hawaii
International Conference On System Sciences, volume 25, pages 127–127. IEEE In-
stitute Of Electrical And Electronics, 1992.

[111] A. Powell, G. Piccoli, and B. Ives. Virtual Teams: A Review of Current Literature and
Directions for Future Research. SIGMIS Database, 35(1):6–36, 2004.

[112] R. Power, D. Scott, and N. Bouayad-Agha. Document Structure. Computational
Linguistics, 29(2):211–260, 2003.

Bibliography 169

[113] W. Pree. Design Patterns for Object-Oriented Software Development. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[114] A. B. Raposo, L. P. Magalhães, I. L. M. Ricarte, and H. Fuks. Coordination of Col-
laborative Activities: A Framework for the Definition of Tasks Interdependencies. In
Proceedings of the Seventh International Workshop on Groupware, CRIWG ’01, pages
170–180, Washington, DC, USA, 2001. IEEE Computer Society.

[115] M. Renger, G. L. Kolfschoten, and G.-J. Vreede. Challenges in Collaborative Mod-
eling: A Literature Review. In Advances in Enterprise Engineering I, volume 10 of
Lecture Notes in Business Information Processing, pages 61–77. Springer Berlin Hei-
delberg, 2008.

[116] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, first edition, 2007.

[117] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf. Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. IEEE Internet Computing,
12:24–31, September 2008.

[118] S. W. Sadiq, M. E. Orlowska, and W. Sadiq. Specification and Validation of Process
Constraints for Flexible Workflows. Information Systems, 30:349–378, 2005.

[119] D. Schall. Human Interactions in Mixed Systems - Architecture, Protocols, and Al-
gorithms. PhD Thesis in Computer Science, Information Systems Institute – Vienna
University of Technology (TU Wien), 2009.

[120] D. Schall. A human-centric runtime framework for mixed service-oriented systems.
Distributed and Parallel Databases, 29(5-6):333–360, 2011.

[121] D. Schall, H.-L. Truong, and S. Dustdar. Unifying Human and Software Services in
Web-Scale Collaborations. Internet Computing, IEEE, 12(3):62 –68, May-June 2008.

[122] L. Schamber. What Is a Document? Rethinking the Concept in Uneasy Times. Journal
of the American Society for Information Science, 47(9):669–671, 1996.

[123] K. Schmidt and C. Simone. Coordination Mechanisms: Towards a Conceptual Foun-
dation of CSCW Systems Design. Computer Supported Cooperative Work, 5(2-
3):155–200, 1996.

[124] U. Scholten, R. Fischer, and C. Zirpins. The Dynamic Network Notation: Harnessing
Network Effects in PaaS-Ecosystems. In Proceedings of the Fourth Annual Work-
shop on Simplifying Complex Networks for Practitioners, SIMPLEX ’12, pages 25–
30, New York, NY, USA, 2012. ACM.

170 Bibliography

[125] U. Scholten, N. Schuster, and S. Tai. A Pattern Language and Repository for Service
Network Management. In Proceedings of the 2012 IEEE International Conference on
Service-Oriented Computing and Applications, SOCA ’12, pages 1–9, Washington,
DC, USA, 2012. IEEE Computer Society.

[126] N. Schuster, R. Stein, and C. Zirpins. A Mashup Tool for Collaborative Engineer-
ing of Service-Oriented Enterprise Documents. In Information Systems Evolution,
volume 72 of Lecture Notes in Business Information Processing, chapter 12, pages
166–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[127] N. Schuster, R. Stein, C. Zirpins, and S. Tai. A Service Mashup Tool for Open Doc-
ument Collaboration. In Service-Oriented Computing, volume 6470 of Lecture Notes
in Computer Science, pages 713–714. Springer Berlin / Heidelberg, 2010.

[128] N. Schuster, C. Zirpins, and U. Scholten. How to Balance Flexibility and Coordi-
nation? Service-oriented Model and Architecture for Document-based Collaboration
on the Web. In Proceedings of the 2011 IEEE International Conference on Service-
Oriented Computing and Applications, SOCA ’11, pages 1–9, Washington, DC, USA,
2011. IEEE Computer Society.

[129] N. Schuster, C. Zirpins, S. Tai, S. Battle, and N. Heuer. A Service-Oriented Approach
to Document-Centric Situational Collaboration Processes. In Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE ’09), pages 221–226. IEEE
Computer Society, 2009.

[130] B. Sengupta, A. Jain, K. Bhattacharya, H.-L. Truong, and S. Dustdar. Who Do You
Call? Problem Resolution through Social Compute Units. In Proceedings of the 2012
International Conference on Service-oriented Computing, ICSOC’12, pages 48–62,
Berlin, Heidelberg, 2012. Springer-Verlag.

