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Abstract—In this paper, the estimation of conditional densities
between continuous random variables from noisy samples is con-
sidered. The conditional densities are modeled as heteroscedastic
Gaussian mixture densities allowing for closed-form solution of
Bayesian inference with full-densities. The main contributions of
this paper are an improved generalization quality of the estimates
by the introduction of a superficial regularizer, the consideration
of model uncertainty relative to local data densities by means
of adaptive covariances, and the proposition of an efficient
distance-based estimation algorithm. This algorithm corresponds
to an iterative nested optimization scheme, optimizing hyper-
parameters, component placement, and mixture weights. The
obtained solutions are sparse, smooth, and generalize well as
benchmark experiments, e.g., in nonlinear filtering show.
Keywords: Conditional density estimation, nonlinear fil-
tering, Gaussian mixture density, Regularization.

I. INTRODUCTION

Conditional densities lie at the heart of any Bayesian esti-
mation framework. The conditional densities’ quality directly
impacts the estimation performance of any probabilistic graph-
ical model [14] in terms of achievable accuracy and runtime.
If the true conditional density is not accessible, but samples
distributed according to the true conditional density are given,
the conditional density function may be estimated. In this
paper, the problem of estimating conditional densities relating
continuous random variables from samples is considered.
This problem is challenging, because estimating a continuous
function from a finite set of samples allows for an infinite
number of solutions rendering the problem ill-posed. Yet, the
obtained continuous conditional densities are essential, e.g.,
for nonlinear filtering.

There are two fundamentally different approaches towards
conditional density estimation (CDE): estimation of an as-
sumed generative model and its uncertainty, composing a
probabilistic model out of both, or direct estimation of the
probabilistic model. Exemplary methods, for estimating the
underlying generative and augmenting it error bars are, e.g,
Gaussian Processes (GP) [21] or probabilistic splines. The
advantages of this approach are the regularization of the gen-
erative model by means well-known linear/kernel smoothing
in the case of GP or the curvature minimization of splines,
which yield smooth generative model that generalize well. The
major drawback is that the generative model is used as an

argument of noise density capturing the model uncertainty. In
general, this prohibits exact solution to Bayesian inference.
For example, Gaussian Process Regression (GPR) [21] based
(nonlinear) filter as GP-EKF/UKF [11]–[13] or the analytic
moment based GP (AM-GPF) [1] are based on the density
approximations per recursive calculation step. Regarding the
direct estimation of probabilistic model, all density estimators
[23], e.g., expectation maximization (EM) for GMM [2],
[17] or kernel density estimation (KDE) [19], [24], may be
employed as a conditional density function may be trivially
obtained by f(y|x) =

f(y,x)

f(x) . As this operation is based
on the estimation of the (joint) densities’ parameters, the
”wrong” parameters are optimized. Only little research has
been performed, for estimating f(y|x) in the form of a Gaus-
sian mixture density (GMM) [5], [6], [17], directly [8]. The
most important contributions are an SVM-inspired CDE [26],
conditional density approximation for fast evaluations [8], and
regularized distance-based CDE [15], [16]. The advantages of
estimating a GMM conditional density are, that it allows for
exact Bayesian inference [3], [9] and the versatility of the
representation. One disadvantage of this approach is that the
GMM only approximates a valid conditional density as the
condition

´
Ω
f(y|x̂) dy = 1 can not be met by a finite mixture.

Furthermore, generalization of the the GMM is challenging.
In particular, the above direct CDE approaches are similar to
KDE as they optimize the mixture weights for components
centered at the data points only and generalization in parts of
the state space scarcely populated by data is not guaranteed.
Additionally, the GMM’s uncertainty is not captured.

The present paper is an extension of the approaches in [15],
[16]. The main contributions are:

• The introduction of a superficial regularization, penaliz-
ing the roughness of the probabilistic model interpreted
as a curvature of a surface, leading to an improved
generalization.

• Consideration of the model’s uncertainty by adaptive
kernel widths yielding large or small component co-
variances relative to the amount of data populating the
components’ surrounding state space.

