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Abstract: Especially in the field of sensor networks and multi-robot systems, fully decentralized
estimation techniques are of particular interest. As the required elimination of the complex
dependencies between estimates generally yields inconsistent results, several approaches, e.g.,
covariance intersection, maintain consistency by providing conservative estimates. Unfortu-
nately, these estimates are often too conservative and therefore, much less informative than
a corresponding centralized approach. In this paper, we provide a concept that conservatively
decorrelates the estimates while bounding the unknown correlations as closely as possible. For
this purpose, known independent quantities, such as measurement noise, are explicitly identified
and exploited. Based on tight covariance bounds, the new approach allows for an intuitive and
systematic derivation of appropriate tailor-made filter equations and does not require heuristics.
Its performance is demonstrated in a comparative study within a typical SLAM scenario.
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1. INTRODUCTION

This paper is concerned with the problem of deriving state
estimators for large-scale systems. Two basic scenarios
can be identified, where efficient decentralized estimation
algorithms are of prime importance. The first situation is
concerned with the localization of sensor nodes in a large
sensor network by relative range measurements between
the nodes. The sensor network can comprise thousands
of nodes, which leads to a very large state vector. The
second scenario is the localization of a single or several
robots that simultaneously perform mapping of an unknown
environment. The number of landmarks even in a relatively
structured office environment can go into the thousands,
so that also in this robotic Simultaneous Localization and
Mapping (SLAM) problem, the state vector can become
extremely large.

Standard filtering methods cannot cope with problems of
this size as the representation of the estimate does not scale
linearly with the number of states. Thus, approximations
are required that lead to a smaller storage and processing
complexity.

The paper is structured as follows. Section 2 defines the
state estimation problem solved in this paper. Section 3
then gives an overview of related state-of-the-art solutions.
The basic principle of fully decentralized estimation is
introduced in Section 4. Based on covariance bounds given
in Section 4.1, a general recipe for deriving practical
decentralized filters is given in Section 4.2. The automatic
exploitation of independent noise terms is then shown in
Section 4.3. Against the background of the SLAM problem,

the derived results are exemplified by means of static and
dynamic scenarios in Section 5.

Contributions of the paper

The paper provides an intuitive recipe for systematically
deriving suboptimal but consistent filtering algorithms for
large-scale systems that reduce both storage and processing
complexity. With this approach, neither knowledge of com-
plex nonlinear filters nor a deeper insight into the updating
structure is required. By simply using the standard Kalman
filter equations and the concept of covariance bounds,
appropriate (implicitly nonlinear) filtering equations are
derived automatically.

2. PROBLEM FORMULATION

The abstract problem we face is the estimation of a large
state vector xk that consists of certain substates according
to

xk =
[
(x

(1)
k )T , . . . , (x

(N)
k )T

]T
(1)

from successive relative measurements between these sub-
states. W.l.o.g. we assume that at a time step k always

two substates x
(i)
k and x

(j)
k for i, j ∈ {1, . . . , N} of xk

are affected by a measurement ŷ
k

that is a realization
of the random vector y

k
. In the case of the considered

sensor network example, substates are the locations of the
individual nodes related by range measurements. For the
robotic SLAM example, substates are given by the observer
location and the landmark positions. The measurements



performed by the robot either relate substates correspond-
ing to two landmarks or the substates corresponding to
observer and a single landmark.

The standard solution for solving this state estimation
problem is to consider the entire state vector xk and
update the estimate of this state vector based on the
measurements by means of a suitable filter. In the case of
linear measurement equations, the Kalman filter is the best
linear unbiased estimator and even the best estimator when
the measurement noise is Gaussian. For the remainder of
this paper, we assume that the considered measurement
equations are either linear or an appropriate form of
linearization has already been performed.

Centralized state estimation by means of a Kalman filter
stores and maintains the entire covariance matrix (Smith
et al. (1986)). This includes the block covariance matrices
corresponding to the substates on its diagonal and the
cross-covariance matrices relating the substates. The big
advantage of storing and maintaining the cross-information
between substates is that updating a single substate can
lead to an update of many other substates, so that infor-
mation is propagated through the entire state. However,
this comes at the price of a high storage and processing
complexity as the size of the covariance matrix is quadratic
in the number of states.

