
Superficial Gaussian Mixture Reduction

Marco F. Huber†, Peter Krauthausen‡, and Uwe D. Hanebeck‡

†AGT Group (R&D) GmbH, Darmstadt, Germany,
‡Intelligent Sensor-Actuator-Systems Laboratory (ISAS),

Institute for Anthropomatics, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Marco.Huber@ieee.org, Peter.Krauthausen@kit.edu, Uwe.Hanebeck@ieee.org

Abstract: Many information fusion tasks involve the processing of Gaussian mixtures
with simple underlying shape, but many components. This paper addresses the prob-
lem of reducing the number of components, allowing for faster density processing.
The proposed approach is based on identifying components irrelevant for the overall
density’s shape by means of the curvature of the density’s surface. The key idea is to
minimize an upper bound of the curvature while maintaining a low global reduction
error by optimizing the weights of the original Gaussian mixture only. The mixture is
reduced by assigning zero weights to reducible components. The main advantages are
an alleviation of the model selection problem, as the number of components is chosen
by the algorithm automatically, the derivation of simple curvature-based penalty terms,
and an easy, efficient implementation. A series of experiments shows the approach to
provide a good trade-off between quality and sparsity.

1 Introduction

Gaussian mixtures as weighted sums of Gaussian densities are an often used function sys-
tem in various information fusion applications, such as Bayesian filtering [AS72, HBH06],
multi-target tracking [BSL95], density estimation [Sil98], or machine learning [CGJ96],
just to name a few. Since the space of Gaussian densities forms a complete basis system,
Gaussian mixtures can approximate every function with arbitrary accuracy [MS96]. Un-
fortunately, the number of Gaussian components of a Gaussian mixture tends to grow ex-
ponentially when processed recursively. To control this growth and thus, to bound compu-
tational and memory demands, Gaussian mixture reduction algorithms have to be applied
continually.

In recent years, many reduction algorithms have been proposed. Most of them employ a
top-down approach: Two or more components of the Gaussian mixture with strong simi-
larity are merged or components that do not contribute much to the mixture are deleted.
These operations are performed recursively in a greedy fashion. The reduction stops as
soon as a user-defined threshold on the number of components is reached. To quantify the
similarity between components, local distance measures such as the Mahalanobis distance
as in [Wes93, Sal90] or global distance measures such as the integral squared distance

(a)

1.81e+06

(b) (c)

1.6e+06

(d)

Figure 1: Gaussian mixture with 20 components (black) if one component (blue) is removed (a) and
the pointwise second derivative of the resulting mixture (red) (b). The same mixture reduced to the
17 components (c) and the point-wise second derivative for the reduced density (red) (d).

as in [WM03, SH09] and the Kullback-Leibler divergence as in [Run07] are used. Com-
pared to local approaches, the deviation from the original Gaussian mixture when applying
global optimization is typically much lower, at the expense of a higher computational load.
Merging components is performed in a moment-preserving way, i.e., the mean and the co-
variance of the mixture remain unchanged. Independent of the used distance measure,
top-down approaches have two severe drawbacks. First, merging and deleting compo-
nents is performed greedily without considering the global effect in successive reduction
steps. The second drawback results from the user-defined threshold on the final number of
components. From a statistical point of view, the choice of this threshold corresponds to
a model selection. The reduction algorithm has to reduce the mixture even if the resulting
model is inappropriate, which for example leads to oversmoothed modes. To overcome
these drawbacks, a bottom-up approach named progressive Gaussian mixture reduction
(PGMR) has recently been proposed [HH08]. Here, a Gaussian mixture is successively
constructed to approximate the original mixture with far less components. Starting with a
single Gaussian, new components are added at regions of strong deviation. Thus, the num-
ber of components is chosen automatically by the algorithm, which avoids the bias intro-
duced by a predefined threshold. Unfortunately, PGMR is only able to construct mixtures
with axis-aligned Gaussian components. It further requires a complex implementation.

