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Abstract

In 1988, Joe Kilian showed that arbitrary multi-party computation can be securely realized from
a quite simple primitive, namely oblivious transfer (OT). This primitive in its basic form is just a
trusted erasure channel: The sender can enter a bit of his choice, which is then transferred to the
receiver with probability 1

2 and otherwise replaced by a special erasure symbol. Since the discovery
that OT is complete in the above-mentioned sense, cryptographers are working on reductions of
OT (and thus general secure multi-party computation) to various other primitives. The present
thesis contributes two results to this research area.

The first contribution of this thesis exhaustively solves the long-standing open question, which
cryptogates allow for information-theoretically secure implementation of OT and are thus complete,
too. I.e., comprehensive but easily checkable completeness criteria are provided for any trusted black
box that can be jointly queried by two parties, has finite input and output alphabets, and does not
change behavior depending on time or input history. The criteria existing so far only cover special
classes of cryptogates, e.g. cryptogates that do not use any internal randomness, or noisy channels
(i.e., one party gets no output and the other party cannot provide any input). The novel approach
of this thesis, by which the limitations of former results are overcome, is the definition and thorough
investigation of a very specific algebraic structure of “idealized cheating strategies”. Then, powerful
estimation techniques from probability theory and real algebraic geometry are adapted to base the
cryptographic security proof for a generic reduction protocol on the mathematical properties of this
structure.

The second contribution of this thesis builds on a tamper-proof hardware assumption, where
the hardware issuer is one of the mutually mistrusting parties. In the literature one finds a rash of
protocol constructions for OT based on untrusted tamper-proof hardware, aiming at
• a decrease of the number of exchanged hardware tokens,
• saving communication and computation costs, and
• reduction of the required computational assumptions.

The approach in this thesis needs only a single token to be exchanged and has asymptotically opti-
mal communication overhead. The computational costs are still remarkably low, and there just are
not any computational assumptions used. This comes at the cost of only bounded token reusabil-
ity and a fairly involved security proof. However, unbounded token reusability can be achieved
straightforwardly by the weakest common complexity assumption, namely the existence of a pseu-
dorandom number generator. The basis for these results is a special technique for implementation
of affine functions on a tamper-proof token, such that the token receiver can verify correctness of
the implementation but does not learn the concrete function parameters.
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Zusammenfassung

Moderne Kryptographie ist weit mehr als die Wissenschaft der Verschlüsselung. Datenschutzkon-
former Abgleich von Fahndungslisten, elektronische Wahlverfahren, e-Commerce und betriebswirt-
schaftliches Benchmarking stellen Herausforderungen, welche allein mit abhör- und manipulations-
sicherem Datentransfer nicht gelöst werden können. Für den Entwurf entsprechender Protokolle
werden hinreichend mächtige Primitive benötigt.

In meiner Dissertation liefere ich ein einfaches kombinatorisches Kriterium, mittels welchem
für jede zustandslose Zweiparteien-Primitive mit endlichem Eingabealphabet (effizient) entscheid-
bar ist, ob sie für allgemeine sichere Berechnungen ausreicht. Ferner zeige ich, dass es für sichere
Zweiparteien-Berechnungen bereits hinreichend ist, wenn eine der beteiligten Parteien ein manipu-
lationssicheres Hardware-Token erstellen kann (welchem die andere Partei in keiner Weise vertraut).

Hintergrund: kryptographisch sichere Berechnungen
Der Ursprung des Forschungsgebiets der sog. „sicheren Mehrparteien-Berechnungen“ wird gemein-
hin in einer 1982 von Andrew Yao aufgestellten Frage gesehen, welche als „Yaos Millionärsproblem“
bekannt geworden ist:

Wie können zwei sich gegenseitig misstrauende Millionäre herausfinden, wer von ihnen
reicher ist, ohne dass einer von ihnen irgendeine weitergehende Information über den
konkreten Wert seines Besitzes offenlegen muss?

Die Verallgemeinerung dieses Problems ist recht naheliegend: Eine Gruppe von Parteien P1, . . . , Pn
will gemeinsam einen Funktionswert f(x1, . . . , xn) berechnen mit geheimer Eingabe xi von Par-
tei Pi. Keine Partei Pi, selbst wenn sie sich beliebig bösartig verhält, darf dabei etwas über
(x1, . . . , xi−1, xi+1, . . . , xn) erfahren, was nicht direkt aus ihrer Eingabe xi und dem öffentlichen
Funktionsergebnis f(x1, . . . , xn) berechnet werden kann. Außerdem soll die Berechnung sicher ge-
gen Verfälschung des Ergebnisses sein, d. h. keine Partei Pi darf das Berechnungsergebnis anders
beeinflussen können als durch entsprechende Wahl ihrer Eingabe xi. Zudem sollen selbst gegenüber
Gruppen aus mehreren bösartig kollaborierenden Parteien entsprechende Sicherheitseigenschaften
gelten.

Hauptergebnisse der Dissertation
Vollständigkeitssatz für zustandslose Zweiparteien-Primitive. Joe Kilian konnte 1988 zeigen,
dass jede beliebige Mehrparteien-Berechnung kryptographisch sicher auf einer Primitive namens
„Oblivious Transfer“ (OT) aufbauend realisiert werden kann. Diese Primitive erlaubt es einer Par-
tei, zwei Bits s0, s1 an einen dedizierten Empfänger zu senden, sodass der Empfänger nur eines
der beiden lernt, im Folgenden sc genannt. Der Empfänger kann die Auswahl c selbst festlegen,
lernt aber nichts über s1−c; umgekehrt bleibt c dem Sender gegenüber geheim. Das Ergebnis von
Kilian wirft die natürliche Frage auf, welche anderen Primitive ebenfalls in diesem Sinne vollstän-
dig sind. Für zustandslose, deterministische Zweiparteien-Primitive mit endlichem Eingabealphabet
und symmetrischer Ausgabe (beide Parteien erhalten dasselbe Ergebnis) wurde diese Frage 1991
und für Primitive mit asymmetrischer Ausgabe (nur eine der beiden Parteien erhält das Berech-
nungsergebnis) im Jahr 2000 von Kilian selbst beantwortet.
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x Zusammenfassung

In meiner Dissertation werden die Vollständigkeitskriterien von Kilian vereinheitlicht und auf
beliebige zustandslose (aber nicht mehr notwendigerweise deterministische) Zweiparteien-Primitive
mit endlichem Eingabealphabet erweitert. Damit wird die Vollständigkeitsfrage erstmals auch für
Zweiparteien-Primitive geklärt, welche unterschiedliche Ergebnisse an die beteiligten Parteien aus-
geben und/oder in die Berechnung internen Zufall einfließen lassen. Hierzu ist anzumerken, dass sich
die Ansätze von Kilian nicht ohne Weiteres verallgemeinern lassen, zumal er fundamental verschie-
dene Techniken für den symmetrischen und den asymmetrischen Fall verwendet. Meine neuartige
Herangehensweise besteht in einer allgemeinen Protokollkonstruktion, für welche alle perfekt un-
entdeckbaren Angriffsstrategien gewissen Polynomgleichungen genügen müssen. Damit lässt sich
die Menge aller perfekten Angriffe als entsprechende Nullstellenmenge (algebraische Varietät) be-
schreiben und ich kann Protokollparameter angeben, für welche ausschließlich triviale Angriffe
existieren, die die Sicherheit nicht bedrohen. Unter Verwendung geeigneter Abschätzungsmethoden
aus Wahrscheinlichkeitstheorie (Hoeffding-Ungleichung) und der reellen algebraischen Geometrie
(Łojasiewicz-Ungleichung) kann ich außerdem zeigen, dass jeder Angriff hinreichend nahe an einer
perfekten Angriffsstrategie liegt, sodass die Sicherheit meiner Protokollkonstruktion gegen perfekte
Angriffe bereits Sicherheit gegen allgemeine Angriffe impliziert.

Sichere Mehrparteien-Berechnungen mittels manipulationssicherer Hardware. Für die Reali-
sierung sicherer Mehrparteien-Berechnungen sind kryptographische Grundannahmen unabdingbar.
Darüberhinaus sind besonders restriktive Sicherheitsbegriffe wie die sog. „universelle Komponier-
barkeit“ allein mit Komplexitätsannahmen (z. B., dass die Faktorisierung großer Zahlen nicht prak-
tikabel ist) beweisbar nicht zu erfüllen; es werden zusätzliche Setup-Annahmen benötigt (z. B., dass
eine Public-Key-Infrastruktur gegeben ist). Manipulationssichere Hardware bietet hier einen alter-
nativen Ansatz und überraschenderweise darf die Hardware sogar von einer der sich gegenseitig
misstrauenden Protokollparteien stammen. In der Literatur sind entsprechende Konstruktionen für
sichere Zweiparteien-Berechnungen zu finden, die die prinzipielle Machbarkeit demonstrieren.

In meiner Dissertation stelle ich das erste Resultat für informationstheoretisch sichere, univer-
sell komponierbare Zweiparteien-Berechnungen vor, welches lediglich den Austausch eines einzigen
Hardware-Tokens benötigt. Frühere Konstruktionen benötigten entweder zusätzliche Komplexitäts-
annahmen oder es musste eine Vielzahl an Token ausgetauscht werden. Des Weiteren werden die
bekannten Lösungen aus der Literatur dahingehend übertroffen, dass ich für verschiedene Primitive
(darunter auch OT) erstmals informationstheoretisch sichere Protokolle mit optimaler Kommunika-
tionskomplexität angeben kann. Auch der benötigte Rechenaufwand fällt auffallend gering aus, was
insofern von spezieller Bedeutung ist, als manipulationssichere Hardware-Token i. A. nicht als leis-
tungsstark angenommen werden können. Basis für diese Resultate ist eine neu entwickelte Technik,
mit der sich auf besonders effiziente Weise affine Funktionen über endlichen Körpern so auf dem To-
ken implementieren lassen, dass gegenüber einer misstrauischen Empfängerpartei ohne Offenlegung
der Funktionsparameter die Korrektheit nachgewiesen werden kann.
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Background and motivation
Secure multi-party computation/secure function evaluation. Modern cryptography is far more
than development and analysis of cypher schemes. Today, there are many challenges that cannot
be dealt with just by secure message transfer:
• comparing national wanted lists without violating data privacy laws,
• benchmarking of business competitors that refuse to disclose their business data,
• electronic elections,
• online poker without a trusted game server,

to name only a few. Basically, all these problems necessitate some kind of “game rules” (protocol)
that allow the involved parties to commonly perform the desired computation without the need to
trust each other. The design and security analysis of such protocols is subject of the research area
of secure multi-party computation (MPC), whose origin goes back to Yao’s Millionaire’s Problem:

“Two millionaires wish to know who is richer; however, they do not want to find out
inadvertently any additional information about each other’s wealth. How can they carry
out such a conversation?” [Yao82]

A bit more formally, the fundamental task of MPC consists in the following, quite natural gen-
eralization of Yao’s Millionaire’s Problem: Some parties P1, . . . , Pn want to commonly evaluate a
function f(x1, . . . , xn), where xi is a secret input from party Pi, and no party Pi should learn more
about the other parties’ secrets x1, . . . , xi−1, xi+1, . . . , xn than what can be inferred from its own
input xi and the public computation result f(x1, . . . , xn). Further, no party Pi should be able to
influence the final computation result f(x1, . . . , xn) other than by choosing xi. This task is usually
referred to as secure function evaluation (SFE).

Given a general SFE solution, one could cope with all the challenges presented at the beginning,
some of which can be reformulated as an SFE instance more obviously than others. In particular,
the reduction to SFE is fairly straightforward for privacy preserving comparison of wanted lists,
business benchmarking and electronic elections.
comparison of wanted lists: The parties’ secret inputs xi are sets of data records (one record

for each wanted person), and the function f computes and outputs a simple set intersection.
More sophisticated variants, where similar but not perfectly matching records are also part
of the output, are as well possible.

benchmarking: This is the most straightforward example. Each party inputs its private business
data, and the function output is the respective benchmark.

electronic elections: At its basics, an electronic election can also be translated into the terms of
SFE very simply; the votes are the secret inputs and the tally is the public function outcome.
Complex elections might consist of more than one round, but still in most cases this can just
be handled as a sequence of individual elections.

Online poker stands out from our list in the sense that the respective reduction to SFE requires
some more sophisticated techniques, which was the main reason to include also such a not so serious
example. First of all, a poker game needs some trusted source of randomness. Since no party is
trusted by the others, we have no designated dealer to “shuffle” the cards. Secondly, a poker game
consists of several rounds, which cannot be treated independently. Last but not least, some of the
players’ information during the game is non-public, since nobody can see the others’ cards. Thus,
the intermediate game state cannot be a public function output. However, all these issues can be
solved by means of SFE.

Providing the function f in an SFE protocol with some additional randomness can be done by
the following generic trick. If l random bits are needed, each participant just has to additionally
input a uniformly random l-bit string. Then, if at least one party honestly follows the protocol,
the bitwise XOR of these additional input strings can be used as trusted randomness. Note that it
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usually suffices to protect only the honest parties, and thus there is no need to care about the output
distribution if all parties are corrupted. Now, with such a randomized SFE solution one can already
implement a poker game in a very abstract way: Each player’s function input is an algorithmic
description of his strategy, and the public function output is the corresponding simulation of a
poker game. However, this is usually not what people want, and therefore we present next how to
implement a “real” interactive poker game with multiple rounds based on SFE.

We already have seen how to implement randomized SFE from deterministic SFE, but still all
parties learn the complete function output. However, the output of an SFE protocol can be made
non-public by a technique quite similar to the randomization trick. Each party Pi just has to
additionally input a secret one-time pad ki of sufficient length, and the public SFE output can
then be computed as (y1 ⊕ k1, . . . , yn ⊕ kn), where yi is Pi’s private output. Knowing his secret
key ki, each player Pi can decrypt his (and only his) output yi. Thereby, we can now implement
randomized SFE with non-public output, e.g. the card dealing phase in a poker game.

It finally remains to reduce a stateful multi-round game to stateless SFE. If the game state
solely consists of public information, each game round can just be handled as an individual SFE
instance, where the function to be evaluated depends on the current round’s public game state. If
the game state contains some inherently non-public information, like the players’ secret cards in a
poker game, we need that somehow a secret state variable s is passed on from each round to the
next. Again, this can be done using one-time pads. The idea of how a game round proceeds is as
follows:
• Each player Pi knows a one-time pad kold

i and s̃old := sold⊕kold
1 ⊕ . . .⊕kold

n , where sold denotes
the current game state. Further, each player Pi knows some yold

i , which denotes his current
view of the game (e.g. his secret cards and all public information about the game state). Note
that s̃old is an encryption of sold with all players’ secret one-time pads and thus does not
reveal any information about the secret game state sold to any collusion of corrupted parties.
• Each player Pi chooses his next game move xi depending on his current game view yold

i and
a fresh one-time pad knew

i . His next round SFE input is the tuple
(
kold
i , knew

i , s̃old, xi
)
.

• Finally, by means of randomized SFE with non-public output as described above, the game
state for the next round is computed: If all players’ inputs contain the same s̃old, the func-
tion secretly decrypts the current game state sold, computes the new game state snew from
(sold, x1, . . . , xn), and outputs s̃new := snew ⊕ knew

1 ⊕ . . . ⊕ knew
n to all players. Further, each

player Pi privately receives his respectively updated game view ynew
i .

Note that by this procedure all players choose their moves simultaneously in each game round. If
players may move only sequentially, each player’s move must be handled as a separate game round.

Further note that although the above procedure perfectly hides the secret game states sold and
snew from any collusion of malicious players, a corrupted party Pi can still flip some bits of sold

just by flipping the corresponding bits of kold
i . Thus, players might cheat and maliciously alter

the secret game state. However, this can be prevented by some error detecting encoding of the
secret game state; e.g., sold = (α, β, γ), where α, β, γ are elements of some sufficiently large finite
field, α contains the actual game state information, β is just uniformly random, and γ = α · β.
Now, during the computation of the next game state snew the game can be aborted if the secretly
decrypted current game state sold is not of the required form (α, β, α · β). Still, if the actual game
state information α has only low entropy, this approach has one last security hole. In particular,
a corrupted party Pi could mount the following attack. By flipping the corresponding bits of kold

i ,
the β- and γ-part of the current state variable sold can be altered, say β is replaced by β + β′ and
γ is replaced by γ + γ′. Note that Pi can arbitrarily choose β′ and γ′, at least if the underlying
finite field has characteristic two. But now, the protocol is not1 aborted if and only if γ′ = α · β′.
Thus, Pi can try to guess the intermediate game state information α and verify the guess, e.g., by
choosing β′ = 1 and γ′ = α. However, this last security hole can be simply closed by appending

1This “not” is a correction. It was missing in the printed version.
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sufficiently many bits of independent randomness to the α-part of sold, so that it becomes practically
unpredictable.

After all, we have seen that general SFE has not only straightforward business applications, but
it even allows for secure execution of complex multi-round processes. Since SFE is such a power-
ful cryptographic tool, this motivates thorough investigation of its elements and related problem
structures.

Security definitions. Classically, cryptographic protocols were considered secure when some spe-
cific security properties could be shown. We have already seen two such properties, namely privacy
and correctness. Correctness means that the protocol implements the desired functionality, and
privacy guarantees that even corrupted parties do not learn more during a protocol run than what
can be inferred from their own input and output. At first glance, it might seem intuitively clear
that these two properties are exactly what is usually meant by “security”. On closer inspection
however, things turn out pretty complicated. Giving a formal definition for the privacy property,
for example, just does not work as straightforward as suggested above. Since a malicious party’s
behavior during a protocol run might not match any valid input value, it is initially not well-defined
at all what can be inferred from this party’s “input” and output. But above all, the approach of
checking individual security properties yields one severe problem: How can one guarantee that a
given list of security properties covers all potential attacks in every possible context? Consider
as an illustrating example the secure computation of the boolean XOR operation; i.e. Alice and
Bob each choose a secret input bit and the public output is the respective XOR. Obviously, Alice
can always perfectly reconstruct Bob’s input bit from her own input and the public output, and
analogously Bob always learns Alice’s input. Thus, privacy is no issue here. However, if e.g. Alice
learns Bob’s input before she chooses her own input, she has just full control over the computation
result. The latter is not what one would expect from a secure XOR gate. So, in addition to privacy
and correctness some kind of independence of inputs seems essential for secure computations.

The need for a more generic notion of security motivated several simulation based approaches
[Bea92, MR92, Can01, Gol04]. The main idea there is that every possible behavior of the corrupted
parties (coordinated by some adversary A) should be imitable by a simulator S in an ideal model,
which is secure by definition. The first simulation based notions of security only demanded for
simulatability in retrospect, i.e. the adversary A produces output only once (at the end of the
protocol) and the simulator S has to generate some output, such that conditioned to each possible
input of the honest parties the simulator’s output and the adversary’s output are indistinguishable.
This stand-alone simulatability allows for sequential protocol composition, but in case of concur-
rent composition there are no security guarantees any more. Security models that aim towards
parallel protocol composition additionally bring an environment into play that interacts with the
adversary or simulator respectively and coordinates the input behavior of the honest parties. If the
environment provably cannot tell apart between real model and ideal model, the protocol is a uni-
versally composable implementation of the ideal functionality. Moreover, compared to stand-alone
simulatability approaches, the concept of an environment machine coordinating the parties’ input
behavior also makes it possible to consider security of arbitrarily complex multi-round processes
(like our poker example) in a more natural way.

All results of this thesis are stated and proven with respect to the universal composability (UC)
framework of [Can01], which is usually referred to as one of the strongest commonly used security
notions. See also Section 2.1 and Section 6.2.

Oblivious transfer (OT). Oblivious transfer is one of the most important primitives for SFE. Its
conceptual strength, which also makes it a subject of great interest within the scope of this thesis,
lies in its ability to serve as a building block for more complex cryptographic protocols. This was
first demonstrated by [Yao86] in a generic construction for oblivious circuit evaluation. What is
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more, OT even turned out to be complete in the sense that general SFE can be implemented from
it [Kil88, GL91, CGT95, IPS08].

Oblivious transfer in its basic form was introduced by [Rab81] as a two-party primitive that
models a trusted erasure channel: The sender party can enter a bit b, which is transmitted with
probability 1

2 to the receiver party and else replaced by a special erasure symbol ⊥. A seemingly
more useful variant of OT,

(2
1
)
-OT, was introduced by [EGL85] to securely implement commitments

(see below) and coin tossing. In the
(2
1
)
-variant of OT, the receiver party can choose to learn exactly

one out of two bits provided by the sender, while the sender does not learn which bit was chosen.
This variant usually is what people refer to when speaking of “oblivious transfer”. However both
flavors of OT are equivalent, i.e. they can be securely implemented from each other [Cré88].

As a straightforward generalization of OT, one often also considers string-OT, where the sender’s
inputs are complete strings instead of single bits.

Commitments. A commitment scheme allows a sender party (e.g. Alice) to commit to a chosen
bit value b and later unveil b to a receiver party (e.g. Bob), such that the receiver Bob learns nothing
about b before it is unveiled, and the sender Alice cannot change b after she committed herself.
Thus, a commitment protocol consists of two phases, the Commit Phase and the Unveil Phase, and
between these phases the bit value is fixed but hidden. This primitive also has many applications
in cryptography, especially if additional computational assumptions are used.

Contribution and structure of this thesis
This thesis contributes two results to the research area of SFE. The first contribution consists
in simple but comprehensive completeness criteria for finite stateless two-party primitives. More
concretely, the considered primitives are secure black boxes that can be jointly queried by two
parties, have finite input and output alphabets, and do not change behavior depending on time or
input history. Given any such primitive, the completeness criteria from this thesis can be used to
decide efficiently whether it allows for information-theoretically secure implementation of OT (and
is thus complete) or not. The other contribution of this thesis is a protocol construction that allows
for information-theoretically secure implementation of OT on top of an untrusted tamper-proof
hardware token.

Although both contributions have the same objective (information-theoretically secure imple-
mentation of OT), the respective techniques are completely different. Therefore, it seemed most
reasonable to split up the main body of the thesis into two parts, each of which is totally self-
contained and can be read independently.

Completeness criteria (Part I)

Since Kilian showed in 1988 that OT is complete in the sense that every secure multi-party com-
putation can be realized from this primitive, cryptographers are working on reductions of OT to
other primitives (cf. Section 1.1). A long-standing open question in this context is the classification
of finite stateless two-party primitives (so-called “cryptogates”). Over the decades, completeness
criteria have been found for deterministic cryptogates (i.e. primitives without internal randomness),
noisy channels, and symmetric (i.e., both parties receive the same output) or asymmetric (i.e., only
one party receives any output at all) randomized cryptogates. However, the known criteria for
randomized primitives other than noisy channels only hold in presence of passive adversaries (i.e.,
even corrupted parties still follow the protocol). This thesis now completes this line of research by
providing simple but comprehensive combinatorial completeness criteria for all finite stateless two-
party primitives. I.e., for the first time there are completeness criteria for randomized primitives
that are neither symmetric nor asymmetric (but give different outputs to the querying parties),
and we overcome the limitation that previous results for randomized primitives with input from
both parties only regarded passive adversaries. This big step is only possible by a completely novel
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approach. The core element of this novel approach is the definition of an algebraic structure of
“idealized cheating strategies” and its thorough investigation (q.v. sections 3.1.2–3.1.3 and 4.1–4.4).
The motivation for this approach is by a rather generic protocol construction (q.v. Section 3.1.1
and Section 4.5). Utilizing estimation methods from probability theory (the Hoeffding Inequality)
and real algebraic geometry (the Łojasiewicz Inequality), the security proof for this protocol scheme
can be based on the gained algebraic insights (q.v. sections 3.1.4 and 4.6–4.8).

A short version of the analogous classification results for the spacial case of deterministic primi-
tives appeared in [KMQ11]. The respective full version with all proofs is online available [KMQ10]
but not published elsewhere yet. Part I follows the basic structure of [KMQ10], though nearly all
technical details are way more complex than in the deterministic case.

Secure computation from untrusted tamper-proof hardware (Part II)

Consider the following scenario. A powerful party, henceforth called Goliath, can issue tamper-proof
hardware tokens and hand them over to some other party, which we henceforth call David. Each
such token has a dedicated interface, so that David can communicate with it, but the token’s internal
state is out of reach for David. The question now is, if in this setting OT is possible, although both
parties mistrust each other. The technical difficulty to be overcome is twofold. Firstly, a corrupted
Goliath can program the token maliciously. Secondly, a corrupted David can query the token on
whatever he likes, and he can do so whenever he likes. Interestingly, various results in the literature
(q.v. Section 5.1) demonstrate the feasibility of arbitrary secure computations, based on the tokens’
tamper-proofness and the assumption that Goliath cannot communicate directly with any token
in David’s hands. However, all these results use additional complexity assumptions and/or a large
number of tokens must be exchanged. Especially the latter is usually considered a quite severe
obstacle for practical realizations, and reduction of the number of tokens has been a research
objective for years. For example, [MS08] stated it as an open problem to implement a bidirectional
and reusable commitment functionality, which is a strictly weaker primitive than OT, from a single
token. This thesis now provides the first information-theoretically secure single-token solution, and
beyond that the provided solution even allows for asymptotically optimal implementation of OT
and commitments (q.v. Section 5.2). The basic protocol construction, on which everything else is
built, is a newly developed method for verifiable affine function evaluation (q.v. Section 6.4 and
Section 7.1).

A short version of these results appeared in [DKMQ11], containing a less general protocol con-
struction, which only required a much less complicated security proof but also lacks all the opti-
mality features presented in this thesis. A draft of Part II is online available [DKMQ12a] but not
published elsewhere yet.

Some general notations
Throughout this thesis we will denote by R the set of real numbers and by N the set of all naturals
including zero. If we want to exclude negative values or zero, for example, we denote that by R≥0
or N>0 respectively.

Random variables are denoted as bold characters, e.g. x. We refrain from the standard approach
of using capitals letters for marking random variables, since we want to use them to distinguish
matrices from vectors. Thus, a random matrix is denoted as M and a random vector as v, for
example. We denote the probability operator by P, i.e. a random variable x takes some specific
value x with probability P[x =x]. The expected value of x is denoted by E(x). This notation of
probabilities and expected values yields the least possible danger of confusion when combined with
the other notations used in this thesis.

Further notations are introduced where needed. Additionally, a table of symbols is provided
close to the end of this thesis.
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Completeness Theorems for
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1 Introduction

Oblivious transfer was introduced in [Rab81] as a trusted erasure channel. Later, in [Cré88] it
was proven to be equivalent to

(2
1
)
-OT, its currently most used variant, which allows a designated

receiver Bob to learn only one of two bits sent by a designated sender Alice. Since the OT primitive
turned out to be complete in the sense that it allows for arbitrary secure multi-party computation
[Kil88, GL91, CGT95, IPS08], for numerous primitives it has been investigated whether OT can
be reduced to them. In this thesis, we exhaustively treat this question for a class of primitives
that we call “finite randomized 2-party functions”. Each such primitive is characterized by some
finite alphabets ΥA,ΥB,ΩA,ΩB, a probability distribution R with finite support R and a mapping
f : ΥA×ΥB×R → ΩA×ΩB. Upon input x ∈ ΥA from Alice and y ∈ ΥB from Bob, the primitive
internally samples a random r ← R, computes (a, b) = f(x, y, r) and outputs a to Alice and b to
Bob. Equally, one can characterize any finite randomized 2-party function by its input and output
alphabets ΥA,ΥB,ΩA,ΩB and a family {φx,y}x∈ΥA,y∈ΥB of probability mass functions over ΩA×ΩB,
such that on input x ∈ ΥA from Alice and y ∈ ΥB from Bob the primitive with probability φx,y(a, b)
outputs a to Alice and b to Bob. Regarding our work, the latter notation turns out much more
convenient and therefore will be used throughout the body of this part of the thesis.

This thesis generalizes the results of [KMQ11], where the completeness question was solved for
the special case of deterministic 2-party functions, i.e. f(x, y, r) is independent of the randomness r,
or alternatively {φx,y}x∈ΥA,y∈ΥB ⊆ {0, 1}ΩA×ΩB . Although some general ideas from the deterministic
case do carry over straightforwardly, crucial techniques do not—cf. [KMQ10, Section 5]. In addition
to an appropriate representation of randomized functions, we need to develop an entire tool set of
technical lemmata, some of which may be of independent interest.

1.1 Related work
General related work. In the literature one finds OT protocols for bounded-classical-storage
[CCM98] and bounded-quantum-storage models [DFR+07] as well as noisy classical [CMW05,
Wul09, IKO+11] and quantum channels [Yao95, May95, May96], the latter taking commitments for
granted. An entire line of research deals with implementing OT from tamper-proof hardware as-
sumptions [BOGKW88, GKR08, CGS08, Kol10, GIMS10, GIS+10, DKMQ11, CKS+11]. There are
reductions of

(2
1
)
-OT to weaker OT versions that leak additional information [CK90, DKS99, Wul07]

and to Rabin-OT [Cré88]. OT-combiners implement OT from granted sets of OTs with faulty mem-
bers [MPW07, HIKN08]. For reversing the direction of

(2
1
)
-OT a protocol is known with optimal

number of OT queries [WW06]. Relative to computational assumptions, all-or-nothing laws have
been shown [BMM99, HNRR06, MPR10], i.e. all considered non-trivial primitives are complete.

Precursory results to this work. The line of research we deal with was initiated by [Kil91], where
completeness criteria for deterministic symmetric 2-party functions (i.e., both parties receive the
same output, computed deterministically from their inputs) without any additional computational
assumptions were provided. This line of research was continued by [Kil00], providing completeness
criteria for deterministic asymmetric 2-party functions (i.e., only one party receives any meaningful
output, computed deterministically from both parties’ inputs). Randomized symmetric and asym-
metric 2-party functions (i.e., a single output symbol, computed from both parties inputs and some
secret randomness, is handed over either to both parties or only to one party) were also treated
in [Kil00], but only with respect to passive adversaries (i.e., even corrupted parties still follow the

11
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protocol). Rather recently, the completeness criteria of [Kil91, Kil00] for deterministic 2-party func-
tions were unified and generalized by [KMQ11], now covering all deterministic 2-party functions,
what for the first time in the literature also included 2-party functions that give different outputs
to Alice and Bob. Meanwhile, [CMW05] also provided exhaustive completeness criteria with re-
spect to active adversaries (i.e., corrupted parties may arbitrarily deviate from the protocol) for a
special class of randomized asymmetric 2-party functions, namely noisy channels. This thesis now
completes this line of research. The main theorem in Section 2.3 unifies and generalizes all known
completeness criteria for symmetric, asymmetric, deterministic and randomized 2-party functions.

Independently of this thesis, a unified and generalized formulation of the completeness criteria
from [Kil91, Kil00, CMW05, KMQ11] was found by [MPR12]. Their result is equivalent to the
criteria provided by this thesis, but they only give a proof with respect to passive adversaries.
Proving their conjecture for active adversaries was left as an open problem.

1.2 Our contribution
Results. We give a complete characterization of all finite randomized 2-party functions that allow
for information-theoretically secure implementation of OT. For the reduction we provide a protocol
scheme, which is universally composable—cf. [Can01]. Our characterization is based on surprisingly
simple combinatorial criteria and our results are tight: Necessity of our criteria still holds, even if
only correctness and privacy of the implemented OT are required. As a remarkable corollary of our
work all non-complete finite 2-party functions turn out essentially symmetric.

Our work exceeds the precursory completeness criteria in two ways. Firstly, we overcome the
limitation that results for randomized primitives with input from both parties only regarded passive
adversaries. Secondly, our results also cover randomized primitives that are neither symmetric nor
asymmetric (but give different meaningful outputs to Alice and Bob).

Techniques. Our starting point is a very generic protocol scheme, such that all perfectly unde-
tectable attack strategies do comply with certain polynomial equations and hence form an algebraic
variety. One major part of our work consists in finding protocol parameters, such that this algebraic
variety collapses to trivial attack strategies that do not affect security at all. Using powerful tools
from real algebraic geometry (namely the Łojasiewicz Inequality) and probability theory (namely
the Hoeffding Inequality), we can then link real protocol runs to idealized attack strategies and
thereby prove cryptographic security of our construction. This approach for protocol design and
proving security might be of further interest, independently of our concrete classification results.

1.3 Organization of Part I
The basic structure of this part follows [KMQ11], though nearly all technical details in our case
are way more complex. We briefly present our results in Section 2, where we first refer to the used
notion of security (Section 2.1), then introduce the basic concepts needed for formulation of our
results (Section 2.2), state our classification results (Section 2.3), and finally give a short overview
about how our approach matches former completeness criteria in the literature (Section 2.4). In
Section 3 we give an exposition of how one can prove our results. All formal proofs of our main
technical contribution are located in Section 4; to make it self-contained, all needed definitions,
notations and lemmata are also restated there.



2 Presentation of our results

Before we get started, we introduce two handy notations, which will make things much easier in
the upcoming sections.
Finite sums of function values: Given any set T with finite subset S ⊆ T and some mapping

g : T → R, we set g(S) :=
∑
ω∈S g(ω) for convenience. For functions with more arguments

and also for function families we use the canonical extension of this notation, e.g.:

φΥA,y(ΩA, b) :=
∑

x∈ΥA, a∈ΩA
φx,y(a, b)

Spaces of probability mass functions: Given some finite alphabet Ω, we denote the set of all
probability mass functions over Ω by pmf(Ω), i.e. pmf(Ω) =

{
ρ : Ω→ R≥0

∣∣ ρ(Ω) = 1
}
.

We also use the following standard notions.
Negligibility: A function µ : N→ R≥0 is negligible (in the parameter k), if limk→∞ µ(k)·f(k) = 0

for every polynomial f ∈ R[X].
Indistinguishability: Two random variables x,y are (statistically) indistinguishable, if their sta-

tistical distance 1
2
∑
α

∣∣P[x = α]−P[y = α]
∣∣ is negligible in some security parameter.

2.1 Notion of security
Our main contribution is the construction and security proof of a generic reduction protocol that
implements OT from any appropriate 2-party function. For the definition what “security” means,
we lean on one of the strongest commonly used notions of security: the Universal Composability
(UC) framework of [Can01]. However, our results also hold with respect to all weaker security
notions that still require secure function evaluation to be private (i.e., no party can learn anything
that cannot be learned from its function input and function output) and correct (i.e., if all parties
follow the protocol, the desired function value is evaluated correctly).

In the UC framework, security is defined by comparison of an ideal model and a real model.
The protocol of interest is running in the latter, where an adversary A coordinates the behavior
of all corrupted parties. In the ideal model, which is secure by definition, an ideal functionality
F implements the desired protocol task and a simulator S tries to mimic the actions of A. An
environment Z is plugged either to the ideal or the real model and has to guess, which model it
is actually plugged to. When Z cannot distinguish between ideal and real model, the protocol is
considered UC-secure. More formally, UC-security requires that for every adversary A there exists
a simulator S, such that for all environments Z the view of Z in the real model (with adversary
A) is indistinguishable from the view of Z in the ideal model (with simulator S). Since all our
results are of information-theoretic nature, the adversarial entities A,S and the environment Z
are computationally unbounded (but nonetheless the running time of a simulator S will always be
polynomial in the running time of the according adversary A, as it is usually desired).

If the views of Z in the ideal model and the real model are distributed identically, we speak
of perfect security; if there is some negligible statistical distance between these views, we have
only statistical security. As already mentioned, one also differentiates between passive adversaries
(i.e., corrupted parties still follow the protocol) and active adversaries (i.e., corrupted parties may
deviate from the protocol arbitrarily). For further details see [Can01].

Since our protocol scheme implements
(2
1
)
-OT from some given 2-party function, we also need a

so-called hybrid functionality in the real model that provides access to the latter. See Figure 2.1
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Functionality: F (F )
SFE

Let F be characterized by a family of probability mass functions {φx,y}x∈ΥA,y∈ΥB ⊆ pmf(ΩA×ΩB), where
ΥA,ΩA are Alice’s input and output alphabet and ΥB,ΩB are Bob’s input and output alphabet.

• Upon receiving input (x, i) from Alice, verify that (x, i) ∈ ΥA×N and that there is no recorded tuple
(x̃, i, Alice); else ignore that input. Next, record (x, i, Alice) and send (processing, Alice, i) to
the adversary.

• Upon receiving input (y, i) from Bob, verify that (y, i) ∈ ΥB×N and that there is no recorded
tuple (ỹ, i, Bob); else ignore that input. Next, record (y, i, Bob) and send (processing, Bob, i) to the
adversary.

• As soon as there are recorded tuples (x, i, Alice) and (y, i, Bob) for the same index i, generate
randomly (a, b) ∈ ΩA× ΩB according to the distribution specified by φx,y, and store (a, b, i).

• Upon receiving a message (Delivery, Alice, i) from the adversary, verify that there is a stored tuple
(a, b, i); else ignore that message. Next, output (a, i) to Alice and henceforth ignore all messages
(Delivery, Alice, i) with the same index i.

• Upon receiving a message (Delivery, Bob, i) from the adversary, verify that there is a stored tuple
(a, b, i); else ignore that message. Next, output (b, i) to Bob and henceforth ignore all messages
(Delivery, Bob, i) with the same index i.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F (F )
SFE and

the corrupted party, including the ability of deleting and/or forging arbitrary messages; i.e., the adversary
can arbitrarily send and receive messages on behalf of the corrupted party.

Figure 2.1: The ideal functionality for secure evaluation of a 2-party function F . Adapted and
simplified version of the Secure Function Evaluation functionality in [Can01]. Note that via the
parameter i just the same multi-session ability is achieved as in [Can01] by multiple session IDs.

for a formal definition of the hybrid functionality used. As
(2
1
)
-OT itself is just a special 2-party

function that on input (b0, b1) ∈ {0, 1}2 from Alice and c ∈ {0, 1} from Bob with probability 1
outputs bc to Bob and a special “nothing” symbol ⊥ to Alice, we can omit an explicit definition of
the ideal OT functionality and instead use an accordingly instantiated version of the functionality
from Figure 2.1.

2.2 Basic concepts

Finite randomized 2-party functions. A finite randomized 2-party function can be characterized
by its input and output alphabets and output distributions (cf. Figure 2.1). By Ffin we denote
the set of all tuples (ΥA,ΥB,ΩA,ΩB, φ), where ΥA,ΥB,ΩA,ΩB are non-empty finite alphabets and
φ := {φx,y}x∈ΥA,y∈ΥB is a family of probability mass functions over ΩA×ΩB, i.e. φ ⊆ pmf(ΩA×ΩB).
For convenience we will not always differentiate pedantically between the mathematical object
F ∈ Ffin and the corresponding primitive F (F )

SFE, but from the context should always be clear what
is meant.

Canonical and condensed canonical representations. Our notion of Ffin turns out a bit too
detailed, since Alice and Bob can always locally relabel their input-output tuples without any side
effects. For our purposes there is no need to distinguish between some F ∈ Ffin and any relabeled
version of F . Therefore, we introduce the concept of canonical representations. Given any F ∈ Ffin,
we cannot just write down a function table for F , since each input tuple only specifies an output
distribution rather than a concrete output tuple. However, for each individual input tuple we can
represent the respective joint output distribution by a probability matrix with rows labeled by
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Figure 2.2: Different representations of a 2-party function that on input x ∈ {0, 1} from Alice and
y ∈ {0, 1, 2} from Bob outputs some uniformly random a, b ∈ {0, 1}, subject to the conditions
that a + b ≥ x · y and b ≥ y − 1. To the left, inputs (bold) and outputs (italic) are displayed
grayed out. The matrix in the middle is a canonical representation of the same 2-party function
with zero probabilities omitted for better readability; the right matrix is a condensed canonical
representation.

Alice’s output symbols and columns labeled by Bob’s output symbols. Then, we can arrange these
“inner” probability matrices in an “outer” block matrix with rows labeled by Alice’s input symbols
and columns labeled by Bob’s input symbols (see first two tables in Figure 2.2 for an example).

Moreover, we also want to abstract from the fact that, e.g., Bob could always concatenate the
result of a local coin toss to his output, thus formally doubling the size of his output alphabet just by
an easily reversible local computation. Such local coin tosses appear in a canonical representation as
pairwise linearly dependent columns within the same block column, or pairwise linearly dependent
rows within the same block row respectively. However, we can easily get rid of them just by adding
up the respective linearly dependent rows or columns. If all local coin tosses are removed from a
canonical representation this way, we call it condensed (cf. last table in Figure 2.2).

Isomorphism. Note that the condensed canonical representation of a finite 2-party function is
unique up to permutations of rows within single block rows, permutations of columns within single
block columns, and permutation of rows and/or columns of the outer block matrix. Now, if two
given 2-party functions F, F ′ ∈ Ffin have the same (set of) condensed canonical representations,
we call them isomorphic. Obviously, isomorphism is an equivalence relation on Ffin and any two
isomorphic 2-party functions F, F ′ ∈ Ffin can be straightforwardly implemented from each other
with perfect security.

Redundancy and equivalence. Our notion of isomorphism will turn out very handy for formula-
tion of our classification results with respect to passive adversaries, but for active adversaries we
need one additional concept. In particular, there may exist input symbols that a corrupted party
never needs to use, since one can always learn strictly more by inputting something else. Given
any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, we call an input symbol y′ ∈ ΥB redundant, if a corrupted
Bob instead of sending y′ to F can always replace this input by an appropriately distributed ran-
dom choice from ΥB\{y′} and still perfectly simulate honest behavior. This is possible, if Alice’s
output distribution is not changed at all and Bob can reconstruct an appropriately distributed
output b′ ∈ ΩB from his actual input-output tuple (y, b). Formally, y′ ∈ ΥB is redundant, if
there exist an “input replacement strategy” τ ∈ pmf(ΥB) and an “output reconstruction strategy”
{λy,b}y∈ΥB,b∈ΩB ⊆ pmf(ΩB), such that τ(y′) = 0 and for all x ∈ ΥA, a ∈ ΩA, b

′ ∈ ΩB it holds:

φx,y′(a, b′) =
∑

y∈ΥB, b∈ΩB
τ(y) · φx,y(a, b) · λy,b(b′)

For input symbols x ∈ ΥA, redundancy is defined analogously. If neither ΥA nor ΥB contains any
redundant input symbols, we say that F is redundancy-free.

