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Abstract: In nonlinear filtering, special types of Gaussian mixture filters are a straightforward
extension of Gaussian filters, where linearizing the system model is performed individually for
each Gaussian component. In this paper, two novel types of linearization are combined with
Gaussian mixture filters. The first linearization is called analytic stochastic linearization, where
the linearization is performed analytically and exactly, i.e., without Taylor-series expansion or
approximate sample-based density representation. In cases where a full analytical linearization
is not possible, the second approach decomposes the nonlinear system into a set of nonlinear
subsystems that are conditionally integrable in closed form. These approaches are more accurate
than fully applying classical linearization.
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1. INTRODUCTION

Determining the internal state of a dynamic system is
essential in many applications, e.g., target tracking or
simultaneous localization and mapping (SLAM). Due to
disturbances in the measurement process and imperfect
system models, the Bayesian estimation framework is often
applied in order to deal with these uncertainties. For linear
systems affected with Gaussian noise, the Kalman filter
is the optimal estimator and Bayesian estimation can be
performed in closed form. In case of nonlinearities and/or
non-Gaussian noise, the Kalman filter is no longer optimal
or even not applicable. In order to achieve an estimate
for the internal state of the system, approximate state
estimators have to be employed.

A common restriction of approximate state estimators is
to assume a (jointly) Gaussian representation of the sys-
tem state and the measurement. Estimators corresponding
to these so-called Gaussian filters are for example the
Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF, Julier et al. [2000]), analytic approaches
(AGF, Beutler et al. [2010]), and semi-analytic approaches
(SAGF, Huber et al. [2011]). Due to the Gaussian as-
sumption, a linearization of the nonlinear system models is
performed, which can be explicit (EKF) or implicit (UKF,
AGF, SAGF) as discussed in Sec. 4.1. Obviously, in prob-
lems with strong nonlinearities that cause non-Gaussian
densities, e.g., multi-modal or heavily skewed densities,
the estimation accuracy of Gaussian filters is limited. But
on the other hand, the computational complexity is only
polynomial with the dimension of the state space.

Estimators especially designed for nonlinear non-Gaussian
problems are for instance the grid filter or the particle

filters (Arulampalam et al. [2002]), which make no specific
assumptions about the shape of the density function.
Hence, these approaches can be arbitrarily accurate, but
their complexity is exponential.

A trade-off between both worlds are the so-called Gaussian
mixture filters (GMFs, see Sec. 3), which are often applied
to SLAM (Kwok et al. [2005], Lemaire et al. [2007]). Gaus-
sian mixtures are very convenient for filtering purposes
as with an increasing number of mixture components, a
Gaussian mixture can approximate any density function
with arbitrary accuracy (Maz’ya and Schmidt [1996]).
GMFs utilize a weighted sum of Gaussian densities and
typically rely on individual linearizations for each Gaus-
sian component. By applying a bank of EKFs, individual
linearization is achieved via component-wise first-order
Taylor-series expansion (Alspach and Sorenson [1972]). A
bank of UKFs corresponds to a sample-based stochastic
linearization (Šimandl and Duńık [2005]) for each compo-
nent.

In this paper, two novel types of linearization are utilized
for GMFs. For some classes of nonlinear functions, e.g.,
polynomial or trigonometric functions or combinations of
them, stochastic linearization can be performed analyti-
cally and exactly (see Sec. 4.2). Instead of a sample point
representation, the whole Gaussian density is propagated
through the nonlinear function for linearization. The re-
sulting filter is named the analytic Gaussian mixture filter
(A-GMF). For arbitrary nonlinearities, the semi-analytic
Gaussian mixture filter (SA-GMF) introduced in Sec. 4.3
utilizes a linearization approach that relies on a decom-
position of the nonlinear system into integrable substruc-
tures such that one part of the problem can be solved



analytically and for the remaining part a sample-based
stochastic linearization is employed. This decomposition is
much more general than the usual decomposition into con-
ditional linear subsystems via Rao-Blackwellization. Since
both GMFs at least partly rely on analytic linearization,
much better local approximations and thus, more accu-
rate estimation results are achieved compared to GMFs
proposed by Alspach and Sorenson [1972] or Šimandl and
Duńık [2005]. This is demonstrated via simulations in
Sec. 5, where a robot with tricycle kinematics is considered
that measures distances to landmarks.