In this paper, we desire to design a fully decentralized
filter for solving the considered large-scale state estimation
problems. For that purpose, the full state vector is split
up into “natural” substates. Updating is restricted to the
two substates affected by the current measurement. Only
the covariance matrices corresponding to the substates are
stored and maintained. All the cross-covariance matrices
are discarded.

The substates in decentralized filtering could correspond
to the basic substates described above or contain several
of these basic substates for which it is desired to maintain
a full covariance matrix. In the considered sensor network
example, larger substates correspond to groups of nodes
that form a natural cluster.

From all the available approaches for estimating the desired
state, this form of decentralized filtering is the least costly
solution in terms of both storage and processing complex-
ity. On the other hand, by discarding cross-information
between substates, the filter loses its ability to propagate
measurement information through the state vector, i.e., to
perform implicit updating (Castellanos et al. (1997)).

The major challenge that arises from discarding the cross-
covariance matrices between substates, however, is the
fact that this information is required even for the case of
updating two substates by means of a relative measurement
as will be shown in Section 4. Hence, the problem we solve
in this paper is to reconstruct the desired cross-covariance
matrices on the fly in order to facilitate the update process.
As it is impossible to reconstruct the matrices exactly,
appropriate upper bounds will be derived in Subsection 4.1.

3. RELATED WORK

In order to decentralize full covariance estimation ap-
proaches, the correlation structure between the partial

states cannot be updated in its entirety anymore and
therefore cannot be maintained. The consistency of the
state estimates can then only be preserved, if the covariance
matrix is bounded conservatively. The covariance intersec-
tion (Julier and Uhlmann (1997); Uhlmann et al. (1997)) or
covariance bounds (Hanebeck et al. (2001); Hanebeck and
Horn (2001b)) algorithms provide axis-aligned covariance
matrices that bound the true covariance matrix. As it has
been shown in (Julier and Uhlmann (2007); Hanebeck and
Horn (2001a)), this approach generally results into too
convervative estimates. Significantly more informative and
less conservative estimates can be attained with the split
covariance intersection technique, as proposed in (Julier
and Uhlmann (2001, 2007)), or additional restrictions on
the joint covariance matrix, as derived in (Hanebeck and
Horn (2001a); Reece and Roberts (2005)). Independent
noise is herein explicitly exploited and splitted off from the
covariance matrix to be bounded, so that tighter bounds
are possible. Unfortunately, these algorithms generally
require an explicit identification and exploitation of the
uncorrelated terms and are therefore rather complicated
and less intuitive.

In this paper, we show that independent noise can au-
tomatically be exploited and that intuitive decentralized
estimation formulas can be derived.

4. DECENTRALIZED ESTIMATION

In the following, we confine ourselves to those partial
states i and j of (1), between which a measurement takes
place. The two affected fusion nodes i and j both use a
measurement equation according to

ŷ
k

=
[
H

(i)
k H

(j)
k

] [
x
(i)
k

x
(j)
k

]
+ vk

that relates the two substates i and j with the given

measurement ŷ
k
. Collecting the two substates x

(i)
k and

x
(j)
k in a vector xk gives

xk =

[
x
(i)
k

x
(j)
k

]
.

This allows the application of the standard Kalman filter
formulas

x̂ek = x̂pk + Cp
kH

T
k

(
Cv

k + HkC
p
kH

T
k

)−1
(
ŷ
k
−Hkx̂

p
k

)
,

Ce
k = Cp

k −Cp
kH

T
k

(
Cv

k + HkC
p
kH

T
k

)−1
HkC

p
k ,

with the updated and the predicted state

x̂ek =

[
x̂
(e,i)
k

x̂
(e,j)
k

]
, x̂pk =

[
x̂
(p,i)
k

x̂
(p,j)
k

]
,

respectively,

Hk =
[
H

(i)
k H

(j)
k

]
,

and

Ce
k =

[
C

(e,i,i)
k C

(e,i,j)
k

C
(e,j,i)
k C

(e,j,j)
k

]
, Cp

k =

[
C

(p,i,i)
k C

(p,i,j)
k

C
(p,j,i)
k C

(p,j,j)
k

]
.

