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Abstract—Many modern fusion architectures are designed
to process and fuse data in networked systems. Alongside
the advantages, such as scalability and robustness, distributed
fusion techniques particularly have to tackle the problem of
dependencies between locally processed data. In linear estimation
problems, uncertain quantities with unknown cross-correlations
can be fused by means of the covariance intersection algorithm,
which avoids overconfident fusion results. However, for nonlinear
system dynamics and sensor models perturbed by arbitrary noise,
it is not only a problem to characterize and parameterize depen-
dencies between estimates, but also to find a proper notion of
consistency. This paper addresses these issues by transforming the
state estimates to a different state space, where the corresponding
densities are Gaussian and only linear dependencies between
estimates, i.e., correlations, can arise. These pseudo Gaussian
densities then allow the notion of covariance consistency to be
used in distributed nonlinear state estimation.
Keywords: Covariance intersection, covariance bounds,
distributed estimation, decentralized estimation, nonlinear
estimation, state transformation.

I. INTRODUCTION

Bayesian state estimation techniques provide the means to
derive a probabilistic description of an uncertain state from
noisy measurements and input signals. The rapid advances
in sensor and communication technology entail an increas-
ing demand for implementing these estimation algorithms
in distributed networked systems [1]–[3]. The general idea
is that data is collected and processed locally on different
sensor nodes, with the aim of monitoring large-scale phe-
nomena, distributing computational resources, and increasing
robustness to failures. In order to form a global estimate,
each node communicates its locally processed data to other
nodes, where the local estimates can then be fused. For
the purpose of scalability, the nodes are generally intended
to operate independently, but this does not imply that the
processed data are independent of each other. The reasons
for dependencies between the local data sets are manifold:
The nodes may share common prior information, local state
predictions may be affected by the same process noise, sensor
noises may be correlated, etc. All told, the central problem is
that local processing and communication may lead to “data
incest” [4], i.e., double counting of information. Apparently,
the best fusion results can only be achieved, if the common
information between two nodes is stored somewhere and
can be removed from the fused estimate, but this imposes
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Figure 1. The dependency structure between the two local bimodal estimates
f(x1) (red) and f(x2) (blue) is characterized by the joint density f(x1, x2).
The fusion result is the normalized green density that lies on the diagonal of
the joint density.

additional requirements on the network topology and may limit
its flexibility and scalability significantly.

In many existing fusion architectures, hierarchical topolo-
gies are employed, which allow for explicitly exploiting depen-
dencies between estimates [1]–[3], [5]. However, in general,
it is preferable that the nodes do not need to be aware of
the network topology. In such a fully distributed/decentralized
network, whose topology can be arbitrary and can change over
time [6], only suboptimal estimates can then be computed.
For linear estimation problems, the covariance intersection
(CI) algorithm [7]–[9] has been proposed, which yields fusion
results that do not underestimate the actual mean-squared-
error (MSE) matrix. While CI considers a convex combination
of the estimates in the information space, it can also be
formulated as a bound on the covariance matrix in the joint
state space [10], [11]. More precisely, both fusion techniques
provide a parametric family of fusion results. The corre-
sponding weighting parameter is commonly determined to
minimize the determinant or trace of the fused MSE matrix.
Other optimization criteria have been analyzed against the
background of information theory [12], [13], set theory [6],
[14], or approximate solutions [4]. When the estimates to
be fused share a common prior, also tighter bounds can be
found [15]. Eventually, CI has proven to be a powerful tool
in decentralized fusion architectures provided that only linear
system and sensor models are considered.



In nonlinear decentralized estimation problems, it is still
an open question what is to be considered as a conservative
fusion result, when dependencies are unknown. Fig. 1 shows
a possible dependency structure of two bimodal densities.
Whereas in linear estimation stochastic dependencies can
be entirely parameterized by their cross-correlations, depen-
dencies between estimates in nonlinear estimation can be
arbitrary. Even for local Gaussian estimates, the dependen-
cies are not necessarily linear, when the system and sensor
models are nonlinear. Beginning from information-theoretic
considerations in [12], CI has been generalized to exponential
mixture densities (EMD) [16]–[18]. Although EMDs provide
promising results, it remains questionable whether EMDs can
tackle the arbitrariness of possible dependencies. In this paper,
we will analyze this issue by transforming the state space
into a different space, where the models become linear and
only linear dependencies can arise. There, we can parameterize
dependencies, can apply the CI algorithm, and can employ the
same notion of consistency as in linear estimation problems.
We will study the relation to EMDs and will evaluate the
proposed concept in simulations.