In this paper, a global optimization approach named superficial Gaussian mixture reduc-
tion (SGMR) is proposed, which is based on minimizing the curvature of the reduced
Gaussian mixture while keeping the integral squared distance (ISD) low. This top-down
approach allows for the reduction of arbitrary Gaussian mixtures while preserving the
mean. As illustrated in Fig. 1, the curvature captures the roughness in densities with an
overall simple shape, i.e., with clear modes. Using the curvature it is possible to identify
similar components globally and remove these components from the density. Carrying the
idea that similar components may be dropped a step further, the trade-off between curva-
ture and approximation error is minimized by merely optimizing weights, thus assigning
zero weights to reduced components. This approach is computationally feasible and allows
a simple and efficient implementation based on standard quadratic program (QP) solvers.
Additionally, this weight-only optimization alleviates the model selection problem, as the
final number of components is automatically derived from setting the trade-off between
error and roughness. This hyperparameter may be automatically optimized too.

The next section gives a brief introduction to the Gaussian mixture reduction problem.
The rest of the paper is structured as follows: The theoretical background of the proposed

SGMR algorithm is described in Sec. 3. Here, an upper bound of the curvature is derived,
which acts as a roughness penalty. In Sec. 4, limitations of the proposed approach are
discussed. By means of numerical experiments, SGMR is compared to state-of-the-art
mixture reduction algorithms in Sec. 5.

2 Problem Statement

Given is a random vector x ∈ RN with probability density function f̃(x). This density
function is assumed to be represented as a Gaussian mixture

f̃(x) = α̃Tf(x) =

L∑
i=1

α̃i · N
(
x; µ̃

i
, Σ̃i

)
, (1)

with α̃ = [α̃1 . . . α̃L]T and f(x) = [N (x; µ̃
1
, Σ̃1) . . . N (x; µ̃

L
, Σ̃L)]T. Here, L is the

number of mixture components, α̃i ≥ 0, i = 1 . . . L are weights that sum up to one, and
N
(
x;µ,Σ

)
is a Gaussian density with mean vector µ and covariance matrix Σ.

In typical estimation tasks such as recursive filtering, the number of mixture components
L grows exponentially with the number of processing steps. To keep this growth bounded,
it is necessary to compute a reduced Gaussian mixture with the number of components
being significantly lower than L. Additionally, the deviation between the reduced mixture
and the original mixture has to be as small as possible.

To solve this apparent conflict of goals, one can make use of the following observation:
Although the number of components is large, the shape of the density functions in typical
estimation tasks, is often rather simple, e.g. in multi-target tracking [BSL95] the number of
modes is low and the smoothness is high. Especially in recursive filtering tasks, the density
function of the hidden state often becomes unimodal or even Gaussian-like after a transient
phase. Thus, a Gaussian mixture with a considerably smaller number of components can
typically be found without causing a strong deviation from the original mixture.

In the following, reducing the number of components is achieved by adapting the weights
α̃j only, while the remaining parameters of the mixture, i.e., mean vectors and covariance
matrices, remain untouched. The Gaussian mixture to be adapted is given by

fα(x) = αTf(x) =

L∑
j=1

αj · N
(
x; µ̃

j
, Σ̃j

)
, (2)

with the vector of weights α = [α1 . . . αL]T. The proposed mixture reduction method will
assign weights close to zero to redundant mixture components. These components can
be easily removed in a subsequent processing step. The remaining components, however,
compensate this loss in representing the shape of f̃(x) just by weight adaption. For the
sake of brevity and clarity, only uni- and bivariate mixtures are considered from now on.

3 Superficial Gaussian Mixture Reduction

The Gaussian mixture reduction problem is formulated as a weight optimization problem

min
α

D(f̃ , fα) + λR(fα) (3)

s.t. 1T α = 1 ,

0 � α ,∑
i=1:L

µ̃
i
(αi − α̃i) = 0 ,

where the parameter λ governs the trade-off between a distance D(f̃ , fα) of the true den-
sity f̃ to its reduction fα and a roughness penalty R(fα), measuring the curvature of fα.
The constraints in the optimization problem assert the integration of the probability mass
to one, the positivity of the density, and that f̃ and fα have identical means.