W.l.o.g., malicious parties never use redundant input symbols, since they can gather exactly
the same or even strictly more information by the respective input replacement and output recon-
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struction strategies. Also, there is no need to constrain what honest parties may learn. Therefore,
regarding active adversaries we can consider any 2-party functions equivalent when they only differ
in some redundant input symbols. Formally, any 2-party functions F, F ′ ∈ Ffin are equivalent, if
they can be made isomorphic by successive removal of redundant input symbols. Note that a step-
by-step removal of one symbol at a time is crucial here: There may exist two input symbols that are
both redundant, but after removing one of them, the other one is not redundant any more—e.g.,
ΥB = {y, y′} with φx,y(a, b) = φx,y′(a, b) for all x ∈ ΥA, a ∈ ΩA, b ∈ ΩB.

It will turn out that the redundancy-free version of any given F ∈ Ffin is unique up to isomorphism
and thus equivalence of 2-party functions in the sense above is indeed an equivalence relation on
Ffin. However, due to lack of some required technical tools at this point, we postpone the proof to
Section 4.3 (see Corollary 19).

2.3 Completeness criteria for all finite randomized 2-party functions
With the concepts from Section 2.2 we can now formulate our classification results. We just state
the mere assertions here; for an outline of the proof see Section 3.

Definition (OT-cores). Given F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, an OT-core of F is a non-diagonal
full-rank 2×2-submatrix of the canonical representation; i.e., for the corresponding input-output
tuples (x, a), (x′, a′) ∈ ΥA×ΩA and (y, b), (y′, b′) ∈ ΥB×ΩB we have the following inequation with
at most one zero factor:

φx,y(a, b) · φx′,y′(a′, b′) 6= φx′,y(a′, b) · φx,y′(a, b′)

In this situation, we also call
{
(x, a), (x′, a′)

}
×
{
(y, b), (y′, b′)

}
an OT-core of F .

Theorem (Classification Theorem). For every F ∈ Ffin it holds:
1. OT can be implemented from F (F )

SFE statistically secure against passive adversaries, iff F has
an OT-core.

2. OT can be implemented from F (F )
SFE statistically secure against active adversaries, iff the

redundancy-free version of F has an OT-core.

Definition (Symmetric 2-party functions). A 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin is
symmetric, if φx,y(a, b) = 0 for all x ∈ ΥA, y ∈ ΥB, a ∈ ΩA, b ∈ ΩB with a 6= b.

Lemma (Symmetrization Lemma). Every 2-party function F ∈ Ffin that has no OT-core is isomor-
phic to a symmetric 2-party function.

2.4 Comparison with criteria from the literature
The latest known completeness criteria1 for finite 2-party functions can be subsumed by the fol-
lowing four theorems.
[KMQ11, Theorem 1]: A deterministic 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin allows

for implementation of OT statistically secure against passive adversaries, iff for the mappings
fA : ΥA×ΥB → ΩA defined by fA(x, y) = a :⇔ φx,y(a,ΩB) = 1 and fB : ΥA×ΥB → ΩB
defined by fB(x, y) = b :⇔ φx,y(ΩA, b) = 1 there exist x, x′ ∈ ΥA and y, y′ ∈ ΥB, such that
fA(x, y) = fA(x, y′), fB(x, y) = fB(x′, y), and

(
fA(x′, y), fB(x, y′)

)
6=
(
fA(x′, y′), fB(x′, y′)

)
.

A deterministic 2-party function F ∈ Ffin allows for implementation of OT statistically secure
against active adversaries, iff its redundancy-free version allows for implementation of OT
statistically secure against passive adversaries by the criterion above.

1Meanwhile, a unification and generalization of these criteria has been found by an independent work [MPR12].
Their criteria are equivalent to those in this thesis, but they give only a proof with respect to passive adversaries.
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[CMW05, Main result]: A noisy channel allows for implementation of OT statistically secure
against active adversaries, iff its redundancy-free version is no parallel composition of noiseless
and/or capacity-zero channels.

[Kil00, Theorem 1.3]: An asymmetric F := (ΥA,ΥB, {⊥},Ω, φ) ∈ Ffin allows for implementation
of OT statistically secure against passive adversaries, iff there exist x, x′ ∈ ΥA, y, y

′ ∈ ΥB and
z, z′ ∈ Ω, such that φx,y(⊥, z) > φx′,y(⊥, z) > 0 or it holds that φx,y(⊥, z) > 0, φx′,y(⊥, z) > 0,
φx,y′(⊥, z′) > 0 and φx′,y′(⊥, z′) = 0.

[Kil00, Theorem 1.2]: A symmetric F := (ΥA,ΥB,Ω,Ω, φ) ∈ Ffin allows for implementation of
OT statistically secure against passive adversaries, iff there exist x, x′ ∈ ΥA, y, y

′ ∈ ΥB, z ∈ Ω,
such that φx,y(z, z) > 0, φx,y′(z, z) > 0 and φx,y(z, z) · φx′,y′(z, z) 6= φx,y′(z, z) · φ′x,y(z, z).

All these completeness criteria are direct corollaries of our Classification Theorem. However, the
literature cited above differs substantially in the used protocol constructions and also the proof tech-
niques. This thesis generalizes the results and techniques of [KMQ11], where also a Symmetrization
Lemma were provided for deterministic 2-party functions. In particular, we adapt from [KMQ11]
and generalize the notions of “redundancy” (q.v. Section 2.2), “OT-cores” (q.v. Section 2.3) and
“cheating situations” (q.v. Section 3.1.2), and we also adopt the basic protocol scheme for genera-
tion of correlated data (q.v. Section 3.1.1). However, due to increased complexity the similarities
are limited to a fairly abstract level. Core proof techniques of [KMQ11] are strictly bound to
the deterministic case—cf. [KMQ10, Section 5]—and therefore new solutions (including a powerful
lemma from real algebraic geometry, q.v. Section 4.6) are needed for randomized primitives.





3 How to prove the Classification Theorem

Necessity of our criteria. By our Symmetrization Lemma and [Kil00, Theorem 1.2] it directly
follows that OT-cores are necessary for completeness with respect to passive adversaries. Moreover,
the proof in [Kil00, Section 4.1] for necessity of OT-cores holds in the same way with respect to
active adversaries. So, at this point we only need to give a proof for the Symmetrization Lemma.

Proof-sketch. Let some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given that has no OT-core. We
have to show that F is symmetric up to isomorphism. Our first observation is that we can replace
Bob’s output symbols by normalized versions of the respective column vectors in the condensed
canonical representation of F , i.e. upon Bob’s input y we replace his function output b by the
following RΥA×ΩA-vector:

1
φΥA,y(ΩA, b)

·
(
φx,y(a, b)

)
x∈ΥA,a∈ΩA

Since by construction there are never any two linearly dependent columns within the same block
column of a condensed canonical representation, this replacement of output symbols is an isomor-
phism of 2-party functions. Analogously, we can replace Alice’s output symbols; let Ω̂A ⊆ RΥB×ΩB

and Ω̂B ⊆ RΥA×ΩA denote the new output alphabets.
Now we exploit that F has no OT-core. Given any â ∈ Ω̂A and b̂, b̂′ ∈ Ω̂B with φΥA,ΥB(â, b̂) > 0

and φΥA,ΥB(â, b̂′) > 0, it must hold that b̂ = b̂′, as otherwise the two-column matrix (b̂, b̂′) would
contain a non-diagonal full-rank 2×2-matrix and thereby we had an OT-core. Analogously, for all
â, â′ ∈ Ω̂A and b̂ ∈ Ω̂B with φΥA,ΥB(â, b̂) > 0 and φΥA,ΥB(â′, b̂) > 0 it must hold that â = â′. Thus,
Alice and Bob have always full information about each other’s output and the function can as well
announce the complete output tuple (â, b̂) to both of them in the first place.

Sufficiency in the passive case. Given some F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin that has an OT-core,
and given that there is only a passive adversary, we can easily implement a non-trivial noisy channel
(shown to be complete in [CMW05, Wul09, IKO+11]) by the following protocol:

0. Alice and Bob agree on a bijection σ : ΥA×ΩA →
{
0, . . . , |ΥA×ΩA| − 1

}
. The image S of σ

also serves as Alice’s channel input alphabet.
1. Alice and Bob query F once with uniformly random input, thus generating input-output

tuples (x, a) ∈ ΥA×ΩA and (y, b) ∈ ΥB×ΩB respectively.
2. Alice announces to Bob her intended channel input encrypted with (x, a) as follows: If she

wants to send some m ∈ S via the noisy channel, she announces m̃ := m+ σ(x, a) mod |S|.
3. Bob’s noisy channel output is (m̃, y, b).

Since F has an OT-core and even corrupted parties still follow the protocol, the implemented
channel is not completely decomposable into noiseless channels and/or channels with zero capacity.
This is straightforward to verify and suffices to implement OT by the above-mentioned literature.

Sufficiency in the active case. As we are already done with necessity of our criteria in the
active and passive case and sufficiency in the passive case, so to speak “75%” of our Classification
Theorem are proven. However, the vastly major part still lies ahead of us. For proving sufficiency
in the active case, i.e. proving that in presence of an active adversary OT can still be reduced to
any redundancy-free 2-party function that has some OT-core, we need an entire new tool set of
technical lemmata and several sophisticated results from the literature. The high level idea of the
reduction approach is as follows. First, Alice and Bob generate some amount of correlated data by
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Figure 3.1: a) Example for illustration that not every OT-core is useful for us: The first two block
columns contain an OT-core, but can be subsumed by the last block column.
b) Example for illustration that redundancy here is more complex than in the deterministic case:
The first block column is redundant (it can be subsumed by the last two), but the second is not.

repeatedly querying the given 2-party function with random input. Within a subsequent test step
each party has to partially unveil its data, so that significant cheating can be detected. Then, in a
similar approach as in the passive case, the remaining data is used for implementation of non-trivial
noisy channels: Alice just announces her channel inputs one-time-pad encrypted with her part of
the correlated data, and Bob, since his view gives him only partial information about the used
one-time pads, can only recover noisy versions of Alice’s channel inputs. However, things will turn
out a bit more complicated than in the passive case, since corrupted parties can try to gather some
additional information by occasionally deviating from the protocol.

The first part (secure generation of correlated data, q.v. Section 3.1) is much more challenging
than the second part (building OT from correlated data, q.v. Section 3.2). The former needs
numerous novel techniques (see Section 4 for the formal proofs), whereas the latter mainly consists
in rather straightforward adaptions of nowadays folklore techniques from the literature.

3.1 Secure generation of correlated data

In this section we explain how one can securely generate non-trivially correlated data from any
redundancy-free 2-party function that has some OT-core. The main idea is to use inputs belonging
to a specific OT-core with relatively high probability and all other inputs only with relatively low
probability—the latter will just serve for test purposes. Notably, an all-over uniform input distri-
bution is not suitable in general, but still all input symbols have to be used with some significant
probability. We illustrate this by two examples. Our first example, given by in Figure 3.1.a, illus-
trates the problem with all-over uniform input distributions. In this example, a corrupted Bob can
substitute a query on the first input symbol and a query on the second input symbol by two queries
on the third input symbol. So, instead of uniformly choosing from his complete input alphabet,
he can always input the last input symbol and thereby always get full information about Alice’s
input-output tuple. Our second example, given by Figure 3.1.b, illustrates that in general one
cannot completely neglect all input symbols that do not belong to the chosen OT-core. In this
example, if Alice only uses one of her input symbols all the time, this means that effectively we
can remove one of the block rows and all of a sudden the redundancy-free version of the remaining
part even has no OT-core any more.

3.1.1 The protocol for generating correlated data

Basic scheme. Basically, our protocol for generation of correlated data follows the very generic
construction of [KMQ11]. It roughly proceeds as follows (for a formal description see Section 4.5).

1. Invocation of F : Alice and Bob query the underlying 2-party function F with random input
for k times (k being the security parameter) and record their respective input-output tuples.
A protocol parameter assigns what concrete input distributions are to be used.

2. Check A: Alice challenges Bob on some polynomial subset of the recorded data, where he
has to reveal his input-output tuples. Alice aborts the protocol, if the joint distribution of
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her own input-output tuples and Bob’s claimed input-output tuples appears faulty. The test
set is then removed from the recorded data.

3. Check B: This step equals the previous one with the roles of Alice and Bob interchanged.
4. Output: Both parties announce where they have used input symbols that were only for test

purposes. All corresponding elements are removed from the recorded data. When too much
of the recorded data has been deleted, the protocol is aborted; else each party outputs its
remaining string of recorded input-output tuples.

At this point, a remark on the increased difficulty compared to the deterministic case seems in-
dicated. In particular, there is one crucial difference between our scheme here and the protocol
scheme of [KMQ11]. This difference is in the check steps Check A and Check B. In the scheme
of [KMQ11], Alice checks in Check A that each of Bob’s claimed input-output tuples (y′, b′) is
consistent with her own respective input-output tuple (x, a) in the sense that φx,y′(a, b′) 6= 0, and
that each of Bob’s claimed input symbols occurs with the right frequency independently of her
own input. This does not suffice in the randomized setting any more, as one can also see from the
example in Figure 3.1.b. In this example, the redundant first block column and the non-redundant
second block column differ only very slightly in their output distributions. Thus, if Alice only
checked that Bob’s claimed input-output tuples do not directly contradict her own input-output
tuples, then Bob could substitute his second input symbol in this example right the same way he
can already substitute the first input symbol. For this reason, in the check steps Check A and
Check B of our protocol scheme described above each party must examine the joint distribution of
its own input-output tuples and the other party’s claimed input-output tuples.

Parameter choice. We have the following wish list to our protocol scheme:
• The challenge sets in the protocol steps Check A and Check B must be sufficiently large, so

that any significant deviation from the prescribed input distributions can be detected.
• We want that even a malicious choice of the challenge sets does not substantially influence
the joint distribution of the recorded input-output tuples.
• All input symbols must be used with sufficiently high probability, so that the problem illus-
trated in Figure 3.1.b does not emerge.
• In the last protocol step, where all data is deleted that does not belong to the chosen OT-core
inputs, no corrupted party should be able to modify the recorded data’s joint distribution
more than by a vanishingly small amount.

Obviously, the first two objectives conflict with each other, and so do the last two. However, what
might first sound like a paradox, can be achieved by a polynomially vanishing lower bound for
the input probabilities and also a polynomially vanishing relative size of the challenge sets. More
concretely, for every input symbol that is only for test purposes we choose an input probability of
magnitude O(k−α) with constant α > 0, and the challenge sets have size O(k

1
2 +β) with constant

β < 1
2 (cf. Section 4.5)—for technical reasons we even choose β < 1

6 . Thus, there exists some
constant ε > 0, such that k−k1−ε recorded input-output tuples from the first protocol step remain
untouched throughout the rest of the protocol and are finally part of the output.

3.1.2 Idealized attack strategies

In the step Check A of the protocol scheme introduced in Section 3.1.1, instantiated with any
F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, a corrupted Bob can of course try to pretend to have used another
input distribution than he actually did. Analogously, a corrupted Alice can try to cheat in Check B,
but for symmetry reasons it will suffice to consider the case of a corrupted Bob. We start our security
considerations by introducing a very idealized notion of attack startegies. This notion comprises
only perfectly undetectable attacks, but it will turn out later that every possible attack strategy is
close to such a perfect strategy.
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Cheating strategies. A cheating strategy of Bob is a triple (τ, λ, ω), consisting of
• an “actual input distribution” τ ∈ pmf(ΥB),
• a “lying strategy” λ := (λy,b)y∈ΥB,b∈ΩB ⊆ pmf(ΥB×ΩB) in the sense that in Check A an
input-output tuple (y, b) is claimed as (y′, b′) with probability λy,b(y′, b′),
• and a “claimed input distribution” ω ∈ pmf(ΥB),

such that for all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB and with υ ∈ pmf(ΥA) denoting Alice’s input
distribution it holds:

υ(x) · ω(y′) · φx,y′(a, b′)︸ ︷︷ ︸
expected joint probability of (x, a) and (y′, b′)

=
∑

y∈ΥB, b∈ΩB
υ(x) · τ(y) · φx,y(a, b) · λy,b(y′, b′)︸ ︷︷ ︸

claimed joint probability of (x, a) and (y′, b′)

Note that we can cancel υ(x) on both sides, since Alice uses her complete input alphabet and
thus υ(x) > 0 for all x ∈ ΥA. I.e., Bob’s cheating strategies are actually independent of Alice’s
input distribution; they either work for all of them or for none. Further note that ω is no arbitrarily
selectable parameter but already completely fixed by τ and λ. In particular, for all x ∈ ΥA, y

′ ∈ ΥB
it holds:

ω(y′) = ω(y′) · φx,y′(ΩA,ΩB) =
∑

y∈ΥB, b∈ΩB
τ(y) · φx,y(ΩA, b) · λy,b(y′,ΩB)

Last but not least, an easily verifiable but very important feature of cheating strategies lies in their
relation to redundancy: An input symbol y′ ∈ ΥB is redundant, iff there exists a cheating strategy
(τ, λ, ω), such that τ(y′) = 0 and ω(y′) = 1. This directly follows from our definitions.

Cheating situations. Our notion of cheating strategies turns out a bit cumbersome for the follow-
ing reason. Obviously, a corrupted Bob can follow a mixed strategy, e.g. by following half the time
some cheating strategy (τ, λ, ω) and half the time some other cheating strategy (τ ′, λ′, ω′). For the
resulting cheating strategy (τ̄ , λ̄, ω̄) it is intuitively clear that τ̄ = 1

2 · τ + 1
2 · τ

′ and ω̄ = 1
2 ·ω+ 1

2 ·ω
′.

On first glance one might also expect that λ̄ = 1
2 ·λ+ 1

2 ·λ
′, but this will not be true in general! E.g.,

if τ(y) = 0 < τ ′(y) for some y ∈ ΥB, then we have that λ̄y,b = λ′y,b for all b ∈ ΩB. To circumvent
this inconvenience, we introduce the equivalent but more practical notion of cheating situations.
Given Bob’s cheating strategy (τ, λ, ω) and Alice’s input distribution υ ∈ pmf(ΥA), we define the
corresponding cheating situation η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2) as follows:

η
(
(x, a), (y, b), (y′, b′)

)
:= υ(x) · τ(y) · φx,y(a, b) · λy,b(y′, b′)

The intuition behind this is that instead of focusing on the cheating party’s plan, we just count
how often which kind of situation occurs during Check A. More precisely, η

(
(x, a), (y, b), (y′, b′)

)
stands for the relative frequency of the event that Alice’s input-output tuple is (x, a), Bob’s actual
input-output tuple is (y, b), and Bob’s claimed input-output tuple is (y′, b′). Consequently, we can
write:

η|A(x) := η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= υ(x)

η|true
B (y) := η

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
= τ(y)

η|fake
B (y′) := η

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
= ω(y′)

Our definition directly implies that every cheating situation η fulfills the following four conditions.
1. For all x ∈ ΥA it holds that η|A(x) > 0.
2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= η|A(x) · η|true

B (y) · φx,y(a, b)
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3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= η|A(x) · η|fake

B (y′) · φx,y′(a, b′)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
·

η
(
(x, a), (y, b), (ΥB,ΩB)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Note that these conditions basically are a polynomial equation system, of which we will take great
advantage later. Let N(F )

B denote the set of all η ∈ pmf
(
(ΥA×ΩA)×(ΥB×ΩB)2) that fulfill them. We

show now that actually N
(F )
B is just the set of all cheating situations. Given any η ∈ N

(F )
B , we find

some τ, ω ∈ pmf(ΥB) and λ := (λy,b)y∈ΥB,b∈ΩB ⊆ pmf(ΥB×ΩB), such that for all y, y′ ∈ ΥB, b, b
′ ∈ ΩB

we have:

τ(y) = η|true
B (y)

ω(y′) = η|fake
B (y′)

λy,b(y′, b′) =
η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

) if η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0

Since η meets the four conditions above, we have that (τ, λ, ω) is a cheating strategy:

∑
y∈ΥB, b∈ΩB

τ(y) · φx,y(a, b) · λy,b(y′, b′) =
∑

y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (ΥB,ΩB)

)
· λy,b(y′, b′)

η|A(x)
= 1

η|A(x) ·
∑

y∈ΥB, b∈ΩB
η
(
(x, a), (y, b), (y′, b′)

)
= ω(y′) · φx,y′(a, b′)

Likewise, η is a corresponding cheating situation:

η|A(x) · τ(y) · φx,y(a, b) · λy,b(y′, b′) = η
(
(x, a), (y, b), (ΥB,ΩB)

)
· λy,b(y′, b′) = η

(
(x, a), (y, b), (y′, b′)

)
Advantages of our notion of cheating situations. In contrast to the more intuitive notion of
cheating strategies, our definition of cheating situations enjoys some very handy structure: When
we fix Alice’s input distribution, the remaining set of cheating situations is a bounded convex
polytope in the affine space R(ΥA×ΩA)×(ΥB×ΩB)2 , spanned by finitely many vertices (cf. Lemma 10).
Furthermore, cheating situations inherit two important features from cheating strategies. Firstly,
cheating situations can be considered independent of (honest) Alice’s input distribution, since they
can be rescaled canonically to any input distribution that assigns non-zero probability to every
x ∈ ΥA (q.v. Lemma 8). Secondly, an input symbol y′ ∈ ΥB is redundant, iff there exists a cheating
situation η ∈ N

(F )
B , such that η|true

B (y′) = 0 and η|fake
B (y′) = 1. For redundancy of y′ it even suffices

that η|true
B (y′) < η|fake

B (y′) and η|true
B (y) ≥ η|fake

B (y) for all y ∈ ΥB\{y′}. This results from some useful
decomposability features of the algebraic structure N

(F )
B , but for now we skip all the technical

details and instead just refer to Section 4.3.
Last but not least, cheating situations are also unaffected by another disadvantage of cheating

strategies that misleads intuition: If λy,b(y′, b′) > 0, this does not necessarily mean that Bob ever
really replaces an input-output tuple (y, b) by (y′, b′); as well, it might be the case that τ(y) = 0
(i.e., Bob did not use the input symbol y at all). In contrast, if η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
> 0, then

Bob has in fact replaced the corresponding portion of actual input-output tuples (y, b) by claimed
input-output tuples (y′, b′).
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3.1.3 Robust OT-cores

We aim at an instantiation of the protocol scheme described in Section 3.1.1, such that the inputs
belonging to some chosen OT-core of the underlying 2-party function F are used with relatively
high probability and all other inputs have relatively low probability. However, if ỹ, ỹ′ are Bob’s
OT-core inputs and there exists a cheating situation η ∈ N

(F )
B , such that η|true

B ({ỹ, ỹ′}) = 0 and
η|fake

B ({ỹ, ỹ′}) = 1, then we have no security guarantee (cf. Figure 3.1.a). We need at least that
η|true

B ({ỹ, ỹ′}) = 1 for all η ∈ N
(F )
B with η|fake

B ({ỹ, ỹ′}) = 1; otherwise a corrupted Bob can always
substitute a substantial fraction of his OT-core queries by other inputs. Surprisingly, this is not
only a necessary precondition for security, but it will even turn out sufficient. The key idea is
to choose protocol parameters, such that the prescribed probability of non-OT-core inputs is high
enough for cheating detection, but still so small that only cheating strategies (τ, λ, ω) with ω(y) = 0
for all non-OT-core inputs y may work. This might first sound like a paradox, but can be achieved
by polynomially vanishing probabilities for the non-OT-core inputs (cf. Section 3.1.1).

However, first and foremost we need to show that there always exists an OT-core fulfilling the
above-mentioned criterion, if only the redundancy-free version of the considered 2-party function
has any OT-core at all (see Figure 3.1.a for a negative example). Moreover, we also need analogous
security against a possibly cheating Alice, and we must rule out that every OT-core found secure
against a cheating Bob is insecure against a cheating Alice and vice versa. We achieve this all at
once by the next lemma (cf. Lemma 25).

Lemma. Let some F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given that is redundancy-free and has an
OT-core. Then there also exists an OT-core within the same rows of the canonical representation
of F , such that for Bob’s corresponding input symbols ȳ, ȳ′ and every cheating situation η ∈ N

(F )
B

with η|fake
B ({ȳ, ȳ′}) = 1 we have that η|true

B ({ȳ, ȳ′}) = 1.

By this lemma, given any OT-core, we find an OT-core within the same rows of the canonical rep-
resentation, such that this new OT-core is secure against a potentially cheating Bob. Analogously,
starting from the OT-core secure against Bob, we find an OT-core within the same columns of the
canonical representation, such that this new OT-core is secure against a potentially cheating Alice.
Since in the second step Bob’s involved input symbols stay the same, the finally found OT-core is
also still secure against a cheating Bob.

Now, we give a proof-sketch for this lemma, which is a core element of our line of argument. Note
that, although our notion of cheating situations can be seen as a generalization of the corresponding
concept in [KMQ11], this proof is independent—cf. [KMQ10, Section 5].

Proof-sketch. Let (x̃, ã), (x̃′, ã′) ∈ ΥA×ΩA and (ỹ, b̃), (ỹ′, b̃′) ∈ ΥB×ΩB denote Alice’s and Bob’s input-
output tuples belonging to the initially given OT-core. W.l.o.g., φx̃,ỹ(ã, b̃) > 0 and φx̃′,ỹ(ã′, b̃) > 0.

If ỹ = ỹ′, i.e. the initially given OT-core lies within a single block column of the canonical rep-
resentation, then existence of a cheating situation η ∈ N

(F )
B with η|fake

B ({ȳ, ȳ′}) = 1 > η|true
B ({ȳ, ȳ′})

would imply that the input symbol simultaneously denoted by ỹ and ỹ′ is redundant (cf. Corol-
lary 18). So, in this case things are easy. Else, i.e. if ỹ 6= ỹ′, we need a more abstract view of cheating
situations to keep arguments traceable. Let X

(F )
B denote the set of all mappings ξ : ΥB → R for

that there exist some η ∈ N
(F )
B and γ ∈ R>0, such that γ · ξ(y) = η|fake

B (y)− η|true
B (y) for all y ∈ ΥB.

The intuition behind this is merely that ξ(y) > 0 if Bob claims to have input y more often than he
actually did, and ξ(y) < 0 if Bob claims to have input y less often than he actually did. We will
make use of the following properties of this notation:
• The set X

(F )
B is closed under positive linear combination, i.e. γ · ξ + γ′ · ξ′ ∈ X

(F )
B for all

γ, γ′ ∈ R>0 and ξ, ξ′ ∈ X
(F )
B . This directly follows from the fact that Alice’s input distribution

η|A of every cheating situation η ∈ N
(F )
B can be canonically rescaled, and the fact that the

set of all cheating situations with the same input distribution of Alice is convex.
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Figure 3.2: Illustration of the construction of the input sets Ỹ , Ỹ ′, Ỹ0. Input symbols from Ỹ have
an OT-core together with ỹ′, but not with ỹ; inputs from Ỹ ′ have an OT-core together with ỹ;
inputs from Ỹ0 cannot be completed by ỹ or ỹ′ to have an OT-core. Note that always ỹ ∈ Ỹ and
ỹ′ ∈ Ỹ ′, which is not displayed in order to keep the graphic simple.

• If for some y′ ∈ ΥB there exists a ξ ∈ X
(F )
B with ξ(y′) > 0 and ξ(y) ≤ 0 for all y ∈ ΥB\{y′},

then y′ is redundant. This is just a reformulation of the redundancy criterion that there exists
an η ∈ N

(F )
B with η|true

B (y′) < η|fake
B (y′) and η|true

B (y) ≥ η|fake
B (y) for all y ∈ ΥB\{y′}.

Further, for any Y ⊆ ΥB let ΨF (Y ) denote the set of all input symbols y that a corrupted Bob can
use although the protocol prescribes to use only input symbols from Y , i.e.:

ΨF (Y ) =
{
y ∈ ΥB

∣∣ there exists an η ∈ N
(F )
B , such that η|true

B (y) > 0 and η|fake
B (Y ) = 1

}
Note that by the convex combinability of cheating situations we always find some η ∈ N

(F )
B , such

that η|fake
B (Y ) = 1 and η|true

B (y) > 0 for all y ∈ ΨF (Y ). Thus, we also always have some ξ ∈ X
(F )
B ,

such that ξ(y) = 0 for all y /∈ ΨF (Y ) and ξ(y) < 0 for all y ∈ ΨF (Y )\Y . Further note that always
ΨF (Y ) ⊆ ΨF (Y ′) for all Y ⊆ Y ′, that ΨF (ΨF (Y ′)) = ΨF (Y ′), and that hence ΨF (Y ) ⊆ ΨF (Y ′)
for all Y ⊆ ΨF (Y ′) (cf. Lemma 23).

Now we can start with our argumentation. First of all, we divide ΨF (ỹ, ỹ′) into the following
three subsets (cf. Figure 3.2):
• Let Ỹ ′ denote the set of all y′ ∈ ΨF (ỹ, ỹ′), such that for some b′ ∈ ΩB the {(x̃, ã), (x̃′, ã′)}×
{(ỹ, b̃), (y′, b′)}-submatrix of the canonical representation of F is an OT-core; i.e., since by
assumption φx̃,ỹ(ã, b̃) > 0 and φx̃′,ỹ(ã′, b̃) > 0, we just need:

φx̃,ỹ(ã, b̃) · φx̃′,y′(ã′, b′) 6= φx̃′,ỹ(ã′, b̃) · φx̃,y′(ã, b′)

• Let Ỹ denote the set of all y ∈ ΨF (ỹ, ỹ′)\Ỹ ′, such that for some b ∈ ΩB the {(x̃, ã), (x̃′, ã′)}×
{(y, b), (ỹ′, b̃′)}-submatrix of the canonical representation of F is an OT-core; i.e., φx̃,y(ã, b) >
0 and φx̃′,y(ã′, b) > 0 and for all b̂ ∈ ΩB we have:

φx̃,ỹ(ã, b̃) · φx̃′,y(ã′, b̂) = φx̃,y(ã, b̂) · φx̃′,ỹ(ã′, b̃)

• Let Ỹ0 denote the set of all y0 ∈ ΨF (ỹ, ỹ′), such that for all b0 ∈ ΩB neither the {(x̃, ã), (x̃′, ã′)}×
{(ỹ, b̃), (y0, b0)}-submatrix nor the {(x̃, ã), (x̃′, ã′)}×{(y0, b0), (ỹ′, b̃′)}-submatrix of the canon-
ical representation of F is an OT-core; i.e., φx̃,y0(ã,ΩB) = φx̃′,y0(ã′,ΩB) = 0.

Our proof is by contradiction and hence w.l.o.g. we assume that ΨF (y, ỹ′) = ΨF (ỹ, ỹ′) for all
y ∈ Ỹ and ΨF (ỹ, y′) = ΨF (ỹ, ỹ′) for all y′ ∈ Ỹ ′—keep in mind that ΨF (Z) ⊆ ΨF (ỹ, ỹ′) for all
Z ⊆ ΨF (ỹ, ỹ′) as mentioned above. Now we pick some arbitrary y′ ∈ ΨF (ỹ, ỹ′); w.l.o.g. y′ ∈ Ỹ ′.
By assumption we find some ξ′, ξ′′ ∈ X

(F )
B , such that for all y ∈ ΥB it holds:

ξ′(y) > 0 if y ∈ {ỹ, y′} ξ′′(y) > 0 if y ∈ {ỹ, ỹ′}
ξ′(y) = 0 if y /∈ ΨF (ỹ, ỹ′) ξ′′(y) = 0 if y /∈ ΨF (ỹ, ỹ′)
ξ′(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ỹ, y′} ξ′′(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ỹ, ỹ′}
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Let ξ := ξ′(y′) · ξ′′ − ξ′′(y′) · ξ′, whereby for all y ∈ ΥB we get:

ξ(y) > 0 if y = ỹ

ξ(y) = 0 if y /∈ ΨF (ỹ, ỹ′) or y = y′

ξ(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ỹ, ỹ,′ y′}

Moreover, it must hold that ξ(ỹ′) > 0, since otherwise ξ(y) ≤ 0 for all y ∈ ΥB\{ỹ} and hence ỹ
would be redundant. Iteration of this construction yields some ξ̂ ∈ X

(F )
B , such that for all y ∈ ΥB

we have:

ξ̂(y) > 0 if y ∈ {ỹ, ỹ′}
ξ̂(y) = 0 if y /∈ {ỹ, ỹ′} ∪ Ỹ0

ξ̂(y) < 0 if y ∈ Ỹ0

Switching back to cheating situations or cheating strategies respectively, this means that Bob can
use his input symbols ỹ, ỹ′ less frequently than prescribed and substitute them by input symbols
from Ỹ0. However, this cannot be (the following arguments can probably be followed best through a
concrete example, e.g. Figure 3.2): Since φx̃,Y0(ã,ΩB) = 0 and φx̃′,Y0(ã′,ΩB) = 0, but φx̃,ỹ(ã, b̃) > 0
and φx̃′,ỹ(ã′, b̃) > 0 and also φx̃,ỹ′(ã, b̃′)+φx̃′,ỹ′(ã′, b̃′) > 0, this substantially decreases Alice’s overall
frequency of input-output tuples (x̃, ã) and (x̃′, ã′) and thus cannot be an undetectable cheating
strategy.

3.1.4 Robust OT-cores in real protocol runs
In this section we consider real protocol runs of the protocol scheme introduced in Section 3.1.1,
instantiated with some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. Unfortunately, there is no guar-
antee that a corrupted Bob always follows exactly a cheating strategy in the idealized sense of
Section 3.1.2. For instance, he can as well try to exploit that Alice has to tolerate some statistical
noise in the protocol step Check A. However, we show now that indeed our notion of cheating
situations is a very suitable approximation of what may happen during a real protocol run. To
make formulas more readable, we use the following self-suggesting notation.
Notation (Almost equality). For any a, b, c ∈ R, by “a = b± c” we denote that |a− b| ≤ c.

Linking real protocol runs to idealized attack strategies. Our starting point for linking real
protocol runs to idealized attack strategies is the Hoeffding Inequality. We need it in the following
form, which directly follows by [Hoe63, Theorem 1].

Lemma (Hoeffding Inequality). Let any n ∈ N, c ∈ R>0 and a binomially distributed random
variable x with expected value E(x) be given. Further let P[0 ≤ x ≤ n] = 1. Then it holds:

P
[
|x−E(x)| ≥ c

]
≤ 2 · exp

(
−2c2
n

)
By [Hoe63, Section 6], this lemma also holds true if x is distributed hypergeometrically.

Following [KMQ10, Lemma 15], we instantiate the Hoeffding Inequality with n := k and c := k∆,
where k denotes our security parameter and ∆ > 1

2 is constant. Thereby we get that the probability
P
[
|x−E(x)| ≥ k∆] is upper bounded by 2 · exp

(
−2k2∆−1). I.e., it vanishes exponentially in k and

hence is negligible, or in other words, x = E(x)± k∆ with overwhelming probability.
The most apparent application of the Hoeffding Inequality is Alice’s choice of the challenge

set in the protocol step Check A. This random choice is a hypergeometric sampling process and
by the hypergeometric version of the Hoeffding Inequality it follows that the joint distribution of
Alice’s and Bob’s input-output tuples in the challenge set is a good approximation of their overall
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joint distribution of input-output tuples. Moreover, for any x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB and
with υ ∈ pmf(ΥA) denoting Alice’s input distribution it holds: Whenever in the first protocol step
Bob inputs y, then with probability υ(x) · φx,y(a, b) this counts to the number of events where
Alice’s input-output tuple is (x, a) and Bob’s input-output tuple is (y, b). Therefore, Bob’s input
strategy can be seen as a binomial sampling process, and thus the binomial version of the Hoeffding
Inequality applies. Analogously, the hypergeometric version of the Hoeffding Inequality applies to
Bob’s lying strategy in the step Check A. Skipping some further details, in the end this yields: If
for each (x, a, y, b, y′, b′) ∈ ΥA×ΩA×ΥB×ΩB×ΥB×ΩB we count the relative frequency of the event
that Alice’s input-output tuple is (x, a), Bob’s actual input-output tuple is (y, b) and Bob’s claimed
input-output tuple is (y′, b′), then with overwhelming probability the resulting R(ΥA×ΩA)×(ΥB×ΩB)2-
vector ν fulfills the defining conditions of cheating strategies as introduced in Section 3.1.2, up to
some error of magnitude k−ε with constant ε > 0 (cf. Lemma 34). In particular, with υ ∈ pmf(ΥA)
denoting Alice’s prescribed input distribution, we have:

1. For all x ∈ ΥA it holds that ν|A(x) := ν
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= υ(x)± k−ε.

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

ν
(
(x, a), (y, b), (ΥB,ΩB)

)
= ν|A(x) · ν

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
· φx,y(a, b)± k−ε

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

ν
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= ν|A(x) · ν

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
· φx,y′(a, b′)± k−ε

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with ν
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

ν
(
(x, a), (y, b), (y′, b′)

)
= ν

(
(ΥA,ΩA), (y, b), (y′, b′)

)
·

ν
(
(x, a), (y, b), (ΥB,ΩB)

)
ν
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

) ± k−ε
The last three items1 above can be seen as a polynomial equation system over R(ΥA×ΩA)×(ΥB×ΩB)2 ,
such that the defining multivariate polynomials solely depend on F , the cheating situations from
Section 3.1.2 are always in the zero locus of these polynomials, and all these polynomials evaluate
on ν to something bounded by k−ε. Now, we are going to exploit the latter and derive an estimation
for the distance of ourR(ΥA×ΩA)×(ΥB×ΩB)2-vector ν from N

(F )
B . This is where real algebraic geometry

comes into play.

Lemma (Łojasiewicz Inequality [Łoj59, Theorem 17]). Let some n ∈ N, an open set U ⊆ Rn, a
compact set K ⊂ U , and a real analytic function h : U → R with non-empty zero locus Z be given.
Then, there exist some constants c, d ∈ R>0, such that for all ν ∈ K it holds:

infη∈Z ‖ν − η‖ ≤ c ·
∣∣h(ν)

∣∣d
Unfortunatley, the Łojasiewicz Inequality is not directly applicable in our case. The primary reason
is that each cheating strategy η ∈ N

(F )
B does not only have to fulfill the above-mentioned polynomial

equations (which translates to η ∈ Z in terms of the Łojasiewicz Inequality), but it must also hold
that η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2). Therefore, we needed to develop the following non-obvious

adaption of the Łojasiewicz Inequality (q.v. Lemma 35).

Lemma. Let n ∈ N and some polynomial f ∈ R[X1, . . . , Xn] be given, such that the variety V :={
ν ∈ Rn

∣∣ f(ν) = 0
}
is not empty. Furthermore, let a bounded convex polytope P ⊂ Rn be given,

such that V ∩ P 6= ∅. Then for every norm there exist some constants c, d ∈ R>0, such that for all
ν ∈ P it holds:

minη∈V ∩P ‖ν − η‖ ≤ c ·
∣∣f(ν)

∣∣d
1We shall just ignore the first item in this more intuitive overview. It will be formally needed to bound

minx∈ΥA ν|A(x) away from zero, but it plays a somewhat special role, since Alice’s input distribution υ depends
on the security parameter k (cf. Section 3.1.1). All other equations are independent of k, except for the respective
error terms k−ε.
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OT-core OT-core
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ϑF

k−δ

OT-core

Figure 3.3: What we know (left), what we have (middle), and what we can conclude (right). Filled
bars stand for claimed input probabilities, non-filled bars stand for actual input probabilities.
Left diagram: When Bob claims to have used only inputs that belong to the chosen OT-core, we
know that he actually has done so.
Middle diagram: In real protocol runs we must tolerate that Bob sometimes claims to have used
inputs not belonging to the chosen OT-core.
Right diagram: Decomposition of the claimed input distribution from the middle diagram into a
large part, where the guarantee from the left diagram applies, and a polynomially vanishing rest.

We instantiate this lemma with P := pmf
(
(ΥA×ΩA)×(ΥB×ΩB)2) and f :=

∑
p∈S p

2, where the set
S just contains the polynomials from our polynomial equation system above. Thereby, we can show
that with overwhelming probability either the considered protocol run is aborted or the vector ν
described above is

(
c · |S| ·k−2εd)-close to a cheating strategy η ∈ N

(F )
B . We skip all further technical

details here (q.v. Section 4.6), but a final caveat seems in place: In general, the last lemma above
is not true without the condition that P is a polytope, even if P is still assumed to be convex
and compact! Also note that our whole line of argument would be vastly more complicated with
cheating strategies instead of cheating situation, what again proves usefulness of the latter concept.

Exploiting decomposability of cheating situations. So far, we have reached two essential in-
sights. On the one hand, by Section 3.1.3 we can find OT-cores, such that for Bob’s corresponding
input symbols ȳ, ȳ′ and every cheating situation η ∈ N

(F )
B with η|fake

B ({ȳ, ȳ′}) = 1 we have that
η|true

B ({ȳ, ȳ′}) = 1 (cf. left diagram in Figure 3.3). On the other hand, by the considerations above
we know that a real protocol run with overwhelming probability is either aborted or there exists
a cheating situation η ∈ N

(F )
B , such that η|true

B is k−ε-close to Bob’s actual input distribution and
η|fake

B is k−ε-close to Bob’s claimed input distribution. Since otherwise Alice aborts the protocol,
the latter also implies that η|fake

B is k−ε-close to Bob’s prescribed input distribution.
Now we want to tie these two things together, but we have the following problem. As discussed

right at the start of Section 3.1, the support of Bob’s prescribed input distribution must be his
complete input alphabet ΥB. Hence, we must also tolerate in the protocol step Check A that
Bob sometimes claims to have used an input symbol that does not belong to the chosen OT-core.
Thereby, we only get that η|fake

B (y′) ≤ k−δ for all y′ ∈ ΥB\{ȳ, ȳ′} with constant δ > 0, rather than
η|fake

B (ΥB\{ȳ, ȳ′}) = 0 (cf. middle diagram in Figure 3.3).
We solve this problem by exploiting the fact that, up to rescaling of Alice’s input distribution

η|A, the set N(F )
B is the convex hull of a finite spanning set {η̇1, . . . , η̇n} ⊆ N

(F )
B . Since k−δ becomes

arbitrarily small for increasing security parameter k, but there exists some constant ϑF > 0 with
η̇i|fake

B (y′) /∈ (0, ϑF ) for all y′ ∈ ΥB, i ∈ {1, . . . , n}, we can conclude that our initially given cheating
situation η consists only in small part of cheating situations η̇i with η̇i|fake

B (ΥB\{ȳ, ȳ′}) > 0 (cf. right
diagram in Figure 3.3). Thus, we only introduce an additional error of magnitude O(k−δ), if we
approximate a cheating Bob’s behavior by a cheating situation η ∈ N

(F )
B with η|fake

B ({ȳ, ȳ′}) = 1. So,
after all we can utilize that our chosen OT-core does not allow for non-trivial cheating situations,
and we can conclude that Bob has to play honestly up to some polynomially vanishing fraction of
his inputs.
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Functionality F (G,ε)
SMCD

Parametrized by a constant ε > 0 and G := (ΛA,ΛB, ψ), where ΛA and ΛB are finite alphabets and
ψ ∈ pmf(ΛA×ΛB), such that ψ(α,ΛB) > 0 for all α ∈ ΛA and ψ(ΛA, β) > 0 for all β ∈ ΛB. Let k denote
the security parameter and let ∆ := 1− ε.

