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Zusammenfassung

Mit dem Large Hadron Collider (LHC) ist es zum ersten Mal möglich, die Teilchenphysik

im TeV Bereich zu erforschen. Ein essentieller Parameter ist hierbei die Luminosität. Um

die Luminosität - und damit die Wahrscheinlichkeit am LHC neue Physik jenseits des

Standardmodells der Teilchenphysik zu entdecken - weiter zu erhöhen, ist es vorgesehen

den LHC selbst und die LHC Injektoren - die Beschleunigerkette, die den Strahl für den

LHC vorbereitet - in 2020 teilweise zu erneuern und weiter auszubauen.

Einer der LHC Injektoren, der zweite in der Kette, ist der Proton Synchrotron (PS)

Booster. Eine der Hauptlimitationen des PS Booster sind Raumladungseffekte - die

Wirkung des elektromagnetischen Feldes des Strahls auf sich selbst, welche im Allgemeinen

mit steigender Strahlenergie abnehmen. Um im Fall des PS-Booster die Strahlparameter

weiter zu verbessern, ist daher eine Erhöhung der Strahlenergie von 1.4 GeV auf 2 GeV

geplant. Anstatt jedoch den mittlerweile schon recht alten (Baujahr 1972) PS Booster

teilweise zu erneuern und auszubauen, wurde vorgeschlagen einen komplett neuen Beschle-

uniger, ein Rapid Cycling Synchrotron (RCS), zu bauen, welches dann in Zukunft den PS

Booster ersetzen würde. In dieser Arbeit werden mehrere Optionen für die Strahlführung

im RCS - die sogenannte Magnetstruktur und Optik - untersucht und verschiedene Mag-

netstrukturen und Optiken in Hinblick auf Raumladungseffekte verglichen. Die Studien

ergaben, dass ein dem PS Booster ähnliche Magnetstruktur und Optik einer dem RCS

ähnlichen in Hinblick auf die Unterdrückung von Raumladungseffekten überlegen ist.

Des Weiteren wurde vorgeschlagen das LHC Physikprogramm durch tiefinelastische Lepton-

Nukleon Kollisionen, dem Large Hadron Electron Collider (LHeC), zu ergänzen. In diesem

Fall würde der LHC Protonstrahl mit einem Elektron- bzw. Positronstrahl kollidieren,

welcher in einer separaten neuen Maschine beschleunigt werden würde. Als Elektronbeschle-

uniger werden zwei Optionen in Betracht gezogen: ein neuer“Energy Recovery” Linac - die

Linac-Ring Option - oder die Installation eines Elektronenringes im schon existierenden

LHC Tunnel - die Ring-Ring Option. Eine der Hauptherausforderungen der Ring-Ring

Option ist die Integration des Elektronringes in den existierenden LHC Tunnel. Im Rah-

men dieser Arbeit wurde ein Elektronringlayout, -magnetstruktur und -optik entwickelt,

welche mit den Hauptintegrationsbedingungen kompatibel ist und die die von seiten der

Teilchenphysikexperimente festgesetzten Designparameter erreicht. Ausserdem wurden

verschiedene strahldynamische Aspekte des Elektronenbeschleunigers untersucht, darunter

Korrekturen der chromatischen Aberration, Kopplungsschemata unter Berücksichtigung

der Kollision des Elektronenstrahls mit dem LHC Protonstrahl und der Einfluss von Um-

fangsfehlern auf die Elektronenstrahldynamik, und Lösungen für den LHeC erarbeitet.
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Abstract

With the Large Hadron Collider (LHC) the exploration of particle physics at center of

mass energies at the TeV scale has begun. To extend the discovery potential of the LHC,

a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the

chain of accelerators preparing the beam for the LHC.

One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster.

Its performance is currently limited by the space-charge effect, which is the effect of the

electromagnetic field of the particle beam on itself. This effect becomes weaker with

higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum

beam energy is foreseen. As the PS Booster is with its 40 years already an old machine,

the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the

PS Booster has been proposed. In this thesis different options for the beam guidance

in the RCS - referred to as lattice and optics - are studied, followed by a more general

comparison of different lattices and optics and their performance under consideration of

the space-charge effect.

To further complement the LHC physics program, also the possibility of deep inelastic

lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron

Electron Collider (LHeC). In this case the proton beam of the LHC collides with the

electron beam, which is accelerated in a separate newly built machine. Two options are

considered as electron accelerator: a new energy recovery linac - the Linac-Ring option -

and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option.

One of the main challenges of the Ring-Ring option is the integration of the electron

ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator

is developed in this thesis, which meets the requirements with regard to integration and

reaches the beam parameters demanded by the particle physics experiments.
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Introduction

In 2008 the Large Hadron Collider (LHC) built at the European Organization for Nuclear

Research (CERN) in Geneva and its experiments started operation with the main aim

of finding or excluding the existence of a Higg’s particle. Only four years later, on the

4th July 2012, the two main experiments ATLAS and CMS announced the discovery of

a Higg’s like Boson with a mass of around 125 GeV which was then first published in [1]

and [2].

Even though the existence of a Higg’s like particle has been demonstrated, its nature is

still unknown and the studies of its properties are therefore one of the main objectives

of the following operational years of the LHC, in addition to the search for new physics

beside the standard model. As the cross section for the production of the Higg’s particle,
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Figure 1: Higg’s cross sections. Plot is taken from [3].



2 Contents

illustrated in Fig. 1, as well as the cross section for the production of non-standard model

particles are in general very small at energies reachable with the LHC, an as high as

possible luminosity (rate of collisions) is desired in order to obtain enough statistics in a

still reasonable time frame. For this reason an increase in luminosity is foreseen around

2020 with the aim of producing a total luminosity of 3000 fb−1 in 10-12 years in comparison

to 200− 300 fb−1 expected with the present LHC in 10-12 years of operation. In order to

achieve this goal not only the LHC needs to be upgraded - referred to as High Luminosity

LHC upgrade (HL-LHC upgrade) [4] - but also the LHC injectors - summarized in the

LHC Injectors Upgrade (LIU) [5] - which are providing the beam for the LHC and also for

various other experiments at CERN. A schematic view of the CERN accelerator complex

is shown in Fig. 2.

Figure 2: CERN accelerator complex. The protons for the LHC are obtained by generating

them in a proton source. The protons are then injected from the source into the

linear accelerator (LINAC2), then the Proton Synchrotron (PS) Booster, followed by

the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS), before finally

reaching the Large Hadron Collider (LHC), where after a consolidation program in

2013/2014 they will be accelerated to their final energy of nominal 7 TeV. Plot is taken

from [6].

One of the main limitations of the LHC injectors is currently the maximum achievable

beam brightness due to space-charge effects. The space-charge effect is in general weaker

for higher beam energies. The injector upgrade therefore foresees to replace the first

accelerator in the injector chain - LINAC2 - by a new linac - LINAC4 - which then ac-

celerates H−-ions1 to an energy of 160 MeV instead of previously 50 MeV. This increases

1Many bunches from LINAC4 will be injected into the PS Booster and form one PS Booster bunch per

ring. In this injection process the H−-ions pass a stripping foil converting them to protons. With this
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the injection energy, and thus mitigates space-charge effects in the following machine,

the PS Booster. To further mitigate space-charge effects in the LHC injector chain, the

protons will be accelerated in the PS Booster to 2 GeV, instead of 1.4 GeV, and then

transferred to the next accelerator, the PS. The increase of the injection and extraction

energy and the change from a proton injection to H− injection involves a major upgrade

of the existing PS Booster [7]. The PS Booster is, with its 40 years, already quite an

old machine and it was therefore considered to build a new machine instead of upgrading

the old one. As an alternative, a Rapid Cycling Synchrotron (RCS) was proposed. The

following study of both options though revealed that considering cost, performance and

reliability, the upgrade of the current PS Booster still represented the better option (see

[8] and [9] for further details). In the SPS, the beam energy is already high enough that

other effects become more relevant than space-charge. The performance limitations, ex-

pressed as reachable emittance and bunch intensity at transfer to the LHC, of all three

synchrotrons after the injector upgrade are illustrated in Fig. 3 and reveal the challenge

of providing the high brightness beams requested by the HL-LHC.

Courtesy to B. Goddard Courtesy to B. Goddard

Figure 3: Emittance versus bunch intensity at SPS extraction for 25 ns bunches (left) and 50 ns

bunches (right). The performance limitations due to space-charge effects are indicated

in blue and those performance limitations which are due to other collective effects as

well as hardware limitations in red, where the individual curves represent the limits

from the different injectors. Plots are taken from [5].

To further extend and complement the LHC physics program, a lepton-nucleon collider,

the Large Hadron Electron Collider (LHeC), has been proposed with the main motivation

to explore the world of lepton-nucleon scattering at the TeV scale. The diversity of physics

at the TeV scale which could be covered by a hadron-hadron, a future lepton-lepton and

in addition a lepton-hadron collider is illustrated schematically in Fig. 4.

In the case of the LHeC the 7 TeV proton or heavy ion beam is provided by the already

existing LHC. As electron accelerator with a beam energy of 60 GeV two options have

been studied: a new electron synchrotron installed on top of the LHC in the existing tun-

nel (the ”Ring-Ring” option) and a new energy recovery linac (the ”Linac-Ring” option).

method it is possible to inject into the same phase space area several times and thus increase the maximum

number of particles to be injected into the PS Booster.
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Figure 4: Physics at the TeV scale. The LHeC would extend and complement the physics program

covered by a hardron collider, the LHC, and a future lepton collider like the ILC or

CLIC. Plot is taken from [10].

Both options provide the possibility to operate in parallel with standard LHC proton-

proton, proton-ion or ion-ion operation. The luminosity and beam energy are in both

cases mainly constrained by the assumed wall-plug power limit of 100 MW, leading to

a maximum luminosity of more than 1033 cm−2s−1. The Ring-Ring option provides this

maximum luminosity in the case of electron-proton and positron-proton collisions whereas

the Linac-Ring option realistically has a significantly reduced luminosity in the case of

positron-proton collisions. On the other hand the Linac-Ring option may have a high

beam polarization in contrast to the Ring-Ring option where the polarization of the elec-

tron beam is very difficult due to the high beam energy. Further details on the physics

program and both accelerator options are documented in the Conceptional Design Re-

port (CDR) [10]. Following the publication of the CDR it has been decided in a recent

workshop to pursue the Linac-Ring option further [11], keeping the Ring-Ring option as

backup.
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Within this thesis the lattice and optics design of the LHeC Ring-Ring option with ex-

ception of the interaction region, and the lattice and optics design of the RCS, considered

as alternative to the LIU PS Booster energy upgrade in view of the HL-LHC, have been

studied. The thesis is divided according to the two different accelerators in two parts,

where the LHeC Ring-Ring option studies are presented in chapter 2 and the RCS studies

in chapter 3. Both chapters are preceded by a short introduction to accelerator physics

(chapter 1) addressing topics relevant for the studies presented in this thesis.

The LHeC Ring-Ring option, chapter 2, addresses the following topics:

Section 2.1 discusses and reviews the design parameters chosen for the CDR [10] and

gives possible options to further increase the performance of the LHeC.

Section 2.2 presents the general layout and geometry of the electron ring and in particular

the layout of the bypasses around the LHC proton physics experiments.

Section 2.3 shows the linear optics of the electron ring, explicitly the arc cell, insertion

and bypass optics.

Section 2.3 addresses different aspects of beam dynamics considered to be particularly

relevant for the LHeC: the correction of chromatic aberrations and off-momentum

beta-beating (Sec. 2.4.2), linear coupling and the matching of the electron beam

size to the proton beam size at the interaction point (Sec. 2.4.3) and the effect of

circumference errors on the damping partition (Sec. 2.4.4).

All studies of the LHeC Ring-Ring option performed in the framework of this thesis are

then summarized in Sec. 2.5.

The chapter about the RCS studies, chapter 3, is divided in two parts:

Sec. 3.1 and Sec. 3.2 give a short overview of the PS Booster upgrade and the proposal

of a RCS and summarize the studies performed in view of the technical report of a

RCS [9].

Sec. 3.3 to 3.6 focus on more general studies of space-charge dominated lattices motivated

by the design study of the RCS.

Sec. 3.3 to 3.5 present the preparatory work for the space-charge simulations, start-

ing with a summary of the general beam and lattice parameters assumed for the

simulations (Sec. 3.3) and a description of the space-charge simulation methods and

settings used in this thesis (Sec. 3.4), i.e. the lattice description in PTC (Sec. 3.4.1)

and a convergence study (Sec. 3.4.2).

Sec. 3.6 summarizes the space-charge simulation results for different lattice types.

In particular the impact of variations of the beam size, the lattice symmetry and

periodicity and the dispersion suppressor scheme on the emittance blow-up have

been studied.

The RCS studies are then concluded by Sec. 3.7, which tries to answer the initial question,

based on the results obtained in this thesis, whether or not a better performance is to be

expected of the RCS or PS Booster.
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1. Concepts of Accelerator Physics

In this chapter a short introduction to the basics of accelerator physics and topics relevant

for this thesis is given. For further details it is referred to e.g. [12] and [13].

1.1 Layout and Components of Accelerators
In general, magnetic fields are used for the guidance and focusing of high energy charged

particle beams1. The beam guidance is provided by dipole magnets, where the radius of

curvature ρ for a particle of charge e and momentum p in a dipole of magnetic field B is

given by
1

ρ
=

∣∣∣∣epB
∣∣∣∣ . (1.1)

The parameter

Bρ =
p

e
(1.2)

is also referred to as beam rigidity and often used for the normalization of magnetic fields

in beam dynamics.

For the focusing of the beam quadrupole magnets are used. The transverse field compo-

nents of a quadrupole increase linearly with the distance from the center and vanish in the

center of the magnet

Bx(y) = gy, By(x) = gx . (1.3)

This linear dependence and the same sign of the magnetic field in both planes leads to

a focusing effect in one plane and a defocusing effect in the other plane. To focus the

beam in both transverse planes, horizontally and vertically focusing elements have to be

alternated. One of the most basic structures often used in the arcs of circular accelerators is

the FODO cell shown in Fig. 1.1, where F stands for focusing quadrupole, D for defocusing

quadrupole and O for drift space. More information about the optical properties of this

cell type can be found in Appendix A.

1For low energy particle beams electrostatic elements are also used. As it is much easier to generate high

magnetic fields than electric fields, electric beam guidance elements are not feasible anymore for higher

energies.
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D

Defocusing
Quadrupole

Focusing
Quadrupole

Drift Space

O

One FODO Cell

O FF F

Quadrupole
Focusing

(Dipole)
Drift Space

(Dipole)

Figure 1.1: FODO cell: Focusing structure often used in circular accelerator arcs.

1.2 Frenet-Serret Coordinate System
In a circular accelerator the path taken by a particle of central design momentum p0

through the arrangement of dipoles is referred to as reference orbit. It has proven to

be beneficial to use a coordinate system with the reference orbit as reference called the

Frenet-Serret coordinate system which is illustrated in Fig. 1.2.

Reference Orbit

s

x

v

r0

r

y

Figure 1.2: The Frenet-Serret coordinate system used for circular accelerators. r0(s) is the ref-

erence orbit. x̂, ŷ and ŝ form the basis of the coordinate system. Any transverse

position of the beam particles can then be expressed by r = r0 + xx̂ + yŷ, where x

and y are the betatron coordinates.

As the transverse coordinates x and y are usually small compared to the bending radius

ρ, one can expand the magnetic field along the reference orbit

Bz(x, y) =
Bz0

Bρ
+

1

Bρ

((
∂Bz

∂x

)∣∣∣∣
x=0

x+

(
∂Bz

∂y

)∣∣∣∣
y=0

y

)
+ · · · , z = x, y . (1.4)

In optics the magnetic fields are usually normalized in respect to the beam rigidity Bρ

defined in Eqn. 1.2. The Taylor expansion of Eqn. 1.4 can then be expressed as

1
BρBx(x, y) = ky + sxy + · · ·
1
BρBy(x, y) = 1

ρx
+ kx + 1

2m(x2 − y2) + · · ·
= dipole + quadrupole + sextupole + · · ·

(1.5)
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where only horizontal bending magnets have been included. As mentioned before, dipoles

are used for the bending of the beam, quadrupoles for the focusing and sextupole mag-

nets for the chromaticity correction which is discussed in further detail in Sec. 1.4.3 and

Appendix C.

1.3 Linear Transverse Motion

In this section the transverse motion including the effect of dipoles and quadrupoles is

discussed.

1.3.1 Equation of motion

Under the assumption of the existence of a closed-orbit and periodic magnet strengths

k(s) = k(s+L) with L being the length of one period, the transverse particle motion can

be described by the Hill’s equation

z′′ +Kz(s)z = 0, z = x, y (1.6)

with
Kx(s) = −k(s) + 1

ρ2
,

Ky(s) = k(s) ,
(1.7)

where k(s) is the normalized quadrupole strength and ρ the bending radius of the dipoles.

As most accelerators include mainly horizontal dipoles, the effect of the vertical dipoles

has been neglected. The linear independent periodic solutions of the Hill’s equation are

given according to the Floquet theorem as

z(s) = aw(s)ei(ψ(s)+ψ0), z∗(s) = aw(s)e−i(ψ(s)+ψ0) (1.8)

with a constant and w and ψ the amplitude and phase function, respectively. The index

z, indicating either the horizontal or vertical plane, has been and will be omitted in the

following if the distinction is obvious.

1.3.2 Matrix formalism, Courant-Snyder invariant, emittance and phase

space

Like the solution of any linear differential equation the solution of Hill’s equation can be

expressed in matrix form

z(s) = M(s|s0)z(s0), z(s) :=
(
z(s), z′(s)

)T
, (1.9)

where M(s|s0) is the transfer matrix form s0 to s. Explicit expressions for the transfer

matrices of different elements can be found in e.g. [12]. The transfer matrix of a section

reaching from s0 to s and consisting of different subsections is given by the product of the

transfer matrices of the subsections

M(s|s0) = M(s|sn−1) . . .M(s1|s0) . (1.10)



10 1. Concepts of Accelerator Physics

Thus, the transfer matrix of a section or the complete accelerator can be obtained by

concatenating the transfer matrices of the individual elements.

Moreover, an accelerator is usually constructed of different periodic sections. E.g. the

PS Booster consists of 16 equivalent sections. Let L be the length of one such section,

then one can define

M(s) = M(s+ L|s) . (1.11)

It can be shown that det(M) = 1 and under this condition M can be parametrized as

M =

(
cosφ+ α sinφ β sinφ

−γ sinφ cosφ− α sinφ

)
, (1.12)

where α, β and γ = (1 + α2)/β are the Courant-Snyder parameters or Twiss parameters

and φ the phase advance2. The amplitude function w(s) of the solution of Hill’s equation

(Eqn. 1.8) is related to this parametrization of M in the following way

w2 = β, α = −ww′ = −β
′

2
. (1.13)

Thus, the amplitude is proportional to the square of the Courant-Snyder parameter β,

referred to as beta-function and the parameter α is proportional to the slope of the beta-

function. Furthermore, one defines the phase-advance φ as

φ :=

L∫
0

ds

β(s)
. (1.14)

With this definition the phase function ψ of the solution of Hill’s equation is equal to the

phase advance φ in the sense that φ = ψ(s = L)− ψ(s = 0). The phase advance over the

complete accelerator with a circumference C divided by 2π is referred to as tune Q

Qz :=
1

2π

s+C∫
s

ds

βz(s)
(1.15)

which is in other words just the number of betatron oscillations per turn.

Using the relation between the amplitude and phase of the solution of Hill’s equation and

the Courant-Snyder parameterization, the cosine like solution of Hill’s equation is given

by

z(s) = a
√
βz(s) cos (φz + φ0) ,

z′(s) = −a 1√
βz(s)

(sin (φz + φ0) + αz cos (φz + φ0)) ,
(1.16)

and defines an ellipse in the (z, z′)-phase-space illustrated in Fig. 1.3. The area enclosed by

this ellipse is equal to πa2 and a constant of the motion in the absence of non-conservative

forces like e.g. synchrotron radiation. The ellipse equation can be written as

γz2 + 2αzz′ + βz′2 =: C(z, z′) = 2J = const . (1.17)

The constant C(z, z′) is also referred to as the Courant-Snyder invariant. The Courant-

Snyder invariant is equal to twice the action J , where J is the action variable of the

2The convention for the sign of φ is that β is positive for |trace(M)| ≤ 2 and Im(sinφ) > 0 if

|trace(M)| > 2.
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Figure 1.3: Phase-space ellipse.

Hamiltonian leading to the Hill’s equation. Correctly, the term action should be used

for the amplitude of a single particle. For an ensemble of particles one defines the rms-

emittance of the ensemble

εrms,z =
√
σ2
zσ

2
z′ − σ2

zz′ , (1.18)

where σi are the beam moments. The first moments σz and σz′ are the beam size and

beam divergence given by

σz =
√
βzεz,rms, σz′ =

√
γzεz,rms . (1.19)

However, the term“emittance” is often loosely used for the single particle emittance defined

as twice the action ε := 2J . The betatron oscillation of a particle with single particle

emittance ε can then be expressed by

z =
√
βzεz cos (φz), z′(s) = −√γzεz cos (φ̃z) , (1.20)

where φ̃z = φz − arctan (α−1
z ). The phase φ0 present in Eqn. 1.16 has been set to zero.

An important beam characteristic is also the brightness of the beam defined as [14]

B0 =
F

4π2εx,rmsεy,rms
, (1.21)

where F is the particle flux or longitudinal particle density and εi,rms the transverse emit-

tances.

1.3.3 Linear coupling

Linear coupling can be generated by either skew quadrupoles, which are quadrupoles

rotated by 45◦ (see Fig. 1.4), or solenoids, which are part of most high energy physics

detectors installed at the low-beta insertions. In addition, a deviation of the closed-orbit

in magnets with higher order magnetic fields gives rise to skew components and thus

coupling. In general, coupling is an unwanted effect as the behavior of the beam is more

difficult to understand and the machine operation becomes more complicated. The LHeC
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presents a special case in this respect, as linear coupling is desired in order to match the

flat electron beam to the round proton beam at the interaction point (IP) and thus avoid

harmful beam-beam effects.

The magnetic field of a skew quadrupole is given by

Bx(x) = −1
2gx ,

By(y) = 1
2gy

(1.22)

with g =
(
∂By
∂y −

∂Bx
∂x

)∣∣∣
x=y=0

. The field and the effect of a skew quadrupole compared to

a “normal” quadrupole on the beam is shown schematically in Fig. 1.4. The particles in

the center of the beam are moving away from the center without experiencing any kick.

The particles at the left and right exterior of the beam get kicked down or upward and

particles at intermediate positions receive a kick in the horizontal and vertical direction

resulting in a coupling of the transverse planes.

F

B

B

F

F

F

N

N

S

S

y

x

F

B

B

F

F

F

y

x

Figure 1.4: Cross section of a “normal” quadrupole (left) and a skew quadrupole (right) with

magnetic field lines and forces.