[131] M. Shaw. Architectural Requirements for Computing with Coalitions of Resources.
Position paper for First Working IFIP Conference on Software Architecture, 1999.

[132] E. Silva, J. Martínez López, L. Ferreira Pires, and M. S. van. Defining and Proto-
typing a Life-cycle for Dynamic Service Composition. In Architectures, Concepts
and Technologies for Service Oriented Computing, pages 79–90, Portugal, July 2008.
INSTICC Press.

[133] D. H. Sonnenwald. Communication roles that support collaboration during the design
process. Design Studies, 17(3):277 – 301, 1996.

[134] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS Revised:
Early Experiences with Multiuser Interfaces. ACM Transactions on Information Sys-
tems (TOIS), 5(2):147–167, 1987.

Bibliography 171

[135] S. Tai, R. Khalaf, and T. Mikalsen. Composition of coordinated web services. In
Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware,
Middleware ’04, pages 294–310, New York, NY, USA, 2004. Springer-Verlag New
York, Inc.

[136] H. Tellioglu. About Representational Artifacts and Their Role in Engineering. In Phe-
nomenology, Organizational Politics and IT Design: The Social Study of Information
Systems, pages 1–31. IGI Global, 2012.

[137] M. ter Beek, A. Bucchiarone, and S. Gnesi. Web service composition approaches:
From industrial standards to formal methods. In Proceedings of the Second Interna-
tional Conference on Internet and Web Applications and Services, ICIW ’07, pages
15–, Washington, DC, USA, 2007. IEEE Computer Society.

[138] G. H. ter Hofte and H. J. van der Lugt. CoCoDoc: a framework for collaborative
compound document editing based on OpenDoc and CORBA. In Proceedings of the
IFIP/IEEE International Conference on Open Distributed Processing and Distributed
Platforms, ICODP/ICDP ’97, pages 15–33, London, UK, UK, 1997. Chapman & Hall,
Ltd.

[139] M. Treiber, D. Schall, S. Dustdar, and C. Scherling. Tweetflows: Flexible Workflows
with Twitter. In Proceedings of the 3rd International Workshop on Principles of En-
gineering Service-Oriented Systems, PESOS ’11, pages 1–7, New York, NY, USA,
2011. ACM.

[140] H.-L. Truong, S. Dustdar, and K. Bhattacharya. Programming Hybrid Services in
the Cloud. In Proceedings of the 10th International Conference on Service-Oriented
Computing, ICSOC’12, pages 96–110, Berlin, Heidelberg, 2012. Springer-Verlag.

[141] S. Vinoski. REST Eye for the SOA Guy. IEEE Internet Computing, 11(1):82–84,
2007.

[142] S. Vinoski. Serendipitous Reuse. IEEE Internet Computing, 12(1):84–87, 2008.

[143] W3C. SOAP Version 1.2. Online. http://www.w3.org/TR/soap12-part1/ (accessed
June 17th, 2012).

[144] W3C. Web Services Description Language (WSDL). Online.
http://www.w3.org/2002/ws/desc/ (accessed June 17th, 2012).

[145] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support fea-
tures - enhancing flexibility in process-aware information systems. Data & Knowledge
Engineering, 66(3):438 – 466, 2008.

172 Bibliography

[146] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web Ser-
vices Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005.

[147] J. Whitehead. Collaboration in software engineering: A roadmap. In 2007 Future of
Software Engineering, FOSE ’07, pages 214–225, Washington, DC, USA, 2007. IEEE
Computer Society.

[148] R. Wieringa. Design Science as Nested Problem Solving. In Proceedings of the 4th
International Conference on Design Science Research in Information Systems and
Technology, DESRIST ’09, pages 8:1–8:12, New York, NY, USA, 2009. ACM.

[149] E. Wittern, N. Schuster, J. Kuhlenkamp, and S. Tai. Participatory Service Design
through Composed and Coordinated Service Feature Models. In Proceedings of
the 10th International Conference on Service-Oriented Computing, ICSOC’12, pages
158–172, Berlin, Heidelberg, 2012. Springer-Verlag.

[150] E. Wittern and C. Zirpins. On the Use of Feature Models for Service Design: The
Case of Value Representation. In Towards a Service-Based Internet. ServiceWave
2010 Workshops, volume 6569 of Lecture Notes in Computer Science, pages 110–118,
Berlin, Heidelberg, 2011. Springer Berlin / Heidelberg.