• Wait for the adversary to send a compound string tA×tB, such that k− k1−ε ≤ |tA×tB| ≤ k and for
all α ∈ ΛA, β ∈ ΛB it holds:

|tA×tB|(α,β) = k · ψ(α, β)± k∆

Further, if Alice is uncorrupted, it must hold that tA ∈ Λ∗A (but not necessarily tB ∈ Λ∗B). Analo-
gously, if Bob is uncorrupted, it must hold that tB ∈ Λ∗B (but not necessarily tA ∈ Λ∗A).
If such a compound string tA×tB is sent for the first time, resample each tA[i] and/or tB[i] as follows:

– If no party is corrupted, resample the complete tuple
(
tA[i], tB[i]

)
according to ψ.

– If only Alice is corrupted and tA[i] ∈ ΛA, then resample tB[i], s.t. P
[
tB[i] = β

]
= ψ(tA[i],β)

ψ(tA[i],ΛB) .
– If only Bob is corrupted and tB[i] ∈ ΛB, then resample tA[i], s.t. P

[
tA[i] = α

]
= ψ(α,tB[i])

ψ(ΛA,tB[i]) .
– If both parties are corrupted or

(
tA[i], tB[i]

)
/∈ ΛA× ΛB, then neither resample tA[i] nor tB[i].

Next, record the resulting compound string tA×tB. Henceforth, ignore any further tA×tB-messages
from the adversary.

• Upon receiving a message (Delivery, Alice) from the adversary, verify that there is a stored com-
pound string tA×tB; else ignore that message. Next, output tA to Alice and henceforth ignore all
messages (Delivery, Alice).

• Upon receiving a message (Delivery, Bob) from the adversary, verify that there is a stored compound
string tA×tB; else ignore that message. Next, output tB to Bob and henceforth ignore all messages
(Delivery, Bob).

• Upon receiving any message from Alice or Bob, just forward it to the adversary, inclusive the original
sender ID.

Figure 3.4: Ideal functionality for correlated data generation by our protocol scheme based on finite
randomized 2-party functions. Corrupted parties have full control over the order of their output
string, since order is nowhere checked in our protocol scheme. The resampling just ensures that
corrupted parties have no information about honest parties’ outputs, other than what they learn
by their own output. The condition that ψ(α,ΛB) > 0 and ψ(ΛA, β) > 0 for all α ∈ ΛA, β ∈ ΛB is
needed to avoid division by zero during the resampling process. The constant ∆ is motivated by
the Hoeffding Inequality (q.v. Section 3.1.4); w.l.o.g. we always have that ε < 1

2 and thus ∆ > 1
2 .

Secure generation of correlated data. Putting things together, we have shown that in the proto-
col scheme introduced in Section 3.1.1, if instantiated appropriately, even corrupted parties cannot
deviate too much from the prescribed input distributions without being caught cheating. Further-
more, the final protocol output consists for the most part of such “almost honestly” generated
data (cf. the final discussion of Section 3.1.1), even if a corrupted party chooses a challenge set
maliciously in one of the check steps, and/or lies in the final output step about which inputs did
not belong to the chosen OT-core. Altogether, our protocol produces some “slightly manipulable
correlated data” (SMCD). We want to grasp this by defining an according functionality, which is
implemented by our protocol in the UC sense, but first we need to introduce some suitable notation.

Notation. Given a finite string s over some alphabet Ω, let |s| denote the length of s. By |s|α with
α ∈ Ω we denote the number of appearances of α in s. By s[i] with i ∈ {1, . . . , |s|} we denote the
i-th element of s. For some given strings sA and sB of the same length, we define the compound
string sA×sB, whose i-th element is just the tuple

(
sA[i], sB[i]

)
.
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Figure 3.5: Canonical representation of a 2-party function (a), the resulting correlated data distri-
bution (b), and condensed version of the latter (c).

Now, let us consider the protocol scheme from Section 3.1.1, instantiated as follows.
• The underlying 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin is redundancy-free.
• The canonical representation of F has an OT-core that is robust in the sense of Section 3.1.3.
• Alice and Bob each have to use their respective OT-core inputs x̄, x̄′ and ȳ, ȳ′ with equal

probability, and all other input symbols with some polynomially vanishing probability.
• There exists some constant ε > 0, such that k − k1−ε elements of the final output strings are
generated honestly, even if one party is corrupted (cf. the final discussion in Section 3.1.1).

Given such a setting, our protocol implements the functionality F (G,ε)
SMCD defined in Figure 3.4, where

G = (ΛA,ΛB, ψ), instantiated as follows (cf. Section 4.8):

ΛA = {x̄, x̄′}×ΩA ΛB = {ȳ, ȳ′}×ΩB ψ
(
(x, a), (y, b)

)
= φx,y(a, b)∣∣{x̄, x̄′}×{ȳ, ȳ′}∣∣

3.2 Reduction of OT to correlated data

In Section 3.1 we have seen how to securely generate non-trivially correlated data from any
redundancy-free 2-party function that has some OT-core. Now we have to implement OT from
such data, i.e. we have to construct an OT protocol based on the functionality F (G,ε)

SMCD in Fig-
ure 3.4. This protocol construction is only a minor contribution, since in large part the used
techniques are just adopted from the standard literature (cf. Section 1.1) and in particular from
[CMW05].

Note that in a straightforward manner we can identify G := (ΛA,ΛB, ψ) with a special 2-party
function F := ({ε}, {ε},ΛA,ΛB, φ) ∈ Ffin with φε,ε = ψ, although the functionality F (G,ε)

SMCD works
completely different from F (F )

SFE. However, our notions of canonical representations, condensed
canonical representations, isomorphism (q.v. Section 2.2) and OT-cores (q.v. Section 2.3) directly
carry over (cf. also Figure 3.5). Our notion of redundancy does not apply, since there are no
meaningful inputs anymore. In the upcoming sections we always consider the functionality F (G,ε)

SMCD,
where G = (ΛA,ΛB, ψ) and G has some OT-core. W.l.o.g., G is always given in condensed form,
meaning that the rows of its canonical representation are pairwise linearly independent and so are
the columns.

3.2.1 Refining the correlated data

Removal of unnecessary output symbols. The joint distribution ψ can still be fairly complex, but
by the following protocol we can iteratively remove specific symbols from ΛA and also analogously
from ΛB, until |ΛA| = |ΛB| = 2 and thus w.l.o.g. ΛA = ΛB = {0, 1}. Let α̂ denote the symbol to be
removed from ΛA. W.l.o.g., G is given in condensed form, i.e. there is no other row in the canonical
representation that linearly depends on the α̂-row. For our upcoming protocol we will also need
that the α̂-row in the canonical representation of G is no convex combination of any other rows.
And since we do not want to destroy the last OT-core of G by removal of α̂, there must exist some
OT-core outside of the α̂-row. However, as one verifies straightforwardly, α̂ can always be chosen
this way, if only |ΛA| > 2 (remember that we assumed G to be given in condensed form) and G has
an OT-core at all. The protocol for removing α̂ now just proceeds as follows.



3.2. Reduction of OT to correlated data 31

1. Alice announces the index set I :=
{
i ∈ N

∣∣ tA[i] = α̂
}
.

2. Bob verifies that
∣∣tB[I]

∣∣
β

= k · ψ(α̂, β)± k∆ for all β ∈ ΛB, where tB[I] denotes the substring
of tB indexed by I; otherwise he aborts the protocol. If there exists any β ∈ ΛB, such that
ψ
(
ΛA\{α̂}, β

)
= 0 and

∣∣tB[I]
∣∣
β
<
∣∣tB∣∣β, he also aborts the protocol.

3. Alice and Bob remove the elements indexed by I from tA and tB respectively.
Note that Alice cannot lie substantially often, if only the α̂-row in the canonical representation
is no convex combination of other rows. Thus, we can implement this way FG

′,ε′

SMCD from FG,εSMCD,
where 0 < ε′ < ε and G′ is obtained from G just by removing α̂ from ΛA and some rescaling
of ψ. In particular, we have that G′ = (Λ′A,ΛB, ψ

′), where Λ′A = ΛA\{α̂} and ψ′(α, β) = ψ(α,β)
1−ψ(α̂,ΛB)

for all α ∈ Λ′A, β ∈ ΛB. Note that this also linearly scales down the security parameter by the
factor 1 − ψ(α̂,ΛB). Moreover, after removing the α̂-row from the canonical representation of G,
several columns may become pairwise linearly dependent, what results in a considerably smaller
condensed canonical representation of G′. However, as long as the canonical representation of G
without the α̂-row still contains an OT-core, G′ will also have one—full-rank submatrices cannot
be completely destroyed by just adding up pairwise linearly dependent columns. So, by iterated
removal of single input symbols, we end up with a condensed canonical representation that just is
an OT-core. Finally, if ψ(α,ΛB) > ψ(α′,ΛB) for some α, α′ ∈ ΛA, we let Alice analogously remove
some α-elements from tA, so that afterwards ψ(α,ΛB) = ψ(α′,ΛB) for all α, α′ ∈ ΛA.

This removal of unnecessary output symbols and balancing of Alice’s output distribution is UC-
secure; the simulator construction and security proof can be sketched as follows. Talking in terms of
the UC framework, we are in the F (G,ε)

SMCD-hybrid model and want to implement the ideal functionality
FG

′,ε′

SMCD. If no party is corrupted, the simulator basically needs to send a compound string of correct
length to the ideal functionality FG

′,ε′

SMCD, and he can produce such a string simply by simulating a
complete protocol run with honest parties. If Alice is corrupted, basically all she can do is trying to
choose the index set I maliciously. Note that |tA|ΛA ≥ k−|ΛA×ΛB|·k∆ by the construction of F (G,ε)

SMCD,
i.e. tA[i] /∈ ΛA for at most |ΛA×ΛB| · k∆ indices i. Further, by the Hoeffding Inequality we have for
every β ∈ ΛB that with overwhelming probability

∣∣tA×tB[I]
∣∣
ΛA×{β}

=
∑
α∈ΛA

∣∣tA[I]
∣∣
α
· ψ(α,β)
ψ(α,ΛB) ± k

∆,
and hence

∣∣tB[I]
∣∣
β

=
∑
α∈ΛA

∣∣tA[I]
∣∣
α
· ψ(α,β)
ψ(α,ΛB) ±

(
1 + |ΛA×ΛB|

)
k∆. Since otherwise Bob aborts the

protocol, this implies that
∑
α∈ΛA

∣∣tA[I]
∣∣
α
· ψ(α,β)
ψ(α,ΛB) = k · ψ(α̂, β) ±

(
2 + |ΛA×ΛB|

)
k∆, or in other

words: ∑
α∈ΛA

|tA[I]|α
k·ψ(α,ΛB) · ψ(α, β) = ψ(α̂, β)±

(
2 + |ΛA×ΛB|

)
k−ε

Since by assumption the α̂-row in the canonical representation of G is bounded away from the
convex hull of all other rows, this eventually yields that Alice must choose the index set I correctly
up to some O(k1−ε)-error. This is simulatable, since the ideal functionality FG

′,ε′

SMCD even tolerates
k1−ε′-errors, and we have chosen ε′ < ε. Finally, a corrupted Bob can just maliciously abort the
protocol, which can be simulated trivially.

Balancing of Bob’s output distribution. By the method above we have implemented F (G,ε)
SMCD

with G = (ΛA,ΛB, ψ), such that w.l.o.g. ΛA = ΛB = {0, 1} and ψ(0,ΛB) = ψ(1,ΛB). Moreover,
w.l.o.g. we have that ψ(0, 0) · ψ(1, 1) > ψ(1, 0) · ψ(0, 1). We now further refine the correlated
data, such that afterwards the joint distribution is completely balanced in 0 and 1. Therefor, we
need to extend Bob’s alphabet ΛB by a special erasure symbol “⊥”. In particular, we implement
something similar to F (G′,ε′)

SMCD with G′ = ({0, 1}, {0, 1,⊥}, ψ′), such that ψ′(0,⊥) = ψ′(1,⊥) > 0 and
ψ′(0, 0) = ψ′(1, 1) > ψ′(1, 0) = ψ′(0, 1). However, in doing so we will halve the security parameter.

1. Alice deletes
∣∣|tA|0 − |tB|1∣∣ elements from tA, such that afterwards |tA|0 = |tB|1. She an-

nounces the corresponding indices to Bob, who deletes the according elements from tB, too.
If afterwards |tB| is not an even number or Alice announced more than k∆ indices, Bob aborts.
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2. Alice randomly permutes tA subject to the condition that afterwards tA[i] 6= tA[i+ 1] for all
odd indices i. She announces the permutation to Bob, who permutes tB the same way.

3. Alice and Bob locally generate new strings t′A ∈ {0, 1}∗ and t′B ∈ {0, 1,⊥}∗ of half length as
follows:

t′A[i] := 0 if
(
tA[2i− 1], tA[2i]

)
= (0, 1) t′B[i] := 0 if

(
tB[2i− 1], tB[2i]

)
= (0, 1)

t′A[i] := 1 if
(
tA[2i− 1], tA[2i]

)
= (1, 0) t′B[i] := 1 if

(
tB[2i− 1], tB[2i]

)
= (1, 0)

t′B[i] := ⊥ if tB[2i− 1] = tB[2i]

4. Bob aborts the protocol, if it holds:

|t′B|⊥ >
k

2 ·
ψ(0, 0) · ψ(1, 0) + ψ(0, 1) · ψ(1, 1)

ψ(0,ΛB) · ψ(1,ΛB) + k∆

5. Alice outputs t′A and Bob outputs t′B.

This way we get:

ψ′(0, 0) = ψ(0, 0) · ψ(1, 1)
2 · ψ(0,ΛB) · ψ(1,ΛB) ψ′(0,⊥) = ψ(0, 0) · ψ(1, 0) + ψ(0, 1) · ψ(1, 1)

2 · ψ(0,ΛB) · ψ(1,ΛB)

ψ′(0, 1) = ψ(0, 1) · ψ(1, 0)
2 · ψ(0,ΛB) · ψ(1,ΛB) ψ′(1,⊥) = ψ(1, 0) · ψ(0, 0) + ψ(1, 1) · ψ(0, 1)

2 · ψ(0,ΛB) · ψ(1,ΛB)

ψ′(1, 0) = ψ(1, 0) · ψ(0, 1)
2 · ψ(0,ΛB) · ψ(1,ΛB)

ψ′(1, 1) = ψ(1, 1) · ψ(0, 0)
2 · ψ(0,ΛB) · ψ(1,ΛB)

Note that Bob cannot cheat at all, but he must prevent Alice from maliciously choosing a permu-
tation that yields tA[i] = tA[i + 1] for substantially many odd indices i in the first step. This is
what the fourth protocol step is needed for. According to the Hoeffding Inequality, |t′B|⊥ is raised
asymptotically by Ω(n̄ − k∆), where n̄ denotes the number of odd indices i with tA[i] = tA[i + 1]
after the permutation. Thus, a corrupted Alice is caught cheating with overwhelming probability,
if n̄ /∈ O(k∆). Moreover, a corrupted Bob has no control over the order of the final output strings
any more, due to Alice’s random permutation in the first protocol step. Putting things together,
there exist some constants ε′, ε′′, ε̃, ν̃ ∈ (0, 1), particularly ν̃ = ψ′({0, 1},⊥) and ε̃ = ψ′(0,1)+ψ′(1,0)

1−ν̃ ,
such that we have now the following situation with κ denoting the new security parameter.
• Alice’s output is a uniformly random string t′A ∈ {0, 1}κ.
• Bob’s output t′B ∈ {0, 1,⊥}κ is randomly generated according to the following probabilities:

P
[
t′B[i] = t′A[i]

]
= (1− ν̃) · (1− ε̃)

P
[
t′B[i] = ¬t′A[i]

]
= (1− ν̃) · ε̃

P
[
t′B[i] = ⊥

]
= ν̃

• If Alice is corrupted, she may choose her output t′A ∈ {0, 1}κ arbitrarily and afterwards learn
some additional information about up to κ1−ε′ arbitrarily chosen elements of t′B.
• For up to κ1−ε′′ random indices i ∈ {1, . . . , κ}, a corrupted Bob my learn some additional
information about t′A[i].

Note that ε̃ < 1
2 , since ψ

′(0, 0) = ψ′(1, 1) > ψ′(1, 0) = ψ′(0, 1) by construction. The implemented
functionality is different from F (G′,ε′)

SMCD , insofar as a corrupted Bob has no longer control over his
output order or for which indices i he gets additional information about t′A[i], but a corrupted Alice
can now arbitrarily choose her output string t′A provided that |t′A|{0,1} ≥ κ−κ1−ε′ . Nonetheless, we
still have a UC-secure implementation of this modified version of F (G′,ε′)

SMCD . The respective simulator
construction and security proof are pretty similar to those for our protocol above for removal of
unnecessary output symbols.
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3.2.2 Building OT from the refined correlated data

Let ε′, ε′′, ε̃, ν̃, κ, t′A, t′B as above. If Alice is honest, we can easily implement from this a non-trivial
binary symmetric erasure channel (BSEC) that allows Alice to send κ bits and then shuts down:
To send the i-th bit, say m[i], Alice just has to announce m̃[i] := m[i]⊕ t′A[i] to Bob. Bob then can
recover a noisy version m′[i] of m[i] by computing m′(i) = m̃[i] ⊕ t′B[i] with the convention that
0⊕⊥ = 1⊕⊥ = ⊥. Obviously, the implemented BSEC has the following properties:
• If Bob is honest, the erasure probability is ν̃.
• If Bob is corrupted, the erasure probability is still lower bounded by ν̃ − κ−ε′′ .
• If Bob is honest, the error probability is (1− ν̃) · ε̃.
• If Bob is corrupted, the error probability is still lower bounded by (1− ν̃) · ε̃− κ−ε′′ .

I.e., the differences between the channel characteristics for an uncorrupted and a corrupted Bob
are polynomially vanishing in the security parameter. Especially, the channel parameters for a
corrupted Bob do converge to the corresponding parameters of the honest case. This is good enough,
so that our BSEC can be transformed into OT statistically secure against a corrupted receiver party
Bob just by applying one of the protocols from the literature [CMW05, Wul09, IKO+11]. Note
that although only [IKO+11] is explicitly stated in the UC framework, the security proofs of the
other approaches can also be turned into UC proofs rather simply.

However, we still have to take care of a corrupted Alice, who can additionally learn t′B[i] for
up to κ1−ε′ arbitrarily chosen indices i. We deal with this as follows. Instead of implementing a
single BSEC that can be used κ times, we implement ` := bκ1−ε′ + 1c BSECs that each can be
used λ := bκ/`c times. We just use the first λ elements of t′A and t′B for the first BSEC, the next
λ elements of t′A and t′B for the second BSEC, and so on. Analogously to above, this gives us `
OTs with polynomially downscaled security parameter λ, each of which is statistically UC-secure
against a corrupted receiver Bob. But now, since a corrupted Alice can cheat at most κ1−ε′ times,
at last one of these OTs is also statistically UC-secure against Alice. Finally, we can use a simple
standard combiner to achieve a fully (i.e. against both parties) UC-secure OT instance:

0. Let (b0, b1) denote Alice’s respective sender input and let c denote Bob’s choice bit.
1. Alice chooses two `-bit strings b̂0, b̂1 ∈ {0, 1}` uniformly at random, subject to the condition

that
⊕`
i=1 b̂0[i] = b0 and b̂0[i]⊕ b̂1[i] = b0 ⊕ b1 for all i ∈ {1, . . . , `}.

Bob chooses ĉ ∈ {0, 1}` uniformly at random, subject to the condition that
⊕`
i=1 ĉ[i] = c.

2. For each i ∈ {1, . . . , `}, Alice and Bob run OT with sender input
(
b̂0[i], b̂1[i]

)
from Alice and

choice bit ĉ[i] from Bob, such that all ` OT instances are secure against Bob and at least one
instance is secure against Alice.

3. Bob computes and outputs bc =
⊕`
i=1 b̂ĉ[i][i].

It is not hard to verify that this protocol is correct, hides c from Alice, and Bob may learn at most
one of the bit values b0, b1. Even if Alice maliciously chooses (b̂0, b̂1) such that b̂0[i]⊕ b̂1[i] is not the
same for all i ∈ {1, . . . , `}, this means no security violation: It only randomizes Bob’s final output,
which she could as well achieve by choosing her protocol input (b0, b1) just uniformly at random in
the first place.

This whole construction can easily be proven UC-secure, since by UC-security of the ` OT sub-
protocols in step 2 of our combiner even for corrupted parties the corresponding inputs

(
b̂0[i], b̂1[i]

)
and ĉ[i] are always well-defined. We only have to take into account that a corrupted Alice may
additionally learn up to ` − 1 bits of ĉ. However, this is just pure randomness, uncorrelated with
everything else. The general idea of how the simulation in the ideal model works can be described
as follows.

• If Alice is corrupted, the simulator lets her run the protocol with a simulated instance of Bob,
whose choice bit c is just uniform randomness. After step 2 the simulator can easily extract
bc =

⊕`
i=1 b̂ĉ[i][i], compute b¬c = bc ⊕ b̂o[j] ⊕ b̂1[j] with j corresponding to an OT instance

that were secure against Alice, and finally send (b0, b1) to the ideal functionality.
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• If Bob is corrupted, the simulator lets him run the protocol with a simulated instance of Alice,
whose sender input (b0, b1) is just uniform randomness. At the beginning of the final iteration
of step 2 the simulator can easily extract c =

⊕`
i=1 ĉ[i], send c to the ideal functionality,

and thus learn bc. Then, if bc 6=
⊕`

i=1 b̂ĉ[i][i], he just has to flip the bit values of b̂0[`] and
b̂1[`] in the simulated Alice’s memory before he resumes simulating the rest of step 2. This
is perfectly indistinguishable from a real protocol run, unless a corrupted Bob can gather
some information about b̂0[i]⊕ b̂1[i] for any i ∈ {1, . . . , `}. However, the latter is ruled out by
security against Bob of the underlying ` OT instances.

Once again, we omit the fully detailed UC proof, since it does not contain any additional technical
insights. This concludes our more informal exposition of how one can prove the Classification
Theorem from Section 2.3.



4 Formal basis

In this chapter, we formally prove that secure generation of correlated data (in the sense of Fig-
ure 3.4) can be implemented from any redundancy-free 2-party function F ∈ Ffin that has some
OT-core. This is our main technical contribution, since OT can be reduced to such correlated data
by rather standard techniques (q.v. Section 3.2).

4.1 Basic notions and notations
We start off with a collective (re)statement of all definitions and notations that are used throughout
the rest of this part of the thesis.
Notation 1 (Finite sums of function values). Given a set T with finite subset S ⊆ T and some mapping
g : T → R, we set g(S) :=

∑
ω∈S g(ω). For functions with more arguments we use the canonical

extension of this notation, e.g. h(a,B,C, d) :=
∑
β∈B, γ∈C h(a, β, γ, d).

Notation 2 (Spaces of probability mass functions). Given some finite alphabet Ω, we denote the set
of all probability mass functions over Ω by pmf(Ω), i.e. pmf(Ω) =

{
ρ : Ω→ R≥0

∣∣ ρ(Ω) = 1
}
.

Notation 3 (Finite randomized 2-party functions). Let Ffin denote the set of all quintuples (ΥA,ΥB,
ΩA,ΩB, φ), where ΥA,ΥB,ΩA,ΩB are non-empty finite alphabets and φ = {φx,y}x∈ΥA,y∈ΥB is a
family of probability mass functions over ΩA×ΩB, i.e. φ ⊆ pmf(ΩA×ΩB).

Definition 4 (Redundancy). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. An input symbol y′ ∈ ΥB is
called redundant, if there exist some τ ∈ pmf(ΥB) and a family of probability mass functions
{λy,b}y∈ΥB,b∈ΩB ⊆ pmf(ΩB), such that τ(y′) = 0 and for all x ∈ ΥA, a ∈ ΩA, b

′ ∈ ΩB it holds:

φx,y′(a, b′) =
∑

y∈ΥB, b∈ΩB
τ(y) · φx,y(a, b) · λy,b(b′)

For input symbols x ∈ ΥA redundancy is defined analogously. If neither ΥA nor ΥB contains any
redundant input symbols, F is called redundancy-free.

Definition 5 (Cheating situations). For F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin let N(F )
B denote the set of all

probability mass functions η ∈ pmf
(
(ΥA×ΩA)×(ΥB×ΩB)2) that meet the following conditions.

1. For all x ∈ ΥA it holds that η|A(x) := η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
> 0.

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB, with η|true
B (y) := η

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
, it

holds:
η
(
(x, a), (y, b), (ΥB,ΩB)

)
= η|A(x) · η|true

B (y) · φx,y(a, b)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB, with η|fake
B (y′) := η

(
(ΥA,ΩA), (y′,ΩB), (ΥB,ΩB)

)
, it

holds:
η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= η|A(x) · η|fake

B (y′) · φx,y′(a, b′)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
·

η
(
(x, a), (y, b), (ΥB,ΩB)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)

35
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The mappings η ∈ N
(F )
B are called Bob’s cheating situations for F . The set N(F )

A of Alice’s cheating
situations for F is defined analogously.

Definition 6 (Special cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. We define the
following subsets of N(F )

B .

Normalized cheating situations: A cheating situation η ∈ N
(F )
B is called normalized, if η|A(x) = 1

|ΥA|
for all x ∈ ΥA.

Trivial cheating situations: A cheating situation η ∈ N
(F )
B is called trivial, if for all y, y′ ∈ ΥB and

b, b′ ∈ ΩB the following implication holds true:

(y, b) 6= (y′, b′) ⇒ η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
= 0

Direct cheating situations: A cheating situation η ∈ N
(F )
B is called direct, if for each (y, b) ∈ ΥB×ΩB

at least one of the following two equalities holds true:

η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η

(
(ΥA,ΩA), (y, b), (y, b)

)
η
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η

(
(ΥA,ΩA), (y, b), (y, b)

)
Straight cheating situations: A cheating situation η ∈ N

(F )
B is called straight, if for each y ∈ ΥB at

least one of the following two equalities holds true:

η̂|true
B (y) = 0 or η̂|fake

B (y) = 0

Definition 7 (Cheating characteristics). For F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin let X(F )
B denote the set

of all mappings ξ : ΥB → R for that exist some cheating situation η ∈ N
(F )
B and some γ ∈ R>0,

such that for all y ∈ ΥB it holds:

γ · ξ(y) = η|fake
B (y)− η|true

B (y)

4.2 Linear properties of cheating situations
In this section we show that cheating situations can be considered independent from the honest
party’s input distribution, since they can be canonically rescaled (Lemma 8 and Corollary 9).
Further, we show how the algebraic structures N

(F )
B and X

(F )
B allow for basic composition and/or

decomposition of mixed strategies (Lemma 10 and Corollary 11).

Lemma 8 (Rescalability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and η ∈ N
(F )
B .

Further, let σ : ΥA → R>0, such that
∑
x∈ΥA

σ(x) · η|A(x) = 1. Then, the following mapping is a
cheating situation for F :

η̃ : (ΥA×ΩA)×(ΥB×ΩB)2 → R≥0,
(
(x, a), (y, b), (y′, b′)

)
7→ σ(x) · η

(
(x, a), (y, b), (y′, b′)

)
Proof. We just have to check the conditions of Definition 5.

0. First note that η̃ ∈ N
(F )
B , since Image(η̃) ⊆ R≥0 and by construction we have:

η̃
(
(ΥA,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
=
∑

x∈ΥA
σ(x) · η

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= 1

1. For all x ∈ ΥA it holds that η̃|A(x) = σ(x) · η|A(x) > 0.
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2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

η̃
(
(x, a), (y, b), (ΥB,ΩB)

)
= σ(x) · η|A(x) · η|true

B (y) · φx,y(a, b)

By taking the sum over x, a, b it follows that η̃|true
B = η|true

B . This yields:

η̃
(
(x, a), (y, b), (ΥB,ΩB)

)
= σ(x) · η|A(x)︸ ︷︷ ︸

η̃|A(x)

· η|true
B (y)︸ ︷︷ ︸
η̃|true

B (y)

·φx,y(a, b)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

η̃
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= σ(x) · η|A(x) · η|fake

B (y) · φx,y(a, b)

By taking the sum over x, a, b′ it follows that η̃|fake
B = η|fake

B . This yields:

η̃
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= σ(x) · η|A(x)︸ ︷︷ ︸

η̃|A(x)

· η|fake
B (y)︸ ︷︷ ︸
η̃|fake

B (y)

·φx,y(a, b)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with η
(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
η
(
(x, a), (y, b), (ΥB,ΩB)

) =
η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Thereby for all y, y′ ∈ ΥB, b, b

′ ∈ ΩB we can conclude:

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
·
∑

x∈ΥA, a∈ΩA
σ(x) · η

(
(x, a), (y, b), (ΥB,ΩB)

)
=
∑

x∈ΥA, a∈ΩA
σ(x) · η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∑

x∈ΥA, a∈ΩA
σ(x) · η

(
(x, a), (y, b), (y′, b′)

)
· η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η

(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
·
∑

x∈ΥA, a∈ΩA
σ(x) · η

(
(x, a), (y, b), (y′, b′)

)
In other words, for all y, y′ ∈ ΥB, b, b

′ ∈ ΩB with η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

) =
∑
x∈ΥA, a∈ΩA

σ(x) · η
(
(x, a), (y, b), (y′, b′)

)∑
x∈ΥA, a∈ΩA

σ(x) · η
(
(x, a), (y, b), (ΥB,ΩB)

)
For all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB with η̃

(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 now follows:

η̃
(
(x, a), (y, b), (y′, b′)

)
η̃
(
(x, a), (y, b), (ΥB,ΩB)

) =
σ(x) · η

(
(x, a), (y, b), (y′, b′)

)
σ(x) · η

(
(x, a), (y, b), (ΥB,ΩB)

)
=

η
(
(x, a), (y, b), (y′, b′)

)
η
(
(x, a), (y, b), (ΥB,ΩB)

)
=

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
=

∑
x′∈ΥA, a′∈ΩA

σ(x′) · η
(
(x′, a′), (y, b), (y′, b′)

)∑
x′∈ΥA, a′∈ΩA

σ(x′) · η
(
(x′, a′), (y, b), (ΥB,ΩB)

)
=

η̃
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
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Corollary 9 (Normalizability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let
η ∈ N

(F )
B . Then there exists a unique normalized cheating situation η̃ ∈ N

(F )
B , such that for all

x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB it holds:

η((x, a), (y, b), (y′, b′))
η|A(x) = η̃((x, a), (y, b), (y′, b′))

η̃|A(x)

Proof. This directly follows by Lemma 8, instantiated as follows:

σ : ΥA → R>0, x 7→
1

|ΥA| · η|A(x)

Lemma 10 (Convex combinability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and
υ ∈ pmf(ΥA), such that υ(x) > 0 for all x ∈ ΥA. Then the set of all cheating situations η ∈ NB(F )
with η|A = υ is the convex hull of some finite set of vertices in the affine space R(ΥA×ΩA)×(ΥB×ΩB)2.
In particular, for all η, η′ ∈ N

(F )
B with η|A = η′|A = υ and each s ∈ R the mapping η̃ := s·η+(1−s)·η′

is a normalized cheating situation for F , if only Image(η̃) ⊆ R≥0.

Proof. It suffices to give a proof for the case that υ is the uniform distribution, i.e. υ(x) = 1
|ΥA| for

all x ∈ ΥA and thus all considered cheating situations are normalize (q.v. Definition 6). Everything
else then follows straightforwardly by Corollary 9.

We just have to adapt the four conditions of Definition 5 to normalized cheating situations. As
one verifies quite straightforwardly, the set of all normalized cheating situations for F is the set of
all η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2) that meet the following conditions.

1. For all x ∈ ΥA it holds that η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= 1
|ΥA| .

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= 1
|ΥA| · η

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
· φx,y(a, b)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= 1
|ΥA| · η

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
· φx,y′(a, b′)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with φΥA,y(ΩA, b) > 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· φx,y(a, b)
φΥA,y(ΩA, b)

Since all these conditions are linear, they define a convex polytope inR(ΥA×ΩA)×(ΥB×ΩB)2 . Note that
this polytope is a subset of the bounded set pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2) and hence also is bounded.

Further, as the polytope is described by a finite number of linear constraints, it is the convex
hull of a finite set of vertices. Finally, the only inequation that normalized cheating situations
must fulfill, is that they have non-negative image space. Thus, for all normalized η, η′ ∈ N

(F )
B and

each s ∈ R the mapping η̃ := s · η + (1 − s) · η′ is a normalized cheating situation for F , if only
Image(η̃) ⊆ R≥0.

Corollary 11 (Positive linearity of cheating characteristics). Let any F ∈ Ffin and ξ, ξ′ ∈ X
(F )
B ,

γ, γ′ ∈ R>0 be given. Then it holds that γ · ξ + γ′ · ξ′ ∈ X
(F )
B .

Proof. This directly follows by Definition 7 and the combination of Corollary 9 and Lemma 10.
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4.3 Cheating situations for redundant input symbols
We expose now the inherent structure of cheating strategies by decomposing them into more easily
understandable parts. This decomposition consists of two steps.

1. Every cheating situation η ∈ N
(F )
B is equivalent to a direct cheating situation η̃ ∈ N

(F )
B , in

the sense that η|true
B (y) = η̃|true

B (y) and η|fake
B (y′) = η̃|fake

B (y′) for all y, y′ ∈ ΥB, and for each
(y, b) ∈ ΥB×ΩB at least one of the following two equalities holds true:

η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
η̃
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
The intuition behind calling a cheating situation “direct” is that Bob does not sometimes
claim an actual input-output tuple (y, b) to be (y′, b′) and also sometimes claim an actual
input-output tuple (y′, b′) to be (y′′, b′′), but instead always goes the direct way: He claims
(y, b) to be (y′′, b′′) in the first place and is just honest about (y′, b′).

2. Every direct cheating situation η̃ ∈ N
(F )
B is a convex combination of a trivial and a straight

cheating situation η̄, η̂ ∈ N
(F )
B , in the sense that η̄

(
(ΥA,ΩA), (y, b), (y′, b′)

)
= 0 for all distinct

(y, b), (y′, b′) ∈ ΥB×ΩB, and for each y ∈ Υ at least one of the following two equalities holds
true:

η̂|true
B (y) = 0 or η̂|fake

B (y) = 0

The intuition behind trivial cheating situations is that Bob is simply always honest, and the
intuition behind straight cheating situations is that Bob always claims to have used some
input symbol that he actually did never use at all.

This yields a more abstract redundancy criterion (Corollary 18), which plays a major role in proving
existence of appropriate OT-cores for secure generation of correlated data. Moreover, this insight
also helps proving that the redundancy-free version of any F ∈ Ffin is unique up to isomorphism
(Corollary 19).

Notation 12 (Equivalent cheating situations). Let any F ∈ Ffin be given and η, η′ ∈ N
(F )
B , such that

η|true
B = η′|true

B and η|fake
B = η′|fake

B . Then η and η′ are called equivalent, what we denote by η ∼ η′.
Remark 13. As a direct consequence of the conditions 2 and 3 of Definition 5, every cheating
situation is equivalent to its normalized version (cf. Corollary 9).

Notation 14 (Containedness). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let η, η′ ∈ N
(F )
B , such that for

all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB the following implication holds true:

η′
(
(x, a), (y, b), (y′, b′)

)
> 0 ⇒ η

(
(x, a), (y, b), (y′, b′)

)
> 0

Then we say that η contains η′ and we denote that by η w η′. Let η A η′ denote that η w η′ 6w η.

Lemma 15 (Generality of direct cheating situations). Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and
η̃ ∈ N

(F )
B be given. Then there exists a direct cheating situation η̂ ∈ N

(F )
B , such that η̂ ∼ η̃.

Proof. First note that by Remark 13, w.l.o.g. η is normalized. Since otherwise we just can set
η̂ := η̃, w.l.o.g. we find some ỹ, ỹ′ ∈ ΥB, b̃, b̃

′ ∈ ΩB, such that (ỹ, b̃) 6= (ỹ′, b̃′) and:

η̃
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
> η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
η̃
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
> 0

We will now construct a normalized cheating situation η̃′ ∈ N
(F )
B with the following properties.

(a) It holds that η̃′ ∼ η̃.
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(b) At least one of the following two equalities does hold true:

η̃′
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
= η̃′

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
η̃′
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
= 0

(c) For all y′ ∈ ΥB, b
′ ∈ ΩB with (ỹ, b̃) 6= (y′, b′) and η̃

(
(ΥA,ΩA), (ỹ, b̃), (y′, b′)

)
= 0 it still does

hold that η̃′
(
(ΥA,ΩA), (ỹ, b̃), (y′, b′)

)
= 0.

(d) For all y ∈ ΥB, b ∈ ΩB with η̃
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
it still

does hold that η̃′
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η̃′

(
(ΥA,ΩA), (y, b), (y, b)

)
.

Our lemma then follows by induction. For our construction of η̃′ we first define the auxiliary values
γ, γ′, δ ∈ R>0 as follows:

γ := η̃
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
− η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
γ′ := η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
δ := min(γ, γ′)

Now we define the mapping ∆ : ΥA×ΩA×(ΥB×ΩB)2 → R by:

∆
(
(x, a), (y, b), (y′, b′)

)
:=



− δ·η̃((x,a),(y,b),(ỹ,b̃))
γ if (y, b) 6= (ỹ, b̃) and (y′, b′) = (ỹ, b̃)

δ·η̃((x,a),(y,b),(ỹ,b̃))
γ if (y, b) 6= (ỹ, b̃) and (y′, b′) = (ỹ′, b̃′)

− δ·η̃((x,a),(ỹ,b̃),(ΥB,ΩB))
η̃((ΥA,ΩA),(ỹ,b̃),(ΥB,ΩB)) if (y, b) = (ỹ, b̃) and (y′, b′) = (ỹ′, b̃′)
δ·η̃((x,a),(ỹ,b̃),(ΥB,ΩB))
η̃((ΥA,ΩA),(ỹ,b̃),(ΥB,ΩB)) if (y, b) = (ỹ, b̃) and (y′, b′) = (ỹ, b̃)

0 else

Since η̃ is normalized, it is straightforward to verify that ∆
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= 0 and

∆
(
(x, a), (y, b), (ΥB,ΩB)

)
= 0 for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB. Hence, the map-

ping η̃′ := η̃ + ∆ fulfills the conditions 1–3 of Definition 5, and η̃′ ∼ η̃. Further, by Condition 4
of Definition 5 one can conclude quite easily that ∆

(
(x, a), (y, b), (y′, b′)

)
≥ −η̃

(
(x, a), (y, b), (y′, b′)

)
for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB and therefore η̃′

(
(x, a), (y, b), (y′, b′)

)
≥ 0. Finally,

by a simple case analysis one can show that for all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with
η̃
(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 it holds:

∆
(
(x, a), (y, b), (y′, b′)

)
η̃
(
(x, a), (y, b), (ΥB,ΩB)

) =
∆
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Thereby, since ∆

(
(x, a), (y, b), (ΥB,ΩB)

)
= 0, for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB with

η̃′
(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 follows:

η̃′
(
(x, a), (y, b), (y′, b′)

)
η̃′
(
(x, a), (y, b), (ΥB,ΩB)

) =
η̃′
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η̃′
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Thus, η̃′ is a normalized cheating situation for F with η̃′ ∼ η̃. Yet, there are just the properties
(b), (c) and (d) left to prove.

Proof for (b): The property (b) follows by our choice of δ. In the case that δ = γ, we have
that ∆

(
(ΥA,ΩA), (y, b), (ỹ, b̃)

)
= −η̃

(
(ΥA,ΩA), (y, b), (ỹ, b̃)

)
for all (y, b) ∈ (ΥB×ΩB)\

{
(ỹ, b̃)

}
,

whereby follows that η̃′
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
= η̃′

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
. In the case

that δ = γ′, we have that ∆
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
= −η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
, whereby

follows that η̃′
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
= 0.
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Proof for (c): By construction of ∆, for all x ∈ ΥB, a ∈ ΩB, y
′ ∈ ΥB, b

′ ∈ ΩB with (y′, b′) 6= (ỹ, b̃)
it holds that ∆

(
(x, a), (ỹ, b̃), (y′, b′)

)
≤ 0, what yields:

η̃′
(
(x, a), (ỹ, b̃), (y′, b′)

)
≤ η̃

(
(x, a), (ỹ, b̃), (y′, b′)

)
Proof for (d): Let us assume that we could find some y ∈ ΥB, b ∈ ΩB with:

η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
η̃′
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> η̃′

(
(ΥA,ΩA), (y, b), (y, b)

)
This would directly yield that ∆

(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> ∆

(
(ΥA,ΩA), (y, b), (y, b)

)
, but

by construction of ∆ for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

∆
(
(x, a), (y, b), (ΥB,ΩB)

)
= 0

∆
(
(x, a), (y, b), (y, b)

)
≥ 0

Lemma 16 (Decomposition of direct cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let
η ∈ N

(F )
B be direct. Then η is straight or it contains a trivial cheating situation for F .

Proof. W.l.o.g. we assume that η is not straight, i.e. we find some ỹ ∈ ΥB, such that η|true(ỹ) > 0
and η|fake(ỹ) > 0. We now construct a trivial cheating situation η̃, such that η̃ v η. We define the
following mapping:

η̃ : (ΥA×ΩA)×(ΥB×ΩB)2 → R≥0,
(
(x, a), (y, b), (y′, b′)

)
7→


φx,ỹ(a,b)
|ΥA| if y = y′ = ỹ and b = b′

0 else

It is pretty obvious that η̃ is a trivial cheating situation for F . So there is just left to show that
η̃ v η. So, let some arbitrary x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB be given with:

η̃
(
(x, a), (y, b), (y′, b′)

)
> 0

By construction of η̃ this means that y = y′ = ỹ and b = b′ and φx,ỹ(a, b) > 0. By our choice of ỹ
and the conditions 2 and 3 of Definition 5 follows:

η
(
(x, a), (ỹ, b), (ΥB,ΩB)

)
> 0

η
(
(x, a), (ΥB,ΩB), (ỹ, b)

)
> 0

Since η is direct by assumption, this implies that η
(
(x, a), (ỹ, b), (ỹ, b)

)
> 0. Since y = y′ = ỹ and

b = b′, this means that η
(
(x, a), (y, b), (y′, b′)

)
> 0. This is what we had to show.

