
Lazy auctions for multi-robot collision avoidance
and motion control under uncertainty

Jan-P. Calliess1, Daniel Lyons2 and Uwe D. Hanebeck2

1 Dept. of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK.
jan@robots.ox.ac.uk

2 Intelligent Sensor-Actuator-Systems Lab, Karlsruhe Institute of Technology,
Kaiserstr. 12, D-76128 Karlsruhe, Germany

Abstract. We present an auction-flavored multi-robot planning mech-
anism where coordination is to be achieved on the occupation of atomic
resources modeled as binary inter-robot constraints. Introducing virtual
obstacles, we show how this approach can be combined with particle-
based obstacle avoidance methods, offering a decentralized, auction-based
alternative to previously established centralized approaches for multi-
robot open-loop control. We illustrate the effectiveness of our new ap-
proach by presenting simulations of typical spatially-continuous multi-
robot path-planning problems and derive bounds on the collision proba-
bility in the presence of uncertainty.

1 Introduction

Owing to its practical importance, multi-agent coordination has been subject
to ever increasing research efforts over the past decades. One of its subfields,
multi-robot coordination, focusses on problems that reflect the specific nature of
robotic agents and their environment. In contrast to strategic settings, in multi-
robot coordination problems, the mechanism designer can typically afford to
assume obedient agents and hence does not need to burden herself with ensuring
design goals such as incentive compatibility or strategyproofness. This freedom
should be much welcomed considering that robots typically interact in a complex
and uncertain physical world and often can choose from a continuum of control
signals (actions).

Many important planning and control problems can be stated in terms of a
solution to a binary linear program (BLP).3 An example can be found among
particle methods which have become increasingly popular for stochastic model-
predictive single-vehicle control and path planning under uncertainty [5]. The
drawn particles can serve to approximately bound the probability of a collision
with an obstacle via chance constraints that are added as binary constraints to
the BLP formulation of the vehicle’s cost-optimizing control problem [5]. The
resulting plans (sequences of control inputs) are shown to result in low-cost
trajectories that avoid all obstacles with adjustably high certainty.

3 BLPs constitute a subclass of mixed-integer linear programs.

A simple method to extend single-robot problems to multi-robot problems
is to combine their individual optimization problems into one large, central-
ized BLP (e.g. [25]). While delivering cost-optimal results, such approaches have
the architectural disadvantages of centralized approaches, and scale poorly in
the number of robots and interaction-constraints. Therefore, their application is
typically restricted to coordination tasks of low complexity. As finding a socially
optimal solution is known to be NP-complete, most practically applicable coor-
dination methods constitute a compromise between tractability and optimality.

As one of the best established of such approximation methods we consider
fixed priority methods [12]. Here, the robots plan in order of their assigned pri-
ority with the highest priority robot beginning. When it is Robot r’s turn it
is informed of the plans of all higher-priority robots whose trajectories become
obstacles in the space-time planning domain that r needs to avoid. While these
methods are computationally attractive and several extensions have been sug-
gested [1] [21], the rigidness of the fixed priority scheme can lead to joint solutions
whose summed (social) cost can be unattractively high.

By contrast, the main idea of our approach is to base the decision which
robot may pass a conflicting point in the space-time domain (which multiple
robots initially plan on passing) not based on a fixed priority alone but chiefly
on a bid each robot computes based on local information.

To achieve socially optimal coordination all robots could in principle be non-
myopic and compute VCG-bids for combinatorial bundles of resources (space-
time points) [24]. Unfortunately, this approach is once again intractable and
generally belongs to a class of combinatorial allocation problems which are known
to be NP-hard (cf. [10]).

Addressing the inevitable tradeoff between optimality and tractability, we
propose a myopic, iterative bidding protocol where each robot bids for one con-
flicting resource at a time without taking other potentially ensuing conflicts at
subsequent resources into account (hence the term myopic). Other applications
include but are not limited to distributed reinforcement learning [3], constrained
decentralized allocation of atomic resources or graph routing.

Furthermore, our coordination mechanism is distributed and lazy in the sense
that, instead of asking for bids on all conceivable combinations of plans, all
robots plan independently and bidding only takes place for resources that turn
out to be overbooked (i.e. which two or more robots plan to use simultaneously).
Thereby, their coordinated paths are guaranteed to be collision-free, while at the
same time the exponential blow-up resulting from considering all combinations
is avoided.

Our model assumption is that the individual robots’ problems are BLPs
with all interaction modeled via (hard) binary constraints. This is in contrast to
another large body of works on coordination that focusses on agent interaction
via objective functions (e.g. [13, 14, 6]). Since our model is based on BLPs we
can employ our method in the context of particle-based multi-robot open-loop
control [5].

The result of this application is a distributed coordination mechanism that
(with adjustably high certainty) generates collision-free paths without prior
space-discretization and which can take uncertainty into account (the latter may
be desirable due to sensor noise and model-inaccuracies).

The remainder of this paper is structured as follows. After placing our work
in the context of the literature, we discuss the model assumptions in greater
detail and describe our bidding protocol in generality. We use the notion of a
virtual obstacle as an intuition for constraints that are successively generated
as a result of coordination iterations, designed to prohibit resource conflicts
(i.e. violations of binary inter-robot constraints). We then elucidate several of
our method’s properties in the context of graph path planning as a didactic
example application. For a mild restriction of the algorithm and problem domain
it is possible to prove termination in a finite number of coordination iterations.
However, the rather lengthy and technical discussion of this theoretical guarantee
had to be deferred to an extended version of this work [7].

Before concluding, we propose how to link our approach to stochastic con-
trol and present experiments illustrating how it can be utilized for efficient,
distributed multi-vehicle control under uncertainty. For such settings, we derive
probabilistic collision bounds that can provide a guideline for choosing the size
of the virtual obstacles, which is an important design parameter that can be
expected to influence the trade-off between conservatism and social cost.