2. PROBLEM FORMULATION

A nonlinear dynamic system is described by its system and
measurement equation according to

xk+1 = ak(xk, uk,wk) , (1)

y
k

= hk(xk,vk) , (2)

where xk is the internal state, wk and vk are the white
system and measurement noise processes, y

k
is the mea-

surement process, and uk a known control input. The
known function ak(·, ·, ·) describes the evolution of the
system over time and the known function hk(·, ·) the
mapping between the internal state and the output of the
system. Please note that actual measurement values ŷ

k
are

realizations of y
k
.

The random variables, e.g., xk, are denoted be bold font
letters and are described by probability density functions
f(·). For recursive estimation, the Bayesian estimation
framework is applied, which consists of the prediction
and filter step. In the following, a short overview of the
Bayesian estimation framework is given.

2.1 Prediction Step

In the prediction step, the estimated density of the state
fe(xk) is propagated to the next time step k+ 1 by means
of the Chapman-Kolmogorov equation

fp(xk+1) =

∫∫
f(xk+1|xk, wk)︸ ︷︷ ︸

δ(xk+1−ak(xk,uk,wk))

fe(xk)f(wk) dxk dwk , (3)

where δ(·) is the Dirac delta distribution and fp(xk+1) is
the predicted density of the state.

2.2 Filter Step

In the filter step, the predicted density fp(xk) from the
last prediction step is updated based on Bayes rule

fe(xk) =
1

ck
f(ŷ

k
|xk)fp(xk) , (4)

where ck =
∫
f(ŷ

k
|xk)fp(xk) dxk is a normalization con-

stant and f(ŷ
k
|xk) is the Likelihood function given by

f(ŷ
k
|xk) =

∫
f(ŷ

k
|xk, vk)︸ ︷︷ ︸

δ(ŷ
k
−hk(xk,vk))

f(vk) dvk .

The function f(ŷ
k
|xk, vk) depends on the nonlinear func-

tion in (2) and the current measurement value ŷ
k
.

For simplicity and brevity, the time index k is omitted
and for the prediction step, the variables xk and xk+1 are
replaced by xe and xp, respectively.

3. GAUSSIAN MIXTURE FILTER

The basic idea behind a GMF is to apply linearization indi-
vidually to each Gaussian component of a given Gaussian
mixture for approximate prediction and filtering.

3.1 Prediction Step

In the prediction step, it is assumed that the result of the
previous filter step is represented by means of the Gaussian
mixture

fe(xe) =

L∑
i=1

ωei · N (xe;µe
i
,Ce

i ) , (5)

where ωei are non-negative weighting factors summing up
to one and N (x;µ,C) is a Gaussian density with mean
vector µ and covariance matrix C. L is the number of
components. The mixture in (5) is used in (3), which
results in

fp(xp) ≈
L∑
i=1

ωpi · f
p
i (xp) , (6)

where the weighting factors 1 are ωpi = ωei and fpi (xp) is
the predicted density

fpi (xp) =

∫∫
f(xp|xe, w)N (xe;µe

i
,Ce

i )f(w) dxe dw (7)

of the ith component. In general, the integral in (7) cannot
be solved in closed form. To simplify this problem, the pre-
dicted density of each component is individually approx-
imated by a Gaussian density fpi (xp) ≈ N (xp;µp

i
,Cp

i ) .

