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Abstract— Fitting conic sections, e.g., ellipses or circles, to
noisy data points is a fundamental sensor data processing
problem, which frequently arises in robotics. In this paper, we
introduce a new procedure for deriving a recursive Gaussian
state estimator for fitting conics to data corrupted by additive
Gaussian noise. For this purpose, the original exact implicit
measurement equation is reformulated with the help of suitable
approximations as an explicit measurement equation corrupted
by multiplicative noise. Based on stochastic linearization, an
efficient Gaussian state estimator is derived for the explicit
measurement equation. The performance of the new approach
is evaluated by means of a typical ellipse fitting scenario.

I. INTRODUCTION

In this work, the problem of fitting a conic section such
as an ellipse or a circle to noisy data points is considered.
This fundamental problem arises in many applications related
to robotics. A traditional application is computer vision,
where ellipses and circles are fitted to features extracted
from images [1]–[4] in order to detect, localize, and track
objects. For instance in [5], [6], ellipse fitting methods are
used by a humanoid robot for localizing objects. Apart from
image data, conic fitting algorithms are also suitable for data
obtained from laser or radar devices. For example, mobile
robots use circle fitting algorithms for outdoor localization
based on circular landmarks [7], [8] measured with a laser
range scanner and in [9], [10], ellipse fits are used for people
tracking based on a laser scanner (see Fig. 1).

The huge variety of application areas has led to many
different solution methodologies for conic fitting because
each application has its specific requirements on the fitting
algorithm [11]. For instance, if data is extracted from an
image, the noise is typically rather small and a large number
of measurements is available at a batch. However, a laser
scanner or a radar device usually yields measurements with
high measurement noise and only a few measurements are
available per scan.

In this paper, we focus on tracking applications in which
the measurements are received sequentially and the param-
eters of the conic may evolve over time. Each received
measurement is assumed to stem from an unknown mea-
surement source on the conic and is corrupted by additive
Gaussian noise. The statistics of the measurement noise are
a priori known as they result from a particular sensor such
as a laser scanner. As common for tracking applications, we
seek a recursive Bayesian state estimator [12] that recur-
sively incorporates measurements by updating a probability
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Fig. 1: Laser rangefinder (LRF) scanning a circular object.

distributions for the parameter vector of the conic based
on Bayes’ rule. An explicit description of the parameter
uncertainties with a probability distribution is in particular
important for performing gating, i.e., dismissing unprobable
measurements, and tracking multiple conics. Furthermore,
the temporal evolution of the state can be captured with
a stochastic system model, which allows to propagate the
uncertainty about the state to the next time step.

A. Contributions

In this paper, we present a new method for deriving recur-
sive Gaussian-assumed Bayesian state estimators for fitting a
conic to data corrupted by additive Gaussian noise. For this
purpose, we show how the original implicit measurement
equation can be approximated with an explicit quadratic
measurement equation that is corrupted by multiplicative
Gaussian noise. Based on this measurement equation, a
standard nonlinear Gaussian state estimator that performs
stochastic linearization can be employed for state estimation.
It is also possible to derive analytic expressions based on
analytic moment calculation for optimal stochastic lineariza-
tion. The performance of the new approach is demonstrated
by simulations.

B. Related Work

As curve fitting is an old fundamental problem, many
different solution methodologies exist. For instance, non-
Bayesian methods for conic fitting are the algebraic fit [13],
[14] and the geometric fit [15]. Statistical methods such as
maximum-likelihood estimation are discussed in [11], [16],
[17]. In [18], fitting problems are formulated as a hierarchical
probability model, i.e., the measurement sources are assumed
to be drawn from a particular probability distributions.