[151] X. Xu, L. Zhu, Y. Liu, and M. Staples. Resource-Oriented Architecture for Business
Processes. In Proceedings of the 2008 15th Asia-Pacific Software Engineering Con-
ference, APSEC ’08, pages 395–402, Washington, DC, USA, 2008. IEEE Computer
Society.

[152] J. Yang and M. P. Papazoglou. Service components for managing the life-cycle of
service compositions. Information Systems, 29(2):97–125, 2004.

[153] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup development.
IEEE Internet Computing, 12:44–52, September 2008.

[154] O. Zimmermann. An Architectural Decision Modeling Framework for Service-
Oriented Architecture Design. PhD thesis, Institut für Architektur von Anwen-
dungssystemen der Universität Stuttgart, Germany, 2009.

[155] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster. Managing Ar-
chitectural Decision Models with Dependency Relations, Integrity Constraints, and
Production Rules. Journal of Systems and Software, 82(8):1249–1267, 2009.

[156] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing web services chore-
ography standards: the case of REST vs. SOAP. Decision Support Systems, 40(1):9–
29, 2005.

List of Abbreviations

API application programming interface
BPEL4People WS-BPEL Extension for People
BPMN Business Process Model and Notation
CEP complex event processing
CRUD create, read, update, and delete
CSCW computer-supported cooperative work
DYNO Dynamic Network Notation
EBNF Extended Backus-Naur Form
ECA event-condition-action
EMF Eclipse Modeling Framework
EPL Event Processing Language
GUI graphical user interface
HATEOAS Hypermedia as the Engine of Application State
HCI human-computer interaction
HPS human-provided services
HTTP Hypertext Transfer Protocol
ITIL Information Technology Infrastructure Library
PPR Portland Pattern Repository
REST Representational State Transfer
S3 Amazon Simple Storage Service
SCU Social Compute Unit
SFM service feature model
SOA service-oriented architecture
SOC service-oriented computing
UDDI Universal Description Discovery & Integration
UI user interface
UML Unified Modeling Language
URI Uniform Resource Identifier
WS-BPEL Web Services Business Process Execution Language
WSDL Web Services Description Language
WSRP Web Services for Remote Portlets
WYSIWIS What You See Is What I See

List of Figures

1.1 Project proposal writing as example of collaborative document creation. . 4
1.2 Overview of collaboration model. 7
1.3 Overview of research procedure and thesis structure. 9

2.1 Overview of state of the art. 13
2.2 Example service-based applications. 15
2.3 Abstracted service composition life cycle with separated specification and

execution phases. 22
2.4 Overview of temporal and resource interdependencies. 33

3.1 Snapshot of collaborative project proposal creation. 45

4.1 Contribution “component model”. 52
4.2 Component model. 53
4.3 Exemplary service type taxonomy for collaborative document creation. . . 54
4.4 Contribution “composition model”. 55
4.5 Composition model. 56
4.6 Example composition of results and contributions with assigned services. 57
4.7 Steps performed during service composition. 58

5.1 Contribution “participation protocol framework”. 64
5.2 Overview of participation protocols in contribution life cycle. 65
5.3 Coordinator-initiated binding protocol. 66
5.4 Self-service binding protocol. 67
5.5 Service request-response protocol. 68
5.6 Service request-response protocol with approval. 69
5.7 Contribution “event model”. 72
5.8 Atomic event types for collaborative document creation. 73
5.9 Contribution “coordination rule mechanism”. 76
5.10 Dependencies during collaborative creation of a project proposal document. 77

6.1 Architecture overview of the collaboration system. 87
6.2 Domain model of the mashup registry. 93

176 List of Figures

6.3 Domain model of the mashup persistency. 98
6.4 Overview of the coordinator service messaging component. 100
6.5 Sequence of interactions between the coordinator service messaging compo-

nent and a provider adapter for service execution. 102
6.6 Overview of the rule engine. 105
6.7 Overview of the adapter framework. 107
6.8 Overview of the collaboration application. 109
6.9 Screenshot of the mashup editor UI. 111
6.10 Screenshot of the service editor UI. 112

7.1 Example of an SFM composed of services (source: [149]). 122
7.2 Adapted and extended composition model for collaborative service feature

modeling (based on [149]). 123
7.3 Additional events for collaborative service feature modeling. 124
7.4 Architecture of a system for collaborative service feature modeling

(source: [149]). 126
7.5 Extended composition model for the pattern repository (based on [125]). . 133
7.6 Example service network pattern composed of services (based on [125]). . 133
7.7 Service execution protocol. 134
7.8 Coordination view of a pattern in the demonstrator showing the “consumer-

sided network effect pattern”. 137

List of Tables

2.1 Dependencies and coordination mechanisms (extended version of [84]). . 37

3.1 Design features for activities and participants. 42
3.2 Design features for content composition. 44
3.3 Design features for participation. 46
3.4 Design features for coordination. 47
3.5 Mapping of design features to collaboration model. 49