• An efficient solution of the arising optimization problem
by a two-step scheme, i.e., iteratively optimizing the



hyper-parameters, the component placement and weights.
The CDE is phrased as a minimization of a target function
comprised of a term quantifying the distance of the localized
cumulative distributions and a regularizer. The superficial
regularizer avoids the fallacies of entropy-based regularization
and allows for an optimization of the components’ positions.
The regularizer is shown to be an upper bound on the curvature
of the generative model for additive normal noise. Thereby,
regularization of the probabilistic model corresponds to a
regularization of the generative model. The CDE is formalized
as a quadratic program for the GMM’s weight optimization
embedded in a nonlinear function minimization determining
hyper-parameters and positions. The improved performance of
the proposed approach is demonstrated using benchmark and
synthetic data. The resulting conditional densities are shown
to be sparse and of high quality.

The rest of this paper is structured as follows. Sec. II
gives the mathematical problem definition. Sec. III describes
an overview over the nested optimization scheme and the
outer and inner loop of optimization. The employed distance
measure and the novel regularization term are explained in
Sec. IV and Sec. V. The algorithm is summarized in Sec. VI
and validated by experiments in Sec. VIII.

II. PROBLEM STATEMENT

The true conditional density f̃ shall be estimated from a set
D of i.i.d. random samples (xi, yi). The empirical probability
density function [23] is a mixture of Dirac distributions δ(.)

fD(x, y) =
|D|∑
i=1

wi δ(x− xi) δ(y − yi) , (1)

with

xi := [x(1)
i . . . x

(M)
i ]T ∈ RM, y

i
∈ RN, wi = 1

|D| .

The obtained estimate f shall have the form of an axis-aligned
GMM, i.e., the components’ covariances are

Σi = diag

([(
σ

(1)
i

)2

. . .
(
σ

(M+N)
i

)2
]T
)

(2)

The target function may be simplified as follows

f(y|x) =
L∑
i=1

αi N
([

y
i
xi

]
;

[
µ
y,i

µ
x,i

]
,Σi

)
=

L∑
i=1

αi

M∏
k=1

N
(
x(k);µ(k)

x,i , σ
(k)
x,i

) N∏
l=1

N
(
y(l);µ(l)

y,i, σ
(l)
y,i

)
.

(3)

This mixture consists of L components with a distinct normal
density for each in- and output dimension. Restricting the
estimate type to this specific GMM not only facilitates the
latter calculations, but also allows for the implementation of
a constant time nonlinear filter.
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Figure 1. Conditional density function f(y|x) (contour) estimated from D
(red crosses) with twice the number of observations in the input interval [0, 1].

III. CONDITIONAL DENSITY ESTIMATION

Determining the conditional density estimate f from D is an
ill-posed problem. The estimation problem is therefore phrased
as an optimization problem involving a data fit term D and
a regularization term R reflecting the user chosen function
preference for smooth densities. The trade-off between D and
R is the target function used for determining all parameters
of (3) optimized:

θ = ( {αi}1≤i≤L ,
{
µ
i
,Σi(φ)

}
1≤i≤L︸ ︷︷ ︸

Components’
parameters

, φ, λ︸︷︷︸
Hyper-

parameters

) (4)

with weights αi ∈ [0, c], means µ
i
∈ RN , covariance matrices

Σi(φ) ∈ RN×N , and parameters φ thereof. The generic
optimization problem is simply

θ∗ = arg min
θ

D + λR . (5)

For the efficient solution of (5) a nested optimization scheme
is adapted:

1) Outer loop: Determine η :=
({µ}, φ, λ),

2) Inner loop: Determine α, given fixed η.
Combined into one optimization problem one arrives at

θ∗ = arg min
(λ,φ,{µ})

(
min
αη

D(D, αη, η) + λ|η R(αη, η)
)

(6)

s.t. Aαη ≤ b (7)

1αη = d (8)

0 ≤ αη,i ≤ cη (9)

The target function (6) corresponds to the trade-off between
data fit term D and regularization term R. The constraint
(7) enforces an approximately uniform mass distribution w.r.t.
the input dimension. The term (8) asserts that approximately
1T αη = I, i.e., the probability mass is approximately normal-
ized. Positivity of the conditional density is assured by (9).