II. PRELIMINARIES

In this paper, underlined variables x denote vectors and
lowercase boldface letters x are used for random quantities.
Matrices are written in uppercase boldface letters C. By
(x̂,C), we denote an estimate with mean x̂ and covariance
matrix C. The function N (·; x̂,C) is the Gaussian density

f(·) = c · exp
{
− 1

2

(
· −x̂

)T
(C)−1

(
· −x̂

)}
.

with mean x̂ and covariance matrix C. c is the normalization
factor. By

C̃ ≥ C or C̃−C ≥ 0 ,

we denote that C̃−C is a positive semidefinite matrix.

III. PROBLEM STATEMENT

In a sensor network, let A and B denote two fusion nodes
that communicate their estimates of an uncertain system state
xk at a given time instant k. To simplify matters, we omit
the time index in the following considerations. The sets ZA

and ZB are the information sets collected at each local node.
They consists of the measurement sequences obtained through
own sensor observations and through communication with
other nodes. The local state estimates are represented by the
conditional densities f(x | ZA) and f(x | ZB), which can be
fused according to

f(x | ZA ∪ ZB) =
f(ZA ∪ ZB |x) · f(x)

f(ZA ∪ ZB)

=
f(ZA |x) · f(ZB |x) · f(x)

f(ZA ∪ ZB)

=
f(ZA) · f(ZB)

f(ZA ∪ ZB)
· f(x | Z

A) · f(x | ZB)

f(x)
,

(1)

if ZA and ZB are conditionally independent [2], [5], i.e.,
f(ZA

k ∪ ZB |x) = f(ZA |x) · f(ZB |x). When no prior
information f(x) on x is available, the fusion formula reduces
to

f(x | ZA ∪ ZB) = c · f(x | ZA) · f(x | ZB) ,

where c is the normalization factor. The conditional densities
f(x | ZA) and f(x | ZB) can be considered as the marginals
of the joint density1

f(x1, x2 | ZA ∪ ZB) := f(x1 | ZA) · f(x2 | ZB) . (2)

The joint density is related to the fusion result (1) by

f(x | ZA ∪ ZB) = c · f(x | ZA) · f(x | ZB)

= c · f(x, x | ZA ∪ ZB) .
(3)

Thus, the fused density (1) is obtained from the joint density
conditioned on the event E = {[x1, x2] | 0 = x1 − x2} that
x1 and x2 are equal.

In general, the information sets of two sensor nodes are not
conditionally independent of each other. In analogy to (1), the
fused estimated probability density is then given2 by

f(x|ZA ∪ ZB) =
f(ZA ∪ ZB\ZA|x) · f(x)

f(ZA ∪ ZB)

=
f(ZA) · f(ZB\ZA)

f(ZA ∪ ZB)
· f(x|Z

A) · f(x|ZB\ZA)

f(x)

and, according to (2), the joint density is

f(x1, x2 | ZA ∪ ZB) := f(x1 | ZA) · f(x2 | ZB\ZA) . (4)

Again the fusion result lies on the diagonal

f(x | ZA ∪ ZB) = c · f(x | ZA) · f(x | ZB\ZA)

= c · f(x, x | ZA ∪ ZB)
(5)

of the joint density. An example is depicted in Fig. 1, where
the fusion of two bimodal and even equal densities f(x | ZA)
and f(x | ZB) unexpectedly yields a unimodal density. The
fusion result is plotted in Fig. 2. Hence, the local information

f(x | ZA ∪ ZB)
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Figure 2. The fusion of the blue and red density f(x|ZA) and f(x|ZB)
(red/blue dashed) yields the unexpected green density.

may differ severely from the global estimate. Especially in a
fully decentralized network, only the marginals f(x | ZA) and
f(x | ZB) are known, i.e., the dependency structure between

1The joint density can also directly be derived from (1), when no prior
densities f(x1), f(x2), and f(x1, x2) are given.

2Essentially, the conditional independence of ZA and ZB\ZA only holds
for static or deterministic systems. For dynamic stochastic systems, we can
draw the same conclusions by replacing ZB\ZA by an artificially introduced
set Z̃B that encompasses the conditionally independent information.



local estimates remains hidden and the joint density or respec-
tively the conditional density f(x|ZB\ZA) therefore cannot
be reconstructed uniquely. In other words, finding the joint
density for given marginals is an ill-posed inverse problem.
Even for local Gaussian estimates, the fusion result can be far
from being Gaussian anymore [19].