In order to describe the optics of a lattice with skew elements or solenoids, the Twiss

parameters and emittances introduced in Sec. 1.3.2 have to be generalized. In analogy to

Eqn. 1.8 and following the approach taken in [15] the two independent solutions of the

equation of motion can be expressed by:

zI(s) =
√
εIvI(s)e

i(ψI(s)+ψ0I), zII(s) =
√
εIIvIIe

−i(ψII(s)+ψ0II) . (1.23)

The parameters εI and εII replace the horizontal and vertical emittance in the uncoupled

case and are the new constants of the motion. The vectors vI,II are the eigenvectors of

the one-turn transfer matrix taken at the position s in the lattice and are equivalent to the

amplitude function w(s) in Eqn. 1.8. The trajectory z(s) of a particle with single particle

emittance εI and εII is then given by in Frenet-Serret coordinates:

z =


√
βxIεI cosφxI +

√
βxIIεII cosφxII

√
γxIεI cos φ̃xI +

√
γxIIεII cos φ̃xII√

βyIεI cosφyI +
√
βyIIεII cosφyII

√
γyIεI cos φ̃yI +

√
γyIIεII cos φ̃yII

 , (1.24)
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where αxI,II , βxI,II , γxI,II and αyI,II , βyI,II , γyI,II are the projections of the Twiss

parameters of the two modes onto the horizontal and vertical plane. The phases φiz and

φ̃iz are equivalent to the horizontal and vertical tunes in the uncoupled case with

φxI(s+ C)− φxI(s) = φyI(s+ C)− φyI(s) = QI ,

φxII(s+ C)− φxII(s) = φyII(s+ C)− φyII(s) = QII ,
(1.25)

where QI,II are the tunes of the two modes.

1.4 Off-Momentum Motion

Until now only the motion of particles with nominal beam momentum p0 has been studied.

In this section the effect of the different deflection of particles with a momentum deviation

δ = ∆p/p = (p− p0)/p0 in a magnetic field is summarized.

1.4.1 Dispersion function

Including terms until first order in δ the transverse motion of a particle with momen-

tum deviation δ is given by an inhomogenous differential equation whose solution can

be expressed as a linear superposition of the particular solution and the solution of the

(homogeneous) Hill’s equation:

x = xβ(s) +D(s)δ , (1.26)

where xβ(s) and D(s) satisfy the differential equations

x′′β + (Kx(s) + ∆Kx)xβ = 0 , (1.27)

D′′ + (Kx(s) + ∆Kx)D =
1

ρ
+O(δ) (1.28)

with

Kx(s) = −kx(s) +
1

ρ2
, ∆Kx =

(
− 2

ρ2
+ kx(s)

)
δ +O(δ2) . (1.29)

To first order the dispersion function D(s) satisfies the inhomogenous equation

D′′ +Kx(s)D =
1

ρ
, (1.30)

and as Kx(s) and ρ(s) are periodic functions of s, the dispersion function must satisfy the

closed-orbit condition:

D(s+ C) = D(s) . (1.31)

Thus, a momentum deviation results in first order in a displacement of the closed-orbit and

the parameter xβ(s) then describes the betatron motion along the new closed-orbit D(s)δ.
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1.4.2 Momentum compaction factor and transition energy

A particle with a momentum deviation δ travels on a different closed-orbit than the ref-

erence particle given by D(s)δ in linear approximation. The deviation of the total path

length of an off-momentum particle from that of the on-momentum one is then

∆C =

∮
D(s)δ

ρ
ds , (1.32)

and is usually expressed by the momentum compaction factor αc defined by:

αc :=
1

C

∮
D(s)

ρ
ds , (1.33)

where C is the ring circumference.

The difference in path length between particles of different momenta in turn results in a

difference in revolution time T = C/v with v being the particle velocity

∆T

T0
=

∆C

C
− ∆v

v
=

(
αc −

1

γ2

)
δ =

(
1

γ2
T

− 1

γ2

)
= ηδ . (1.34)

The parameter γT :=
√

1/αc is called the transition-γ with γTmc
2 being the transition

energy and the parameter η is the phase-slip factor defined by η :=
(
αc − 1

γ2

)
.

1.4.3 Chromatic aberrations

The effective focusing strength seen by a particle depends on its momentum rigidity, where

a higher energy particle with a momentum deviation δ = (p−p0)/p0 > 0 from the reference

momentum p0 experiences a smaller deflection than a lower energy particle with δ < 0.

This dependence of the effective focusing strength on the particle momentum is called

chromatic aberration.

1.4.3.1 Linear chromaticity

Neglecting higher orders and dispersive effects the gradient error ∆kx/y of a quadrupole

or quadrupolar component of normalized strength kz seen by an off-momentum particle is

given by Eqn. 1.29

∆kz = −kzδ, z = x, y . (1.35)

This results in a tune-shift according to Eqn. 1.80

∆Qz = −
(

1

4π

∮
βzkzds

)
δ, z = x, y . (1.36)

The (linear) chromaticity is now defined as the derivative of the betatron tune versus the

momentum deviation

ξz :=
d(∆Qz)

dδ
. (1.37)

The chromaticity arising only from quadrupoles is called the natural chromaticity with

ξz,nat = − 1

4π

∮
βzkzds . (1.38)
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1.4.3.2 Linear chromaticity correction with sextupoles

As a particle beam has usually a certain momentum spread, a non-vanishing chromaticity

leads to a tune-spread in the beam. If the tune-spread becomes too large, the beam crosses

dangerous resonance lines leading to an instability or even total loss of the beam. In the

case of a FODO lattice the natural chromaticity is approximately equal to minus the tune

of the machine (Eqn. A.7) and can thus become quite large for big machines like LEP,

LHC and LHeC with tunes in the range of 100 or even larger. Also for machines with

a large momentum spread like the RCS presented in this thesis, even a relatively small

chromaticity can lead to a large tune-spread. Furthermore, a negative chromaticity can

lead to the head-tail instability and eventual beam loss [16].

A correction of the linear chromaticity can be achieved with sextupole magnets. The

equation of motion including quadrupole and sextupole magnets reads

x′′ + k(1− δ)x+ 1
2m(x2 − y2) = 0 ,

y′′ − k(1− δ)y −mxy = 0 ,
(1.39)

where k and m are the normalized quadrupole and sextupole strength. Substituting the

transverse displacement x and y by the position of an off-momentum particle with mo-

mentum deviation δ under the assumption of zero vertical dispersion

x = xβ +Dxδ, y = yβ , (1.40)

and keeping only terms linear in δ, xβ and yβ and ignoring higher order derivatives of the

dispersion, one obtains:

x′′β + kxβ = (k −mDx)xβδ ,

y′′β − kyβ = −(k −mDx)yβδ .
(1.41)

The perturbation terms are now linear in xβ and yβ and can be seen as a quadrupole error

∆k = (k −mDx)δ leading to the following expression for the chromaticity

ξx = − 1
4π

∮
βx(k −mDx)ds ,

ξy = 1
4π

∮
βy(k −mDx)ds .

(1.42)

Hence, sextupole magnets located at positions with nonzero dispersion can be used to cor-

rect the chromaticity. Further details concerning the placement and number of sextupole

families are given in Appendix C.

1.5 Longitudinal Motion

The longitudinal motion is dominated by the effect of energy gain and loss of the beam

particles, where the energy gain is obtained in the RF cavities while the energy loss can

be caused by collective effects like e.g. synchrotron radiation or decelerating RF cavities.

In this chapter only the most common case, which applies for the studies performed in

this thesis, of an accelerating RF cavity and energy loss due to synchrotron radiation is

described.
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1.5.1 Longitudinal equation of motion and phase stability

In the following treatment the simplification of only one RF cavity in the ring is made,

which stands representatively for a sequence of RF cavities installed at one or several

locations in the ring. For the beam to be accelerated in the RF cavity, a reference particle

with ∆E = 0 must experience the same voltage at each passage of the RF cavity either

to obtain the wanted acceleration or to compensate for the energy loss experienced during

one turn. Consequently, the RF frequency fRF must be a multiple of the revolution

frequency frev

fRF = hfrev , (1.43)

where the parameter h is called the harmonic number of the RF system. In general the

RF voltage V is approximately sinusoidal

V (φ) = V̂0 sinφ , (1.44)

where V̂0 is the peak voltage and φ the RF phase. Particles with energies differing from the

beam energy thus see a different RF voltage due to their different revolution frequencies

(Eqn. 1.34) and, consequently, arrive later or earlier at the RF cavity. The longitudinal

motion can then only be stable, if particles with a smaller energy will experience a larger

energy gain and vice versa. This is illustrated in Fig. 1.5 and expressed by the simple

condition

η cosφs < 0 and sinφs > 0 . (1.45)

The parameter φs is the synchronous phase at which the reference particle with ∆E = 0

arrives and η the phase slip factor defined in Eqn. 1.34. For storage rings with non-

Acceleration

Deceleration

Tail

Head

Note:

η > 0η < 0

η < 0η > 0

π/2−π/2 φs π − φs

φ

E = E0

E > E0

V̂0

−V̂0

φ =

τ

Trev

2πh

V = V̂0 sinφ

V (φ)

E < E0

Figure 1.5: RF phase stability.

negligible synchrotron radiation losses, like the LHeC electron ring, the synchronous phase

φs is such that the RF cavity exactly restores the energy loss per turn U0 of the reference

particle

U0 = V̂0 sinφs . (1.46)
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In the case of negligible synchrotron radiation losses and acceleration, which is the case

for the CERN RCS, the synchronous phase φs depends on the maximum RF voltage, the

ramping time and the bunch length. All three parameters are connected by the maximum

energy-phase acceptance which is referred to as RF-bucket illustrated in Fig. 1.6.

Below transition

φs

φ

V

φ

φs

π − φs

∆E

Above transition

φs

φ

V

φs

φ

π − φs

∆E

Figure 1.6: RF-voltage and bucket in the case of acceleration with a synchronous phase φs. The

bucket with φs = 0 is shown in dot-dashed red. For φs 6= 0 the energy and phase

acceptance is reduced. For small phase and energy deviations the RF-voltage is

approximately linear and the synchrotron motion can be described by an ellipse in the

∆E-φ-space, where the motion is clockwise below transition (left) and anticlockwise

above transition (right).

The synchronous phase φs usually lies in the almost linear part of the sinusoidal RF-

voltage. With this approximation and for small deviations ψ := φ − φs the synchrotron

motion is described by the equation of motion of a damped harmonic oscillator

ψ̈ + 2αsψ̇ + ω2
sψ = 0 (1.47)

with an oscillation frequency ωs referred to as synchrotron frequency and a damping con-

stant αs. The parameter αs is the damping decrement accounting for the damping effect

of the synchrotron radiation and is given by:

αs = − 1

2T0

dU

dE

∣∣∣∣
E0

, (1.48)

where T0 is the revolution time, U the energy loss per turn and E0 the energy of the

reference particle. For a sinusoidal RF voltage the synchrotron frequency is given by

ω2
s = −ω2

rev

hηeV̂0 cosφs
2πβ2E0

, (1.49)

where ωrev is the revolution frequency, β the relativistic beta and E0 the energy of the

reference particle.

1.5.2 Synchrotron radiation and radiation damping

Accelerated charged particles emit synchrotron radiation, where the energy loss rate de-

pends quadratically on the accelerating force and the angle between the particles velocity
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and force. The loss rate is larger by a factor of γ2, if the particle’s velocity is perpendicular

to the force, so that in typical circular accelerators the longitudinal forces can be neglected

and the force is given by ecB, where c is the speed of light and B is the local magnetic

field strength. The energy loss due to synchrotron radiation for a particle with charge e

and energy E0 is then given by using the notation introduced by Sands [17]

Pγ =
cCγ
2π

E4
0

ρ2
. (1.50)

Here the magnetic field strength is expressed in terms of the bending radius 1
ρ = e

pB and

Cγ is a constant defined by

Cγ =
4π

3

re
(mc2)3

= 8.85× 10−5 mGeV−3 , (1.51)

where re the classical electron radius. Integrating Eqn. 1.50 once around the ring yields

the energy loss per turn of a particle of energy E0 on the ideal orbit:

U0 =

∮
Pγ =

Cγ
2π
E4

0I2 , (1.52)

where I2 defines the so-called second synchrotron radiation integral3

I2 =

∮
1

ρ(s)2
ds . (1.53)

The total power loss due to synchrotron radiation is then simply the product of the beam

intensity with energy loss per turn

PBeam =
U0NbIb

e
(1.54)

with Nb the number of bunches and Ib the bunch current.

1.5.2.1 Radiation damping and Robinson criterion

According to Eqn. 1.52 the rate of energy loss due to synchrotron radiation increases

with the particle energy. As a consequence, a particle with a higher than ideal energy

will lose more energy than the ideal particle and a particle with lower energy will lose

less, resulting in a reduction of the energy difference between three such particles. The

resulting reduction in energy spread is referred to as longitudinal radiation damping.

In the transverse plane the emission of a photon leads to a loss of longitudinal as well as

transverse momentum. In the cavities only the longitudinal momentum loss is replaced,

yielding a net loss of transverse momentum or transverse damping.

Although the damping mechanisms are different for the transverse and longitudinal plane,

the total amount of damping is limited and determined by the total synchrotron radiation

loss. This correlation of damping decrements in all degrees of freedom was first derived

by Robinson [19] and is known as the ”Robinson criterion”. Furthermore betatron and

synchrotron oscillation amplitudes are damped exponentially:

Ai = Ai,0e
−αit, i = x, y, s and αi =

cCγ
4πC

E3
0I2Ji . (1.55)

3The synchrotron radiation integrals are a class of integrals describing the effect of synchrotron radiation

in a synchrotron. A derivation of the most common synchrotron radiation integrals can be found in [18].
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The parameters αi are the damping decrements - the reciprocal of the damping time τi -

where αs has been already introduced in Eqn. 1.48, and Ji are the damping partition

numbers given by:

Jx = 1− I4x

I2
, (1.56)

Jy = 1− I4y

I2
, (1.57)

Js = 2 +
I4x + I4y

I2
. (1.58)

For a planar ring the fourth synchrotron radiation integral I4 can be expressed by

I4i =

∮
Di

ρ3
(1 + 2ρ2k)ds, i = x, y , (1.59)

where k is the normalized quadrupole strength, ρ the bending radius and D the dispersion.

In this notation Robinson’s criterion reads∑
i

Ji = 4 . (1.60)

The equilibrium energy spread and emittance of a synchrotron radiation dominated storage

ring is reached if the damping effect is equal to the quantum excitation rate. In the

longitudinal plane the statistical emission of photons leads to an energy spread. The

equilibrium energy spread can be expressed with the third synchrotron radiation integral I3(σE
E

)2
= Cqγ

2 I3

JsI2
(1.61)

with Cq = 55
32
√

3
~c

m0c2
for electrons and

I3 =

∮ (
1

|ρ3
x|

+
1∣∣ρ3
y

∣∣
)
ds . (1.62)

In the transverse plane the emission of a photon with energy ε does not change its actual

position and direction. However, the position u with respect to the reference orbit, which

is a combination of its betatron oscillation amplitude and a chromatic distribution due to

a finite energy deviation and dispersion D, is changed. This perturbation will modify the

phase ellipse γu2 + 2αuu′ + βu′2 = a2 the particle moves on. The average variation of the

phase ellipse or oscillation amplitude a due to the emission of photons with energy ε is

usually expressed by the curly H-function H (s)

〈δa2〉 =
ε2

E2
0

H (s) (1.63)

with

H (s) = γD2 + 2αDD′ + βD′2 . (1.64)

Equilibrium is again reached when the increase in oscillation amplitude due to quantum

excitation and the damping of the same are of equal strength yielding the following ex-

pression for the emittance:

εi = Cq
γ2

Ji

I5i

I2
, i = x, y , (1.65)
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where I5 is the fifth synchrotron radiation integral defined by:

I5i =

∮
Hi

ρ3
ds . (1.66)

In most storage rings the vertical dispersion is zero for the ideal lattice, which would imply

εy = 0. In reality, the vertical dispersion does not vanish due to field and alignment errors

of the magnets and thus εy is determined by the magnitude and influence of these errors.

1.5.2.2 Variation of damping partition

Robinson’s criterion states that the sum of the damping partition numbers is a constant.

However the distribution between them can be changed by displacing the particle orbit

transversely, which is done in practice by changing the RF frequency fRF of the storage

ring. In case of an off-momentum orbit the quadrupoles of the ring now also act as dipoles

resulting in a non-vanishing term 2Diρ
2k of I4 and a change of the damping partition.

The change in I4 is given by the eighth synchrotron radiation integral

∆I4i = 2I8iδ (1.67)

with δ = ∆p
p0

= − 1
αc

∆fRF
fRF

and

I8i =

∮
k2D2

i ds . (1.68)

1.5.2.3 Synchrotron radiation including coupling

As the vertical dispersion in storage rings is usually zero or very small, the main effect of

coupling is the generation of vertical emittance due to:

• coupling between the vertical and longitudinal plane in regions where radiation is

emitted, i.e. vertical dispersion in dipoles

• coupling between the vertical and horizontal plane in regions where radiation is

emitted, i.e. betatron coupling in dipoles

It is important to note that coupling does not necessarily lead to an increase of the vertical

emittance.

As derived in Appendix D, the emittances εi in the coupled and ε0i in the uncoupled case,

are related by:

εx =
ε0xJx
Jx + κ

, εy =
ε0xJxκ

Jx + κ
, with κ =

εy
εx
. (1.69)

These equations are only valid under the assumption of a vanishing vertical emittance in

the uncoupled case (ε0y = 0), no vertical dispersion in both cases (Dy = Dy0 = 0) and no

change of the horizontal damping partition (Jx = J0x).

Explicit expressions for the synchrotron radiation integrals can be found in [20]. In Ap-

pendix E a short summary of the method by Chao [21] to calculate the damping decrements

and the equilibrium emittances is given.
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1.6 Perturbations
The first step in every design of an accelerator is the study of the beam dynamics under

ideal conditions described by the linear Hill’s equation (Eqn. 1.6) and the beam dynamics

including small momentum deviations expressed by the dispersion function, which as well

satisfies a linear differential equation (Eqn. 1.30). The next step is then in most cases

the correction of chromatic aberrations with non-linear sextupole fields. The sextupoles

usually present the first non-linear element to be incorporated in the design, octupoles

are in some cases like e.g. the LHC still included and very rarely decapoles. All three

non-linear magnet types serve the correction of the deviation of the magnetic field from

the desired one. This deviation can for example be caused by misalignment or rotation

of the magnets, unwanted but unavoidable higher order multipole fields of the magnets,

insertions like e.g. detectors in colliders or wigglers in lightsources or collective effects

like beam-beam and space-charge. In addition, an offset of the beam with respect to the

magnet center in higher order multipoles leads to a so called feed-down effect meaning

that a quadrupole leads to a dipole component, a sextupole to a quadrupolar and dipolar

component etc. In general, a displacement in any higher order multipole introduces field

errors on the beam axis in all lower orders.

1.6.1 Linear perturbations

The lowest order perturbation is the one of a dipolar field error, here expressed as an error

in the bending radius ∆ρz(s), in an otherwise ideal accelerator leading to the modified

Hill’s equation

z′′ +Kz(s)z = ∆ρz(s), z = x, y , (1.70)

where Kz(s) is given by Eqn. 1.7 and z stands in the following for either the horizontal

or vertical plane. As the bending field of the dipoles defines the closed-orbit of the beam

particles, a dipole field error consequently results in a change of the same with the new

closed-orbit being the solution of Eqn. 1.70. One way to solve Eqn. 1.70 is to first make

a transformation to normalized coordinates wz = z/
√
βz and ϕz = 1

νz

∫ s
0 ds̃/βz(s̃) with νz

being the betatron tune, yielding

d2wz
dϕ2

+ ν2
zwz = ν2

zβ
3/2∆ρz = ν2

zf(ϕ) . (1.71)

The right hand side is a periodic function of ϕ with period 2π, as is wz(ϕ) and both can

be expanded into a Fourier series leading after some arithmetics to the solution

wz(ϕz) =
zco(ϕz)√
βz(ϕz)

=
∞∑

kz=−∞

ν2
zfkz

ν2
z − k2

z

eikzϕz (1.72)

with fkz being the Fourier components of f(ϕz) given by

fkz =
1

2π

∮
β3/2
z ∆ρz e

−ikzϕzdϕz , (1.73)

and zco the closed-orbit displacement. It is obvious that due to the term ν2
z − k2 the

closed-orbit may not even exist if the betatron tune takes on integer values

νz = kz, kz ∈ N . (1.74)
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The Fourier components fk are also referred to as stopband integrals and in the case of

a dipole field error more specifically as integer stopband integrals based on the resonant

behaviour for integer values of the betatron tune.

The next higher order perturbations are quadrupolar field errors ∆kz(s) in an otherwise

ideal accelerator leading to the modified Hill’s equation

z′′ +Kz(s)z = −∆kz(s)z , (1.75)

where Kz(s) is again given by Eqn. 1.7. As the beta-function depends on the distribution

of the quadrupoles, quadrupole errors induce a distortion of the same. The distortion of the

beta-function, also called beta-beating, can be derived in a similar way as the closed-orbit

distortion in the case of dipole field errors, yielding

∆βz(s)

βz(s)
= −ν0z

2

∞∑
pz=−∞

fpze
ipzϕz

ν2
0z − (pz/2)2

. (1.76)

The resonance condition is now satisfied for half integer values of the unperturbed betatron

tune

ν0z =
pz
2
, pz ∈ N . (1.77)

The Fourier components fpz are thus accordingly referred to as half-integer stopband

integrals with fpz given by

fpz =
1

2π

∮
βz(s̃)∆kz(s)e

−ipzϕds̃ (1.78)

Using that f−pz = f∗pz Eqn. 1.76 can also be written in the following form used later in

this thesis:

∆βz(s)

βz(s)
= − 1

2 sin (2πν0z)

∫ s+C

s
∆kz(s̃)βz(s̃) cos (2ν0(π + φz(s)− φz(s̃)))ds̃ , (1.79)

where C is the ring circumference.

As a consequence of the change of the beta-function and thus number of betatron oscilla-

tions per turn, quadrupole errors induce a tune-shift which is given by

∆νz = νz − ν0z =
1

4π

∮
βz(s̃)∆kz(s̃)ds̃ . (1.80)

1.6.2 Non-linear perturbations

The general equation of motion for a single perturbation pnz of order n is

d2wz
dϕ2

+ ν2
0zwz = κnz(ϕ)wn−1

z . (1.81)

For small perturbations the equation of motion can be solved in a similar way as the

equation for linear perturbations, leading to the resonance condition

l ν0z = p, l, p ∈ Z and |l| ≤ n . (1.82)
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1.6.3 Coupling resonances

In the case of a dependence of the perturbation on the betatron oscillation amplitudes in

both transverse planes, the general equation of motion is given by

d2wx
dϕ2

x

+ ν2
0xwx = κnm(ϕx)wm−1

x wn−1
y . (1.83)

where representatively for both planes the equation for the horizontal plane is stated here.

This leads to a coupling between both planes and consequently a resonance condition

including the horizontal and vertical tune

lν0x + qν0y = p, l, p, q ∈ Z, |l| ≤ m and |q| ≤ n . (1.84)

A similar equation as Eqn. 1.84 can also be derived for the vertical plane leading to the

general resonance condition

mν0x + nν0y = p, m, n, p ∈ Z (1.85)

with |m|+ |n| being the order of the resonance. The case of the linear coupling resonance

ν0x ± ν0y = p, relevant for the LHeC, for which linear coupling between the two planes is

desired (see Sec. 2.4.3), is discussed in more detail in Appendix F.