In the rest of this section the inner and outer loop of the
optimization scheme will be described in more detailed.



A. Outer Loop

In the outer loop the hyper-parameters and components
means are optimized.

a) Determining {µ}: - In general all components’ po-
sitions may be optimized in one large optimization prob-
lem. Since determining all positions corresponds to solving
an |{µ}| · (M + N)-dimensional optimization problem this
becomes intractable already for small problems [25]. In order
to obtain a tractable solution, it is proposed, to reduce number
of components by setting {µ} = D∪{µ

v
} and only iteratively

optimizing each {µ
v
} in turn. The model selection problem,

i.e, the number of components and their starting values, should
be solved w.r.t. the model’s uncertainty. Roughly speaking,
place {µ

v
} where model uncertainty is low, e.g., where the

distance of the marginal density f(x) to a uniform density is
high. Because an exact optimization would be too costly for
just determining starting values, a greedy iterative approach
is adapted. In each step, an additional component is sampled
from the ”largest” components’ covariance until a user defined
upper bound on the number of components or the covariance
size falls below a given threshold. The y-locations may then be
obtained by standard regression procedures. Note, that |{µ}|
is only an upper bound on the number of components in the
mixture, as obsolete components are removed by the inner
loop QP solution. This is a great simplification of the inherent
model selection problem. Given the components {µ}, the {µ

v
}

are optimized by iteratively fixing all but one component,
then solving the inner loop for this position and repeating this
process until convergence or given tolerance is achieved.

b) Determining {φ}: In order to capture the model’s
uncertainty, it is proposed to parametrize each components’
covariance Σi by a value φi ∈ R relating the covariance size to
the local data density around each components’ mean, (x, y) ∈
RN×M by the distance to dN = (xN , yN ) ∈ D ⊂ RN ×RM ,
the nearest neighboring data point, according to

Σi = φi K + τ I , (10)

with the average sample variance of all k-nearest samples(
σ̂

(j)
i

)2

in each dimension, one defines for all components

K = diag

([(
σ̂

(1)
i

)2

. . .
(
σ̂

(M+N)
i

)2
]T
)
.

The second summand in (10) adds a floor value τ to avoid
singular Σi, as φi is calculated by

φi =
([

y
i
xi

]
− dN

)T

K
([

y
i
xi

]
− dN

)
, (11)

may be zero if two points coincide. The φi corresponds to
the Mahalanobis distance to the nearest neighbor w.r.t. to
the sample variance σ̂

(j)
i in each dimension for the i-the

component. The effect of this adaptive kernel width is depicted
in Fig. 1, where samples for the system y = x + sin(x) + ε
are given. In Fig. 1 the number of samples was doubled in the
interval [0, 1], reducing the component’s covariances. Note,

that in the case of an infinite amount of samples neglecting
the floor value in (10) will degrade the covariances to Dirac
distributions. In the case of no noise, the exact underlying
functional dependency would be recovered.

c) Determining λ: This parameter governs the trade-off
between the data fit term D and the regularization term R, i.e.,
for small values the data fit is emphasized and for higher values
smoother conditional densities are preferered. Estimating λ
from the samples may be done by a grid search and selecting
the value yielding the lowest function value for the inner
loop’s optimization or direct minimization of the inner loop’s
value by standard function minimization methods. We refer the
interested reader to the literature on calculating λ for support
vector machines [22] for further reading.

Summarizing, the outer loop of the estimation method
corresponds to a constrained nonlinear optimization problem,
which might be solved with a standard solver, and uses the
inner loop as a subfunction in its calculations. The joint
algorithm of the inner and outer loop is presented in Sec. VI.