As stated in the introduction, the reasons for the lack of
independence are manifold. The good news is that the depen-
dencies are not as arbitrary as they might appear at first sight:
Our knowledge about the sensor, system, and fusion models
limits the arbitrariness and we know how to systematically
deal with unknown correlations in linear estimation problems.

IV. STATE OF THE ART

The problem of fusing two estimates has been investigated
intensely in linear contexts. For linear system dynamics and
sensor models, where all participating noise terms are assumed
to be Gaussian, only linear dependencies between estimates
can arise and need to be considered. The linearity of every pro-
cessing step implies that the joint density (4) is also Gaussian
and therfore can be parameterized by its mean vector x̂ and
covariance matrix C. At a given and fixed time instant k, let
f(x | ZA) = N (x; x̂A,CA) and f(x | ZB) = N (x; x̂B ,CB)
be the locally estimated densities. If the fusion nodes are aware
of the cross-covariance matrix CAB , the estimates can then be
fused according to the Bar-Shalom/Campo combination rule
[20]. Its result is to be regarded as the best linear unbiased
estimate (BLUE), when no prior information on x is available
and can be incorporated. In the situation when the cross-
covariance matrix is unknown, the covariance intersection
(CI) algorithm [7]–[9] enables us to compute a conservative
estimate with mean

x̂CI = CCI

(
ωC−1A x̂A + (1− ω)C−1B x̂B

)
(6)

and covariance matrix

CCI =
(
ωC−1A + (1− ω)C−1B

)−1
, (7)

where ω ∈ [0, 1] is a weighting factor. Here, an estimate (x̂,C)
is called conservative, if it preserves covariance consistency

C− C̃ ≥ 0 ,

where C̃ denotes the actual MSE matrix E[exe
T
x ] with ex =

x− x̂. The CI algorithm yields covariance consistent estimates
for every ω ∈ [0, 1] and every possible cross-covariance matrix
CAB provided that (x̂A,CA) and (x̂B ,CB) are consistent
estimates. The CI algorithm can alternatively be formulated in
the joint state space: The covariance bounds (CB) algorithm
[10], [11] computes an upper bound for the joint covariance
matrix, i.e.,[ 1

ω ·CA 0
0 1

(1−ω) ·CB

]
≥
[
CA CAB

CBA CB

]
(8)

with ω ∈ [0, 1]. The corresponding joint density is then given
by

N
([
x1
x2

]
;

[
x̂A
x̂B

]
,

[ 1
ω ·CA 0

0 1
(1−ω) ·CB

])

and, in compliance with (3), the fusion rule

f(x | ZA ∪ ZB) = c · N (x; x̂A,
1
ωCA) · N (x; x̂B ,

1
(1−ω)CB)

can be applied. This approach yields the same estimated
mean (6) and covariance matrix (7) as CI. Besides many other
optimization criteria, the weight ω is generally calculated to
minimize det(CCI), which also corresponds to the covariance
ellipsoid with minimum volume. Since CI can result into
highly conservative estimates, it has been developed further
in order to exploit additional knowledge on the correlation
structure. One way consists in decomposing the estimates into
dependent and independent parts. Then, CI only needs to be
applied to the dependent parts, which is called split covariance
intersection [9], [21]. Alternatively, symmetric or asymmetric
bounds on CAB in (8) can be employed [11], [22].

Like the Kalman filter, CI only relies on the assumption of
linearity and the first two moments of f(x | ZA) and f(x | ZB)
[18]. However, in many nonlinear estimation problems, linear
error statistics are no longer sufficient when for instance, the
multimodality of the estimated density is to be maintained.
Mahler [23] and Hurley [12] have independently proposed to
generalize CI to the exponential mixture density (EMD)

fω(x|ZA ∪ ZB) =
fω(x|ZA) · f (1−ω)(x|ZB)∫

RN fω(x|ZA) · f (1−ω)(x|ZB) dx
(9)

with ω ∈ [0, 1]. Julier [18] has shown that this fusion
formula counteracts the double counting of information and
discussed in [16], in which way EMDs are to be considered
as conservative and consistent estimates. Promising results
have been presented with regard to Gaussian mixtures [17],
exponentials of polynomials [24], and multi-object densities
[25]. Nevertheless, it still remains an open question what
is to be considered as a conservative estimate in nonlinear
estimation. For example, applying the EMD formula (9) to
fuse the blue and red density in Fig. 2 yields again the same
bimodal density, which hardly captures the mode of the green
true fusion result. In the following, we address this problem
by transforming the state to a space, where the models become
linear or almost linear and therefore, we can apply the notion
of covariance consistency. In the transformed state space,
dependencies cannot be arbitrary, but must be linear.