1.6.4 Systematic and non-systematic resonances

In a very simplified picture a lattice consisting of N superperiods and a tune of ν0x,0y is

equivalent to a lattice consisting of only one superperiod and a tune of ν0x,0y/N . Substi-

tuting ν0x,0y by ν̃0x,0y = ν0x,0y/N in Eqn. 1.85 then leads to the resonance condition

mν0x + nν0y = pN, m, n, p ∈ Z . (1.86)

Thus, a high superperiodicity actually eliminates many resonances or rather reduces their

stopband integrals and they are referred to as non-systematic resonances. Resonances

satisfying Eqn. 1.86 are called systematic resonances. All resonances can be visualized in

a resonance diagram for which an example is presented in Fig. 1.7.
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Figure 1.7: Resonance diagram until 4th order for a lattice with superperiodicity 4.
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1.6.5 Detuning with amplitude and momentum

It has been derived in Sec. 1.6.1 that quadrupolar errors lead to an amplitude independent

tune-shift. For sextupolar or higher order multipoles this tune-shift becomes amplitude

dependent and is referred to as detuning with amplitude. As the perturbation and thus

tune-shift is usually small, the detuning can be expressed by Taylor expansion in the

horizontal and vertical action Jx/y:

Qz(Jx, Jy) ≈ Qz + αz,10Jx + αz,01Jy+

1

2

(
αz,20J

2
x + 2αz,11JxJy + αz,02J

2
y

)
+ . . . , z = x, y . (1.87)

The coefficients αz,ij are called the anharmonicities.

The same is valid for momentum deviations δ = ∆p/p0 referred to as detuning with

momentum and expressed by a Taylor expansion in δ

Qz(δ) = Q0,z +Q′zδ +
1

2!
Q′′zδ

2 +
1

3!
Q′′′z δ

3 + . . . (1.88)

The terms Q
(n)
z with n ≥ 2 are the higher order chromaticities. In the case of the de-

tuning with momentum also higher order dispersive effects have to be considered as well.

A method to correct the first and second order chromaticity using sextupole families is

described in Appendix C and applied to the LHeC in Sec. 2.4.2.

1.7 Space-Charge and Beam-Beam Effects
The Coulomb forces arising from a charged particle beam can contribute considerably

to the forces encountered by individual particles in a beam transport line or a circular

collider. These forces may act directly on the particles of the beam referred to as direct

space-charge force or on the particles of the counter-rotating beam in the case of a collider

known as beam-beam force (Fig. 1.8). Both forces scale with the number of particles and

roughly inversely with the beam size and can present severe stability problems for high

brightness beams.

As will be shown later, the direct space-charge force scales with 1− β2 = 1
γ2

and becomes

completely negligible as the beam velocity approaches the speed of light in which case

the electric and magnetic force cancel each other completely. It is therefore only relevant

for low energy beams, especially for particle species with a high mass like protons or

ions with γ = E/(m0c
2) being then considerably smaller compared to e.g. electrons of

the same energy. In addition to the direct space-charge effect, the beam is influenced

by its environment like the beam pipe, magnets, collimators etc. referred to as indirect

space-charge effects. For a smooth, perfectly conducting wall they can be calculated by

introducing image charges and currents and are often referred to as image effects. Those

indirect space-charge effects do not become negligible as the beam velocity approaches

the speed of light and are thus more relevant for high energy beams. In the case of the

beam-beam effect the force scales with 1+β2 = 2− 1
γ2

. This scaling with energy is usually

not relevant as colliders are usually built for high energy beams with β ≈ 1. Furthermore,

due to the high energy the space-charge force of the beams is usually neglected.
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Figure 1.8: Space-charge (left) and beam-beam effects (right). The beam particles experience

the effect of the electric and magnetic force. In the case of the space-charge effect

(left) the repulsive Coulomb force is canceled by the attractive magnetic force as the

velocity approaches the speed of light (β → 1), while for the beam-beam effect (right)

both forces are either attractive for oppositely charged beams or repulsive for equally

charged beams.

In the case of the direct space-charge effect, the self-field of the beam acts on the beam par-

ticles of the same beam which have self-evidently the same charge. The direct space-charge

force is therefore always repellent. In the case of the beam-beam effect the colliding beams

can either have the same charge, in which case the force is repellent, or opposite charge in

which case it is attractive. For small amplitude particles the space-charge and beam-beam

force is quasi linear and can be described as a defocusing or focusing quadrupole respec-

tively. A good measure for the strength of this quadrupole is the tune-shift or spread

caused by it referred to as direct space-charge and beam-beam tune-shift.

Another difference between the space-charge and beam-beam effect is the spacial distri-

bution of the force. The space-charge effect can in general be seen as a rather equally

distributed defocusing non-linear force, while the beam-beam force is localized to the

beam crossings at the interaction points where the beam then experiences a strong focus-

ing or defocusing non-linear kick. In colliders the beams are also often stored over a long

time period while low energy machines have shorter cycles requiring less beam stability.

Due to the strong localization of the beam-beam force and in addition the longer cycle

time the beam-beam tune-shifts observed are much smaller than the possible space-charge

tune-shifts. For electron colliders the maximum reachable beam-beam tune-shifts lie in

the range of 0.1 reached at KEKB [22] and for proton machines around 0.017 reached at

the LHC [23]. The observed tune-shifts for electron or more general lepton beams are

higher because the oscillations caused by the beam-beam interaction are damped by syn-

chrotron radiation which scales with 1/m3
0 and is in general negligible for hadron beams4.

Space-charge tune-shifts can be as high as 0.5. The value of 0.5 is kind of a hard upper

limit for the space-charge tune-shift, as for larger tune-shifts the beam crosses either the

4An exception is the LHC, where the synchrotron radiation is visible on synchrotron radiation light

monitors and damping effects can be observed due to the high beam energy of 7 TeV
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integer or half integer resonance which usually leads to immediate beam instability or even

instantaneous loss of the beam. Another difference arising from the different spacial distri-

bution is that in the case of a beam instability caused by the space-charge effect, the beam

emittance in general blows up where the blow-up eventually saturates as the space-charge

force decreases with increasing beam size. In the case of the beam-beam effect the beams

are usually lost right after becoming unstable.

1.7.1 Transverse self-field

For the majority of beams for which space-charge or beam-beam effects play a role the

longitudinal dimension of the beam is considerably larger than the transverse one and can

be added after the calculation of the transverse field as a charge density λ(s), where s is

the longitudinal coordinate in the Frenet-Serret coordinates. One way to determine the

self-field of the beam is using the Poisson equation

∆U = − 1

ε0
ρ (x, y) , (1.89)

where ρ is the charge density of the beam and U the electric potential. The electric field

is then given by:

E = −∇U (x, y) . (1.90)

The magnetic field B of a bunch moving with speed βc follows from the electric field E

with

B = β ×E/c (1.91)

The distribution of particle beams is often shaped by statistical processes like e.g. syn-

chrotron radiation and thus most beam distributions are Gaussian or can be approximated

well enough by a Gaussian distribution. The Gaussian distribution and most other beam

distribution lead to a non-linear electric field and not always solvable equations of motions.

In this respect the idealistic Kapchinskij-Vladimirskij (KV) distribution represents a spe-

cial distribution as it yields a perfectly linear space-charge force and solvable equation of

motions and is often used for space-charge studies5.

1.7.1.1 Kapchinskij-Vladimirskij (KV) distribution

In the case of the Kapchinskij-Vladimirskij (KV) distribution the particles are uniformly

distributed on a constant emittance surface of the 4-dimensional phase space. In action-

angle variables the distribution can be written as

ρ(Jx, Jy) =
4Nq

εxεy
δ

(
2Jx
εx

+
2Jy
εy
− 1

)
, (1.92)

where N is the number of particles per unit length, q the particle charge, Ji the action, εi

the emittance, δ the Dirac delta function and a and b the envelope radii of the beam with

a =
√
βxεx, b =

√
βyεy . (1.93)

5In the case of the KV-distribution the space-charge field can be simply added as a defocusing quadrupole

to the Hill’s equation.



1.7. Space-Charge and Beam-Beam Effects 27

The distribution function of the KV-distribution is then given by

ρ(x, y) =
Nq

πab
Θ

(
1− x2

a2
+
y2

b2

)
, (1.94)

where Θ(z) is equal to 1 if z ≥ 0 and 0 if z < 0 with an rms emittances of

εx,rms =
〈x2〉
βx

=
εx
4
, εy,rms =

〈y2〉
βy

=
εy
4
. (1.95)

Neglecting the transverse velocity, hence β = (0, 0, β), Eqns. 1.89 - 1.91 yields for the

components of the electric and magnetic self-field

Ex =
1

πε0

Nq

a(a+ b)
x, Ey =

1

πε0

Nq

b(a+ b)
y , (1.96)

Bx = −µ0

π

Nqβc

b(a+ b)
y, By =

µo
π

Nqβc

a(a+ b)
x . (1.97)

Both the electric and magnetic field depend linearly on the transverse position x and y.

1.7.1.2 Gaussian distribution

The Gaussian distribution function in the 4-dimensional phase space in action-angle vari-

ables is defined by

ρ(Jx, Jy) =
Nq

εx,rmsεy,rms
e
−( Jx

εx,rms
+

Jy
εy,rms

)
, (1.98)

leading to the beam distribution function

ρ(x, y) =
Nq

2πσxσy
e
− x2

2σ2x
− y2

2σ2y , (1.99)

where σi =
√
βiεi,rms is the rms beam size.

In the case of elliptical beams (σx 6= σy and σx > σy) the components of the electric field

are given by the Basetti-Erskin formula [24]:

Ex = Nq

2ε0

√
2π(σ2

x−σ2
y)

Im

[
w

(
x+iy√

2(σ2
x−σ2

y)

)
− e
− x2

2σ2x
+ y2

2σ2y w

(
x
σy
σx

+iy σx
σy√

2(σ2
x−σ2

y)

)]
,

Ey = Nq

2ε0

√
2π(σ2

x−σ2
y)

Re

[
w

(
x+iy√

2(σ2
x−σ2

y)

)
− e
− x2

2σ2x
+ y2

2σ2y w

(
x
σy
σx

+iy σx
σy√

2(σ2
x−σ2

y)

)]
,

(1.100)

where the function w(z) is the complex error function defined by [25]:

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0
et

2
dt

)
. (1.101)

The magnetic field can be obtained by Eqn. 1.91 with β = (0, 0, β).

For round beams (σx = σy = σ) the electric and magnetic field can be expressed with

more elementary functions and read in cylindrical coordinates:

Er = 1
2πε0

Nq
r (1− e−

r2

2σ2 ) ,

Bφ = µ0β
2πc

Nq
r (1− e−

r2

2σ2 ) .
(1.102)

All other components of the electric and magnetic field are 0.



28 1. Concepts of Accelerator Physics

1.7.2 Lorentz force from space-charge self-field

The forces exerted on individual particles of charge q by the space-charge self-field of the

same or another beam are given by the Lorentz force:

F = qfqE + qfqfv(v ×B) , (1.103)

where the nomenclature as in [12] is used with fq = 1 if the individual particle and the beam

particles have the same charge and fq = −1 if they have opposite charge. Similarly fv = 1 if

the individual particle and the beam move in the same direction or fv = −1 if they move

into opposite directions. In general the transverse velocities are small compared to the

longitudinal ones and β can be approximated by β = (0, 0, β). Under this approximation

and using Eqn. 1.91 the transverse components of the Lorentz force can be expressed as

Fz = qfq(1 + β2fv)Ez, z = x, y . (1.104)

The self-field force factors are summarized in Table 1.1 for a better overview. In the case

space-charge beam-beam

++ ↑↑ +− ↑↑ ++ ↑↓ +− ↑↓
−− ↑↑ −+ ↑↑ −− ↑↓ −+ ↑↓

+(1− β2) −(1− β2) +(1 + β2) −(1 + β2)

Table 1.1: Self-field force factors introduced in Eqn. 1.103. The +/− signs stand for the sign of

the individual particle and beam particles and the arrows ↑↓ for the direction of the

same.

of the space-charge force the magnetic field compensates the electric field for relativistic

beams (β → 1⇒ (1− β2) = 1
γ2
→ 0) which is not the case for beam-beam effects.

Applying Eqn. 1.104 to the KV-distribution yields in Cartesian coordinates

Fx =
1

4πε0
qfq(1 + β2fv)

4λ

a(a+ b)
x, Fy =

1

4πε0
qfq(1 + β2fv)

4λ

b(a+ b)
y . (1.105)

Doing the same for the Gaussian distribution in cylindrical coordinates yields

Fr =
2λ

4πε0
qfq(1 + β2fv)

1

r
(1− e−

r2

2σ2 ) . (1.106)

For small r, so near the beam center, the Lorentz force can be linearised by Taylor-

expanding the exponential function leading to

Fr =
2λ

4πε0
qfq(1 + β2fv)

r

2σ2
, for r � σ . (1.107)

1.7.3 Space-charge effects

In the preceding sections, only the Lorentz force generated by the beam itself and acting

on a single beam particle has been considered, referred to as incoherent direct space-

charge effect (Sec. 1.7.3.1). In addition, electromagnetic fields induced in the surround-

ings of the beam can effect the beam itself, known as incoherent indirect space-charge
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effects (Sec. 1.7.3.2). Last but not least, oscillations of the beam centroid can induce os-

cillating electromagnetic fields in the surroundings of the beam, which are called coherent

indirect space-charge effects. In all three cases the Lorentz force is linear or approximately

linear in the transverse coordinates x and y and thus the space-charge force can be seen

as a continuous quadrupolar perturbation, which can be added as an additional term KSC

in the linear Hill’s equation (Eqn. 1.6):

z′′ + (K(s) +KSC,z(s))z = 0, z = x, y . (1.108)

In a synchrotron, a good measure for the “strength” of the space-charge effect is the tune-

shift ∆Qz caused by the additional quadrupolar perturbation given by:

∆Qz =
1

4π

2πR∫
0

KSC,z(s)βz(s)ds, z = x, y , (1.109)

where 2πR is the circumference of the synchrotron and βz the beta-function.

The incoherent and coherent tune-shift for different shapes of the vacuum chamber and

magnetic pole distances can be expressed by the Laslett coefficients where an elliptical

uniform beam distribution (KV distribution) is assumed in all cases. For the explicit

formula see the original paper [26]. In the following, the different space-charge effects are

described using simple examples.

1.7.3.1 Direct incoherent space-charge effect

In the case of the direct incoherent space-charge effect the Lorentz force is given by

Eqn. 1.104

Fz = q(1− β2)Ez, z = x, y , (1.110)

and is always repellent leading to a negative tune-shift ∆Qz < 0. In the case of the KV-

distribution the Lorentz force is linear in x and y and the equations of motion (Eqn. 1.108)

are exactly solvable [27]. In this case the tune-shift is given by

∆Qx = − 2r0

β2γ3εx

〈
a

a+ b

〉
, ∆Qy = − 2r0

β2γ3εy

〈
b

a+ b

〉
. (1.111)

By introducing form factors and expressing the semiaxis of the ellipse as rms-beamsizes

Eqn. 1.111 can be extended to other more realistic distributions [28]

∆Qx,y = −r0

π

(
q2

A

)
N

β2γ3

Fx,yGx,y
Bf

〈
βx,y

σx,y (σx + σy)

〉
, (1.112)

where Fx,y is a form factor derived from the Laslett coefficients [26] for incoherent tune-

shifts, Gx,y a form factor depending on the transverse distribution with Gx,y = 1 for

the KV-distribution and Gx,y = 2 for Gaussian and 1 < Gx,y < 2 in the case of all

other distributions. The parameter Bf is the bunching factor defined as the mean current

divided by the peak current of the bunch with Bf < 1 for bunched beams and Bf = 1 for

unbunched beams and accounts for the increase in the space-charge tune-shift for bunched

beams. The term
(
q2

A

)
includes the strong space-charge force experienced in the case of

ion beams where q is the charge state and A the mass of the ions.
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A comparison of the expressions for the direct incoherent space-charge tune-shift and the

beam-beam tune-shift (Eqn. 1.124) shows that both depend on the beam size and on

the beam intensity. As in the case of the space-charge effect, the beam experiences its

self-field continuously and the beam size dependent term
βx,y

σx,y(σx+σy) is averaged over the

complete ring. For the beam-beam effect the interaction is localized and the beam sizes

are assumed to be constant6. Furthermore, the direct incoherent space-charge tune-shift

scales strongly with the beam energy, explicitly with 1
γ2

(Eqn. 1.112), while the beam-beam

tune-shift only depends on the normalized emittance of the beam (Eqn. 1.124), which is

energy independent7.

1.7.3.2 Indirect incoherent space-charge effect

In a real machine the beam also induces surface charges or currents in its environment

that act back on the beam known as indirect space-charge effects. The simplest example

which illustrates the principle of this effect is a continuous round beam represented by a

line charge λ of infinite length between two parallel perfectly conducting plates.

4h

-4h

-2h

0

2h
h

-h

y

conducting wall
λ

λ

−λ

−λ

λ

x

y
beam

Figure 1.9: A particle beam represented by a line charge λ between two parallel perfectly con-

ducting plates of distance 2h.

The boundary condition that the electric field parallel to the plate must vanish (E|| = 0)

is satisfied by introducing an infinite number of image line charges of alternating sign at

positions . . .− 4h, −2h, 2h, 4h . . . (Fig. 1.9). The electric field at position y between the

conducting plates is then given by the sum over the electric field generated by all image

line charges. As there are no image charges between parallel plates, the divergence of the

electric field is zero (∇ ·E = 0). From this condition the horizontal component Ex can be

derived, yielding [28]

Ex = − λ

4πε0h2

π2

12
x, Ey =

λ

4πε0h2

π2

12
y , (1.113)

and for the Lorentz force acting on a particle of charge q

Fx = − qλ

4πε0h2

π2

12
x, Ey =

qλ

4πε0h2

π2

12
y . (1.114)

6For small beta-functions at the IP and short bunches, the dependence of the beam size on the longitu-

dinal position s can not be neglected any more. This effect is known as hourglass effect.
7Here synchrotron radiation effects are not taken into account
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For the geometry considered in this section, the electric image field is vertically defocusing

and horizontally focusing and increases for small chamber heights h. This is the case for

most synchrotrons as the horizontal aperture is often larger than the vertical, due to the

non-vanishing dispersion and thus larger beam size in the horizontal plane. Furthermore,

the Lorentz force from indirect space-charge effects (Eqn. 1.113) is independent of the

relativistic γ-factor leading to a 1
γ dependence of the tune-shift compared to a 1

γ2
depen-

dence for the direct space-charge effect. Thus, the indirect space-charge effect becomes

much more relevant for high beam energies as it decreases much slower than the direct

space-charge effect.

Similarly, as the electric field of the beam leads to image charges, its magnetic field induces

mirror currents resulting in a tune-shift scaling as well with 1
γ . For further details it is

referred to [26].

1.7.3.3 Indirect coherent space-charge effect

A coherently oscillating beam where the oscillation can be for example caused by an injec-

tion kicker, induces image charges and currents in its environment, which are oscillating as

well. For a round beam with line charge λ and radius a performing a coherent oscillation

inside a round beam pipe of radius ρ with a � ρ, the electric field and Lorentz force

generated by the induced image charges are given by [28]

Ez(z̄) =
λ

2πε0

1

ρ2
z̄, z = x, y , (1.115)

Fz(z̄) =
qλ

2πε0

1

ρ2
z̄, z = x, y , (1.116)

where (x̄, ȳ) denotes the position of the beam centroid. According to Eqn. 1.116, the

Lorentz force is repelling in both planes, thus is having a “defocusing” effect on the beam,

and it is linear in x̄ and ȳ, inducing a coherent negative tune-shift. Furthermore, it is

independent of λ, resulting in a 1
γ dependence of the tune-shift.

1.7.4 Beam-beam

In the case of beam-beam effects, the beams are moving in opposite directions and the

Lorentz force is given by Eqn. 1.103 with fv = −1:

Fz = qfq(1 + β2)Ez, z = x, y . (1.117)

It is repellent, and thus defocusing, in the case of equal, and attractive, and thus focusing,

in the case of opposite charged particles. In most colliders where beam-beam effects are

relevant, the bunches are usually approximately Gaussian and in the following a Gaussian

charge distribution is assumed.

Furthermore, only the effect of the opposing beam (strong beam) on a single beam particle

(weak beam), referred to as weak-strong interaction, will be described in the following

section. In this case the distribution of the strong beam remains unchanged. For strong-

strong beam-beam interactions where the change of the distributions of both beams is

taken into account it is referred to the literature.
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1.7.4.1 Incoherent head-on beam-beam effects

As the weak beam passes through the field of the strong beam it receives a transverse kick

while the strong beam remains unchanged. For small amplitudes the kick obtained with

the Basetti-Erskin formula (Eqn. 1.100) can be linearized and the transformation of the

phase space coordinates (x, x′) and (y, y′) can be described by the thin-lens matrix of a

quadrupole with focal strength [29]

1

fz
=

2Nr0

γσz(σx + σy)
, z = x, y , (1.118)

where N is the number of particles in the strong beam, σz the beam size of the strong

beam and r0 the classical radius of the particles of the weak beam. Taking the case of

only one collision point, the transformation from one collision to the next is then given by

the one-turn matrix8(
1 0

− 1
2fz

1

)
·

(
cos(φ0z) β∗0z sin(φ0z)

− 1
β∗0z

sin(φ0z) cos(φ0z)

)
·

(
1 0

− 1
2fz

1

)

=

(
cos(φ0z + ∆φz) β∗z sin(φ0z + ∆φz)

− 1
β∗z

sin(φ0z + ∆φz) cos(φ0z + ∆φz)

)
, z = x, y ,

(1.119)

where the kick from the strong beam has been split in half due to symmetry reasons. The

unperturbed parameters φ0z and β∗0z and the perturbed ones φz = φ0z + ∆φz and β∗z are

related by

cos(φ0z + ∆φz) = cos(φ0z)−
β∗0z
2fz

sin(φ0z), z = x, y , (1.120)

β∗z = β∗0z
sin(φ0z)

sin(φz)
, z = x, y . (1.121)

Hence, in linear approximation the change of the beta-function and tune depends on the

phase advance between the collisions and the beam-beam parameter

ξz =
β∗0z

4πfz
=

Nr0β
∗
0z

2πγσz(σx + σy)
, z = x, y , (1.122)

which is a measure for the beam-beam strength. Note that β∗0z is the beta-function of the

optics of the weak beam at the IP and σz the beam size of the strong beam at the IP. For

highly relativistic (β ≈ 1) round beams with σx = σy = σ =
√
γβ∗0εN and β∗0x = β∗0y = β∗0

Eqn. 1.122 simplifies to

ξz =
Nr0

4πεN
, (1.123)

and depends only on the number of particles N and the normalized emittance εN . In

hadron machines the normalized emittance is energy independent and so is the beam-

beam parameter, while in electron machines the normalized rms emittance depends on the

beam energy (Eqn. 1.65) due to the influence of synchrotron radiation and thus also the

beam-beam parameter.

8This can be easily extended to multiple collision points by just substituting the one turn matrix by

the transport matrix from one collision point to the next.
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For ξz < 1 and for φz not close to a multiple of π the beam-beam parameter is approxi-

mately equal to the tune-shift ∆νz = 2π∆φz caused by the beam-beam interaction

∆νz ≈ ξz =
Nr0β

∗
0z

2πγσz(σx + σy)
, z = x, y (1.124)

referred to as beam-beam tune-shift.

1.7.4.2 Coherent beam-beam effects

In addition to the incoherent beam-beam effects, the beam is also effected as a whole

by the opposing beam known as coherent beam-beam effects. A good measure for the

strength of the coherent effect is similar to the incoherent case, the coherent beam-beam

parameter. In the case of two beams, denoted with + and −, colliding head-on and with

no displacement of their barycenters it is given by [14]:

Ξ±z =
N∓r0β

∗±
z

2πγ±Σz(Σx + Σy)
, z = x, y , (1.125)

where Σz =
√

(σ+
z ) + (σ−z ) is the effective beam size. Thus for small amplitudes the effect

on the entire beam is half the one of the effect on a single particle given by the incoherent

beam-beam parameter. For larger amplitudes the effects become equal. This is clear as

for large amplitudes the two beams can be considered as point like charges. Equivalent to

the incoherent beam-beam tune-shift, the coherent beam-beam tune-shift is equal to the

coherent beam-beam parameter.