B. Inner Loop

After determining η :=
({µ}, φ, λ) in the outer loop, it

remains to determine the GMM weights α w.r.t. to the given
fixed η. The target function consists of the data fit term D and
the regularization term R.
• D(D, αη, η) - measures the similarity between the

smooth estimate f and the unsmooth EPDF fD. Typical
choices include the data likelihood or a distance measure,
e.g., the squared integral distance between the cumulative
distributions of f and fD. In this paper, the modified
Cramér-von Mises distance measure is employed, as it
compares localized cumulative distributions [7], which
avoid the non-uniqueness and non-symmetry of the de-
fault definition of the multivariate cumulative distribution
functions, cf. Sec. IV for more details.

• R(αη, η) - the regularization term encodes our prefer-
ence for smooth density surfaces, as these generalize
better in scarcly populated parts of the state space.
Since component positions shall be optimized the default
regularization by an entropy-related penalty function [15],
[16], [26] is not applicable. In order to avoid trivial
minimization the pdf’s roughness is interpreted as the
integral squared curvature of the surface. A derivation of
the superficial regularization is given in Sec. V.

Note, that both components of the target function may be
written as a quadratic function of α, i.e.,

D(D, αη, η) = αT Dα + dTα , (12)

R(αη, η) = αT Rα . (13)

The target function assesses the quality of the estimate f .
Additionally, the following conditions have to met, in order
for f to be a valid conditional density for any fixed input
value x̂

f(y|x̂) ≥ 0 ,
ˆ ∞
−∞

f(y|x̂) dy = 1 . (14)



The positivity constraint is trivial to assure for a mixture
density by restricting each mixture weight αi ≥ 0. The
normalization constraint can only be met approximately for
a finite mixture. In order to safeguard this property, the
probability mass contained in the relevant ROI of the input
dimension is required to calculate to the ROI size, i.e.,

1Tα = d , (15)

with d = (xmax − xmin) as proposed in [15], [16]. Be-
cause this constraints only asserts the normalization over
the (potentially large) interval spanned by data, additional
constraints limiting the probability mass over smaller partitions
are introduced,

Aαη ≤ b . (16)

In (16), A assigns the samples to a partition according to their
location and b contains the probability mass assigned to the
partitions. These constraints are less strict as (15), because they
do not enforce the exact mass constraint on the partitions, in
order to allow for some variation. The optimization problem
consisting of the target function and the constraints, may be
summarized as the following quadratic program (QP),

α∗ = min
α

αT Qα + qTα (17)

s.t. Aα ≤ b ,
1T α = d ,

0 ≤ αi ≤ c .
Efficient solutions to above QP may be obtained by the
application of standard solvers. In the next sections, the
components of the target function and their formulation as
quadratic functions are presented.

IV. DISTANCE MEASURE

The first term of the target function (17) is the distance
between the conditional density estimate f and the epdf fD.
Because f is a conditional density, the marginal density fx(x)
is estimated or the empirical density fD(x) used to calculate

f ′(x, y) = f(y|x) · fx(x) . (18)

The resulting joint density f ′ is compared to the epdf, which
by definition is a joint density [15], [16], [26]. As a dis-
tance measure the squared integral distance of the cumulative
distributions over the entire state space shall be employed.
Due to the asymmetry and non-uniqueness of the standard
cumulative distributions, the localized cumulative distributions
(LCD) are compared using the modified Cramér-von Mises
distance measure (mCvMD) [7]. The LCD computes a cumu-
lative distribution based on local probability masses computed
as a result the multiplication of a density with all a given
kernel function at all state space positions and for all kernel
positions. The mCvMD compares two LCD on the basis of
their corresponding local probability masses. Similar to [15]
only axis-aligned kernels are used and the efficient calculation
of the distance in form of a quadratic function of the weights
was adopted.