3.1 Distance Measure

A key requirement for any reduction algorithm is that the distance of the reduced fα to
the true density f̃ is small over the entire state space. Therefore, the ISD is employed and
reformulated as a function of the mixture weights α

D(f̃ , fα) =
1

2

ˆ
R2

(
f̃(x)− fα(x)

)2
dx = αT Dα − 2 dTα + c , (4)

with matrix D =
´
f(x) f(x)T dx corresponding to the self-similarity of fα, the vector

dT = α̃T D encoding the cross-similarity between fα and f̃ , as well as constant c =

α̃T D α̃ corresponding to the self-similarity of f̃ . The quadratic form in (4) is obtained by
expanding the binomial, exploiting the linearity, and solving the obtained integrals. Note
that the same vector of Gaussians f(x) is used for both fα and f̃ .

3.2 Upper bound of Curvature

The roughness of fα is interpreted as the curvature κ of the probability density function’s
surface. Since the curvature [Car76] is signed and a function of the position on the surface,
a quantification in terms of the integral squared curvature (ISC) is sought. For the sake of
brevity, the notation fm := ∂

∂mf(x) and fxy := ∂2

∂x∂yf(x) is used for the derivatives at

point x. For a Gaussian mixture density f(x) = αT f(x), f (i)m = ∂
∂mN

(
x;µ

i
,Σi

)
de-

notes the i-th component’s partial derivative w.r.t. m and f
m

the vector of all components’
partial derivatives. The key idea is to derive an (approximate) upper bound of the squared
curvature of the mixture density function. The derivation is based on the pointwise squared
curvature κ(x) for a probability density function f , for which an upper bound κ̆(x) is de-
termined and integrated over the entire domain of x, i.e., Rx =

´
R κ̆(x)2 dx. For the

1-D and 2-D case, the following upper bounds are used

κ̆(x)2 :=
(
αTf

xx

)2
, κ̆(x)2 :=

(
αTf

xx
− 2αTf

x
αTf

y
αTf

xy
+ αTf

yy

)2
.

For the weight optimization, the upper bound of the curvature is formulated as a quadratic
form R(α) = αT Rx α. The elements of Rx may be obtained as follows.

For the 1-D case, one may simplify the upper bound of the squared curvature [RS97]ˆ
R

(
αTf

xx

)2
dx =

ˆ
R
αTf

xx
fT
xx
α dx

and use the linearity of the integral to obtain the expression for the elements of Rx

R
x
ij =

ˆ
R
f (i)xx f

(j)
xx dx .

For the 2-D case, the following approximation is used(
αTf

xx
− 2αTf

x
αTf

y
αTf

xy
+ αTf

yy

)2
≈
(
αT
[
f
xx
− 2 f

x
fT
y
f
xy

+ f
yy

])2
where ααT has been neglected. One obtains

R
x
ij =

ˆ
R2

(
f (i)xx − 2 f (i)x f (i)y f (i)xy + f (i)yy

)
·
(
f (j)xx − 2 f (j)x f (j)y f (j)xy + f (j)yy

)
dx . (5)

For the 1-D curvature, the R
x
ij may be calculated in closed form. Note for a 2-D probability

density function, the curvature is not unique, as it is calculated from the minimum and
maximum curvature in the principal directions at each point x, which may be multiplied
(Gaussian curvature) or averaged (mean curvature) [Car76]. The above upper bound of
the integral squared mean curvature was obtained by dropping the denominator and po-
sitive summands. For arbitrary Gaussian mixture densities, the terms in (5) may only be
calculated numerically or need to be approximated further. In the following algorithm, the
property that the exact upper bound of the 1-D curvature and the approximate upper bound
of the 2-D curvature of the probability density functions as well as the distance measure
may be represented as quadratic forms will be exploited.

3.3 Algorithm

The overall algorithm of the SGMR comprises three parts: the pre-processing of the com-
ponents of the quadratic forms and the hyperparameter, the weight optimization by the
solution of (3) in form of a QP and a fast post-optimization of the already reduced set
of weights from (3). The pre-processing consists of calculating the matrix D and vec-
tor d corresponding to the distance of the densities in D(f̃ , fα). The matrix R describ-
ing the curvature of the surface has to be calculated depending on the type of density.
Subsequently, the QP may be composed, i.e.,

αT Dα − 2 dTα + λ αT R α = αT Q α− qTα ,

with

Q := D + λR , q := 2 d .