V. NONLINEAR DECENTRALIZED STATE ESTIMATION
BASED ON PSEUDO GAUSSIAN DENSITIES

The general idea behind this section is to regard the true
estimated density as a (pseudo) Gaussian density in a different
state space [26]. Against the background of set-theoretic state
estimation, this approach has been employed to represent com-
plicated sets as ellipsoids [27] and, in [28], this technique is
referred to as non-minimal state Kalman filtering. In particular,
this concept is strongly related to Carleman (bi-)linearizations
[29]–[31].

The underlying mechanism relies on a proper transformation
T : S → S∗ with S ⊆ RN , S∗ ⊆ RM , and

x∗ = T (x) = [T1(x), . . . , TM (x)]T , (10)



so that the state estimates become normally distributed in S∗,
i.e., N (x∗; x̂∗,C∗). The fundamental prerequisite is that the
fusion of two estimates and the measurement update turn into
linear operations. The former requirement is ensured, if the
dependencies between the estimated pseudo Gaussian densities
are solely linear. The latter condition is met, if a nonlinear
sensor model

ẑk = h(xk) + vk (11)

can be rewritten as a linear update equation

ẑ∗k = H∗ x∗k + v∗k (12)

in the transformed state space S∗, where vk is an additive
noise term, which becomes a normally distributed perturba-
tion v∗k.

For static systems, where observations are only perturbed by
additive Gaussian noise, a proper transformation T can easily
be determined. Let hi with i ∈ {1, . . . , L} denote the L dif-
ferent sensor models in a given network. Then, the estimation
process becomes linear by employing the transformed state

x∗ = T (x) := [h1(x), . . . , hL(x)]T , (13)

where a single node with sensor model hi(x) partially observes
x∗, i.e., the ith component of x∗. Hence, communication
can only cause linear dependencies between local estimates.
In general, the dimension of the transformed state space is
higher than the dimension of the original space and, of course,
the choice of T is not unique, since x∗ can, for instance,
be expanded by any linear combination of partial states x∗i
and x∗j . In a situation where combinations of the state x
remain unobserved, the transformed state space can be lower-
dimensional. For example, when a two-dimensional state is
observed by a single distance sensor, a transformation to a
one-dimensional state is sufficient.

When dealing with dynamic systems, we aspire to find a
mapping T that also transforms a nonlinear system model

xk+1 = a(xk, ûk,wk) (14)

to a linear state evolution

x∗k+1 = A∗ x∗k +B∗k (û
∗
k +w∗k) ,

where ûk and û∗k comprise possible input quantities in the orig-
inal and the transformed state space, respectively. The system
noise wk becomes a normally distributed disturbance term w∗k.
On the assumption that a mapping T exists that simultaneously
linearizes the system and sensor models, exclusively linear
dependencies between the local estimates can arise. Hence,
CI can be employed for suboptimal decentralized estimation
based upon pseudo Gaussian densities, which is considered
more closely in Subsection V-A. Unfortunately, such a trans-
formation T to a finite-dimensional space, where both the
system dynamics and the sensor models are linear, cannot
be constructed in general. Therefore, linear approximations of
systems through state transformations are discussed in Sub-
section V-B. All told, even if no optimal transformation to a
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Figure 3. Estimated pseudo Gaussian density in sensor node 1. CI has been
used to fuse estimates. The true density lies on the green manifold.

linear form of the system model is obtained, the measurement
update and fusion are now linear.

The original nonlinearities come into play whenever an
estimate in the original state space S has to be computed. Of
course, the reverse transformation may involve complicated
nonlinear estimation techniques, but the required calculations
can be performed independently from the state estimation
process, which solely relies on the pseudo Gaussian densities
and the transformed models. For a sensor network, this further
implies that every node can process the pseudo Gaussian
estimates locally and linearly. In the data sink, where in
general higher computational power is available, the true
density and the desired parameters can be computed from
the pseudo Gaussian estimates. The original density f(xk) is
related to the estimate (x̂∗k,C

∗
k) by

f(xk) = c · N (T (xk), x̂
∗,C∗)

= c̃ · exp
{

1
2

(
T (xk)− x̂

∗
k

)T
(C∗k)

−1(T (xk)− x̂∗k)} .
(15)

Note that this calculation can be regarded as a measurement
update with x̂∗k = T (x), where no prior is available.