Thus, it remains to calculate the moments µp
i

and Cp
i via

moment matching. The mean µp
i

of the ith component for
instance is

µp
i

=

∫
xp · fpi (xp) dxp . (8)

Using (7) in (8) and exploiting the sifting property of the
Dirac delta distribution, the mean results in

µp
i

=

∫∫
a(xe, u, w)N (xe;µe

i
,Ce

i )f(w) dxe dw . (9)

Similar to the mean, the covariance matrix is given by

Cp
i =

∫∫
(a(xe, u, w)− µpi )(a(xe, u, w)− µp

i
)T·

N (xe;µe
i
,Ce

i )f(w) dxe dw . (10)

But still, the integrals in (9) and (10) cannot be solved
analytically in general. A famous exception is the case,
where a(·, ·, ·) is linear and thus, the Kalman predictor
can be applied individually for each component.

3.2 Filter Step

In the filter step, the Gaussian mixture (6) of the predicted
state is used in (4), which results in

fe(x) =
1

c
· f(ŷ|x) ·

L∑
i=1

ωpi · N (x;µp
i
,Cp

i ) . (11)

Due to the nonlinear measurement equation (2), the filter
step cannot be solved analytically. For applying individual
1 This weight update is exact only for linear system models, other-
wise it is an approximation. For an improved weight update, see for
example (Terejanu et al. [2008]).



approximations in (11), the equation is extended with
N (ŷ;µy

i
,Cy

i ), which results in

fe(x) =
1

c

L∑
i=1

wpi · N (ŷ;µy
i
,Cy

i ) ·
f(ŷ|xp)N (xp;µp

i
,Cp

i )

N (ŷ;µyi ,C
y
i )

≈
L∑
i=1

wei · N (x;µe
i
,Ce

i ) ,

where the fraction is approximated with a Gaussian dis-
tribution N (x;µe

i
,Ce

i ) and the weights for the estimated
density are given by

wei =
wpi · N (ŷ;µy

i
,Cy

i )∑L
i=1 w

p
i · N (ŷ;µyi ,C

y
i )

.

For calculating the estimated mean µe
i

and covariance Ce
i

for each component i, it is assumed that the state and
the measurement are jointly Gaussian. This assumption
is typical for Gaussian filters and is only true for linear
systems affected with Gaussian noise. Otherwise, it is an
approximation. In doing so, the desired moments are

µe
i

= µp
i

+ Cx,y
i (Cy

i )−1(ŷ − µy
i
) ,

Ce
i = Cp

i −Cx,y
i (Cy

i )−1(Cx,y
i )T ,

(12)

which depend on the current measurement value ŷ . To

calculate the required parameters Cx,y
i ,Cy

i , and µy
i

in (12),
moment calculations similar to the prediction step are ap-
plied. The predicted measurement µy

i
, the covariance of the

measurement process Cy
i , and the cross-covariance Cx,y

i
between state and measurement can then be calculated via

µy
i

=

∫∫
h(x, v) · N (x;µp

i
,Cp

i ) · f(v) dx dv , (13)

Cy
i =

∫∫
(h(x, v)− µy

i
) · (h(x, v)− µy

i
)T· (14)

N (x;µp
i
,Cp

i ) · f(v) dxdv ,

Cx,y
i =

∫∫
(x− µp

i
) · (h(x, v)− µy

i
)T· (15)

N (x;µp
i
,Cp

i ) · f(v) dxdv .

Unfortunately, these integrals cannot be solved in closed
form in general. Thus, approximations in form of lineariza-
tions have to be applied, which are described in Sec. 4.

3.3 Gaussian Mixture Noise

So far, not much attention has been paid to the noise
densities f(v) and f(w). If the noise is Gaussian, it
can be processed jointly with the individual Gaussian
components of the state density. One way to deal with
arbitrary noise densities is to approximate them by means
of a Gaussian mixture. In doing so, the noise can still
be processed component-wise and the overall estimation
procedure remains similar to the single Gaussian noise
case. However, the calculation of the weighting factors
differs, since the weighting factors of the noise mixture
have to be considered as well. Furthermore, the number
of components representing the Gaussian mixture of the
state increases exponentially with the time. To bound this
growth, Gaussian mixture reduction algorithms such as
the one proposed in Huber and Hanebeck [2008a] have to
be employed.