The matrix Q of the quadratic form is symmetric. Furthermore, the matrices D and R are
positive semi-definite since the inequalities

αT Dα = αT

(ˆ
f fT dx

)
α =

ˆ (
αT f

)2
dx ≥ 0 (6)

and

αT Rα = αT
(ˆ

T (f)T (f)T dx
)
α =

ˆ [
αTT (f)

]2
dx ≥ 0 (7)

hold for all α ∈ RL. The differential operator T depends on the respective upper bound
κ̆(x)2 used. Thus, Q is positive semi-definite and the optimization problem is a convex
QP. Using the mass and positivity constraints, one obtains a QP that may be solved by any
standard solver. For the experiments in this paper, the freely available CVX optimization
library [GB08] was used.

The purpose of the post-optimization is an adaptation of the already reduced weights α+

aimed at improving the accuracy, by neglecting the curvature and only minimizing the
ISD w.r.t. α+ , where only the weights α+

i ≥ ε resulting from the weight optimization are
considered. In the experiments in Sec. 5, ε = 1e4 is used. The resulting QP is

min
α+

(
α+
)T (

D+
) (
α+
)
− 2

(
d+
)T (

α+
)

s.t. 0 � α+ ,

1T α+ = 1 ,∑
i
α+
i µ

+
i

=
∑

i
α̃i µ̃i .

This optimization problem for the reduced weights consists of the quadratic form of the
ISD as a target function and the positivity, mass, and mean constraint w.r.t. to the reduced
mixture’s components. This QP may be solved with any standard solver. The obtained
weights α∗ will be reduced again by removing components with almost zero weights, i.e.,
α∗i < ε. The overall algorithm is given in Alg. 1. Note, that the hyperparameter λ in Alg. 1,
which governs the trade-off between the distance D(f̃ , fα) and the curvature term R(fα),
needs to be determined by means of generic model selection algorithms, cf. [SS02, 7.8,16].
For small values of λ, the ISD will be weighted relatively higher than the curvature. This
results in more components in the reduced mixture f and less approximation error. For
large values of λ, the curvature will be weighted higher enforcing more reduction and
approximation error.

4 Limitations

The computational complexity for both optimization steps is polynomial in the number of
mixture components. The cost for the post-optimization is smaller, as only components

Algorithm 1 Superficial Gaussian Mixture Reduction

1: Input: f̃

2: Calculate distance terms D, d, roughness penalty matrix R, and λ . Preprocessing
3: Compose Quadratic Program QP(D, d, R, λ)

4: α+ ← REDUCE(SOLVE QP(D, d, R, λ)) . Weight Optimization

5: α∗ ← REDUCE(OPTIMIZEWEIGHTS(D+, d+, α+)) . Post-Optimization

6: function OPTIMIZEWEIGHTS(D+, d+, α+)

7: Compose Quadratic Program QP(D+, d+)
8: α++ ← REDUCE(SOLVE QP(D+, d+))

9: end function

10: function REDUCE(α′)

11: α′′ ← α′ ≥ ε
12: end function

13: Output: f ∼ GMM{α∗, {µ
i
, Σi}∗ } . L∗ � L

with α+
i ≥ ε are considered, which may be significantly fewer. The underlying major

assumption of this approach is that f̃ consists of many components. As will be shown
in the experiments, the quality of the results depends on the number of components to be
reduced. Therefore, the reduction of f̃ with very few components–actually not needing a
reduction–will result in a low quality reduction fα as only α is optimized, but no compo-
nent means or covariances. The initially given set of means is identical to the set of means
used in fα. Note that even though this reduces the theoretical reduction capability, any f̃
with an insufficient number of components will not require a reduction at all.