2 Related Work

Multi-robot coordination is a broad topic with numerous strands of works. The
approach we present to collision avoidance and control is germane to a number
of these strands comprising both approaches designed to operate in both con-
tinuous and in discrete worlds. It is beyond the scope of this paper to present
an exhaustive survey of the extensive body of previous work that ranges across
various disciplines. For surveys focussing on market-based approaches refer to
[11, 17].

As a rather coarse taxonomy, present methods can be divided into centralized
and decentralized approaches. Centralized approaches (e.g. [25][23]) typically rely
on combining the individual agents’ plans into one large, joint plan and opti-
mizing it in a central planner. Typically, they are guaranteed to find an optimal
solution to the coordination problem (with respect to an optimality criterion,
such as the sum of all costs). However, since optimal coordination is NP-hard it
is not surprising that these methods scale poorly in the number of participating
agents and the complexity of the planning environment. With worst-case compu-
tational effort growing exponentially with the number of robots, these methods
do provide the best overall solutions, but are generally intractable except for
small teams.

In contrast, decentralized methods distribute the computational load on mul-
tiple agents and, combined with approximation methods, can factor the optimal
problem into more tractable chunks.

There are two classes of decentralized coordination mechanisms. The first
class imposes local interaction rules designed to induce a global behavior that
emerges with little or no communication overhead. For instance, based on a
specific robot motion model, Pallottino et. al. [22] propose interaction policies
that result in guaranteed collision avoidance and can accommodate new robots
entering the system on-line. Furthermore, under the assumption that robots
reaching their goals vanish from the system, the authors prove that eventually
all robots will reach their respective destination locations. While in its present
version uncertainty is not explicitly taken into account, it may be worthwhile
endowing their method with an explicit error model and performing a similar
analysis as we provide in Sec. 6.

The second class focusses on the development of mechanisms where coor-
dination is achieved through information exchange succeeding the distributed
computations.

Distributed optimization techniques have been successfully employed to sub-
stitute the solution of a centralized optimization problem by solving a sequence
of smaller, decoupled problems (e.g. [6], [19], [20], [3] and [16]).

For example, Bererton et. al. [3] employ Dantzig-Wolfe Decomposition [8] to
decentralize a relaxed version of a Bellman BLP to compute an optimal policy.
However, due to the relaxation of the collision constraints, collisions are only
avoided in expectation. Many of these algorithms have a market interpretation
due to passing Lagrangian multipliers among the subproblems.

Generally, market-based approaches have been heavily investigated for multi-
robot coordination over the past years [26] [15] [11]. Among these, auction mech-
anisms allow to employ techniques drawn from Economics. They are attractive
since the communication overhead they require is low bandwidth due to the fact
that the messages often only consist of bids. However, as optimal bidding and
winner determination for a large number of resources (as typically encountered
in multi-robot problems) is typically NP-hard, all tractable auction coordina-
tion methods constitute approximations and few existing works provide any
proof of the social performance of the resulting overall planning solution beyond
experimental validation. An exception are SSI auctions [17, 18]. For instance,
Lagoudakis et. al. [18] propose an auction-based coordination method for multi-
robot routing. They discuss a variety of bidding rules for which they establish
performance bounds with respect to an array of team objectives, including social
cost. While multi-robot routing is quite different from the motion control prob-
lem, we consider some of their bid design to be related in spirit to ours. It may
be worthwhile considering under which circumstances one could transfer their
theoretical guarantees to our setting. One of the main obstacles here may be the
fact that in SSI auctions, a single multi-round auction for all existing resources
(or bundles) is held. This may be difficult to achieve, especially if we, as in Sec.
6, desire to avoid prior space discretization and take uncertainty into account.

Most frequently used in approximate Bayesian inference but recently applied
to coordination are message passing methods such as max-sum [13]. In these
algorithms, agent interaction is modeled to take place exclusively via the agents’

cost functions and coordination is achieved by message passing in a factor graph
that represents the mutual dependencies of the coordination problem. While
dualization of our inter-robot resource constraints into the objective function
could be leveraged to translate our setting into theirs, several problems remain.
First, the resulting factor graph would be exceptionally loopy and hence, no
performance or convergence guarantees of max-sum can be given. Second, the
interconnecting edges would have high weights (cf. [14]) whose removal would
correspond to a relaxation of the collision-avoidance constraints and hence, ren-
der pruning-based max-sum-based methods [14] inapplicable.

Among all multi-robot path planning approaches, fixed priority methods are
perhaps the most established ones. In its most basic form introduced by Erd-
mann and Lozano-Perez [12], robots are prioritized according to a fixed ranking.
Planning is done sequentially according to the fixed priority scheme where higher
ranking robots plan before lower ranking robots. Once a higher ranking robots is
done planning, his trajectories become dynamic obstacles4 for all lower ranking
robots, which the latter are required to avoid. If independent planning under
these conditions is always successful, coordination is achieved in A planning it-
erations that spawn the necessity to broadcast A− 1 messages in total (plans of
higher priority agents to lower priority ones) where A is the number of robots.

By contrast, in our mechanism, A such messages need to be sent per coordina-
tion iteration. Although our results indicate that the number of these iterations
scale mildly in the number of robots and obstacles in typical obstacle avoidance
settings, such an additional computation and communication overhead needs to
be justified with better coordination performance. Our experiments in subse-
quent sections indeed illustrate the superior performance of our flexible bidding
approach over fixed priorities.

Note, our mechanism also incorporates an (in-auction) prioritization (as ex-
pressed by the robots’ indices) that becomes important for winner determination
whenever there is a bidding tie.