The posterior expected values are given by



[
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k
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)T(
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

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,

while the posterior joint covariance matrix is[
C

(e,i,i)
k C

(e,i,j)
k

C
(e,j,i)
k C

(e,j,j)
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(
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Obviously, the correlation information C
(p,i,j)
k is required

for performing updates as well as the filtered estimates

become correlated after the update, i.e., C
(e,i,j)
k 6= 0, even if

there has been no prior correlation. Discarding and ignoring
the correlations provides by no means a decentralized fusion
methodology and leads to inconsistent estimates. Therefore,
we derive an algorithm that conservatively decorrelates the
estimates.

4.1 Decorrelation of Estimates

The basic idea for reconstructing the correlation informa-
tion in Cp

k is to replace Cp
k with a ”larger” covariance

matrix C̃, i.e., C̃ ≥ Cp
k. In doing so, it can be ensured that

no inconsistent estimation results are obtained, because
the used covariance matrix is more conservative than the
true one. For deriving possible covariance bounds C̃, we
exploit the fact that the union of the sigma bounds of all
possible joint covariances is an axis-aligned convex set, see
Figure 1.

Theorem 4.1. Given a positive definite symmetric matrix
C̃ with

C̃ =

[
Cxx Cxy

Cyx Cyy

]
,

a “larger” matrix C ≥ C̃ is given by

C =

 1

0.5− κ
Cxx 0

0
1

0.5 + κ
Cyy

 ,

with κ ∈ (−0.5, 0.5).

Proof. Follows from[
xT yT

] (
C− C̃

)[x
y

]
≥ 0 for all

[
x
y

]
.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4
-3
-2
-1
0
1
2
3

x

4

y

Fig. 1. Family of covariance bounds for given marginal
distributions, see Hanebeck et al. (2001).
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The above theorem yields a family of possible covariance
bounds, namely one covariance bound for each κ ∈
(−0.5, 0.5) (see Figure 1). The particular value for κ
is chosen in order to minimize a certain criterium, like
the degree of uncertainty of the fusion result (see the
next Section). Note that covariance bounds also exist for
unknown but constrained cross-correlations, see Hanebeck
et al. (2001) and Reece and Roberts (2005).

4.2 Recipe for Designing Decentralized Estimators

Based on the concept of covariance bounds derived in
the previous subsection, a recipe for intuitively and sys-
tematically deriving suboptimal but consistent filtering
algorithms for large-scale systems is given in the following.
The estimator design consists of four steps:

(1) Select the system and measurement equation. These
equations should only incorporate relevant substates.
In this manner, only correlation information, which is
required to perform the measurement update / time
update, has to be reconstructed.

(2) Write down the associated Kalman filter equations by
assuming all required information to be available.

(3) Identify the missing information, i.e., correlations.
Unknown correlations may occur between the state
vector or parts of the state vector and also the noise
terms.

(4) Replace the missing information with a bounding
covariance matrix according to Theorem 4.1. If further
constraints on the correlations are known, even tighter
bounds as described in Hanebeck et al. (2001) can
be used. The filter equations now depend on a scalar
parameter κ.

The above filter design recipe automatically yields a
nonlinear filter that works as follows:

(1) Perform the measurement update / time update
dependent on the scalar parameter κ.

(2) Determine an optimal κopt according to a suitable
criterion, e.g., the determinant or trace of the updated
covariance matrix.

(3) Use the optimal κopt to compute the final estimate.

The estimator for unknown correlations is only slightly
more complex than the original estimator. It is only
required to additionally choose the scalar parameter κ.



For practical estimators, this is usually quite easy and can
be done by employing a proper optimization algorithm.
Even though the correlations are unknown, the obtained
estimator is guaranteed to be consistent.