5 Experiments

In the following, SGMR is compared to six established reduction methods: The simplest
reduction is a pruning of all but the components with the highest weights [Bla86]. The
top-down and local reduction algorithm, denoted by West, employs the Mahalanobis dis-
tance and merge two components at each reduction step [Wes93]. Salmond’s approach is
similar to West’s approach, but merges complete clusters of mixture components of size
two and more [Sal90]. A top-down and global reduction algorithm based on the ISD (4) is
proposed by Williams [WM03], where two components are merged per step and irrelevant
components are additionally deleted. Runnalls’ algorithm offers a compromise of local
and global reduction algorithms, as it considers a localized upper bound of the (global)

�2 0 2 4 60

0.2

0.4

0.6

x →

f(
x)

→

(a)

PGMR
Williams
Salmond
West
Runnalls
Pruning
SGMR w/o
SGMR
True

x →

f(
x)

→

1 1.5 2 2.50.3

0.4

0.5

(b)

Figure 2: In (a), the true Gaussian mixture (black) and the reduced Gaussian mixture for the different
reduction algorithms (blue, green - each with three styles), especially SGMR (red) without and with
post-optimization (full, dashed) are given. In (b) a peak of the same Gaussian mixture and the
respective reduced mixtures are focused. Note, that PGMR, Williams, Runnalls, and SGMR are
almost identical to the true Gaussian mixture.

Kullback-Leibler divergence [Run07]. Merging is performed for two components. PGMR
is a bottom-up approach employing the ISD (4) [HH08].

For SGMR, two variants are considered, one with post-optimization and one without post-
optimization. The first four top-down approaches and the pruning method require a user-
defined threshold on the number of components to which the given Gaussian mixture has
to be reduced. Since SGMR reduces a Gaussian mixture in a completely different fashion
and thus, to ensure a fair comparison, the number of components resulting from SGMR
with post-optimization is used as threshold for these approaches. In order to quantify the
reduction error, the normalized ISD

D̄(f̃ , fα) =

√√√√√ ´
RN

(
f̃(x)− fα(x)

)2
dx´

RN f̃(x)2 dx+
´
RN f̃α(x)2 dx

∈ [0, 1] (8)

is employed [HBR03]. It ranges between zero, which is the case if f̃(x) and fα(x) are
identical, and one, when both mixtures are absolutely non-overlapping. The algorithms are
implemented in Matlab 7.8.0 (R2009a) and run on an office PC (Intel Core2 Duo P9600).

5.1 1-D Experiment

At first, univariate Gaussian mixtures with L ∈ {40, 80, 120, 160, 200} components are
used for evaluation. The mixture parameters are drawn uniformly at random from the
intervals α̃ ∈ [0.05, 0.5], µ̃ ∈ [0, 3], and σ̃ ∈ [0.09, 0.5]. For each number of components
L, 50 Monte Carlo simulation runs are performed. For SGMR, the hyperparameter λ is
set to 500 and the deletion threshold ε is 1e−4. The maximum error threshold of PGMR is
set to 1%.

In Fig. 3 (top), the average reduction errors and the average computation times for all L are
shown. It can be seen that SGMR provides the lowest reduction error. Closest to SGMR
is Williams’ algorithm, but this algorithm clearly suffers from its high computational de-
mand. Salmond’s and West’s methods perform similarly. Both are very fast, but their
approximation quality is the worst except for pruning. In terms of the reduction error, the
results of Runnalls’ method are in between of SGMR with and without post-optimization.
But for an increasing number of components L in the original mixture it becomes com-
putationally more expensive than both SGMR methods. Overall, SGMR provides the best
trade-off between reduction error and computation time.

The reduction performance of SGMR improves with a larger number of components in the
original mixture. As listed in Tab. 1, SGMR reduces to about 50% if the number of com-
ponents of the original mixture is L = 40, while for L = 200 only 22% of the components
remain. Since SGMR merely adapts the weights α̃, a larger number of components is ad-
vantageous for SGMR for a better exploitation of redundancies. This leads to a stronger re-
duction by a simultaneously lower reduction error. Furthermore, the comparison between
SGMR and SGMR without post-optimization shows that the post-optimization always
lowers both the reduction error and the number of components.

