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Abstract—Visual stabilization proposed in this paper compen-
sates changes of the scene caused by motion and deformation
of an observed object. This is of high importance in computer-
assisted beating heart surgery, where the views of the beating
heart should be stabilized. The proposed model-based method
defines visual stabilization as a transformation of the current im-
age sequence to a stabilized image sequence. This transformation
incorporates physical model of the observed object and model of
the measurement process. In contrast to standard approaches,
the quality of the visual stabilization is continuously evaluated
and improved in two aspects. On the one hand, discretization
errors are reduced. On the other hand, the parameters of
the underlying models are adjusted. The performance of the
proposed method is evaluated in an experiment with a pressure-
regulated artificial heart. Compared with standard methods,
the model-based method provides higher accuracy, which is
additionally improved by a feedback mechanism.
Keywords: heart surface motion compensation, estimation,
model adaptation, video processing.

I. INTRODUCTION

Visual stabilization is of importance for many industrial
applications, such as automated handling of elastic objects
like an insertion a flexible beam into a hole [1] or servoing in
presence of non-rigid motion [2], [3]. In medical applications,
visual stabilization is essential for computer-assisted surgical
operations on soft tissues [4]. In these applications, a moving
object is observed by a camera system that provides image
sequences displaying a changing scene. The aim of visual sta-
bilization is to compensate the object motion and deformation
for representing this scene as stationary. For that purpose, the
image sequence is transformed to a stabilized image sequence,
as shown in Fig. 1. As a result, the stabilized images depict a
moving deformable object as motionless, whereby its changes,
such as different coloring, remain visible.

The proposed approach for visual stabilization is suggested
for an application in a computer-assisted beating heart surgery
system, first introduced in [4]. On the one hand, this system
synchronizes surgical instruments with a beating heart [5].
On the other hand, it gives a surgeon an impression of
operating on a stabilized heart by representing the heart surface
as motionless. Application of this system for beating heart
operations will lead to higher accuracy and repeatability of
surgical interventions. While approaches for synchronization
of surgical instruments are widely investigated [6]–[12], only
few methods for the visual stabilization can be found in
literature. In this application, the main challenge of the visual

Figure 1. Visual stabilization of a moving pendulum. The image sequence
provided by a camera is transformed to the stabilized image sequence.

stabilization is accurate reconstruction of continuous heart
surface motion. This is difficult, because the space- and
time-discrete measurement information provided by a camera
system is uncertain and the heart dynamics are unknown.

Related work in the area of visual stabilization for in-
dustrial and medical application can be classified into four
groups. First, the visual stabilization can be provided by
sub-sampling, i.e., by selecting only those images from the
image sequence that depict an object at the desired position.
The method proposed in [13] is inspired by this idea. Here,
electrocardiogram-triggered strobed light is used for making
a heart appear still to a surgeon. The obtained experimental
results testify that this method leads to increasing demands
on surgeon’s concentration and to fatigue. The main reason
for that is neglected information between the sampled views.
The second group includes approaches that transform the



current image sequence to the stabilized image sequence by
a global transformation, e.g., by moving a camera according
to the object motion [2], [4]. In [14], the camera motion is
simulated by changing extrinsic camera parameters. Generally,
these methods are unable to compensate the local motion of a
deformable object. The third group combines methods using
geometric image transformation. Here, the images acquired
at every time step are mapped to the reference images,
e.g., by linear interpolation [15] or by image transforma-
tion methods [16] such as warping [17] or morphing [18].
Some type of hybrid formulation is proposed in [19], where
region-based deformable appearance models incorporate the
combined parametrization provided by modal analysis and
principal components analysis. Since this group of methods
incorporates only geometric constraints in the transformation,
motion artefacts can occur in the stabilized image sequence
because the physical characteristics of the observed object
are not considered. So, the image transformation by linear
interpolation may become rough [17], since no smoothness
constraints regarding the heart surface motion are considered.
A method for visual stabilization related to the forth group
was recently proposed in [20]. The key idea of this method
is incorporating a physical model of an observed object and
a model of the measurement process in the image trans-
formation. According to the presented experimental results,
the model-based visual stabilization provides higher accuracy
than the geometric image transformation [21]. This is due to
consideration of physical characteristics of the heart, so as
model and measurement uncertainties.