4.3 Exploiting Independent Measurement Noise

In the following, the filter equations for the decentralized
approach based on the covariance bounds are derived. For
this purpose, we follow the recipe given in the previous
Section 4.2.

The first three steps of the recipe have already been done in
the beginning of Section 4. The missing information in the
filter step are the cross-covariance matrices of the predicted

state C
(p,i,j)
k and C

(p,j,i)
k in Section 4. Hence, according to

Step (4), Cp
k is replaced by its covariance bound according

to Theorem 4.1, i.e.,

Cp
k ≤


C

(p,i,i)
k

0.5− κk
0

0
C
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k

0.5 + κk

 ,

In analogy to Section 4, applying the Kalman Filter
equations yields the estimates
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At this point it is important to note that the independence
of the measurement noise was explicitly used in the

measurement update. Further simplifications then lead
to the updated estimates of the desired partial states
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Actually, these updated estimates depend on the scalar
parameter κk, which specifies a particular covariance bound.
A suitable κk can for instance be chosen in such a way

that the determinant or trace of C
(e,i,i)
k is as small as

possible, i.e., the most certain estimate. In order to avoid
a numerical calculation of κk, approximate solutions, as
derived in (Niehsen (2002); Fränken and Hüpper (2005))
can be employed.

Similar expressions are obtained for the dual update step

for x̂
(e,j)
k and C

(e,j,j)
k .

5. SIMULATIONS

5.1 1D Example

In order to exemplify the derived concept, we employ the
illustrative example from Hanebeck and Horn (2001a),
where a robot estimates its position between two parallel
walls by means of distance measurements. During the first
100 time steps, only measurements to the lower wall are
available. In the 100 successive time steps, both walls are
measured. The true one-dimensional positions are 10 m for
the robot and the walls are located at 0 m and 20 m. The
prior estimates are x̂Rk = 11 m for the robot and x̂1k = 1 m
and x̂2k = 19.9 m for the lower and upper wall, respectively.
The corresponding variances are CR

k = 4 m2, C1
k = 1 m2,

and CR
k = 0.01 m2. The measurements are affected by a

zero-mean Gaussian noise vk with variance 0.09 m2. The
positions are then related to the measurements through
the models

ŷ1
k

= [1 −1 0]

xRkx1k
x2k

+ vk and ŷ2
k

= [1 0 −1]

xRkx1k
x2k

+ vk .

The results of the full covariance formulation are shown
in Fig. 2, which represent the optimal solution to the
estimation problem. Neglecting the correlation results into
the inconsistent estimates shown in Fig. 3. In contrast,
Fig. (4) presents very conservative estimates. For these
estimates, the covariance intersection algorithm has been
applied. As shown in Fig. (5), the estimates can become
significantly more informative and smoother, when the
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Fig. 2. The state estimates of the positions are depicted in blue and their 3σ-bounds are drawn red. During the first
100 steps, only wall 1 is measured by the robot. All correlations are maintained, which yields the optimal state
estimates.
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Fig. 3. The state estimates of the positions are depicted in blue and their 3σ-bounds are drawn red. During the first
100 steps, only wall 1 is measured by the robot. Correlations are omitted and the estimates become inconsistent.
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Fig. 4. The state estimates of the positions are depicted in blue and their 3σ-bounds are drawn red. During the first 100
steps, only wall 1 is measured by the robot. Correlations are omitted, but bounded conservatively by covariance
intersection.
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Fig. 5. The state estimates of the positions are depicted in blue and their 3σ-bounds are drawn red. During the first 100
steps, only wall 1 is measured by the robot. Correlations are omitted, but bounded conservatively. The parameter
κk is chosen for each partial update seperately. This estimation algorithm yields results close to the full covariance
formulation.
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Fig. 6. Simulation results for Full SLAM: The prior esti-
mates are plotted in grey. The estimation result for
the walls are plotted in purple. The vehicle’s position
estimate is green.
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Fig. 7. Neglecting correlations. Especially the state of the
vehicle is dramatically underestimated.

proposed filter is applied. The results now come close
to the optimal estimates, which is due to the automatic
exploitation of the independent measurement noise.