4. TYPES OF LINEARIZATION

For an approximate solution of the moment integrals in
(9), (10) and (13)–(15), GMFs rely on individually lin-
earizing the nonlinear functions a(·, ·, ·) and h(·, ·) for each
component. Thus, the estimation performance of a GMF
significantly depends on the quality of these linearizations.
In the following, common types of linearization are briefly
described. Then, two novel linearization approaches are
proposed, namely the analytic stochastic linearization and
the semi-analytic stochastic linearization.

For introducing the different linearization approaches, it
is sufficient to restrict the focus on an abstract nonlinear
transformation

y = g(x) . (16)

Here, the Gaussian random vector x ∼ N (x;µx,Cx) is
mapped to the random vector y. The nonlinear transfor-
mation g(·) can be replaced by a(·, ·, ·) in the prediction
step and by h(·, ·) in the filter step.

4.1 Classical Linearization

Generally, linearization approaches can be separated into
explicit and implicit linearization. Classical linearizations
that fall into these two classes are as follows.

Explicit Linearization For an explicit linearization, the
nonlinear function g(·) is linearized by applying a first-
order Taylor-series expansion around the mean µx as in
the EKF. Thus, the linearized function is given by

g(x) ≈ g(µx) +∇xg(µx) · (x− µx) ,

where ∇x is the gradient with respect to x. Employing this
type of linearization in a GMF corresponds to a bank of
EKFs and the resulting GMF is called the Gaussian sum
filter proposed in Alspach and Sorenson [1972].

Implicit Linearization In case of the implicit lineariza-
tion, the nonlinear function in (16) remains untouched.
Here, the word implicit indicates that if the mean µy

and covariance Cy of y can be calculated, there exists an
equivalent linear transformation

y = g(x) ≈ A · x+ b (17)

that produces exactly the same mean and covariance of y
given a Gaussian random vector x.

A straightforward approach for implicit linearization is to
approximate the Gaussian x via a sample-based represen-
tation

N (x;µx,Cx) ≈
N∑
j=1

wj · δ(x− µj) , (18)

which exactly captures the mean µx and covariance Cx.
Here, wj is the weight of the jth sample point located
at µ

j
. In the following, the index j is used for indicating

sample points, while the index i is used for components of
a Gaussian mixture. The samples can be easily propagated
through (16). Calculating the weighted sample mean and
sample covariance for the propagated samples then allows
approximately solving the moment integrals (9), (10) and
(13)–(15). The linear transformation in (17)—if desired—
can be obtained via least squares optimization as described
in Lefebvre et al. [2005].
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(c) Linearization via Taylor-series expansion.

Fig. 1. Illustration of the different linearization approaches: the nonlinear function (black) and its linearized version
(red dashed). (a) For the analytic stochastic linearization the entire Gaussian is propagated. (b) Sample-based
linearization utilizes a sample representation of the Gaussian. (c) Taylor-series expansion linearizes the nonlinear
function around a single point.

Several methods exist for calculating the sample represen-
tation in (18), e.g., the unscented transform (Julier et al.
[2000]) or the deterministic sampling scheme (Huber and
Hanebeck [2008b]). Combining the unscented transform
with a GMF for instance, corresponds to a bank of UKFs
and is described in detail in Šimandl and Duńık [2005].

4.2 Analytic Stochastic Linearization

Special nonlinear functions for g(·) facilitate to solve the
moment integrals analytically and exactly, e.g., polyno-
mials, trigonometric functions, and their combinations.
In this case, the results of the moment integrals can be
derived in an analytic form, as it is shown in the simulation
example in Sec. 5. Thus, linearization is performed implic-
itly under the consideration of the entire Gaussian density
of x. This is in contrast to the previously described sample-
based linearization, which merely propagates a sample-
based approximation of the Gaussian. Even more extreme
is the explicit linearization used in the EKF, where lin-
earization is only performed on the basis of the single
point, that is the mean of the Gaussian. These differences
are depicted in Fig. 1.

In the following, the combination of analytic stochastic
linearization with a GMF is named analytic Gaussian
mixture filter (A-GMF).