The common disadvantage of all presented methods is that
the quality of the visual stabilization after the transformation is
not continuously monitored and evaluated. It should be noted
that the measurement disturbances, such as stochastic uncer-
tainties caused by camera noise, environmental disturbances
like smoke due to tissue cutting, and inaccuracies of feature
extraction will affect the quality of the visual stabilization.
However, its deterioration in case of highly inaccurate mea-
surements or transformation errors will not be detected and
corrected.

The main contribution of the proposed adaptive model-
based approach for visual stabilization is incorporating feed-
back from the stabilized image for improving the quality of the
image transformation. Here, the model-based method proposed
in [20] is extended in such way that the underlying models are
adapted for reducing the image transformation errors.

After formulating the problem of image transformation in
Section II, an overview of the proposed method with an
illustration of its key idea is given in Section III. The main
components of the method, such as image transformation
function, involved models, estimation, and adaptation, are
described in Section IV. In Section V, the model-based image
transformation is evaluated in an experiment with a pressure-
regulated artificial heart. It is compared to one of the standard
methods based on geometric image transformation. Finally,
Section VI outlines the main contributions and achieved
results.

II. PROBLEM FORMULATION

This section deals with formulating the problem of visual
stabilization. The setup of this problem is described with
regard to the application of visual stabilization in a computer-
assisted beating heart surgery. In this application, the motion
of the intervention area of the heart surface should be visually
stabilized. For that purpose, the beating heart is observed by
a stereo endoscope or multicamera system.

For clarity of the problem formulation, we define the current
camera image by a set of two-dimensional points, i.e., pixels

Pk :=
{
pi
k

}P

i
.

The size of this set P is determined by the resolution of the
image. The position of each pixel

p
k

:= [pxk, p
y
k]

T

in this image is identified by integer indices pxk and pyk in x and
y directions of the image. Furthermore, the reference image
is defined as one of the previous camera images. Therefore,
when, for example, the reference image is initialized at time
step tk−n, it is described by a set of pixels Pk−n.

The transformation of the current image to the reference
image is provided by assigning the intensity I(p

k
) of each

pixel in the current camera image to each pixel p
k−n

in the
reference image. For that purpose, an image transformation
function establishes the correspondences between the pixels
of both images

Tk(Ck (Fk−n,Fk) ,Pk) : Pk → Pk−n (1)

based on the correspondences between the image features in
these images

Fk−n → Fk ,

where
Fk :=

{
f i
k

}F

i=1
, f

k
⊂ Pk .

The positions of the image features Fk in the current image are
usually measured at the current time step tk. Their positions
Fk−n in the reference image acquired at time step tk−n are
exactly known. It should be noted that the transformation
function depends on the unknown set of parameters Ck ∈ RL.
These parameters are used for approximating the positions
of the pixels in the current image Pk. In geometric image
transformation approaches, i.e., by warping [16], [21], they
incorporate the geometric constraints on the movement of
the deformable object. In contrast, in the model-based im-
age transformation method proposed in [20], the values of
these parameters are influenced by geometric and physical
constraints on the movement of the observed object. Due
to physical constraints, unrealistic estimation of the object
deformation is excluded.

Obviously, the quality of the approximation and therefore,
of the visual stabilization strongly depends on the quality of
the underlying models. However, in existing image transforma-
tion approaches, the models are assumed to be exactly known.
Therefore, in this paper, an adaptive image transformation
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Figure 2. Key idea of the visual stabilization is a three-dimensional physics-based image transformation incorporating physical constraints provided by the
three-dimensional physical model of the observed object. The transformation function maps the pixels Pk−n in the reference image acquired at time step
tk−n to the pixels Pk in the current image at time step tk . This mapping is based on the correspondences between the image features Fk and Fk−n in
both images (green marker) and is defined by a projection of the three-dimensional model with all its points Lk and Mk in camera images.

function should be derived. It should be able to improve the
quality of the image transformation and accompanied models
by using the feedback from the stabilized image sequence. In
the course of this, the transformation errors should be reduced
in the image regions where visual stabilization is inaccurate.
For that purpose, the accuracy of the visual stabilization should
be continuously evaluated. Furthermore, for avoiding deterio-
ration of the image transformation accuracy, the uncertainties
of the transformation function and measurements should be
taken into account.