In priority methods, the overall coordination performance depends on the
choice of the ranking and a number of works have proposed methods for a priori
ranking selection (e.g. [2]). Conceivably, it is possible to improve our method
further by optimizing its in-auction prioritization (robot indexing) with such
methods. Exploring how to connect our mechanism to extensions of priority
methods, such as [21], could have the potential to improve the communication
overhead. Investigating the feasibility of such extension will have to be done in
the course of future research efforts.

4 The notion dynamic obstacle loosely corresponds to our virtual obstacles (cf. Sec. 6).
The difference is that our virtual obstacles are only present at a particular time step
whereas the dynamic obstacles span the whole range of all time steps. Furthermore,
we described how to adjust the box-sizes to control the collision probability in the
presence of uncertainty.

3 Problem Formulation

While our approach could be applied to more general scenarios, in this pa-
per, we restrict our focus to the following multi-robot path planning problem
(MRPPP): A team of robots A = {1, ..., A} desires to find individual plans
p1, ..., pA, respectively, that translate to collision-free paths in free-space such
that each robot r’s path leads from its start S(r) to its destination D(r).

Since our approach is motivated by multi-robot path planning, we interpret a
plan as being in a one-to-one relationship with a path in free space. For instance,
a plan could be a sequence of control inputs that linearly relates to a trajectory
of locations (resources) in an environment. For simplicity of exposition, we will
from now on assume that plan pr is a time-indexed sequence (prt)t∈N where
prt corresponds to a decision specifying which resource to consume at time t.
However, we will lift this assumption again in Sec. 6 where the plans are indeed
control inputs that linearly relate to locations.

Obviously, the robots need to make sure that plans are legal, that is they
adhere to the laws of the environment. We call the set of all legal plans the
global feasible set G.

For example, consider a routing scenario in a graph with edges E and vertex
set V . A plan could be to find a path through the network represented as a
sequence of vertices that respects the graph’s topology. To enforce this, we could
specify a global feasible set as a subset of {(pt)t|∀t : (pt, pt+1) ∈ E}. The global
feasible set is global in the sense that the constraints it enforces apply to all
robots in the system.

By contrast, each robot r may desire to enforce individual constraints upon
the plans it generates. We can represent them as a local feasible set Lr. For
instance, in the routing example, robot r may wish to ensure that he finds a
path that leads from its start location to its destination: pr ∈ Lr ⊂ {pr =
(prt)t|pr0 = S(r),∃k∀t ≥ k : prt = D(r)}.

Depending on the environment, there might be many (possibly infinitely
many) plans that are both legal and locally feasible. In most applications how-
ever, robots may have a preference over different plans implied by a local cost
function cr : G → R that assigns a cost to different plans. (For instance, cr(pr)
may quantify the path length.) So, if robot r could plan independently, he would
like to execute the solution to optimization problem:

minpr∈G∩Lr cr(pr).
Unfortunately, this is not possible in environments with multiple robots as

they need to avoid collisions (i.e. plans where two robots simultaneously use
the same non-divisible resource). Let p¬r = (pr)r∈A−{r} denote the collection of
plans of all robots except r. If r knew fixed p¬r, he could react to it by solving

min
pr∈G∩Lr∩R(p¬r)

cr(pr) (1)

where R(p¬r) is the set of all paths that are not in conflict with the paths
generated by p¬r. If p¬r is a collection of tentative plans, we can interpret R(p¬r)
as the set of all plans that do not use any resource that are already used by any

robot in A − {r} based on the current belief that all other resources will be
available. Notice, that R(p¬r) would typically be specified by a set of binary (
or integer) constraints. Therefore, the individual optimization problem would be
a binary linear program (BLP) which could be solved by the robot employing
either standard mixed-integer-solvers or a problem domain specific algorithm of
the robot’s own choice. Unfortunately, due to the mutual interdependence of the
constraint sets, for all r, R(p¬r) is unknown a priori and hence, the individual
optimization problems are unknown (since the feasible sets are interdependent).
This is where the necessity for coordination arises.

We can now restate the overall task description (comprising (MRPPP) as a
special case) in general terms:

TASK: Assume each robot r (r = 1, ..., A) can choose a plan pr ∈ G ∩ Lr.
Coordinate the planning process such that the overall outcome (p1, ..., pA) of plans
is conflict free (i.e. ∀t∀a, r ∈ A, a ̸= r : prt ̸= pat) and such that the social cost∑

a∈A ca(pa) is small.
The socially optimal solution can be stated quite easily as the solution of the

centralized optimization problem

min
(p1;...;pA)∈GA∩×rLr∩I

A∑
r=1

cr(pr) (2)

where I is a set defined by inter-robot constraints that prohibit collisions
(conflicts). In other words, I is the set of all overall plans p = (p1; ...; pA) such
that all plans pa, pr use distinct resources (for a, r ∈ A, r ̸= a). Typically we
will have to specify I via binary constraints, rendering the overall optimization
problem a binary linear program (BLP) that could in principle be solved by a
centralized planning agent.

Unfortunately, such centralized approaches are known to scale poorly in the
number of robots, even in expectation. They are NP-hard in the worst case and
are limited by the typical architectural down-sides of multi-robot systems that
rely on centralized planners. For example, central planners constitute computa-
tional and communication choke-points and a single points of failure (cf. e.g.
[9]).

Since the centralized optimization problem acc. to (2) scales poorly, we will
seek to replace it by iteratively solving a sequence of individual, tractable prob-
lems similar to (1). Due to the hardness of the original problem we will have to
be satisfied if the ensuing overall solution is not always socially optimal.

4 Mechanism

We propose an iterative mechanism that proceeds as follows:
In each iteration, agents plan independently based on their current beliefs of

available resources. Initially each agent assumes all resources are available. The
planning process in each agent r is done solving an opt. problem of the form (1).