V. SUPERFICIAL REGULARIZATION

The second component of the target function (17) is the
regularization term. The key idea of this regularizer is that the
roughness of density’s surface corresponds to the generaliza-
tion of the estimate. Roughly speaking, a highly oscillating
surface is less likely to correctly generalize well in parts
of the state with little data. Mathematically, the roughness
interpreted as the curvature of the surface, i.e., integral of the
curvature over entire surface. It is noteworthy, that this form
of regularization does not assume or require any underlying
functional dependency. As this curvature calculation is in
general not solvable in closed form an approximation of the
curvature by an upper bound is proposed. In the following the
regularization terms for the scalar case, i.e., the case of scalar
in- and output dimensions, and for the multivariate will be
stated and their properties discussed.

A. Scalar Case

In the scalar case, the curvature of a 2D surface embedded in
a 3D space is considered. The proposed regularizer is therefore
an approximation of the standard curvature definition from the
differential geometry. For the sake of brevity, the shorthand
D(m)f(p) = fm(p) for f(y|x) ≡ f(p) for point p = (y, x),
thus D(xy)f(p) = fxy(p) is used. The squared Gaussian
curvature for the conditional density f at point p is defined as

κ(p)2 =

(
fxx(p)fyy(p)− f2

xy(p)(
1 + f2

x(p) + f2
y (p)

)2
)2

(19)

≤ (fxx(p) fyy(p)− f2
xy(p)

)2
. (20)

As the denominator in (19) is always positive, (20) is an
upper bound to the point-wise squared Gaussian curvature.
The curvature over the entire state space A containing all input
and output values is obtained by calculating

K =
ˆ
P
κ(p)2 dp . (21)

Since K is used in the inner loop, we assume the component’s
means and covariances fixed and optimize over the weights
only. Therefore, the following regularizer is proposed.

Definition 1 (Scalar Superficial Regularizer). For a condi-
tional density f(y|x) with x, y ∈ R, given in the form of

f(y|x) =
L∑
i=1

αi k
(i)(x, y) = αTk . (22)

the superficial regularizer R is defined w.r.t. α as

R := c αT Kα , (23)

with constant c and

Kij =
L∑
k=1

ˆ
R2
k(i,k)
xx (p) k(i,k)

yy (p) k(k,j)
xx (p) k(k,j)

yy (p) dp . (24)



For the purposes of this paper, the constant c in the quadratic
form (23) is typically neglected. The most import properties
of the (23) are given in the following lemma.

Theorem 1. The superficial regularizer R, as introduced in
Def. 1, has the following properties:

1) R is an upper bound to K, as defined in (20).
2) For a generative model perturbed by zero-mean Gaus-

sian additive noise, the superficial regularizer of the
probabilistic model, is an upper bound on a linear
transform of the squared curvature of the generative
model.

The proofs are given in the appendix. In Fig. 2 an example
demonstrating the effects of Theorem 1 is given. In this exam-
ple a progression from a sinusoidal to a constant generative
model is given, cf. Fig. 2 (a), is used to demonstrate the change
in integral curvature of the generative function, i.e., a curve in
the plane, and the surface curvature. Fig. 2 (b) demonstrates
that both, the generative model’s function curvature and the
probabilistic model’s surface curvature, descrease when pro-
gressing towards the constant function, showing the impact of
the second property of Theorem 1. Therefore, minimizing this
regularization of the surface curvature implicitly regularizes
the generative model too. Note, that this property is of course
bound to the fact that the model is capable of modeling the
generative model well, i.e., has an appropriate number of
components in the GMM.

Other Properties:
• In contrast to the entropy-based regularization terms, e.g.,

the norm in the reproducing kernel hilbert space induced
by the components’ kernel [16], [26] or a Renyi entropy-
based regularizer for arbitrary GMM [15], doesn’t prefer
spread in the components’ mean distributions. For the
superficial regularizer no trivial minimization of the
regularization term by spreading means is possible.

• Non-bijective functions may be straightforwardly
learned, e.g., a motion model based on two overlapping
tracks. GPR would require a meta structure and the
solution of data association problem or an additional
estimation of bimodal noise. In contrast, Fig. 3 shows
the result of estimating such a mixture of tracks with
the proposed algorithm. Note, the increase in uncertainty
where locally only one track is present x ∈ [−1, 1]
compared to the rest of the state space.