III. KEY IDEA

In this section, the key idea of the adaptive model-based vi-
sual stabilization, such as adaptation of the visual stabilization
by the feedback from the stabilized image sequence, will be
illustrated. For that purpose, a short introduction to a model-
based image transformation incorporating physical constraints
is given.

As described in [20], the model-based image transformation
is based on a three-dimensional physical model, which is
constructed on a set of three-dimensional points, i.e., model
nodes

Lk :=
{
lik
}L
i=1

bounded by the model domain Lk ⊆ Ω ⊂ R3. These points
may represent the landmarks on the surface of the object, as
shown in Fig. 2. In this case, the three-dimensional position
lk of every landmark is reconstructed from the image features
in the reference images Fk−n 7→ Lk−n according to [22].

When the object deforms, the model reproduces the object
deformation. Then, the current three-dimensional positions
mk ∈ Ω ⊂ R3 of all model points from a set

Mk :=
{
mi

k

}M
i=1

are defined by approximating the deformations between the
model nodes Lk ⊂ Mk. The parameters of this approxima-
tion represent the parameters Ck of the image transformation

function Tk. Finally, by projecting the reference position of the
model points Mk−n and the current position of these points
Mk in the respective images, the correspondences between
the pixels Pk−n 7→ Pk of the reference image and the current
image are defined.

It should be noted that the numerical accuracy of the
physical model and therefore, of the image transformation
function, depends on the number and the distribution of
the model nodes Lk. For example, for coping with strong
deformations, a higher density of these nodes is desired.
Their insufficient number can cause high discretization errors.
However, the more nodes are in the model, the higher is the
computational complexity of the transformation. Therefore, in
this paper, the number of the model nodes is determined by
using the feedback from the stabilized image. After evaluating
the image transformation quality, the transformation errors are
corrected by inserting additional model nodes in the areas
where the image transformation can be improved. This allows
to reduce the discretization errors and to adjust in these areas
the physical behavior of the model to the behavior of the
observed object.

IV. ADAPTIVE MODEL-BASED VISUAL STABILIZATION

The main components of the adaptive model-based sta-
bilization such as image transformation, underlying models,
estimation and adaptation will be described in this section.
In Fig. 3, the functional interaction of these components is
depicted.

A. Image Transformation

The image transformation function Tk in equation (1) sets
correspondences between the pixels in the current and ref-
erence images. Due to the fact that these images represent
camera projections of the observed heart surface, this function
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Figure 3. Adaptive visual stabilization of the image sequences with its main components: image transformation, underlying models, estimation and adaptation
by the feedback mechanism.

is defined in [20] for every pixel in the reference image by

pxk−n =pxk −
r12u

x
k + r12u

y
k + r12u

z
k + r14

r31ux
k + r32u

y
k + r33uz

k + r34
,

pyk−n =pyk −
r21u

x
k + r22u

y
k + r23u

z
k + r24

r31ux
k + r32u

y
k + r33uz

k + r34
,

(2)

where rij , i = 1, . . . , 3 , j = 1, . . . , 4 represents the elements
of the projection matrix P provided by a calibration of the
cameras [23]. This transformation function depends on the
three-dimensional displacement of the observed point on the
heart surface uk := [ux

k,u
y
k,u

z
k]

T. Therefore, when the cur-
rent displacements of the observed object are exactly known,
accurate correspondences between the pixels of both images
can be established. Then, the intensities of the pixels in the
current image can be assigned to the corresponding pixels
in the reference image. However, the displacements of the
observed object are not exactly known, since the reconstruction
of the three-dimensional information from camera data is
corrupted by errors. Furthermore, approximation errors arise,
because only the points Fk are measured and the other points
are approximated. Therefore, the displacements of the entire
object should be estimated.