Corollary 17 (General decomposition of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and
let η ∈ N

(F )
B . Then η is equivalent to a trivial cheating situation for F or there exists a convex

combination η′ := t · η̄ + (1− t) · η̂ of a trivial cheating situation η̄ ∈ N
(F )
B and a straight cheating

situation η̂ ∈ N
(F )
B , such that η ∼ η′.

Proof. W.l.o.g. we assume that η is a direct cheating situation (cf. Lemma 15). Further, w.l.o.g.
we assume that η is neither trivial nor straight. We will now construct some cheating situations
η̄′, η̂′ ∈ N

(F )
B meeting the following four conditions:

η̄′ v η η̂′ @ η η̄′ is trivial η is a convex combination of η̄′ and η̂′

Since every convex combination of trivial cheating situations for F itself is a trivial cheating situa-
tion, our lemma then follows by induction.

By Lemma 16, we find some trivial cheating situation η̄′ ∈ N
(F )
B , such that η̄′ v η. Now, let

t := max
{
s ∈ R | Image(η − s · η̄′) ⊆ R≥0

}
. Note that 0 < t < 1 by our choice of η and η̄′. We set

η̂′ := (1− t)−1 · (η − t · η̄′). By Lemma 10, it follows that η̂′ ∈ N
(F )
B . Moreover, by our choice of t

we have that η̂′ @ η.



42 Completeness Theorems – Formal basis

Corollary 18 (Characteristic-based redundancy criterion). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let
y′ ∈ ΥB, ξ ∈ X

(F )
B , such that ξ(y) ≤ 0 for all y ∈ ΥB\{y′} and ξ(y′) > 0. Then y′ is redundant.

Proof. By Definition 7 we find some normalized cheating situation η ∈ N
(F )
B , such that for all

y ∈ ΥB it holds:

η|fake
B (y) > η|true

B (y) if y = y′

η|fake
B (y) ≤ η|true

B (y) else

By Corollary 17 we can choose η to be straight (we just discard the trivial part), whereby it follows:

η|fake
B (y′) = 1 and η|true

B (y′) = 0

Now, let τ := η|true
B . We also find some family of probability mass functions λ := (λy,b)y∈ΥB,b∈ΩB ⊆

pmf(ΩB), such that for all y ∈ ΥB, b, b
′ ∈ ΩB with η(

(
ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 we have:

λy,b(b′) =
η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Exploiting the conditions 2, 4 and 3 of Definition 5, we get for all x ∈ ΥA, a ∈ ΩA, b

′ ∈ ΩB:∑
y∈ΥB, b∈ΩB

τ(y) · φx,y(a, b) · λy,b(b′) =
∑

y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (ΥB,ΩB)

)
· λy,b(b′)

η|A(x)

=
∑

y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (y′, b′)

)
η|A(x) = η|fake

B (y′) · φx,y′(a, b′) = φx,y′(a, b′)

Corollary 19 (Uniqueness of redundancy-free versions). Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be
given. Then the redundancy-free version of F is unique up to isomorphism.
Proof. We have to show: For any two redundant input symbols ỹ′, ỹ′′ ∈ ΥB, such that after removing
one of them the other is not redundant any more, the respective block columns in the condensed
canonical representation are equal up to internal permutation of columns. This implies that it does
not matter in which order redundant input symbols are removed from ΥB (or ΥA respectively).

So, let any such ỹ′, ỹ′′ ∈ ΥB be given. Since ỹ′ is redundant, we find some τ ∈ pmf(ΥB) and
{λy,b}y∈ΥB,b∈ΩB ⊆ pmf(ΩB), such that τ(ỹ′) = 0 and for all x ∈ ΥA, a ∈ ΩA, b

′ ∈ ΩB it holds:

φx,ỹ′(a, b′) =
∑

y∈ΥB, b∈ΩB
τ(y) · φx,y(a, b) · λy,b(b′)

Thus, we can construct a (normalized) cheating situation as follows:

η′
(
(x, a), (y, b), (y′, b′)

)
:=


1
|ΥA| · τ(y) · φx,y(a, b) · λy,b(b′) if y 6= ỹ′ and y′ = ỹ′

0 else

Note that by construction η′ is straight and η′|fake
B (ỹ′) = 1. Further note that η′|true

B (ỹ′′) > 0 by
our choice of ỹ′, ỹ′′. Analogously, we find some straight cheating situation η′′ ∈ B

(F )
B , such that

η′′|fake
B (ỹ′′) = 1 and η′′|true

B (ỹ′) > 0. Let t := η′′|true
B (ỹ′). Now, by Lemma 10, we can construct a new

cheating strategy η as follows:
η := 1

1+t · η
′′ + t

1+t · η
′

By construction we have that η|fake
B ({ỹ′, ỹ′′}) = 1 and η|fake

B (ỹ′) = η|true
B (ỹ′) = t

1+t . By Corollary 17
we can conclude that η is either equivalent to a trivial cheating situation, or there exists a straight
cheating situation η̂ ∈ B

(F )
B such that η̂|fake

B (ỹ′′) = 1 and η̂|fake
B (ỹ′) = η̂|true

B (ỹ′) = 0. Since the latter
is ruled out by our choice of ỹ′, ỹ′′, we have that η|fake

B (ỹ′′) = η|true
B (ỹ′′) = 1

1+t , whereby it follows:

η′|fake
B (ỹ′) = η′|true

B (ỹ′′) = 1 and η′′|fake
B (ỹ′′) = η′′|true

B (ỹ′) = 1

Intuitively speaking, a corrupted Bob can replace the input symbols ỹ′ and ỹ′′ just by each other.
It is straightforward now to verify that in the condensed canonical representation of F the block
columns belonging to ỹ′ and ỹ′′ are equal up to internal permutation of columns.
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4.4 Existence of robust OT-cores
In this section we show for every redundancy-free 2-party function F ∈ Ffin that it has some OT-
core useful for us, if it has any OT-core at all. This is the core argumentation of the algebraic part
of our security proof.

Definition 20 (OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and some (x, a), (x′, a′) ∈ ΥA×ΩA,
(y, b), (y′, b′) ∈ ΥB×ΩB be given. We call

{
(x, a), (x′, a′)

}
×
{
(y, b), (y′, b′)

}
an OT-core of F , if

φx,y(a, b) · φx′,y′(a′, b′) 6= φx′,y(a′, b) · φx,y(a, b′) and at most one of the factors is zero.

Notation 21 (Hideable inputs). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. For Y ⊆ ΥB we define:

ΨF (Y ) :=
{
y ∈ ΥB

∣∣ ∃ η ∈ N
(F )
B : η|true

B (y) > 0 ∧ η|fake
B (Y ) = 1

}
Given any y, y′ ∈ ΥB, we write ΨF (y, y′) instead of ΨF ({y, y′}) for convenience.
Remark 22. Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. Then for all Y ⊆ ΥB it holds:

ΨF (Y ) = Y ∪
{
y ∈ ΥB

∣∣ ∃ ξ ∈ X
(F )
B : ξ(y) < 0 ∧ ∀ y′ ∈ ΥB\Y : ξ(y′) ≤ 0

}
Lemma 23 (Monotonicity of ΨF ). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let Y ′ ⊆ ΥB. Then for
all Y ⊆ ΨF (Y ′) we have that ΨF (Y ) ⊆ ΨF (Y ′).

Proof. Let Y ⊆ ΨF (Y ′). By Remark 22 and Corollary 11 we find some cheating characteristics
ξ′, ξ′′ ∈ X

(F )
B , such that for all y ∈ ΥB it holds:

ξ′(y) < 0 if y ∈ ΨF (Y )\Y ξ′′(y) < 0 if y ∈ ΨF (Y ′)\Y ′

ξ′(y) ≤ 0 if y ∈ ΥB\ΨF (Y ) ξ′′(y) ≤ 0 if y ∈ ΥB\ΨF (Y ′)

Now we find some γ ∈ R>0, such that γ · ξ′′(y) < −ξ′(y) for all y ∈ ΨF (Y ′)\Y ′. Since Y ⊆ ΨF (Y ′)
by assumption, we especially have that γ · ξ′′(y) + ξ′(y) < 0 for all y ∈ Y \Y ′. Let ξ := ξ′ + γ · ξ′′
(cf. Corollary 11). Thereby, for all y ∈ ΥB we can conclude:

ξ(y) < 0 if y ∈ ΨF (Y )\Y ′

ξ(y) ≤ 0 if y /∈ Y ′

Hence, by Remark 22 it must hold that ΨF (Y ) ⊆ ΨF (Y ′).

Lemma 24. Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, such that ΥB does not contain any redundant input
symbols. Further let ỹ, ỹ′ ∈ ΥB and Ỹ , Ỹ ′ ⊆ ΨF (ỹ, ỹ′), such that ΨF (ỹ, ỹ′) ) {ỹ, ỹ′} and for all
ŷ ∈ Ỹ , ŷ′ ∈ Ỹ ′ it holds that ΨF (ŷ, ŷ′) = ΨF (ỹ, ỹ′). Then for all ŷ ∈ Ỹ , ŷ′ ∈ Ỹ ′, Y ⊆ Ỹ ∪ Ỹ ′ with
ŷ, ŷ′ /∈ Y there exists some ξ ∈ X

(F )
B , such that for all y ∈ ΥB it holds:

ξ(y) > 0 if y ∈ {ŷ, ŷ′}
ξ(y) = 0 if y ∈ Y or y /∈ ΨF (ỹ, ỹ′)
ξ(y) < 0 else

Proof. Our proof is by induction on |Y |. So in the first instance we assume that Y = ∅. Let ŷ ∈ Ỹ
and ŷ′ ∈ Ỹ ′ be arbitrary. Since ΨF (ŷ, ŷ′) = ΨF (ỹ, ỹ′) by assumption, we find some ξ ∈ X

(F )
B by

Remark 22 and Corollary 11, such that for all y ∈ ΥB it holds:

ξ(y) = 0 if y /∈ ΨF (ỹ, ỹ′)
ξ(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ŷ, ŷ′}
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Moreover, since ΨF (ỹ, ỹ′)\{ŷ, ŷ′} 6= ∅ by assumption and ξ(ΥB) = 0 by definition, it must hold
that ξ(ŷ) > 0; else ŷ′ would be redundant by Corollary 18. Analogously it follows that ξ(ŷ′) > 0.
Thereby we have proven our lemma for the case that |Y | = 0.

Now, let Y ⊆ Ỹ ∪ Ỹ ′ with Y 6= ∅ and let ŷ ∈ Ỹ , ŷ′ ∈ Ỹ ′, such that ŷ, ŷ′ /∈ Y . Furthermore, let
y′ ∈ Y . There are two cases to be considered: y′ ∈ Ỹ and y′ ∈ Ỹ ′. Since both cases can be handled
analogously, we just consider the latter. By induction hypothesis we find some ξ′, ξ′′ ∈ X

(F )
B , such

that for all y ∈ ΥB it holds:

ξ′(y) > 0 if y ∈ {ŷ, y′} ξ′′(y) > 0 if y ∈ {ŷ, ŷ′}
ξ′(y) = 0 if y ∈ Y \{y′} or y /∈ ΨF (ỹ, ỹ′) ξ′′(y) = 0 if y ∈ Y \{y′} or y /∈ ΨF (ỹ, ỹ′)
ξ′(y) < 0 else ξ′′(y) < 0 else

We set ξ := ξ′(y′) ·ξ′′−ξ′′(y′) ·ξ′; note that ξ ∈ X
(F )
B by Corollary 11, since ξ′(y′) > 0 and ξ′′(y′) < 0.

By construction, for all y ∈ ΥB it follows:

ξ(y) > 0 if y = ŷ

ξ(y) = 0 if y ∈ Y or y /∈ ΨF (ỹ, ỹ′)
ξ(y) < 0 if y ∈ ΨF (ỹ, ỹ′) and y /∈ Y ∪ {ŷ, ŷ′}

Finally, we still must have that ξ(ŷ′) > 0, since otherwise ŷ would be redundant by Corollary 18.

Lemma 25. Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, such that ΥB does not contain any redundant input
symbols. Further let {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (ỹ′, b̃′)} ⊆ (ΥA×ΩA)2×(ΥB×ΩB)2 be an OT-core of F .
Then there exist some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that {(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)} also is an
OT-core of F and ΨF (ȳ, ȳ′) = {ȳ, ȳ′}.

Proof. W.l.o.g., φx̃,ỹ(ã, b̃) > 0 and φx̃′,ỹ(ã′, b̃) > 0, i.e. we can write φx̃,ỹ′ (ã,b̃′)
φx̃,ỹ(ã,b̃) 6=

φx̃′,ỹ′ (ã′,b̃′)
φx̃′,ỹ(ã′,b̃) ; else we

interchange (ỹ, b̃) and (ỹ′, b̃′). We define the following input sets:

Ŷ ′ :=
{
y′ ∈ ΥB

∣∣ for some b′ ∈ ΩB, {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (y′, b′)} is an OT-core of F
}

Ŷ :=
{
y ∈ ΥB\Ŷ ′

∣∣ for some b ∈ ΩB, {(x̃, ã), (x̃′, ã′)}×{(y, b), (ỹ′, b̃′)} is an OT-core of F
}

Ŷ0 :=
{
y0 ∈ ΥB

∣∣ φx̃,y0(ã,ΩB) = φx̃′,y0(ã′,ΩB) = 0
}

Further we set Ỹ := Ŷ ∩ ΨF (ỹ, ỹ′) and Ỹ ′ := Ŷ ′ ∩ ΨF (ỹ, ỹ′) and Ỹ0 := Ŷ0 ∩ ΨF (ỹ, ỹ′). Note that
Ŷ ∪ Ŷ ′ ∪ Ŷ0 = ΥB and thereby Ỹ ∪ Ỹ ′ ∪ Ỹ0 = ΨF (ỹ, ỹ′). Further note that ỹ ∈ Ỹ and ỹ′ ∈ Ỹ ′.

We prove our lemma by contradiction. So, we assume that our initially given OT-core is a
minimal counterexample in the sense that ΨF (ỹ, ỹ′) ) {ỹ, ỹ′} and for all y ∈ Ỹ , y′ ∈ Ỹ ′ it holds that
ΨF (y, y′) = ΨF (ỹ, ỹ′) (cf. Lemma 23). Now, by Lemma 24 instantiated with Y := (Ỹ ∪ Ỹ ′)\{ỹ, ỹ′},
we find some ξ ∈ X

(F )
B , such that for all y ∈ ΥB it holds:

ξ(y) > 0 if y ∈ {ỹ, ỹ′}
ξ(y) = 0 if y ∈ Y or y /∈ ΨF (ỹ, ỹ′)
ξ(y) < 0 else

In other words, since ΨF (ỹ, ỹ′) = Ỹ ∪ Ỹ ′ ∪ Ỹ0 and Ỹ0 ∩ Ỹ = Ỹ0 ∩ Ỹ ′ = ∅, for all y ∈ ΥB it holds:

ξ(y) > 0 if y ∈ {ỹ, ỹ′}
ξ(y) < 0 if y ∈ Ỹ0

ξ(y) = 0 else
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Thereby we find a cheating situation η ∈ N
(F )
B , such that for all y ∈ ΥB it holds:

η|fake
B (y) > η|true

B (y) if y ∈ {ỹ, ỹ′}
η|fake

B (y) < η|true
B (y) if y ∈ Ỹ0

η|fake
B (y) = η|true

B (y) else

By Corollary 17 we can decompose η into a trivial and a straight part. Let η̂ denote the straight
part. By construction it holds:

η̂|true
B (Ỹ0) = 1
η̂|fake

B (ỹ) > 0

However, by our choice of Ŷ0 we have:

0 = η̂|A(x̃) ·
∑

y∈Ŷ0
η̂|true

B (y) · φx̃,y(ã,ΩB) ≥ η̂|A(x̃) ·
∑

y∈Ỹ0
η̂|true

B (y) · φx̃,y(ã,ΩB)

Hence, by Condition 2 of Definition 5 we can conclude that 0 ≥ η
(
(x̃, ã), (Ỹ0,ΩB), (ΥB,ΩB)

)
. Be-

cause η̂|true
B (Ỹ0) = 1 and thus η̂

(
(x̃, ã), (ΥB\Ỹ0,ΩB), (ΥB,ΩB)

)
= 0, we also have:

η̂
(
(x̃, ã), (Ỹ0,ΩB), (ΥB,ΩB)

)
= η̂

(
(x̃, ã), (ΥB,ΩB), (ΥB,ΩB)

)
≥ η̂

(
(x̃, ã), (ΥB,ΩB), (ỹ, b̃)

)
Now, since φx̃,ỹ(ã, b̃) > 0 by assumption and we found η̂|fake

B (ỹ) > 0, we can finally estimate by the
conditions 1 and 2 of Definition 5:

η̂
(
(x̃, ã), (ΥB,ΩB), (ỹ, b̃)

)
= η̂|A(x̃) · η̂|fake

B (ỹ) · φx̃,ỹ(ã, b̃) > 0

Putting things together, we get the contradiction that 0 > 0, what concludes our proof.

Corollary 26 (Existence of robust OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, such that ΥB does
not contain any redundant input symbols. Further let {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (ỹ′, b̃′)} ⊆ (ΥA×
ΩA)2×(ΥB×ΩB)2 be an OT-core of F . Then there exist some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that
{(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)} also is an OT-core of F and for every cheating situation η ∈ N

(F )
B

with η|fake
B ({ȳ, ȳ′}) = 1 and all y ∈ ΥB it holds:

η|fake
B (y) = η|true

B (y)

Proof. By Lemma 25 we find some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that {(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)}
also is an OT-core of F and ΨF (ȳ, ȳ′) = {ȳ, ȳ′}. Now, let any η ∈ N

(F )
B with η|fake

B ({ȳ, ȳ′}) = 1 be
given. We just have to show:

η|fake
B (ȳ) = η|true

B (ȳ)
η|fake

B (ȳ′) = η|true
B (ȳ′)

We pick the following cheating characteristic (q.v. Definition 7):

ξ : ΥB → R, y 7→ η|fake
B (y)− η|true

B (y)

Since η|fake
B ({ȳ, ȳ′}) = 1 and thus η|fake

B (ΥB\{ȳ, ȳ′}) = 0, for all y ∈ ΥB\{ȳ, ȳ′} it must hold that
ξ(y) ≤ 0. Moreover, since ΨF (ȳ, ȳ′) = {ȳ, ȳ′}, for all y ∈ ΥB\{ȳ, ȳ′} we actually have that ξ(y) = 0
by Remark 22. Since ξ(ΥB) = 0, it follows that ξ(ȳ) = −ξ(ȳ′). Now, if ξ(ȳ) 6= 0, this would render
either ȳ or ȳ′ redundant by Corollary 18. Thus, it must hold that ξ(ȳ) = ξ(ȳ′) = 0.
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Protocol πF (X,Y, α, β, γ)

Parametrized by a 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF . Let k denote
the security parameter and let K := {1, . . . , k}. The protocol proceeds as follows.

0. Initialization: Alice initializes two empty strings sin
A, s

out
A and an index set KA ← K. Bob analo-

gously initializes sin
B, s

out
B ,KB. Let the probability mass functions ñA, ñB be defined by:

ñA : ΥA → R>0, x 7→

{
(1− k−α) · |X|−1 + k−α · |ΥA|−1 if x ∈ X

k−α · |ΥA|−1 else

ñB : ΥB → R>0, y 7→

{
(1− k−α) · |Y |−1 + k−α · |ΥB|−1 if y ∈ Y

k−α · |ΥB|−1 else

1. Invocation of F : According to ñA Alice randomly chooses some input symbol x ∈ ΥA; Bob
randomly chooses some y ∈ ΥB according to ñB. Then F is invoked with the input tuple (x, y), i.e.
Alice learns some a ∈ ΩA and Bob learns some b ∈ ΩB with (a, b) distributed according to φx,y.
Alice concatenates x to sin

A and a to sout
A respectively; Bob concatenates y to sin

B and b to sout
B .

This protocol step is executed for k times.

2. Check A: Alice picks some uniformly random index set K̄A ⊆ KA witha |K̄A| = k
1
2 +β and sends

K̄A to Bob, who announces
(
ŝin

B[K̄A], ŝout
B [K̄A]

)
:=
(
sin

B[K̄A], sout
B [K̄A]

)
. Alice aborts the protocol, if

she finds some x ∈ ΥA, y ∈ ΥB, a ∈ ΩA, b ∈ ΩB with:∣∣sin
A×sout

A ×ŝin
B×ŝout

B [K̄A]
∣∣
(x,a,y,b) 6= k

1
2 +β · ñA(x) · ñB(y) · φx,y(a, b)± k 1

4 +β

At the end of this protocol step, Alice sets KA ← KA\K̄A and Bob sets KB ← KB\K̄A.

3. Check B: This protocol step proceeds analogously to Check A with interchanged roles of Alice and
Bob.

4. Output: Alice announces the index set K ′A :=
{
i ∈ KA

∣∣ sin
A[i] ∈ X

}
, then Bob announces K ′B :={

i ∈ KB
∣∣ sin

B[i] ∈ Y
}
; let K ′ := K ′A ∩K ′B. If |K ′| < k − k1−γ , the protocol is aborted; else Alice

outputs the compound string sin
A×sout

A [K ′] and Bob outputs sin
B×sout

B [K ′].

aW.l.o.g. we have that k 1
2 +β ∈ N, since β ∈ Q and w.l.o.g. k ∈

{
lζ
∣∣ l, ζ ∈ N, such that ζ · ( 1

2 + β) ∈ N
}
.

Figure 4.1: Protocol scheme for secure generation of correlated data from a given 2-party function.

4.5 Protocol for generation of correlated data

Now we give the formal description of our generic protocol scheme for generation of correlated data
(q.v. Figure 4.1). For convenience, we use the following quite self-suggesting notations.

Notation 27. Let “a = b± c” denote that |a− b| < |c|, i.e. the value a differs from b at most by c.

Notation 28. Let s be a finite string over some alphabet Ω. By |s| we denote the length of s. By |s|α
with α ∈ Ω we denote the number of appearances of α in s. We canonically extend this notation to
subalphabets T ⊆ Ω by |s|T :=

∑
α∈T |s|α. By s[i] with i ∈ {1, . . . , |s|} we denote the i-th element

of s. For n ∈ N and a given index set K = {k1, . . . , kn} ⊂ N with 0 < k1 < . . . < kn ≤ |s|, we
denote the string s[k1] s[k2] . . . s[kn] by s[k1, . . . , kn], or simply by s[K]. Further, for some given
strings sA and sB of the same length, we define the compound string sA×sB, whose i-th element is
just the tuple

(
sA[i], sB[i]

)
. We denote the i-th element of such a compound string by sA×sB[i].

Notation 29. Given any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, let ΠF denote the set of all quintuples
(X,Y, α, β, γ), where X ⊆ ΥA, Y ⊆ ΥB, α, β, γ ∈ R>0, such that X,Y 6= ∅ and β ∈ Q with β < 1

6 .

Notation 30. Given any F ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF , we define the following characteristics
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for non-aborted protocol runs of πF (X,Y, α, β, γ):

νB
(
(x, a), (y, b), (y′, b′)

)
:=

∣∣∣sin
A×sout

A ×sin
B×sout

B ×ŝin
B×ŝout

B [K̄A]
∣∣∣
(x,a,y,b,y′,b′)∣∣∣K̄A

∣∣∣
νA
(
(x, a), (x′, a′), (y, b)

)
:=

∣∣∣sin
A×sout

A ×ŝin
A×ŝout

A ×sin
B×sout

B [K̄B]
∣∣∣
(x,a,x′,a′y,b)∣∣∣K̄B

∣∣∣
For convenience, we also write:

νB|A(x) := νB
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
νA|B(y) := νA

(
(ΥA,ΩA), (ΥB,ΩB), (y,ΩB)

)
νB|true

B (y) := νB
(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
νA|true

A (x) := νA
(
(x,ΩA), (ΥA,ΩA), (ΥB,ΩB)

)
νB|fake

B (y′) := νB
(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
νA|fake

A (x′) := νA
(
(ΥA,ΩA), (x′,ΩA), (ΥB,ΩB)

)
4.6 Real protocol runs versus idealized cheating situations
We show now that our notion of cheating situations is close to what may ever happen during real
protocol runs. Therefor, we utilize some powerful tools from probability theory (Lemma 31 and
Corollary 32) and real algebraic geometry (Lemma 35 and Corollary 36). The former are borrowed
from [KMQ10], but the latter are completely novel tools, which were necessary because our notion
of cheating situations is more complex than that of [KMQ10, KMQ11]. In particular, normalized
cheating situations in [KMQ10] can be described by linear constraints, which is not true in our case
due to Condition 4 of Definition 5.

Lemma 31 (Stability of random distributions, [KMQ10, Lemma 15]). Let some sequence (xk)k∈N of bi-
nomially and/or hypergeometrically distributed random variables xk be given, such that
P[0≤xk≤k] = 1 for all k ∈ N. Further let ∆ > 1

2 . Then the probability P
[
|xk −E(xk)| ≥ k∆] is

negligible in k.

Proof. By [Hoe63, Theorem 2], for all n ∈ N, c ∈ R>0 and every binomially distributed random
variable x with P[0≤x≤n] = 1 it holds that P

[
|x−E(x)| ≥ c

]
≤ 2 · exp

(
−2c2 · n−1). In [Hoe63,

Section 6] it was shown that this estimation holds for hypergeometrically distributed X, too. For
all k ∈ N, we can conclude:

P
[
|xk −E(xk)| ≥ k∆] ≤ 2 · exp

(
−2k2∆−1

)
Corollary 32 ([KMQ10, Corollary 16]). Let H be some memoryless random source that samples from
some finite alphabet Ω. Let p : Ω → R, x 7→ P[H outputs x]. Further let A be some arbitrary
algorithm that on input k ∈ N sequentially samples up to k random symbols x1, . . . ,xn ← H, i.e. n
is a random variable with P[1≤n≤k] = 1 and n may be correlated with (x1, . . . ,xn). Then for all
constants ∆ > 1

2 and all S ⊆ Ω the probability P
[∣∣|x1 . . .xn|S − n · p(S)

∣∣ ≥ k∆
]
is negligible in k.

Proof. For our proof we make A a bit more powerful: A always samples exactly k random symbols
x1, . . . ,xk ← H and then computes and outputs n.

Now, for n ∈ {1, . . . , k}, S ⊆ Ω let Xn(S) := |x1 . . .xn|S . Analogously to the proof of Lemma 31,
for all n ∈ {0, . . . , k} and S ⊆ Ω it always holds:

P
[
|Xn(S)− n · p(S)| ≥ k∆] ≤ P

[
|Xn(S)− n · p(S)| ≥ n∆] ≤ 2 · exp

(
−2n2∆−1)

Further, for n < k∆ it trivially holds that P
[
|Xn(S)− n · p(S)| ≥ k∆] = 0. Hence follows:

P
[
|Xn(S)− n · p(S)| ≥ k∆] ≤ k∑

n=dk∆e
P
[
|Xn(S)− n · p(S)| ≥ k∆] ≤ 2(k − k∆)

exp
(
2k∆(2∆−1))
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Corollary 33. Let some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF be
given, as well as some constant ∆ > 1

2 . Let π := πF (X,Y, α, β, γ) and let k denote the security
parameter. Then, if Alice is honest, a protocol run of π with overwhelming probability is either
aborted or for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB and b ∈ ΩB we have that νB

(
(x, a), (y, b), (ΥB,ΩB)

)
=

k−1∣∣sin
A × sout

A × sin
B × sout

B
∣∣
(x,a,y,b) ± k

∆−( 1
2 +β). If Bob is honest, the analog holds for νA.

Proof. Let us consider some arbitrary but fixed x ∈ ΥA, a ∈ ΩA, y ∈ ΥB and b ∈ ΩB. Once the
compound string sin

A× sout
A × sin

B × sout
B is generated by Alice and Bob calling F in the protocol step

Invocation of F , we can consider an honest Alice’s random choice of K̄A as a random experiment
with hypergeometrically distributed outcome

∣∣sin
A×sout

A ×sin
B×sout

B [K̄A]
∣∣
(x,a,y,b). Now, by Lemma 31

we have with overwhelming probability:

∣∣sin
A × sout

A × sin
B × sout

B [K̄A]
∣∣
(x,a,y,b) = k

1
2 +β ·

∣∣sin
A × sout

A × sin
B × sout

B
∣∣
(x,a,y,b)

k
± k∆

As νB
(
(x, a), (y, b), (ΥB,ΩB)

)
= k−( 1

2 +β)∣∣sin
A × sout

A × sin
B × sout

B [K̄A]
∣∣
(x,a,y,b) by definition (cf. Nota-

tion 30), we can conclude:

νB
(
(x, a), (y, b), (ΥB,ΩB)

)
= k−1∣∣sin

A × sout
A × sin

B × sout
B
∣∣
(x,a,y,b) ± k

∆−( 1
2 +β)

If Bob is honest, we have to take into account that a corrupted Alice might choose K̄A maliciously
and thereby introduce an additional error of at most kβ−

1
2 into our estimation, i.e.:

νA
(
(x, a), (ΥA,ΩA), (y, b)

)
= k−1∣∣sin

A × sout
A × sin

B × sout
B
∣∣
(x,a,y,b) ±

(
k∆−( 1

2 +β) + kβ−
1
2
)

However, since β < 1
6 by definition (cf. Notation 29) and the estimation also holds for any ∆′ with

1
2 < ∆′ < ∆, we can argue:

k∆′−( 1
2 +β) + kβ−

1
2 = k∆−( 1

2 +β) · k∆′−∆ ·
(
1 + k−∆′+2β) < k∆−( 1

2 +β) · k∆′−∆ ·
(
1 + k−

1
6
)︸ ︷︷ ︸

≤ 1 for almost all k

Hence, if Bob is honest, a protocol run of π with overwhelming probability is either aborted or for
all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB and b ∈ ΩB we have:

νA
(
(x, a), (ΥA,ΩA), (y, b)

)
= k−1∣∣sin

A × sout
A × sin

B × sout
B
∣∣
(x,a,y,b) ± k

∆−( 1
2 +β)

Lemma 34. Let some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF be given,
as well as some constant ∆ > 1

2 . Let π := πF (X,Y, α, β, γ) and let k denote the security parameter.
Then, if Alice is honest, a protocol run of π with overwhelming probability is either aborted or we
have:

1. For all x ∈ ΥA it holds that νB|A(x) = ñA(x)± k( 1
2 +β)(∆−1).

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

νB
(
(x, a), (y, b), (ΥB,ΩB)

)
= νB|A(x) · νB|true

B (y) · φx,y(a, b)± k( 1
2 +β)(∆−1)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

νB
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= νB|A(x) · νB|fake

B (y′) · φx,y(a, b)± k
∆−1

2

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with νB
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

νB
(
(x, a), (y, b), (y′, b′)

)
= νB

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· νB((x,a),(y,b),(ΥB,ΩB))
νB((ΥA,ΩA),(y,b),(ΥB,ΩB)) ± k

( 1
2 +β)(∆−1)
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If Bob is honest, the analog holds for νA.

Proof. The techniques needed here are pretty much the same as for the proof of Corollary 33.
The assertions 1 and 4 are direct consequences of Lemma 31, as we can consider k

1
2 +β · νB|A(x)

a binomially distributed random variable and k
1
2 +β · νB

(
(x, a), (y, b), (y′, b′)

)
a hypergeometrically

distributed random variable in the respective context. Assertion 2 can be derived from Corol-
lary 32, as a corrupted Bob’s view in the protocol step Invocation of F can be seen as maliciously
sampling from |ΥB| mutually independent memoryless random sources. Finally, an honest Alice
enforces assertion 3 in the protocol step Check A, what can be shown as follows. Alice directly
enforces that νB

(
(x, a), (ΥB,ΩB), (y′, b′)

)
= ñA(x) · ñB(y′) ·φx,y′(a, b′)± k−

1
4 for all x ∈ ΥA, a ∈ ΩA,

y′ ∈ ΥB, b
′ ∈ ΩB, whereby especially follows:

νB|A(x) = ñA(x)± |ΩA× ΩB| · k−
1
4

νB|fake
B (y′) = ñB(y′)± |ΩA× ΩB| · k−

1
4

Thereby, we already have:

νB
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= νB|A(x) · νB|fake

B (y′) · φx,y′(a, b′)±
(
2 · |ΩA× ΩB|+ 1

)
k−

1
4

Furthermore, we can estimate the error term
(
2 · |ΩA×ΩB|+ 1

)
k−

1
4 from above by k

∆−1
2 for almost

all k ∈ N, since ∆ > 1
2 by assumption.

If Bob is honest, we have to take into account that a corrupted Alice might choose K̄A maliciously.
This will only introduce an additional error of at most kβ−

1
2 in the analog of our estimations

for the assertions 1 and 2, i.e. there we formally have to replace the error term k( 1
2 +β)(∆−1) by(

k( 1
2 +β)(∆−1) + kβ−

1
2
)
. However, since β < 1

6 by definition (cf. Notation 29) and our estimations
also hold for any ∆′ with 1

2 < ∆′ < ∆, we can argue:

k( 1
2 +β)(∆′−1) + kβ−

1
2 = k( 1

2 +β)(∆−1) ·
(
k( 1

2 +β)(∆′−∆) + k−
∆
2 +(2−∆)β)

< k( 1
2 +β)(∆−1) ·

(
k

1
3 (∆′−∆) + k−

∆
2 + 1

4
)︸ ︷︷ ︸

≤ 1 for almost all k

Lemma 35. Let n ∈ N and some polynomial f ∈ R[X1, . . . , Xn] be given, such that the variety
V :=

{
x ∈ Rn

∣∣ f(x) = 0
}
is not empty. Furthermore, let a bounded convex polytope P ⊂ Rn be

given, such that V ∩ P 6= ∅. Then for every norm there exist some constants c, δ ∈ R>0, such that
for all x ∈ P it holds:

miny∈V ∩P ‖x− y‖ ≤ c ·
∣∣f(x)

∣∣δ
Proof. Our proof is based on the Łojasiewicz Inequality [Łoj59, Theorem 17], by which for every
open set U ⊆ Rn, every real analytic function h : U → R with non-empty zero locus Z and every
compact set K ⊂ U there exist some constants c, δ ∈ R>0, such that for all x ∈ K it holds:

infz∈Z ‖x− z‖ ≤ c ·
∣∣h(x)

∣∣δ
Note that we do not need to specify the norm used, since all norms on Rn are equivalent. In the
following, for any x ∈ Rn and S ⊆ Rn let dist(x, S) := infy∈S ‖x− y‖.

We want to prove our lemma by contradiction, i.e. we assume that for all c, δ ∈ R>0 there
exists some x ∈ P , such that dist(x, V ∩ P ) > c · |f(x)|δ. In particular, we find some sequence
(xi)i∈N ⊆ P , such that dist(xi, V ∩ P ) > i · i

√
|f(x)| for all i ∈ N. Since P is closed and bounded

and thus compact, the sequence (xi)i∈N has some limit point x̂ ∈ P . Moreover, we can choose x̂
such that f(x̂) = 0 and thus x̂ ∈ V , since otherwise we had the following contradiction:

∞ = lim inf i∈N i · i
√
|f(xi)| ≤ lim inf i∈N dist(xi, V ∩ P ) ≤ dist(x̂, V ∩ P )
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Hence, we have that |f(xi)| ≤ 1 for infinitely many i ∈ N and can discard all other members
of the sequence (xi)i∈N, while preserving the property that dist(xi, V ∩ P ) > i · i

√
|f(xi)| for all

i ∈ N. Moreover, we can now discard any members of the sequence (xi)i∈N and still preserve that
property. We will exploit this extensively. In the first instance, w.l.o.g. the whole sequence (xi)i∈N
does converge to x̂. Further, we find the following sequences:

• (zi)i∈N ⊆ V , such that dist(xi, zi) = dist(xi, V )

• (wi)i∈N ⊆ P , such that wi is a convex combination of xi and zi, and dist(wi, zi) is minimized

We also find some finite set of degree-one polynomials T ⊂ R[X1, . . . , Xn], such that we can write:

P =
{
x ∈ Rn

∣∣ maxg∈T g(x) ≤ 0
}

Note that limi→∞wi = x̂ and hence for almost all (w.l.o.g. all) i ∈ N it holds:

∀ g ∈ T : g(wi) = 0 ⇒ g(x̂) = 0

Moreover, by the Łojasiewicz Inequality there exist some constants c′, δ′ ∈ R>0, such that for all
x ∈ P it holds:

dist(x, V ) ≤ c′ ·
∣∣f(x)

∣∣δ′
Hence, it must hold that zi /∈ P and thus maxg∈T g(wi) = 0 for almost all (w.l.o.g. all) i ∈ N,
since otherwise we had a contradiction to our choice of (xi)i∈N. Now, as maxg∈T g(wi) = 0 for
all i ∈ N, by a pigeonhole argument there must exist some g ∈ T , such that g(wi) = 0 for
infinitely many (w.l.o.g. all) i ∈ N. Let ĝ be such a polynomial. We define the affine subspace
A :=

{
x ∈ Rn

∣∣ ĝ(x) = 0
}
and the polytope Q := P ∩ A. Note that V ∩ Q 6= ∅, as x̂ ∈ V ∩ Q.

Now we can utilize induction on the dimension n; or to be more precise, w.l.o.g. we may assume
that n is minimal in the sense that for smaller n there would not exist any counterexample for our
lemma. In particular, since for n = 0 our lemma is trivially true, we must have that n > 0. By the
Triangle Inequality we can estimate:

∀ i ∈ N : dist(xi, V ∩ P ) ≤ dist(xi, wi) + dist(wi, V ∩Q)

However, since (wi)i∈N ⊆ Q ⊂ A by construction, we have that estimating dist(wi, V ∩ Q) is the
original problem with dimension n− 1. Since by assumption there cannot be a counterexample for
our lemma with dimension n− 1, we find c′′, δ′′ ∈ R>0, such that for all w ∈ Q it holds:

dist(w, V ∩Q) ≤ c′′ ·
∣∣f(w)

∣∣δ′′
Let b := maxa∈P ‖∇f(a)‖. For all i ∈ N it holds:

dist(xi, V ∩ P ) ≤ dist(xi, wi) + dist(wi, V ∩Q)

≤ dist(xi, wi) + c′′ ·
∣∣f(wi)

∣∣δ′′
≤ dist(xi, wi) + c′′ ·

(
|f(xi)|+ dist(xi, wi) ·maxa∈P ‖∇f(a)‖

)δ′′
= dist(xi, wi) + c′′ ·

(
|f(xi)|+ b · dist(xi, wi)

)δ′′
Now we can put things together. Since each wi is a convex combination of the respective xi and
zi, we can estimate:

dist(xi, wi) ≤ dist(xi, zi) = dist(xi, V ) ≤ c′ ·
∣∣f(xi)

∣∣δ′
Thus, for all i ∈ N we have:

dist(xi, V ∩ P ) ≤ c′ ·
∣∣f(xi)

∣∣δ′ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ′)δ′′
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We set δ := min
{
1, δ′, δ′′

}
and c := (c′ + c′′) · (1 + b · c′)δ. Since limi→∞ f(xi) = f(x̂) = 0, we have

for almost all (w.l.o.g. all) i ∈ N that |f(xi)| is sufficiently small, so that we can estimate:

c′ ·
∣∣f(xi)

∣∣δ′ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ′)δ′′ ≤ c′ ·
∣∣f(xi)

∣∣δ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ)δ
In conclusion, we have for all i ∈ N:

dist(xi, V ∩ P ) ≤ c′ ·
∣∣f(xi)

∣∣δ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ)δ
≤ (c′ + c′′) ·

(∣∣f(xi)
∣∣+ b · c′ ·

∣∣f(xi)
∣∣δ)δ

≤ (c′ + c′′) ·
(
(1 + b · c′) ·

∣∣f(xi)
∣∣δ)δ

= c ·
∣∣f(xi)

∣∣δ2

This contradicts our choice of the sequence (xi)i∈N and thus concludes this proof.

Corollary 36. Let n ∈ N and some finite set of polynomials S ⊂ R[X1, . . . , Xn] be given, such that
the variety V :=

{
x ∈ Rn

∣∣ ∀ f ∈ S : f(x) = 0
}
is not empty. Furthermore, let a bounded convex

polytope P ⊂ Rn be given, such that V ∩ P 6= ∅. Then for every norm there exist some constants
c, δ ∈ R>0, such that for all x ∈ P it holds:

miny∈V ∩P ‖x− y‖ ≤ c ·maxf∈S
∣∣f(x)

∣∣δ
Proof. We define the polynomial g :=

∑
f∈S f

2, whereby we get that V =
{
x ∈ Rn

∣∣ g(x) = 0
}
.

Now, by Lemma 35 we find some constants c′, δ′ ∈ R>0, such that for all x ∈ P it holds:

miny∈V ∩P ‖x− y‖ ≤ c′ ·
∣∣g(x)

∣∣δ′
Thus, our proof is concluded by the observation that for all x ∈ Rn we have:

c′ ·
∣∣g(x)

∣∣δ′ ≤ c′ · |S| ·maxf∈S
∣∣f(x)

∣∣2δ′
Lemma 37. Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given. Then, if Alice is honest, there exist
some constants ε, ε′ ∈ R>0, such that for any π := πF (X,Y, α, β, γ) with (X,Y, α, β, γ) ∈ ΠF and
α < ε′ a protocol run of π with overwhelming probability is either aborted or we have:

∃ η ∈ N
(F )
B :

∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ 1
kε

If Bob is honest, the analog holds for νA.