The standard Bayesian approach for tracking conic sec-
tions is based on the Extended Kalman Filter (EKF) [1], [2]
for implicit measurement equations. This approach linearizes
the implicit conic equation around the current estimate
and the measurement in order to obtain an explicit linear
measurement equation. Based on the linear measurement
equation, a Gaussian density for the conic parameters can be
recursively updated with the Kalman filter equations. This
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Fig. 2: Illustration of the measurement source zk and the
measurement ŷ

k
for an ellipse.

approach comes with two major disadvantages regarding
the considered application here: First, as the implicit conic
equation is linearized around the measurement, the lineariza-
tion error may become high in case of outliers and, hence,
unstable and poor estimates are obtained in case of high
measurement noise. Furthermore, the representation of an
ellipse used in [1], [2] is unsuitable for tracking applications
because the center of the ellipse is not directly contained
in the parameter vector. However, the dynamics are usually
expressed as a linear equation depending on the ellipse
center.

In [19], the authors of this paper have derived a Bayesian
method for fitting circles if data with isotropic noise is given.
The relationship of [19] to the work described here in this
paper is discussed in Section IV-A.4.

II. PROBLEM FORMULATION

In this work, the problem is to estimate the time-varying
parameter vector of a conic1 p

k
, where k denotes the time

index, based on sequentially arriving measurements ŷ
k
.

A conic is a quadric in the Euclidean plane. A quadric is
a hypersurface in n-dimensional space that is specified by
the solution of an implicit quadratic polynomial, i.e.,

{z ∈ Rn | g(p
k
, z) = 0} , (1)

where p
k

are the parameters of the quadric and

g(p
k
, z) = zTAkz + bTk z + fk , (2)

with n × n-dimensional matrix Ak, n-dimensional vector
bk, and constant fk. Note that the parameter vector p

k
is a

suitable representation of Ak, bk, and fk.

Example II.1 A conic section and can be parameterized by
the parameter vector p

k
=
[
ak, bk, ck,dk, ek,fk

]T
, where

A =

[
ak ck
ck bk

]
, and bk =

[
dk

ek

]
. An ellipse is a special conic

section (1) that can be described by five parameters. We will
discuss proper representations for ellipses in the following
section. �

In order to estimate p
k
, a measurement model that relates

the state to measurements and a dynamic model for the
temporal evolution of the state is given as described in the
following.

1We focus on the two-dimensional case, i.e., conic sections. However, the
results are directly applicable for fitting a quadric in n-dimensional space.

A. Measurement Model

The measurement model relates the state vector p
k

to the
measurement ŷ

k
. We assume that the measurement ŷ

k
is

the noisy observation of a so-called measurement source zk
according to

ŷ
k

= zk + vk , (3)

where the noise term vk is zero-mean white Gaussian
noise with known covariance matrix Σv

k (see Fig. 2). The
measurement source zk is known to lie on the conic section,
i.e.,

g(p
k
, zk) = 0 . (4)

It is important to note that no further information about the
measurement source zk on the conic section is given, e.g.,
no specific probability distribution for zk is given. Hence,
(3) and (4) specify an implicit measurement equation. Such a
model is also known as Errors-In-Variables Model [11]. Note
that we are not interested in the location of the measurement
source itself, so it is not a part of the state vector.

B. Dynamic Model

The temporal evolution of the parameter vector p
k

may
be given by a stochastic dynamic model, which can be
characterized by a system equation in the form

p
k+1

= ak(p
k
, uk,wk) , (5)

where ak(·) is the system function, uk is the system input,
and wk the system noise.

C. Bayesian State Estimator

In this work, a recursive Gaussian state estimator for
estimating the parameters of the conic is desired. A Bayesian
state estimator recursively computes a probability density for
the state by alternating a time update and a measurement
update. A Gaussian state estimator represents the uncertainty
about p

k
having received the measurements ŷ

1
, . . . , ŷ

k
with

a Gaussian density fe(p
k
) = N (p

k
− µe

k
,Σe

k), where
µe
k

is the mean and Σe
k is the covariance matrix. The

prediction for time step k + 1 having received measure-
ments ŷ

1
, . . . , ŷ

k
is represented with the Gaussian density

fp(p
k+1

) = N (p
k+1
− µp

k+1
,Σp

k+1) with mean µp
k+1

and
covariance matrix Σp

k+1.
Because only an implicit measurement model as described

in Section II-A is available, the standard Bayesian formalism
cannot be directly applied to this problem. We suggest an ap-
proximation method for rewriting the implicit measurement
model to an explicit model in Section IV such that standard
Bayesian filtering techniques can be applied.