B. Models of Observed Object and Measurement Process
For estimating the displacements of the heart surface, a

state-space system including system and measurement equa-
tions is derived. The system equation defines a temporal
propagation of the system state that characterizes the heart
surface displacements. The specialty of the proposed system
equation is the exploitation of physical background knowledge
of the observed object in form of its physical model. The
intervention area of the heart surface is modeled as a linear
elastic physical body. The behavior of this body is described
by a system of stochastic partial differential equations given

in [22]. Using the meshless collocation method [24] and
implicit Euler integration, these equations are converted into
a discrete state-space form [22], [25]. In this paper, the
state-space model proposed in [20] is extended regarding the
material inhomogeneity of the heart surface. The extended
model is given by

xk+1 = Ak(ψ
k
)xk + Bk(ψ

k
) (ŝuk + snk +wk) , (3)

where model uncertainties wk are assumed white zero-mean
Gaussian wk ∼ N (0,Cw

k ) with covariance Cw
k . The un-

known physical nodal parameters, such as material density ρk,
Rayleigh damping coefficients η1,k, η2,k, Young’s modulus
vector Ek ∈ RL, and Poisson’s ratio νk are collected in the
vector

ψ
k

:= [ET
k ,ρk,η1,k,η2,k,νk]T . (4)

They determine the physical characteristics of the model in
the areas of the model nodes Lk. In contrast to [20], in
this paper, the Young’s modulus Ek is defined for every
model node, since the heart surface tissue is inhomogeneous.
The heart excitation is assumed to be generated by a known
uniformly distributed pressure inside the cardiac chambers ŝuk
and unknown non uniform system input snk . The system state

xk :=
[
cTk , c

dT
k

]T
(5)

contains the three-dimensional values of L unknown coeffi-
cients cik =

[
cx,ik , cy,ik , cz,ik

]T
∈ Ck, also called nodal values,

and their discrete derivatives cdk =
(
ck − ck−1

)
/∆t, which

are used for approximating the displacement uk and velocity
of every point on the heart surface. Here, the vector ck−1

denotes the coefficients at previous time step, and ∆t stays
for the time difference between the time steps. So, the three-
dimensional displacement of a model point mk−n from the



set Mk−n is approximated by

uk ≈ Φkck , (6)

where matrix

Φk = diag
{
ϕT
k
, ϕT

k
, ϕT

k

}
(7)

consists of vector

ϕ
k

=
[
ϕk(mk−n, l

1
k−n, σk) · · ·ϕk(mk−n, l

L
k−n, σk)

]T
, (8)

which elements are moving least-squares meshless functions
ϕk ( · ), computed according to [26]. The support domain of
these functions σk defines the relationship between the point
mk−n and model nodes Lk. This domain is different for
every point. In the proposed model, it is proportional to the
distance between the point and its nearest neighboring nodes.
For constructing the functions, for every point a minimum of
6 neighboring nodes is necessary.

The relationship between the system’s state and measure-
ments provided by a camera is described by the measurement
equation, which is defined according to [20] for every image
feature from the set Fk−n by

f̂xk − fxk−n =
r12u

x
k + r12u

y
k + r12u

z
k + r14

r31ux
k + r32u

y
k + r33uz

k + r34
+ vxk ,

f̂yk − f
y
k−n =

r21u
x
k + r22u

y
k + r23u

z
k + r24

r31ux
k + r32u

y
k + r33uz

k + r34
+ vyk .

(9)

The measured position of the image feature in the current

camera image f̂
k

=
[
f̂xk , f̂

y
k

]T
and the position of the image

feature in the reference image f
k−n

=
[
fxk−n, f

y
k−n

]T
are

extracted from images by a segmentation algorithm described
in [22]. The measurement disturbances vk := [vxk , v

y
k ]

T due
to image noise and inaccurate projection are assumed white
zero-mean Gaussian vk ∼ N (0,Cv

k) with the covariance Cv
k.