4.3 Semi-Analytic Stochastic Linearization

In order to extend the principle of analytic stochastic lin-
earization to a wider class of nonlinear functions, the semi-
analytic stochastic linearization approach is proposed.
Here, sampled-based linearization is combined with the
analytic stochastic linearization such that only some di-
mensions of the random vector x are discretized by means
of a sample representation. Thus, only some parts of the
nonlinear transformation (16) have to be evaluated ap-
proximately for moment calculation.

For this purpose, the nonlinear equation (16) is rearranged
according to

y = g(xa,xb) , (19)

where the Gaussian random vector x = [(xa)T, (xb)T]T

consists of the substates xa, xb with mean and covariance

µx =

[
µa

µb

]
, Cx =

[
Ca Ca,b

Cb,a Cb

]
.

As mentioned above, there exists no closed-form expres-
sion for the desired moments in general. However, the
decomposition into xa and xb is chosen in such a way that
the moment integrals can be calculated in closed form for
any given fixed value of xb. Hence, g(·, ·) is denoted to
be conditionally integrable if such a decomposition exists.
For determining a sample-based representation of xb, the
sampling techniques mentioned in Sec. 4.1 are applied.

The analytic stochastic linearization and sampled-based
linearization are extreme cases of the semi-analytic stocha-
stic linearization: if xb has no entries, the semi-analytic
stochastic linearization becomes an analytic stochastic
linearization and if xa has no entries, the semi-analytic
stochastic linearization degenerates into a sample-based
linearization.

General Solution For the general transformation in (19),
the desired moments of y can be calculated as follows. At
first, the joint density f(x, y) is separated by employing
Bayes’ rule

f(x, y) = δ
(
y − g

(
xa, xb

))︸ ︷︷ ︸
= f(y|x)

· f(xa|xb) · f(xb)︸ ︷︷ ︸
= f(x)

.

The conditional density f(xa|xb) = N
(
xa;µa|b,Ca|b) is

(conditionally) Gaussian with mean and covariance

µa|b = µa + Ca,b ·
(
Cb
)−1 · (xb − µb) ,

Ca|b = Ca −Ca,b ·
(
Cb
)−1 ·Cb,a .

(20)

To determine the mean µy, the Gaussian density f(xb) of

the substate xb is represented by means of a sample density
as in (18), which allows a sample-based linearization. For
integrating over xb, the sifting property of the Dirac delta
distribution is exploited. This gives rise to

µy ≈
N∑
j=1

wj · µyj with µy
j

=

∫
g(xa, µb

j
) · f(xa|µb

j
) dxa

(21)
for the mean of y and analogously, the covariance of y is
approximated according to

Cy ≈
N∑
j=1

wj ·
(
Cy
j − µ

y
j
(µy)T − µy(µy

j
)T + µy(µy)T

)
,

Cy
j =

∫
g
(
xa, µb

j

)
· g
(
xa, µb

j

)T · f(xa|µb
j

)
dxa .

(22)



It is worth mentioning that the integrals in (21) and
(22) can be evaluated analytically as the function g(·, ·)
is chosen to be conditionally integrable. Solving these
integrals is an off-line task and the solution is represented
in parametric form for an efficient on-line evaluation.

Gaussian Estimation By putting it all together, predic-
tion and filtering for the ith Gaussian component of the
Gaussian mixture can now be derived.

In the prediction step, the predicted mean µp
i

(9) and

covariance Cp
i (10) of fpi (xp) have to be calculated. For this

purpose, the system function (1) can be directly mapped
to the nonlinear transformation (19) according to

xp = a (xe, u,w) = g
(
xa,xb

)
.

Here, the system input u becomes a part of the function
g(·, ·) and the substates xa,xb are augmented with the

noise variables wa,wb, where w = [(wa)T, (wb)T]T, in
order to consider additive and/or multiplicative noise. For
calculating the mean µp

i
and covariance Cp

i , (21) and (22)
are used, respectively.