B. Multivariate Case
For the multivariate case with multivariate input and output

dimensions, the following superficial regularizer is proposed.

Definition 2 (Multivariate Superficial Regularizer). For a
conditional density f(y|x) with x ∈ RN , y ∈ RM , given
in the form of

f(y|x) = αT (k1 ◦ . . . ◦ kN ◦ kN+1 ◦ . . . ◦ kN+M

)
, (25)

the superficial regularizer R is defined w.r.t. α as

R := c αT Kα , (26)
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Figure 3. Conditional density function f(y|x) representing a non-bijective
function, e.g., as arising from data collected for two overlapping tracks.

with constant c and Kij =
´

R2

∏N+M
d=1 k

(i,j)
dd (p) dp.

In Def. 2, the symbol ◦ denotes the Hadamard product.
The definition makes the strong assumption of separability
along the dimensions. The multivariate superficial regularizer
subsumes the scalar superfical regularizer as a special case, but
is not proven to be an upper bound on the surface curvature
for higher dimensions. Yet, the estimation of non-bijective
functions is trivially possible for the multivariate case.

VI. ALGORITHM

In this section, an overview over the entire optimization
algorithm including both loops is given. The pseudo-code of
the algorithm is given in Alg. 1.

Algorithm 1 Conditional Density Estimation

1: Input: D
2: Calculate θk=0 as in Sec. III-A . Initial Values

3: repeat . Outer Loop
4: Calculate {φ}k from D, {µ}k
5: (αk, νk)← OPTIMIZEWEIGHTS(D, ηk) . Inner Loop
6: ηk+1 ← UPDATE(ηk) . Update {µ}, K, λ
7: until ∆(νk−1, νk) > ε

8: function OPTIMIZEWEIGHTS(D, η) . Inner Loop
9: Calculate D(D, αη, η) and R(αη, η)

10: Calculate constraints from (14)
11: Compose and solve QP (17)
12: return Weights αk, Value of (17) νk
13: end function

14: Output: θ∗ ← θk

VII. ASSUMPTIONS AND COMPUTATIONAL COMPLEXITY

In summary, the limitations of the presented algorithm are:
• The number of components of the GMM needs to be high

enough to approximate a conditional density function
sufficiently well.
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Figure 2. Correlation of the curvature of the surface and the generative model. The progression from a constant to a sine function depending on the value
of γ (a) and numerically calculated curvature measures for varying progression parameters γ: Gaussian curvature K (blue), mean curvature H (black), the
superficial regularizer’s value R (multiplied by 10−15, green), and curvature of the generative model κ (red) are shown in (b).

• Similar to GPRs [25], the bottleneck of the constrained
nonlinear optimization is {µ}, because the optimization
problem scales with (N +M) · |{µ}|, e.g., for 20 scalar
components a 20-dimensional optimization approach has
to be solved.

• For training time, only vague statements about the com-
plexity of the algorithm are possible as these are imple-
mentation dependent. Solving a generic QP involves is
O(n3), with n the number of variables. Yet, the given
problem lends itself to local decomposition, e.g., by
chunking. During run-time only the cost for evaluation
or multiplication of a GMM is necessary.

VIII. EXPERIMENTS

In this section the proposed algorithm is compared with
indirect and direct methods for obtaining conditional densities
based on the estimate’s quality for synthetic noisy functional
dependency and the performance in nonlinear filtering, i.e., the
potential field of use for the proposed method.