III. PARAMETERIZING CONIC SECTION

In this section, we discuss suitable parameterizations of
ellipses and circles as they are the most relevant conic
sections for practical applications. In two-dimensional space,
a general conic section as given in (2) is described by
six parameters and (2) describes an ellipse if Ak has only
positive eigenvalues. Usually, it is difficult to incorporate this
constraint in the fitting algorithm. For instance, directly using



the representation of Example II.1 can cause problems as the
representation with a Gaussian density does not capture this
constraint, e.g., the mean may not describe a valid ellipse.

In the following, we discuss two alternative representations
for ellipses that aim at avoiding this problem by using five
parameters for describing an ellipse. These representations
are special cases of (2).

Ellipse (Coefficient Representation): A widely-used repre-
sentation of an ellipse (see [1], [2], [20]) results from writing
(2) as

akx
2 + 2bkxy + cky

2 + 2dkx+ 2eky + fk = 0 ,

where z =
[
x, y
]
. Because ak + ck 6= 0 for an ellipse, one

parameter can be removed by assuming ak + ck = 1. An
ellipse is then given by the five-dimensional parameter vector
p
k

=
[
ak, bk,dk, ek,fk

]T
and the implicit equation

ak(x2 − y2) + 2bkxy+ y2 + 2dkx+ 2eky+ fk = 0 . (6)

Note that the obvious normalization fk = 1 would exclude
ellipses through the origin.

Although the coefficient representation of an ellipse is
widely used, it comes with two major disadvantages in the
application considered here: First, there still are parameters
vectors that do not describe an ellipse. While in many appli-
cations such as computer vision, this not a relevant problem
as enough data is available to exclude infeasible solutions,
the situation may be different in tracking applications. Due
to rather high measurement noise, less information about an
ellipse is available at a particular point in time and hence,
infeasible parameter estimates may be frequently obtained.
Furthermore, the dynamic model is usually described in
terms of the center of the ellipse. However, the center of
the ellipse is not directly available from the parameters
and hence, the dynamic models for this kind of paramet-
ric representation become quite complicated, i.e., nonlinear
and unintuitive. As a consequence, we suggest a different
parameterization of an ellipse, as discussed in the following.

Ellipse (Center/Shape Representation): An n-dimensional
ellipsoid can be represented by the center mk and a positive
semi-definite shape matrix Bk according to

{z | z ∈ Rn and (z −mk)TB−1
k (z −mk)− 1 = 0} .

The positive semi-definite matrix B−1
k can be represented

with its Cholesky decomposition B−1
k = LkL

T
k , where

Lk :=

[
l
(1)
k 0

l
(3)
k l

(2)
k

]
(7)

is a lower triangular matrix with positive diagonal entries.
The parameter vector p

k
of an ellipse is then given by

p
k

=
[
mT

k , l
(1)
k , l

(2)
k , l

(3)
k

]T
, which consists of the center

and the non-zero entries of the Cholesky decomposition. The
quadratic function (1) then becomes

g(p
k
, z) := (z −mk)T · (LkL

T
k ) · (z −mk)− 1 .

The above parameterization explicitly contains the ellipse
center and a valid ellipse is specified by LkL

T
k . Furthermore,

it can directly be used for higher-dimensional ellipsoids. Note
that this representation has already been used by the authors
for approximating the shape of groups and extended objects
[21]. Further specific conic sections are circles, which are
relevant for practical applications [11].

Circle (Center/Radius Representation): An obvious pa-
rameterization of a circle in two-dimensional space is given
by p

k
=
[
mT

k , rk
]T

, where mk =
[
mk,1,mk,2

]T
is the

center and rk the radius. The quadratic function in (1) then
becomes g(p

k
, z) = (x−mk,1)2 + (y −mk,2)2 − r2k.