Whenever a conflict is detected, the conflicting agents participate in an auc-
tion for the contested resource. The winner is allowed to proceed as if no conflict
had occurred while the losers add new constraints preventing them from using
the lost resource at the specific time t where the conflict occurred in future it-
erations (i.e. they update their beliefs about the available resources as encoded
by R). Conflicts are resolved in time step order. That is, a conflict that would
lead to a collision at time t is resolved before a detected conflict that would
lead to a collision at time step t′ > t. If we define the auction horizon to be the
largest time step t where a conflict has been resolved then this horizon increases
monotonically from coordination iteration to iteration until no more conflicts
arise.

Whenever an agent has won a resource for a certain time step t in past
iterations that she does not need anymore in her current plan, she releases it for
t and informs the other agents of this event. Once all conflicts are resolved, the
agents can execute their final plans.

Winner determination of an auction proceeds as follows: All agents who si-
multaneously (at the same coordination iteration i ∈ N0) plan to use a resource
at the same time step t submit a bid. The bid br(i) that each contestant r sub-
mits equals lr(i)− sr(i). Here, lr(i) is the cost r expects to experience (given its
current belief in i of the available resources) if it would lose the resource. And,
sr(i) is the cost r expects (given its current belief of the available resources) to
incur if it can keep using the contested resource. The winner is determined to be
the agent who submits the highest bid. If multiple agents have greater or equal
high bids than all the other ones (| argmaxa∈A ba(i)| ≥ 2), the robot with the
highest index wins.
To gain an intuitive motivation for the bidding rule, notice the bid quantifies the
regret an agent expects to have for losing the auction (given its current belief of
the availability of resources). Acknowledging that swinner(i)+

∑
a∈ losers l

a(i) is
the estimated social cost (based on current beliefs of available resources) after the
auction, we see that the winner determination rule greedily attempts to minimize
social cost: ∀r : bw(i) ≥ br(i) ⇔ ∀r : sr(i) +

∑
a̸=r l

a(i) ≥ sw(i) +
∑

a̸=w la(i).

Notice, there are several degrees of freedom regarding the architectural im-
plementation of the mechanism. For instance, to detect a conflict, all agents
communicate their current plans to all other agents. With broadcast messages
the communication effort per coordination iteration is hence in O(A) where A is
the number of agents. Then each agent would be responsible to detect the next
conflict and arrange an auction with the other agents. Alternatively, the mech-
anism designer could set up a number of additional dedicated conflict detectors
and auctioneers (e.g. one for a set of time steps or a set of resources).

Before applying our mechanism to continuous distributed control under un-
certainty in Sec. 6 we devote the next section illustrating its behavior in deter-
ministic graph routing.

5 Coordinated path planning in graphs

In this section, we will discuss our mechanism’s properties in the context of path
planning in finite graphs.

Graphs are mathematical abstractions that are simple but reflect the essence
of many real-world planning scenarios. A graph G = (V,E) is a pair consisting
of a set V of vertices or nodes and a set E ⊂ V 2 of edges. The edges impose a
relation structure on the vertices. In a robot path planning scenario the vertices
could correspond to locations. Assuming discretized time we could construct G
such that (v, v′) ∈ E iff a robot can travel from location v to v′ in one time
step. Finally, we assume the robot incurs a cost ce > 0 for traversing an edge
e ∈ E. Depending on the objective, such a cost can model the time delay (e.g.
γ(e) = 1 [sec]) for moving from v to v′ (where the vertices are chosen such that
e = (v, v′)).

As an illustration, consider a simple graph routing example. Two agents
desire to find low-cost paths in a graph with transition costs as depicted in Fig.
1(a). Agent 1 desires to find a path from Node 1 to 5, Agent 2 from Node 2 to
6.

 1

 4

 2

 11
 1

 1 1

Node 1 Node 2

Node 3

Node 4

Node 5 Node 6

(a) Ex. 1.

 1 1 1

 1 1 1 9

 1 1 9 9

S(2)

I 11 I 12

I 21 I 22

D(1) D (2)

S (1)

 1

(b) Ex. 2.

Fig. 1. Two examples. Numbers next to the edges denote the transition costs. Ex.2 :
S(a)/D(a): start/destination of agent a. Coordinated plans depicted in blue (Agent 1)
and cream (Agent 2) which happens to be socially optimal.

In the first iteration (i = 1), Agent 1 and Agent 2 both assume they can
freely use all resources (nodes). Solving a binary linear program they generate
their shortest paths as p1 = (1 3 4 5 5...) and p2 = (2 3 4 6 6...), respectively.
Detecting a conflict at time step 2 and 3, the agents enter an auction for contested
Node 3. Agent 1’s estimated “detour cost” for not winning Node 3 (assuming
he will be allowed to use all other nodes in consecutive time steps) is 2 which
he places as a bid b1(i) = 2. On the other hand, Agent 2’s detour cost ist
b2(i) = l2(i)− s2(i) = 12− 4 = 8 and hence, she wins the auction. Having lost,
Agent 1 adds a constraint to his description of his feasible set (more precisely to

R) that from now on prevents it from using Node 3 in time step 2. Replanning
results in updated plans p1 = (1 4 5 5 ...) and p2 = (2 3 4 6 6...). Being conflict-free
now, these plans can be executed by both agents.

Notice how the laziness of our method protected us from unnecessary com-
putational effort: the initial conflict at time 3 (Node 4) was implicity resolved
by the first auction without the need to set up an explicit auction for Node 4 or
bidding on all combinations of availability of Nodes 3 and 4.

Of, course, this positive effect of laziness may not always bear fruit - in
several situations resolving a collision at one node may not prevent collisions
from happening (or, trigger new ones) at other nodes. As an example consider
Ex. 2 in Fig. 1(b) and assume Agent 2’s initial plan visits Vertex I11 - after this
conflict is resolved there will be a second at Vertex I21.