In general the motion of the two beams becomes coupled by the beam-beam interaction

and collective effects can appear. The most important ones are orbit effects, coherent

modes and multi-bunch coupling.

1.7.4.3 Dynamic beta, emittance and beam size

In Sec. 1.7.4.1, only the change of the phase advance has been discussed, but the head-on

beam-beam interaction also changes the beta-function at the IP where the expression given

in Eqn. 1.121 can be rewritten to depend only on the unperturbed parameters

β∗z = β∗0,z
sin(φ0z)

sin(φz)
=

β∗0,z√
1 + 4πξ0,z cotφ0z − 4π2ξ2

0,z

, z = x, y . (1.126)

Including synchrotron radiation effects the change of the beta-function at the IP results

in a change of the beam envelope inducing a change of the equilibrium rms emittance [14]

εrms,z =
(1 + 2πξ0z cot (φ0z))εrms,0z√
1 + 4πξ0z cot (φ0z)− 4π2ξ2

0z

. (1.127)

The dynamic beam size is then just given by σz =
√
β∗z εrms,z. The dependence of all three

parameters is illustrated for the case of the LHeC in Fig. 2.29. For lepton colliders like

e.g. LEP the tunes were optimized by placing them close to the half integer resonance

to explore the reduction of the beam size at the IP and thus increase the luminosity by

exploiting the dynamic beta effect.
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1.7.4.4 Hourglass effect

For small values of the beta-function β? at the IP the beta-function increases rapidly with

the distance s to the interaction point

β(s) = β? +
s2

β?
. (1.128)

In the case where the bunch length lies in the range or is larger than β? the beta-function

can no longer be considered constant along the bunch leading to a reduction of the lumi-

nosity. Explicit expressions for the luminosity reduction factor are given in e.g. [30].

1.7.4.5 Long range beam-beam effects

In order to have only one crossing of the beams at the center of the detector, the beams

are often separated with a small crossing angle which is illustrated in Fig. 1.10. Since

the bunches travel in a common beam pipe in the interaction region, they still feel the

electromagnetic field of the bunches of the opposite beam called long-range interactions.

In general, these long-range interactions are much weaker than head-on interactions but

they are much more frequent9.

Head-on
Long-range d

Figure 1.10: Schematic plot of head-on and long-range beam-beam interactions.

The main properties of the beam-beam long-range interactions are summarized in the

subsequent list [31].

• Large amplitude particles are mainly effected.

• The tune-shift is proportional to the number N of long-range interactions and in-

versely proportional to the square of the beam separation d and has the opposite

sign than the head-on beam-beam tune-shift

∆νlr ∝ ±
N

d2
, (1.129)

where the + is for equally charged beams and the − for oppositely charged beams.

The change of sign of the tune-shift can be understood from Fig. 1.11 which shows

the derivative of the Lorentz force in respect to the amplitude. For large amplitude

particles the sign changes and with it the sign of the tune-shift, leading to a folding

of the tune footprint of the beam.

• The symmetry between the planes is broken, resulting in an excitation of also the

odd resonance.

9For example, in the LHC the beams experience about 30 long-range interactions per IP.
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• The closed-orbit is changed.

• Enhancement of the PACMAN effect10.

1.7.5 Non-linearity of the space-charge force for Gaussian beam distri-

butions

The instantaneous tune-shift of a single particle caused by the space-charge field is pro-

portional to the derivative of the Lorentz force in respect to the amplitude r =
√
x2 + y2

and averaged over the same. The space-charge force for round Gaussian beams given by

Eqn. 1.106

Fr =
2λ

4πε0
qfq(1 + β2fv)

1

r
(1− e−

r2

2σ2 )

is then non-linear in r.
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Figure 1.11: Space-charge force for round Gaussian beams for equally (dashed) and oppositely

(solid) charged particles. The red arrows indicate the oscillation range of small and

large amplitude particles.

Its shape is illustrated in Fig. 1.11 from which one can draw the following conclusions:

• for small amplitude particles (. 1.5σ) the space-charge force is approximately linear

in r and results in an amplitude independent tune-shift of the core of the beam.

• for particles with larger amplitudes (& 1.5σ) the space-charge force becomes non-

linear, in particular it decreases and changes the sign of its slope. Large amplitude

particles thus experience a smaller but amplitude dependent tune-shift which tends

to 0 for very large amplitudes.

10In most colliders the bunches are not equidistantly spaced, but grouped together in bunch trains,

providing longer time gaps to allow for e.g. the rise time of the injection and extraction kickers. The

bunches of one beam usually encounter the bunches of the other beam only at the interaction point. As

the bunches are now grouped in trains of bunches the bunches at the beginning and end of the train

experience less long-range interactions, leading to differences in closed-orbit and position and dimension of

the tune-spread of the bunches. This effect is known as PACMAN effect.
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Briefly, the non-linearity of the space-charge force leads to a detuning with amplitude. For

head-on beam-beam effects it can be expressed analytically [29]

∆νx = ξ
(

1+ 1
a

2

) ∫∞
0

du
(1+u)3/2(1+ u

a2
)1/2

Z1

(
αx

1+u

)
Z2

(
αy

1+ u
a2

)
,

∆νy = ξ
(

1+a
2

) ∫∞
0

du
(1+u)3/2(1+a2u)1/2

Z2

(
αx

1+a2u

)
Z1

(
αy

1+u

)
,

(1.130)

where a =
σy
σx

is the aspect ratio of the strong beam,
√
αx and

√
αy are the amplitudes

normalized by σx and σy respectively and Z1 and Z2 are defined by

Z1(x) = e−x (J0(x)− J1(x)) ,

Z2(x) = e−xJ0(x) ,
(1.131)

where J0 and J1 are the Bessel functions. As an example Fig. 1.12 shows the amplitude

dependence of the tune-shift from head-on beam-beam effects in the case of the LHeC

High Acceptance (HA) option.
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Figure 1.12: Detuning with amplitude due to head-on beam-beam for the LHeC High Acceptance

(HA) option. The parameter n denotes the amplitude in number of sigmas of the

rms beam size.

In general, as the beam-beam interaction represents a strong localized non-linear kick, it

influences many aspects of the non-linear beam dynamics, which are not subject of this

thesis and for further details it is instead referred to the literature.

In the case of space-charge effects, the non-linear space-charge self-field of the beam in-

troduces non-linearities in the whole machine. The impact of these non-linearities can be

many-sided. One aspect investigated in the framework of this thesis is the dependence

of the beam stability on the variation of the beam size and the symmetry of the lattice

(Sec. 3.6). The idea behind this study is that the strength of the non-linear kick depends

on the beam size and the ratio between the beam sizes. For small variations of the beam

size the variation of the defocusing effect of the space-charge self-field and its non-linear

part are small and the emittance blow-up is expected to be smaller than for a lattice with

large variations of the beam size. Furthermore, a high symmetry of the lattice could be
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advantageous in the case of space-charge effects as the space-charge force has the same

“symmetry” as the lattice11 and thus resonances are suppressed due to the symmetry of

the lattice.

1.8 The Optics and Tracking Codes MAD-X and PTC

Most machines at CERN and also the lattices investigated in the framework of this thesis

are designed with the optics and tracking code MAD-X [32] which offers a larger variety

of different matching routines and an easy-to-use element definition - both essential in the

first design phases and further optics development of an accelerator. The strength of PTC

[33], [34] lies in the modeling and analysis of the non-linear optics and beam dynamics and

an interface to PTC is implemented in MAD-X for this purpose. The tools provided by

PTC and used in this thesis are:

• fully symplectic tracking routines:

In MAD-X, conventional thin-lens tracking routines are implemented which corre-

spond to a “drift-kick-drift” model with a second order symplectic integrator. The

advantage of this tracking method is its speed which makes it preferable for extensive

tracking campaigns but it is non-trivial to create an adequate linear and non-linear

model of the machine. Furthermore it is known that MAD-X might not give cor-

rect tracking results for large momentum errors. PTC on the other hand offers a

relatively precise model of all machine non-linearities and a correct tracking also for

large momentum errors providing that the exact Hamiltonian is used.

• normal form analysis:

Higher order chromaticities (detuning with momentum) and anharmonicities (detun-

ing with amplitude) can be directly obtained with PTC via a normal form analysis

of the one turn map.

At its core PTC is a symplectic integrator and the user has to provide the correct integrator

settings for his purpose. These settings explicitly are:

• the number of integration steps

• the integration model: the “drift-kick-drift” model splits the integration step us-

ing drifts, while for the “matrix-kick-matrix” matrices are used. The “matrix-kick-

matrix” model has the advantage of producing the correct phase advance.

• the order of the symplectic integrator: “method 2” for a simple second order integra-

tor with one kick per integration step, “method 4” for the Ruth-Neri-Yoshida fourth

order integrator with 3 kicks per integration step and “method 6” for the Yoshida

sixth-order integrator with seven kicks per integration step

11In this context the term “symmetry” is used for the reoccurrence of the same non-linear field after each

equivalent part of the lattice.
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• the use of an expansion in the momentum error δ of the Hamiltonian, e.g. for a drift

space:

H = −
√

(1 + δ)2 − p2
x − p2

y (exact), H =
p2
x + p2

y

2(1 + δ)
− δ (expanded) . (1.132)

The accelerator model gains precision with the number of integration steps, the order of

the integrator and with the use of the exact Hamiltonian at the cost of CPU time. As

PTC is in general a rather slow tracking code, it is essential to find a model precise enough

for the corresponding purpose.

For the theory about symplectic integration and Lie algebra techniques see [35].



2. LHeC Ring-Ring Option

The current Ring-Ring option design foresees a 10 GeV recirculating linac as injector and

the installation of a 50-70 GeV main electron ring on top of the existing LHC proton

magnets (Fig. 2.1). In order to ensure simultaneous proton-proton and electron-proton

LHeC

Courtesy to K.-H. Mess

Figure 2.1: Representative cross section of the LHC tunnel with the original space holder for the

electron beam installation directly above the LHC magnets. The new shifted location

of the electron ring due to the additional bypasses in Point 1 and Point 5, and the

need to keep the cirucmference of both rings the same, is indicated in red.

operation, the lattice also includes bypasses with separate tunnels around the then existing

proton-proton LHC experiments. These bypasses are in addition used to house the full

RF of the LHeC as well as the injection and extraction region. The LHeC experiment

will either be installed in Point 2 or Point 8. For the design study presented in the LHeC

Conceptional Design Report (CDR) [10], Point 2 has been chosen as collision point. In the



40 2. LHeC Ring-Ring Option

following the LHeC CDR, of which the geometry, layout and optics part of the Ring-Ring

collider has been elaborated in the framework of this thesis, will serve as a baseline, and

is referred to for general information and technical details important for the actual design

of the accelerator, but not relevant for the more general description given in this thesis.
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Figure 2.2: Schematic layout of the LHeC: In grey the LEP tunnel now used for the LHC, in red

the LHC extensions. The two LHeC bypasses are shown in blue. The RF is installed

in the central straight section of the two bypasses. The bypass around Point 1 hosts

in addition the injection.

The overall layout of the LHeC is shown in Fig. 2.2 and the baseline beam parameters

as defined in the LHeC CDR [10] are summarized in Table 2.1 assuming LHC ultimate

electron beam proton beam

beam energy [GeV] 60 7000

number of particles per bunch [1010] 1.98 17

number of bunches 2808

bunch spacing [ns] 25

hor./vert. normalized emittance γεx/y [mm] 0.59/0.29 3.75/3.75

synchrotron radiation power [MW] 44 negligible

Table 2.1: Proton and electron beam parameters for the Ring-Ring option. For the proton beam

the LHC ultimate parameters [36] have been assumed.

parameters [36] for the proton beam. A critical review of the design parameters performed

in the framework of this thesis is given in Sec. 2.1.
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In general, the same parameters can be assumed for positrons as for electrons and in

the following the electron beam is described representative for both. The electron beam

energy and intensity has been set to limit the synchrotron radiation losses to less than

50 MW which is considered to be a safe limit in order to stay below 100 MW total power

consumption and at the same time deliver a luminosity of over 1033 cm−2s−1. This leads

to an energy of 60 GeV and 2× 1010 particles per bunch with the same bunch pattern as

the LHC, still leaving some margin for an increase in intensity and energy.

Furthermore, experiences from HERA advise to match the naturally flat electron beam

to the round proton beam at the Interaction Point (IP) as a mismatch could result in a

reduction of the proton beam lifetime [37]. The difference of the ratio of the horizontal

to the vertical emittance between the proton and electron beam is too large in order to

adjust the beam sizes over the beta-function at the IP. One possibility of converting the

flat electron into a round beam is to introduce coupling in the interaction region or to

couple the full electron ring. The different possibilities studied in this thesis are discussed

in more detail in Sec. 2.4.3. For the baseline parameters, the option of a fully coupled ring

has been chosen and an emittance ratio of 2:1 assumed.

For the interaction region two options have been considered [10], the High Luminosity (HL)

option with a detector acceptance of 10◦ and the High Acceptance (HA) option with a

detector acceptance down to 1◦. The HL option delivers a higher luminosity as the final

focus quadrupoles are placed only 1.2 m from the IP allowing for smaller beta-functions at

the IP compared to the HA option where the distance from the first quadrupole to the IP is

6.2 m. Both options foresee a crossing of the beams in the horizontal plane with a crossing

angle of 1 mrad ensuring a minimum separation of 5σe + 5σp at all parasitic encounters

which is considered to be sufficient based on experiences from HERA and LHC [10]. The

interaction region parameters are summarized in Table 2.2.

HA HL

electron proton electron proton

luminosity [1032cm−2s−1] 9 18

syn. rad. power (interaction region) [kW] 51 33

critical energy [keV] 163 126

crossing angle [mrad] 1

hor./vert. beta-function at IP [m] 0.4/0.2 4.0/1.0 0.18/0.1 1.8/0.5

hor./ver. rms beam size at IP [µm] 45/22 30/16

Table 2.2: Parameters of the Ring-Ring interaction region.

In the framework of this thesis, the complete electron ring geometry, layout and optics,

except the interaction region, have been designed which are described in Sec. 2.2 and 2.3.

In addition, different beam dynamical aspects regarded to be relevant have been studied

in this thesis and are presented in Sec. 2.4. The main parameters of the complete lattice

are compiled for a better overview in Appendix G.
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2.1 Review of Design Parameters
The aim of every or rather most colliders is to achieve the highest possible luminosity and

energy. In the case of the LHeC the luminosity is given by

L (θ) =
NeNpNbfrev

2π
√

(σ2
xe + σ2

xp) · (σ2
ye + σ2

yp)︸ ︷︷ ︸
L0

· 1√
1 +

(
σ2
se+σ

2
sp

σ2
xe+σ

2
xp

)
tan2 θ

2︸ ︷︷ ︸
S(θ)

, (2.1)

where the index e indicates the electron and the index p the proton beam parameters. The

parameter Nb is the number of bunches, Ni the number of particles per bunch, σxi/yi the

horizontal and vertical rms beamsize, σsi the rms bunchlength and θ the crossing angle at

the IP. L0 denotes the luminosity for head-on collisions and S(θ) the geometric luminosity

reduction factor which expresses the decrease of the luminosity due to the crossing angle.

Beside the geometric loss factor, a reduction in luminosity can also occur due to the

hourglass effect. An estimation of the strength of this effect can be obtained from the

analytical formula for head-on collisions [30]

R(ux, uy) =
L

L0
=

∫ ∞
−∞

du√
π

e−u
2√

(1 + u2/u2
x)(1 + u2/u2

y)
, (2.2)

where u is a integration variable depending on s and ux is defined by

u2
x =

2(σ2
xp + σ2

xe)

(σ2
sp + σ2

se)((
σxp
β∗xp

)2 + (σxeβ∗xe
)2)

(2.3)

with a corresponding expression for uy.

In addition, the achievable luminosity can also be limited by beam-beam effects. A measure

for the limit arising from head-on collisions is the incoherent beam-beam tune-shift given

by Eqn. 1.119

∆νxe,ye =
β∗xe,yere

2πγe
· Np

σxp,yp(σxp + σyp)
, (2.4)

∆νxp,yp =
β∗xp,yprp

2πγp
· Ne

σxe,ye(σxe + σye)
. (2.5)

The impact of the beam-beam long-range interactions is more difficult to estimate. For

the LHeC the number of long-range encounters is just given by the bunch spacing and

the distance from the IP to the first proton quadrupole, where the three beams each enter

their dedicated beam pipe. For 25 ns bunch spacing there is one parasitic encounter every

approx. 3.75 m resulting in 2 × 6 long-range interactions over the whole IP assuming a

distance of 22.96 m from the IP to the first proton quadrupole. The strength of the long-

range interactions is according to Eqn. 1.129 proportional to 1/d2 with d being the distance

between the beams. Thus a sufficient separation of the beams must be ensured in order to

avoid an instability of the beams. From HERA and LHC experience a minimal separation

of 5σe + 5σp is considered to be acceptable in the case of the LHeC [10]. This separation

is provided by choosing the crossing angle large enough.

In the case of the LHeC also the synchrotron radiation losses at the interaction region

have to be taken into account as the necessary beam separation is achieved by bending
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the electron beam, resulting in considerable synchrotron radiation losses in the interaction

region. Due to the high proton beam energy of 7 TeV, a separation by bending the proton

beam is not possible, as very strong dipoles would be required in order to achieve even

a small separation. The bending of the electron beam is realized by passing off-center

through the final focus quadrupoles of the electron ring and afterwards an additional

separator dipole. The emitted synchrotron radiation power can be calculated with the

following analytical formula [38]

Pquad =
Cγ
2π
k2E4

0frevNeNb

(
εx

∫ L

0
βx(z)dz + εy

∫ L

0
βy(z)dz

)
, (2.6)

Pdip =
Cγ
2π

L

ρ2
E4

0frevNeNb , (2.7)

where E0 is the beam energy, k the normalized quadrupole strength, ρ the bending radius

and L the magnet length. In general, synchrotron radiation losses in the interaction region

can contribute considerably to the background in the detector and can heat up the vacuum

system, both effects which definitely want to be avoided.

2.1.1 Number of bunches and bunch intensity

The beam intensity in lepton colliders, thus also in the case of the LHeC electron acceler-

ator, is primarily limited by the power loss due to synchrotron radiation (Eqn. 1.54)

PBeam = U0NbNefrev , (2.8)

which scales linearly with the number of bunches Nb and the bunch intensity Ne. As the

luminosity scales quadratically with the bunch intensity NeNp but only linearly with the

number of bunches Nb and assuming the same synchrotron radiation loss budget, a higher

luminosity is therefore reached by increasing the bunch intensity and reducing the number

of bunches by the same factor.

Beside the luminosity and the synchrotron radiation losses over the whole ring, the other

three parameters to be considered are the synchrotron radiation losses in the interaction

region, the beam-beam tune-shift and the number of long-range interactions. As the

synchrotron radiation losses in the interaction region scale linearly with the bunch intensity

and number of bunches (Eqn. 2.6 and 2.7), the same argument holds for the synchrotron

radiation losses over the whole ring. The incoherent beam-beam tune-shift (Eqn. 2.4 and

2.5) scales as well linearly with the bunch intensity, representing a possible upper limit for

the same, but is independent of the number of bunches. On the other hand the number

of long-range interactions increases with the number of bunches, explicitly if the number

of bunches is increased by n the number of long-range interactions increases as well by n.

Summarizing the above arguments, a higher luminosity can be reached with a smaller

number of bunches and a higher bunch intensity without increasing the total synchrotron

radiation losses in the whole ring and the interaction region. Furthermore the number of

long-range interactions is reduced. On the other hand a higher bunch current results in a

larger incoherent beam-beam tune-shift.

Nevertheless, in the case of the LHeC the bunch intensity and number of bunches of the

proton beam is fixed by the LHC proton physics parameters. Therefore, the luminosity
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of the LHeC is determined by the fixed bunch pattern of the LHC, which is not optimal

for a lepton collider due to its high number of bunches and resulting small electron beam

bunch intensity.

2.1.2 Luminosity, beam energy and beam intensity

As shown in Sec. 2.1.1, the optimal luminosity for the LHeC is reached with the same

bunch pattern for the electron beam as for the LHC proton beam. Under this assumption

the luminosity and beam energy E0 for a total synchrotron radiation power of PBeam are

related by

L = const · PBeamE
4
0 . (2.9)

This dependence is illustrated in Fig. 2.3 for the LHeC, where the HA optics have been

assumed. In addition, the geometric luminosity reduction factor arising from the crossing

angle of 1 mrad has been included. For the LHeC an energy of 60 GeV has been chosen
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Figure 2.3: Maximum luminosity versus beam energy for different synchrotron radiation power

loss assuming LHeC HA parameters.

leading to a luminosity in excess of 1033 cm−2s−1. However, a higher luminosity could be

obtained by lowering the beam energy.
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For very high beam energies the energy of the emitted photons can reach the threshold

for the production of e+e− pairs. In this case, background and also machine protection

become considerably more challenging. The maximum photon energy is given by the

critical photon energy [12]

εc =
~cγ3

ρ
, (2.10)

where ρ is the bending radius. The critical photon energy versus the beam energy is shown

in Fig. 2.4 assuming the LHeC optics described in [10] with a main dipole bending radius

of 2622.56 m. The limit for pair production is reached at a beam energy of 106.5 GeV.

2.1.3 Luminosity and beam-beam effects

As described in the previous chapters the highest luminosity in combination with the

smallest synchrotron radiation losses is reached if the LHeC electron beam has the same

bunch pattern as the proton beam and the bunch intensity is adjusted in order to ensure a

synchrotron radiation power smaller than 50 MW. With a fixed bunch pattern and bunch

intensity, the luminosity can be further improved by a reduction of:

• the crossing angle

• the beam size at the IP i.e. a reduction of the emittance or beta-function

It is known from experience at HERA that unequal beam sizes at the IP lead to a reduction

of the proton beam life time [37]. Therefore, the beam sizes must be matched at the

IP. Furthermore, the LHC ultimate parameters (Table 2.1) are assumed for the proton

beam and a horizontal uncoupled electron emittance εxe with Jx = Js = 1.5 and Jy = 1

delivering the design values of 5.0 nm in the horizontal and 2.5 nm in the vertical plane

for the electron beam. All parameters are summarized in Table 2.3.

electron beam proton beam

beam energy 60 GeV 7 TeV

number of particles per bunch Np/e 1.98× 1010 1.7× 1011

number of bunches Nb 2808

bunch spacing 25 ns

hor. rms emittance εxe,0(Jx/s = 1.5, Jy = 1, κ = 0) 6.67 nm -

hor./ver. rms emittance εxp/yp =: εp - 0.5/0.5 nm

minimum beta-function at IP β∗xp/yp,min - 0.5/0.5 m

bunch length σsp/se 5.7 mm 7.5 cm

Table 2.3: Proton and electron beam parameters assumed for the review of design parameters.

For the proton beam the LHC ultimate parameters [36] have been used.