It should be noted that the errors due to lens distortion are
assumed negligible.

C. Estimation

In this section, the stochastic estimation of the heart surface
displacement is described.

According to (3), the system state (5) involving approxi-
mation coefficients ck depends on the unknown parameters of
the physical model, such as unknown nodal parameters ψ

k
and

non uniform heart excitation snk . Therefore, these parameters
should be simultaneously estimated with the system state. For
that purpose, an arbitrary nonlinear estimator can be applied.
In this paper, the estimation proposed in [20] is used.

As a result, when no measurements are available, e.g., in
case of low image frame rate or total occlusions, the estimated
three-dimensional displacements of every point from the set
Mk at the current time step are characterized by mean and
covariance

ûpk := Hkx̂
p
k , Cu,p

k := HkCx,p
k HT

k , (10)

where the matrix Hk := diag {Φk,0} contains the approxi-
mation functions (7) of this point. The vector x̂pk and matrix

Cx,p
k denote the first two moments of the predicted state xk

represented by its mean and covariance. When measurements
are available, the estimated three-dimensional displacements
are also computed by (10), where the first two moments of the
predicted state are replaced with the moments of the updated
state, denoted by ûek and Cu,e

k .
When the estimated three-dimensional displacements of the

object are available, the correspondences between the pixels
in the reference and current images can be determined using
image transformation function given in equation (2). Finally,
the current image can be transformed to the reference image
by assigning the intensity of each pixel in the current camera
image to each pixel in the reference image.

D. Adaptation of the Image Transformation
In case of an inaccurate physical model, the quality of the

image transformation can deteriorate. It should be pointed
out that the quality of the model depends on the number
and the distribution of the points Lk used for constructing
the model. As was described in Section IV-B, the coupling
between these points depends on their support domains. On
the one hand, the larger is the support domain of the point,
the more points influence the displacement of this point. On
the other hand, a small support domain of the point leads to
the independence of its motion from distant points. Therefore,
the interconnection between the points can be governed by
changing size of the support domain. However, this is hardly
possible if the model is initialized based on a small number
of model nodes. The reason for that is that the approximation
matrix Φk becomes singular if the demand on the minimum
number of the neighboring nodes is not satisfied.

The insufficient number of model nodes Lk represents a
discretization problem that can be solved by introducing addi-
tional model nodes. However, the more model nodes construct
the model, the higher is the computational complexity of the
image transformation. In itself, one model node introduces
ten state variables in the proposed model, which are then
propagated by a nonlinear estimator. In order to constrain
the computational complexity and improve the accuracy of
the image transformation, the transformation function and the
models are adapted on the basis of the feedback from the
stabilized image. For that purpose, at first, the stabilization
errors are defined and detected. Then, the models are extended
by additional model nodes, which are placed in regions, where
the stabilization can be improved. Furthermore, the physical
parameters are adapted in these regions. As a result, the image
transformation function is enhanced.

1) Feedback Computation: For detecting the stabilization
error, the difference image is constructed by subtracting the
obtained compensated image from the reference image. These
images are collected over a certain time interval, which is
defined here by a period of the heart motion. It should be
noted that the reference image is continuously updated at this
time interval for considering the changing structure of the heart
surface, e.g., by cutting arteries or due to bleeding. Then, the
obtained image is converted to a gray scale intensity image and
binarized, where only the gray values inside the defined gray
scale level are converted to white pixels, as shown in Fig. 4.



Figure 4. Stabilization error as
a binarized difference between the
compensated and reference image.
The binarization allows to constrain
the number of points, which are of
interest for the feedback.

Figure 5. Additional model points
(red) inserted for reducing the sta-
bilization error. The small green
marker are used for evaluating sta-
bilization quality. The large green
marker represent the selected image
points.

The binarization allows to filter out the intensity differences
due to changing light conditions and to constrain the number
of points, which are of interest for the feedback. As a result,
the image points with high stabilization error are identified.

2) Model Adaptation: For improving the quality of the
stabilization, additional model nodes are introduced in the
model in the areas, where the stabilization is inaccurate. In
this section, the position of these points is defined and the
changes caused in the models and the transformation function
are explained.