A. Covariance Intersection for Pseudo Gaussian Densities

For the purpose of fusing two local estimates f(x|ZA) and
f(x|ZB), where N (T (x); x̂∗A,C

∗
A) and N (T (x); x̂∗B ,C

∗
B) are

the corresponding pseudo Gaussian densities, we can now
apply the CI equations (6) and (7). By virtue of the preceding
considerations, the dependencies are linear and CI provides a
covariance consistent suboptimal fusion result (x̂∗CI,C

∗
CI) in

the transformed state space. The following example gives an
impression of the presented concept.

Example: Simple Sensor Network
We consider a one-dimensional setup with three closely posi-
tioned sensor nodes at P 1 = −1, P 2 = −1.2, and P 3 = −0.5.
They measure the distances

ẑik = (x− P i)2 + vi , i ∈ {1, 2, 3} ,

where vi are zero-mean Gaussian noise terms with high vari-
ances 5, 9, and 7. The true state is located at 1. The prior



estimate at every node is x̂0 = −2 with variance C0 = 5. The
measurement equation can be transformed to the affine model

ẑik = H∗,i · x∗
k + (P i)2 + vi

with the linear mapping H∗,i = [−2P i, 1] and the transformed
state x∗

k = [x∗
1,x

∗
2]

T = [xk,x
2
k]

T. Fig. 3 shows the bivariate
Gaussian estimate (x̂∗,1

5 ,C∗,1
5 ) of sensor 1 after 5 measurement

steps, where the sensors have communicated their results at
every time step by means of the CI algorithm. The density of the
estimate in the original state space lies on the manifold, which
corresponds to the green density in Fig. 4. There, different fusion
results are compared. The blue density represents the optimal
Bayesian fusion result, where all dependencies are known. It
captures the true state well, in contrast to the red density, where
dependencies have been ignored. Evidently, the CI algorithm
still provides a good fusion result.

f
1
(x

)

x

−4 −3 −2 −1 0 1 2 3
0

1

2

Figure 4. The density that corresponds to the pseudo Gaussian density
in Fig. 3 is drawn in green. The blue density belongs to the pseudo
Gaussian estimate, where correlations are known and the Bar-Shalom/Campo
combination rule has been applied. It is the optimal Bayesian estimate. For
the red density, the naı̈ve fusion rule has been used. The dashed black lines
are the sensor positions and the solid black line shows the true state.

The example elucidates how CI applied in the transformed
space S∗ flattens the modes of the density in the original
state space S. Throughout this paper, the parameter ω for the
fusion formula (7) is chosen to minimize det(C∗CI). In terms
of the underlying densities, the CI algorithm in S∗ can be
expressed as

fω(x | ZA ∪ ZB)

= c · N (T (x); x̂∗A,
1
ωC
∗
A) · N (T (x); x̂∗B ,

1
(1−ω)C

∗
B)

= c · (N (T (x); x̂∗A,C
∗
A))

ω · (N (T (x); x̂∗B ,C
∗
B))

(1−ω)
,

which is the EMD update rule (9) directly applied to the
densities f(x | ZA) and f(x | ZB) to be fused. In this regard,
EMDs actually provide consistent estimates in the sense of
covariance consistency in S∗, which confirms the considera-
tions in [16]. Maybe, this also points to the direction to define
consistency in nonlinear estimation problems by means of
state transformations, which linearize the estimation process.
Another valuable feature of the space S∗ is that it enables
us to parameterize every possible dependency between two
estimates (x̂∗A,C

∗
A) and (x̂∗B ,C

∗
B) by the cross-covariance

matrix C∗AB . Possible dependencies are illustrated in the
following example, which shall conclude this section.