A. Comparison of Conditional Density Function Estimates

For comparing the estimation quality of the proposed ap-
proach, a sinusoidal system with additive noise was used

y = 2
3 x2 sin(x) + w , w ∼ N (0, 0.2) . (27)

For training, 100 random samples were drawn according to
(27) in the x-interval of [−π, π] and additional 100 random
samples were generated for validation. The quality of condi-
tional density function estimates is assessed by comparing the
negative log-likelihood (NL) scores for the validation given
the estimates. Lower NL values indicate better performance.
The proposed approach is compared with GPR, SVR, several
variants of EM, as well as the entropy-regularized approach
[15] (CDE-ENT), resembling the proposed approach most.
The standard GPR implementation from [21] was used, the
SVR code is identical to [16] as is the CDE-ENT code to [15].
The EM implementation of Matlab was used and restricted
to estimate only covariances with zero off-diagonal entries.
EM1/2 estimate homoscedastic/heteroscedastic GMM with the
same number of components as CDE-ENT, where EM3/4 es-
timate homoscedastic/heteroscedastic GMM with AIC chosen

number of components. The proposed approach (CDE-SF)
according to Alg. 1 was used with no variable means and
λ = 0.5 fixed for D and R normalized to by their respective
values for uniform weights. The results of the comparison
are given in Tab. VIII-A. The results show the sparse, high
quality of the conditional densities produced by the proposed
approach.

B. Comparison for Nonlinear Filtering Problems

For comparing the CDE as substrate to nonlinear filtering,
the Kitagawa growth process [10], as presented in [1], com-
prised of the nonlinear system and measurement equations

xk+1 = 0.5 xk + 25 xk
1+x2

k
+ wk , (28)

yk+1 = 5 sin(2 xk+1) + vk+1 , ,

was used. Identical to [1], wk ∼ N (w, 0.2) and vk+1 ∼
N (vk+1, 0.01) were used and randomly distributed 100 points
in [−10, 10] were generated for training. The estimation qual-
ity is compared using a prior normal density with µ0 ∈
[−10, 10] and σ0 = 0.5. The successive states were estimated
for 200 independent x(i)

0 and y
(i)
1 . The estimation quality is

given for three quartiles of the NL for the true state given
the respective models and the Mahalanobis distance M(x)
between the true and the estimated state. The NL distribution
over the quantiles give an simple insight into the distribution
of the NL and M(x) shows the error relative to the state
estimate’s uncertainty. For both scores lower values indicate
better performance. The averaged results over ten runs trials
are given in Tab. II. The proposed CDE approach was used
to estimate the probabilistic models of a stamdard Gaussian
mixture filter (GMF+SF). For GMF+SF the identical setup was
used as in the prior experiment, whereas (GMF+SF+XV) was
trained with an additional five meta-optimized components.
Both GMF yield good negative log-likelihood results for the
growth process in comparison to the EKF, UKF, GP-UKF, and
GP-ADF. Additionally, a clear improvement in the perfor-
mance can be observed for GMF+SF+XV compared to
GMF+SF can be observed. The reason for this improvement
is that the system model of the growth process induces a strong
nonlinearity around the (0, 0). Due to random sampling only



Table I
NEG. LOG-LIKELIHOOD SCORES AND COMPONENTS NUMBERS FOR THE RESULTS OF EM1-4, GPR, SVR, CDE-ENT AND CDE-SF.

EM1 EM2 EM3 EM4 GPR SVR CDE-ENT CDE-SF

NL 3.87 3.97 3.58 3.62 0.23 0.45 0.15 ± 0.33
± σ ± 1.44 ± 1.60 ± 1.31 ± 1.89 ± 0.03 ± 0.27 ± 0.11 ± 0.22

# Comp. 66.7 66.7 11.3 9 N/A 96.2 66.7 67.6

Table II
NEGATIVE LOG-LIKELIHOOD AND MAHALANOBIS DISTANCE RESULTS FOR THE GROWTH PROCESS [10].