In order to simplify the equations, the following parameters are defined:

κ =
εye
εxe

the ratio between the e-beam emittances , (2.11)

n =
β∗xp
β∗yp

the ratio between the beta-functions of the p-beam at the IP . (2.12)
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In addition, under the approximation of no vertical dispersion, a negligible vertical emit-

tance in the uncoupled case and the same damping partition in the coupled and uncoupled

case, the electron beam emittances are related by Eqn. 1.69, leading to the following rela-

tions between the electron and proton beam beta-function at the IP (under the assumption

of equal beam sizes):

β∗xe =
2

3

β∗ypεpn(3
2 + κ)

εxe,0
, (2.13)

β∗ye =
2

3

β∗ypεp(
3
2 + κ)

εxe,0κ
. (2.14)

The expression Eqn. 2.1 for the luminosity then reduces to

L (θ) =
1

4π

frevNbNeNp

√
nβ∗ypεp

√
1 +

1
2(σ2

se+σ
2
sp) tan2 θ

2

nεpβ∗yp

, (2.15)

and becomes independent of the ratio κ between the electron beam emittances. As il-

lustrated in Fig. 2.5, the maximum luminosity is reached in the case of n = 1 when the

beams are squeezed in both planes to the minimum β∗ of β∗p,min = 0.5 m. The luminosity
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Figure 2.5: Maximum luminosity with (L(θ)) and without (L0) geometric reduction factor S(θ)

versus ratio n between horizontal and vertical proton beam beta-functions at the IP

assuming βyp∗ = β∗p,min and a constant crossing angle of θ = 1 mrad.

decreases slower with n if the effect of the crossing angle is taken into account, where the

same crossing angle of 1 mrad has been assumed for all n. This assumption is somewhat

unrealistic, as the angle would have to be increased for values of n < 81.

1Here the limit of n = 8 is an educated guess based on the 1 mrad crossing angle being sufficient in

the case of the HA option and the following reasoning: The value of n = 8 for β?yp = 0.5 and κ = 0.35

- the parameters of the HA∗ option proposed later - yields a β?xe/xp equal to β?xe/xp(HA) = 0.4/4.0 m.

As the crossing angle depends on the required minimum separation at the first parasitic encounter, here

5σe + 5σp, and the beam size in turn indirectly on β?x as βx(s) = β∗x + s2

β∗
x

and σx =
√
βxεx,rms, the same

β∗x should lead to approximately the same separation at the first parasitic encounter. Summing up, the

required crossing angle for n = 8 and β?yp = 0.5 should be approximately the same as for the HA-option.

For smaller values of n the horizontal beta-function at the IP β?x decreases and consequently the beam size

at the first parasitic encounter increases, making an increase of the crossing angle eventually necessary.
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The hourglass reduction factor R(ux, uy) of Eqn. 2.2 also takes a simpler form

R(ux, uy) =

∫ ∞
−∞

du√
π

e−u
2√

(1 + ū2
xu

2)
(
1 + ū2

yu
2
) (2.16)

with

ū2
x =

1

4

(
σ2
se + σ2

sp

)( 1

κ2n2β∗ye
2 +

1

n2β∗yp
2

)
, (2.17)

ū2
y =

1

4

(
σ2
se + σ2

sp

)( 1

β∗ye
2 +

1

β∗yp
2

)
, (2.18)

and depends only on the vertical beta-function at the IP, where β∗ye is given by Eqn. 2.14.

The dependence of the hourglass effect on n and κ is illustrated in Fig. 2.6. Only for

n = 1 a strong reduction is visible. For κ → 0 the reduction factor tends to 1. In this

case the vertical beta-function tends to infinity βye →∞ and the hourglass effect - mainly

from the protons - in the vertical plane becomes negligible, while the effect only slightly

increases in the horizontal due to the stronger squeeze of the electron beam. For κ → 1

the hourglass loss factor reaches its minimum for all values of n > 1, as it implies a

maximum squeeze in the vertical plane, which is the plane with the smaller beta-function

and therefore stronger hourglass effect. It has to be kept in mind that in the above formula

the effect of the crossing angle is not taken into account. In general it is possible that the

hourglass effect is reduced if the effect of the crossing angle is included.

0.0 0.2 0.4 0.6 0.8 1.0
0.86

0.88

0.90

0.92

0.94

0.96

0.98

Κ

R
u

x,u
y

8
6
4
3
2
1

n

Figure 2.6: Hourglass reduction factor R(ux, uy) for different ratios n between proton beam beta-

functions at the IP assuming βyp∗ = β∗p,min versus the ratio κ between electron beam

emittances.

Using the assumption of equal beam sizes at the IP, the incoherent beam-beam tune-shift

(Eqn. 1.124) reduces to the following expressions for the electron beam

∆νxe =
re

2πγe

Np

εxe,0(1 +
√

β∗yeκ

β∗xe
)

(2.13),(2.14)
=

re
2πγe

Np(1 + 2
3κ)

εxe,0(1 +
√

1
n)
, (2.19)

∆νye =
re

2πγe

Np

κεxe,0(1 +
√
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β∗yeκ

)

(2.13),(2.14)
=

re
2πγe

Np(1 + 2
3κ)

κεxe,0(1 +
√
n)
, (2.20)
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and the proton beam

∆νxp =
re

2πγp

Ne

εp(1 +
√

1
n)
, (2.21)

∆νyp =
re

2πγp

Ne

εp(1 +
√
n)
. (2.22)

The dependence on n and κ is shown in Fig. 2.7 and 2.8. In the case of the electron

beam, the ratio between the emittances can always be chosen to deliver the same beam-

beam tune-shift in both planes. This is considered to be best for the beam stability, as

the beam-beam tune-shift then takes on moderate values in both planes. The difference
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Figure 2.7: Horizontal (blue) and vertical (red) electron beam-beam tune-shift ∆νie for different

ratios n between proton beam beta-function at the IP, assuming βyp∗ = β∗p,min versus

the ratio κ between electron beam emittances.
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between the horizontal and vertical proton beam-beam tune-shifts increases with n and,

correspondingly, the best beam stability is reached for n = 1.

In general, an increases in luminosity is always obtained by decreasing the emittance,

which is theoretically possible in the case of the proton beam and also in the case of the

electron beam, for latter by for example further increasing the bending radius. Another

benefit would be a reduction of the synchrotron radiation losses in the interaction region

due to the smaller electron beam emittances.

Another possibility to increase the luminosity without changing the beam parameters is

to change the ratio n of the proton beta-functions at the IP to higher values of n as the

luminosity (Eqn. 2.15) is only linear in 1√
n

but quadratic in 1√
β∗yp

L (θ) ∼ 1√
nβ∗yp

2 + 1
2 tan2 θ

2(σ2
se + σ2

sp)β
∗
yp

, (2.23)

where 1
2 tan2 θ

2(σ2
se + σ2

sp) = 1.41 for θ = 1 mrad. Explicitly considering the LHeC HA

option, a gain in luminosity could be achieved by reducing β∗yp from 1 m to the minimal

value of β∗p,min = 0.5 m. Furthermore, in order to keep the same beam separation and

therefore crossing angle in the horizontal plane n is increased to 8, so that β∗xp and therefore

β∗xe are kept unchanged. To obtain the same incoherent electron beam-beam tune-shifts,

κ is changed from 0.5 to 0.35, leading to only slightly higher tune-shifts. The horizontal

proton beam-beam tune-shift still stays well below the nominal LHC tune-shifts and only

changes slightly compared to the HA option. All values are summarized in Table 2.4.

electron beam proton beam

LHeC LHeC LHC

HA∗ HA HA∗ HA nominal

∆νx 0.089 0.086 0.00095 0.00086 0.0037

∆νy 0.089 0.086 0.00034 0.00043 0.0034

Table 2.4: Comparison of incoherent beam-beam tune-shifts. The proposed option with β∗ =

0.5 m, n = 8, κ = 0.35 and a crossing angle of θHA∗ = θHA = 1 mrad is referred to as

HA∗ option.

This option, which is in the following referred to as HA∗ option, then delivers a luminosity

by a factor of 1.4 higher:

L (HA∗) = 1.4×L (HA) = 10.2× 1032 cm−2s−1 . (2.24)

A disadvantage of the new HA∗ option might be the higher synchrotron radiation losses

in the interaction region due to the stronger squeeze in the vertical plane and the larger

horizontal emittance for κ = 0.35. The change due to the smaller κ and, therefore, higher

horizontal electron beam emittance is considered to be small, as the radiation losses in

quadrupoles scale linearly with the horizontal emittance and εxe(κ=0.35)
εxe(κ=0.5) = 1.08. As the

radiation loss in the quadrupoles scales quadratically with the beam size, an estimate of
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the additional radiation losses due to the smaller vertical beta-function at the IP can be

obtained by comparing the beam size at the first electron final focus quadrupole given by

σye =

√
εye(κ)(β∗ye +

s2

β∗ye
) . (2.25)

Because the radiation loss in dipoles is independent of the beam size, the relative change

of the total synchrotron radiation loss PSyn of the HA∗ option compared to the HA option

is then estimated to be in the range of

σye(HA∗) = 0.74 mm, σye(HA) = 0.69 mm⇒
PSyn(HA∗)

PSyn(HA)
∼ σye(HA∗)2

σye(HA)2
= 1.14 (2.26)

In the case of the HA option optics the vertical maximum beta-function in the final fo-

cus quadrupoles is already quite large. Therefore, a reduction from β∗ye(HA) = 0.2 to

β∗ye(HA∗) = 0.13 could result in an unacceptably large vertical beta-function, consequently

large beam size and higher synchrotron radiation losses. The latter could be reduced by

changing from a QF-QD doublet to a QD-QF doublet. An alternative QD-QF optics for
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Figure 2.9: Optics of the LHeC HA option [10] (left) and the alternative HA (QD-QF) solution

(right) with a QD-QF doublet instead of a QF-QD doublet. The horizontal/vertical

beta-function is shown in blue/red and the horizontal/vertical dispersion in dashed-

blue/dashed-red.

the LHeC HA option (HA (QD-QF) option) developed in the framework of this thesis and

shown in Fig. 2.9, already delivers comparable synchrotron radiation losses (Table 2.5),

indicating smaller losses with a QD-QF optics than a QF-QD optics in the case of the HA∗

option.

HA HA (QD-QF)

Q1 5.4 kW 5.6 kW

Q2 6.2 kW 6.4 kW

Separation Dipole 14.1 kW 14.1 kW

Total 51.4 kW 52 kW

Table 2.5: Synchrotron Radiation Losses in the interaction region for the HA option with a QF-

QD doublet and the alternative HA (QD-QF) option with a QD-QF doublet. The

losses are calculated analytically using Eqn. 2.6 and 2.7
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2.1.4 Polarization

In the case of the LHeC a high polarization of the electron beam is desired by the ex-

periments as it allows to investigate different polarization dependent phenomena relevant

in particle physics. Two examples are the dependence of the cross section of neutral and

charged current and of the weak mixing angle sin2 Θ on the polarization [10]. A general

study of the achievable electron beam polarization in the case of the LHeC Ring-Ring

option is presented in [10] and [39], which is referred to for further details. In the following

only a short summary of the main points will be given.

The polarization in the LHeC is obtained by using the Sokolov-Ternov polarizing process.

The inverse time constant of the exponential build up of the polarization is given by [40]:

τ−1
st =

5
√

3

8

reγ
5~

me |ρ|3
, (2.27)

and depends on the beam energy - γ is the Lorentz factor - and the radius of curvature ρ

of the bending magnets. This polarizing process is counteracted by a depolarizing process

which occurs if the invariant spin field n̂(s) is not perfectly aligned to the vertical field

of the bending magnets. This ”misalignment” is mainly caused by a misalignment of the

ring, by spin rotators or by uncompensated skew quadrupoles or solenoids. Furthermore,

the depolarization can increase significantly near spin-orbit resonances

ν0 = m0 +m1Q1 +m2Q2 +m3Q3 , (2.28)

where m0, m1, m2, m3 are integers, Q1, Q2, Q3 the three tunes of the synchro-betatron

motion and ν0 the spin tune, which is very nearly the number of precisions of the spin

vectors around the invariant axis on the closed-orbit n̂0(s). The spin tune ν0 is given by

aγ, where γ is the Lorentz factor and roughly increases by 1 every me
(g−2)/2 = 440.648 MeV

for e± rings. The increase of the energy spread (Eqn. 1.61) with the beam energy in general

leads to a stronger depolarization for higher energies.

Courtesy to U. Wienands
and D.P. Barber

Figure 2.10: Dependence of the equilibrium polarization on the beam energy. The polarization

falls steeply with increasing energy. Figure is taken from [10].
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In order to estimate the polarization attainable in the case of the LHeC, an early version

of the LHeC lattice has been studied and presented in [10], which is a flat ring without

bypass, interaction region and spin rotators and a working point of Qx/Qy = 123.83/85.62.

Furthermore, an rms vertical alignment error of the quadrupoles of 150µm and one orbit

corrector per quadrupole has been assumed. Fig. 2.10 shows the polarization obtained for

different beam energies. The polarization decreases steeply for beam energies larger than

50 GeV, as the energy spread increases beyond 441 MeV. Note that the simulation results

of the polarization level illustrated in Fig. 2.10 are based on one machine per energy value

and can vary significantly for different misaligned rings, e.g. for the nominal beam energy

of 60 GeV and a synchrotron tune of Qs = 0.1 between 10% and 40% [10]. Furthermore,

this early LHeC lattice represents a kind of best case scenario as neither coupling, so the

introduction of skew quadrupoles, nor the interaction region with a separation scheme

including vertical bends and spin rotators are included in this lattice. The effect of the

skew quadrupoles could possibly be undone by a careful ”linear spin matching” [41]. In

order to limit the effect of the spin rotators and especially vertical beam separation, the

interaction region would have to be carefully designed and studied in detail.

Courtesy to Ya. Derbenev
and H. Grote

Figure 2.11: Schematic view of the proposed scheme to increase the polarization for high energies

in the LHeC using Siberian snakes. Figure is taken from [42].

Courtesy to U. Wienands
and D.P. Barber

Figure 2.12: Polarization and synchrotron radiation losses depending on the ratio between the

bending radius of the two halfs of the ring using the scheme sketched in Fig. 2.11.

Figure is taken from [43].
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An alternative approach to increase the polarization at high energies is to use ”Siberian

snakes” and ”half-snakes” which rotate the spin field by 180◦ and 90◦ respectively. By

decreasing the bending radius in one half of the ring and rotating the spin field by 180◦

after each half (Fig. 2.11), the polarization could be increased in exchange for additional

synchrotron radiation losses due to the decreased bending radius in one half of the ring.

Fig. 2.12 shows the gain in polarization and increase in synchrotron radiation depending on

the ratio between the bending radius of the two halves of the ring. For further explanation

of this scheme see [43].

2.2 General Layout and Geometry

One of the first steps in the design of a new accelerator is the geometry and general layout.

This is especially important in the case of the LHeC, where the electron ring has to be

installed on top of the already existing LHC which implies that the LHeC electron ring

must follow the LHC geometry and symmetry. The layout of this first idealized LHeC

ring developement in this thesis is described in Sec. 2.2.1 and 2.2.3. Furthermore, to

allow for parallel pp and ep collisions, bypasses around the active pp experiments are

needed. The different bypass options and geometries studied in the framework of this

thesis are discussed in Sec. 2.2.4. Assuming an ideal electron ring following exactly the

LHC geometry, the bypasses will either increase or decrease the circumference of this ring

and the circumference will differ from the LHC circumference. Possibilities to adjust the

electron ring circumference, including the effect of the bypasses, are presented in Sec. 2.2.2.

2.2.1 LHC symmetries

In the LHC two proton beams, i.e. beams of the same charge, collide, which implies

that separate beam pipes and opposite magnetic fields have to be provided for the beam

guidance. For this purpose, special superconducting magnets with two individual apertures

have been designed [44]. In order to match the circumference of both beams, the two

beams alternate between the inner and outer beam pipe and cross at the four experimental

insertions illustrated in Fig. 2.13 (left). Averaging over the position of beam 1 and beam 2,

one obtains the following symmetries shown in Fig. 2.13 (right):

• Arcs: One LHC arc would ideally consist of 23 equal arc cells with a length of

106.9 m taking the average between the two beams. Geometrically this is the case,

but as more degrees of freedom were needed for the matching of the LHC dispersion

suppressor (DS) [44], approximately one arc cell is used in addition for the DS. This

leads to an arc length of L(LHC arc) = 2452.23 m which is smaller than 23 times

the arc cell length of 23 · L(LHC arccell) = 2458.7 m.

• Insertions: The LHC hosts eight insertions in total, where the even insertions

have a length of L(even insertions) = 879.7 m and the odd insertions a length of

L(odd insertions) = 880.6 m. The different length of the even and odd insertions

goes back to the design of LEP, where the high luminosity experiments - requiring
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less space - were situated in the even insertions and the small angle experiments -

needing more free space - were placed in the odd insertions [45]. As the LHC was

built in the old LEP tunnel, it had to adopt the insertions length and the four fold

LEP symmetry.

IP5
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IP7

IP8

IP1

IP2

IP3

IP4 CMS

ALICE LHCb

ATLAS

IR length = 880.6 m
IR length = 879.7 m

IP1
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IP7

IP
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AR
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C3
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Arc length = 2452.23 m
IP distance = 3332.36 m

Idealized Ring Symmetries

Figure 2.13: (left) Position of the two LHC proton beams. The distance between the beams is

exagerated by a factor 2000. Both beams alternate between the inner and outer

magnet aperture and cross at the four experimental insertions.

(right) LHC symmetries obtained by taking the average between beam 1 and beam 2.

2.2.2 LHeC electron ring circumference

Adding one bypass to an ideal electron ring lattice following exactly the LHC geometry

will necessarily change its circumference and lead to a circumference mismatch between

the LHC proton and LHeC electron ring. As the LHeC electron beam collides only in

one point with the protons of the LHC, the circumferences can be either exactly matched

or they can differ by a multiple of the LHC bunch spacing. It might occur that in the

case of different circumferences the proton beam could become unstable due to beam-beam

interactions with the electrons [46], [47]. In order to avoid possible performance limitations

arising from this effect, the electron ring circumference is chosen to be equal to the LHC

circumference in the current design. Two different possibilities are considered in order to

achieve this:

1. Different bypass designs, e.g. one inner and one outer bypass, which compensate

each other in length.

2. Compensation of the path length difference caused by the bypasses by a radial dis-

placement of the electron ring to the inside or outside of the LHC in places where

the two rings share the same tunnel.

2.2.3 Idealized ring

A first step in the LHeC electron ring design is to create a ring which follows the LHC

proton ring, where the average between beam 1 and beam 2 is taken as reference. As
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described in Sec. 2.2.4.2, this ring must be radially displaced by approximately 61 cm to

the inside of the LHC in order to compensate the path length difference arising from the

bypasses. Furthermore, to minimise the interference with the LHC elements, the electron

ring is set 1 m above the LHC magnets. A representative cross section of the LHC tunnel

with the electron ring indicated in red is shown in Fig. 2.1. In the following this ring is

referred to as the Idealized Ring.

The main remaining conflicts with the LHC are the QRL service modules in the arc2 and

the DFBs 3 in the insertions. In the main arcs the QRL service modules have a length

of 6.62 m and are installed at the beginning of each LHC arc cell. The insertions host a

different number of DFBs with a varying placement and length. The idealised ring lattice,

the construction of which is described in this section, is designed to avoid overlaps of

magnet elements with all service modules in the main arcs. To show that it is possible

to create an optics with no electron ring elements at the positions of the DFBs in the

insertions, dispersion suppressors fulfilling this criterion were designed for IR2 and IR3

representatively for all even (Point 2, 4, 6, 8) and odd insertions (Point 1, 3, 5, 7). For

simplicity, all straight sections are filled with a regular FODO cell structure which would

have to be adapted at a later stage to the respective integration constraints.

2.2.3.1 Arc cell length

To adjust the beam optics to the regular reappearance of the service modules at the

beginning of each LHC arc cell, the LHeC FODO cell length is chosen to be a multiple

n or sub-multiple 1/n (n ∈ N) of the LHC arc cell length. In addition to the integration

constraints, the cell has to provide the right emittance which is the case for a LHeC FODO

cell length of half the LHC arc cell length, approximately 53.4 m (Sec. 2.3.1).

LHeC arc cell

LHC arc cell

QF
QD

dipole

dipoles

QF

QD

service
module

sextupole

corrector

Figure 2.14: Layout of the LHeC arc cell in comparison to the standard LHC arc cell.

2QRL are the cryogenic installations in the LHC tunnel with the QRL service modules being the

cryogenic connection between the superconducting machine and the cryogenic distribution line. The jumper

connections of the service modules extend vertically above the LHC cryostat and into the path of the LHeC

electron ring. There is enough space available to pass the service module, but no electron ring elements

can be placed at this location. For further details see [10].
3The DFBs are the cryogenic electrical distribution feedboxes that feed the electric current (room

temperature) into the cold mass. The DFBs are installed on the outer left and right in each insertion to

supply the special quadrupoles of each insertion. For further details see [10].
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As the LHC arc cell is symmetric, the best geometrical alignment with the LHC main arc

would be achieved with an also symmetric layout of the LHeC cell. Because of the service

modules, no elements can be placed in the first 6.9 m of two consecutive cells. If all cells

had the same layout, another 6.9 m would be lost in the second FODO cell. This would

result in additional unwanted synchrotron radiation losses as the energy loss in a dipole

magnet is proportional to the inverse of the length of the dipole (Eqn. 2.7). In order to

avoid this, the LHeC arc cell is a double FODO cell, symmetric in the positioning of the

quadrupoles but asymmetric in the placement of the dipoles. The final LHeC FODO cell

design is shown in Fig. 2.14 together with the standard LHC arc cell.

2.2.3.2 Main dipoles

The bending angle in the arc cells and in the dispersion suppressors (DSs) is determined by

the LHC geometry. Geometrically, the LHC DS starts at the end of the arc (E.ARC.12.B1

in Fig. 2.15) and ends at the long straight section (E.DS.L2.B1 in Fig. 2.15) and is used

as “definition” for the DS in this chapter. With this definition the LHC DS consists of two
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Figure 2.15: Optics and layout of the LHC dispersion suppressor.

cells. Applying the same conversion rule as in the arc (one LHC FODO cell corresponds

to two LHeC FODO cells), the LHeC DS would then ideally consist of 4 equal cells with

the same ratio between the LHeC DS and arc cell lengths as between the LHC DS and arc

cell. For the LHC this ratio is 2/3, leaving the following choices for the number of dipoles

in the arc and DS cell:

NDipole, arc cell =
3

2
NDipole, DS cell = 3, 6, 9, 12, 15 . . . (2.29)

A good compromise between a reasonable dipole length and optimal use of the available

space for the bending is 15 dipoles per arc cell. The dipoles are then split up in packages of

3+4+4+4 in one arc cell and 2+3 in one DS cell. With the constraint that the electron

ring should keep the same symmetry as the idealized LHC ring (see Fig. 2.13 (right)), i.e.

an eightfold symmetry, the bending angle of the main dipoles is given by

θMB =
2π

8 · (23 · 15 + 2 · 4 · 5)
. (2.30)
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2.2.3.3 Module length

Beside the bending angle, the module length of the electron ring has to be matched to

the LHC geometry taking the radial displacement into account, leading to slightly shorter

electron ring modules compared to their proton ring equivalents. All module lengths are

listed in Table 2.6.

proton ring electron ring

arc celllLength 106.9 m 106.881 m

DSL length (even Points) 172.80 m 172.78 m

DSR length (even Points) 161.60 m 161.57 m

DSL length (odd Points) 173.74 m 173.72 m

DSR length (odd Points) 162.54 m 162.51 m

Table 2.6: Proton and electron ring module lengths.