Proof. For symmetry reasons it suffices to consider the case of an honest Alice.
First note that P := pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2) is a bounded convex polytope in the linear

space R(ΥA×ΩA)×(ΥB×ΩB)2 . Moreover, consider the variety V ⊆ R(ΥA×ΩA)×(ΥB×ΩB)2 defined by the
following polynomial equations:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= η

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
· η
(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
· φx,y(a, b)

η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= η

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
· η
(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
· φx,y′(a, b′)

η
(
(x, a), (y, b), (y′, b′)

)
· η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· η
(
(x, a), (y, b), (ΥB,ΩB)

)
Note that Bob’s cheating situations for F (q.v. Definition 5) are just the mappings η ∈ V ∩P with
minx∈ΩA η

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
> 0, i.e. we have:

N
(F )
B =

{
η ∈ V ∩ P

∣∣ ∀x ∈ ΩA : η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
> 0

}
(4.1)
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Now, by Corollary 36 instantiated with the L1-norm we find some constants c, δ ∈ R>0, such that
for every probability mass function η̃ ∈ P that fulfills our polynomial equations stated above up to
some error ρ it holds:

minη∈V ∩P ‖η − η̃‖1 ≤ c · ρδ

Hence by Lemma 34, with some arbitrary but constant ∆ > 1
2 , a protocol run of π with overwhelm-

ing probability is either aborted or there exists a mapping η ∈ V ∩ P with:∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ c · kδ(
1
2 +β)(∆−1)

Further, by Lemma 34 we still have that a protocol run of π with overwhelming probability is either
aborted or for all x ∈ ΥA it holds:

νB
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
≥ ñA(x)− k( 1

2 +β)(∆−1) ≥ k−α · |ΥA|−1 − k( 1
2 +β)(∆−1)

Now, if k−α · |ΥA|−1 − k( 1
2 +β)(∆−1) > c · kδ(

1
2 +β)(∆−1), we can by (4.1) conclude that a protocol run

of π with overwhelming probability is either aborted or there exists a cheating situation η ∈ N
(F )
B

with:∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ c · kδ(
1
2 +β)(∆−1)

Note that w.l.o.g. δ ≤ 1, i.e. it suffices that α < ω′ := δ(1
2 + β)(1 −∆) and hence k−α · |ΥA|−1 >

(c+ 1)kδ(
1
2 +β)(∆−1) for almost all k ∈ N. Moreover, we could have chosen ∆ < 1, so that finally we

can set ε := δ(1
2 + β)(1 −∆′) with ∆ < ∆′ < 1. Thereby, we have that c · kδ(

1
2 +β)(∆−1) ≤ k−ε for

almost all k ∈ N and it follows:∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ k−ε

Lemma 38. Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given. Then, if Alice is honest, there exist
some constants ε, ε′ ∈ R>0, such that for any π := πF (X,Y, α, β, γ) with (X,Y, α, β, γ) ∈ ΠF and
α < ε′ a protocol run of π with overwhelming probability is either aborted or there exists a cheating
situation η ∈ N

(F )
B with the following properties:

1. We have that η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B
∣∣
(x,a,y,b) · k

−1± k−ε for all x ∈ ΥA,

a ∈ ΩA, y ∈ ΥB, b ∈ ΩB.

2. We have that η|A(x) = 1
|X| ± k

−ε for all x ∈ X.

3. We have that η|fake
B (y) = 1

|Y | ± k
−ε for all y ∈ Y .

4. We have that η|fake
B (y) ≤ k−ε for all y ∈ ΥB\Y .

If Bob is honest, the analog holds with η ∈ N
(F )
A .

Proof. We just consider the case that Alice is honest; the analogous assertions for an honest Bob
follow by symmetry reasons.

Let ∆ > 1
2 . Corollary 33 states that a protocol run of π is either aborted or for all x ∈ ΥA,

a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

νB
(
(x, a), (y, a), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B
∣∣
(x,a,y,b) · k

−1 ± k∆−( 1
2 +β)

Further, by Lemma 37 we find some constants ε̃, ε′ ∈ R>0, such that for any π = πF (X,Y, α, β, γ)
with (X,Y, α, β, γ) ∈ ΠF and α < ε′ a protocol run of π with overwhelming probability is either
aborted or we have:

∃ η ∈ N
(F )
B :

∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ 1
kε̃
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Now, all we have to do is looking for some ε > 0, such that the four assertions of our proposition
hold true for such an η. Assertion 1 directly follows by our considerations so far and the fact that
we could have chosen ∆ < 1

2 + β. In particular, for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB we have:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B
∣∣
(x,a,y,b) · k

−1 ±
(
k∆−( 1

2 +β) + k−ε̃
)

I.e., we just need that ε < 1
2 + β − ∆ and ε < ε̃. The remaining three assertions follow by the

observation that in the protocol step Check A (q.v. Figure 4.1) an honest Alice for all x ∈ ΥA, y ∈ ΥB
enforces the following inequality:∣∣sin

A×ŝin
B[K̄A]

∣∣
(x,y) = k

1
2 +β · ñA(x) · ñB(y)± k

1
4 +β · |ΩA×ΩB|

By definition of νB (q.v. Notation 30) this expression is equivalent to the following:

νB
(
(x,ΩA), (y,ΩB), (ΥB,ΩB)

)
= ñA(x) · ñB(y)± k−

1
4 · |ΩA×ΩB|

Thus, by construction of ñA and ñB (q.v. Figure 4.1) it follows for our η:

η|A(x) = 1
|X| ±

(
k−α

|X| −
k−α

|ΥA| + k−
1
4 · |ΥB×ΩA×ΩB|+ k−ε

)
for all x ∈ X

η|fake
B (y) = 1

|Y | ±
(
k−α

|Y | −
k−α

|ΥB| + k−
1
4 · |ΥA×ΩA×ΩB|+ k−ε

)
for all y ∈ Y

η|fake
B (y) ≤ k−α

|ΥB| + k−
1
4 · |ΥA×ΩA×ΩB|+ k−ε for all y ∈ ΥB\Y

So, we only additionally need that ε < α and ε < 1
4 and we are done.

4.7 Secure generation of correlated data
In this section we put things together by combining the results of Section 4.4 and Section 4.6. In
particular, we show that our generic protocol scheme from Section 4.5 can always be instantiated
such that no corrupted party can deviate from the prescribed input probabilities too much, and thus
the generated data is non-trivially correlated. This suffices for implementation of OT as described
in Section 3.2.
Notation 39 (Cheating quantum). For F = (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, with ṄF denoting the minimal
spanning set of all normalized cheating situations for F (q.v. Lemma 10), we define:

ϑF := min
{
η|fake

B (y′)
∣∣ y′ ∈ ΥB, η ∈ ṄF : η|fake

B (y′) > 0
}

Lemma 40 (Quantizability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. Further, let
η ∈ N

(F )
B , ω ∈ R≥0, such that ω < 1

|ΥB| . Then there exists some η′ ∈ N
(F )
B that fulfills the following

two conditions:

1. For all y′ ∈ ΥB we have the following implication:

η|fake
B (y′) ≤ ω · ϑF ⇒ η′|fake

B (y′) = 0

2. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB we have:∣∣η((x, a), (y, b), (y′, b′)
)
− η′

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ 2ω · |ΥA×ΥB|

Proof. As stated in Lemma 10, the set of all normalized cheating situations for F is the convex hull
of a finte set of vertices, say {η̇1, . . . , η̇n}. Note that for all i ∈ {1, . . . , n} and all y′ ∈ ΥB we have
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that either 0 < ϑF ≤ η̇i|fake
B (y′) or η̇i|fake

B (y′) = 0 by definition of ϑF (q.v. Notation 39). Now, let η̃
denote the normalized version of η (cf. Corollary 9). We define:

Y ′ :=
{
y′ ∈ ΥB

∣∣ 0 < η̃|fake
B (y′) ≤ ω · ϑF

}
W.l.o.g., we assume that Y ′ 6= ∅, as otherwise we could just set η′ := η (cf. Remark 13). Moreover,
we find some a1, . . . , an ∈ R≥0, such that

∑n
i=1 ai · η̇i = η̃ and especially

∑n
i=1 ai = 1. We define

the index set I :=
{
i ∈ {1, . . . , n}

∣∣ η̇i|fake
B (y′) > 0

}
, whereby we get:∑

i∈I
ai · ϑF ≤

∑
i∈I

ai · η̇i|fake
B (Y ′) ≤ η̃|fake

B (Y ′) ≤ ω · ϑF · |Y ′|

Since ω < 1
|ΥB| by assumption, this especially yields that

∑
i∈I ai ≤ ω · |Y ′| < 1. So, we can set

J := {1, . . . , n}\I and η̃′ := (
∑
i∈J ai)−1 ·

∑
i∈J ai · η̇i, whereby for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB,
b, b′ ∈ ΩB we get:∣∣η̃((x, a), (y, b), (y′, b′)

)
− η̃′

(
(x, a), (y, b), (y′, b′)

)∣∣
=
∣∣∣∣∣
n∑
i=1

ai · η̇i
(
(x, a), (y, b), (y′, b′)

)
−
∑
i∈J ai · η̇i

(
(x, a), (y, b), (y′, b′)

)∑
i∈J ai

∣∣∣∣∣
≤
∣∣∣∣∣∑
i∈I

ai · η̇i
(
(x, a), (y, b), (y′, b′)

)∣∣∣∣∣+
∣∣∣∣∣
(

1− 1∑
i∈J ai

)
·
∑
i∈J

ai · η̇i
(
(x, a), (y, b), (y′, b′)

)∣∣∣∣∣
≤
∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣+
∣∣∣∣∣
(

1− 1∑
i∈J ai

)
·
∑
i∈J

ai

∣∣∣∣∣ = 2
∑
i∈I

ai ≤ 2ω · |Y ′| ≤ 2ω · |ΥB|

Finally, we define the mapping η′ : (ΥA×ΩA)×(ΥB×ΩB)2 → R≥0 by:

η′
(
(x, a), (y, b), (y′, b′)

)
:= |ΥA| · η|A(x) · η̃′

(
(x, a), (y, b), (y′, b′)

)
Since η̃′ is normalized, by Lemma 8 it follows that η′ ∈ N

(F )
B . Now we can put things together. On

the one hand, by our choice of η̃ for all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB we have (q.v. Corollary 9):

η((x, a), (ΥB,ΩB), (y′, b′))
η|A(x) = η̃((x, a), (ΥB,ΩB), (y′, b′))

η̃|A(x)

Thus, by Condition 3 of Definition 5, for all y′ ∈ ΥB it follows:

η|fake
B (y′) = η̃|fake

B (y′)

So, for all y′ ∈ ΥB with η|fake
B (y′) ≤ ω ·ϑF it holds that y′ ∈ Y ′ and hence η′|fake

B (y′) = η̃′|fake
B (y′) = 0

by construction. On the other hand, for all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB we can rewrite
the distance

∣∣η((x, a), (y, b), (y′, b′)
)
− η′

(
(x, a), (y, b), (y′, b′)

)∣∣ as follows:
|ΥA| · η|A(x)︸ ︷︷ ︸

≤1

·
∣∣η̃((x, a), (y, b), (y′, b′)

)
− η̃′

(
(x, a), (y, b), (y′, b′)

)∣∣︸ ︷︷ ︸
≤2ω·|ΥB|

Corollary 41. Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given. Then, if Alice is honest, there exist
some constants ε, ε′ ∈ R>0, such that for any π := πF (X,Y, α, β, γ) with (X,Y, α, β, γ) ∈ ΠF and
α < ε′ a protocol run of π with overwhelming probability is either aborted or there exists a cheating
situation η ∈ N

(F )
B with the following properties:

1. It holds that η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B
∣∣
(x,a,y,b) · k

−1 ± k−ε for all x ∈ ΥA,

a ∈ ΩA, y ∈ ΥB, b ∈ ΩB.
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2. It holds that η|A(x) = 1
|X| ± k

−ε for all x ∈ X.

3. It holds that η|fake
B (y) = 1

|Y | ± k
−ε for all y ∈ Y .

4. It holds that η|fake
B (y) = 0 for all y ∈ ΥB\Y .

If Bob is honest, the analog holds with η ∈ N
(F )
A .

Proof. The proof is straightforward; we just need to combine Lemma 38 and Lemma 40.

Lemma 42. Let some redundancy-free F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given that has some OT-
core. Then there also exist an OT-core {(x̄, ā), (x̄′, ā′)}×{(ȳ, b̄), (ȳ′, b̄′)} ⊆ (ΥA×ΩA)2×(ΥB×ΩB)2, a
protocol π := πF ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) with ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) ∈ ΠF and a constant ε ∈ R>0
with the following property: If at least one party (Alice or Bob) is honest, a protocol run of π with
overwhelming probability is either aborted or in the end for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′},
b ∈ ΩB it holds:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B [K ′]

∣∣
(x,a,y,b) = 1

|{x̄,x̄′}×{ȳ,ȳ′}| · φx,y(a, b)± k
−ε

Proof. By assumption we have an OT-core {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (ỹ′, b̃′)} ⊆ (ΥA×ΩA)2×(ΥB×ΩB)2.
By Corollary 26 we find some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that {(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)} also
is an OT-core and every cheating situation η ∈ N

(F )
B with η|fake({ȳ, ȳ′}) = 1 is equivalent to a trivial

cheating situation (cf. Definition 6). Analogously, we find some (x̄, ā), (x̄′, ā′) ∈ ΥA×Ωa, such that
{(x̄, ā), (x̄′, ā′)}×{(ȳ, b̄), (ȳ′, b̄′)} is still an OT-core and for every η ∈ N

(F )
A with η|fake

A ({x̄, x̄′}) = 1
and all x ∈ ΥA we also have:

η|fake
A (x) = η|true

A (x)

Now, let π := πF ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) with ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) ∈ ΠF and let α be suffi-
ciently small, so that we can apply Corollary 41. Henceforth, for symmetry reasons it suffices to
consider the case that Alice is honest. In this case, we find by Corollary 41 some constant ε̃ ∈ R>0,
such that a protocol run of π with overwhelming probability is either aborted or there exists a cheat-
ing situation η ∈ N

(F )
B fulfilling the following conditions for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B
∣∣
(x,a,y,b) · k

−1 ± k−ε̃ (4.2)

η|A(x) = 1
|{x̄,x̄′}| ± k

−ε̃ if x ∈ {x̄, x̄′} (4.3)

η|fake
B (y) = 1

|{ȳ,ȳ′}| ± k
−ε̃ if y ∈ {ȳ, ȳ′} (4.4)

η|fake
B (y) = 0 if y ∈ ΥB\{ȳ, ȳ′} (4.5)

Note that (4.5) can be reformulated as η|fake
B ({ȳ, ȳ′}) = 1, and thus our choice of ȳ, ȳ′ yields that

(4.4) is equivalent to the following:

η|true
B (y) = 1

|{ȳ,ȳ′}| ± k
−ε̃ for all y ∈ {ȳ, ȳ′}

Hence, by (4.3) and Condition 2 of Definition 5 we have for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′},
b ∈ ΩB:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= φx,y(a, b)
|{x̄, x̄′}×{ȳ, ȳ′}|

± k−ε̃
( 1
|{x̄, x̄′}|

+ 1
|{ȳ, ȳ′}|

+ k−ε̃
)

By (4.2), this yields for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′}, b ∈ ΩB:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B
∣∣
(x,a,y,b) = φx,y(a, b)

|{x̄, x̄′}×{ȳ, ȳ′}|
± k−ε̃

(
1 + 1
|{x̄, x̄′}|

+ 1
|{ȳ, ȳ′}|

+ k−ε̃
)
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Since in the protocol step Output of π every honest party enforces that |K ′| ≥ k − k1−γ (q.v.
Figure 4.1), we finally have for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′}, b ∈ ΩB:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B [K ′]

∣∣
(x,a,y,b) = φx,y(a, b)

|{x̄, x̄′}×{ȳ, ȳ′}|
±
(
k−ε̃

(
1 + 1
|{x̄, x̄′}|

+ 1
|{ȳ, ȳ′}|

+ k−ε̃
)

+ k−γ
)

This concludes our proof, since we can choose an arbitrary constant ε > 0 with ε < min{ε̃, γ} and
then for almost all k ∈ N estimate the error term by k−ε.

4.8 Conclusion of the formal basis for our completeness criteria
By Lemma 42, one can now show quite straightforwardly our final theorem. This final theorem
just states that we can implement the functionality F (G,ε)

SMCD (q.v. Figure 3.4), instantiated such that
G has some OT-core, from any redundancy-free 2-party function F ∈ Ffin that has some OT-core
itself. Since OT can be implemented from such instantiations of F (G,ε)

SMCD by standard techniques
(q.v. Section 3.2), this concludes the formal basis of our classification results for stateless primitives.

Theorem. Let any redundancy-free 2-party function F ∈ Ffin be given that has some OT-core. Then
there exist a constant ε ∈ R>0 and a tuple of protocol parameters (X,Y, α, β, γ) ∈ ΠF , such that the
protocol π := πF (X,Y, α, β, γ) implements UC-securely the functionality F (G,ε)

SMCD (q.v. Figure 3.4)
with some G that also has an OT-core.

Proof. We instantiate ε and the protocol parameters (X,Y, α, β, γ) as needed for Lemma 42,
with X = {x̄, x̄′} and Y = {ȳ, ȳ′}. In particular, there exist ā, ā′ ∈ ΩA, b̄, b̄

′ ∈ ΩB, such that
{(x̄, ā), (x̄′, ā′)}×{(ȳ, b̄), (ȳ′, b̄′)} is an OT-core. Further, we define G := (ΛA,ΛB, ψ) as follows:

ΛA :=
{
(x, a) ∈ X× ΩA

∣∣ φX,Y (a,ΩB) > 0
}

ΛB :=
{
(y, b) ∈ Y × ΩB

∣∣ φX,Y (ΩA, b) > 0
} ψ

(
(x, a), (y, b)

)
:= φx,y(a, b)
|X×Y |

Note that G has some OT-core by construction. Furthermore, w.l.o.g. we have that ε ≤ γ. Now
we have to show that π := πF (X,Y, α, β, γ) implements UC-securely F (G,ε)

SMCD.
If no party is corrupted, it follows straightforwardly by Lemma 31 that π is aborted only with

some negligible probability. Further, the simulator in the ideal model just has to send a compound
string tA×tB of right length to the ideal functionality F (G,ε)

SMCD, so that the joint output distribution
of non-aborted protocol runs in the real model is identical to the joint output distribution in the
ideal model. Thus, simulation in a totally uncorrupted setting is just straightforward.

If Alice (and only Alice) or Bob (and only Bob) is corrupted, we need only a slightly more
sophisticated simulator program. For symmetry reasons it suffices to consider a corrupted Bob. In
this case, our simulator works as follows: He lets the corrupted Bob play with a simulated version
of the honest Alice and a simulated version of the hybrid functionality F (F )

SFE, thus generating some
joint output string (sin

A×sout
A )× (sin

B×sout
B )[K ′] with k − k1−γ < |K ′| ≤ k (if the protocol is not

aborted). By Lemma 42, this simulated protocol run of π with overwhelming probability is either
aborted or in the end for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′}, b ∈ ΩB it holds:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B [K ′]

∣∣
(x,a,y,b) = 1

|{x̄,x̄′}×{ȳ,ȳ′}| · φx,y(a, b)± k
−ε

Thus, if the simulated protocol run is not aborted, the simulator can just set tA := sin
A×sout

A [K ′] and
tB := sin

B×sout
B [K ′] and then send tA×tB to the ideal functionality F (G,ε)

SMCD. Else, i.e. if the simulated
protocol run is aborted, the simulator just needs to terminate, too. Again, it is straightforward to
verify that the ideal model is statistically indistinguishable from the real model.

If both parties are corrupted, there is nothing to prove, since the simulator can just perfectly
simulate the complete real model.
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5 Introduction

Recently, tamper-proof hardware tokens have received increasing attention. Tamper-proof hardware
tokens allow information-theoretically secure protocols that are universally composable [Can01],
they can be employed for protocols in the globalized UC framework [HMQU05, CDPW07], and
they even allow for one-time programs, i.e. circuits that can be evaluated only once [GKR08].
However, almost all known protocols employing tamper-proof hardware are either indirect, i.e.
the secure hardware is used to implement commitments or zero-knowledge proofs and additional
computational assumptions must be used to obtain general two party computations [Kat07, CGS08,
DNW08, MS08, DNW09], or a large number of devices must be used [GKR08, GIS+10]. However,
issuing multiple independent tamper-proof devices requires much stronger isolation assumptions.
Not only the communication between the devices and the issuer must be prevented, but also the
many devices must be mutually isolated. This is especially difficult as the devices are not necessarily
trusted—e.g., see [BKMN09] for the difficulty of isolating two devices in one location.

In this work, we present a protocol that realizes universally composable two-party computations
with information-theoretic security using only a single (untrusted) tamper-proof device. The main
challenge when using only a single piece of tamper-proof hardware is to prevent a corrupted token
from encoding previous inputs in subsequent outputs.

5.1 Related work

The idea of secure computation based on separation assumptions was introduced in [BOGKW88]
to construct multi-prover interactive proof systems. In particular, [BOGKW88] proposes an uncon-
ditionally secure protocol for Rabin-OT [Rab81] between two provers and a verifier. Even though
this result is not explicitly stated in the context of tamper-proof hardware1 and is proven secure in
a standalone, synchronous model, it seems reasonable that an amplified variant of the protocol of
[BOGKW88] can be proven UC-secure. However, this lies beyond the scope of this thesis.

The idea of explicitly using tamper-proof hardware for cryptographic purposes was introduced
by [GO96], where it was shown that tamper-proof hardware can be used for the purpose of software-
protection. The interest in secure hardware and separation assumptions was renewed, when it was
realized that universally secure multi-party computation can be based on the setup assumption of
tamper-proof hardware tokens. The tamper-proof hardware must suffice strong separation condi-
tions, even though a more recent result showed that the assumptions about the physical separation
can be relaxed to some extent [DNW08, DNW09].

Generally, the work on secure multi-party computation with tamper-proof hardware assump-
tions can be divided in works dealing with either stateful or stateless hardware-tokens. In [Kat07]
a scenario is considered where all parties can create and issue stateful tamper-proof hardware
tokens. Using additional number-theoretic assumptions, [Kat07] implements a reusable commit-
ment functionality in this scenario. Subsequently, [MS08] improved upon [Kat07] by constructing
information-theoretically secure commitments in an asymmetric scenario, where only one out of two
parties is able to issue stateful tamper-proof hardware tokens. Another improvement upon [Kat07]
was by [CGS08] with stateless tokens, but still bidirectional token exchange and use of enhanced
trapdoor permutations (eTDP). [HMQU05] use (stateless) signature cards, issued by a trusted au-
thority, to achieve universal composability with respect to global setup assumptions [CDPW07].

1The authors of [BOGKW88] mention that the provers in their protocol might be implemented as bank-cards.
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In [FPS+11] it is shown how set intersection can be computed securely using a single untrusted
tamper-proof hardware token and additional computational assumptions.

[GKR08] show that using a minimalistic stateful tamper-proof hardware assumption called one-
time memory (OTM), a new cryptographic primitive called one-time program (OTP) can be imple-
mented, i.e. programs that can be evaluated exactly once. An OTM can be seen as a non-interactive
version of the well-known

(2
1
)
-string-OT functionality: The OTM sender stores two l-bit strings on

the token and sends it to the receiver party, who can arbitrarily later choose to learn one (and only
one) out of the two stored values (q.v. Figure 5.1).

Functionality FOTM

Parametrized by a string length l. The variable state is initialized by state ← waiting.

Creation:
• Upon receiving input (s0, s1) from the sender party Goliath, verify that state = waiting and s0, s1 ∈
{0, 1}l; else ignore that input. Next, update state ← sent, record (s0, s1) and send (sent) to the
adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, update state ← delivered and send (ready) to the receiver party David.

Query:
• Upon receiving input (x) from the receiver party David, verify that state = delivered and x ∈ {0, 1};

else ignore that input. Next, update state ← queried and output (sx) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between FOTM and
the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 5.1: The ideal/hybrid functionality modeling a single one-time memory (OTM). Following
[MS08], we call the token issuer “Goliath” and the receiver party “David”; see also Section 6.3.1.

Recently, [Kol10] implemented string-OT with stateless tamper-proof hardware tokens, but
achieved only covert security [AL07]. A unified treatment of tamper-proof hardware assumptions
is proposed by [GIS+10]. Important in the context of our work, they show that in a mutually mis-
trusting setting, trusted OTPs can be implemented statistically secure from a polynomial number
of OTMs. In [GIMS10], statistically secure commitments and statistical zero-knowledge are imple-
mented on top of a single stateless tamper-proof token. Furthermore, if tokens can be encapsulated
into other tokens, general statistically secure composable multi-party computation is possible in
this setting. [GIMS10] also show that unconditionally secure OT cannot be realized from stateless
tamper-proof hardware alone. Finally, the latest result in this research field is by [CKS+11], that
combine techniques of [GIS+10] and a preliminary version of our work [DKMQ11], resulting in a
computationally secure, constant-round protocol for OT with unlimited token reusability. They
only need stateless tokens and show black-box simulatability. However, this comes at the cost of
bidirectional token exchange and the assumption that collision resistant hashfunctions (CRHF)
exist.

Except for [BOGKW88], all of the above schemes based on untrusted tamper-proof hardware
either use additional complexity assumptions to achieve secure two-party computations [HMQU05,
Kat07, MS08, GKR08, DNW08, DNW09, Kol10, CKS+11] or a large number of hardware tokens
must be issued [GKR08, GIS+10].
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5.2 Our contribution

In this thesis we show that general, information-theoretically secure, composable two-party com-
putations are possible in a setting where a single untrusted stateful tamper-proof hardware token
is issued by one party. Previous solutions required that either the creator of the tamper-proof
hardware is honest, that additional complexity assumptions are used, or that a large number of
independent tamper-proof hardware tokens is issued. Our approach uses only a single tamper-proof
token and apart from that solely relies on some linear algebra and combinatorics, what may be of in-
dependent interest. As a drawback our protocols allow only for limited token reusability. However,
they can be transformed straightforwardly into computationally secure solutions with unlimited
token reusability. Remarkably, for this transformation only a very weak complexity assumption is
needed, namely the existence of a pseudorandom number generator (PRNG), and only the token
receiver needs to be computationally bounded.

As a reasonable abstraction for the primitives that can be implemented in our setting, we intro-
duce a new primitive, which we call sequential one-time OAFE (q.v. Section 6.4). We show that
OT can be realized straightforwardly using this primitive; thus our results for statistically secure,
composable two-party computations follow immediately by the completeness of OT [Kil88, IPS08].
At the same time, we improve upon the results of [DKMQ11] in several ways. Firstly, the com-
putational variant of our construction allows for unlimited reuse of the tamper-proof hardware, as
mentioned above, whereas in [DKMQ11] the number of token queries always was a priori bounded.
Furthermore, we can still straightforwardly adapt the results of [GIS+10] to implement trusted
OTPs at the cost of one tamper-proof hardware token per OTP (cf. Section 6.4). Last but not
least, we achieve a better complexity than in [DKMQ11] (cf. Section 7.2.3 and Section 7.2.1). In
particular, with our new approach one can implement several widely-used building blocks for secure
multi-party computation and these constructions have some remarkable optimality features.

Sequentially queriable OTMs: We propose an information-theoretically secure construction for
an arbitrary polynomial number of OTM functionalities from a single tamper-proof token.
The number of OTMs must be chosen when the token is issued and cannot be increased
later, unless the token contains a PRNG and the receiver is computationally bounded (i.e.
we partly give up information-theoretic security). The implemented OTM instances are only
queriable in a predefined order, but this can definitely be considered an advantage, since it
trivially rules out the out-of-order attacks dealt with in [GIS+10]. Our construction is not
truly non-interactive; it needs some interaction during an initialization phase. However, after
the initialization phase no further interaction between the token receiver and the token issuer
is necessary. Therefore we say that our construction is “semi-interactive”. What is more, we
need only two rounds of interaction, not counting for the token transmission. This is optimal
for a single-token solution. Besides, our construction can be straightforwardly transformed
into a truly non-interactive solution with two mutually isolated tokens. Last but not least, we
achieve an asymptotically optimal communication complexity in the sense that the number of
transferred bits is linear in the number and string length of the implemented OTM instances.

Admittedly, for information-theoretically secure implementation of a large number of OTMs
we need that our token stores a large (though still linear) amount of data. Now, if these OTMs
are used to implement a one-time program, one may ask why we do not just implement the
one-time program directly on the token. There are at least three good reasons to implement
an OTP via OTMs. Firstly, the token can be transferred a long time before the sender chooses
which OTP to send. Secondly, via OTMs one can implement trusted OTPs, i.e. sender and
receiver agree on a circuit to be evaluated and only the inputs for this circuit are kept secret.
The crucial security feature of a trusted OTP is that even a corrupted sender cannot change
the circuit. Thirdly, since our token only needs to store random values, we can dramatically
compress its size at the cost of only a very weak computational assumptions, namely the
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existence of a PRNG. Moreover, this computational assumption is only needed to hold for
the token receiver; all our computational protocol variants are still statistically secure against
a malicious token issuer and even the token may be computationally unbounded.
To sum things up, our construction has the following features:
• many OTMs (arbitrary polynomial) by a single token; upper bound fixed at initialization
• implemented OTM instances only queriable in predefined order
• optimal round complexity: two rounds using one token or one round using two tokens
• optimal communication complexity (linear in number and size of implemented OTMs)
• information-theoretic security (but large token; compression possible by PRNG)

Commitments in both directions: We also propose a constant-round construction for a bidi-
rectional and reusable string-commitment functionality from a single tamper-proof token.
We offer several protocol variants, so that one can choose between limited reusability and
information-theoretic security on the one side, and unlimited reusability at the cost of com-
putational assumptions on the other side. Anyway, for unlimited reusability we only need
a PRNG and a computationally bounded token receiver; the token issuer (and even the to-
ken) may still have arbitrary computing power. What is more, by our construction one can
implement an arbitrary polynomial number of commitments in parallel with O(1) rounds
of communication. Besides, our construction can be straightforwardly transformed into a
non-interactive solution with two mutually isolated tokens, so that the whole communica-
tion of each commit and unveil phase only consists of a single message sent by the commit-
ting/unveiling party. Last but not least, we achieve an asymptotically optimal communication
complexity in the sense that the number of transferred bits is linear in the number and string
length of the implemented commitments. To the best of our knowledge, except for [MS08]
all other constructions based on tamper-proof hardware have higher communication com-
plexity and either use stronger complexity assumptions or have ω(1) rounds. However, the
construction of [MS08] is only unidirectional (from the token issuer to the token receiver).
To sum things up, our construction has the following features:
• bidirectional and reusable string-commitment functionality from a single token
• unlimited reusability at the cost of a minimal complexity assumption (PRNG)
• multiple commitments with O(1) rounds by one token or non-interactively by two tokens
• optimal communication complexity (linear in number and size of commitments)

String-OT: Our OT protocol enjoys the same features as our commitment protocol. We omit an
explicit itemization of the features of our OT construction; it is just exactly the same as the
above feature list of our commitment construction. Instead, by Figure 5.2 we compare our
OT protocol with earlier results in the literature.
At this point, it is important to mention that optimal communication complexity for only
computationally secure OT is no great achievement at all. The string length of any compu-
tationally secure OT protocol can be polynomially extended by standard techniques, what
accordingly improves its efficiency: The sender party just uses the OT for transmission of two
random PRNG seeds and announces the actual OT inputs one-time pad encrypted with the
respective pseudorandomness. In particular, by this simple trick and some rescaling of the
security parameter, one can transform any OT protocol with polynomial communication com-
plexity into a protocol with linear (and thus optimal) communication complexity. However,
we stress that nevertheless we present the first information-theoretically secure construction
for multiple OT with optimal communication complexity based on reusable tamper-proof
hardware. Moreover, note that an analogous approach for extending the string length of
commitments or OTMs would destroy composability. We discuss this in further detail in
Section 7.2.7.
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stateless tokens stateful tokens (simulator needs to rewind)
[CGS08] [GIS+10] [CKS+11] [GIS+10] [DKMQ11] this work

tokens 2 (bidirect.) Θ(k) 2 (bidirect.) Θ(k) 1 1 1
rounds Θ(k) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
bits sent ? Ω(k2) Ω(k2) Θ(k2) Θ(k2) Θ(k) Θ(k)
assumptions eTDP CRHF CRHF none none none PRNG
reusability unbounded none unbounded none bounded bounded unbounded

Figure 5.2: UC-secure k-bit string-OT based on tamper-proof tokens; table partly borrowed from
[CKS+11, Table 1]. The CRHF-based protocols can instead be based on one-way functions (equiv-
alent to PRNGs), but using Θ(k/ log k) rounds. For [CGS08] an explicit estimation of the overall
communication complexity is just omitted, since they use the heavy machinery of general zero-
knowledge proofs, signatures, etc. However, note that the complexity of any computationally
secure OT protocol can be amortized by standard techniques (cf. Section 7.2.7).

All our constructions also have remarkably low computation complexity, what makes them very
practical. Per implemented k-bit OTM/Commitment/OT all parties and the tamper-proof token
have to perform no more than O(1) finite field operations (only additions and multiplications) with
field size 2k. Additionally, the protocol variants with unlimited token reusability require that the
token generates Θ(k) bits of pseudorandomness respectively, but there are no exponentiations or
other operations costlier than finite field multiplication.

5.3 Outline of Part II
The rest of this thesis is organized as follows. In Section 6 we introduce some notations (Sec-
tion 6.1), give a short overview of the notion of security that we use (Section 6.2), describe how our
tamper-proof hardware assumption is defined in that framework (Section 6.3) and introduce our
new primitive (Section 6.4), which serves as the basic building block for all other constructions. In
Section 7.1 we show how one can implement our new primitive from the aforementioned tamper-
proof hardware assumption. In Section 7.2 we discuss refinements and some unobvious applications
of our construction. At the end of Section 7.2, in Section 7.2.7, we also briefly discuss why an only
computationally secure OT protocol with optimal communication complexity is not a noteworthy
result, whereas the opposite is true for commitments and OTMs. In Section 8 we give a formal
security proof. Finally, in Section 9 we argue for some impossibility results, give a conclusion of
our work on protocols using tamper-proof hardware, and suggest directions for improvements and
future research.





6 Preliminaries

6.1 Notations
Finite fields: By Fq we denote the finite field of size q.

Outer products: Given any field F and k, l ∈ N>0, we identify vectors in Fk by (k×1)-matrices,
so that for all x ∈ Fk and y ∈ F1×l the matrix product xy ∈ Fk×l is well-defined.

Complementary matrices: Given any field F, some k, l ∈ N>0 with k < l and any two matrices
C ∈ F(l−k)×l, G ∈ Fk×l, we say that G is complementary to C, if the matrix M ∈ Fl×l gen-
erated by writing G on top of C has maximal rank in the sense that rank(M) = rank(C) + k.
Note that, given any C ∈ F(l−k)×l, G ∈ Fk×l, x ∈ Fl, y ∈ Fk with G complementary to C,
we can always find some x′ ∈ Fl, such that Cx′ = Cx and Gx′ = y.

Uniform distribution: Given any random variable x that is uniformly random over some set X,
we denote that by x r← X.

Probabilities, expected values and collision entropy: We denote the probability of a ran-
dom event E by P[E ]. The expected value of a random variable x is denoted by E(x) and its
collision entropy by H2(x) := − log2

(∑
α

(
P[x = α]

)2).
Statistical distance: We denote the statistical distance of two given random variables x,y by

SD(x,y), using the following standard notion of statistical distance:

SD(x,y) = 1
2
∑

α

∣∣P[x = α]−P[y = α]
∣∣

Correlation of random variables: We define the following measure for the correlation of ran-
dom variables. Given any two random variables x,y that may depend on each other, we set
ι(x,y) := SD

(
(x,y), (x̃, ỹ)

)
with x̃ and ỹ denoting independent versions of x and y respec-

tively. Note that ι(x,y) = 0 if and only if x and y are statistically independent. Further
note that P

[
Q(x,y)

]
≤ P

[
Q(x̃, ỹ)

]
+ ι(x,y) for every predicate Q. We will use the latter

extensively.

Negligibility: A function µ : N→ R≥0 is negligible (in the parameter k), if limk→∞ µ(k)·f(k) = 0
for every polynomial f ∈ R[X].

Indistinguishability: Two random variables x,y are (statistically) indistinguishable, if their sta-
tistical distance SD(x,y) is negligible in some security parameter.

6.2 Framework & notion of security
We state and prove our results in the Universal-Composability (UC) framework of [Can01]. In this
framework, security is defined by comparison of an ideal model and a real model. The protocol of
interest is running in the latter, where an adversary A coordinates the behavior of all corrupted
parties. In the ideal model, which is secure by definition, an ideal functionality F implements the
desired protocol task and a simulator S tries to mimic the actions of A. An environment Z is
plugged either to the ideal or the real model and has to guess, which model it is actually plugged
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to. A protocol Π is a universally composable (UC-secure) implementation of an ideal functionality
F , if for every adversary A there exists a simulator S, such that for all environments Z the entire
view of Z in the real model (with Π and A) is statistically close to its view in the ideal model (with
F and S).

In our case the adversarial entities A,S and the environment Z are computationally unbounded
and a hybrid functionality F stateful

wrap models our tamper-proof hardware assumption (q.v. Sec-
tion 6.3). If the views of Z in the ideal model and the real model are distributed identically,
we speak of perfect security; if there is some negligible statistical distance between these views, we
have only statistical security.

6.3 Modeling tamper-proof hardware

6.3.1 The hybrid functionality F stateful
wrap

Our formulation of general stateful tamper-proof hardware resembles the meanwhile standard def-
initions of [Kat07, MS08]. Following [MS08], we call the token issuer “Goliath” and the receiver
party “David”. This naming is also motivated by the fact that all computational versions of our pro-
tocols only need David’s computing power to be polynomially bounded in the security parameter;
Goliath (and even the token) may be far more powerful.

To model tamper-proof hardware, we employ the F stateful
wrap wrapper functionality (q.v. Figure 6.1).

The sender party Goliath provides as input a Turing machine M to F stateful
wrap . The receiver party

David can now query F stateful
wrap on arbitrary input words w, whereupon F stateful

wrap runs M on input
w, sends the output thatM produced to David and stores the new state ofM. Every time David
sends a new query w′ to F stateful

wrap , it resumes simulating M with its most recent state, sends the
output to David and updates the stored state ofM.

Functionality F stateful
wrap

The variable state is initialized by state ← wait.

Creation:
• Upon receiving a message (Create,M, b) from Goliath, whereM is the program of a deterministic

interactive Turing machine and b ∈ N, verify that state = wait; else ignore that input. Next,
initialize a simulated version ofM, store b, set state ← sent and send (created) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, set state ← execute and send (ready) to David.

Execution:
• Upon receiving a message (Run, w) from David, where w is an input word, verify that state = execute;

else ignore that input. Next, write w on the input tape of the simulated machine M and carry on
runningM for at most b steps, starting from its most recent state. WhenM halts (or b steps have
passed) without generating output, send a special symbol ⊥ to David; else send the output ofM.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F stateful
wrap

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 6.1: The wrapper functionality by which we model stateful tamper-proof hardware sent
from Goliath to David. Note that delivery of the token in the creation phase is scheduled by the
adversary, whereas afterwards all communication between David and the token is immediate.
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This captures the following properties one expects from tamper-proof hardware. On the one
hand, Goliath is unable to revokeM once he has sent it to David. On the other hand, David can
runM on inputs of his choice, but the program code and state ofM are out of reach for him, due
to the token’s tamper-proofness. Note thatM does not need a trusted source of randomness, as it
can be provided with a sufficiently long hard-coded random tape. Thus, w.l.o.g. we can restrictM
to be deterministic.

For formal reasons we require that the sender party Goliath not only specifies the program
code of M, but also an explicit runtime bound b ∈ N. This just ensures that even a corrupted
Goliath cannot make F stateful

wrap run perpetually. As we will state and prove all our results without
any computational assumptions regarding the token, a corrupted Goliath may choose b arbitrarily
large. However, when Goliath is honest, we will only need that the number of computing steps
performed by the token is polynomial in the security parameter. We will henceforth implicitly
assume that an honest Goliath always adjusts the parameter b accordingly.

6.3.2 Real world meaning of our hardware assumption and proof techniques

In Section 8 we will show that our construction from Section 7.1 is universally composable. However,
the respective simulator for a corrupted sender party Goliath will need to rewind the token and
thus has to know the token code. At first glance, it might seem a rather strong assumption that
a corrupted token manufacturer always knows the internal program code of his tokens. How can
such a party be prevented from just passing on a token received during another protocol from some
uncorrupted token issuer?

We argue that tokens can be bound to the corresponding issuer IDs by not too unrealistic
assumptions. The conceptually simplest (but a bit overoptimistic) way are standardized and un-
forgeable token cases, branded with the respective issuer ID, and that cannot be removed without
destroying the token completely. However, we can go with a bit less rigorous assumptions. We
just need that undetectable token encapsulation is infeasible (e.g., since the token’s weight and size
would be altered) and that every honestly programmed token initially outputs its manufacturer’s
ID. Then, only tokens of corrupted manufacturers can be successfully passed on. Since w.l.o.g. all
corrupted parties collude, now every token issuer automatically knows the internal program code
of all his issued and/or passed on tokens. Infeasibility of token encapsulation is also needed by
[HMQU05, Kat07, MS08, GKR08].

We also argue that using a stateful token does not necessarily mean a categorical disadvantage
compared to protocols based on stateless tokens. In the literature one can find the opposite point
of view, usually motivated by resetting attacks. These attacks only affect stateful approaches,
whereas stateless approaches stay secure. By a resetting attack a corrupted token receiver tries to
rewind the token (e.g. by cutting off the power supply) and then run it with new input. Such an
attack, if successful, would break security of all our protocols. However, as a countermeasure the
tamper-proof token could delete its secrets or just switch to a special “dead state” when a resetting
attempt is detected. For the technical realization we suggest, e.g., that the state information is
stored as a code word of an error correcting code and the token does not work unless the stored state
information is an error-free, non-trivial code word. Anyway, we consider a thorough investigation
of this issue an interesting direction for future research.

6.4 Sequential one-time OAFE and its relation to OTMs and OT
There is a two-party functionality that we call oblivious affine function evaluation (OAFE), in the
literature sometimes referred to as oblivious linear function evaluation (OLFE), which is closely
related to OT and of particular interest for our constructions. In Fkq -OAFE, with q and k publicly
known but not necessarily constant, the sender chooses an affine function parametrized by two
vectors a, b ∈ Fkq and the receiver chooses a preimage x ∈ Fq. The receiver gets as output the
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Fkq -vector y := ax + b and the sender’s output is empty. The receiver does not learn more about
the sender’s input (a, b) than he can infer from (x, y) and the sender does not learn anything about
the receiver’s input x. As one can see quite easily, F2-OAFE and OT can be reduced to each other
without any overhead (q.v. Figure 6.2). Note that the reductions in Figure 6.2 also work perfectly
for Fk2-OAFE and k-bit string-OT respectively.

OT

OAFE from OT
s0b
s1a+ b

c x

sc ax+ b

OAFE

OT from OAFE
as0 ⊕ s1

bs0

x c

ax+ b sc

Figure 6.2: Reductions between bit-OT and F2-OAFE; protocols borrowed from [WW06].