IV. CONIC FITTING BASED ON STOCHASTIC
LINEARIZATION

In this section, we introduce a new method for conic fitting
based on a Gaussian state estimator.

A. Measurement Update

In order to derive an explicit measurement equation, we
use the general form of a conic section (2). Based on this
derivation, the particular example representations of conics
introduced in Section III are treated in Section IV-A.4.

The first step is to put (3) in (4), i.e.,

g(p
k
, ŷ

k
) = g(p

k
, zk + vk)

= g(p
k
, zk)

+2zTkAkvk + vT
kAkvk + bTk vk .

Because it follows from (4) that g(p
k
, zk) = 0, the following

equation is obtained

0 = g(p
k
, ŷ

k
) − (2zTkAkvk + vT

kAkvk + bTk vk) . (8)

Based on (8), a measurement equation with multiplicative
noise and a measurement equation with additive noise can
be derived.

1) Measurement Equation with Multiplicative Noise:
Equation (8) can directly interpreted as an explicit measure-
ment equation of the form

0 = h(p
k
,vk) ,

where h(p
k
,vk) is a new measurement function that maps

the random variables p
k

and vk to a pseudo-measurement
with value 0. It is important to note that h(p

k
,vk) also de-

pends on the measurement ŷ
k

and the unknown measurement
source zk. The basic idea is to substitute zk in (8) by a proper
point estimate. How this point estimate for zk is obtained is
discussed in Section IV-A.3.

Although the measurement equation is nonlinear and non-
additive Gaussian noise is involved, a measurement update
can be performed with basic filtering techniques because only
quadratic nonlinearities occur. For instance, a measurement
update can be performed with a Gaussian filter such as
the UKF [22], which approximates the first two moments
of the joint state of the state and the measurement with a



Gaussian distribution (this process is also called stochastic
linearization).

Given the prediction fp(p
k
) = N (p

k
− µp

k
,Σp

k), a mea-
surement update with the measurement ŷ

k
can be performed

according to the Kalman filter [23] equations

µe
k

= µp
k

+ Σph
k (Σhh

k )−1
(

0− µh
k

)
,

Σe
k = Σp

k − Σph
k (Σhh

k )−1Σhp
k ,

where 0 is the predicted pseudo-measurement, Σph
k is covari-

ance between h(p
k
,vk) and p

k
, and Σhh

k is the variance of
h(p

k
,vk). At this point it is important to note that µh

k
and

Σph
k do not depend on the unknown measurement source

zk and, hence, the error made due to substituting it with a
point estimate is rather negligible. A measurement update
as described above can be performed with a Gaussian state
estimator such as the UKF [22] or even based on analytic
moment calculation as described in [24]. Note that also non-
Gaussian estimators could be used for obtaining even more
precise estimation results.

2) Measurement Equation with Additive Noise: Equation
(8) can also be used for constructing a measurement equation
with additive Gaussian noise, which is easier to handle with
many nonlinear filters, such as particle filters or the EKF
[23]. For this purpose, (8) is written as

0 = g(p
k
, ŷ

k
) + v̄k(p

k
,vk) , (9)

where v̄k(p
k
,vk) is a noise term that depends on the shape

parameters p
k
, the measurement noise vk, but also on the

unknown measurement source zk. In order to remove the
dependency of v̄k(p

k
,vk) on p

k
, we substitute its current

estimate µp
k

to obtain

0 = g(p
k
, ŷ

k
) + v̄k(µp

k
,vk) . (10)

Again we have to substitute a point estimate for the unknown
measurement source zk as described in Section IV-A.3. The
probability distribution of v̄k(µp

k
,vk) can be approximated

with a Gaussian density by means of nonlinear estimation
techniques, e.g., [22], [24]. Note that it can directly be
seen that the mean E{v̄k(µp

k
,vk)} does not depend on the

measurement source.
3) Obtaining a Point Estimate for the Measurement

Source: In the following, we show how a point estimate
for the measurement source zk can be obtained based on
the prediction fp(p

k+1
) = N (p

k+1
− µe

k+1
,Σe

k+1) and the
measurement ŷ

k
.