Example: Possible Fusion Results
As in the above example, we consider the transformation x∗

k =
[x∗

1,x
∗
2]

T = [xk,x
2
k]

T. In S∗, the local estimates are

(x̂∗
A,C

∗
A) =

([
4
4

]
, 3 ·

[
7 1
1 3

])
(16)

x
∗ 2

x∗
1
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Figure 5. Covariance ellipsoids of the estimates in S∗. The red and the
blue estimate are fused according to the Bar-Shalom/Campo rule for different
possible correlations (gray thin ellipsoids). The green ellipsoid corresponds
to the CI algorithm. The densities in Fig. 6 lie on the black parabola.
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Figure 6. Probability density functions in the original space S.

and

(x̂∗
B ,C

∗
B) =

([
−2
12

]
, 2 ·

[
10 −7
−7 8

])
, (17)

which are plotted in Fig. 5 as the red and the blue covariance
ellipsoid, respectively. 400 possible cross-covariance matrices
C∗

AB have been determined randomly. For these, the Bar-
Shalom/Campo rule has been applied to fuse (16) and (17).
In Fig. 5 and 6, the according results are drawn in gray. With
CI, the green ellipsoid has been computed, which correspond to
the green EMD in Fig. 6. As can be seen in Fig. 6, it preserves
probability mass at the modes of the gray densities.

B. Prediction of Pseudo Gaussian Densities

For static systems, we have shown at the beginning that a
proper transformation T is obtained from (13). Simultaneously
to the sensor models, many deterministic systems can also
be linearized through a state space transformation. As men-
tioned before, a simultaneous linearization of stochastic system
dynamics and stochastic sensor models is not possible in
general. Through T , linear system dynamics may even become
nonlinear, while the sensor models turn to linear mappings.
However, in many applications, a local prediction step for the
state estimate is required at each node in a sensor network.

In order to obtain an approximate prediction of the trans-
formed state x∗k, either the density (15) or the system (14)
can be considered. In the former case, [24] have shown how
to predict exponentials of polynomials, which imply that (11)
and (14) are polynomial mappings (or approximations). In the
latter case, feedback and Carleman linearizations [29]–[31] can
be applied. Carleman linearization techniques turn systems
into bilinear systems, where the product of two Gaussian
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Figure 7. Result of CI algorithm in the transformed state space S∗.

random vectors can easily be reapproximated by the first two
moments.

In the following section, we employ a naı̈ve sample-based
approximation of the system dynamics: Let {ξ∗

j
}j=1,...,W be

W samples of the current estimate (x̂∗k,C
∗
k), which can be

computed randomly or deterministically. According to (10),
the inverse T−1i (ξ∗j,i) is calculated for every component ξ∗j,i.
If Ti is only locally invertible on the subsets S∗1 ,S∗2 , . . .,
then T−1i is applied on each of these subsets. E.g., for
Ti(x) = x2 = x∗i , we obtain the samples T−1i (ξ∗

i
) = ±

√
ξ∗
i
.3

The obtained samples are then propagated through the system
model (14), mapped back to S∗, and approximated by their
first two moments, in order to compute (x̂∗k+1,C

∗
k+1).

Of course, an approximation of the system model entails
the risk that nonlinear dependencies between estimates are
neglected that lead to a situation as depicted in Fig. 1.
However, in order to counteract this issue and at the cost of
higher computational demands, one can choose transforma-
tions to higher-order systems, where nonlinearities are almost
negligible.

VI. SIMULATIONS

In this section, we will exemplify and discuss the presented
approach by means of two simulations. The first simulation
considers a one-dimensional system with a complicated mea-
surement model. In the second example, an object is tracked
by means of three nodes equipped with distance sensors.

A. One-dimensional System

At first, we confine ourselves to a static state x with value 3.
It is observed by five nodes with sensor model

ẑ =

[
10 sin(x+ 1)

x2

]
+ v ,

3This doubles the number of samples.

where v is a zero-mean noise term with covariance matrix

Cv = 3 ·
[
3 1
1 4

]
. The state is transformed according to

T (x) = [10 · sin(x+ 1), x2]T .

Fig. 7 shows the estimated pseudo Gaussian density after four
time steps, where the nodes have communicated their results
at every time step by utilizing the CI algorithm. The densities
in Fig. 8 correspond to the manifold. In particular, the pseudo
Gaussian density in Fig. 7 yields the green EMD in Fig. 8.
The blue density characterizes the optimal result, where all
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Figure 8. Densities in original space. The black line marks the true state.
Green line: CI fusion result. Blue line: Optimal fusion result. Red line: EKF.

dependencies have been taken into account. The red density
is obtained by linearizing the measurement mapping directly,
i.e., applying the extended Kalman filter (EKF). Although
the correlations have been incorporated, the result is strongly
biased. Fig. 9 shows the root-mean-squared-error (RMSE)
over 200 Monte Carlo runs, where 10 fusion steps have
been performed in each run. The blue line corresponds to
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Figure 9. Static system: RMSE.

the optimal Bayesian fusion. For the solid green line, the CI
algorithm has been applied to the pseudo Gaussian densities.
The dashed green line also bases on pseudo Gaussian densities
with the difference that dependencies have been ignored.
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Figure 10. Dynamic system: RMSE.