NL0.25 NL0.5 NL0.75 M(x)

EKF 1063.41 ± 378.67 29314.00 ± 1103.40 274910.52 ± 2068.77 2071897.02 ± 2962352.80
UKF 60.50 ± 4.12 628.52 ± 31.74 2407.02 ± 53.32 1030.01 ± 4529.04
GP-UKF 65.68 ± 4.99 420.06 ± 36.26 1769.34 ± 177.24 3918.10 ± 44902.12
GP-ADF 59.08 ± 3.03 261.02 ± 17.44 1083.44 ± 82.25 26.16 ± 48.55
GMF-SF 44.22 ± 15.79 254.73 ± 78.96 928.08 ± 315.01 149.17 ± 287.32
GMF-SF+XV 41.82 ± 14.70 224.07 ± 58.28 806.93 ± 240.7 98.37 ± 181.72

a few data points cover this nonlinearity. Yet, the additional
optimized means help fill this ”gap” and thereby improve the
performance of the GMF+SF. This can be seen in Fig. 4.
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Figure 4. Conditional density function estimated based on an exemplary
sample set (black crosses) of (28) and additional optimized components (red
crosses).

IX. CONCLUSION

In the present paper an estimation algorithm for conditional
densities represented as heteroscedastic Gaussian mixture den-
sities between continuous random variables based on noisy
samples is proposed. The algorithm is an iterative nested
optimization scheme, optimizing hyper-parameters and all
mixture components’ parameters. The main contributions are
an improved generalization quality of the estimates due to
the a novel superficial regularizer, the consideration of model
uncertainty by means of adaptive covariances, and an effi-
cient distance-based estimation algorithm. The new superficial
regularization term is an affine transformation of the integral
squared surface curvature of the conditional density and for
additive, zero-mean normal noise is shown to regularize of
generative model implicitly. The experiments shows solutions
are sparse, smooth, and generalize well especially w.r.t. non-
linear filtering applications.

As future work learning from large data sets possibly by
means of distributable/parallelizable computations [18], [20]
or approximations [4], [8] should be investigated. Additionally,
efficient incremental updating of conditional densities would
be interesting.

APPENDIX

Proof of Theorem 1: The proof is given per property:
Property 1: The square of the surface’s curvature of f is
simplified by exploiting (22), the linearity of the integral, and
the commutativity of the inner product, giving rise to

K =
ˆ

R2

[
fxx(p) fyy(p)− f2

xy(p)
]2

dp

=
ˆ

R2

[
αTkxx α

Tkyy − (αTkxy)2
]2

dp

=
ˆ

R2

[
αTkxx kyyα

T − (αTkxyk
T
xyα)

]2
dp

≤
ˆ

R2
[αT (kxx kT

yy

)︸ ︷︷ ︸
M

α ]2 dp .

Further simplification of (29) allows the upper bound by
ˆ

R2
[αT Mα ]2 dp =

ˆ
R2
αT MααT Mα dp

≤ cM
ˆ

R2
αT M2 α dp = cM αT Kα , (29)

giving the desired result with an appropriate constant cM and

Kij =
L∑
k=1

ˆ
R2
k(i,k)
xx (p) k(i,k)

yy (p)

· k(k,j)
xx (p) k(k,j)

yy (p) dp . (30)

Property 2: Considering x ∈ R, the squared curvature of
y = g(x), i.e., a curve in the xy−plane, is

κ2
g(x) =

(Dxxg(x))2[
1 + (Dxg(x))2

]3 ≤ (Dxxg(x))2
, (31)



and an upperbound on the integrated squared curvature of y =
g(x) is ˆ

X
κ2
g(x) dx ≤

ˆ
X

(Dxxg(x))2 dx , (32)

The curvature of g is related to the curvature of the surface f

κ(p)2 ≤ (fxx(p) fyy(p)− f2
xy(p)

)2
= ( [Dxxf(y|x)][Dxg(x)]2 − [Dxf(y|x)][Dxxg(x)]

− [Dxyf(y|x)]2 )2

= (−[Dxf(y|x)][Dyyf(y|x)] )2 (Dxxg(x))2 . (33)

For Gaussian additive noise, integrating (33) over x yieldsˆ
X

ˆ
Y
κ(p)2 dy dx =

ˆ
X
c · (Dxxg(x))2 dx , (34)

with c ∈ R+ and c independant of g. The result then follows
from K ≤ R.
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