The pixels, where a high stabilization error occurs, are
uniquely assigned to the three-dimensional points by the
model. From these, those points are selected

Ak :=
{
aik
}D
i=1

, Ak ⊂Mk

from the set Mk that have the highest divergence between
their predicted and estimated position. The estimated position
is used, as no measurement information about the motion of
these points is available. The divergence is evaluated by the
Mahalanobis distance [27]

ek := (ûpk − ûek)T (S)
−1

(ûpk − ûek) , (11)

where the predicted ûpk and estimated ûek displacements of the
selected point are computed according to (10) using the first
two moments of the a priori and a posteriori state. The matrix
Hk contains the approximation functions of these points and
the error covariance matrix is defined by

S := Cu,p
k + Cu,e

k . (12)

The points with the distance ek larger than the parameter k
are selected for inserting into the model. The parameter k
ensures with the certain selected probability Pk := P (ek < k)
sufficient prediction quality.

The adaptation of the physics-based model occurs by insert-
ing at every defined position at least two model nodes, which
are placed on the upper and lower surface of the model. In
this way, the number of the model nodes Lk used for the
construction of the heart surface model is enhanced by the
inserted nodes, so that the set of the model nodes is now
defined by

La
k :=

{
lak ,i

}L+A

i=1
, lak ∈ Lk ∪ Ak . (13)

This leads to the extension of the state vector (5) by new
coefficients

xa
k :=

[
cTk , c

aT
k , cdT

k , cd,aT
k

]T
, (14)

where the coefficients cak and cd,ak represent the nodal values of
the inserted nodes. Furthermore, the vector of the unknown pa-
rameters (4) is enlarged, since the elasticity of the heart tissues
in the area of the inserted nodes is defined by corresponding
Young’s modulus vector Ea

k. Moreover, the matrices Ak and
Bk in equation (3) are computed using the adjusted parameter
vector and the new approximation matrix (7), wherein the
inserted nodes are considered. It should be noted that the
support domain of the already existing model nodes Lk is
not changed, when the new nodes are inserted. The support
domain of the additional model nodes is defined by a minimum
number of the neighboring nodes.

The adapted measurement model is computed according
to (9), where the displacement uk is calculated by (6) using
the extended approximation matrix.

3) Adapted Image Transformation Function: Due to adap-
tation of the number of the model nodes, the image transfor-
mation function is also adjusted. It is computed by (2), where
the three-dimensional displacement of the object is estimated
by (10). In both equations, the adjusted state xa

k and the
extended approximation matrix are used.

V. EVALUATION

The adaptive model-based visual stabilization is evaluated
in an experiment with a pressure-regulated artificial heart. The
obtained results are compared with the standard geometric
approach for visual stabilization.

A. Experimental Setup
The experimental setup shown in Fig. 6 is used in this paper.

Here, an artificial beating heart is observed by a trinocular
camera system. This system is installed at a distance of 50 cm

Figure 6. In computer-assisted beating heart surgery, an intervention area of
a beating heart should be visually stabilized. With regard to this application,
the artificial beating heart is observed by a camera system.

from the observed object. It consists of three PIKE F-210C



cameras [28] with a resolution of 1920 pixels × 1080 pixels.
The camera baselines are about 57 cm, their focal length is
about 35 mm. The image size of every camera is reduced
by cutting out the defined regions of interest. The motion of
the artificial heart is induced by a pressure signal with the
amplitude 100 hPa and frequency 1.2 Hz.

The evaluation results are averaged over three runs, every
of each consists of three image sequences including 400
images. Every of the image sequences is transformed to the
reference image. The physical model of the heart surface is
initialized based on the set of three-dimensional landmarks
L reconstructed from the set of the image features F . These
image features are represented by large green marker in Fig. 5.
The small green marker are inserted for the evaluation of the
visual stabilization. They are not used for initialization of the
model and their measurements are ignored by the estimation.
The red points are inserted in the physical model based on the
feedback from the stabilized image sequence. For the purpose
of the feedback, the stabilization error is computed over 23
frames, whereby the intensity values between 8 and 12 gray
levels are binarized.