5.2 2D Example: Relative Range Measurements

In this subsection, relative range measurements between
a robot and randomly selected landmarks are performed
in order to estimate the positions of the robot and of the
landmarks simultaneously. Since the Euclidean distance is
employed, which yields a nonlinear measurement equation,
we confine ourselves to an idealized version of linearization:
The measurement mapping is linearized around the true
values, which are typically unknown to the estimator. In
doing so, we avoid the introduction of additional effects that
would result from linearization around estimated values
and can therefore analyze the approaches more closely.
For the purpose of illustration, first, a simulation with a
non-moving stationary robot and only a few landmarks is
considered. Subsequently, a realistic scenario with a large
number of landmarks and a moving mobile robot is treated.

Stationary Robot The landmarks in this scenario repre-
sent the corners of walls, whose true positions are depicted
as black lines in Fig. 6-9. The northeastern black dot rep-
resents the true position of the robot. The prior knowledge
for each position estimate is shown as light gray circles.
For this simulation, 100 measurements are performed.
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Fig. 8. Standard covariance intersection.
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Fig. 9. Presented Approach, where the independent mea-
surement noise is exploited.

Fig. 6 presents the optimal estimation results, where all
correlations are maintained. In Fig. 7, the correlations are
omitted, so that inconsistent estimates are obtained and
especially the robot’s position is severely underestimated.
Covariance intersection guarantees consistent estimates,
but the updated estimates can barely be distinguished
from the prior estimates. The estimates exploiting the
independent measurement noise, depicted in Fig. 9, are
significantly better and approach the optimal results.

Mobile Robot In a second simulation, we consider a mobile
robot that moves along the black dashed trajectory in
Fig. 10. The motion model is linearized at each time instant
and an extended Kalman filter prediction is employed. The
mobile robot uses the same measurement model as in the
above example. The sensors have a maximum range of 10 m.
At each time instant, the distance to every landmark within
this range is measured and its position estimate is updated.
100 Monte Carle runs have been performed for each filter
algorithm the corresponding root mean squared errors
(rmse) are depicted in Fig. 11. The rmse has been calcaluted
for the entire state vector comprising the robot’s state as
well as each landmark position. The full covariance Kalman
filter provides the best performance, whereas ignoring cross-
correlations finally yields the worst results. The proposed
approach shows constantly better results that the general
CI approach.



−20 0 20

−20

0

20

x1 →

x
2
→

Fig. 10. Trajectory of the mobile robot and 200 uncertain
landmarks. An example of an estimated trajectory is
plotted in green.
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Fig. 11. Root mean squared errors of full covariance
Kalman filter (dashed, red), decentralized Kalman
filter (solid, red) with ignored cross-correlations, gen-
eral CI (dashed, blue), and the proposed approach
(dash-dotted, magenta).

6. CONCLUSIONS

This paper presents a new approach for designing subop-
timal filters for large-scale estimation problems based on
covariance matrix bounds. Instead of applying complicated
filtering concepts as in Hanebeck and Horn (2001a), Julier
and Uhlmann (2007), by using the new approach, a designer
just

(1) selects the desired system and measurement equation,
(2) writes down the associated filter equations by assum-

ing all required information to be available,
(3) identifies the missing information,
(4) and conservatively reconstructs this information by

means of covariance bounds.

Dependency structures are optimally exploited in order
to avoid overly conservative bounds, where known correla-
tions and unknown correlations are distinguished. This is
performed in an intuitive, uncomplicated, and systematic
way.

The focus of this paper is on fully decentralized filter
structures that split the state vector into certain sub-
states and only maintain the covariance matrices of these
substates. In addition, independence of the measurement
noise is assumed and exploited, which leads to a dramatic
increase in performance. Of course, the approach can be
used for treating more general filter structures and more
complicated dependence / independence structures.

It is important to note that no heuristics or special
insights into the system operation are required for deriving
appropriate filter equations. Only a single parameter

selecting a specific member from the family of tightest
covariance bounds needs to be optimized at every update
step.
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