We implement a variant of OAFE that we call “sequential one-time OAFE”, or “seq-ot-OAFE”
for short. By one-time OAFE we mean a primitive that works analogously to an OTM. The sender
creates a token parametrized by a, b ∈ Fkq and sends it to the receiver. Arbitrarily later the receiver
may once input some x ∈ Fq of his choice into the token, whereupon the token outputs y := ax+ b
and then terminates. Sequential one-time OAFE lets the sender send up to a polynomial number
of single one-time OAFE tokens, but the receiver may only query them in the same order as they
were sent. However, when the receiver has queried some of the tokens he already received, this does
not vitiate the sender’s ability to send some additional tokens, which in turn can be queried by the
receiver afterwards, and so on. For a formal definition of the ideal seq-ot-OAFE functionality see
Figure 6.3.

Functionality F seq−ot
OAFE

Parametrized by a finite vector space Fkq and some runtime bound n that is polynomially bounded in the
security parameter λ := k log q. The counters jcreated, jsent, jqueried are all initialized to 0.

Send phases:
• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fkq and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i, record (a, b, i) and send (created, i) to the adversary.

• Upon receiving a message (Delivery, i) from the adversary, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:
• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried +1 ≤ jsent; else ignore that

input. Next, update jqueried ← i and for the recorded tuple (a, b, i) compute y ← ax+ b and output
(y, i) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F seq−ot
OAFE

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 6.3: The ideal functionality for sequential one-time OAFE (seq-ot-OAFE). Note that send
and choice phases can be executed in mixed order with the only restriction that the i-th send phase
must precede the i-th choice phase. Further note that David’s notifications about Goliath’s inputs
in the send phases are scheduled by the adversary, whereas all messages in the choice phases are
delivered immediately.
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Note that the reduction protocols in Figure 6.2 still can be adapted canonically to transform k-
bit string-OTMs into Fk2-OAFE tokens and vice versa. Hence, using the seq-ot-OAFE functionality
(q.v. Figure 6.3), a polynomial number of OTMs can be implemented very efficiently, but the
receiver can query the single OTM tokens only in the same order as they were sent. However,
the construction of [GIS+10] for trusted OTPs from OTMs still works, as there an honest receiver
queries all OTM tokens in a fixed order anyway. Interestingly, the technical challenges dealt with
in [GIS+10] arise from the fact that a malicious receiver might query the OTMs out of order.
Moreover, the restriction to sequential access can be exploited to securely notify the sender that
the receiver has already queried some OTM token. Therefor, every other OTM token is issued with
purely random input from the sender and the receiver just announces his corresponding input-
output tuple. A corrupted receiver that tries to adversarially delay his OTM queries is caught
cheating with overwhelming probability, as he has only a negligible chance to correctly guess the
next check announcement. Thus, we can implement a polynomial number of OT instances that are
perfectly secure against the OT sender and statistically secure against the OT receiver. Still, the
receiver can query the single OT instances only in the same order as they were sent, but in fact
this is already premised in most protocols that build on OT. Noting that OT and OAFE can be
stored and reversed [Bea96, WW06, Wul07], we conclude that in the seq-ot-OAFE hybrid model
OT can be implemented in both ways (from the token sender to the token receiver and vice versa).

Finally, a remark is in place. Even though seq-ot-OAFE can be used to implement several
OTPs, the sequential nature of seq-ot-OAFE demands that those OTPs can only be executed in a
predefined order. If one wishes to implement several OTPs that can be evaluated in random order,
as many seq-ot-OAFE functionalities have to be issued.





7 Semi-interactive seq-ot-OAFE from one
tamper-proof token

7.1 The basic protocol
We want to implement seq-ot-OAFE (q.v. Section 6.4), using a single tamper-proof hardware token
that is issued by one of the mutually distrusting parties. The technical challenge in doing so is
twofold. Firstly, the receiver David must be able to verify that no token output does depend on
any input of previous choice phases. Secondly, each token output must be an affine function of
the corresponding input. However, note that the latter difficulty is only relevant if q > 2, as every
function f : F2 → Fk2 is affine: f(x) =

(
f(0) + f(1)

)
· x+ f(0) for all x ∈ F2.

Our approach to solving these problems is enlarging the token’s output space to dimension
(1 + α)k and letting the sender Goliath announce αk-dimensional linear hash values of the token’s
function parameters, which can be used by David for a consistency check; then there remains a
k-dimensional part of the token’s output for generation of the intended OAFE result. For technical
reasons we choose α = 3. In particular, a preliminary protocol idea can be sketched as follows:

• Goliath chooses the i-th token parameters uniformly at random, say r, s r← F4k
q .

• Upon receiving the token, David announces a random check matrix C r← F3k×4k
q .

• Goliath in turn announces r̃ := Cr and s̃ := Cs.

• When David queries the token the i-th time, say he inputs some x ∈ Fq and receives output
w ∈ F4k

q , he checks whether Cw = r̃x + s̃. When the check is not passed, David has caught
Goliath cheating and henceforth always outputs a default value.

This way, we can implement some kind of “weak” OAFE, where the receiver additionally learns
some linear projection of the sender’s inputs, but by announcing (r̃, s̃) Goliath has committed
the token to affine behavior. Otherwise, if the check would be passed for a large set of token
inputs X ⊆ Fq and there do not exist any r, s ∈ F4k

q such that τ(x) = rx+ s for all x ∈ X with τ
denoting the token functionality in the i-th round, then the token could as well form collisions for the
universal hash function C, of which it is oblivious. Moreover, we can nullify the receivers additional
knowledge about (r, s) by multiplication with any matrix G ∈ Fk×4k

q that is complementary to C.
When David just outputs Gw, we have implemented OAFE with random input (Gr,Gs) from
Goliath and arbitrarily selectable input x from David. Finally, Goliath can derandomize his input
to arbitrarily selectable a, b ∈ Fkq by announcing ã := a−Gr and b̃ := b−Gs. David then just has
to replace his output by y := Gw + ãx+ b̃.

However, there is still a security hole left, as the token might act honestly only on some spe-
cific input set X ( Fq or even only on some specific type of input history. Now, when David’s
inputs match this adversarially chosen specification, he will produce regular output; else a protocol
abortion is caused with overwhelming probability (i.e. David produces default output). Such a
behavior cannot be simulated in the ideal model, unless the simulator gathers some information
about David’s input. Thus, David must keep his real input x secret from the token (and as well
from Goliath, of course). However, David’s input must be reconstructible from the joint view of
Goliath and the token, as otherwise a corrupted David could evaluate the function specified by
Goliath’s input (a, b) on more than one input x. Our way out of this dilemma is by a linear secret
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sharing scheme, whereby David shares his input x between Goliath and the token. In particular,
the protocol now roughly proceeds as follows:

• Goliath initializes the token with uniformly random parameters r r← F4k
q and S r← F4k×k

q .

• Upon receiving the token, David announces a random check matrix C r← F3k×4k
q and a random

share h r← Fkq \ {0}. David and Goliath also agree on some G ∈ Fk×4k
q complementary to C.

• Goliath announces the check information r̃ := Cr and S̃ := CS and the derandomization
information ã := a−Gr and b̃ := b−GSh, where (a, b) ∈ Fkq ×Fkq is his OAFE input.

• David randomly picks a second share z r← {z̃ ∈ F1×k
q | z̃h = x}, where x ∈ Fq is his

OAFE input. He inputs z into the token, whereupon the token has to compute and output
W := rz + S. When the check CW

?= r̃z + S̃ is passed, David computes and outputs
y := GWh+ ãx+ b̃; else he outputs some default value.

Now, neither Goliath nor the token can gather non-negligible information about David’s OAFE
input x. Given any set of token inputs Z ⊆ F1×k

q adversarially chosen in advance, the hyperplanes
{z̃ ∈ F1×k

q | zh = x}x∈Fq will partition Z into q subsets of roughly equal size, since h is uniformly
random. In other words, when the token behaves dishonestly on some input set Z ( F1×k

q , the
abort probability is practically independent of David’s input x.

A remarkable property of our protocol is that David’s input x is only needed in the last step,
where no further communication with Goliath takes place. So, we can partition the protocol into
an interactive phase (where Goliath provides his OAFE input) and a non-interactive phase (where
David provides his input and learns his output). Therefore, we say that our protocol is “semi-
interactive”. A formal description of the full protocol Πsemi−int

OAFE is given in Figure 7.1.
There are two crucial differences between Πsemi−int

OAFE and the construction in [DKMQ11]. Firstly,
we changed from F2 to Fq with the explicit option that q may depend on the security parameter.
This will enable us to implement OTMs, string-OT and string-commitments at optimal communi-
cation rate (cf. Section 7.2.1 and Section 7.2.5). Secondly, due to a new security proof we no longer
need that Goliath’s “commitments” (r̃1, S̃1), . . . , (r̃n, S̃n) are statistically independent of David’s
input shares h1, . . . , hn. This allows for multiple send phases and choice phases in mixed order, so
that a token that shares some random source with its issuer Goliath can be reused over and over
again without any predefined limit (cf. Section 7.2.4).

At this point we also want to point out that in the protocol description of Figure 7.1 we purposely
do not exactly specify how the parameters k and q depend on the security parameter λ. In fact, for
our security proof we only need that k · log q = λ and k ≥ 5; e.g. one can choose k to be constant
and q to increase exponentially. With parameters chosen this way, our protocol Πsemi−int

OAFE has only
linear communication complexity, what is clearly optimal. The condition that k ≥ 5 results from
our proof techniques and is probably not tight. If k = 1, the protocol is not UC-secure against a
corrupted sender party (see Remark 43 below), but for 2 ≤ k ≤ 4 we are not aware of any potential
attack. However, note that F seq−ot

OAFE with k < 5 can be implemented from F seq−ot
OAFE with k = 5

straightforwardly and the reduction protocol itself has only linear overhead. Thus, the asymptotic
optimality of our construction with k = 5 does directly carry over to the case that k < 5.

Finally, we want to note that our protocol allows any polynomial number of send phases to be
performed in parallel, so that one can still issue the polynomially many OTMs needed for an OTP
by just constantly many rounds of communication (cf. Section 7.2.3).

Remark 43. Our protocol Πsemi−int
OAFE is not UC-secure against a corrupted sender Goliath, if k = 1.

Proof. The problem with k = 1 basically arises from the fact that in this case Goliath’s shares hi
of David’s inputs xi are invertible field elements. Consider a maliciously programmed token that
stops functioning after the first choice phase, if z1 ∈ Z for some adversarially chosen Z ⊆ Fq, e.g.
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with |Z| = q
2 , and otherwise just follows the protocol. Since Goliath knows Z and learns h1 during

the protocol, he also knows exactly on which inputs x1 the token breaks: It breaks, if x1h
−1
1 ∈ Z.

In other words, it depends on x1, if David’s outputs y2, . . . , yn are all-zero or not. This is not
simulatable in the ideal model, because the simulator gets absolutely no information about the
uncorrupted David’s inputs.

Protocol Πsemi−int
OAFE

Parametrized by a finite vector space Fkq and some runtime bound n that is polynomially bounded in the
security parameter λ := k log q. The setup phase is executed right at the start of the first send phase.

Setup phase:
i. For i = 1, . . . , n, Goliath chooses a random vector ri

r← F
4k
q and a random matrix Si

r← F
4k×k
q ,

creates a token T with parameters (r1, S1), . . . , (rn, Sn) and sends T to David via F stateful
wrap . The

token also contains a counter j′queried and Goliath has a counter jcreated, both initialized to 0.

ii. Having received T , David chooses a random matrix C
r← F

3k×4k
q , computes some G ∈ Fk×4k

q

complementary to C and sends (C,G) to Goliath. Furthermore, David initializes two counters
jqueried, jsent ← 0 and an initial flag f0 ← >.

iii. If Goliath finds G not complementary to C, he aborts the protocol.

Send phases:
1. Upon input (ai, bi, i) from the environment, Goliath verifies that ai, bi ∈ Fkq and i = jcreated + 1 ≤ n;

else he ignores that input. Next, Goliath updates jcreated ← i, computes r̃i ← Cri and S̃i ← CSi and
sends (r̃i, S̃i, i) to David.

2. David chooses a random vector hi
r← F

k
q \ {0} and sends (hi, i) to Goliath.

3. Goliath computes ãi ← ai−Gri and b̃i ← bi−GSihi and sends (ãi, b̃i, i) to David, who ignores that
message if not i = jsent + 1 ≤ n.

4. David updates jsent ← i and outputs (ready, i) to the environment.

Throughout the whole send phase, obviously malformed messages are just ignored by the respective receiver.

Choice phases:
5. Upon input (xi, i) from the environment, David verifies that xi ∈ Fq and i = jqueried+1 ≤ jsent; else he

ignores that input. Next, he updates jqueried ← i, chooses a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi}
and inputs (zi, i) into the token T .

6. The token verifies that zi ∈ F1×k
q and i = j′queried + 1 ≤ n; else it ignores that input. Next, the token

updates j′queried ← i, computes Wi ← rizi + Si and outputs Wi to David.

7. David verifies that fi−1 = > and CWi = r̃izi+S̃i; ifWi /∈ F4l×k
q , it is treated as an encoding of the all-

zero matrix in F4l×k
q . If the check is passed, David sets fi ← > and computes yi ← GWihi+ ãixi+ b̃i;

otherwise he sets fi ← ⊥ and yi ← 0 (such that yi ∈ Fkq ). Then he outputs (yi, i) to the environment.

Figure 7.1: A protocol for semi-interactive sequential OAFE, using one tamper-proof token. Note
that several send and choice phases can be executed in mixed order with the only restriction that
an honest David will not enter the i-th choice phase before the i-th send phase has been completed.
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7.2 Refinements and applications of our construction

Before we give a formal security proof for our protocol Πsemi−int
OAFE , we first want to present how the

claimed optimal constructions for multiple OTMs, Commitments and OT (cf. Section 5.2) do work.
As mentioned above, we will prove security of our protocol Πsemi−int

OAFE only for the case that k ≥ 5.
However, F seq−ot

OAFE with k < 5 can be implemented from F seq−ot
OAFE with k = 5 straightforwardly and

the reduction protocol itself has only linear overhead. Thus, the asymptotic optimality of our
construction for F seq−ot

OAFE with k = 5 does directly carry over to the case that k < 5.
At the end of this section, in Section 7.2.7, we also discuss why for computationally secure OT

protocols an improvement of the communication complexity is not a noteworthy result. However,
this does neither affect statistically secure OT nor any commitment or OTM constructions.

7.2.1 Unidirectional string-OT and OTMs with optimal communication complexity

As discussed in Section 6.4, one can reduce k-bit string-OT and Fk2-OAFE to each other without any
overhead. However, our construction for seq-ot-OAFE has communication complexity Θ(nk2 log q).
I.e., by the aforementioned reduction approach we would end up with a communication complexity
of Θ(k2) per implemented instance of k-bit string-OT, as it happened in [DKMQ11]. In contrast, if
k is constant and q grows exponentially in the security parameter, we have only a communication
complexity of O(log q) for each implemented instance of Fkq -OAFE (q.v. Figure 7.1), what is clearly
optimal. Therefore, it is desirable to implement l-bit string-OT by a constant number of Fd2l-
OAFE instances with constant dimension d. We present such a reduction protocol in Figure 7.2;
our construction needs only a single instance of F2

2l-OAFE and the protocol idea is as follows. The
F2

2l-OAFE primitive allows the sender party to specify two affine functions f0, f1 : F2l → F2l , such
that the receiver party can evaluate both functions only once and only simultaneously on the same
input. Thus, if the sender party announces its OT-inputs s0 and s1 encrypted with f0(0) and f1(1)
respectively, then the receiver party may learn at most one of the values needed for decryption of
s0 and s1. One can even go without transmitting any ciphertexts: The sender party just has to
choose f0, f1, such that f0(0) = s0 and f1(1) = s1, whereas f0(1) and f1(0) are completely random.

a, b
r← F

2
2l

m0 := s0 ⊕ (e0 · b)
m1 := s1 ⊕

(
e1 · (a+ b)

) m0,m1

with {e0, e1} being
any public basis of
the linear space F1×2

2l

F
2
2l -OAFE

a

b

c

ac+ b y

l-bit string-OT

s0

s1

c

mc ⊕ (ec · y) sc

Figure 7.2: Reduction of l-bit string-OT to F2
2l-OAFE. Note that the transmission of m0 and m1 is

not essential; instead the sender party can just choose (a, b) subject to the condition that e0 · b = s0
and e1 · (a+ b) = s1.

The protocol in Figure 7.2 is perfectly UC-secure, what can be shown straightforwardly, and it
also works perfectly for implementation of sequentially queriable OTM tokens from seq-ot-OAFE
(cf. the respective discussion in Section 6.4). Thus, in the outcome we also have a construction
for sequentially queriable log(q)-bit OTM tokens, using only Θ(log q) bits of communication per
implemented OTM token. This communication complexity is clearly optimal and to the best of our
knowledge our approach is the first to implement statistically secure OT (or OTMs respectively)
with optimal communication complexity, while based only on untrusted tamper-proof hardware.
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Note that our protocols with linear communication complexity also have very low computation
complexity. Per implemented log(q)-bit string-OT (or log(q)-bit OTM respectively) every party
(and in particular the exchanged token) has only to perform O(1) finite field operations with field
size q, what is considerably faster than, e.g., something based on modular exponentiation.

7.2.2 Achieving optimal communication complexity for bidirectional string-OT
In Section 7.2.1 we have shown how one can implement unidirectional string-OT (from the token
issuer to the token receiver) with optimal communication complexity, using our protocol Πsemi−int

OAFE
as a building block. Implementing string-OT in the other direction (from the token receiver to
the token issuer) with optimal communication complexity turns out a bit more challenging. The
starting point for our construction is the protocol in Figure 7.3 for reversing the direction of a
given Fq-OAFE primitive. Note that this protocol is not UC-secure, since a corrupted sender can
cause the receiver to output some y before a and b are fixed: The corrupted sender can just send a
random m ∈ Fq and arbitrarily later input some a ∈ Fq of his choice into the underlying Fq-OAFE
instance (and then compute b := m − z). This breaches UC-security, since an ideal version of the
reversed Fq-OAFE primitive would not send y to the receiver party before the sender’s inputs a and
b are fixed. However, in our case this problem has a simple solution: Since our protocol Πsemi−int

OAFE
implements sequentially queriable OAFE instances, it suffices to use every other OAFE instance for
a check announcement, i.e. both parties just input randomness and the receiver has to announce
his input-output tuple (cf. Section 6.4).

Fq-OAFE
x

Fq
r→ r

a

ax+ r z

m := z + b

reversed Fq-OAFE

x a

b

m− ry

Figure 7.3: Basic approach for reversing the direction of a given Fq-OAFE primitive; protocol
taken from [WW06]. Note that this protocol is not UC-secure, unless input of a into the underlying
Fq-OAFE instance is enforced before the receiver outputs y; otherwise a corrupted sender can
maliciously delay his choice of a (and b).

Obviously, the approach in Figure 7.3 does not work for Fkq -OAFE with k > 1, but we need
F2
q-OAFE for our aimed at OT protocol. Thus, a construction for Fkq -OAFE from some instances

of Fq-OAFE would come in very handy. In [DKMQ12b] one can find such a construction and a
security proof for the case that k log q increases polynomially in the security parameter. For the
sake of self-containedness we recap in Figure 7.4 the approach of [DKMQ12b] with k = 2. By
combining this with the protocol in Figure 7.3 and some optimization in the number of Fq-OAFE
instances used for check announcements we end up with the protocol depicted in Figure 7.5.

Now, by plugging the protocol of Figure 7.5 on top of Πsemi−int
OAFE (q.v. Figure 7.1) we get sequen-

tially queriable F2
q-OAFE from the token receiver to the token sender with an overall communication

complexity of O(log q) per implemented F2
q-OAFE instance. So finally, we can apply again the pro-

tocol of Figure 7.2 and thereby implement string-OT with optimal communication complexity also
in the direction from the token receiver to the token issuer.
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Fq-OAFErandom αi

random βi

x

αix+ βi γi

for i ∈ {1, . . . , 5}

H
r← F

2×5
q

α′ := a−H · (α1, . . . , α5)T

β′ := b−H · (β1, . . . , β5)T

F
2
q-OAFE

xa

b

α′x+ β′ +H · (γ1, . . . , γ5)T y

Figure 7.4: Implementation of F2
q-OAFE from five instances of Fq-OAFE; protocol taken from

[DKMQ12b]. Additional measures must be taken so that H is not announced before the receiver
party has provided some input to all five underlying Fq-OAFE instances in the dashed box; other-
wise the protocol is inherently insecure, as shown in [DKMQ12b, Lemma 1].

Fq-OAFE
x

Fq
r→ γi

αi
r← Fq

αix+ γi βi

for i ∈ {1, . . . , 5}

Fq-OAFE0
Fq

r→ ρ

0

ρ

ρ

H
r← F

2×5
q

α′ := a−H · (α1, . . . , α5)T

β′ := b−H · (β1, . . . , β5)T

reversed F2
q-OAFE

x a

b

α′x− β′ −H · (γ1, . . . , γ5)Ty

Figure 7.5: Combined protocol for UC-secure reversed F2
q-OAFE from six sequentially queriable

instances of Fq-OAFE. Note that the receiver must not output y unless ρ was announced correctly
by the sender party.
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7.2.3 Reducing the number of rounds, e.g. for one-time programs
In [GIS+10] so-called trusted OTPs are implemented from a polynomial amount of OTM tokens. As
an honest receiver will query these tokens in some predefined (and publicly known) order, we can
adapt the results of [GIS+10] to implement trusted OTPs from a single untrusted hardware token
(cf. Section 6.4). However, if one implements some polynomial number (say l) of sequentially que-
riable OTM tokens by the construction we proposed in Section 6.4, one will end up with more than
thrice as many (i.e. 3l) rounds of communication between David and Goliath. This round complex-
ity can be dramatically reduced as follows: In our protocol Πsemi−int

OAFE (q.v. Figure 7.1), instead of
performing a large number of individual send phases, David can already announce h1, . . . , hl along
with the check matrix C in step ii of the setup phase and Goliath can send all his announcements of
the corresponding l send phases in one single message

(
(r̃1, S̃1, 1), (ã1, b̃1, 1), . . . , (r̃l, S̃l, l), (ãl, b̃l, l)

)
.

Thereby we end up with two rounds of communication, not counting for the transmission of the
token. This modification of the protocol Πsemi−int

OAFE does not breach its security: In our formal secu-
rity proof we even assume that a corrupted Goliath’s announcement of

(
(r̃1, S̃1), . . . , (r̃n, S̃n)

)
may

arbitrarily depend on (h1, . . . , hn). Hence, our security proof does directly carry over to the modi-
fied protocol. Note that analogously we just can arbitrarily parallelize multiple send phases of our
protocol Πsemi−int

OAFE without jeopardizing security. This can be used, e.g., to implement polynomially
many OTs (cf. Section 7.2.1) or commitments (cf. Section 7.2.5) with constant round complexity.

It is quite straightforward to see that a two-round protocol for implementation of polynomi-
ally many OTM tokens from a single piece of untrusted tamper-proof hardware is optimal—
cf. [DKMQ11, Theorem 1]. Furthermore, our new two-round protocol is an improvement upon
[DKMQ11], where we needed four rounds of communication between David and Goliath.

7.2.4 Computational solution for unlimited token reusability
Our protocol Πsemi−int

OAFE (q.v. Figure 7.1) guarantees perfect security against David (cf. Section 8.2).
However, to achieve this, the token needs to be able to store Θ(nk2 log q) bits of information. This
contradicts the idea of a tamper-proof hardware token being a small and simple device. In [MS08]
it was noted, that if David is computationally bounded, then the functions stored on the token
could be chosen to be pseudorandom [GGM86, HILL99]. The same is true for our construction.
It suffices that the token stores a succinct seed of length Θ(k log q) for a pseudorandom number
generator F . Upon input (zi, i) the token can compute the next pseudorandom value (ri, Si) = F (i)
and output Wi = rizi + Si.

Moreover, in such a setting we do not need our protocol Πsemi−int
OAFE and the ideal functionality

F seq−ot
OAFE to be parametrized by an explicit runtime bound n, as David’s computational boundedness

implies a polynomial upper bound for the number of token queries.

7.2.5 Efficient protocol for string-commitments in any direction
At this point we also want to note that string commitments can be implemented directly from seq-
ot-OAFE, even if the dimension k is constant (i.e. q grows exponentially in the security parameter).
See Figure 7.6 for the reduction protocols; they work analogously to the standard constructions
for commitments from OT. As our protocol for seq-ot-OAFE with constant dimension k has only
linear complexity, we thus get asymptotically optimal protocols for string commitments.
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Protocol Πforward
COM (Goliath is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n that
is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized by the
finite vector space F1

2l and with runtime bound n. Bit strings of length l and elements of F2l are identified
with each other. The counter j, held by Goliath, is initialized to 0.

Commit phases:
1. Upon input (Commit, si, i) from the environment, Goliath verifies that si ∈ {0, 1}l and i = j+ 1 ≤ n;

else he ignores that input. Next, Goliath updates j ← i, chooses some random bi
r← F2l and sends

(si, bi, i) to F seq−ot
OAFE .

2. David, upon receiving the message (ready, i) from F seq−ot
OAFE , picks some random xi

r← F2l . He sends
(xi, i) to F seq−ot

OAFE , receives some (yi, i) and outputs (committed, i).

Unveil phases:
3. Upon input (Unveil, i) from the environment, Goliath verifies that i ≤ j; else he ignores that input.

Next, Goliath sends (si, bi, i) to David.

4. David verifies that sixi + bi = yi. If the check is passed, he outputs (si, i); otherwise he outputs
(⊥, i).

Protocol Πbackward
COM (David is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound 2n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by David, is initialized to 0.

Commit phases:
1. Upon input (Commit, si, i) from the environment, David verifies that si ∈ {0, 1}l and i = j + 1 ≤ n;

else he ignores that input. Next, David updates j ← i and sends (i) to Goliath.

2. Goliath randomly picks ai, bi, ci, di
r← F2l and sends (ai, bi, 2i− 1) and (ci, di, 2i) to F seq−ot

OAFE .

3. David, after receiving the messages (ready, 2i − 1) and (ready, 2i) from F seq−ot
OAFE , sends (si, 2i − 1)

and (0, 2i) to F seq−ot
OAFE . He receives some (yi, 2i− 1) and (ri, 2i) and announces (ri, i) to Goliath.

4. Goliath outputs (committed, i).

Unveil phases:
5. Upon input (Unveil, i) from the environment, David verifies that i ≤ j; else he ignores that input.

Next, David sends (si, yi, i) to Goliath.

6. Goliath verifies that ri = di and yi = aisi + bi. If the check is passed, he outputs (si, i); otherwise
he outputs (⊥, i).

Figure 7.6: Asymptotically optimal protocols for string commitments from seq-ot-OAFE. Note
that in a straightforward manner one can use the same instance of F seq−ot

OAFE for both protocols
simultaneously.
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7.2.6 Non-interactive solution with two tokens
Our approach still needs the receiver party David to send some messages to the sender party Goliath.
In particular, for each implemented instance of Fkq -OAFE we have an interactive send phase and
a non-interactive choice phase (q.v. Figure 7.1). Therefore, we say that our protocol Πsemi−int

OAFE is
“semi-interactive”. It is quite straightforward to see that one cannot implement F seq−ot

OAFE from a
single instance of F stateful

wrap by any non-interactive protocol—cf. [DKMQ11, Theorem 1]. However,
we can easily give a generic non-interactive protocol for F seq−ot

OAFE , if two instances of F stateful
wrap are in

place, i.e. the sender party Goliath issues two tamper-proof tokens and the receiver party David
can trust that the tokens are mutually isolated. Then, the second token can play Goliath’s role in
the protocol Πsemi−int

OAFE with random inputs ai and bi. As Goliath knows the second token’s random
coins, derandomization of his inputs can be done as follows: If Goliath wants to replace the random
input tuple (ai, bi) by some arbitrarily chosen (a′i, b′i), he just sends (a′i−ai, b′i− bi, i) to David, who
then has to replace his output yi by y′i := yi + (a′i − ai)xi + (b′i − bi).

Note that based on the two-token protocol that implements F seq−ot
OAFE with random Goliath inputs,

step 2 of Πbackward
COM (q.v. Figure 7.6) can be made non-interactive, as Goliath does not need to

derandomize any of his inputs. All other protocols become non-interactive straightforwardly.

7.2.7 A note on optimal communication complexity
The string length of any computationally secure OT protocol can be polynomially extended by
standard techniques (cf. protocol Πenlarge

OT in Figure 7.7). It is straightforward to show UC-security
of this approach. Hence, optimal communication complexity of the computational versions of
our OT solution is not a noteworthy result. However, applying an analogous transformation to
commitments or OTMs would destroy UC-security (see Remark 44 below) and we are not aware
of any universally composable amortization techniques for these primitives that do not come along
with additional setup assumptions.

Remark 44. The protocols Πenlarge
COM and Πenlarge

OTM in Figure 7.7 are not UC-secure.

Proof. We just show that Πenlarge
COM is not UC-secure. For Πenlarge

OTM one can argue analogously. Consider
a passively corrupted receiver party that just hands over every message to the environment. For
the real model, this means that in the commit phase the environment learns some k-bit string r
and in the unveil phase it learns a seed s ∈ {0, 1}l, such that r ⊕ F (s) is the honest sender party’s
input c. Now, if the environment chooses the honest sender party’s input c ∈ {0, 1}k uniformly at
random, this is not simulatable in the ideal model. The simulator has to choose r before he learns
c. Thus, using a simple counting argument, the probability that there exists any seed s ∈ {0, 1}l
with r⊕F (s) = c can be upper bounded by 2l−k. In other words, the simulation fails at least with
probability 1− 2l−k.
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Protocol Πenlarge
OT

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOT for l-bit string-OT
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

1. Upon input (s0, s1) from the environment, the sender party verifies that s0, s1 ∈ {0, 1}k; else that
input is ignored. Next, the sender party chooses two random seeds s̃0, s̃1

r← {0, 1}l and inputs (s̃0, s̃1)
into FOT.

2. Upon input x from the environment, the receiver party verifies that x ∈ {0, 1}; else that input is
ignored. Next, the receiver party inputs x into FOT, thus receiving s̃x.

3. The sender party, after being notified that everybody did provide some input to FOT, announces
r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

4. The receiver party computes and outputs sx = rx ⊕ F (s̃x).

Protocol Πenlarge
COM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FCOM for l-bit string-
commitment and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Commit phase:
1. Upon input (Commit, c) from the environment, the sender party verifies that c ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses some random s̃
r← {0, 1}l, commits to s via FCOM

and sends r := c⊕ F (s̃) to the receiver party.

2. The receiver party outputs (committed).

Unveil phase:
3. Upon input (Unveil) from the environment, the sender party unveils s̃.

4. If the unveil is successful, the receiver party computes and outputs r⊕F (s̃); otherwise it outputs ⊥.

Protocol Πenlarge
OTM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOTM for l-bit OTM
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Creation:
1. Upon input (s0, s1) from the environment, the sender party verifies that s0, s1 ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses two random seeds s̃0, s̃1
r← {0, 1}l, sends (s̃0, s̃1)

via FOTM to the receiver party and announces r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

2. The receiver party outputs (ready).

Query:
3. Upon input x from the environment, the receiver party verifies that x ∈ {0, 1}; else that input is

ignored. Next, the receiver party inputs x into FOTM, thus receiving s̃x, and computes and outputs
sx = rx ⊕ F (s̃x).

Figure 7.7: Straightforward approaches for enlarging the string length of some given OT, commit-
ment or OTM functionality, using a PRNG. The protocol Πenlarge

OT is UC-secure, but Πenlarge
COM and

Πenlarge
OTM are not (q.v. Remark 44).



8 Correctness and security of our protocol

In this section we show that in the F stateful
wrap -hybrid model our protocol Πsemi−int

OAFE (q.v. Figure 7.1)
is a universally composable implementation of the ideal functionality F seq−ot

OAFE (q.v. Figure 6.3), if
only k ≥ 5. In particular, in Section 8.2 we will prove perfect security against a corrupted David
for all k and in Section 8.3 we will prove statistical security against a corrupted Goliath for the
case that k ≥ 5. However, first of all we will show that Πsemi−int

OAFE always works correctly when no
party is corrupted (Section 8.1).

8.1 Correctness
In a totally uncorrupted setting, simulation is straightforward. Since the simulator always is notified
when the ideal Goliath receives input from the environment and the simulator also may arbitrarily
delay the ideal David’s corresponding ready-message, he can perfectly simulate any scheduling of
the messages in the send phase. In turn, the choice phase cannot be influenced by the real model
adversary and therefore can be simulated trivially. Furthermore, whenever in the real model the
receiver David outputs some (yi, i), it holds that yi = aixi + bi, as one can verify as follows:

yi = G (rizi + Si)︸ ︷︷ ︸
=Wi

hi + (ai −Gri)︸ ︷︷ ︸
=ãi

xi + bi −GSihi︸ ︷︷ ︸
=b̃i

= Gri (zihi − xi)︸ ︷︷ ︸
=0

+aixi + bi

Also note that in a totally uncorrupted setting David’s consistency checks are always passed.

8.2 Security against a corrupted receiver
We first show security against a corrupted receiver party David, as this is the easy case. Basically,
there are only two things a corrupted David can do: follow the protocol honestly, or query the
token before the respective send phase is over. We will refer to the former as the regular case and
to the latter as the irregular case. A bit more formally, regarding some specific i ∈ {1, . . . , n} we
speak of the regular case if David sends (hi, i) to Goliath before inputting (zi, i) into the token,
and we speak of the irregular case if David sends (hi, i) to Goliath after inputting (zi, i) into the
token. Note that, although David is corrupted, hi and zi are still well-defined since Goliath and the
token accept only well-formed messages (hi, i) and (zi, i) respectively. It is quite straightforward
to see that due to the randomness of (ri, Si) every value seen by David, namely r̃i, S̃i, ãi, b̃i,Wi, is
just uniformly random subject to the sole condition that in the end the correct result yi can be
computed. We formalize this by the next lemma.

Lemma 45. In our protocol Πsemi−int
OAFE , if Goliath is honest, the variables r̃i, S̃i, ãi, b̃i,Wi are just

uniformly random subject to the condition that CWi = r̃izi+S̃i and GWihi+ãizihi+ b̃i = aizihi+bi.

Proof. We give a proof by cases and start off with the regular case, i.e. David first sends (hi, i) to
Goliath and later on inputs (zi, i) into the token. In this case, Goliath obviously just announces some
r̃i, S̃i, ãi, b̃i uniformly at random. Consequently, we have to show now that the token output Wi is
uniformly random subject to the condition that CWi = r̃izi+S̃i and GWihi+ãizihi+b̃i = aizihi+bi.
However, we can imagine that right before the computation of Wi the token’s stored randomness
Si is uniformly resampled subject to the condition that CSi = S̃i and GSihi = bi− b̃i. This clearly
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does not change David’s view at all. In other words, we can replace Si by Si + S′, where S′ is
uniformly random subject to the condition that CS′ = 0 and GS′h = 0. Thereby, Wi is also
replaced by Wi + S′ and hence becomes uniformly random subject to the sole condition that CWi

and GWihi are not changed. This means that Wi is uniformly random subject to the condition
that CWi = r̃izi + S̃i and GWihi = (ai − ãi)zihi + bi − b̃i. This concludes our proof for the regular
case.

Now we consider the irregular case, i.e. the corrupted David inputs (zi, i) into the token before
he sends (hi, i) to Goliath. In this case, (r̃i, S̃i) announced by Goliath and the token’s output Wi

are just uniformly random subject to the condition that CWi = r̃izi + S̃i. Consequently, we have
to show now that the honest Goliath’s announcement of (ãi, b̃i) is uniformly random subject to
the condition that GWihi + ãizihi + b̃i = aizihi + bi. However, we can imagine that right before
the computation of (ãi, b̃i) the stored randomness ri in Goliath’s memory is uniformly resampled
subject to the condition that Cri = r̃i, and Si is replaced by the new value of Wi − rizi. It is
straightforward to verify that this does not change the corrupted David’s view at all. In other
words, we can replace (ri, Si) by (ri + r′, Si − r′zi), where r′ is uniformly random subject to the
condition that Cr′ = 0. Thereby, ãi is replaced by ãi − Gr′ and hence becomes just uniformly
random over Fkq , since G is complementary to C and thus Gr′ itself is uniformly random over Fkq .
Analogously, b̃i is replaced by b̃i +Gr′zihi, and it still holds:

GWihi + (ãi −Gr′)︸ ︷︷ ︸
new ãi

zihi + (b̃i +Gr′zihi)︸ ︷︷ ︸
new b̃i

= GWihi + ãizihi + b̃i = aizihi + bi

This means that ãi, b̃i are uniformly random subject to the sole condition that GWihi+ ãizihi+ b̃i =
aizihi + bi. This concludes our proof for the irregular case.

This lemma leads to a very straightforward simulator construction for the UC framework. When
the corrupted David queries the token after he already got the derandomization information (ãi, b̃i)
from Goliath in the corresponding send phase, the simulator can revise the token’s output Wi

so that the check CWi
?= r̃izi + S̃i is still passed, but GWi now matches a protocol run in the

real model: When the token is to output Wi, the simulator has already seen both shares zi, hi
that are needed to extract David’s input xi. The simulator can then query the ideal functionality
F seq−ot

OAFE on this input xi, thus receiving yi, and then revise Wi by some W ′ so that CW ′ = CWi

and yi = GW ′hi + ãixi + b̃i. Note that existence of such a W ′ is always guaranteed, since G is
complementary to C (i.e. especially G has full rank) and h 6= 0.

When the corrupted David queries the token before he got the derandomization information
(ãi, b̃i) from Goliath in the corresponding send phase, the simulator can easily revise Goliath’s
announcement of the derandomization information so that it matches a protocol run in the real
model: When Goliath is to announce the derandomization information (ãi, b̃i), the simulator has
already seen both shares zi, hi that are needed to extract David’s input xi. The simulator can then
query the ideal functionality F seq−ot

OAFE on this input xi, thus receiving yi, and then just revise b̃i so
that yi = GWihi + ãixi + b̃i.

A formal description of this simulator construction is given in Figure 8.1. We conclude this
section with the corresponding security theorem.

Theorem 46. Let some arbitrary environment Z be given and some adversary A that corrupts the
receiver David. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and simulator
SDavid(A) is identically distributed to the view of Z in the real model with protocol Πsemi−int

OAFE and
adversary A.

Proof. This directly follows by Lemma 45.



8.3. Security against a corrupted sender 83

Simulator SDavid(A)

• Set up an honest Goliath-machine G; also set up simulated versions of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted David). Wire the simulated ma-
chines A,G,F stateful

wrap to each other and A to the environment right the way they would be wired in
the real model with protocol Πsemi−int

OAFE (q.v. Figure 7.1).

• Upon receiving a message (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Then, upon receiving (ready, i) on behalf of the corrupted David, choose some random vectors
ai, bi

r← F
k
q and let G start the i-th send phase with input (ai, bi, i).

• Whenever G is to send some (ãi, b̃i, i) to the corrupted David in step 3 of Πsemi−int
OAFE , extract the

current state j of j′queried from the view of the simulated F stateful
wrap . If j ≥ i, replace the announcement

(ãi, b̃i, i) by (ãi, b̃′, i), with b̃′ computed as follows:
0. Extract G, hi from the view of G and zi,Wi from the view of the simulated F stateful

wrap .
1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Set b̃′ ← yi −GWihi − ãixi.

• Whenever the token is to output some matrix W to the corrupted David in step 6 of Πsemi−int
OAFE ,

extract the current state i of j′queried from the view of the simulated F stateful
wrap . When G has already

received (and not ignored) a message (hi, i) in step 3 of Πsemi−int
OAFE , replace the token’s output by W ′,

computed as follows:
0. Extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of G and zi from the view of the simulated F stateful

wrap .
1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Choose randomly W ′ r←
{
W̃ ∈ F4k×k

q

∣∣ CW̃ = r̃izi + S̃i ∧ GW̃hi + ãixi + b̃i = yi
}
.

Figure 8.1: The simulator program SDavid(A), given an adversary A that corrupts David.

8.3 Security against a corrupted sender

The case of a corrupted sender Goliath is the technically challenging part of the security proof. How-
ever, before we give our simulator construction for a corrupted sender Goliath (q.v. Section 8.3.5),
we first take a closer look at the problems we have to deal with, and introduce the respective
solution tools (Section 8.3.1, Section 8.3.3, Section 8.3.2 and Section 8.3.4).

8.3.1 Independence of the token view

We start our security considerations with showing that an honest David’s token inputs z1, . . . , zn
are statistically indistinguishable from uniform randomness. This is necessary for security, since
otherwise David’s OAFE inputs x1, . . . , xn would be non-negligibly correlated with the token view
and a malicious token’s behavior in the n-th choice phase could depend on x1, . . . , xn−1.

W.l.o.g., we can assume that David’s random tape is chosen after all other random tapes, i.e.
we can consider everything to be deterministic except for David’s random choice of h1, . . . , hn and
z1, . . . , zn. However, as we are aiming for universal composability, we must take into account that
David’s i-th OAFE input xi might depend on everything that Goliath learned so far. In particular,
all n send phases might already be over, i.e. Goliath already knows h1, . . . , hn, and there might have
leaked some little information about z1, . . . , zi−1 during past choice phases. Therefore, we have to
model David’s i-th OAFE input xi as a function value xi(h1, . . . , hn, z1, . . . , zi−1).
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Lemma 47. Let Fq be some arbitrary field of size q ≥ 2 and let k, n ∈ N>0. Let U := F1×k
q and

H := Fkq \ {0}. Further, for i = 1, . . . , n let any mapping xi : Hn × U i−1 → Fq be given. Finally,
for i = 1, . . . , n we define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)
}

ui
r← U

Then it holds that SD
(
(z1, . . . , zn), (u1, . . . ,un)

)
< 1

2

√
exp

(
n · q2−k)− 1.