Nonetheless, Ex. 1 was designed to provide an intuition that it often can
lead to favorable coordination outcomes. In Sec. 6, we provide an experimental
investigation of the number of collisions triggered in a typical multi-robot path
planning scenario.

Comparison of social cost on randomized graphs. As explained above
the myopic and lazy nature of our method may save computational effort during
coordination possibly at the price of higher social cost. On the other hand, its
coordination effort may at times be higher than that of fixed priority methods,
so the overhead only seems justifiable if resulting in lower social cost.

To obtain a first assessment of our method’s (AUC) performance we com-
pared it against the fixed priority method (FPM). The priorities were the same
as the internal priorities in our methods, i.e. equivalent to the robots’s indices. As
an absolute performance benchmark, we compared both methods to the optimal
solutions computed by a centralized BLP solver (CS).

The comparisons were conducted on 2000 randomized graph planning prob-
lems. In each randomized trial, the planning environment was a forward directed
graph similar in structure to the one in Fig. 1(b) (b). Each graph had a random
number of vertices (L×N - graphs where number of layers L Unif({3, ..., 11}),
number of nodes per layer N Unif({3, ..., 11}) and randomized vertex-transition
costs drawn from Unif([1, ..., 200]). The coordination task was to have each robot
find a cost optimal path through the randomized graph where the robots had a
randomized start location in the first layer and a destination vertex in the last
layer.

For each trial we compared the social costs of the plans generated with the
different coordination methods. The results are depicted in Fig. 2.

For a given problem instance, let Γ (AUC), Γ (FPM), Γ (OPT) denote the
social cost of the coordinated plan generated by our method, the fixed priority
methods FPM, and the optimal social cost, respectively. Finally, let Γ (BEST −
FPM) be the social cost the plans of the fixed priority method with the best
choice of priorities in hindsight would have incurred.

The data show that our auction method performed optimally on 93 % of the
problems (5) while the fixed priority method did so on only 62.2 %. Conversely,

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

P
E

R
C

E
N

T
A

G
E

Fig. 2. Results of comparison between different methods over 2000 randomized prob-
lem instances. The bars represent the percentages of the trials where... 1: Γ (AUC) ≤
Γ (FPM) 2: Γ (AUC) < Γ (FPM) 3: Γ (AUC) ≤ Γ (BEST − FPM) 4: Γ (AUC) <
Γ (BEST − FPM) 5: Γ (AUC) = Γ (OPT) 6: Γ (FPM) = Γ (OPT).

the fixed priority method outperformed our method only on 2.1 % (see bar (1))
while it was strictly outperformed on 35.1 % of the randomized trials (2).

6 Distributed control in a spatially continuous world and
under uncertainty

6.1 Preliminaries- Sampling-based control and obstacle avoidance

Multi-robot motion planning and control problems in continuous maps have been
addressed with mixed-integer linear programming (BLP) techniques [25]. Typ-
ically they rely on time-discretization only, without prior space-discretization.
However, they are commonly solved with a centralized planner and typically
do not take uncertainty into account. Recently, stochastic control methods have
been suggested for single-robot path planning that accommodate for uncertainty
in the effect of control signals. For instance, Blackmore et. al. [5] discuss a
particle-based method that can be used to generate a low-cost trajectory for
a vehicle that avoids obstacles with adjustably high confidence. In their model,
the plans pa are time-discrete sequences of control inputs. The spatial location
xa
t of Robot a at time t is assumed to be a linear function of all previous con-

trol inputs plus some iid random perturbations ν0, ..., νt−1 ∼ D. So, given plan
pa, drawing n samples of perturbations for all time steps generates N possible

sequences of locations (particles) (x
a,(j)
t)t (j = 1, ..., N) Robot a could end up

in when executing his plan.

Formally, x
a,(j)
t = ft(x

a,(j)
0 , ua

0 , ..., u
a
t−1, ν

(j)
0 , ..., ν

(j)
t−1) (j = 1, ..., N) where ft

is a linear function and ua
0 , ..., u

a
t−1 is a sequence of control inputs as specified by

Robot a’s plan. Due to this functional relationship we can constrain Robot a’s
BLP’s search for optimal control inputs by adding constraints on the particles.

Let T be the number of time steps given by the time horizon and temporal
resolution. That is, t ∈ {1, ..., T}. Furthermore, let F be the free-space, i.e. the
set of all locations that do not belong to an obstacle. Obstacle avoidance is
realized by specifying a chance constraint Pr((xa

t)t∈T /∈ F) ≤ δ on the actual
location of the robot. For practical purposes, Pr((xa

t)t∈T /∈ F) is estimated
by Monte-Carlo approximation leading to the approximated chance constraint
1
N |(xa,(j)

t)t∈T /∈ F, i = 1, ..., N | ≤ δ which we add to Robot a’s individual BLP
[5].

If D is a unimodal and light-tailed distribution (e.g. a Gaussian), the particles

x
a,(1)
t , ..., x

a,(N)
t for a at time step t typically form a cluster mostly centered

around the mean.

Note that the uncertainties due to the random perturbations accumulate over
time. Hence, the standard error of the particle clusters along a robot’s trajectory
can be expected to increase with t.

6.2 Multi-Robot motion control under uncertainty

As collision-free plans are found by solving a BLP we could combine both ap-
proaches to a multi-robot stochastic control mechanism: Integrating the individ-
ual BLP’s into one large central BLP (cf. to Eq. 2 in Sec. 3) we could then add
an appropriate inter-robot constraint for each combination of particles in order
to avoid collisions. Unfortunately, the number of integer constraints would grow
superlinearly in the number of particles and even exponentially in the number
of robots, rendering this approach computationally intractable.