DSL=Dispersion Suppressor Left side, DSR=Dispersion Suppressor Right side

2.2.3.4 Geometric fine adjustment

As described above, the bending angle and module length have been fixed to best fit the

LHC geometry. Ideally the dipole length would be chosen as long as possible, but because

of the asymmetry of the LHeC arc cell, the dipoles have to be shortened and moved to the

right in order to fit the LHC geometry illustrated in Fig. 2.14 (top).

In the case of the dispersion suppressor the LHeC DS layout would ideally be similar to

the LHC DS layout shown in Fig. 2.15, but has to be modified in order to avoid the DFBs

in the DS region and to follow the LHC geometry. In the final design the dipoles are

placed as symmetrically as possible between the regular arrangement of the quadrupoles.

Fig. 2.16 shows the final dispersion suppressor layout.

...
DSL2 DSR2

...

DSL3 DSR3

Figure 2.16: LHeC dispersion suppressor layout. The DFBs are shown in turquoise.

(top) Even Points (bottom) Odd Points

Using the design of the different modules presented in this section, the LHeC geometry

follows almost exactly the ideal radial displacement of 61 cm in respect to the LHC and

diverts only by a few centimetres from this ideal geometry (Fig. 2.17).
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Figure 2.17: Radial distance between the LHC and the LHeC idealized ring.

2.2.4 LHeC bypasses

The current LHeC electron ring design foresees bypasses around the LHC experiments in

Point 1 and Point 5. The main requirements for both bypasses are that all integration

constraints are respected, synchrotron radiation losses are not significantly increased and

that the change in circumference can be compensated. The present ATLAS and CMS

cavern including the final bypass design highlighted in blue and green respectively are

shown in Fig. 2.18. The different bypass options studied in this thesis are discussed in

Sec. 2.2.4.1 and the final design presented in Sec. 2.2.4.2

Survey Gallery

String with 3 cryomodules

String with 3 cryomodules

Cryo-hall

Cryo-hall
RF klystron gallery

RF klystron gallery

ATLAS detector
region with 
LHeC bypasses

ATLAS bypass

CMS detector
region with 
LHeC bypassesCMS bypass

RF klystron gallery

Cryo-hall

String with 8 cryomodules

Figure 2.18: ATLAS (left) and CMS (right) cavern. The final bypass design is shown in blue and

green respectively. Pictures are taken from [10].

2.2.4.1 Bypass design

Three different options are considered as basic bypass designs with different advantages

and disadvantages

Vertical bypass: In practice only vertically upward bypasses would be feasible in respect

to integration as in the case of a vertically downward bypass the electron ring would

have to cross the LHC elements and, in addition, 1 m of solid concrete floor. A

vertically upward bypass would require a separation of about 20 to 25 m [48] and

would feature the following advantages:
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1. Vertical shafts are by a factor of 10 more expensive than horizontal tunnels

[48]. The construction of additional vertical shafts could be avoided by building

vertical bypasses and using the existing access shafts of ATLAS and CMS and

thus reduce the tunnel costs.

2. In order to fully bypass the ATLAS cavern horizontally a separation of more

than 80 m is required, while for a vertical bypass a separation of 20 to 25 m is

sufficient in both cases (ATLAS and CMS).

3. Interference with only very little of the existing LHC equipment. Especially no

crossing of the transport zone on the inside of the LHC tunnel.

and disadvantages

1. It would be necessary to remove the tunnel ceiling for several tenths of meters.

It is questionable if the tunnel stability would allow such an intervention as the

ceiling is already quite unstable in some parts of the current tunnel.

2. As the natural horizontal curvature of the ring cannot be employed, the neces-

sary separation can only be achieved by additional vertical bends. To get an

estimate for the length of such a bypass, the necessary separation of 20 to 25 m

could be achieved with 5 to 5.5 standard LHeC cells accounting for a length of

550 to 600 m (Fig. 2.19). Including 100 m of straight section just above the

cavern, the total bypass length would lie between 1.2 and 1.3 km. The long

straight section at the IP would not be sufficient to host such a bypass.
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Figure 2.19: Left half of a vertical bypass constructed out of standard LHeC cells, where the

bypass with 25 m separation is shown in red and with 20 m in blue.

The additional synchrotron radiation losses of a bypass constructed in this way

would amount to approximately 1.1-1.2 MW. The emitted synchrotron radiation

could represent a major challenge as it would increase the background in the

detector, if not sufficiently shielded.

3. Creation of vertical dispersion, which implies a dispersion suppressor for both

planes and probably a reduction of the polarization of the electron beam.
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Horizontal inner bypass: A horizontal inner bypass around ATLAS would require a

minimum separation of 39 m for a length of about 100 m, which could be in the

extreme case still reduced to 33.5 m [49]. A possible layout of a bypass with a

separation of approx. 39 m is shown in Fig. 2.20. In this version the bending angle
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Figure 2.20: Inner Bypass ATLAS with a separation of 39 m.

of the dipoles has been doubled compared to the bending angle of the standard arc

cell dipoles. The total length of the bypass is approx. 2 km with a long straight

section of around 1 km in the center. The total radiation losses amount to about

3 to 4 MW. Similar values are expected for an inner bypass around CMS, but this

option has not been studied in detail. The general advantages are

1. The increase in circumference due to an outer bypass could be compensated by

an inner bypass

2. The bypass is completely decoupled from the LHC and would allow an almost

complete construction during LHC operation.

3. One long dispersion free straight section for the installation of RF, wiggler(s)

etc.

and disadvantages:

1. The LHeC electron ring crosses the transport zone on the inner side of the LHC

tunnel for approximately 130 m.

2. The bending angle has to be increased, causing additional and harder syn-

chrotron radiation losses. Furthermore, the direction of the synchrotron radia-

tion is tangential to the beam direction and would therefore be emitted in the

direction of the LHC tunnel.

Horizontal outer bypass: A horizontal outer bypass can be either constructed with

additional bends in the same way as a vertical bypass or by inserting a straight

section in the arc and using the existing curvature of the ring to obtain the necessary

separation [50]. In this thesis, only the latter case with no additional bends has been

studied as the necessary separation could be achieved with this method. The design

without extra bends has the following advantages:
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1. No crossing of the transport zone on the inside of the LHC tunnel.

2. No additional synchrotron radiation losses and no radiation emitted in the di-

rection of the detector.

3. Dispersion free straight sections for the installation of RF, wiggler(s) etc.

and disadvantages:

1. Long bypasses due to the small bending angle.

2. Opening of the outer tunnel wall over several tenths of meters.

The cavern in Point 1 reaches far to the outside of the LHC, so that a separation of about

100 m would be necessary in order to fully bypass the experimental hall and therefore does

not represent a feasible option. A detailed integration study [49], [51] revealed that it is

possible to use the existing survey gallery shown in Fig. 2.18 (left), to reduce the separation

to 16.25 m. For a bypass on the inside, a separation of about 39 m would be required,

resulting in a bypass length of more than 2 km length. Therefore the outer bypass through

the survey gallery represents the best option for Point 1. Due to the compact design of

the cavern in Point 5, a separation of only about 20 m is needed to completely bypass the

experiment on the outside. The separation in the case of an inner horizontal bypass or a

vertical bypass would be the same or larger and therefore the horizontal outer bypass is

also the preferred option.

2.2.4.2 Final bypass design and adjustment of the ring circumference

Both bypasses in Point 1 and Point 5 require approximately the same separation, explicitly

16.25 m in Point 1 and 20 m in Point 5 [49], [51]. To obtain the necessary separation ∆BP a

straight section of length sBP is inserted into the lattice of the idealized ring (see Sec. 2.2.3)

in front of the last two arc cells. The separation ∆BP, the remaining angle θBP and the

inserted straight section sBP are related by (Fig. 2.21):

∆BP = sBP sin θBP . (2.31)

As indicated in Fig. 2.21, the separation could be increased by inserting an S-shaped

chicane including negative bends. The advantage of additional bends would be a possible

arc

invertedbend

straight

normalbend

∆BP sBP

xBP

θBP

Figure 2.21: Horizontal outer bypass: a straight section is inserted to obtain the required sepa-

ration. The separation can be increased by inserting inverted bends.
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reduction of the bypass length and a faster separation of the electron and proton ring.

On the other hand, the additional bends would need to be placed in the LHC tunnel, the

straight sections of the bypass would be reduced and the synchrotron radiation produced

by these bends would be emitted in the direction of the LHC tunnel. One could now

consider shortening the bypass by inserting the straight section just one arc cell before

the end of the arc and using negative bends to obtain the necessary separation, but the

reduction of the bypass length is only a couple of 100 m and does not make up for the

considerably shorter straight sections which are needed for the installation of additional

equipment.

In summary, both bypasses can be constructed by inserting a straight section of the right

length two arc cells before the end of the arc. The angle θBP is then just given by the total

angle over the two arc cells plus the angle of the dispersion suppressor, explicitly

θBP = ( 2 · 15︸ ︷︷ ︸
2 arc cells

+ 20︸︷︷︸
dispersion suppressor

) · θMB , (2.32)

where θMB is the bending angle of the LHeC dipoles. As both bypasses are outer by-

passes, the only possibility to compensate the resulting increase in circumference is a

radial displacement of the electron ring to the inside of the LHC (Sec. 2.2.2). Given the

separation ∆BP, angle θBP and length of the inserted straight section sBP, the induced

change in circumference is just the difference between sBP and xBP, given by

∆sBP = sBP − xBP
(2.31)

= 2∆BP tan (
θBP

2
) . (2.33)

As for both bypasses the straight section is inserted at the same position in the arc, the

total change in circumference from both bypasses is

∆sBP,tot = ∆sBP,IP1 + ∆sBP,IP5
(2.33)

= 2(∆BP,IP1 + ∆BP,IP5) tan (
θBP

2
) , (2.34)

and can be compensated by a change in radius ∆R of the idealised ring by

∆sBP,tot = 2π∆R . (2.35)

Taking the change in radius into account, the separation ∆BP has to be substituted by

∆BP,tot := ∆BP + ∆R. The radius change and the total separation are then related by

∆R =
∆BP

π cot
(
θBP

2

)
− 2

, with ∆BP = ∆BP,IP1 + ∆BP,IP5 , (2.36)

yielding an ideal radius change of the idealized ring of

∆Rideal ≈ 61 cm (2.37)

According to this reference, the idealized ring described in the preceding section Sec. 2.2.3

has been designed. As it is very difficult to obtain exactly this radius change at all

positions of the ring, the idealized ring only follows approximately the reference value

of 61 cm and the circumference increase of the bypasses is not precisely compensated.

The fine adjustment of the circumference is then performed by changing the length of
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Point 1 Point 5

total bypass length 1303.3 m 1303.7 m

separation ∆BP 16.25 m 20.56 m

dispersion free straight section 2(sBP + xBP) 172 m 297 m

ideal radius change of the idealised ring ∆R 61 cm

Table 2.7: Lengths characterising the bypasses.

the inserted straight section of the bypass in Point 5, where the necessary change can be

calculated with Eqn. 2.33. Point 5 is chosen for the adjustment, as the bypass in Point 1

passes through the existing survey gallery fixing its geometry and thereby the separation.

The final values for both bypasses are summarized in Table 2.7 and the geometry shown

in Fig. 2.22.
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Figure 2.22: Final bypass design: The LHC proton ring is shown in black, the electron ring in red

and the tunnel walls in blue. Dispersion free sections reserved for the installation of

RF, wiggler(s), injection and other equipment are marked in light blue. Beginning

and end of the bypass are marked with S.BP and E.BP.

(left) Bypass around Point 1 using the survey gallery. The injection is marked in

green and is located in the right arc of the bypass.

(right) Bypass around Point 5. The cavern is completely bypassed.

2.3 Layout and Linear Optics

The optics of the electron ring lattice are strongly influenced by the geometrical constraints

and the shortage of space in the LHC tunnel. The main interference with the LHC beside

Point 1 and Point 5, which have to be bypassed, are the QRL service modules and DFBs

in the tunnel, where no electron ring elements can be placed. The complete optics, which

has been developed in the framework of this thesis except the interaction region optics

at Point 2, consists of different building blocks, addressed in the corresponding sections:

Sec. 2.3.1 describes the arc cell optics, Sec. 2.3.2 the insertion optics - except Point 2 which

hosts the interaction region with a dedicated optics design (for the optics see [10]) - and

Sec. 2.3.3 the bypass optics.
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Furthermore, in order to facilitate the matching of the naturally flat electron beam to the

round proton beam, the design parameters defined in the LHeC CDR [10] assume a fully

coupled electron ring, leading to an emittance ratio of

κ =
εy
εx

= 0.5 (2.38)

Different possibilities to create the coupling and match the beamsize of electron and proton

beam at the IP are described in Sec. 2.4.3. In order to get an estimate for the emittances

in the case of a fully coupled ring, but using only the optics of the uncoupled lattice,

Eqn. 1.69 is used in this section:

εx =
ε0xJx
Jx + κ

, εy =
ε0xJxκ

Jx + κ
with κ =

εy
εx
, (2.39)

where εi are the emittances in the coupled and ε0i the emittances in the uncoupled case.

Note that this equation is only valid under the assumption of a vanishing vertical emittance

in the uncoupled case (ε0y = 0), no vertical dispersion in both cases (Dy = Dy0 = 0) and

no change of the horizontal damping partition (Jx = J0x).

2.3.1 Arc cell

As pointed out in Sec. 2.2.3.1, the LHeC arc cell length has to be a multiple or sub-multiple

of the LHC FODO cell length in order to find a periodic optics solution respecting the non-

interference constraint with the LHC QRL service modules. Furthermore, the synchrotron

radiation losses and emittance of the electron beam are mainly determined by the choice

of the arc cells representing the major part of the whole ring with dipoles and therefore

non-vanishing dispersion.

As basic arc cell design a FODO cell has been chosen, as it features a high dipole filling

factor compared to other standard cells like DBA or TME, and thus minimizes the syn-

chrotron radiation losses, considered to be more crucial than a smaller emittance for which

other cells like the DBA or TME cell are optimized. The horizontal emittance of a FODO

cell is approximately given by Eqn. A.11 [14]

εx(Jx) =
(2− 3

2 sin2 (φ2 ) + 1
15 sin4 (φ2 ))

sin2 (φ2 ) sinφ

θ3

Jx
, (2.40)

and depends on the phase advance and bending angle of the dipoles and the horizontal

damping partition, which as a first step is set fixed. In order to ensure the closure of the

ring, the total dipole bending angle must equal 2π and thereby relates the total number

of cells Narccell to the dipole bending angle θ, i.e.

θ =
2π

2 ·Narccell
. (2.41)

Consequently the emittance decreases with the number of arc cells. Independent of the cell

length, the minimum emittance is reached for a phase advance of 136◦ (see Appendix A).

In the case of the LHeC, a FODO cell length equal to the LHC FODO cell length leads

to a too large emittance, as the minimum reachable emittance is εx(κ = 0.5) = 9.29 nm,

assuming the conditions delivering the smallest emittance, explicitly as long as possible
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Figure 2.23: (left) Layout and optics of a LHeC arc cell with the same cell length as the LHC

FODO cell (LFODOcell ≈ LFODO, LHC = 106.9 m) and a phase advance of φx/y =

136◦/136◦ delivering the smallest possible emittance for this cell.

(right) Final LHeC arc cell layout and optics with LFODOcell ≈ LFODO, LHC

2 = 53.45 m

and a phase advance of φx/y = 90◦/60◦.

dipoles, a phase advance of φ = 136◦ and Jx = 2. The optics and layout of this cell are

shown in Fig. 2.23 (left).

Taking half the LHC FODO cell length as LHeC FODO cell length delivers a horizontal

emittance which is slightly smaller than the design emittance of εx = 5 nm including

the effect of coupling and assuming realistic parameters, explicitly Jx = 1.5 and φx/y =

90◦/60◦. Thus, half the LHC FODO cell length has been chosen as LHeC FODO cell

length. All parameters of the final LHeC arc cell are summarized in Table 2.8 and the

optics and layout are shown in Fig. 2.23 (right).

cell length 106.881 m

dipole fill factor4 0.75

phase advance per cell 180◦/120◦

damping partition Jx/Jy/Je 1.5/1/1.5

horizontal emittance εx0 5.79 nm

horizontal emittance εx(κ = 0.5) 4.34 nm

vertical emittance εy(κ = 0.5) 2.17 nm

Table 2.8: Optics parameters of one LHeC arc cell with a phase advance of 90◦/60◦ per FODO

cell.

The dipole configuration of the LHeC arc cell is optimized to follow the LHC geometry as

close as possible, leave enough space for the QRL service module at the beginning of each

arc cell and still reach the highest achievable dipole filling factor under these conditions

in order to minimize synchrotron radiation losses. It is not optimized for the smallest

emittance, which would be achieved if the dipoles were moved as close as possible to the

defocusing quadrupoles and the dipole length increased to fill the entire available space.

4The dipole fill factor is defined as Ldipoles/Lcell, where Ldipoles is the length of all dipoles in the cell,

i.e. in the case of a FODO cell it is two times the length of one dipole.
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The phase advance of 90◦/60◦ per FODO cell, hence 180◦/120◦ per arc cell, has been

chosen based on LEP experience and is considered to be very stable5. Again, the smallest

emittance would theoretically be reached for a phase advance of 136◦ in both planes.

Last but not least, the damping partition has been chosen to minimize the aperture in

the focusing quadrupoles for the uncoupled lattice resulting in a Jx of approximately 1.5.

In the case of a ratio of κ = 0.5, the minimum aperture requirements for the focusing

quadrupole would be reached for Jx = 1.31. This is illustrated in Fig. 2.24, which shows

the beam size in the focusing and defocusing quadrupole versus the horizontal damping

partition Jx for κ = 0 and κ = 0.5. Note that as the focusing and defocusing quadrupoles

are built with the same circular aperture in most cases and the horizontal beam size is in

general larger than the vertical, due to the non-vanishing dispersion in the horizontal plane,

it is important to optimize the beam size at the focusing quadrupole where the horizontal

beam size takes its maximum. Though in the case of strong coupling and furthermore

large vertical dispersion, this choice of damping partition would have to be reconsidered.
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Figure 2.24: Horizontal beam size at the focusing quadrupole of the LHeC arc cell (left) and

vertical beam size of the defocusing quadrupole of the LHeC arc cell (right) versus

the horizontal damping partition Jx for two different emittance ratios κ = 0 and

κ = 0.5.

2.3.2 Insertions

Going back to the design of the LEP tunnel, all even and odd insertions respectively have

the same length (see Sec. 2.2.1). For a proof of principle, a dispersion suppressor for the

insertion in Point 2, representative for all even, and a dispersion suppressor in Point 3,

5The LEP orbit correction system and chromaticity correction scheme has originally been designed for

a rather conservative phase advance of 60◦/60◦ per arc cell. At a later stage, the phase advance has been

changed to 90◦ in the horizontal in order to decrease the emittance and thus increase the luminosity. This

change in phase advance led to a worse orbit correction, due to the not optimal phase advance between

the BPMs whose positions had been optimized for 60◦. That the BPM system was under-sampled anyway

in LEP was also not helping the situation. Furthermore, the dynamic aperture was worse for a 90◦ phase

advance, due to larger Hamiltonian driving terms arising from the incomplete sextupole families for a

correction scheme adjusted to 90◦ phase advance. A compromise between the design optics with a pure

60◦/60◦ phase advance and a 90◦/90◦ optics were the 90◦/60◦ which were in the end a very stable optics

[52], [53]. For the LHeC with a sextupole scheme still free to chose and orbit correction system this might

not be the optimal choice and should be reconsidered.
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representative for all odd points, has been designed. The Long Straight Section (LSS) in

each insertion has been filled with a simple FODO lattice with a phase advance of 90◦/60◦.

In a later phase of the project a detailed design of each insertion would have to be done

avoiding all LHC equipment.
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Figure 2.25: (left) Even insertions optics. (right) Odd insertion optics.

The insertion layout and optics of all even Points are shown in Fig. 2.25 (left) and of all

odd Points in Fig. 2.25 (right). The dispersion suppressors for the even and odd insertions

differ slightly in their length but have the same general layout. The dipole positions are

optimized to allow for a placement as regular as possible of the 8 matching quadrupoles

and to follow the LHC geometry as closely as possible. The Dispersion Suppressor on

the Left side (DSL) is split into two dispersion suppressor sections, reaching from the

first DFB to the second DFB and from the second to the beginning of the Long Straight

Section (LSS). The quadrupoles are distributed equally in each section. In the case of the

Dispersion Suppressor on the Right side (DSR), the quadrupoles are placed within equal

distance from each other throughout the complete dispersion suppressor. This layout

turned out to be better for the right side, due to the different arrangement of the DFBs.

The dispersion is matched in all cases using 8 individual quadrupoles for the 8 degrees

of freedom (βx/y, αx,y, Dx, D
′
x). Well known standard dispersion suppressor schemes like

the missing bend or half bend scheme could not be applied to the LHeC due to the fixed

placement of the dipoles which is not in agreement with any of these schemes.

2.3.3 Bypasses

The bypasses are constructed geometrically by inserting a straight section into the idealized

ring two arc cells in front of the end of the arc (Sec. 2.2.4.2). It is intended to install the RF

cavities and wigglers as well as the injection and dump area in the long straight sections of

the bypasses, all requiring dispersion free straight sections. Therefore, the dispersion has

to be suppressed with dedicated dispersion suppressors on the left and right side of each

straight section.

The resulting layout and chosen nomenclature are illustrated in Fig. 2.26. As dispersion

suppressors for the straight section right after the arc (DSLSSL and DSLSSR) the last two

arc cells are used, providing exactly the required 8 individual quadrupoles for matching

the 8 optics parameters βx/y, αx,y, Dx, D
′
x. In the sections TLIR and TRIR, the same

configuration of dipoles as in the idealised ring lattice is kept for geometric reasons. Among
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Figure 2.26: Bypass nomenclature: The straight sections are named Long Straight Section Left

side (LSSL), Interaction Region (IR) - for the straight section parallel to the in-

teraction region of the LHC - and Long Straight Section Right side (LSSR) and

are marked in red. The dispersion suppressor sections are Dispersion Suppressor of

LSSL (DSLSSL), Transfer line Left of IR (TLIR), Transfer line Right of IR (TRIR)

and Dispersion Suppressor of LSSR (DSLSSR) and are indicated in blue.

this fixed arrangement of dipoles, 14 matching quadrupoles per side are placed as equally

spaced as possible providing enough knobs to match the twiss functions and dispersion

from one dispersion free section to the next. As in the case of the insertions, the straight

sections are filled with a 90◦/60◦ FODO cell lattice. The complete bypass optics in Point 1

and Point 5 are shown in Fig. 2.27.
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Figure 2.27: Bypass optics Point 1 (left) and Point 5 (right).