Proof. We show this by estimation techniques borrowed from a proof for the Leftover Hash Lemma
[AB09, proof of Lemma 21.26]. Let ~z ∈ RUn denote the probability vector of (z1, . . . , zn) and let
~u ∈ RUn denote the probability vector of (u1, . . . ,un). Note that ~z − ~u is orthogonal to ~u:

〈~z − ~u | ~u〉 = 〈~z | ~u〉 − 〈~u | ~u〉 = ‖~z‖1
|Un| −

‖~u‖1
|Un| = 1

|Un| −
1
|Un| = 0

Let the 2n-tuple of random variables (h′1, . . . ,h′n, z′1, . . . , z′n) be identically distributed as its un-
primed counterpart (h1, . . . ,hn, z1, . . . , zn). The following equation system has exactly qk−2 differ-
ent solutions z ∈ U if hi and h′i are linearly independent, and at most qk−1 solutions otherwise:

zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)
zh′i = xi(h′1, . . . ,h′n, z′1, . . . , z′i−1)

Using the auxiliary random variable m := #
{
i ∈ {1, . . . , n}

∣∣ hi and h′i are linearly independent
}
,

we can thus estimate:

P
[
(z1, . . . , zn) = (z′1, . . . , z′n)

∣∣ m = m
]
≤
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m

Further, we have that P[m = m] =
(n
m

)
·
(
|H|−(q−1)
|H|

)m
·
(
q−1
|H|

)n−m
by construction. It follows:

‖~z‖22 = P
[
(z1, . . . , zn) = (z′1, . . . , z′n)

]
=

n∑
m=0

P[m = m] ·P
[
(z1, . . . , zn) = (z′1, . . . , z′n)

∣∣ m = m
]

≤
n∑

m=0

(
n

m

)
·
( |H| − (q − 1)

|H|

)m
·
(
q − 1
|H|

)n−m
·
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
=
(
1 + (q−1)2

|H|

)n
· q−nk

Using the Pythagorean Theorem, we can now estimate:

‖~z − ~u‖22 = ‖~z‖22 − ‖~u‖22 ≤
(
1 + (q−1)2

|H|

)n
· q−nk − q−nk

Since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, this yields:

SD
(
(z1, . . . , zn), (u1, . . . ,un)

)
= 1

2‖~z − ~u‖1 ≤
1
2

√
|Un| · ‖~z − ~u‖2 ≤ 1

2

√(
1 + (q−1)2

|H|

)n
− 1

To conclude our proof, we further estimate:(
1 + (q−1)2

|H|

)n
= exp

(
n · ln

(
1 + (q−1)2

|H|

))
< exp

(
n·(q−1)2

|H|

)
< exp

(
n · q2−k

)
We will use this lemma not directly but for showing that the token functionality in the (m+ 1)-

th choice phase can be considered to be independent of C and hm+1, . . . , hn. So in the following
corollary, the random variable R can be thought of as David’s random choice of (C, hm+1, . . . , hn).
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Corollary 48. Let Fq be some arbitrary field of size q ≥ 2 and let k,m ∈ N>0. Let U := F1×k
q

and H := Fkq \ {0}. Further, let R be some arbitrary random variable with finite support R. For
i = 1, . . . ,m let any mapping xi : R × Hm × U i−1 → Fq be given. Finally, for i = 1, . . . ,m we
define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(R,h1, . . . ,hm, z1, . . . , zi−1)
}

Then it holds that ι
(
R, (z1, . . . , zm)

)
<
√

exp
(
mq2−k)− 1.

Proof. By the Triangle Inequality (and the definition of ι, q.v. Section 6.1), we already have that
ι
(
R, (z1, . . . , zm)

)
≤ 2 ·SD

(
(z1, . . . , zm), (u1, . . . ,um)

)
for any random variables u1, . . . ,um that are

statistically independent from R. Hence, our corollary directly follows by Lemma 47.

After all, note that independence between the token view and David’s OAFE inputs x1, . . . , xn
is only a starting point for our security proof. E.g., we have not used so far David’s consistency
check CWi

?= r̃izi + S̃i in the final step of the choice phases. Lemma 47 and Corollary 48 would
still hold true without this consistency check, but the protocol would become susceptible to attacks
where the token encodes zi−1 into Wi. Now, if this information about zi−1 is unveiled to Goliath,
e.g. through the unveil message in a commitment protocol (q.v. Protocol Πbackward

COM in Figure 7.6),
he can possibly reconstruct David’s secret OAFE input xi−1, although the token still learns nothing
but uniform randomness. Thus, what we have shown so far can only be one core argument amongst
several others.

8.3.2 Committing the token to affine behavior

In Section 7.1 we argued that David’s check CWi
?= r̃izi + S̃i enforces affine behavior of the token,

since otherwise the token could form collisions for the universal hash function C. However, this is
only half the truth. In fact, with τi : F1×k

q → F4k×k
q denoting the token functionality in the i-th

choice phase, for each possible token input z ∈ F1×k
q there are always exactly q4k different parameter

tuples (r, S) ∈ F4k
q × F4k×k

q , such that τi(z) = rz + S. In particular, for all z ∈ F1×k
q , r ∈ F4k

q we
can complement r to a matching parameter tuple by S := τi(z)− rz. In total, there might exist up
to q5k different parameter tuples belonging to any image of τi and we must somehow rule out that
there are too many collisions of the form (Cr,CS) = (Cr′, CS′) with distinct (r, S), (r′, S′).

Since the space of potential parameter tuples is that large, pure counting arguments (e.g. by
considering the random matrix C as a 2-universal hash function) cannot be sufficient as long as the
special structure of our problem is ignored: For example, consider the hypothetical case that every
parameter tuple (r, S) has to be taken into account where each column of S equals r. Although
this yields only q4k different parameter tuples, we would always have that equivalence classes of qk
different parameter tuples do collide. However, this is exactly the size of the preimage space of τi.
Thereby we just cannot rule out that τi is non-affine on every Z ⊆ F1×k

q with |Z| > 1, but enough
parameter tuples collide so that C · τi is affine on the complete input space F1×k

q . Note also that
this problem cannot be circumvent by enlarging the token input space to F1×αk

q for some α > 1,
since in that case we can still argue analogously with the condition |Z| > 1 replace by |Z| > q(α−1)k.

So, we explicitly have to exploit that the space of affine mappings F1×k
q → F4k×k

q has some
specific structure. In fact, we only need the random matrix C to have some rank-preserving
property when operating on the image space of τi. Given this (and a not too large overall abortion
probability in the current choice phase), we can show that τi is affine on all token inputs that do
not cause a protocol abortion.
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Lemma 49. Let Fq be some finite field of size q ≥ 2 and let l,m, k ∈ N>0. Let τ : F1×k
q → Fm×kq be

some arbitrary mapping and let C ∈ Fl×mq , r̃ ∈ Flq, S̃ ∈ Fl×kq , V :=
{
v ∈ F1×k

q

∣∣ C ·τ(v) = r̃ ·v+S̃
}
,

such that |V | > q and for all v, v′ ∈ V the following implications hold true:

rank
(
τ(v)− τ(v′)

)
> 0 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 0

rank
(
τ(v)− τ(v′)

)
> 1 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 1

Then there exists a unique tuple (r, S) ∈ Fmq × Fm×kq , such that τ(v) = r · v + S for all v ∈ V .
Further, for this unique tuple it holds that (Cr,CS) = (r̃, S̃).

Proof. We just need to show existence of (r, S); everything else follows straightforwardly. Moreover,
if r̃ = 0, the proof is trivial. In this case, since by assumption τ(v) = τ(v′) for all v, v′ ∈ V with
C · τ(v) = C · τ(v′), we have that τ is constant on the entire input set V . So, w.l.o.g. let r̃ 6= 0.

First of all, we now observe for all v, v′ ∈ V that rank(τ(v) − τ(v′)) ≤ 1, since else by the
rank-preserving properties of C we had the contradiction that 1 < rank

(
C · τ(v) − C · τ(v′)

)
=

rank
(
r̃ · (v − v′)

)
≤ 1. Thereby, for all v, v′ ∈ V we find some r ∈ Fmq , v̄ ∈ F1×n

q , such that
τ(v)− τ(v′) = r · v̄. Moreover, we can always choose v̄ := v − v′, since r̃ · (v − v′) = Cr · v̄ and we
assumed that r̃ 6= 0. Thus we have:

∀ v, v′ ∈ V ∃ r ∈ Fmq : τ(v)− τ(v′) = r · (v − v′)

We will show now that r in fact is independent of v, v′. More precisely, we will show that for
arbitrary v, v′, v′′ ∈ V with linearly independent v− v′, v′ − v′′ there always exists an r ∈ Fmq , such
that τ(v)− τ(v′) = r · (v − v′) and τ(v′)− τ(v′′) = r · (v′ − v′′). It is sufficient to consider the case
of linearly independent v − v′, v′ − v′′, since |V | > q by assumption and hence the affine span of V
must have dimension 2 or higher; therefore for all v, v′, v′′ ∈ V with linearly dependent v−v′, v′−v′′
there exists some v̂ ∈ V , such that v− v′, v′− v̂ are linearly independent and also are v̂− v′, v′− v′′.
So, let any v, v′, v′′ ∈ V , r, r′ ∈ Fmq be given with linearly independent v − v′, v′ − v′′ and:

τ(v)− τ(v′) = r · (v − v′)
τ(v′)− τ(v′′) = r′ · (v′ − v′′)

Thereby follows:

rank
(
r · (v − v′) + r′ · (v′ − v′′)

)
= rank

(
τ(v)− τ(v′′)

)
≤ 1

Since v − v′, v′ − v′′ are linearly independent, this yields that r, r′ must be linearly dependent.
Hence, on the one hand we find some r̂ ∈ Fmq and α, α′ ∈ Fq, such that r = αr̂ and r′ = α′r̂. On
the other hand, since v, v′ ∈ V , we also have:

r̃ · (v − v′) = C ·
(
τ(v)− τ(v′)

)
= Cr · (v − v′)

Since v− v′ 6= 0, this yields that Cr = r̃ and analogously it must hold that Cr′ = r̃. Thus we have
that αCr̂ = α′Cr̂ = r̃. Since we assumed that r̃ 6= 0, we can conclude that α = α′ and hence r = r′.

So, once we have shown that r is unique, we can finally pick some arbitrary ṽ ∈ V and set
S := τ(ṽ)− r · ṽ, whereby for every ṽ′ ∈M it follows:

τ(ṽ′) =
(
τ(ṽ′)− τ(ṽ)

)
+ τ(ṽ) =

(
r · (ṽ′ − ṽ)

)
+
(
r · ṽ + S

)
= r · ṽ′ + S

To make this lemma applicable, yet we need to show that with overwhelming probability the
random matrix C has the required rank-preserving properties. As a formal preparation we state
our next technical lemma, where the matrix set W should be thought of as all possible token
output differences τi(z)− τi(z′) and l := 3k and m := 4k. Thereby, since |W| < |image(τi)|2 ≤ q2k,
we get that the random matrix C has the required rank-preserving properties with overwhelming
probability. For convenience, we state this lemma only for the case that the random matrix C is
statistically independent from the token functionality τi (and W respectively). However, the error
introduced by this assumption can be estimated by ι(C, τi), and then Corollary 48 does apply.
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Lemma 50. Let Fq be some finite field of size q ≥ 2 and let l,m, k, r ∈ N>0 with r ≤ min(l,m, k).
Then for arbitrary W ⊆ Fm×kq and C r← Fl×mq it holds:

P
[
∃W ∈ W : rank(W ) ≥ r > rank(CW )

]
< qr−l|W|

Proof. We first estimate the number of matrices in Fl×rq that have full rank r. Given i ∈ {1, . . . , r}
and any matrix C ∈ Fl×iq with full rank i, there exist exactly ql− qi columns in Flq (only the linear
combinations of the columns of C are excluded) by which we can extend C to a matrix of dimension
l × (i+ 1) and rank i+ 1. By induction on i follows:

#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}

=
r−1∏
i=0

ql − qi

Since the term
∏r−1
i=0 q

l − qi is a bit unhandy, we estimate it from below:

r−1∏
i=0

ql − qi = qlr
r−1∏
i=0

1− qi−l ≥ qlr
(

1−
r−1∑
i=0

qi−l
)

= qlr
(

1− qr − 1
ql(q − 1)

)
> qlr

(
1− qr−l

)

Now, let W ∈ Fm×kq be some arbitrary matrix with r̄ := rank(W ) ≥ r. Further let B̄ ∈ Fr̄×kq ,
such that B̄ only consists of linearly independent rows of W ; i.e. especially B̄ has full rank r̄. Let
B ∈ Fm×kq , such that the first r̄ rows of B are B̄ and the rest of B is all-zero. Note that we can
find an invertible matrix M ∈ Fm×mq , such that W = MB. Hence we can estimate:

#
{
C ∈ Fl×mq

∣∣ rank(CW ) < r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CW ) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CMB) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CB) ≥ r
}

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(CB̄) ≥ r
}
· ql(m−r̄)

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(C) ≥ r
}
· ql(m−r̄)

≤ qlm −#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}
· ql(m−r)

< qlm − qlm
(
1− qr−l

)
= qlm+r−l

Thereby, for arbitrary W ∈ Fm×nq and C r← Fl×mq we can conclude:

P
[
rank(W ) ≥ r > rank(CW )

]
< qr−l

The assertion of our lemma now follows by the Union Bound.

Basically, in each choice phase of our protocol Πsemi−int
OAFE (with honest receiver party David) we

have now with overwhelming probability one of the following two cases:
• Either #

{
z ∈ F1×k

q

∣∣ C · τi(z) = r̃iz + S̃i
}
≤ q, i.e. only few token inputs pass David’s

consistency check and thus the protocol is aborted with overwhelming probability,
• or there exist some r ∈ F4k

q , S ∈ F4k×k
q , such that τi(z) = rz + S for all z ∈ F1×k

q with
C · τi(z) = r̃iz+ S̃i, i.e. the token functionality is affine on all inputs that pass the consistency
check.
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8.3.3 Uniqueness of affine approximations of the token functionality
By our technical tools developed so far, we already have that the token functionality in each choice
phase is piecewise affine, and the protocol is aborted if the affine pieces are too small. However, for
our formal security proof we will need that the larger affine pieces yield a disjoint decomposition
of the preimage space. This motivates our next lemma.

Lemma 51. Let Fq be some finite field of size q ≥ 2, let ε > 0 and let k, l ∈ N>0, such that
qk ≥ 21/ε. Further, let τ : F1×k

q → Fl×kq be an arbitrary mapping and let V ′ denote the set of all
v ∈ F1×k

q for that exist more than one tuple (r, S) ∈ Flq ×Fl×kq with the following property:

τ(v) = rv + S and #
{
ṽ ∈ F1×k

q

∣∣ τ(ṽ) = rṽ + S
}
≥ q(2/3+ε)k

Then we have that |V ′| < q2k/3.

Proof. We call a mapping γ : F1×k
q → Fl×kq a straight line, if there exist r ∈ Fkq and S ∈ Fl×kq , such

that γ(v) = rv+S for all v ∈ F1×k
q . Given two straight lines γ, γ′, we call v ∈ F1×k

q an intersection
of γ and γ′, if γ(v) = γ′(v). Given a straight line γ, we say that γ intersects with τ for m times,
if τ(v) = γ(v) for exactly m different v ∈ F1×k

q . Note that two straight lines are identical, iff they
have two or more common intersections.

Now, let Γ denote the set of all straight lines that intersect with τ for at least q(2/3+ε)k times.
Thus, V ′ is a subset of all intersections of distinct straight lines γ, γ′ ∈ Γ. However, as two distinct
straight lines may have no more than one common intersection, m straight lines have always less
than m2 intersections in total. Thus, if |V ′| ≥ q2k/3, there would be more than qk/3 straight lines in
Γ, i.e. we could find some Γ′ ⊆ Γ with |Γ′| = dqk/3e. However, this leads to a contradiction, as one
can see as follows. Each of the straight lines in Γ′ has less than qk/3 intersections with all the other
straight lines in Γ′, what leaves more than q(2/3+ε)k − qk/3 intersections with τ that are not shared
with other straight lines in Γ′. Hence, overall τ must have more than

⌈
qk/3

⌉
·
(
q(2/3+ε)k − qk/3

)
of such non-shared intersections with straight lines in Γ′, i.e.

∣∣τ(F1×k
q )

∣∣ > q(1+ε)k − q2k/3. Since
qεk ≥ 2 by assumption and thus q(1+ε)k − q2k/3 ≥ qk

(
2− q−k/3

)
> qk, this is impossible.

8.3.4 Utilizing the Leftover Hash Lemma
We introduce now our final technical tool, a fairly technical partitioning argument, which will
be needed to show that the abort behavior in the real model is indistinguishable from the abort
behavior in the ideal model. Before we take a closer look at the technical details, we briefly recap
the involved elements of our protocol Πsemi−int

OAFE (q.v. Section 7.1):

• First of all, by programming the token the adversary commits to a disjoint decomposition
of the i-th round token input space F1×k

q , in the sense that each part of this decomposition
corresponds to another affine token behavior in a later round.

• Next, the honest David announces a 2-universal hash function hi
r← Fkq \ {0}.

• Then, Goliath announces some check information corresponding to one part of the disjoint
decomposition he committed to. The protocol will be aborted, iff David’s i-th token input zi
is not an element of this part.

• Finally, David gets his i-th OAFE input xi ∈ Fq from the environment, inputs a share
zi

r←
{
z̃ ∈ F1×k

q

∣∣ z̃hi = xi
}
into the token, and aborts the protocol if the token output does

not match Goliath’s check information.

One the one hand, since the environment w.l.o.g. knows how the corrupted Goliath programmed
the token and what check information he announced, the environment can exactly determine the
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abort probability in the real model. On the other hand, since the simulator does not know the
ideal David’s OAFE input xi, the abort probability in the ideal model is independent of xi. Thus,
we have to show that the abort probability in the real model also is not noticeably correlated with
xi. A bit more formally, the security proof basically boils down to the following problem:

• There are two adversarially chosen mappings, x : Fkq \ {0} → Fq and A : Fkq \ {0} → P(F1×k
q )

(with P(F1×k
q ) denoting the power set of F1×k

q ), such that for all h, h′ ∈ Fkq \{0} the following
implication holds true:

A(h) 6= A(h′) ⇒ A(h) ∩A(h′) = ∅

• There are the following three random variables:

h r← Fkq \ {0} z r←
{
z̃ ∈ F1×k

q

∣∣ z̃h = x(h)
}

u r← F1×k
q

• We have to show that SD
(
(z∈A(h),h), (u∈A(h),h)

)
is negligible, where z∈A(h) denotes a

predicate that is true iff z is an element of A(h), and analogously for u∈A(h).

We address this problem by showing that h partitions A(h) into parts of roughly equal size. Our
starting point is the well-known Leftover Hash Lemma, which we first recap for the sake of self-
containedness (Lemma 52). If x(h) and A(h) were independent of h, the Leftover Hash Lemma
would already suffice to straightforwardly solve our problem. However, our problem is more complex
and there seems no apparent way to directly apply the Leftover Hash Lemma. Nonetheless, we can
utilize the Leftover Hash Lemma to get an estimation for the case that only A(h) is independent of
h; q.v Lemma 53. Finally, this estimation is used to develop our technical partitioning argument
(Corollary 54).

Lemma 52 (Leftover Hash Lemma [BBR88, ILL89]). Let G be a 2-universal class of functions X → Y
and let g r← G, i.e. for any distinct x, x′ ∈ X it holds that P

[
g(x) = g(x′)

]
≤ 1
|Y| . Further let x ∈ X

be some random variable with collision entropy H2(x). Then, if x and g are independent, for the
statistical distance between

(
g(x),g

)
and uniform randomness (u,g), i.e. u r← Y, it holds:

SD
(
(g(x),g), (u,g)

)
≤ 1

2

√
2−H2(x) · |Y|

Proof. We adapt the proof from [AB09, proof of Lemma 21.26]. Let (g′,x′) be identically distributed
as its unprimed counterpart (g,x). Thereby, when we treat the distribution of

(
g(x),g

)
as a

probability vector ~p ∈ RY×G , we get:

‖~p‖22 = P
[
(g(x),g) = (g′(x′),g′)

]
= P[g = g′] ·P

[
g(x) = g′(x′)

∣∣g = g′
]

= P[g = g′] ·P
[
g(x) = g(x′)

]
= P[g = g′] ·

(
P[x = x′] +P[x 6= x′] ·P

[
g(x) = g(x′)

∣∣x 6= x′
])

≤ P[g = g′] ·
(
P[x = x′] +P

[
g(x) = g(x′)

∣∣x 6= x′
])

= |G|−1 ·
(
2−H2(x) +P

[
g(x) = g(x′)

∣∣x 6= x′
])

≤ |G|−1 ·
(
2−H2(x) + |Y|−1

)
Now, let ~u ∈ RY×G denote the probability vector corresponding to the uniform distribution over
Y×G. Note that ~p− ~u is orthogonal to ~u:

〈~p− ~u | ~u〉 = 〈~p | ~u〉 − 〈~u | ~u〉 = ‖~p‖1
|Y×G| −

‖~u‖1
|Y×G| = 1

|Y×G| −
1

|Y×G| = 0
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By the Pythagorean Theorem follows:

‖~p− ~u‖22 = ‖~p‖22 − ‖~u‖
2
2 ≤ |G|−1 ·

(
2−H2(x) + |Y|−1

)
− |Y × G|−1 = |G|−1 · 2−H2(x)

Finally, since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, we can conclude:

SD
(
(g(x),g), (u,g)

)
= 1

2‖~p− ~u‖1 ≤
1
2

√
|Y×G| · ‖~p− ~u‖2 ≤

1
2

√
2−H2(x) · |Y|

Lemma 53. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. For each α ∈ Fq, h ∈ Fkq
let Zα(h) :=

{
z ∈ F1×k

q

∣∣ zh = α
}
. Further, let x : H → Fq be some arbitrary mapping. Then, for

h r← H := Fkq \ {0} and arbitrary A ⊆ F1×k
q it holds:

E
∣∣∣∣∣A ∩ Zx(h)(h)

∣∣− 1
q

∣∣A∣∣∣∣∣ ≤ √
q · |A|

Proof. W.l.o.g., A 6= ∅. Let a r← A and u r← Fq. On the one hand, since P[ah = a′h] =
P[(a− a′)h = 0] = qk−1−1

qk−1 < 1
|Fq | for all distinct a, a

′ ∈ A, we can estimate the statistical distance
SD
(
(ah,h), (u,h)

)
by the Leftover Hash Lemma (Lemma 52) as follows:

SD
(
(ah,h), (u,h)

)
≤ 1

2

√
2−H2(a) · |Fq| = 1

2

√
q
|A|

On the other hand, we have:

SD
(
(ah,h), (u,h)

)
= 1

2
∑

α∈Fq , h∈H

∣∣P[ah = α ∧ h = h]−P[u = α ∧ h = h]
∣∣

= 1
2
∑

α∈Fq , h∈H
P[h = h] ·

∣∣P[ah = α]−P[u = α]
∣∣

= 1
2
∑

α∈Fq , h∈H
P[h = h] ·

∣∣∣ |A∩Zα(h)|
|A| − 1

q

∣∣∣
≥ 1

2
∑

h∈H
P[h = h] ·

∣∣∣ |A∩Zx(h)(h)|
|A| − 1

q

∣∣∣
= 1

2 E
∣∣∣ |A∩Zx(h)(h)|

|A| − 1
q

∣∣∣
By the linearity of expected values follows:

E
∣∣∣∣∣A ∩ Zx(h)(h)

∣∣− 1
q

∣∣A∣∣∣∣∣ ≤ 2 |A| · SD
(
(ah,h), (u,h)

)
≤

√
q · |A|

Corollary 54. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. Let H := Fkq \ {0} and let
R,Q be some arbitrary finite sets. Moreover, let some mapping A : R × Q → P(F1×k

q ) be given,
such that for all ν, ν ′ ∈ R, t ∈ Q the following implication holds true:

A(ν, t) 6= A(ν ′, t) ⇒ A(ν, t) ∩A(ν ′, t) = ∅

For each (α, h) ∈ Fq ×H let Zα(h) :=
{
z ∈ F1×k

q

∣∣ zh = α
}
. Finally, let h r← H. Then for every

random variable t ∈ Q and arbitrary γ ∈ R>0 it holds:

P
[
∃α ∈ Fq, ν ∈ R :

∣∣∣∣∣A(ν, t) ∩ Zα(h)
∣∣− 1

q

∣∣A(ν, t)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2 + ι(h, t)

Proof. It obviously suffices to give a proof for the case that t and h are statistically independent,
i.e. ι(h, t) = 0. Now, as t and h are independent, we may just assume that w.l.o.g. P[t = t] = 1
for some worst case constant t ∈ Q. However, once we have fixed t, we can consider α and ν as
function values of h, which we denote by α(h) and νh respectively. Thereby, for each h ∈ H we
can define the equivalence class [h] :=

{
h′ ∈ H

∣∣ A(t, νh′) = A(t, νh)
}
. Further, let H̄ ⊆ H denote
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a representative system for these equivalence classes, i.e.
∣∣H̄ ∩ [h]

∣∣ = 1 for all h ∈ H. Let some
arbitrary γ ∈ R>0 be given. By construction we have:

P
[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤

∑
h∈H̄

P
[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
Note that we can discard all summands with

∣∣A(t, νh)
∣∣< γ on the right side, since for any X ⊆ F1×k

q ,

α ∈ Fq, h ∈ H it trivially holds that
∣∣|X∩Zα(h)|− 1

q |X|
∣∣ < |X|. With Ĥ :=

{
h ∈ H̄

∣∣ γ < |A(t, νh)|
}

we get:

P
[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤

∑
h∈Ĥ

P
[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
However, since E(x) ≥ γ ·P[x ≥ γ] for every random variable x ∈ R, we can estimate by Lemma 53
for all ν ∈ Q:

P
[∣∣∣∣∣A(ν, t) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(ν, t)
∣∣∣∣∣ ≥ γ] ≤ 1

γ

√
q ·
∣∣A(ν, t)

∣∣
It follows:

P
[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤ 1

γ

∑
h∈Ĥ

√
q ·
∣∣A(νh, t)

∣∣
Since ‖~v‖1 ≤

√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, we can conclude that

∑m
i=1 |ai| ≤

√
m ·

∑m
i=1 a

2
i for

any a1, . . . , am ∈ R. Thus, it holds:∑
h∈Ĥ

√∣∣A(t, νh)
∣∣ ≤ √

|Ĥ| ·
∑

h∈Ĥ

∣∣A(t, νh)
∣∣

Since by construction
{
A(t, νh)

}
h∈Ĥ is a disjoint decomposition of some subset of F1×k

q , we can
further estimate: ∑

h∈Ĥ

∣∣A(t, νh)
∣∣ ≤ ∣∣F1×k

q

∣∣ = qk

Further note that by construction |Ĥ| < 1
γ · q

k. Putting things together, we have shown:

P
[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)

∣∣− 1
q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
<

qk+1/2

γ3/2

8.3.5 The simulator for a corrupted Goliath
In each choice phase, the simulator for a corrupted Goliath has to extract the correct affine function
parameters (ai, bi) ∈ Fkq × Fkq and send them to the ideal functionality F seq−ot

OAFE (q.v. Figure 6.3).
Note that the simulator has no influence on the choice phases (he even is not activated at all), as
long as David is not corrupted.

Our simulator for a corrupted Goliath is given in Figure 8.2. The high level picture how this
simulator works is as follows. The send phases are simulated straightforwardly: Z just interacts with
a simulated version of the complete real model. When the i-th send phase is over, the simulator
must extract a valid Goliath input (ai, bi, i), i.e. the simulator needs a description of the token
functionality for the i-th choice phase. Therefor, the simulator first checks whether the token acts
honestly on random input. If the token’s output appears faulty, the simulator henceforth gives
default input (0, 0, i) to the ideal functionality; otherwise he rewinds the token to the beginning of
the i-th choice phase and inputs other vectors vi ∈ F1×k

q until he can extract an affine function that
describes the token behavior in this phase. Once having extracted this affine description of the token
functionality, the simulator can easily compute the unique Goliath input (ai, bi, i) corresponding to
this token functionality and the messages of the i-th send phase. Note that the running time of
SGoliath(A) is not a priori polynomially bounded in the security parameter λ := k log q, but there
may be up to qk simulated token queries in step 2 of the simulator’s extraction program. However,
the expected number of iterations in that step is constant. We also refer to Section 9.1 for a further
discussion on this issue.
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Simulator SGoliath(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model with protocol Πsemi−int

OAFE (q.v. Figure 7.1). Further, initialize f0 ← >.

• Whenever D outputs (ready, i), extract a snapshot T ′ of T (including its current internal state)
from the view of the simulated F stateful

wrap and extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of D. Then
run the following extraction program:

1. Pick a random vector ui
r← F

1×k
q and input (ui, i) into the token T ; let Wi denote the token’s

output (w.l.o.g. Wi ∈ F4l×k
q ). If fi−1 = ⊥ or CWi 6= r̃iui + S̃i, set fi ← ⊥ and go to step 4 of

this extraction program; else just set fi ← >.
2. Pick a random vector vi

r← F
1×k
q and input (vi, i) into a copy of T ′; let W ′ denote the token’s

output (w.l.o.g. W ′ ∈ F4l×k
q ). Retry this step until CW ′ = r̃ivi + S̃i or qk iterations have

past; in the latter case give up, i.e. send (?, i) to the environment and terminate. If afterwards
ui = vi or any row of the matrix Wi −W ′ is linearly independent of ui − vi, also give up.

3. Compute the unique vector ri ∈ F4l
q , such that Wi −W ′ = ri(ui − vi), and set Si ←Wi − riui.

Then compute ai ← ãi +Gri and bi ← b̃i +GSihi.
4. If fi = >, send (ai, bi, i) on behalf of the corrupted Goliath to the ideal functionality F seq−ot

OAFE ;
else send (0, 0, i).

Finally, upon receiving (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Figure 8.2: The simulator program SGoliath(A), given an adversary A that corrupts Goliath.

Lemma 55. Let some arbitrary environment Z be given and some adversary A that corrupts
the sender Goliath. Then the expected running time of the simulator SGoliath(A) is polynomially
bounded in the running time of A and the corresponding token T . In particular, for each simu-
lated send phase the expected number of iterations performed in step 2 of the simulator’s extraction
program (q.v. Figure 8.2) is constant.

Proof. When the simulator enters his extraction program, we can express by a variable p the
probability that he picks some ui passing the check in step 1. Then, in each iteration of step 2 with
probability 1− p he will pick some vi that does not pass the check. Hence, if the simulator would
not give up after qk iterations but try on infinitely, we had the following probability that exactly t
iterations are performed:

1− p for t = 0
p2 · (1− p)t−1 for t > 0

This yields the following upper bound for the expected number of iterations:

p2 ·
∑∞

t=1
t · (1− p)t−1

Note that w.l.o.g. p > 0, as otherwise step 2 of the extraction program is not entered at all. However,
if p > 0, we can use the well-known formula for the expectation of a geometric distribution:

p ·
∑∞

t=1
t · (1− p)t−1 = 1

p

Putting things together, we have shown that the expected number of iterations is at most 1.
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Functionality F ′

Parametrized by a finite vector space Fkq and some runtime bound n that is polynomially bounded in the
security parameter λ := k log q. The counters jcreated, jsent, jqueried are all initialized to 0.

Send phases:
• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fkq and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i and send (created, i) to the simulator.

• Upon receiving a message (Delivery, i) from the simulator, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:
• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried +1 ≤ jsent; else ignore that

input. Next, update jqueried ← i, send (queried, x, i) to the simulator and wait for the simulator’s
next message. Then, upon receiving (Reply, y, i) from the simulator, output (y, i) to David.

When a party is corrupted, the simulator is granted unrestricted access to the channel between F ′ and the
corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 8.3: The ideal functionality for the hybrid games Game0, . . . ,Gamen. The difference to
the ideal functionality F stateful

wrap (q.v. Figure 6.3) is that in the choice phases the simulator learns
David’s input x and may overwrite the respective output y. The inputs a, b in the send phase are
just meaningless.

8.3.6 A sequence of hybrid games
We prove indistinguishability between the ideal model and the real model by a hybrid argument.
In particular, we will show that for l = 1, . . . , n no environment can distinguish non-negligibly
between some hybrid games Gamel−1 and Gamel, where Game0 and Gamen are indistinguishable
from the ideal and real model respectively. Each hybrid game Gamel works like an ideal model
with ideal functionality F ′ and (non-efficient) simulator S ′l(A). The functionality F ′ resembles the
ideal functionality F seq−ot

OAFE , but the simulator learns the ideal David’s inputs and may overwrite
the corresponding outputs of F ′. For a formal description see Figure 8.3. Each simulator S ′l(A)
overwrites the first l outputs, so that they exactly equal the first l David outputs in the real
model. The remaining n− l outputs are computed from an extracted affine description of the token
functionality, very similar to the ideal model. For a formal description of the simulators S ′l(A) see
Figure 8.4.

Corollary 56. Given any adversary A that corrupts the sender party Goliath, our hybrid game
Game0 with simulator S ′0(A) is statistically indistinguishable from the ideal model with simulator
SGoliath(A), and our hybrid game Gamen with simulator S ′n(A) is perfectly indistinguishable from
the real model with adversary A.

Proof. It is straightforward to see that Gamen is perfectly indistinguishable from the real model.
It is also straightforward to see that Game0 is perfectly indistinguishable from the ideal model
conditioned to the event that the simulator SGoliath(A) does not reach the iteration bound qk in
step 2 of his extraction program. However, by Lemma 55 this iteration bound is only reached with
negligible probability and thus Game0 is statistically indistinguishable from the ideal model.

8.3.7 Transformation of successive hybrid games
For our security proof we have to show that from the environment’s view any successive hybrid
games Gamel−1,Gamel, parametrized with the finite vector space Fkq and runtime bound n, are
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Simulator S ′l(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model. Further, initialize f0 ← >.

• Whenever D outputs (ready, i), choose any a, b ∈ Fkq and send (a, b, i) on behalf of the corrupted
Goliath to the functionality F ′. Then, upon receiving (created, i) from F ′, reply with (Delivery, i).

• Upon receiving (queried, xi, i) from the functionality F ′, extract the token function τi of the current
choice phase from the view of the simulated F stateful

wrap , in the sense that on input (ṽ, i) the token T
currently would output τi(ṽ). If τi(ṽ) /∈ F4k×k

q for some ṽ ∈ F1×k
q , treat this as an encoding of the

all-zero matrix; thus w.l.o.g. τi : F1×k
q → F

4k×k
q . Further, extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view

of D. Then, if i > l, run the following extraction program:
1. Pick randomly ui

r← F
1×k
q and input (ui, i) into the token T , thus progressing its internal state.

2. If fi−1 = > and C · τi(ui) = r̃iui + S̃i, set fi ← >; otherwise set fi ← ⊥.
3. If fi = >, pick a random vector vi

r←
{
ṽ ∈ F1×k

q

∣∣ C · τi(ṽ) = r̃iṽ + S̃i
}
. Then, if vi = ui

or any row of the matrix τi(ui) − τi(vi) is linearly independent of ui − vi, send (?, i) to the
environment and terminate; else compute yi ← (ãi+Gri)xi+ b̃i+GSihi, where ri ∈ F4k

q is the
unique vector with τi(ui)− τi(vi) = ri · (ui − vi), and Si := τi(ui)− riui.
If fi = ⊥, just set yi ← 0 (such that yi ∈ Fkq ).

4. Send (Reply, yi, i) to F ′.
If i ≤ l, just run the following program instead:

1. Pick a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi} and input (zi, i) into the token T , thus
progressing its internal state.

2. If fi−1 = > and C · τi(zi) = r̃izi + S̃i, set fi ← >; otherwise set fi ← ⊥.
3. If fi = >, compute yi ← G · τi(zi) · hi + ãixi + b̃i.

If fi = ⊥, just set yi ← 0 (such that yi ∈ Fkq ).
4. Send (Reply, yi, i) to F ′.

Figure 8.4: The simulator program S ′l(A) for the hybrid game Gamel, given an adversary A that
corrupts the sender Goliath. The hybrid games Gamen and Game0 are indistinguishable from the
real model with adversary A and the ideal model with simulator SGoliath(A) respectively.

statistically indistinguishable. Our approach is to transform these hybrid games into an indistin-
guishability game Γ0(Fq, n, l), so that every environment Z that can distinguish Gamel−1 from
Gamel corresponds to a player that wins in Γ0(Fq, n, l) with some non-negligible advantage. This
approach allows us to successively modify the obtained indistinguishability game Γ0(Fq, n, l), so
that it becomes feasible to derive a maximum winning probability from which we can then infer a
negligible upper bound for the statistical distance between Z’s views in Gamel−1 and Gamel. The
intuition behind this sequence of indistinguishability games can be sketched as follows.

Γ0(Fq, n, l): This is just a straightforward reformulation of what the environment Z sees in the
hybrid games Gamel−1 and Gamel respectively.

Γ1(Fq, n, l): We make the player a bit stronger by giving him more direct access to the internal
game state.

Γ2(Fq, n, l, ε): We exploit that the token is somehow committed to affine behavior (cf. Section 8.3.2).
This allows us to unify the way, David’s outputs are computed in the hybrid real part and
the hybrid ideal part: Basically, David’s outputs in the hybrid real part are now also com-
puted from an extracted affine approximation of the token functionality. The additional game



8.3. Security against a corrupted sender 95

parameter ε is introduced for technical reasons; it will be needed later to apply Lemma 51.

Γ3(Fq, n, l, ε): We replace the simulator’s abort message (?, i), q.v. step 2 in Figure 8.2. This
corresponds to a simulator modification, so that he may not give up any more, but instead
switches to the mode where David henceforth produces default (all-zero) output.

Γ4(Fq, n, l, ε): We exploit that the token functionality for most inputs can be approximated by no
more than one affine function (cf. Section 8.3.3). This allows us to consider the extracted affine
function parameters as token outputs rather than approximations of the token functionality.

Γ5(Fq, n, l): We no longer only consider the extracted affine function parameters as token outputs;
now they are.

Γ6(Fq, n, l): We make the player stronger. We let him learn the first l− 1 token inputs and let him
choose the last n − l token inputs. Thus only the stage l, which is the only stage in which
Gamel−1 differs from Gamel, stays out of control of the player.

Γ7(Fq, n, l): We just exploit that several variables have become obsolete, and get rid of them.

Γ8(Fq, n, l): We get rid of the challenge matrix C. The player must now exactly forecast token
outputs rather than only linear projections.

Γ9(Fq, n, l): We make it explicit that w.l.o.g. the player follows a deterministic strategy, solely
depending on what he learns during the game run. This is the final version of our indistin-
guishability game.

We give now a detailed description of our indistinguishability game (Figure 8.5) and its relation to
Gamel−1 and Gamel (Lemma 57). Then we successively transform it and show how this affects the
winning probability.

Lemma 57. Let 1
2 + δ be the maximal winning probability in the game Γ0(Fkq , n, l). Then the statis-

tical distance between the environment’s view in Gamel−1 and its view in Gamel, both parametrized
with the finite vector space Fkq and runtime bound n, is upper bounded by 2δ.

Proof. The proof is absolutely straightforward. Basically, we just have to show how the player K
in Γ0(Fkq , n, l) can perfectly emulate the hybrid game Gamel−d for an environment Z, where d is
the secret challenge bit that K finally tries to guess. Our player K just works as follows:

• Setup a simulated version of the given environment Z and the complete hybrid game Gamel.

• As soon as in the game Gamel the token T is fixed, specify the mappings τ1, . . . , τn such
that the token functionality in the i-th choice phase on input history (w1, 1), . . . , (wi−1, i− 1)
implements the function (wi, i) 7→ τi(w1, . . . , wi). This is step 1 of Γ0(Fkq , n, l).

• Always overwrite the simulated David’s random choices of C,G, h1, . . . , hn by the respective
values learned in step 2 of Γ0(Fkq , n, l).

• Whenever some r̃i, S̃i, ãi, b̃i are to be chosen in step 4a or step 5a of Γ0(Fkq , n, l), just take the
respective values from the simulated David’s view. Analogously take xi from the view of the
simulated functionality F ′.

• Whenever the simulated functionality F ′ outputs some (yi, i), overwrite yi by the respective
value learned in step 4c or step 5c of Γ0(Fkq , n, l) respectively.

• Upon receiving a special message (?, i), just forward it to the simulated environment Z and
stop the simulated hybrid game.
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Game Γ0(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H, a random matrix C r← F

3k×4k
q and some

G ∈ Fk×4k
q complementary to C.

3. A challenge bit d r← {0, 1} is chosen secretly.

4. For i = 1, . . . , l − d:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , ãi, b̃i ∈ Fkq and xi ∈ Fq.

b) Let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, chosen secretly.

c) If C · τj(w1, . . . , wj) 6= r̃jwj + S̃j for any j ≤ i, the player K learns yi := 0 ∈ Fkq .
Otherwise, K learns yi := G · τi(w1, . . . , wi) · hi + ãixi + b̃i.

5. For i = l − d+ 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , ãi, b̃i ∈ Fkq and xi ∈ Fq.

b) Let wi := ui
r← U , chosen secretly.

c) If C · τj(w1, . . . , wj) 6= r̃jwj + S̃j for any j ≤ i, the player K learns yi := 0 ∈ Fkq .

Otherwise, a random vector vi
r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}

is chosen
secretly. Then, if vi = wi or any row of the matrix τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) is
linearly independent of wi − vi, the player K receives a special message (?, i) and the game is
aborted in the sense that step 6 follows next; else K learns yi := (ãi + Gri)xi + b̃i + GSihi,
where ri ∈ F4k

q is the unique vector with τi(w1, . . . , wi)− τi(w1, . . . , wi−1, vi) = r(wi− vi), and
Si := τi(w1, . . . , wi)− riwi.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.5: Definition of a stand-alone indistinguishability game that captures the difference be-
tween the hybrid games Gamel−1 and Gamel. The player’s view in the indistinguishability game
Γ0(Fkq , n, l) corresponds straightforwardly to the environment’s view in the hybrid game Gamel−d,
where d is the secret challenge bit from step 3 of Γ0(Fkq , n, l). Thus, the statistical distance between
the its view in Gamel−1 and the environment’s view in Gamel is upper bounded by 2δ, where 1

2 + δ
is the maximum winning probability in the indistinguishability game Γ0(Fkq , n, l).

It is straightforward to see that this way the player K perfectly emulates a view of Z in the hybrid
game Gamel−d; this is just how we constructed the game Γ0(Fkq , n, l).

Now, let the random variable viewZ denote this emulated view of Z, and let the random variable
d denote the secret challenge bit that K tries to guess in step 6 of Γ0(Fkq , n, l). Since by assumption
the player K wins the game Γ0(Fkq , n, l) at most with probability 1

2 + δ, it must hold for every
predicate P that P

[
P (viewZ) = 0 ∧ d = 0

]
+P

[
P (viewZ) = 1 ∧ d = 1

]
≤ 1

2 + δ. Furthermore,
note that there does exist a predicate P such that we can write the statistical distance distl between
the views of Z in Gamel−1 and Gamel as follows:

distl =

=P[P (view of Z in Gamel−1)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 1
]
−

=P[P (view of Z in Gamel)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 0
]

Thus we can conclude:

distl = P
[
P (viewZ) = 1

∣∣ d = 1
]︸ ︷︷ ︸

=2·P[P (viewZ)=1∧d=1]

−
(
1−P

[
P (viewZ) = 0

∣∣ d = 0
]︸ ︷︷ ︸

=2·P[P (viewZ)=0∧d=0]

)
≤ 2δ
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Game Γ1(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C r← F

3k×4k
q .