Instead, we propose to apply our mechanism as follows: Each robot solves its
local BLP to find a plan that corresponds to sequences of n particle trajectories.

When two (or more) robots a, r, .. detect their particle clusters {xa,(1)
t , ..., x

a,(N)
t },

{xr,(1)
t , ..., x

r,(N)
t },.. ‘get too close’, they suspect a conflict and participate in an

auction. The winner gets to use the contested region, while the losers receive
constraints that correspond to a virtual obstacle (that is valid for time step t)
and replan. Notice, for notational convenience, we omit the explicit mention of
the coordination iteration i in our notation throughout the rest of the section.

Next, we will explain the application of our mechanism to the continuous
path planning problem in greater detail. Every robot employs the path planning
algorithm as described in [5] to generate a particle-trajectory that is optimal for
him. As explained in Sec. 4 the mechanism requires the robots to exchange their
plans in every coordination iteration. However, they do not need to exchange all
particles constituting their trajectories – it suffices only to exchange the optimal
control inputs that lead to the particle trajectories (alongside the state or seed
of their own pseudo-random-generator with which they drew their disturbance
parameters).

With this knowledge all the other robots are able to exactly reconstruct each
others’ particle trajectories. Now each robot locally carries out a test for collision
by calculating the probability of a collision for each plan of every other robot.

Let {xa,(1)
t , . . . , x

a,(N)
t } be the particle cluster that probabilistically describes

the desired position of Robot a at time step t. Furthermore, let {xr,(1)
t , . . . , x

r,(N)
t }

be the particle cluster of Robot r. Let ϵ be a predetermined parameter represent-
ing the minimum distance allowed between two robots. For instance, we could
set ϵ = 2d where d is the diameter of the robots which is a reasonable choice
when defining a robot’s location as the cartesian coordinates of his center point.

The probability of a collision of Robot a and Robot r at time step t is

Pr(∥xa
t − xr

t∥ < ϵ) = Exa
t , xr

t
{χC} =

∫ ∫
χC(x

a
t , x

r
t)f(x

a
t)f(x

r
t)dx

a
t dx

r
t (3)

≈ 1

N2

N∑
k=1

N∑
j=1

χC(x
a,k
t , xr,j

t) (4)

where f(xa
t) and f(xr

t) are the densities representing the uncertainty regard-
ing Robot a’s and Robot r’s locations, respectively, given the histories of their
control inputs and where

χC(x
a
t , x

r
t) :=

{
1 , for ∥xa

t − xr
t∥ < ϵ

0 , otherwise.

Therefore, the probability of a collision of Robot a and Robot r at time step t
is approximated by their respective particle representations. If this approximated
probability is above a predefined threshold δ, the robots engage in an auction for
the contested spatial resource, as described in previous sections. The resource
in this case corresponds to the right to pass through. We propose its denial to
be embodied by a new virtual obstacle the loser of the auction, say Robot r,
will have to avoid (but only at time t). By placing the virtual obstacle around
the winner’s location estimate at time step t, we will reduce the chance of a
collision. We represent the new obstacle by a square (if planning takes place in
higher dimensions a hypercube) Bα+ϵ(x̄

a
t) with side length α+ ϵ and centered at

the sample mean x̄a
t of Robot a at time step t. The choice of this representation

is motivated by the fact that the chance constraints for a square-obstacle can be
encoded by merely four linear and a few additional integer constraints [4, 5].

Obviously, the larger the virtual obstacle, the lower the probability of a colli-
sion between the robots. On the other hand, an overly large additional obstacle
shrinks the free-space and may unsuitably increase path costs or even lead to
deadlocks. Next, we will derive coarse mathematical guidelines for how to set
the size of the virtual obstacle in order to avoid a collision with a predefined
probability.

Let t be a fixed time step. Let C := {(xa
t , x

r
t)|(∥xa

t −xr
t∥ < ϵ)} be the event of

a collision and E := {(xa
t , x

r
t)|∥xa

t − x̄a
t ∥2 ≤ α} the event that the true position

of Robot a at time step t deviates no more than α from the mean of its position
estimate given by sample mean x̄a

t . By introducing a chance constraint with
threshold δ

2 ,

Pr[xr
t ∈ Bϵ+α(x̄

a)] <
δ

2
(5)

we enforce a bound on the collision probability. Introduction of the virtual
obstacle to Robot r’s constraints induces his planner to adjust the control inputs

such that the fraction of particles (x
r,(j)
t)i=1,...,N that are inside the square box

Bϵ+α(x̄
a) with edge length α + ϵ around sample mean x̄a

t is bounded (and by
particle approximation of the chance constraint, hence also the (approximated)
probability that Robot r is inside the box). Parameter α needs to be specified
after the desired δ is defined and we will now discuss a proposal how this can be
done.

Let K be the event {(xa
t , x

r
t)|xr

t ∈ Bϵ+α(x̄
a))}.

We have Pr(C) = Pr(C ∩ E) + Pr(C ∩ ¬E) = Pr(C ∩ E ∩K) + Pr(C ∩ E ∩
¬K) + Pr(C ∩ ¬E) = Pr(C ∩ E ∩ K) + Pr(C ∩ ¬E) where the last equality
holds since Pr(C ∩ E ∩ ¬K) = 0. Furthermore, Pr(C ∩ E ∩ K) ≤ Pr(K) and
Pr(C ∩ ¬E) ≤ Pr(¬E). Hence,

Pr(C) ≤ Pr(K) + Pr(¬E) (6)

Due to chance constraint (5) we know that control inputs are found that (for
sufficiently large N) ensure that Pr(K) < δ

2 . Hence, all we are left to do is to

determine box parameter α such that Pr(¬E) ≤ δ
2 .