B. Experimental Results
The quality of the proposed adaptive method for visual sta-

bilization is compared to the geometric image transformation
that is introduced in [21]. The experimental results depicted
in Fig. 7 show the transformation error averaged over three
image sequences.

In two dimensions, this error is defined as the Euclidean
distance between the positions of the image features in the
reference image and stabilized images. The image features are
extracted by a segmentation algorithm with sub-pixel accuracy.
This algorithm is proposed in [22]. For evaluating the three-
dimensional transformation error, the reference images and
the stabilized images of all cameras are considered. In this
way, the three-dimensional positions of evaluation points in
reference and stabilized images can be reconstructed. Then,
the Euclidean distance between the reconstructed positions of
the reference points and stabilized points is computed.

As shown in Fig. 7, the accuracy of the model-based image
transformation, which is identified by the maximum of the
two-dimensional transformation error, is 20% higher then the
accuracy of the geometric approach. Furtheremore, the quality
of transformation is increased by the feedback by 20%. In
three dimensions, the accuracy of the adaptive model-based
visual stabilization is 62% higher then the accuracy of the
geometric approach and 29% higher then the accuracy of
the the model-based visual stabilization without feedback. It
should be noted that the three-dimensional motion of the
evaluation points achieve 10 mm. The displacement of the
image features motion achieve 36 pixel.

While the error presented in Fig. 7 depends on the distri-
bution of the evaluation points, the contour plots in Fig. 8
illustrate the performance of the approach over the entire
stabilized area for one of the image sequence. The high
quality of the model-based image transformation is evident.
In the regions highlighted in Fig. 8(d), this transformation is
significantly improved by the feedback mechanism.
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(b) The three-dimensional transformation error.

Figure 7. The adaptive model-based visual stabilization in comparison to the
model-based visual stabilization without feedback and the geometric approach.
The transformation error is averaged over three evaluation runs containing 400
images. According to the maximum transformation error, the adaptive model-
based image transformation provides 40% higher accuracy then the geometric
image transformation in two dimensions. In three dimensions, the accuracy of
the adaptive model-based visual stabilization is 62% higher then the accuracy
of the geometric approach.

VI. CONCLUSIONS

The visual stabilization is highly important in many indus-
trial and medical applications. It compensates changes of the
scene caused by a motion and deformation of an observed
object.

In this paper, visual stabilization is formulated as a model-
based image transformation that incorporates a physical model
of the observed object and a model of the measurement pro-
cess. In this way, the physical characteristics of the observed
object are considered.

The specialty of the proposed transformation is the con-
tinuous improvement of the image transformation quality by
feedback from the stabilized image sequence. On the one hand,
discretization errors are reduced by introducing additional
model points in areas with high stabilization errors. On the
other hand, the physical behavior of the model is adjusted to
the behavior of the observed object.

The performance of the proposed method is evaluated with
regard to computer-assisted beating heart surgery. It aims to
be used for the virtual representation of the beating heart as



 

 

(a) Averaged difference between
camera images and the reference
image.

(b) Geometric image transforma-
tion.

(c) Model-based image transforma-
tion without feedback.

(d) Adaptive model-based image
transformation with feedback.
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(e) Error.

Figure 8. Contour plots representing the stabilization error, which is defined for one image sequence as a difference between the stabilized image and
reference image. The error is averaged over 400 time steps. The model-based image transformation provides more accurate stabilization then the geometric
image transformation. The quality of the model-based transformation is significantly improved by the feedback in the regions highlighted in Fig. 8(d).

motionless. This allows to extend the surgeon’s capabilities
during an operation on a beating heart and achieves a higher
precision of surgical interventions. In an experiment with a
pressure-regulated artificial heart, the proposed method pro-
vides higher accuracy than standard methods. The importance
of the continuous monitoring of stabilization quality is empha-
sized by a significant improvement of stabilization accuracy
due to feedback mechanism.
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