In the filter step, the measurement equation (2) is mapped
to the nonlinear transformation (19) according to

y = h(x,v) = g
(
xa,xb

)
,

where the measurement noise v is spread across the sub-
states xa,xb. It is worth mentioning that the decomposi-
tion of x into the substates for the filter step is independent
of the decomposition of the prediction step.

For determining the mean µe
i

and covariance Ce
i in (12)

for the ith Gaussian component, the moments µy
i
, Cy

i

and Cx,y
i in (13)–(15) are required. According to (18), the

density of the substate xb is approximated by the sample
density

N (xb;µb
i
,Cb

i ) ≈
N∑
j=1

wij · δ(xb − µbij) .

By means of this sample representation, µy
i

and Cy
i

can be calculated as in (21) and (22), respectively. The
cross-covariance Cx,y

i needs further derivations. The cross-

covariance Cx,y
i = [Ca,y

i ,Cb,y
i ]T consists of

Ca,y
i =

N∑
j=1

wij ·
(
Ca,y
ij − µ

a|b
ij

(
µy
i

)T
+ µa

i

(
µy
i
− µy

ij

)T)
,

Cb,y
i =

N∑
j=1

wij ·
(
µb
ij
− µb

i

)
·
(
µy
ij
− µy

i

)T
,

with

Ca,y
ij =

∫
xa · g

(
xa, µb

ij

)T · f(xa|µb
ij

)
dxa ,

where µa|b
ij

is calculated according to (20) with xb replaced

by µb
ij

and µy
ij

results from solving the integral in (21).

The combination of semi-analytic stochastic linearization
with a GMF is named semi-analytic Gaussian mixture
filter (SA-GMF) in the following.

5. SIMULATION RESULTS

In the simulations, a localization scenario is considered.
A robot with tricycle kinematics measures the distance
to one out of four landmarks per time step. The land-
mark considered for measurement is selected randomly
with equal probability. The proposed A-GMF and SA-
GMF are compared with the EKF-GMF (a.k.a. Gaussian
sum filter, Alspach and Sorenson [1972]) and the UKF-
GMF (Šimandl and Duńık [2005]) for different numbers of
components and measurement noise levels.

5.1 System and Measurement Model

The nonlinear kinematics model of the robot is given by

pxk+1 = pxk + (uvk +wv
k) · cos(φk + uαk ) ,

pyk+1 = pyk + (uvk +wv
k) · sin(φk + uαk ) ,

φk+1 = φk + (uαk +wα
k ) ,

(23)

with state xk = [pxk p
y
k φk]T, where pxk and pyk describe the

Cartesian position of the robot and φk its orientation. The
known control inputs are the velocity uvk and the turning
angle uαk . wv

k and wα
k are noise processes affecting the cor-

responding control inputs. They are assumed to be zero-
mean Gaussian with variances Qv and Qα, respectively.

The measured range rk is given by the nonlinear measure-
ment model

rk =
√

(pxk − Lx + vxk)2 + (pyk − Ly + vyk)2 ,

where L = [Lx Ly]T is the position of the landmark, and
vk = [vxk v

y
k]T is the measurement noise. The noise is

assumed to be zero-mean Gaussian with covariance Cv.

5.2 Estimator: A-GMF

The prediction step can be solved analytically as the model
(23) consists of linear, bilinear, and polynomial functions.
The predicted mean of the ith Gaussian component is

µp
i
(1) = µei (1) + uv · e · cos(β),

µp
i
(2) = µe

i
(2) + uv · e · sin(β),

µp
i
(3) = µe

i
(3) + uα ,

where µp
i
(j) is the jth element of the vector µp

i
and

Ce
i (m,n) is the element of the matrix Ce

i at row m and
column n. The variables β and e are given by

β = uα + µe
i
(3) and e = exp

(
− 1

2 ·C
e
i (3, 3)

)
,

respectively. The analytic expressions of the predicted
covariances can be found in Appendix A.