Collision bounds assuming isotropic Gaussian noise. For now, let the
distributions of Robot a be an isotropic Gaussian with covariance matrix Σ =
σ2I where I is the identity matrix. We can then control Pr(¬E) by computing
the σ-bounds of the normal distribution (considering the masses of its tails). For
instance, an upper bound δ

2 = 0.05 on the collision probability can be achieved by
setting α := 2σ and a bound of 10 percent by setting α := 1.64σ. Of course such
an ad hoc method would not work if we can sample from the noise distributions
but are oblivious of their analytical nature and it would be desirable to have
collision bounds that are distribution-independent. Deriving such bounds is our
next objective.

Distribution-independent collision bounds. Since || · ||2 ≤ 1√
2
|| · ||∞,

we have Pr(¬E) = Pr(∥xa
t − x̄a

t ∥2 ≥ α) ≤ Pr(1√
2
∥xa

t − x̄a
t ∥∞ ≥ α) = 1 −

Pr(∥xa
t − x̄a

t ∥∞ ≤
√
2α) =: P a

t (α). Utilizing Whittle’s generalization of Cheby-
shev’s inequality [27] yields an upper bound β(xa

t , α) on P a
t (α). For the two-

dimensional case we have Pr(¬E) ≤ P a
t (α) ≤ β(xa

t , α)
where

β(xa
t , α) =

1

α2
(cat,11 + cat,22) +

1

α2

√
(cat,11 + cat,22)

2 − 4(cat,12)
2

and cat,ij denotes the covariance of xa
t between dimensions i and j.

For a larger number of particles (so we can expect x̄a
t to coincide with the

true mean) this bound constitutes a formula, describing how to set box-size
parameter α to ensure Pr(¬E) < δ

2 .
Finally, by referring to Eq. 6 and Eq. 5 we see that we have

Pr(C) ≤ δ

2
+ Pr(¬E) ≤ δ

2
+ β(xa

t , α) (7)

which provides a recipe that allows us to bound collision probability Pr(C)
below free parameter δ by adjusting virtual obstacle parameter α.

Note, since approximate bound β is distribution-independent the bound holds
for any noise distribution that governs our uncertainty.

6.3 Experiments

We consider three different path planning scenarios, all with planning horizon
of length ten, in our simulations:

– A simple example with only two robots to illustrate the very basic function-
ality of the mechanism.

– A quantitative evaluation of the average runtime behaviour for an increasing
number of robots in an environment with a fixed number of obstacles.

– A quantitative evaluation of the average number of conflicts to be resolved by
the mechanism in an increasingly complex environment for a fixed number
of robots.

In all simulations the sample distribution for the robots was chosen as isotropic
zero-mean white Gaussian noise with standard deviation σ = 0.001.

For an illustration, consider the simulations of a two-robot planning scenario
depicted in Fig 3. Here two robots 1 and 2 started at locations at the bottom

4 6 8 10

0

1

2

3

4

5

6

7

8

(a) Robot 1’s initial
plan.

4 6 8 10

0

1

2

3

4

5

6

7

8

(b) Robot 2’s initial
plan.

4 6 8 10

0

1

2

3

4

5

6

7

8

t = 4

(c) Updated conflict-free
plans.

Fig. 3. Simple example. Blue box: obstacle. Dashed box: virtual obstacle for Robot 2
for time step 4 (after he lost an auction against Robot 1).

of a map. When generating paths to destinations at the far side of the map,
they desired to avoid the obstacles (blue rectangles). Their control inputs were
accelerations and their state space consisted of locations and velocities. Each
robot’s cost function quantified the sum of expected ℓ1 distances to the robot’s
destination of the generated trajectory.

Planning independently with the particle-control method, the robots found
their individually cost-optimal trajectories as depicted in Figs. 3(a) and 3(b).

Note, how the spread of their particle clusters increases as the uncertainties
accumulate over time. Getting too close to each other at time step four (i.e.
causing our coll. probability estimate to exceed our threshold δ) and auction
was invoked where Robot 1 was determined to be the winner. Hence, Robot 2
got a constraint corresponding to a virtual obstacle (dashed box) for time step
4 denying access through the left gap for t = 4 and inducing him to instead take
the (originally costlier) way around through the right gap (Fig. 3(c)).

It should be expected that the number of iterations of our mechanism de-
pends on the number of collisions during coordination, which in turn, should
increase with the number (and size) of obstacles (or decrease with available free-
space) and the number of robots in the system. To develop an intuition for the
dependence of run-time on these factors we conducted randomized experiments
(with varying robot destinations and obstacle placements) in which run-time
and number of collisions were recorded. The results for ten robots with varying
starts, destinations and obstacles are depicted in the left part of Fig. 4.

In a third round of simulations, the obstacles were placed at fixed positions
together with fixed, equally spaced, starting positions for the robots. In order
to provoke potential conflicts, the robots’ goals were drawn at random from a
uniform distribution. We iteratively added more robots to the planning scenario
and set up the mechanism to calculate conflict-free plans for varying numbers of
robots. The results are depicted in the right plot of Fig. 4.

The simulations were implemented in MATLAB, with no particular empha-
sis on run-time optimization and all experiments were executed on a standard
desktop computer. In summary, Fig. 4 illustrates that both the number of coordi-
nation iterations (collisions) and run-time increased moderately with increasing
problem complexity.

Number of obstacles

C
o

ll
is

io
n

s
 o

c
c

u
rr

e
d

Number of robots

R
u

n
-t

im
e

 i
n

 s
e

c

Fig. 4. Left: Number of arising conflicts vs. varying number of obstacles. Right: Run-
time in seconds vs. number of robots. Plots show averages and standard deviations
over 50 Monte-Carlo runs of randomized problems.