In Fig. 2, the reduction results for an exemplary Gaussian mixture with L = 120 com-
ponents is depicted. SGMR, PGMR, Runnalls’, and Williams’ algorithm are capable of
almost exactly capturing the shape of the original mixture, while West’s and Salmond’s
algorithm show the tendency to oversmooth modes. The result of SGMR without post-
optimization is in between. There is an obvious deviation to the original mixture, but the
shape–especially the single modes–are captured very well. The inferior results of pruning
can be explained by its simplicity. Components are only deleted on the basis of the value
of their weights. No distance measure is used to quantify the loss of a component.

For 1-D mixtures, PGMR clearly is the best reduction algorithm. The reduction error is
close to SGMR without post-optimization, but the number of components in the reduced
mixture is significantly lower (see Tab. 1). However, a straightforward extension to multi-
variate mixtures is not possible as only axis-aligned Gaussian components can be utilized
for representing the reduced mixture. For this reason, PGMR is not considered in the
following 2-D experiment.

5.2 2-D Experiment

In this experiment, randomly generated bivariate Gaussian mixtures are considered. The
weights α̃ and the elements c of the covariance matrices of the original mixture are drawn
from the intervals α̃ ∈ [0.05, 0.5] and c ∈ [0.1, 1], respectively. 25% of the mean vectors
are drawn from µ̃ ∈ [0, 0.75]× [0, 1.5] and the remaining mean vectors are sampled from
µ̃ ∈ [1.5, 3] × [0, 1.5]. Due to this placement of the Gaussian components, bimodality is
forced in the true mixture. Again, 50 Monte Carlo simulation runs are performed for each
number of components L ∈ {40, 80, 120, 160, 200}. The hyperparameter λ of SGMR is
set to 0.04 and ε = 1e−4.

1-
D

-E
xp

er
im

en
t

40 80 120 160 200
10

-3

10
-2

10
-1

10
0

10
1

10
2

L →

ti
m

e
/

s
→

40 80 120 160 200
0.1

1

2

6

10
14

L →

D
→

2-
D

-E
xp

er
im

en
t

SGMR w/o

SGMR

Pruning

Salmond
West
Runnalls

Williams

PGMR

L →

ti
m

e
/

s
→

L →

D
→

40 80 120 160 200 40 80 120 160 200
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.5

1

2

4

6

12

Figure 3: Reduction error (left) and time consumption (right) of different reduction algorithms for
reducing 1-D and 2-D Gaussian mixtures with increasing number of components. The results are
averages over 50 Monte Carlo runs. The average reduction error is multiplied by 100 for better
readability.

Fig. 3 (bottom) gives the reduction error and the average computation time. In compari-
son to the 1-D experiment, it becomes more obvious that SGMR is the ideal method for
reducing a Gaussian mixture with a large number of components. From L = 160 on,
SGMR outperforms all other algorithms with respect to the reduction error. Furthermore,
the benefit of the post-optimization is more significant than in the 1-D case. Besides a
lower reduction error, the number of components can be reduced much stronger as shown
in Tab. 1. This benefit comes with a low computational overhead.

In contrast to the 1-D experiment, the computation time of SGMR now significantly in-
creases with the number of components. Most of the time is used for calculating the
roughness penalty matrix R, which requires numerical integration in the 2-D case. It is
expected that an improved problem-adequate implementation of the numerical integration
will reduce the computational demand drastically.

1
-D

-E
xp

er
im

en
t L SGMR w/o PGMR SGMR &

all others
40 21.66 7.34 20.54
80 30.88 7.42 29.5
120 37.18 7.58 35.86
160 42.86 6.78 41.8
200 45.68 6.7 44.98 2

-D
-E

xp
er

im
en

t L SGMR w/o SGMR &
all others

40 18.92 16.68
80 26.76 22.88
120 40.32 33.32
160 52.72 42
200 61.8 43.16

Table 1: Number of components in the reduced Gaussian mixture for different reduction algorithms.
The results are averages over 50 Monte Carlo runs.