For an analytic moment calculation in the filter step,
the measurement model needs to be squared, where the
resulting new measurement is denoted by yk := (rk)2.
Based on the new squared measurement model, which now
is polynominal, the required quantities in (13)-(15) are

µyi = AT ·A+ trace(T) , Cx,y
i = −2 ·Cp

i ·P
T ·A ,

Cyi = 1T2 · (4 · (A ·A
T) ◦T + 2T ◦T) · 12 ,

where ◦ is the element-wise product, 12 = [1 1]T, and

P =

[
1 0 0
0 1 0
0 0 0

]
, T = Cv + P ·Cp

i ·P
T , A = L− µp

i
.

The measurement value ŷ is replaced by (r̂)2.
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Fig. 2. The RMSE and its standard deviation over the 1000 trajectories at noise level 1 for different numbers of Gaussian
components.

5.3 Estimator: SA-GMF

Even if the prediction step can be performed in closed
form, the system model is written in conditionally linear
form according to

xk+1=

[
uvk cos(φk + uαk )
uvk sin(φk + uαk )

φk + uαk

]
+

[
1 0 cos(φk + uαk ) 0
0 1 sin(φk + uαk ) 0
0 0 0 1

]
· xak ,

in order to demonstrate to performace of the SA-GMF.
Here, xa = [px,py,wv,wα]T and xb = φ . By approxi-
mating the orientation φ by means of the sample-based
representation, the nonlinear system model becomes a
conditionally linear one. Thus, given a sample point µb

j
,

the prediction step with respect to xa for each Gaussian
component can be solved via the Kalman predictor. The
filter step is performed as in the A-GMF.

5.4 Setup

The initial position of the robot at time step k = 0 is
x0 = [5 3 0.2]T . Furthermore, the known control inputs
are constant and selected as uv = 0.1 and uα = 0.1.
The variances of the noise processes are Qv = 0.1 and
Qα = 0.01.

The measurement noise is isotropic, i.e., the covariance is
Cv = (σv)2 · I2 with I2 being the 2 × 2 identity matrix.
For the variance (σv)2, the three noise levels 0.5, 1, and 2
are considered. The positions Li, i = 1, . . . , 4 of the four
landmarks are

[L1 L3 L3 L4] =

[
0 2 5 10
0 2 5 10

]
.

The GMFs are initialized with different numbers of compo-
nents, namely 1, 8, and 64 components. This initialization
is performed via the splitting procedure proposed in Huber
et al. [2008], where the Gaussian used for splitting has the
covariance matrix C = diag([1000 1000 30]) and a mean
sampled from the Gaussian N (x;x0,C). For each com-
bination of noise level and number of components, 1000
simulation runs are performed, where each run consists of
50 time steps.

5.5 Results

In Tab. 1, the average root mean square error (RMSE)
with respect to the robot’s position and the standard
deviation of the average RMSE of all estimators for all
noise levels and all numbers of components are listed. The
A-GMF and the SA-GMF outperform the UKF-GMF and
the EKF-GMF under all conditions. The RMSE for the
noise level (σv)2 = 1 is shown in Fig. 2. A-GMF and SA-
GMF converge significantly faster compared to other two
estimators and provide the lowest estimation errors.

In this simulation, A-GMF and SA-GMF perform almost
identical as both use the same filter step and a sample-
based representation in case of the SA-GMF is merely
necessary for one dimension.

The EKF-GMF provides the worst estimation results in
this scenario. This can be explained by the fact that the
underlying linearization does not consider any uncertainty
information and thus, the linearization error is neglected.
Thanks to the sample-based linearization of the UKF-
GMF, uncertainty information can be incorporated, which
leads to a superior linearization and estimation compared
to the EKF-GMF. However, only a finite number of sample
points is used for moment calculation. In the A-GMF
instead, the linearization is performed implicitly under the

Table 1. Average RMSE and standard devi-
ation for the different estimators at different

noise levels and numbers of components.