In a second simulation, a dynamic evolution of x by means
of the model

xk+1 = 1.1 · xk +wk
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Figure 11. Probability density contours at different time instants calculated at sensor node P 1. The CI algorithm is applied in S∗ in order to fuse the local
estimates at each step. The red dot marks the true position of the target.

is considered, where wk has zero-mean and variance 2. The
prediction is sample-based as explained in Section V-B. Fig. 10
again illustrates the RMSE.

B. Localization in a Sensor Network

As a multi-dimensional example, we consider the tracking
of a moving target by means of three distance sensors, which
are located at P 1 = [1, 8]T, P 2 = [0, 5]T, and P 3 = [4, 6]T.
The sensor models are

ẑik = (xk − P i
x)

2 + (yk − P i
y)

2 + vk

= H∗ x∗k + (P i
x)

2 + (P i
y)

2 + vk

with the transformed measurement mapping

H∗ = [−2P i
x, 1,−2P i

y, 1]

and the transformed state x∗k = [xk,x
2
k,yk,y

2
k]

T. The zero-
mean measurement noise vk has variance 16. The target moves
linearly with constant velocity, i.e.,[

xk+1

yk+1

]
=

[
xk

yk

]
+

([
−1
−0.5

]
+wk

)
,

where the input noise wk has the covariance matrix
diag([0.2, 0.2]). In this simulation, we have calculated the
first two moments of x∗k+1 analytically. For example, since
the model is linear, the second component of x∗k+1 is of the
form

x∗k+1,2 = x2
k+1 =

(
a · xk + b · (ûk +wk)

)2
,

where ûk and wk denote a control input and input noise,
respectively. For this quadratic mapping, the moments can
directly be computed. In Fig. 11, the densities in the original
state space are depicted over eight time steps. More precisely,

they belong to the local estimate in sensor node 1, where the
nodes have communicated their estimates at every time step
by means of the CI fusion algorithm.

VII. CONCLUSIONS AND OUTLOOK

Dealing with unknown dependencies in nonlinear estimation
problems is particularly challenging, since possible depen-
dency structures cannot easily be parameterized or classified.
This is in contrast to linear estimation fusion, where solely
correlations between estimates need to be considered. In
this paper, we have addressed this problem by employing a
state space transformation that turns every operation on the
state estimates to a linear mapping, i.e., fusion, measurement
update, and prediction. For the linearization of the former two
operations, such a state space transformation can in general
be found. Especially for stochastic system dynamics, the
prediction step has to be approximated in the transformed state
space. In this case, state space transformations are desirable
that alleviate linearization errors, so that only weak nonlinear
dependencies between estimates can arise. In this regard,
it appears to be very promising to further investigate the
direction of [30] and other linearization techniques based on
state transformations.

We generally believe that for suboptimal nonlinear esti-
mation, additional knowledge on the possible dependency
structures is inevitable. Otherwise, very arbitrary fusion results
have to be considered, for which a “conservative“ bound
has to be determined, and it is actually an open question
what conservativeness means for non-Gaussian probability
densities. Fortunately, the possible dependencies between local
estimate are determined through the underlying system, sensor,
and fusion models.



By means of the state space transformation, we have
achieved that, again, dependencies can uniquely be pa-
rameterized by correlations. If they are known, the Bar-
Shalom/Campo rule can be deployed for fusion. If they are un-
known, the CI algorithm provides suboptimal fused estimates.
Moreover, we can employ the notion of covariance consistency
in the transformed space. In this respect, we have shown that
CI directly correspond to the EMD fusion model in the original
state state. Possibly, this can be regarded as an indication
that EMDs are related to linear dependency structures in a
different state space. Also, we think that these transformations
reveal a direction to define consistency in nonlinear estimation,
which should be a topic in prospective research. However,
consistency finally depends on the perspective of the user, i.e.,
the parameters of interest.
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