3. A challenge bit d r← {0, 1} is chosen secretly.

4. For i = 1, . . . , l − d:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , xi ∈ Fq.

b) Let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, chosen secretly.

c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that step 6 follows next.
Otherwise, the player K learns τi(w1, . . . , wi) · hi.

5. For i = l − d+ 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , xi ∈ Fq.

b) Let wi := ui
r← U , chosen secretly.

c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that step 6 follows next.
Otherwise, a random vector vi

r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ+ S̃i
}
is chosen secretly.

Then, if vi = wi or any row of the matrix τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) is linearly
independent of wi − vi, the player K receives a special message (?, i) and the game is aborted
in the sense that step 6 follows next; else K learns rixi + Sihi, where ri ∈ F4k

q is the unique
vector with τi(w1, . . . , wi)− τi(w1, . . . , wi−1, vi) = r(wi − vi), and Si := τi(w1, . . . , wi)− riwi.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.6: First transformation of our stand-alone indistinguishability game. There are two differ-
ences to the game Γ0(Fkq , n, l). Firstly, where Γ0(Fkq , n, l) in step 4c or step 5c switched to a mode
such that the player K henceforth only receives all-zero outputs, now K is notified about that by a
special message (⊥, i) and the game is aborted. Secondly, K now directly learns τi(w1, . . . , wi) · hi
in step 4c and rixi + Sihi in step 5c instead of the corresponding image of ϑ 7→ Gϑ + ãixi + b̃i.
These game modifications just make K strictly stronger and G, (ã1, b̃1), . . . , (ãn, b̃n) obsolete.

Lemma 58. The maximum winning probability in the game Γ0(Fkq , n, l) is upper bounded by the
maximum winning probability in the game Γ1(Fkq , n, l).

Proof. This holds trivially, since the player in Γ1(Fkq , n, l) is strictly stronger than in Γ0(Fkq , n, l).

Lemma 59. The probability that the game Γ2(Fkq , n, l, ε) is aborted in step 4d, is upper bounded by:

n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp

(
n · q2−k)− 1

Proof. Let some arbitrary player K be given and let the random variables C,w1, . . . ,wn represent
the same-named values in the game Γ2(Fkq , n, l, ε). It is straightforward to see that for each stage
i ∈ {1, . . . , n} the case 4(d)i occurs at most with probability p := q(2/3+ε)k/qk−1. Further, for each
stage i ∈ {1, . . . , n} we have by Lemma 50 that the case 4(d)ii occurs at most with probability
p′ := (q1−3k + q2−3k) · |U|2, if C and (w1, . . . ,wi−1) are statistically independent. Thus, by the
Union Bound we can estimate the overall probability that the game Γ2(Fkq , n, l, ε) is aborted in
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Game Γ2(Fkq , n, l, ε)

Parametrized by a finite vector space Fkq , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.
Let U := F1×k

q and H := Fkq \ {0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C r← F

3k×4k
q .

3. A challenge bit d r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , xi ∈ Fq.

b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.
c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is

aborted in the sense that step 5 follows next.
d) In the following cases the player K receives a special message (?, i) and the game is aborted in

the sense that step 5 follows next:
i. C ·τi(w1, . . . , wi) = r̃iwi+ S̃i and #

{
ṽ ∈ U

∣∣ C ·τi(w1, . . . , wi−1, ṽ) = r̃iṽ+ S̃i
}
≤ q(2/3+ε)k.

ii. There exist some W,W ′ ∈ τi(w1, . . . , wi−1,U), such that rank(CW − CW ′) ≤ 1 and
rank(W −W ′) > rank(CW − CW ′).

Otherwise, K learns rixi + Sihi, where (ri, Si) ∈ F4k
q × F4k×k

q is the unique tuple such that
τi(w1, . . . , wi−1, v) = riv + Si for all v ∈

{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.7: Second transformation of our stand-alone indistinguishability game. The difference to
the game Γ1(Fkq , n, l) is the now uniform way to compute outputs for K. Note that the tuple (ri, Si)
in step 4d is well-defined by Lemma 49.

step 4d by n · (p+ p′) + ι
(
C, (w1, . . . ,wn)

)
. Estimating ι

(
C, (w1, . . . ,wn)

)
by Corollary 48 yields:

n · (p+ p′) + ι
(
C, (w1, . . . ,wn)

)
< n ·

(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp

(
n · q2−k)− 1

Lemma 60. The statistical distance between K’s view in the game Γ1(Fkq , n, l) and K’s view in the
game Γ2(Fkq , n, l, ε) is upper bounded by:

n ·
(
q−(2/3+ε)k + q1−(1/3−ε)k + q1−k + q2−k)+

√
exp

(
n · q2−k)− 1

Proof. Let some arbitrary player K for the game Γ2(Fkq , n, l, ε) be given. Note that the only
difference to the game Γ1(Fkq , n, l) is the computation of K’s output in step 4d, which is now the
same for i ≤ l − d and i > l − d. Since by Lemma 59 we already have an estimation for the abort
probability in step 4d, it suffices to consider the case that K actually learns rixi+Sihi. If i ≤ l−d,
we can just argue that rixi + Sihi = (riwi + Si)hi = τi(w1, . . . , wi) · hi by construction, and thus
the player K receives exactly the same as he would have received in step 4c of Γ1(Fkq , n, l). For
i > l − d, we exploit the following facts:

• If the game is not aborted afore, in step 4d of Γ2(Fkq , n, l, ε) the player K learns rixi + Sihi,
where (ri, Si) ∈ F4k

q × F4k×k
q is the unique tuple such that τi(w1, . . . , wi−1, v) = riv + Si for

all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
.

• Thus, for every v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
either v = wi, or ri is

the unique vector with τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) = r(wi − vi) and it holds that
Si = τi(w1, . . . , wi)− riwi.



8.3. Security against a corrupted sender 99

Game Γ3(Fkq , n, l, ε)

Parametrized by a finite vector space Fkq , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.
Let U := F1×k

q and H := Fkq \ {0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C r← F

3k×4k
q .

3. A challenge bit d r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , xi ∈ Fq.

b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.
c) In the following cases the player K receives a special message (⊥, i) and the game is aborted in

the sense that step 5 follows next:
i. It holds that C · τi(w1, . . . , wi) 6= r̃iwi + S̃i.
ii. It holds that #

{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
≤ q(2/3+ε)k.

iii. There exist some W,W ′ ∈ τi(w1, . . . , wi−1,U), such that rank(CW − CW ′) ≤ 1 and
rank(W −W ′) > rank(CW − CW ′).

Otherwise, K learns rixi + Sihi, where (ri, Si) ∈ F4k
q × F4k×k

q is the unique tuple such that
τi(w1, . . . , wi−1, v) = riv + Si for all v ∈

{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.8: Third transformation of our stand-alone indistinguishability game. The only difference
to the game Γ2(Fkq , n, l, ε) is that the abort message (?, i) was replaced by (⊥, i).

• Moreover, since #
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
> q(2/3+ε)k for non-aborted

stages, a uniformly random v may equal wi with probability less than q−(2/3+ε)k.

Putting these three observations together, we can conclude that with probability higher than
q−(2/3+ε)k in step 5c of Γ1(Fkq , n, l) the same tuple (ri, Si) and hence the same output rixi + Sihi
would be generated as in step 4d of Γ2(Fkq , n, l, ε). Thus, conditioned to the event that Γ2(Fkq , n, l, ε)
is not aborted in step 4d, the statistical distance between K’s view in Γ2(Fkq , n, l, ε) and K’s view
in Γ1(Fkq , n, l) is upper bounded by n · q−(2/3+ε)k. Finally, we just have to add the estimation
from Lemma 59 to get the claimed upper bound for the statistical distance between K’s view in
Γ1(Fkq , n, l) and K’s view in Γ2(Fkq , n, l, ε) without any conditions.

Corollary 61. The statistical distance between K’s view in the game Γ2(Fkq , n, l, ε) and K’s view in
the game Γ3(Fkq , n, l, ε) is upper bounded by:

n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp

(
n · q2−k)− 1

Proof. The only difference between Γ2(Fkq , n, l, ε) and Γ2(Fkq , n, l, ε) is that the abort message (?, i)
in step 4d of Γ2(Fkq , n, l, ε) was replaced by (⊥, i). Thus, the statistical distance between K’s
respective views is just the probability that the game Γ2(Fkq , n, l, ε) is aborted in step 4d. We
already estimated this abort probability by the claimed term in Lemma 59.

Lemma 62. The statistical distance between K’s view in the game Γ3(Fkq , n, l, ε) and K’s view in
the game Γ4(Fkq , n, l, ε) is upper bounded by n · q1−k/3, if qk ≥ 21/ε.
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Game Γ4(Fkq , n, l, ε)

Parametrized by a finite vector space Fkq , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.
Let U := F1×k

q and H := Fkq \ {0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C r← F

3k×4k
q .

3. A challenge bit d r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , xi ∈ Fq.

b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.
c) If there exists a unique tuple (ri, Si) ∈ F4k

q × F4k×k
q such that τi(w1, . . . , wi) = riwi + Si and

#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ + Si
}
> q(2/3+ε)k, and for this unique tuple it holds that

(Cri, CSi) = (r̃i, S̃i), then K learns rixi + Sihi.
Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 5
follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.9: Fourth transformation of our stand-alone indistinguishability game. The only difference
to Γ3(Fkq , n, l, ε) is the way the tuple (ri, Si) is computed in step 4c.

Proof. The only difference between Γ4(Fkq , n, l, ε) and Γ3(Fkq , n, l, ε) is in the computation of the
tuple (ri, Si). It is straightforward to verify (see also Lemma 49) that by construction in step 4c
of Γ3(Fkq , n, l, ε) it always holds: Either the game is aborted, or τi(w1, . . . , wi) = riwi + Si and
#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ + Si
}
> q(2/3+ε)k and (Cri, CSi) = (r̃i, S̃i). Thus, we just have

to estimate the probability that there exists some other tuple (r′, S′) ∈ F4k
q ×F4k×k

q \{(ri, Si)} with
τi(w1, . . . , wi) = r′wi + S′ and #

{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = r′ṽ + S′
}
> q(2/3+ε)k. Now given

that qk ≥ 21/ε, we have by Lemma 51 that only for less than q2k/3 different choices of wi there
may exist such a second tuple (r′, S′). For each stage i ∈ {1, . . . , n}, since wi is chosen uniformly
random with support size qk−1 or larger, we can hence upper bound the probability that such a
second tuple (r′, S′) exists by q2k/3/qk−1. Thus, our lemma follows by the Union bound.

Lemma 63. The maximum winning probability in the game Γ4(Fkq , n, l, ε) is upper bounded by the
maximum winning probability in the game Γ5(Fkq , n, l).

Proof. This holds trivially, since the player in Γ5(Fkq , n, l) is strictly stronger than in Γ4(Fkq , n, l, ε).

Lemma 64. The maximum winning probability in the game Γ5(Fkq , n, l) is upper bounded by the
maximum winning probability in the game Γ6(Fkq , n, l).

Proof. This holds trivially, since the player in Γ6(Fkq , n, l) is strictly stronger than in Γ5(Fkq , n, l).

Lemma 65. The games Γ6(Fkq , n, l) and Γ7(Fkq , n, l) have the same maximum winning probability.

Proof. This holds trivially, since the changes from Γ6(Fkq , n, l) to Γ7(Fkq , n, l) are just cosmetic.
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Game Γ5(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τ̃i : U i → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C r← F

3k×4k
q .

3. A challenge bit d r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q , xi ∈ Fq.

b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.
c) If C · τ̃i(w1, . . . , wi) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wi).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 5
follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.10: Fifth transformation of our stand-alone indistinguishability game. There are two
differences to the game Γ4(Fkq , n, l, ε), which just make the player K strictly stronger. Firstly, the
player K directly learns (ri, Si) instead of only rixi +Sihi in step 4c. Secondly, the tuple (ri, Si) in
step 4c is no longer generated deterministically from τi and w1, . . . , wi by the game, but the player
K may specify an arbitrary mapping τ̃i instead that directly generates (ri, Si) from w1, . . . , wi.

Lemma 66. The maximum winning probability in the game Γ7(Fkq , n, l) and the maximum winning
probability in the game Γ8(Fkq , n, l) differ at most by:

n · q1−k +
√

exp
(
n · q2−k)− 1

Proof. Let some arbitrary player K be given and let the random variables C,w1, . . . ,wl denote the
same-named values in the game Γ7(Fkq , n, l). First of all, we just arbitrarily fix the random coins
of K and hence get some fixed mappings τ̃l, . . . , τ̃n : U l → F

4k×(1+k)
q ∪ {⊥} in step 1 of Γ7(Fkq , n, l).

Now note that, if CM 6= CM ′ for all distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U), then τ̃i(w1, . . . ,wl) is
completely determined by

(
C,w1, . . . ,wl−1,C · τ̃i(w1, . . . ,wl)

)
and the specification of τ̃i. Thus,

conditioned to the event that CM 6= CM ′ for all distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U) for all
i ∈ {l, . . . , n} in both games Γ7(Fkq , n, l) and Γ8(Fkq , n, l), we can straightforwardly transform a
player for Γ7(Fkq , n, l) into a player for Γ8(Fkq , n, l) with exactly the same winning probability.
In other words, the maximum winning probability in the game Γ7(Fkq , n, l) may differ from the
maximum winning probability in the game Γ8(Fkq , n, l) at most by the probability that CM = CM ′
for some distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U) with i ∈ {l, . . . , n}. However, by Lemma 50 and the
Union Bound we can estimate this probability by (n − l + 1) · q1−3k ·

∣∣U ∣∣2 + ι
(
C, (w1, . . . ,wl−1)

)
.

Further, by Corollary 48 we have that ι
(
C, (w1, . . . ,wl−1)

)
<
√

exp
(
(l − 1)q2−k)− 1. Together this

yields the claimed estimation.

Lemma 67. The games Γ8(Fkq , n, l) and Γ9(Fkq , n, l) have the same maximum winning probability.

Proof. This holds trivially, since w.l.o.g. we only need to consider deterministic players.

Lemma 68. The maximum winning probability in the game Γ9(Fkq , n, l) is upper bounded by:

1
2 + n ·

(
2q(4−k)/3 + q ·

√
exp

(
n · q2−k)− 1

)
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Game Γ6(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. a) For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U i → F
4k×(1+k)
q ∪ {⊥}.

b) For each i ∈ {l + 1, . . . , n} the player K chooses some ui ∈ U .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C r← F

3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. a) A challenge bit d r← {0, 1} is chosen secretly, and K chooses some r̃l ∈ F3k
q , S̃l ∈ F3k×k

q , xl ∈ Fq.

b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hl = xl}, else let wl := ul

r← U , chosen secretly.
c) If C · τ̃l(w1, . . . , wl) = (r̃l, S̃l), then K learns (rl, Sl) := τ̃l(w1, . . . , wl).

Otherwise, K receives a special message (⊥, l) and the game is aborted in the sense that step 6
follows next.

5. For i = l + 1, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q . Let wi := ui.

b) If C · τ̃i(w1, . . . , wi) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wi).
Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.11: Sixth transformation of our stand-alone indistinguishability game. There are two
differences to the game Γ5(Fkq , n, l), which just make the player K strictly stronger. Firstly, the
last n− l “token inputs” wl+1, . . . , wn are no longer chosen uniformly at random, but the player K
may choose them at the start of the game in step 1b. Secondly, in the first l − 1 stages the game
may no longer be aborted, and the player K directly learns wi instead of only τ̃i(w1, . . . , wi), which
makes the mappings τ̃1, . . . , τ̃l−1 obsolete.

Proof. W.l.o.g. we consider a deterministic player K, i.e. the mappings τ̃i, xi, σ̃i are all fixed. Let
the random variables h1, . . . ,hn, z1, . . . , zl−1,w,d represent the same-named random values in the
game Γ9(Fkq , n), i.e. it holds:

d r← {0, 1} h1, . . . ,hl
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hl, z1, . . . , zi−1)
}

For convenience we set:

H := (h1, . . . ,hl) H′ := (h1, . . . ,hl−1) T := (z1, . . . , zl−1,w) T′ := (z1, . . . , zl−1)

Further, let the random variable m ∈ {l − 1, . . . , n} represent the index of the latest stage where
the game is not aborted; i.e. τ̃i(T) = σ̃i(H,T′) for all i ∈ {l, . . . ,m}, and τ̃m+1(T) 6= σ̃m+1(H,T′)
if not m = n. Note that K’s complete view can be deterministically reconstructed from (H,T′,m)
and K’s program code. Thus, with the random variable d̃ representing K’s final guess, we have:

P
[
d̃ = d

]
(8.1)

= P
[
d̃ = 0

∣∣d = 0
]
·P
[
d = 0

]
+P

[
d̃ = 1

∣∣d = 1
]
·P
[
d = 1

]
= 1

2

(
P
[
d̃ = 0

∣∣d = 0
]

+P
[
d̃ = 1

∣∣d = 1
])

= 1
2

(
P
[
d̃ = 0

∣∣d = 0
]

+ 1−P
[
d̃ = 0

∣∣d = 1
])

≤ 1
2 + 1

2

∣∣∣P[d̃ = 0
∣∣d = 0

]
−P

[
d̃ = 0

∣∣d = 1
]∣∣∣

≤ 1
2 + 1

2
∑

H,T ′,m

∣∣∣P[(H,T′,m) = (H,T ′,m)
∣∣d = 0

]
−P

[
(H,T′,m) = (H,T ′,m)

∣∣d = 1
]∣∣∣
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Game Γ7(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C r← F

3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. a) A challenge bit d r← {0, 1} is chosen secretly, and K chooses some xl ∈ Fq.
b) If d = 0, let wl := zl

r← {z̃ ∈ U | z̃hl = xl}, else let wl := ul
r← U , chosen secretly.

5. For i = l, . . . , n:
a) The player K chooses some r̃i ∈ F3k

q , S̃i ∈ F3k×k
q .

b) If C · τ̃i(w1, . . . , wl) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wl).
Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.12: Seventh transformation of our stand-alone indistinguishability game. This is just a
“cleaned” version of Γ6(Fkq , n, l). Firstly, instead of letting the player K choose the last n − l
“token inpute” wl+1, . . . , wn at the start of the game explicitly, they are now implicitly hard-coded.
Secondly, the meanwhile obsolete random vectors hl+1, . . . , hn are omitted. Thirdly, we moved K’s
choice of (r̃l, S̃l) and the subsequent output generation from step 4 to step 5.

Now, for H ∈ Hl, T ′ ∈ U l−1, m ∈ {l − 1, . . . , n} we define the following sets:

Am(H,T ′) :=
{
ṽ ∈ U

∣∣ ∀ j ∈ {l, . . . ,m} : τ̃j(T ′, ṽ) = σ̃j(H,T ′)
}

Ām(H,T ′) := Am\Am+1 with the convention that An+1(H,T ′) = ∅

The intuition behind this is that Am(H,T′) consists of all token inputs for stage l, such that the
game is not aborted before stage m. Accordingly, Ām(H,T′) consists of all token inputs for stage
l, such that stage m is the latest non-aborted stage. In other words, it holds:

Am(H,T ′) =
{
w ∈ U

∣∣ (H,T′,w) = (H,T ′, w) ⇒ m ≥ m
}

Ām(H,T ′) =
{
w ∈ U

∣∣ (H,T′,w) = (H,T ′, w) ⇒ m = m
}

Further, for all h ∈ H, α ∈ Fq we define:

Zα(h) := {z̃ ∈ U | zh = α}

Note that w r← Zxl(H,T′)(hl) if d = 0, and w r← U if d = 1. Hence, given H := (h1, . . . , hl) ∈ Hl,
T ′ ∈ U l−1, m ∈ {l − 1, . . . , n}, we can compute:∣∣∣P[m = m

∣∣ (d,H,T′) = (0, H, T ′)
]
− P

[
m = m

∣∣ (d,H,T′) = (1, H, T ′)
]∣∣∣

=
∣∣∣P[w ∈ Ām(H,T ′)

∣∣ (d,H,T′) = (0, H, T ′)
]
− P

[
w ∈ Ām(H,T ′)

∣∣ (d,H,T′) = (1, H, T ′)
]∣∣∣

=
∣∣∣∣∣
∣∣Zxl(H,T ′)(hl) ∩ Ām(H,T ′)

∣∣∣∣Zxl(H,T ′)(hl)∣∣ −
∣∣Ām(H,T ′)

∣∣∣∣U|
∣∣∣∣∣

= q1−k ·
∣∣∣∣∣Zxl(H,T ′)(hl) ∩ Ām(H,T ′)

∣∣− 1
q

∣∣Ām(H,T ′)
∣∣∣∣∣
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Game Γ8(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C r← F

3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. a) A challenge bit d r← {0, 1} is chosen secretly, and K chooses some xl ∈ Fq.
b) If d = 0, let wl := zl

r← {z̃ ∈ U | z̃hi = xi}, else let wl := ul
r← U , chosen secretly.

5. For i = l, . . . , n:
a) The player K chooses some ri ∈ F4k

q , Si ∈ F4k×k
q .

b) If τ̃i(w1, . . . , wl) = (ri, Si), then K is notified about that by a special message (>, i).
Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.13: Eighth transformation of our stand-alone indistinguishability game. The only differ-
ence to Γ7(Fq, n, l) is that in step 5b the player K now must exactly forecast τ̃i(w1, . . . , wl) rather
than only the linear projection C · τ̃i(w1, . . . , wl).

Plugging this into (8.1), we get:

P[d̃ = d] ≤ 1
2 + q1−k

2

n∑
m=l−1

E
∣∣∣∣∣Zxl(H,T′)(hl) ∩ Ām(H,T′)

∣∣− 1
q

∣∣Ām(H,T′)
∣∣∣∣∣

Now we exploit that
∣∣Ām(H,T ′)

∣∣ =
∣∣Am(H,T ′) \ Am−1(H,T ′)

∣∣ =
∣∣Am(H,T ′)

∣∣ − ∣∣Am−1(H,T ′)
∣∣ by

construction and analogously
∣∣Z ∩ Ām(H,T ′)

∣∣ =
∣∣Z ∩ Am(H,T ′)

∣∣ − ∣∣Z ∩ Am−1(H,T ′)
∣∣ for every

Z ⊆ U . Using this and the Triangle Inequality, we can derive:

P[d̃ = d] ≤ 1
2 + q1−k

n+1∑
m=l−1

E
∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)

∣∣− 1
q

∣∣Am(H,T′)
∣∣∣∣∣

Since always Al−1(H,T′) = F1×k
q and An+1(H,T′) = ∅ by definition, the first and last summand

of this expression are always zero and can be discarded; i.e. it holds:

P[d̃ = d] ≤ 1
2 + q1−k

n∑
m=l

E
∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)

∣∣− 1
q

∣∣Am(H,T′)
∣∣∣∣∣ (8.2)

Now we exploit that
{
Am(H,T ′)

}
H∈Hl can be considered as a disjoint decomposition of some subset

of F1×k
q , since by construction we have:

Am(H1, T
′) 6= Am(H2, T

′) ⇒ Am(H1, T
′) ∩Am(H2, T

′) = ∅

Thus, for arbitrary γ ∈ R>0 by Corollary 54 follows:

P
[
∃α ∈ Fq, H ∈ Hl :

∣∣∣∣∣Zα(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2 + ι(hl,T′)

We instantiate α in this inequality by xl(H,T′) and H by H, which yields:

P
[∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)

∣∣− 1
q

∣∣Am(H,T′)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2 + ι(hl,T′)
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Game Γ9(Fkq , n, l)

Parametrized by a finite vector space Fkq and some n, l ∈ N>0 with l ≤ n. Let U := F1×k
q andH := Fkq \{0}.

The player K is computationally unbounded.

1. a) For each i ∈ {1, . . . , l} the player K specifies some mapping xi : Hl × U i−1 → Fq.

b) For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

c) For each i ∈ {l, . . . , n} the player K specifies some mapping σ̃i : Hl × U l−1 → F
4k×(1+k)
q .

2. The player K learns l random vectors h1, . . . , hl
r← H.

3. For i = 1, . . . , l − 1: The player K learns zi
r←
{
z̃ ∈ U

∣∣ z̃hi = xi(h1, . . . , hl, z1, . . . , zi−1)
}
.

4. a) A challenge bit d r← {0, 1} is chosen secretly.
b) If d = 0, let w r←

{
z̃ ∈ U

∣∣ z̃hl = xl(h1, . . . , hn, z1, . . . , zl−1)
}
, else let w r← U , chosen secretly.

5. For i = l, . . . , n: If τ̃i(z1, . . . , zl−1, w) = σ̃i(h1, . . . , hl, z1, . . . , zl−1), then K is notified about that by
a special message (>, i); else K receives a special message (⊥, i) and the game is aborted in the sense
that step 6 follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 8.14: Final transformation of our stand-alone indistinguishability game. The difference to
the game Γ8(Fkq , n, l) is that the player Kmust specify in step 1 how all his future choices will depend
on the information gathered so far, and the meanwhile obsolete random matrix C is omitted.

Since E(x) =
∫∞

0 P[x > γ] dγ for every real-valued random variable x ∈ R≥0, this directly implies:

E
∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)

∣∣− 1
q

∣∣Am(H,T′)
∣∣∣∣∣ ≤ ∫ qk

0
min

{
1, q

k+1/2

γ3/2

}
+ ι(hl,T′) dγ

= q(2k+1)/3 +
∫ qk

q(2k+1)/3

qk+1/2

γ3/2 dγ + qk · ι(hl,T′) = 2q(2k+1)/3 − q(k+1)/2 + qk · ι(hl,T′)

Moreover, by Corollary 48 we have that ι(hl,T′) <
√

exp
(
(l − 1)q2−k)− 1. Using (8.2), we con-

clude:

P[d̃ = d] < 1
2 + q1−k · (n− l + 1) ·

(
2q(2k+1)/3 − q(k+1)/2 + qk ·

√
exp

(
(l − 1) · q2−k)− 1

)
< 1

2 + n ·
(

2q(4−k)/3 + q ·
√

exp
(
n · q2−k)− 1

)

8.3.8 Concluding the security proof

We can now finally conclude our security proof by just putting things together. We first sum up
what we know so far about successive hybrid games; then we conclude this whole section with our
final security theorem.

Corollary 69. For any l ∈ {1, . . . , n}, the hybrid games Gamel−1 and Gamel are statistically indis-
tinguishable, if k ≥ 5. More particular, the statistical distance between the environment’s respective
views is negligible in the security parameter λ := k log q, if only k ≥ 5.
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Proof. For i = 0, . . . , 9, let δi denote the player’s advantage in the respective indistinguishability
game; i.e. the maximum winning probability in the game Γi(Fkq , n, l), or Γi(Fkq , n, l, ε) respectively,
is 1

2 + δi. By Lemma 57, the statistical distance between the environment’s views in Gamel−1 and
Gamel is upper bounded by 2δ0. Furthermore, given any ε ∈ R>0 with q(2/3+ε)k ≥ q, it holds:

δ0 ≤ δ1 by Lemma 58

δ1 ≤ δ2 + n ·
(
q−(2/3+ε)k + q1−(1/3−ε)k + q1−k + q2−k)+

√
exp

(
n · q2−k)− 1 by Lemma 60

δ2 ≤ δ3 + n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp

(
n · q2−k)− 1 by Corollary 61

δ3 ≤ δ4 + n · q1−k/3, if qk ≥ 21/ε by Lemma 62
δ4 ≤ δ5 by Lemma 63
δ5 ≤ δ6 by Lemma 64
δ6 = δ7 by Lemma 65

δ7 ≤ δ8 + n · q1−k +
√

exp
(
n · q2−k)− 1 by Lemma 66

δ8 = δ9 by Lemma 67

δ9 ≤ n ·
(

2q(4−k)/3 + q ·
√

exp
(
n · q2−k)− 1

)
by Lemma 68

Now, let ε := 1
12 and let k ≥ 5, which especially yields that q(2/3+ε)k ≥ q and allows us to estimate:

q−(2/3+ε)k, q1−(1/3−ε)k, q1−k, q2−k, q1−(1/3−ε)k, q1−k/3, q(4−k)/3 ≤ q−k/5

Further let qk ≥ n25/3. This, together with k ≥ 5, allows us to estimate:

q ·
√

exp
(
n · q2−k)− 1 ≤ q ·

√
exp

(
q2−22k/25)− 1 < q ·

√
4q2−22k/25 = 2q2−11k/25 ≤ 2q−k/5

Putting things together, we have shown that the statistical distance between the environment’s
views in the hybrid games Gamel−1 and Gamel is upper bounded by (13n+ 3) · exp(−λ/5), where
λ := k log q is the security parameter and we need that exp(λ) ≥ max

(
212, n25/3).

Theorem 70. Let some arbitrary environment Z be given and some adversary A that corrupts the
sender Goliath. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and simulator
SGoliath(A) is statistically indistinguishable (with security parameter λ := k log q) from the view of
Z in the real model with protocol Πsemi−int

OAFE and adversary A, if only k ≥ 5.

Proof. By Corollary 69 we have that the statistical distance between the environment’s views in
successive hybrid games Gamel−1,Gamel is negligible in the security parameter λ, if only k ≥ 5. By
the Union Bound, we can conclude that the statistical distance between the environment’s views
in Game0 and Gamen may be at most by a factor n bigger, and hence is still negligible. Finally, by
Corollary 56 we have that Game0 is statistical indistinguishable from the ideal model, and Gamen
is perfectly indistinguishable from the real model. Thus, the ideal model and the real model must
be statistical indistinguishable.



9 No-go arguments & conclusion

In this section we conclude our work by a short summery of what we achieved so far, what further
improvement opportunities are left open and which drawbacks of our work seem unavoidable (or at
least hard to circumvent). We start with the negative aspects; they highlight that our results are
quite close to optimal. Though, we only give rather intuitive arguments than full formal proofs.

9.1 Impossibility of polynomially bounded simulation runtime

The running time of our simulator SGoliath(A) for a corrupted sender is not a priori polynomially
bounded (cf. Section 8.3). Instead, we have only a polynomial bound for the expected running time
(cf. Lemma 55). The same problem occurred in [MS08] and they stated it as an open problem to
find a protocol with strict polynomial-time simulation. We argue that such a protocol seems very
hard to find, unless computational assumptions are used.

Since information-theoretically secure OT cannot be realized from stateless tokens, as shown by
[GIMS10], it suffices to consider stateful solutions. However, simulatability is only possible if a
corrupted sender’s inputs can be extracted from his messages sent to the receiver party and the
program code of the token(s). The straightforward approach of extraction is to rewind the token,
but as the token may act honestly only on some fraction of inputs, the simulator will have to rewind
the token repeatedly. In particular, a corrupted token issuer can choose some arbitrary probability
p, such that the token acts honestly only with this probability p. Unless p is negligible, this will
necessitate a simulator that can rewind the token for about 1

p times. Since p may be effectively
chosen by the adversary (and thus by the environment) during runtime, strict polynomial-time
simulation with repeated token rewinding seems impossible. Moreover, we are not aware of any
information-theoretic approach (i.e. without computational assumptions) that would allow us to
avoid repeated token rewinding.

9.2 Impossibility of random access solutions with a constant number of
tokens

Via our protocol Πsemi−int
OAFE one can implement sequentially queriable OTM tokens from a single

piece of untrusted tamper-proof hardware (cf. Section 7.1 and Section 6.4). We discuss now, why
it seems impossible to implement multiple OTMs that the token receiver can access in arbitrary
order. The main argument is that a corrupted token issuer can try to let the token work only for
the first OTM query and then shut down. This is not simulatable in the ideal model, since the
simulator does not learn which OTM is queried first—the decision which OTM to query first even
might be made not until the interactive part of the protocol is over.

In particular, the attack idea is as follows. Given any hypothetical protocol for random access
OTMs from a single token, let b denote a lower bound of token queries that are needed for the first
OTM access and let B denote an upper bound. W.l.o.g., b and B are polynomially bounded in
the security parameter. The corrupted token issuer randomly picks j r← {b, . . . , B} and programs
the token such that it shuts down after the j-th query. Now, with probability 1

B−b+1 the receiver
party will be able to access only the very OTM that is queried first. Note that this probability
is independent of the access order to the implemented OTMs. Further note that by this attack it
cannot happen that the OTM accessed first is malformed and any other is not. For the simulator
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this means an unsolvable dilemma. With non-negligible probability, all but one of the sent OTMs
must be malformed and the non-malformed OTM must always be that one that will be accessed
first.

9.3 Lower bounds for David’s communication overhead

Even our refined construction for l-bit string-OT (q.v. Section 7.2.1) needs that David inputs Θ(l)
bits into the token. One could wonder, if it is possible to implement multiple instances of OT from
reusable tamper-proof tokens, such that for each implemented instance of OT the communication
complexity for the receiver party David is constant. We argue that this seems very improbable.
The main argument is that a corrupted sender Goliath can correctly guess David’s token inputs for
the first OT instances with some constant probability. Thus, he can maliciously create the tokens
so that they immediately shut down, if David’s first token inputs do not match Goliath’s guess.
Thereby, when Goliath learns that the protocol was not aborted, he can reconstruct David’s first
OT input. Such a protocol cannot be UC-secure, since in the ideal model the abort probability
may not depend on Davids inputs. Moreover, the whole argumentation still seems valid, even if we
allow that David inputs polylogarithmically many bits per OT into the tokens.

9.4 Conclusion & improvement opportunities

We showed that a single untrusted tamper-proof hardware token is sufficient for non-interactive (or
to be more precise, semi-interactive), composable, information-theoretically secure computation.
Our approach is the first to implement several widely used primitives (namely string-commitments,
string-OT and sequentially queriable OTMs) at optimal rates. Moreover, our constructions have
remarkably low computation complexity, way more efficient than any other construction in the
literature. As a drawback, our information-theoretically secure protocols have only limited token
reusability, but can be transformed straightforwardly into computationally secure protocols with
unlimited token reusability. The computational assumption needed is the weakest standard as-
sumption in cryptography, namely the existence of a pseudorandom number generator, and beyond
that we only need the receiver party David to be computationally bounded. After all, our work
can be regarded as a substantial gain towards practical two-party computation, but there are still
some issues that need some further improvement.

Smaller constants for better practicability. Even though we achieve asymptotically optimal com-
munication complexity, there are some nasty constants left that might make our protocols somewhat
slow in practice. In particular, for every l-bit string-OT (or l-bit OTM respectively) the token has
to compute and output an F20×5

2l -matrix, i.e. we have a blow-up factor of 100. This enormous factor
results from two technical artifacts. Firstly, we were only able to prove that our protocol Πsemi−int

OAFE
securely realizes Fkq -OAFE, if k ≥ 5 (cf. Section 8). In contrast, we only need F2

2l-OAFE for our
optimal l-bit string-OT protocol (cf. Section 7.2.1) and there seems to be no potential attack against
Πsemi−int

OAFE with k = 2. Secondly, for technical reasons we need that David chooses a check matrix
C of dimension 3k × 4k in step ii of the setup phase (q.v. Figure 7.1) and later computes a check
value CWi from the i-th token output Wi, i.e. we especially need that Wi has dimension 4k × k.
However, no potential attack is known, if only C ∈ Fαk×(1+α)k

q with constant α > 0. Now, if we
choose α = 1

2 and k = 2, this means that David chooses a check matrix C of dimension 1× 3 and
the token just needs to compute and output F3×2

2l -matrices. In other words, it could be possible to
reduce the blow-up factor from 100 to 6 just by more sophisticated proof techniques and a slight
modification of the protocol.
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Less interaction. Our protocol Πsemi−int
OAFE (q.v. Figure 7.1) is semi-interactive in the sense that it

consists of send and choice phases, such that communication between the sender party Goliath and
the receiver party David does only take place in the send phases, whereas Goliath is not involved
in the choice phases at all. Moreover, even if Goliath learns all of David’s send phase messages in
advance (but not before the token is transmitted!), the protocol stays secure. Thus, as David’s send
phase messages only consist of randomness, we can go with a total of only one single message from
David to Goliath, which is sent during the initialization phase of the protocol (cf. Section 7.2.3).
However, this approach comes along with two drawbacks. Firstly, the single message from David
to Goliath will be quite large. Secondly, David needs to know an upper bound for the number of
upcoming send phases, what clearly rules out unlimited token reusability. As a solution for both
drawbacks, David could just send a random seed of a pseudorandom number generator. However,
it is completely unclear if this does breach security, and how to prove security even if Goliath and
the token are computationally bounded.

More realistic hardware assumptions. For security of our protocol Πsemi−int
OAFE (q.v. Figure 7.1)

against a corrupted sender party Goliath we need that the tamper-proof token in David’s hands
and the token issuer Goliath are perfectly isolated from each other. This assumption is questionable,
since one cannot prevent Goliath from placing a very powerful communication device near David’s
lab. At least, this will enable Goliath to send some messages to the token. However, one can hold
the view that the token’s transmitting power can be reliably bounded by its weight and size, so
that it cannot send any messages back to Goliath. Still, even a unidirectional channel from Goliath
to the token suffices to break our protocols.

Therefore, we propose a two-token solution (namely that of Section 7.2.6), where one token
just plays Goliath’s role of the original protocol. As long as neither token can send any message,
the tokens are mutually isolated and everything seems well except for one subtle issue: Goliath
can change the behavior of the tokens during runtime und thus change his OAFE inputs without
being noticed. However, this may be considered unavoidable in real world applications, since a very
similar attack could also be mounted if adversarially issued tokens contain clocks.

Closing the gap between primitives and general two-party computation. By our approach we
implement OT (and OTMs respectively) via some quite general Fkq -OAFE functionality (cf. Sec-
tion 6.4). However, Fkq -OAFE is strictly stronger than OT in the sense that in general many OT
instances and a quite sophisticated protocol are needed to implement Fkq -OAFE, whereas l-bit
string-OT can be implemented rather straightforwardly from a single instance of Fl2-OAFE or
F2

2l-OAFE (cf. also Section 7.2.1). This raises the question, whether one could base general two-
party computation directly on Fkq -OAFE rather than OT, e.g. via (garbled) arithmetic circuits
[Cle91, CFIK03, AIK11], and thereby possibly reduce the computational overhead. More generally,
one could also try to implement other sorts of functions directly on the tamper-proof hardware.
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Table of symbols

General notations

N naturals including zero; without zero denoted as N>0

R real numbers; without negative values denoted as R≥0; positive values denoted as R>0

P[E ] probability of the random event E

E(x) expected value of the random variable x

H2(x) collision entropy of the random variable x

Notations in Part I

pmf(Ω) set of all probability mass functions over the alphabet Ω

Ffin set of all randomized finite 2-party functions; see Secion 2.2 or Notation 3 in Section 4

F usually an element of Ffin; cf. Notation 3 in Section 4

ΥA,ΥB Alice’s/Bob’s input alphabet in a randomized finite 2-party function F

ΩA,ΩB Alice’s/Bob’s output alphabet in a randomized finite 2-party function F

φx,y(a, b) probability of the output tuple (a, b) on input x from Alice and y from Bob

η ∈ N
(F )
B idealized cheating situation; see Section 3.1.2 and Definition 5 in Section 4.1

η|A(x) Alice’s input probability of x in the cheating situation η

η|true
B (y) Bob’s actual input probability of y in the cheating situation η

η|fake
B (y) Bob’s claimed input probability of y in the cheating situation η

ξ ∈ X
(F )
B set of Bob’s cheating characteristics for F ; see Definition 7 in Section 4.1

F (G,ε)
SMCD ideal functionality for correlated data distribution; see Figure 3.4

G usually a characterization of a correlated data distribution; see Figure 3.4

ΛA,ΛB Alice’s/Bob’s alphabet of a correlated data distribution G

ψ probability mass function of a correlated data distribution G

πF protocol for generation of correlated data from the 2-party function F ; see Figure 4.1

ΠF set of possible parameter tuples for πF ; see Notation 29 in Section 4.5

νB joint distribution of Alice’s and Bob’s actual and claimed input-output tuples in the
protocol step Control A; see Notation 30 in Section 4.5
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νB|A marginal distribution of Alice’s inputs in the protocol step Control A; see Notation 30 in
Section 4.5

νB|true
B marginal distribution of Bob’s actual inputs in the protocol step Control A; see Nota-

tion 30 in Section 4.5

νB|fake
B marginal distribution of Bob’s claimed inputs in the protocol step Control A; see Nota-

tion 30 in Section 4.5

∼ equivalence of cheating situations; see Notation 12 in Section 4.3

w,A containedness-relation for cheating situations; see Notation 14 in Section 4.3

ΨF (Y ) input symbols that Bob can use instead of symbols from Y without being caught cheating;
see Notation 21 in Section 4.4

|s|α number of occurrences of the symbol α in the string s; see Notation 28 in Section 4.5

s[i] i-th element of the string s; see Notation 28 in Section 4.5

s[K] substring of s, indexed by K; see Notation 28 in Section 4.5

sA×sB compound string, whose i-th element is
(
sA[i], sB[i]

)
; see Notation 28 in Section 4.5

± almost equality; “a = b± c” stands for “|a− b| ≤ c”

Notations in Part II

Fq finite field with q elements

Fkq k-dimensional vector space over Fq

Fk×lq set of all (k × l)-matrices over Fq

x r← X the random variable x is uniformly random over the set X

SD statistical distance; see Section 6.1

ι measure for statistical correlation; see Section 6.1

FOTM ideal functionality for one-time memories; see Figure 5.1

F stateful
wrap wrapper functionality for modeling tamper-proof hardware; see Figure 6.1

F seq−ot
OAFE ideal functionality for sequential one-time OAFE; see Figure 6.3

Πsemi−int
OAFE protocol for implementation of F seq−ot

OAFE from a single tamper-proof token; see Figure 7.1

T tamper-proof token; cf. Figure 7.1

SDavid simulator for a corrupted token receiver David; see Figure 8.1

SGoliath simulator for a corrupted token issuer Goliath; see Figure 8.2

Gamel hybrid game in the security proof for Πsemi−int
OAFE ; see Section 8.3.6

F ′ ideal functionality in Gamel; see Figure 8.3

S ′l simulator in Gamel; see Figure 8.4

P(S) power set of S
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