6 Conclusion

In this paper, a curvature-based reduction algorithm for Gaussian mixtures was presented.
The key idea is the formulation of the reduction problem as an optimization problem.
The optimization balances the integral squared distance between true and reduced density
with the reduction in approximate shape curvature. The arising problem is solved for the
weights of the Gaussian mixture only, i.e., reduced components are assigned a weight
of zero, allowing a formulation as a quadratic program. The main contributions are the
alleviation of the model selection problem, as the number of components is chosen by the
algorithm automatically and an easy as well as efficient implementation. The experiments
show the high quality and low number of components of the approach’s results.

As future work, it remains to derive an analytic upper bound for the N-dimensional curva-
ture and to improve the numerical calculations. For very large reduction problems, more
efficient algorithms could be obtained from exploiting the locality of Gaussian mixtures.

Acknowledgment Marco Huber would like to thank the Fraunhofer Institute of Op-
tronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany, for its
support during the early stages of this work.

References

[AS72] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation using Gaus-
sian Sum Approximation. IEEE Transactions on Automatic Control, 17(4):439–448,
August 1972.

[Bla86] Samuel S. Blackman. Multiple-Target Tracking with Radar Applications. Norwood, MA:
Artech House, 1986.

[BSL95] Yaakov Bar-Shalom and Xiao-Rong Li. Multitarget-multisensor Tracking: Principles
and Techniques. YBS Publishing, Storrs, CT, 1995.

[Car76] Manfredo Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[CGJ96] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active Learning with
Statistical Models. Arxiv preprint cs.AI/9603104, 1996.

[GB08] Michael C. Grant and Stephen P. Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning
and Control, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-
Verlag Limited, 2008.

[HBH06] Marco Huber, Dietrich Brunn, and Uwe D. Hanebeck. Closed-Form Prediction of Non-
linear Dynamic Systems by Means of Gaussian Mixture Approximation of the Transi-
tion Density. In Proceedings of the 2006 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI 2006), pages 98–103, Heidelberg,
Germany, September 2006.

[HBR03] Uwe D. Hanebeck, Kai Briechle, and Andreas Rauh. Progressive Bayes: A New Frame-
work for Nonlinear State Estimation. In Proceedings of SPIE, AeroSense Symposium,
volume 5099, pages 256–267, Orlando, Florida, May 2003.

[HH08] Marco F. Huber and Uwe D. Hanebeck. Progressive Gaussian Mixture Reduction. In
Proceedings of the 11th International Conference on Information Fusion (Fusion 2008),
pages 1–8, Cologne, Germany, July 2008.

[MS96] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations using Gaussian
kernels. IMA J. Numer. Anal., 16:13–29, 1996.

[RS97] Jim Ramsay and Bernard Silverman. Functional Data Analysis. Springer Series in
Statistics. Springer, New York, Berlin, Heidelberg, 1997.

[Run07] Andrew R. Runnalls. Kullback-Leibler Approach to Gaussian Mixture Reduction. IEEE
Transactions on Aerospace and Electronic Systems, 43(3):989–999, July 2007.

[Sal90] David J. Salmond. Mixture reduction algorithms for target tracking in clutter. In Proceed-
ings of SPIE Signal and Data Processing of Small Targets, volume 1305, pages 434–445,
October 1990.

[SH09] Dennis Schieferdecker and Marco F. Huber. Gaussian Mixture Reduction via Clustering.
In Proceedings of the 12th International Conference on Information Fusion (Fusion),
pages 1536–1543, Seattle, Washington, July 2009.

[Sil98] Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Monographs
on Statistics and Applied Probability ; 26. CRC Press, Boca Raton, 1998.

[SS02] Bernhard Schölkopf and Alexander Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Adaptive computation and machine
learning series. MIT Press, Cambridge, Massachusetts, 2002.

[Wes93] Mike West. Approximating Posterior Distributions by Mixtures. Journal of the Royal
Statistical Society: Series B, 55(2):409–422, 1993.

[WM03] Jason L. Williams and Peter S. Maybeck. Cost-Function-Based Gaussian Mixture Re-
duction for Target Tracking. In Proceedings of the Sixth International Conference of
Information Fusion (Fusion 2003), volume 2, pages 1047–1054, Cairns, Australia, July
2003.