4.1 Realization of design features through component and composition models. 59

5.1 Realization of design features through participation protocol framework. . 70
5.2 Realization of design features through event model and coordination rule

mechanism. 83

6.1 Provider API. 91
6.2 Registry API for container and individual resources. 95
6.3 API of the coordinator service messaging component. 103
6.4 Service instances API. 107
6.5 Realization of collaboration model components through the collaboration in-

frastructure. 114

7.1 Aspects for use case studies and their evaluation. 119
7.2 Service network management pattern structure and example

(based on [125]). 130
7.3 Summary of use case studies. 140

Index

artifact-centric composition, 21
automation, 84

BPEL4People, 17

collaboration, 27
collaborative document creation, 24
composition, see service composition, 25
cooperation, 27
coordination, 19, 31
coordination mechanism, 35

dependency, 33
resource interdependency, 34
temporal interdependency, 33

design pattern, 129
design science, 11
document, 25

ECA rule, 77, 83
electronic document, 25
event, 73

atomic event, 73
composite event, 74
derived event, 74
timer event, 74, 75

event operator, 74
event pattern, 74
event type, 73

flexible service composition, 21
flow-based service composition, 19

groupware, 28

human-provided service (HPS), 17
Hypermedia as the Engine of Application

State (HATEOAS), 16

mashup, see service mashup
mixed service-oriented system, 17

orchestration, 20

participation protocol, 64
participatory service design, 120
pattern repository, 129
people service, 18

Representational State Transfer, 15, 88
resource service composition, 20
REST, see Representational State Trans-

fer

service, 14
service binding, 65
service community, 18
service composition, 14

artifact-centric composition, 21
flexible service composition, 21
flow-based service composition, 19
resource service composition, 20
situational service composition, 22

service composition life cycle, 21
service feature modeling, 121
service mashup, 23
service network management pattern, 130
service registry, 91
situational service composition, 22

Web service, 15
WS-*, 14
WS-Coordination, 71
WS-HumanTask, 17

	Abstract
	Zusammenfassung
	Danksagung
	Contents
	I Foundations
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Hypothesis and Contributions
	1.3 Research Procedure and Thesis Organization

	2 State of the Art and Related Work
	2.1 Service Composition
	2.1.1 Humans in Service Composition
	2.1.2 Service Composition Styles
	2.1.3 Flexibility in Service Compositions

	2.2 Collaborative Document Creation
	2.2.1 Electronic Documents
	2.2.2 Collaborative Creation of Electronic Documents
	2.2.3 Collaboration Tools and Environments

	2.3 Coordination
	2.3.1 Dependencies
	2.3.2 Coordination Mechanisms

	2.4 Conclusion

	II Solution Design
	3 Design of Functional Solution Features
	3.1 Activities and Participants
	3.2 Content Composition
	3.3 Participation
	3.4 Coordination
	3.5 Conclusion

	4 Component and Composition Model
	4.1 Component Model
	4.2 Composition Model
	4.3 Conclusion and Discussion

	5 Participation and Coordination Model
	5.1 Participation Protocol Framework
	5.1.1 Service Binding Protocols
	5.1.2 Service Execution Protocols
	5.1.3 Conclusion and Discussion

	5.2 Event Model
	5.3 Coordination Rule Mechanism
	5.3.1 Rules for Semi-Automation of Participation Protocols
	5.3.2 Rules for Coordinating Collaboration-Specific Dependencies
	5.3.3 Suggestion of Rules

	5.4 Conclusion and Discussion

	III Implementation and Evaluation
	6 Proof of Concept: Design and Implementation
	6.1 Infrastructure Architecture
	6.1.1 Service Interfaces
	6.1.2 Mashup Registry
	6.1.3 Mashup Persistency
	6.1.4 Coordinator Service Messaging
	6.1.5 Rule Engine
	6.1.6 Adapter Framework

	6.2 Collaboration Application and Graphical User Interface
	6.2.1 Collaboration Application
	6.2.2 Graphical User Interface
	6.2.3 Service Adapters

	6.3 Conclusion and Discussion

	7 Use Case Studies
	7.1 Participatory Service Design
	7.1.1 Instantiation
	7.1.2 Discussion and Related Work

	7.2 Community-Driven Pattern Repository
	7.2.1 Instantiation
	7.2.2 Discussion and Related Work

	7.3 Conclusion and Discussion

	IV Conclusion
	8 Summary
	9 Future Research
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	Index

	Leere Seite