2.4 Beam Dynamics

In this section different beam dynamical aspects investigated in the framework of this

thesis and relevant for the LHeC are presented. Sec. 2.4.1 gives a motivation for the

LHeC working point used in this thesis, Sec. 2.4.2 describes a possibility to correct the

chromaticity and off-momentum beta-beating, Sec. 2.4.3 discusses different possibilities of

matching the flat electron beam to the round proton beam and the last section, Sec. 2.4.4

estimates the effect of the circumference errors on the damping partition and a possibility

to correct small circumference errors.
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2.4.1 Beam-beam effects and working point adjustment

The beam stability and performance of every circular accelerator strongly depends on its

working point which has to be chosen with great care and the optimization of which is in

most machines never finished as it influences the machine performance in many different

ways. Therefore, only a rough guess of a good working point is given in this chapter

based on the resonance diagram, the detuning of amplitude and the dynamic-beta due to

beam-beam effects. Furthermore, only the HA option is considered, but the results can in

general be almost directly transferred to the HL option.
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Figure 2.28: Resonance diagram for the LHeC HA option up to 4th order. The first two syn-

chrotron sidebands of the integer resonance are indicated in green. Solid lines

correspond to resonances associated with normal multipoles and dashed lines to

resonances associated with skew multipoles. The detuning with amplitude due to

head-on beam-beam is shown in black. Large amplitude particles experience the

smallest tune-shift and small amplitude particles (the core of the beam) the largest

tune-shift. The working point of Qx/Qy = 123.155/83.123 is indicated by a black

dot.

The LHeC lattice, including the bypasses and the single interaction region, has no sym-

metries and thus all resonances are systematic. The detuning with amplitude and the re-

sulting tune-spread due to beam-beam effects can be expressed analytically by Eqn. 1.130.

Fig. 2.28 shows a possible working point for the LHeC of Qx/Qy = 123.155/83.123, which

lies close to the linear coupling resonance. Taking only resonances up to 4th order into

account, the full tune-spread due to head-on beam-beam can be accommodated in the

resonance line free area close to the diagonal. The first and second synchrotron sidebands

of the integer resonance are indicated in blue. For the chosen working point the first

synchrotron sideband is avoided, but the second synchrotron sideband is crossed by high

amplitude particles.

Furthermore, the tune is placed below the diagonal in order not to drive the resonance

2Qx − 2Qy = m (2.42)



70 2. LHeC Ring-Ring Option

which can be excited by the octupole component of the beam-beam force [54]6.

The working points of lepton colliders are often optimized to explore the increase in lu-

minosity due to the dynamic beta effect (Sec. 1.7.4.3). The dynamic beta, emittance

and beam size depend on the tune Q0 and incoherent beam-beam tune-shift ∆ν0. The

dependence on the tune is shown in Fig. 2.29 for the case of the LHeC HA option

with an incoherent beam-beam tune-shift of ∆ν0,x/y = 0.086. The working point of

Qx/Qy = 123.155/83.123 is indicated by a red dashed line. For this choice of working
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Figure 2.29: Horizontal (left) and vertical (right) dynamic beta, emittance and beam size for

the HA option with an incoherent beam-beam tune-shift of ∆ν0,x/y = 0.086. The

working point of Qx/Qy = 123.155/83.123 is indicated as dashed red line.

point, the beta-function, emittance and consequently beam size at the IP only decrease

slightly and the luminosity could be hence increased by moving the working point towards

the integer or half integer resonance assuming the beam is still stable for this choice of

working point. Note that in the current treatment of the dynamic beta effect, the effect

of coupling necessary to match the beam spot size of proton and electron beam at the IP,

is not considered, and could change the development of all three parameters.

2.4.2 Correction of chromatic aberrations

The theoretical background of the correction of chromatic aberrations in large colliders is

summarized in Appendix C. In this section, the correction schemes for the LHeC developed

in the framework of this thesis will be presented.

In order to design a suited correction scheme, the sections of the ring inducing the largest

chromatic error have first to be identified. A measure for the induced chromatic error is

the natural chromaticity, and the contributions to the same of the eight insertions for the

HA and the HL option are listed in Table 2.9. In general, a relatively large contribution

is expected from the low-beta insertion located at IR2 in the case of the LHeC due to the

high beta-function at the strong final focus magnets. This is only the case for the vertical

6The resonance 2Qx − 2Qy = 0 is known in connection with space-charge dominated machines as

Montague resonance and the theory developed in this context has been applied to beam-beam effects in

[54]. In the tune range considered for the LHeC higher orders of this resonance fulfilling the condition

2Qx − 2Qy = ±2q0 could be excited where q0 is the integer part of the tune split. In order not to excite

this resonance and under the assumption of equal linear beam-beam tune-shifts in the two planes, a working

point below the diagonal should be chosen.



2.4. Beam Dynamics 71

HA HL

IR 1 6.9/5.5 6.5/6.1

IR 2 5.2/18.3 9.9/9.3

IR 3/7 3.2/2.7 3.1/3.1

IR 4/6/8 3.2/2.7 3.0/3.0

IR 5 7.0/5.7 6.7/6.4

Table 2.9: Relative contribution of the insertions to the natural chromaticity multiplied by a

factor 100 , i.e.
dQx/y

dQx/y,tot
· 100, for the HA option with a total natural chromaticity

of −(144.1/136.2) and the HL option with −(151.8/122.8).

plane of the HA option, which can be explained by having a look at the optics of the

interaction region shown in Fig. 2.30.
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Figure 2.30: Optics of the HL option (left) and HA option (right).

In the case of the HL option (Fig. 2.30 (left)), the final focus magnets are located so close

to the interaction region that the beta-function in the final focus triplet is very moderate in

both planes. This leads to only a slightly higher contribution to the natural chromaticity

compared to the other insertions and the resulting, rather equal distribution of the sources

of chromatic errors, suggests a global correction of the chromatic aberrations where even

an unsophisticated scheme with only two sextupole families could already be sufficient. In

the framework of this thesis only the more challenging HA option has been studied. It is

expected that the results obtained for this option represent a worst case scenario of the

chromatic correction in the case of the HL option.

The HA option (Fig. 2.30 (right) and also previously Fig. 2.9 (left)), which is the option

chosen for the CDR, has a QF-QD doublet in order to minimize the synchrotron radiation

losses in the interaction region [10]. This choice and the small distance to the IP of only

6.2 m result in a horizontal beta-function in the final focus QF which is even smaller than

in the following long straight section and explains the small contribution to the natural

chromaticity in the horizontal plane. In the case of the vertical plane, the smaller β∗ and

the larger distance to the IP lead to the high beta-function in the final focus QD typical

for low-beta insertions and suggests a local correction with the two adjacent arcs described

in Sec. 2.4.2.1. In order to test if the local correction indeed improves the correction of the

chromatic aberrations, a global correction scheme has also been studied and a comparison

of the two schemes is presented in Sec. 2.4.2.2
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2.4.2.1 LHeC chromaticity correction scheme

As described in Appendix C the off-momentum beta-beating and thus second order chro-

maticity can be corrected by using several sextupole families, where the number of families

is determined by Eqn. C.15, and each family has to contain an even number of sextupoles

in order to minimize the geometric aberrations. In the case of the LHeC arc cell, which

is a double FODO cell with a phase advance of 90◦/60◦ per FODO cell, the condition of

Eqn. C.15 is fulfilled for two families in the horizontal and three in the vertical plane. The

second condition of an even number of sextupoles per family yields that the number of

arc cells, thus double FODO cells, containing sextupoles has to be divisible by 2 and 3.

As the standard LHeC contains 23 arc cells and the arcs next to the bypasses only 19 arc

cells the latter condition can be fulfilled in two different ways

• Option 1: not placing sextupoles in all arc cells

• Option 2: also placing sextupoles in the dispersion suppressor

A possible scheme using Option 1 is sketched in Fig. 2.31 (left) and using Option 2 in

Fig. 2.31 (right).
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Figure 2.31: Chromaticity correction scheme for the LHeC.

(left) Option 1: sextupoles are only placed in the arcs.

(right) Option 2: sextupoles are also placed in the dispersion suppressor.

In general, it is considered to be better to place additional sextupoles in the dispersion

suppressors and thus reduce the sextupole strength [55]. Therefore Option 2 has been

chosen as the correction scheme for the LHeC. The downside of this choice is that the

sextupoles in the dispersion suppressor are not exactly in phase with the other family

members and have a stronger or weaker chromatic effect respectively due to the changed

dispersion and Twiss function. This could increase the geometric aberrations, as not all

sextupoles will have an exactly compensating partner and reduce the effectiveness of the

scheme due to phase errors (Appendix C.3).

In the current scheme, the horizontal sextupole families are not completed in the arcs next

to the bypasses, as it was considered to be more important to reduce the sextupole strength

of the vertically focusing sextupoles by placing sextupoles in the dispersion suppressors



2.4. Beam Dynamics 73

next to the bypasses - especially of the ones in the arc adjacent to the low-beta insertion -

than to complete the families in the horizontal plane. This choice could increase the

chromatic aberrations in addition, and in case the correction scheme turns out to be

dynamically unstable, one would have to revise this choice.

For the local compensation of the low-beta insertion located at Point 2, the two adjacent

arcs are used. This leads to a total number of 15 sextupole families, 5 families in the arc

left of IP2 (Arc 1) and 5 in the arc right of IP2 (Arc 2) and 5 in the rest of the ring,

explicitly in Arc 3 to 8.

2.4.2.2 Matching the chromaticity correction scheme

The first step in matching a correction scheme, including the local correction7 of a low-beta

insertion, is to obtain suited starting values for the sextupole strengths. As described in

Appendix C.2, the beta-beating is corrected by an up and down powering of the different

sextupole families, where the sextupole strength, needed to correct the natural chromatic-

ity, serves as reference value. This value is obtained by matching the natural chromaticity

while the same strength is assigned to all focusing and defocusing sextupoles respectively.

The next step is the local correction of the low-beta insertion at IP2 with the sextupoles

in the two adjacent arcs. For the most efficient correction, the phase advance φ between

the first sextupole of the correcting family and the IP has to be 2φ = 0 mod[π], where the

effect of phase errors is not taken into account. In the horizontal plane, this condition must

be already fulfilled for the first sextupole family, as then all following horizontally focusing

sextupoles add up coherently due to the phase advance of π
2 per FODO cell (Eqn. C.20).

In the vertical plane, with a phase advance of π
3 , the sextupole family, of which the first

member has a phase advance φ closest to 2φ = 0 mod[π], is chosen as correcting family

(Eqn. C.22). As a first step of the actual matching of the local correction scheme, the phase

advance is adjusted to the required 2φ = 0 mod[π], using a symplectic transfer matrix -

referred to as “phasor” in this thesis - which changes only the phase advance but leaves

all Twiss functions and the dispersion unchanged (Appendix B). The applied change in

phase advance induces an unwanted change of the tune, which can be compensated in two

different ways:

• Option A: changing the phase advance of the arc cells

• Option B: changing the phase advance of another insertion

Changing the phase advance of the arc cells would lead to a phase error which could

reduce the efficiency of the correction scheme as discussed in Appendix C.3. Therefore,

Option B is the more suited option. The easiest implementation is to change the phase

advance of the FODO cells in the straight sections of IR3 and IR7, where IR3 and IR7

have been chosen, as Point 3 and Point 7 do not host an LHC experiment which needs

to be bypassed. Furthermore, they lie opposite each other and thus change the optics

symmetrically. As an actual change of the phase advance of the FODO cells would entail a

7In this context the term “local” is used for the correction of the beta-beating, originating from the

low-beta insertion, with the sextupoles located in the two adjacent arcs. The term global refers to the

correction of the beta-beating with all sextupoles in the ring.
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rematch of the dispersion suppressors, the phase advance is also at first artificially changed

with the phasor.

Until now, suitable initial conditions have been set for the sextupole strengths and phase

advance constraints, but no actual matching performed. In a first matching step, the W -

function (Eqn. C.12), being a measure for the off-momentum beta-beating, is matched to

0 at IP2 and IP1 and IP3 respectively, using the sextupole strength of the compensating

family and the phase advance φL/R between the first family member and the IP as free

parameters8. With this condition, the off-momentum beta-beating created by the low-

beta insertion at IP2 is, as wanted, compensated by the sextupoles of the two adjacent

arcs. Ideally, the beta-beating would be corrected by an up and down powering of the

sextupoles, which would not change the linear chromaticity. In practice, the linear chro-

maticity changes slightly, because the matched sextupole strengths differ from the ideal

ones. The difference between the ideal and the actual sextupole strength, and the resulting

change of the linear chromaticity, is generated by the distortion caused by the sextupoles

of one plane on the correction of the other plane and the effect of the sextupoles in the dis-

persion suppressors, which are not exactly in phase with the other members of their family

and have, in addition, other Twiss and dispersion values. Furthermore, the beta-beating

is not corrected in the rest of the ring, which yields a non-zero W -function at IP2, if the

W -function is calculated for the complete ring and not just for the section from IP1 over

IP2 to IP3. Therefore, in another matching step, using all 15 sextupole families and the

phase advance φL/R as free parameters, the W -function is matched to 0 at IP2 and IP1

and IP3 respectively and, in addition, the linear chromaticity matched to Q′x/y = 2. This,

for now last step, leads to an optics as wanted, i.e. an optics with a local correction of the

low-beta insertion, no change of the tune and an adjustment of the linear chromaticity to

Q′x/y = 2, but it still contains the artificial phasor element. As a next step, the phasor

is removed and the optics rematched to the phase advances obtained for the lattice in-

cluding the phasor. For the left and right side of IR2 the phase advance φL/R is matched

by rematching the long straight section and the dispersion suppressor of the interaction

region. In IR3 and IR7, the phase advance of the FODO cells is rematched, followed by

a rematch of the dispersion suppressor and a final match of the complete insertion to the

desired phase advance values. As the rematch of IR1, IR2 and IR3 slightly changes the

Twiss parameters compared to the initial optics, the complete lattice is rematched in a

final last step with the constraints W (IP2) = W (IP3) = W (IP1) = 0 and Q′x/y = 2, using

the strength of all 15 sextupole families as free parameters, where the strength values

obtained for the optics including the phasor are taken as initial values. The detour of the

optics including the phasor is taken, as it is usually quite time consuming to rematch an

insertion. With the phasor, values for the phase advance can be obtained and also starting

values for the strength of the sextupoles, which are very close to the final values. Both are

important for a successful final matching.

8The matching constraint of Wx/y(IP1/IP3) = 0 could also be substituted by Wx/y(P) = 0 of any other

point P in the lattice which lies closely before the first sextupole of Arc 1 and after the last sextupole of

Arc 2 respectively.
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2.4.2.3 Comparison of the local correction with global correction schemes

In order to be able to judge if the local correction of the low-beta insertion improves

the momentum-dependence of the lattice, the local correction scheme is compared to a

global correction scheme. As reference for a global correction scheme, the lattice with the

minimum number of sextupole families fulfilling the condition Eqn. C.15, which is necessary

for a global beta-beating correction, has been used, i.e. 5 sextupole families - two horizontal

and three vertical. The higher order chromaticities of this lattice have been calculated by

the normal form analysis available in PTC and afterwards matched with MAD-X, first

to Q′x,y = 2, then to Q′x,y = 2, Q′′x,y = 0 and last to Q′x,y = 2, Q′′x,y = 0, Q′′′y = 0 taking

advantage of the 5 free parameters. As the vertical plane is more challenging, Q′′′y has

been matched to 0 instead of Q′′′x . The sextupole strengths obtained for all four correction

schemes are compiled in Table 2.10.

local correction Q′′x = Q′′y = 2 Q′′x = Q′′y = 0 Q′′′y = 0

mSF1
[1/m2] 0.449/0.474/0.409 0.453 0.433 0.433

mSF2
[1/m2] 0.445/0.632/0.472 0.453 0.477 0.478

mSD1
[1/m2] -0.478/-0.980/-0.390 -0.445 -0.390 -0.250

mSD2
[1/m2] -0.402/-0.442/-0.377 -0.445 -0.528 -0.524

mSD3
[1/m2] -1.032/-0.430/-0.387 -0.445 -0.415 -0.559

Table 2.10: Normalized sextupole strengths for the four different correction schemes. The hori-

zontally focusing sextupoles have a length of LSF = 0.35 m and the vertically focusing

sextupoles a length of LSD
= 0.6 m. In the case of the local correction scheme, the

first value denotes the strength of the 5 sextupole families in Arc1, the second in

Arc2 and the third the one of the sextupoles in the rest of the ring.

In order to see the effect of the local correction, the W -function for all four cases is

compared in Fig. 2.32. In the horizontal plane, the W -function is globally reduced by the

0 5000 10 000 15 000 20 000 25 000
0

20

40

60

80

100

120

s m

W
x

Q'xQ'y2, Q''xQ''yQ'''y0
Q'xQ'y2, Q''xQ''y0
Q'xQ'y2
local correction

0 5000 10 000 15 000 20 000 25 000
0

50

100

150

200

250

s m

W
y

Q'xQ'y2, Q''xQ''yQ'''y0
Q'xQ'y2, Q''xQ''y0
Q'xQ'y2
local correction

Figure 2.32: Horizonal (left) and vertical (right) W -function for all four correction schemes. IP2

is located at s = 0.

local correction, but does not show the typical strong decrease in the arcs adjacent to the

low-beta insertion. This result is not surprising, as in the case of the horizontal plane, the

chromatic contribution of the low-beta insertion lies in the same range as for the other

insertions. In addition, the horizontal beta-function in the final focus doublet is not higher

than in the following long straight section so that the chromatic error is not localized to
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the final focus magnets, but distributed over the complete insertion as it is also the case

for the other insertions. In the vertical plane, the local correction considerably reduces the

W -function globally except in the two arcs adjacent to the IP. As expected, the W -function

is decreased there in steps to almost 0. In contrast, the global correction schemes show a

high W -function over the complete lattice. Furthermore, the variation of the W -function

increases in the case of a global correction of Q′′x/y and even more in the case of a correction

of Q′′′y , as the correction of the higher order chromaticities is mainly achieved by a change

of the off-momentum beta-beating and thus the W -function. At last, as only in the case

of the local correction the W -function has been matched to 0 at the interaction point IP2,

it also only vanishes in this case. This leads to a weaker momentum dependence of the
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Figure 2.33: Horizonal (left) and vertical (right) β∗ at IP2. The Twiss parameters are calculated

with PTC as MAD-X might not deliver correct results for large momentum devia-

tions. Ideally, the beta-function would be independent of the momentum deviation,

which is indicated by a black line.

beta-function at the IP in the case of the local correction which is illustrated in Fig. 2.33.

Again, the improvement is much larger in the vertical plane where, as mentioned before,

the off-momentum beta-beating of the low-beta insertion is successfully corrected with the

two adjacent arcs, while in the horizontal plane, the local correction mainly consists of the

vanishing W -function at the IP.
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results for large momentum deviations. Ideally, the chromaticity would be linear

with Q′x/y = 2, which is indicated by a black line.
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In addition to the direct effect of the local correction on the off-momentum beta-beating,

the correction should also, according to Eqn. C.8, theoretically reduce the dependence

of the tune on the momentum, explicitly it should lead to a reduction of the second or-

der chromaticity. The dependence of the tune on the momentum for all four correction

schemes is shown in Fig. 2.34. The local correction scheme shows, as expected, an al-

most linear dependence of the tune on the momentum up to momenta almost as large as

10 times the rms momentum spread. Comparing the correction of only Q′
x,y = 2 with

Q′
x,y = 2, Q′′

x,y = 0, the second order term is corrected in trade of a third order term in the

vertical plane. Similarly, the correction of the third order vertical chromaticity Q′′′
y = 0

leads to the appearance of a stronger fourth order term.

Comparing the sextupole strengths of the different correction schemes (Table 2.10), the

correction of the higher order chromaticities requires an increase of the sextupole strength

of certain families, which could lead to a stronger detuning with amplitude. In all three

cases, the already small detuning with amplitude does not increase and even decreases
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Figure 2.35: Detuning with amplitude until second order for the four different correction schemes

and for actions Jx/y with 0 < Jx/y < 5. The anharmonicities αz,ij have been

obtained by using the normal form analysis available in PTC.
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slightly in the case of the local correction (Fig. 2.35), where terms until second order in

the horizontal and vertical action Jx/y have been considered (Eqn. 1.87)

Qz(Jx, Jy) ≈ Qz+αz,10Jx+az,01Jy+
1

2

(
αz,20J

2
x + 2αz,11JxJy + αz,02J

2
y

)
, z = x, y , (2.43)

and the anharmonicities αz,ij have been obtained using the normal form analysis imple-

mented in PTC.

At last, the dynamic aperture for on-momentum and for a momentum offset of one rms

momentum spread ± (∆p/p)rms = ±0.0012 of the four different lattices has been com-

pared in order to investigate the effect of a momentum offset on the beam stability. The

chosen stability criterion is, that the particle being tracked is not lost. The particle with

the smallest amplitude, which is lost during the tracking, then determines the dynamic

aperture. Particles with an initial amplitude of n(σx cosφ + σy sinφ) have been tracked

for 1024 turns using the tracking module of PTC and not including synchrotron radiation

effects9. The parameter n has been increased in steps of 0.1 and φ in steps of 2◦. The small
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Figure 2.36: Dynamic aperture of the four correction schemes for ∆p/p = 0.0012, ∆p/p = 0

and ∆p/p = −0.0012. The parameter n and φ define the initial amplitude a of

the particle with a = n(σx cosφ + σy sinφ). All particles have been tracked over

1024 turns. As expected, the dependence of the dynamic aperture on the momentum

is reduced by the local correction scheme.

9The dynamic aperture is expected to increase if synchrotron radiation with its damping effect is included

and thus the tracking without synchrotron radiation should deliver a lower limit on the dynamic aperture.
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number of turns of 1024 corresponds to approximately four synchrotron radiation damp-

ing times at 60 GeV and is considered to be sufficient, so that all initial oscillations are

damped after this time. The dynamic aperture of all four correction schemes is shown in

Fig. 2.36. The global correction of only the linear and second order chromaticity exhibits

a strong momentum dependence, which is then reduced in the case of the global correction

of the third order chromaticity. Compared to all three global correction schemes, the local

correction features the least momentum dependence and thus, as desired, a comparable

beam stability for on- as well as off-momentum particles. The absolute values of the dy-

namic aperture are sufficient in all cases, but decrease in the case of the local correction

and with the global correction of the higher order chromaticities. This is probably due

to the presence of one stronger sextupole family. The comparison of the absolute val-

ues should be taken with caution, as the lattices are all matched to the working point

of Qx = 123.155, Qy = 83.123 chosen in Sec. 2.4.1, which is not optimized for dynamic

aperture studies, but well enough suited to investigate the momentum dependency of the

dynamic aperture being the aim in this section.

2.4.3 Coupling and matching electron and proton beam size at the IP

Experiences from HERA show that it is essential to match the beam sizes of the proton

and electron beam at the interaction point in order to avoid a reduction of the proton beam

lifetime [37]. As the proton beam parameters are fixed by the parameters required for LHC

p-p physics, the only possibility to adjust the beam size is to change the interaction region

optics. For the current interaction region design an optics with a ratio of 4:1 between

the horizontal and vertical proton β∗, and thus horizontal and vertical beam size, has

been matched [10]. In this thesis, three different possibilities to achieve an electron beam

size matched to the proton beam size of the current interaction region design have been

studied, which are presented in the three subsections of this section. For all options, the

proton beam optics are assumed to be fixed. As electron beam optics only the HA option,

considered to be the preferred option, has been studied, whereas the same methods could

be applied to the HL option.

2.4.3.1 Global coupling in the complete ring

Global coupling can be obtained by simply introducing one skew quadrupole at any position

in the ring. If the skew quadrupole is placed in a dispersion free region, only the betatron

motion is coupled. Vertical emittance is then generated by betatron coupling in dipoles.

The placement in a region with horizontal dispersion results in coupling of the betatron as

well as dispersive part, and vertical emittance is in addition generated by vertical dispersion

in dipoles. The placement of the skew quadrupole in a dispersion free region is in general

preferable, as no change of the dispersion suppressors is required in this case. In both cases,

the Twiss parameters in the interaction region are changed due to the coupling. If the

change is unacceptably large, a coupling correction scheme or matching section including

skew quadrupoles would have to be installed around the interaction region.