A simple method is to consider the conic specified by the
mean of the prediction, i.e., µp

k+1
, and use the point with the

smallest distance from the conic to the measurement ŷ
k

as
a point estimate for the measurement source zk.

A more elaborate method is to find the most likely
measurement source for given µp

k+1
and ŷ

k
.

4) Examples: Having explained the general procedure
for deriving the explicit measurement equation for conic
fitting, particular measurement equations are derived in the
following for the ellipse and circle representations given in
Section III.

Ellipse (Coefficient Representation): If the components of
the measurement source are given by zk =

[
xzk, y

z
k

]T
, and

the measurement noise is denoted with vk =
[
vx
k,v

y
k

]T
, (8)

becomes

0 = g(p
k
, ŷ

k
)−

ak(xzkv
x
k + (vx

k)2 − yzkv
y
k − (vy

k)2)

2bk(xzkv
y
k + yzkv

x
k + vy

kv
x
k) +

yzkv
y
k + (vy

k)2 + 2dkv
y
k + 2ekv

x
k

:= h(p
k
,vk) ,

where h(p
k
,vk) is the new measurement equation with

multiplicative noise. For the measurement equation with
additive noise (9), the noise term becomes

v̄k(p
k
,vk) = ak(xzkv

x
k + (vx

k)2 − yzkv
y
k − (vy

k)2)

bk(xzkv
y
k + yzkv

x
k + vy

kv
x
k)+

yzkv
y
k + (vy

k)2 + 2dkv
y
k + 2ekv

x
k .

The probability distribution of v̄k(µp
k
,vk) can be approx-

imated with a Gaussian distribution by means of analytic
moment calculation as described in [24]. It is interesting to
note that g(p

k
, ŷ

k
) is linear in p

k
and, hence, we end up

with a linear measurement equation.

Ellipse (Center/Shape Representation): For this parame-
terization of an ellipse, (8) becomes

0 = g(p
k
, ŷ

k
)− 2(zk −mk)TB−1

k vk + vT
kB

−1
k vk

:= h(p
k
,vk) ,

where h(p
k
,vk) is the new measurement function.2 The

additive noise term in (9) is given by v̄k(p
k
,vk) = 2(zk −

mk)TB−1
k vk+vT

kB
−1
k vk. The noise term v̄k(µp

k
,vk) can be

approximated with a Gaussian density by means of moment
matching. The exact expressions are given in the following
theorem.

Theorem IV.1 For given parameters µp
k

and the correspond-
ing shape matrix B̂k and ellipse center m̂k, the first two
moments of the random variable v̄k(µp

k
,vk) are given by

• E{v̄k(µp
k
,vk)} = trace

(
B̂−1

k Σv
k

)
, and

• Var{v̄k(µp
k
,vk)} = 2 trace

(
B̂−1

k Σv
kB̂

−1
k Σv

k

)
+ 4(zk−

m̂k)T B̂−1
k Σv

kB̂
−1
k (zk − m̂k) .

PROOF. Follows from the formulas for quadratic forms of
normal distributions in [25], [26]. �

The first moment E{v̄k(µp
k
,vk)} depends on the shape

matrix B̂−1
k but is independent of the (unknown) measure-

ment source zk. However, the variance Var{v̄k(µp
k
,vk)} of

2We observed that for this representation, it may be suitable to multiply
the measurement equation with a factor, e.g., 1/ trace

(
LkL

T
k

)
, if a

Gaussian-assumed estimator is used.
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Fig. 3: Example measurements received from an ellipse.

v̄k(µp
k
,vk) depends on both B̂k and the vector from the

ellipse center to measurement source zk − m̂k.