7 Conclusions

In this paper, we presented a distributed, auction-flavoured multi-robot coordi-
nation mechanism. It is lazy in the sense that the agents only coordinate when

necessary (due to conflicting resource usage), generating conflict free plans. We
showed how such a myopic coordination mechanism can be applied to the BLP
formulation of a multi-robot path planning problem, taking uncertainty about
the robots’ positions into account. Using our distributed mechanism in this sce-
nario can be expected to be computationally more attractive, as we replace the
intractable centralized problem by a succession of significantly more tractable
single-robot BLPs.

Our simulations suggest that the overall coordination and communication
overhead scales well in the number of agents and the complexity of the envi-
ronment. For planning problems in continuous, uncertain environments we have
linked our approach to a particle-based open-loop control method and have given
probabilistic bounds on the collision probability as a function of the size of the
virtual obstacles we introduced to achieve coordination.

Furthermore, for a slight modification of the bidding rules, we showed it is
possible to give theoretical termination guarantees for a large class of graph
planning problems (refer to [7]). While our mechanism will not always achieve
socially optimal coordination, our initial experiments on graph planning prob-
lems suggest that it can on most problems and that our approach seems often
advantageous over simple fixed priority methods that are still widely used in
practice. A theoretical elucidation of the nature of problem instances where this
is guaranteed to be (or not to be) the case, alongside more extended experimental
validations, will be conducted in the context of future work.

Acknowledgements

The authors would like to thank Achim Hekler for useful discussions during early
stages as well as Stephen Roberts and Mark Ebden for comments on related work
and the final draft during late stages of this project. Jan Calliess is grateful
for funds via the UK EPSRC “Orchid” project EP/I011587/1. Daniel Lyons
gratefully acknowledges partial support by the German Research Foundation
(DFG) within the Research Training Group GRK 1194 “Self-organizing Sensor-
Actuator-Networks”.

References

1. M. Bennewitz, W. Burgard, and S. Thrun. Exploiting constraints during prioritized
path planning for teams of mobile robots. In IROS, 2001.

2. M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing solvable pri-
ority schemes for decoupled path planning techniques for teams of mobile robots.
Robotics and Autonomous Systems, 2002.

3. C. Bererton, G. Gordon, S. Thrun, and P. Khosla. Auction mechanism design for
multi-robot coordination. In NIPS, 2003.

4. C. A. Bererton. Multi-Robot Coordination and Competition Using Mixed Integer
and Linear Programs. PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 2006.

5. L. Blackmore, M. Ono, A. Bektassov, and B.C. Williams. A probabilistic particle
approach to optimal, robust predictive control. IEEE Trans. on Robotics, 2010.

6. J. Calliess and G. J. Gordon. No-regret learning and a mechanism for distributed
multiagent planning. In Proc. of AAMAS, 2008.

7. J. Calliess, D. Lyons, and U. Hanebeck. Lazy auctions for multi-robot collision
avoidance and motion control under uncertainty. Technical Report PARG-01-11,
Dept. of Engineering Science, University of Oxford, 2011.

8. G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper.
Res., 8:101–111, 1960.

9. R.K. Dash, N.R. Jennings, and D. C. Parkes. Computational mechanism design:
A call to arms. IEEE Int. Syst., 2003.

10. S. de Vries and R. Vohra. Combinatorial auctions: A survey. INFORMS J. Com-
puting, 2003.

11. M. B. Dias, R. M. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coor-
dination: a survey and analysis. Proceedings of the IEEE, 2006.

12. M. A. Erdmann and T. Lozano-Perez. On multiple moving objects. Algorithmica,
1987.

13. A. Farinelli, A. Rogers, and N. Jennings. Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In AAMAS, 2008.

14. A. Farinelli, A. Rogers, and N. Jennings. Coordination using the max-sum algo-
rithm. In IJCAI-09 Workshop on Distributed Constraint Reasoning (DCR), 2009.

15. B. Gerkey and M. Mataric. Sold!: Auction methods for multirobot coordination.
IEEE Transactions on Robotics and Automation, 19(5):758–768, 2002.

16. C. Guestrin and G. Gordon. Distributed planning in hierarchical factored mdps.
In UAI, 2002.

17. Sven Koenig, Pinar Keskinocak, and Craig A. Tovey. Progress on agent coordina-
tion with cooperative auctions. In AAAI, 2010.

18. M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, S. Koenig, A. Kleywegt,
C. Tovey, A. Meyerson, and S. Jain. Auction-based multi-robot routing. In Int.
Conf. on Robotics: Science and Systems, 2005.

19. T. Nishi, M. Ando, and Masami Konishi. Distributed route planning for multiple
robots using an augmented lagrangian decomposition and coordination technique.
IEEE Trans. on Robotics, 2005.

20. T. Nishi, M. Ando, and Masami Konishi. Experimental studies on a local reschedul-
ing procedure for dynamic routing of autonomous decentralized agv systems.
Robotics and Computer-Integr. Manuf., 2006.

21. K. Sycara P. Velagapudi and P. Scerri. Decentralized prioritized planning in large
multirobot teams. In IROS’10, 2010.

22. L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi. Decentralized cooperative
policy for conflict resolution in multi-vehicle systems. IEEE Trans. on Robotics,
23(6):1170–1183, 2007.

23. D. Parsons and J. Canny. A motion planner for multiple mobile robots. In ICRA,
1990.

24. T. Sandholm. Algorithm for optimal winner determination on combinatorial auc-
tions. Artif. Int., 2002.

25. T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming
for multi-vehicle path planning. In European Control Conference, 2001.

26. A. Stentz and M. B. Dias. A free market architecture for coordinating multiple
robots. Technical Report CMU-RI-TR-99-42, Carnegie Mellon, 1999.

27. P. Whittle. A multivariate generalization of tchebichev’s inequality. Quarterly
Journal of Mathem., 1958.