Noise 0.5 64 8 1

A-GMF 2.02± 1.34 3.17± 1.98 3.76± 2.01

SA-GMF 2.03± 1.34 3.16± 1.99 3.76± 2.09

UKF-GMF 2.41± 1.79 4.08± 3.02 4.31± 3.58

EKF-GMF 2.64± 1.86 4.08± 4.99 6.40± 9.64

Noise 1.0 64 8 1

A-GMF 2.05± 1.36 3.16± 1.97 3.70± 2.07

SA-GMF 2.06± 1.35 3.15± 1.97 3.70± 2.07

UKF-GMF 2.44± 1.80 4.04± 3.05 4.25± 3.61

EKF-GMF 2.95± 1.73 4.40± 4.43 6.72± 8.71

Noise 2.0 64 8 1

A-GMF 2.16± 1.35 3.22± 2.02 3.78± 2.16

SA-GMF 2.16± 1.36 3.22± 2.02 3.78± 2.16

UKF-GMF 2.61± 1.77 4.11± 3.08 4.35± 3.65

EKF-GMF 3.42± 1.55 4.95± 4.14 7.21± 7.60



consideration of the entire Gaussian density. This further
improves estimation performance.

Furthermore, the computational complexity of the A-GMF
and SA-GMF is lower compared to the UKF-GMF. This
can be explained by the necessity of calculating matrix
square roots for determining a sample-based representa-
tion of a Gaussian. This operation has cubic complexity
and has to be applied in the UKF-GMF on the whole
covariance matrix of each Gaussian component. It is not
required for the A-GMF and in case of the SA-GMF,
the covariance matrix is of reduced dimension as some
dimensions of the state space are processed analytically.
A further reason for the higher computational load of the
UKF-GMF is the high number of on-line evaluations of the
functions (1) and (2). In case of the A-GMF, all function
evaluations are performed off-line, while for the SA-GMF
the number of function evaluations is reduced due to the
small dimension of the substate xb.

6. CONCLUSIONS

This paper introduces two novel Gaussian mixture fil-
ters, which combine analytic stochastic linearization tech-
niques with a Gaussian mixture density representation.
The purely analytic stochastic linearization approach is
designed for nonlinear filtering problems, where the inte-
grals for calculating the mean and covariance can be solved
in closed form. Semi-analytic linearization extends this
approach to a wider class of filtering problems, where only
some parts of the system model need to be analytically
integrable. Thanks to the combination of these lineariza-
tion approaches with a Gaussian mixture representation of
the state density, the estimation performance is improved
compared to Gaussian filters, especially in problems with
severe nonlinearities. In the simulation it is shown that
the proposed filter outperforms Gaussian mixture filters
employing standard linearization techniques concerning
estimation error and convergence.

Appendix A. ANALYTIC EXPRESSIONS FOR A-GMF

The analytic expressions of the elements of the predicted
covariance matrix of the A-GMF are

Cp
i (1, 1) = 1

2 (uv)2 + Ce
i (1, 1)− (uve cos(β))2

+ 1
2 (uv)2e4 cos(2β)− 2uve sin(β)Ce

i (1, 3)

+Qv 1
2 (1 + e4 cos(2β)) ,

Cp
i (2, 2) = 1

2 (uv)2 + Ce
i (2, 2)− (uve sin(β))2

− 1
2 (uv)2e4 cos(2β) + 2uve cos(β)Ce

i (2, 3)

+Qv 1
2 (1− e4 cos(2β)) ,

Cp
i (3, 3) =Ce

i (3, 3) +Qα

Cp
i (1, 2) =Ce

i (1, 2)− uv · e ·Ce
i (1, 3) cos(β)

− uv · e ·Ce
i (2, 3) sin(β)

+ (uve)2 cos(β) sin(β)(e2 − 1) +Qv e
4

2 sin(2β) ,

Cp
i (1, 3) =Ce

i (1, 3)− uv ·Ce
i (3, 3) · e · sin(β) ,

Cp
i (2, 3) =Ce

i (2, 3) + uv ·Ce
i (3, 3) · e · cos(β) ,

Cp
i (2, 1) =Cp

i (1, 2), Cp
i (3, 1)=Cp

i (1, 3), Cp
i (3, 2)=Cp

i (2, 3) .
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