Circle (Center/Radius Representation): An interesting spe-
cial case is obtained in case of a circle. In this case, (8)
becomes

0 = g(p
k
, ŷ

k
)− ((mk − zk)Tvk + vT

k vk)

:= h(p
k
,vk) ,

where h(p
k
,vk) is the new measurement equation with

multiplicative noise. Furthermore, the additive noise term in
(9) becomes v̄k(p

k
,vk) = (mk−zk)Tvk +vT

k vk. Actually,
it turns out that the probability distribution of v̄k(µp

k
,vk)

does not depend on zk in case vk is isotropic Gaussian
noise. This fact has been shown by the authors in [19], where
formulas for the first two moments of v̄k(µp

k
,vk) can be

found. The major insight in [19] is that in case of isotropic
noise, no assumptions on the measurement source has to
be made. Note that the measurement equation with additive
noise for circles has already been derived (in a different way)
in [19] for the special case of isotropic noise.

B. Time Update

The time update can be performed in the usual manner.
The state vector evolves according to a known Markov model
characterized by the conditional density function f(p

k
|p

k−1
)

derived from the system equation (5). The prediction fpk (p
k
)

at time step k thus results from the Chapman-Kolomogorov
equation

fpk (p
k
) =

∫
f(p

k
|p

k−1
) · fek−1(p

k−1
)dp

k−1
.

In this work, we assume that the predicted density fpk (p
k
) is

approximated with a Gaussian.

V. EVALUATION

In this section, the new approach for conic fitting is
compared to the (Iterated) EKF approach suggested in [2].
In the considered scenario, an ellipse is located at the
position

[
1, 0
]T

in two-dimensional space. The length of the
minor axis is 1.5 and length of the major axis is 5. The
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(a) EKF: 30 Measurements.
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(c) New Method: 30 Measurements.
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(d) New Method: 80 Measurements.

Fig. 4: Scenario 1: Estimated ellipses from five different runs
plotted in one figure.

measurements ŷ
k

are received sequentially from the ellipse.
We have considered two scenarios. In the first scenario the
measurement noise is rather high, i.e., Σv

k = diag(0.5, 0.5)
(see Fig. 3a) and the measurement sources are uniformly
distributed from the ellipse. In the second scenario, the
measurement noise is smaller, i.e., Σv

k = diag(0.2, 0.2).
However, measurement sources are only located on the left
side of the ellipse (see Fig. 3b). Both estimators represent an
ellipse according to (6). The new estimator is implemented
using the measurement equation with multiplicative noise
and the UKF [22] for the measurement update. The prior
for the ellipse is set to a circle with radius 3 located at
the origin, i.e., µp

1
=
[
0.5, 0, 0, 0,−4.5

]T
. The uncertainty

of the prior ellipse is assumed to be very high, i.e., Σp
1 =

diag(10, 10, 10, 10, 10).

For both scenarios, the estimated ellipses for five different
Monte-Carlos runs are plotted in Fig. 4 and Fig. 5 after
having received 40 and 80 measurements. We observe that
for both scenarios, the new method yields much more
precise and staple ellipse estimates. The EKF approach in
Fig. 4 yields some infeasible estimates that are no ellipses.
Furthermore, several estimated ellipses are too small. On the
other hand, the new method yields accurate ellipse estimates.
In Fig. 6, the root mean squared error (RMSE) for the first
80 time steps demonstrates that the new approach yields
more precise estimation results than the EKF, which tends
to diverge.
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(a) EKF: 30 Measurements.
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(d) New Method: 80 Measurements.

Fig. 5: Scenario 2: Estimated ellipses from five different runs
plotted in one figure.
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Fig. 6: RMSE plotted over time (averaged over 20 runs).

VI. CONCLUSION AND FUTURE WORK

In this work, we have considered the problem of fitting a
conic to noisy data points in the context of tracking applica-
tions. We have presented a procedure for deriving an explicit
measurement equation based on the given implicit mea-
surement equation. For the explicit measurement equation,
standard Gaussian filters can be used for an efficient recursive
measurement update. Future work consists of estimating the
noise covariance matrix in addition to the parameter vector.
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