As an example for the case of a skew quadrupole in a dispersion free region, one skew

quadrupole of 0.5 m length has been inserted in the long straight section of Point 2,



80 2. LHeC Ring-Ring Option

δ = 0 δ = −0.0022

kskew [1/m] 0.014 0.010

ε1 [nm] 5.8 4.1

ε2 [nm] 2.9 2.0

ε3 [µm] 5.0 7.5

J1 1.0 1.5

J2 1.0 1.2

J3 2.0 1.3

Table 2.11: Equilibrium emittances and damping partition numbers calculated with MAD-X for

the case of one skew quadrupole of 0.5 m length inserted in the dispersion free region

at Point 2 for on-momentum and off-momentum yielding J1 = 1.5.
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Figure 2.37: Ripken parameters for the case of one skew quadrupole inserted in the dispersion

free region at Point 2 for on-momentum and including synchrotron radiation.



2.4. Beam Dynamics 81

and its strength adjusted to yield a ratio of 2:1 between the equilibrium emittances εi,

defined in Eqn. E.11 of mode 1 and mode 2 respectively10. Table 2.11 summarizes the

results obtained with MAD-X for zero momentum offset δ - so on-momentum - and for

a momentum offset yielding the design value of J1 = 1.5 as set in the CDR [10]. The

second case of an adjustment to J1 = 1.5 serves to show that the damping partition and

emittance ratio can be changed by adjusting the strength of the skew quadrupole and the

momentum offset.

In the case of no synchrotron radiation and no momentum offset, no vertical dispersion

is created by the inserted skew quadrupole. Both the synchrotron radiation and the

momentum offset, result in a change of the closed-orbit and therefore, in the case of

coupling, a non-vanishing vertical dispersion. Nevertheless, the vertical dispersion due to

the changed closed-orbit is expected to be small. Exemplary Fig. 2.37 shows the Ripken

parameters [15] βkj , D1 and D3 along the ring for the case of δ = 0 and kskew = 0.014 1
m ,

including the effect of synchrotron radiation, where the index k = 1, 2, 3 of βkj refers to

the plane x, y, z and the index j = 1, 2, 3 to the eigen-mode, D1 is the horizontal and

D3 the vertical dispersion. As expected, the vertical dispersion is small compared to the

horizontal one.

As an example for the second case of a skew quadrupole in a dispersive region, one skew

quadrupole of 0.5 m length has been inserted in the section TLIR of the bypass around

Point 5. Table 2.12 summarizes the rms emittances and damping partition numbers cal-

culated with MAD-X for on-momentum and for a momentum offset yielding J1 = 1.5 and

Fig. 2.38 shows the Ripken parameters for kskew = 0.0077 1
m and on-momentum including

the effect of synchrotron radiation. For the on-momentum case J2 differs from 1.0 due

δ = 0 δ = −0.00175

kskew [1/m] 0.0077 0.0077

ε1 [nm] 6.6 4.5

ε2 [nm] 3.3 2.3

ε3 [µm] 7.0 23.5

J1 1.0 1.5

J2 1.5 2.1

J3 1.5 0.4

Table 2.12: Equilibrium emittances and damping partition numbers calculated with MAD-X for

the case of one skew quadrupole of 0.5 m length inserted in the dispersive region

TLIR of the bypass around Point 5 for on-momentum and off-momentum yielding

J1 = 1.5.

to the non-zero vertical dispersion. Furthermore, an adjustment of J1 leads to a small J3

and therefore a large emitance ε3 of the third mode. In general, the emittances are larger

than for the previous case where the skew quadrupole was located in a non-dispersive

section which can be explained by the increase of the curly H-function due to the vertical

dispersion in the dipoles.

10The emittances of mode 1 and mode 2 respectively correspond to the horizontal and vertical emittance

in the uncoupled case.
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Figure 2.38: Ripken parameters for the case of one skew quadrupole inserted in the dispersive

region TLIR of the bypass around Point 5 for on-momentum and including syn-

chrotron radiation.

2.4.3.2 Decoupled interaction region using two times four skew quadrupoles.

The adjustment of the emittances by introducing global coupling, in particular also in the

interaction region, discussed in the preceding section implies that a coupling correction or

matching section including skew quadrupoles is needed around the interaction region in

order to match the electron beam size to the proton beam size at the IP. Therefore, the

second possibility considered and presented in this section is to create coupling with skew

quadrupoles on one side of the IP (right side) and correct it on the other side (left side)

with skew quadrupoles, so that the region around the interaction point is decoupled. For

small perturbations, a correction scheme can be calculated using perturbation theory, but

as will be shown later in this section, fails for larger skew quadrupole strength necessary

to achieve the desired emittance ratio of 2:1. The theoretical background is outlined in

Appendix F.
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In first order, the difference Qx − Qy = m and the sum resonance Qx + Qy = m can

be excited. The contribution of one skew quadrupole to the sum resonance is given by

Eqn. F.8:

Ks = κie
iψi , with ψi = Φx(si) + Φy(si) , (2.44)

and to the difference resonance by Eqn. F.9

Kd = κie
iϕi , with φi = Φx(si)− Φy(si) (2.45)

with

κi =
Ni

2π
√
βx(si)βy(si)

(2.46)

and Ni the integrated quadrupole strength and Φx/y the phase advance in the horizontal

and vertical plane. The total contribution from different quadrupoles is then just given by

the sum of all contributions:

Ks =
∑
i

κie
iψi , , (2.47)

Kd =
∑
i

κie
iϕi . (2.48)

As the LHeC working point of Qx/Qy = 123.155/83.123 is placed close to the difference

resonance (Fig. 2.28), it is best to produce the required coupling with an arrangement of

skew quadrupoles, resulting in a compensation of the difference resonance and an excitation

of the sum resonance, in order to ensure the stability of the beam. This can be achieved

by four skew quadrupoles on each side of the IP grouped in two pairs, Q1/Q2 and Q3/Q4,

where each pair is orthogonal in the case of the sum resonance, i.e. ∆ψ = π/2 and

each quadrupole has a difference resonance compensating partner in the other pair i.e.

∆ϕ = n · π. If ∆ϕ = 2n · π the quadrupoles compensating each other must have opposite

strength and equal strength for ∆ϕ = (2n+1) ·π. For the LHeC, a scheme with ∆ψ = π/2

and ∆ϕ = 0 illustrated in Fig. 2.39 has been chosen, as in this case all quadrupoles could

be placed in the long straight section around IP2.

s2s1

s

s3 s4

∆ϕ = (Φx(s2)− Φy(s2))− (Φx(s1)− Φy(s1))
= (Φx(s4)− Φy(s4))− (Φx(s3)− Φy(s3))

∆ψ = (Φx(s2) + Φy(s2))− (Φx(s1) + Φy(s1))
= (Φx(s4) + Φy(s4))− (Φx(s3) + Φy(s3))

∆ϕ = 0

∆ψ =
π

2

∆ϕ = 0

∆ψ =
π

2

Figure 2.39: Excitation of the sum resonance and compensation of the difference resonance with

four skew quadrupoles.
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With this compensation scheme, the condition for the compensation of the difference

resonance becomes

Kd = (κ1 + κ3)eiϕ1 + (κ2 + κ4)eiϕ2 , (2.49)

where κ1 = −κ3 and κ2 = −κ4, and the condition for the orthogonality of each pair in the

case of the sum resonance

Ks = (κ1 + ei
π
2 κ2)eiψ1 + (κ3 + ei

π
2 κ4)eiψ3 . (2.50)

In reality, these conditions can never be exactly met. In order to have an automatic

compensation of the difference resonance, the constraint on the phase ∆ϕ = 0 between

the quadrupoles compensating each other is a “strong constraint”, while the orthogonality

of the pairs, thus on the phase ψ = π/2, is only a “weak constraint”.

To fulfil the condition of ∆ϕ = Φx − Φy = 0 between the compensating pairs, one has

to find four positions of the quadrupoles with the same value of ϕ. These four positions

are indicated in Fig. 2.40 with black lines. The skew quadrupoles on both sides of the
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Figure 2.40: Difference (top) and sum (bottom) of the horizontal and vertical phase advance and

positions of the skew quadrupoles Q1 to Q4.

interaction region are placed more or less symmetrically in respect to the IP, due to the

(approximate) mirror symmetry of the interaction region. Furthermore, it turned out to

be better to compensate Q1 with Q4 and Q2 with Q3, as the beta-function at the position

of the skew quadrupoles Q1/Q4 and Q2/Q3 is comparable, while the beta-function at the

position of Q1/Q3 and Q2/Q4 differs, leading to approximately the same strength of the

compensating pairs in the case of a compensation of Q1 with Q4 and Q2 with Q3.
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Figure 2.41: Representation of the skew quadrupoles in the complex plane. The strength values

of the skew quadrupoles are listed in Table 2.13.

kQ1 [ 1
m

] kQ2 [ 1
m

] kQ3 [ 1
m

] kQ4 [ 1
m

]

left side 0.0622 0.0331 -0.0326 -0.0628

right side -0.0385 0 0 0.0377

Table 2.13: Skew quadrupole strength of the correction scheme yielding an emittance ratio of 2:1.

All skew quadrupoles have a length of 0.2 m

ε1 6.8 nm J1 1.0

ε2 3.4 nm J2 1.0

ε3 5.0 µm J3 2.0

Table 2.14: Equilibrium emittances and damping partition numbers calculated with MAD-X for

the correction scheme with kQ1, right = 0.0385 1
m and on-momentum.
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For the adjustment of the emittances, the strength of Q4 and Q3 on the right side of

IP2 have been chosen as free parameters. Knowing the beta-function and the quadrupole

strength of these two quadrupoles, the strength of the compensating quadrupoles on the

right side, i.e. Q1 and Q2, can be calculated by solving Eqn. 2.49. The strength of the

skew quadrupoles on the left side are then given by Eqn. 2.49 and 2.50, yielding an exact

compensation, if Ksr created on the right side is equal to the negative value of the compen-

sating vector Ksl on the left side. An emittance ratio of 2:1 is reached for the quadrupole

strengths compiled in Table 2.13. The resulting compensation scheme is illustrated in

Fig. 2.41 by representing the skew quadrupoles as vectors in the complex plane and the

emittances and damping partition numbers of the three eigenmodes for on-momentum are

summarized in Table 2.14.

To check if the compensation scheme decouples the interaction region, the Ripken param-

eters βjk at IP2 with and without correction and with and without synchrotron radiation

are compared in Table 2.15 with the negative result, that no correction of the coupling is

achieved, even not in the idealistic case of no synchrotron radiation. An explanation for

the failure of the correction is, that the calculation is based on a perturbative treatment

and the approximations made are not valid for the skew quadrupole strength necessary to

obtain an emittance ratio of 2:1.

β∗11,IP2 [m] β∗12,IP2 [m] β∗21,IP2 [m] β∗22,IP2 [m]

ideal 0.4 0 0 0.2

correction, no syn. radiation 0.261 0.040 0.031 0.229

no correction, no syn. radiation 0.331 0.067 0.047 0.162

correction, syn. radiation 0.229 0.063 0.050 0.206

no correction, syn. radiation 0.311 0.082 0.060 0.148

Table 2.15: Ripken parameters βkj at IP2 calculated with MAD-X for the correction scheme with

kQ1, right = 0.0385 1
m and on-momentum. Also in the idealistic case of no synchrotron

radiation the correction scheme fails.

To investigate, if the correction scheme works for small quadrupole strength, a compen-

sation scheme with approximately one third of the skew quadrupole strength has been

studied. The resulting skew quadrupole strengths are listed in Table 2.16. The Ripken

parameters βjk at IP2 with and without correction for this scheme are compared in Ta-

ble 2.17 and the emittances and damping partition numbers listed in Table 2.18. In this

kQ1 [ 1
m

] kQ2 [ 1
m

] kQ3 [ 1
m

] kQ4 [ 1
m

]

left side 0.0200 0.0106 -0.0105 -0.0202

right side -0.0124 0 0 0.0121

Table 2.16: Skew quadrupole strength yielding an emittance ratio of 75:1, but with a full com-

pensation of the coupling at IP2. All skew quadrupoles have a length of 0.2 m

case, the Ripken parameters βjk at IP2 are corrected by the calculated correction scheme,

as the skew quadrupole strengths are small enough to be treated, without making a too

large error, as a small perturbation.
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β∗11,IP2 [m] β∗12,IP2 [m] β∗21,IP2 [m] β∗22,IP2 [m]

ideal 0.4 0 0 0.2

correction, no syn. radiation 0.390 0.00011 0.0001 0.204

no correction, no syn. radiation 0.380 0.01987 0.0122 0.189

correction, syn. radiation 0.381 0.0023 0.00120 0.202

no correction, syn. radiation 0.363 0.0311 0.01911 0.181

Table 2.17: Ripken parameters βkj at IP2 calculated with MAD-X for the correction scheme with

kQ1, right = 0.0124 1
m and on-momentum.

ε1 8.3 nm J1 1.0

ε2 0.11 nm J2 1.0

ε3 5.0 µm J3 2.0

Table 2.18: Equilibrium emittances and damping partition numbers calculated with MAD-X for

the compensation scheme with kQ1, right = 0.0124 1
m and on-momentum.

2.4.3.3 Local coupling of the interaction region

Another option is to only couple a small area around the IP using one skew quadrupole

on each side of the IP. For a full compensation and an optimal conversion of the flat

electron beam into a round beam at the IP, these two skew quadrupoles must respect

certain conditions on the phase advance which will be derived in the following and then

applied to the case of the LHeC.

The transfer matrix of a skew quadrupole in the transverse plane is given by:

Rskew =


1 0 0 0

0 1 − 1
f 0

0 0 1 0

− 1
f 0 0 1

 . (2.51)

As for the LHeC electron beam, the vertical beam size can be assumed to be negligible

compared to the horizontal one in the absence of coupling, the vertical position y can

be set to 0. In this case a skew quadrupole simply gives a kick in y′ depending on the

horizontal position x:

(
x, x′, y, y′

)
7→
(
x, x′, y, y′ − 1

f
x

)
. (2.52)

The maximum vertical beam size at the IP is then obtained by tilting the phase ellipse in

the y − y′ phase space by π/2, explicitly

∆φy(s(skew1), s(IP2)) =
π

2
. (2.53)

In addition, the mismatch introduced by the skew quadrupole (skew1) should be canceled

by a second skew quadrupole (skew2). No distortion is caused, if the transfer matrix T
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from skew1 to skew2 is equal to the identity matrix. The transfer matrix T for the

transformation from skew1 to skew2 is given by

T = Rskew2R(∆φx,∆φy)Rskew1 = (2.54)
(
Cx+Sxαx1

)
βx2

βx12
Sxβx12 −

Sxβx12
f1

0

Syβy12
f1f2

−
Cx

(
αx2

−αx1
)
+Sx

(
αx12

+1
)

βx12

(
Cx−Sxαx2

)
βx1

βx12

(
Sxαx2−Cx

)
βx1

f1βx12
−

(
Cy+Syαy1

)
βy2

f2βy12
−

Syβy12
f2

−
Syβy12
f1

0

(
Cy+Syαy1

)
βy2

βy12
Syβy12(

Syαy2
−Cy

)
βy1

f1βy12
−

(
Cx+Sxαx1

)
βx2

f2βx12
−

Sxβx12
f2

Sxβx12
f1f2

−
Cy

(
αy2

−αy1
)
+Sy

(
αy12

+1
)

βy12

(
Cy−Syαy2

)
βy1

βy12


The index 1/2 stands for the Twiss parameters at the location of the first/second skew

quadrupole, Cx/y = cos
(
∆φx/y

)
and Sx/y = sin

(
∆φx/y

)
, where ∆φx/y is the phase ad-

vance from skew1 to skew2. The Twiss parameters have been abbreviated with βx12/y12 =√
βx1/y1βx2/y2 and αx12/y12 = αx1/y1αx2/y2 and f1/2 is the skew quadrupole focal strength.

The matrix is already considerably simplified by requiring

sin (∆φx) = sin (∆φy) = 0⇔ ∆φx = ∆φy = nπ (2.55)

leading to T13 = T24 = T31 = T42 = 0. After this simplification, the matrix is then given

by

T =


− βx2
βx12

0 0 0
αx2−αx1
βx12

− βx1
βx12

βx1
f1βx12

+
βy2

f2βy12
0

0 0 − βy2
βy12

0
βx2

f2βx12
+

βy1
f1βy12

0
αy2−αy1
βy12

− βy1
βy12

 . (2.56)

As can be seen from Eqn. 2.56, the transfer matrix T is equal to the identity matrix, if

and only if the Twiss functions at both quadrupoles are equal (αx1 = αx2 and βx1 = βx2)

and the skew quadrupoles have opposite focal strength (f2 = −f1).

In summary, the following conditions must be fulfilled:

• The vertical phase advance ∆φy between the first skew quadrupole and the IP must

be ∆φy = π
2 + nπ in order to obtain a round beam at the IP and not e.g. a tilted

ellipse.

• The difference in phase advance ∆φx/y between the skew quadrupoles must be

∆φx/y = nx/yπ, nx/y ∈ N in order to achieve a full compensation. In addition,

the Twiss parameters at the location of both skew quadrupoles must be equal and

the skew quadrupoles must have opposite strength, i.e. f2 = −f1.

As the interaction region of the LHeC is symmetric in respect to the IP, all conditions are

fulfilled if the skew quadrupoles are placed exactly at ∆φx/y = π
2 from the IP. With the

current interaction region optics, this condition can not be fulfilled. In order to demon-

strate the principle, the phase advance was adjusted by inserting a transfer matrix, the

phasor, which changes the phase advance but not the beta-function (Appendix B). The

Ripken parameters of the modified optics are shown in Fig. 2.42, and indicate that the

effect of the first skew quadrupole is fully compensated by the second.

With this scheme, the beam size at the IP can be adjusted by changing the skew quadrupole

strength. A ratio of 2:1 is achieved with a skew quadrupole strength of kskew = 0.0477 and
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Figure 2.42: Ripken parameters βkj of the interaction region calculated with MAD-X and for

on-momnetum. The coupling introduced by the first skew quadrupole is fully com-

pensated by the second.

length of 0.1 m, yielding the desired beam spot size at the IP of 44.7µm in the horizontal

and 22.4µm in the vertical plane with the assumption of a horizontal rms-emittance of

εx = 5.0 nm and a vanishing vertical emittance, i.e.

σx,IP2 = βx1εx = 44.7µm

σy,IP2 = βy1εx = 22.4µm
(2.57)

The transformation of the initially flat electron beam into an almost round beam at the

IP and back into a flat electron beam is illustrated in Fig. 2.43.

As the coupling is localized at the interaction region, the horizontal emittance is in the

case of an uncoupled rest of the LHeC electron ring larger than 5.0 nm, and in general,

the vertical emittance is unequal 0, due to magnet imperfections and alignment errors.

Assuming more realistic parameters, i.e. a ratio of 100 between the horizontal and vertical

emittance εy = 1
100 εx and an emittance of 5.55 nm for a damping partition of Jx/Jy/Js =

1.5/1/1.5 and no coupling, one obtains a larger beam spot size at the IP:

σx,IP2 = βx1εx + βx2εy = 50.4µm

σy,IP2 = βy1εx + βy2εy = 26.9µm
(2.58)

In reality, it is also not possible to place the skew quadrupoles at exactly the correct

phase advance, while equal Twiss functions are quite feasible, as the interaction region is

symmetric and, placing the skews at the same position in respect to the IP, automatically

fulfils this condition. The coupling has then, in this more realistic case, to be created and

corrected with several skew quadrupoles before and after the IP. In [56] it is shown that it

is possible to transform an arbitrary planar mode into a circular mode - the ”round beam”
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Figure 2.43: Transverse phase space and beam envelope at the first skew quadrupole (skew1),

the IP and the second skew quadrupole (skew2) assuming a horizontal emittance of

εx = 5.0 nm and a vanishing vertical emittance. The initially flat electron beam at

the first skew quadrupole is transformed into a round beam at the IP and back into

a flat beam after the second skew quadrupole.

at the IP - and vice versa, using three skew quadrupoles and three normal quadrupoles

for matching. The arrangement of those six quadrupoles is called a Derbenev adapter. It

would be therefore sufficient to install three skew quadrupoles at each side of the IP and

rematch the interaction region in order to obtain the required Twiss functions at the skew

quadrupoles and beam size at the IP. With this scheme the electron beam could be also

transformed into an entirely round beam with an aspect-ratio of 1:1, perfectly matching

the round proton beam and allowing to eventually reduce the beta-function at the IP and

hence increase the luminosity. In addition, round beams at the interaction point could be

beneficial in order to reduce beam-beam effects as stated in [56].

2.4.3.4 Conclusion

In this section, three different ways to match the flat electron beam to the round proton

beam at the IP, i.e.

• global coupling (Sec. 2.4.3.1)

• no coupling in the interaction region, but in the rest of the ring (Sec. 2.4.3.2)

• local coupling of the interaction region (Sec. 2.4.3.3)

have been presented.

The option of global coupling in the complete ring by placing one skew quadrupole ei-

ther in a dispersive or non-dispersive region (Sec. 2.4.3.1) would have the advantage of
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being a very simple scheme, but would have more important disadvantages. First of all,

a matching section including skew quadrupoles would have to be included in the long

straight sections of the interaction region in order to match the electron beam size to the

proton beam size. This would lead to a correction scheme similar to the one considered in

Sec. 2.4.3.2, but including matching quadrupoles and not using the perturbation theory

approach. In addition, the operation of the electron ring would become more difficult as

most beam instrumentation devices are designed for uncoupled lattices. For example, the

horizontal and vertical tune could be measured, but the results would have little value,

as the important parameters are the tunes of the eigenmodes, which can not be measured

with the usual methods used in uncoupled machines.

For the second option, the decoupled interaction region (Sec. 2.4.3.2), the correction

scheme had been calculated using an approach based on perturbation theory. For the

skew quadrupole strengths, needed in the case of the LHeC in order to obtain an emit-

tance ratio of 2:1, the perturbative treatment is not valid any more and the correction

scheme fails. This implies, that additional quadrupoles would be needed for a matching of

the Twiss functions and the beam sizes of proton and electron beam at the IP and the new

correction scheme would have to be calculated in a more exact way by e.g. using a matrix

approach. This more sophisticated correction scheme would then have a similar layout as

the one with coupling only in the interaction region (Sec. 2.4.3.3), but it would have the

same operational problems as the option of global coupling in the ring (Sec. 2.4.3.1).

The third scheme, which only couples the interaction region (Sec. 2.4.3.3)), is the preferred

option as the coupling is localized to the interaction region and the operation of the electron

ring would be like the one of an uncoupled machine. In addition, the electron beam could

be transformed in an entirely round beam, which would allow for a further squeeze of the

proton beam and increase in luminosity. In this thesis, only the principle of such a scheme

has been presented. A realistic scheme could be to install of Derbenev adapters [56] on

each side of the IP. Such a scheme has not been tried out, as a rematch of the entire

interaction region would have been required, being out of the scope of this thesis.

2.4.4 Effect of circumference errors

The actual circumference of LEP and LHC both differed by ±5 mm to ±10 mm from the

ideal design circumference and a similar error can be expected for the LHeC electron ring.

In order to have collisions with the LHC proton beam, the revolution times of both beams

have to be equal. A change in circumference in general changes the revolution time of the

beam, and thus an error in the electron ring circumference would lead to unequal revolution

times of the same and the LHC proton beam. Without doing any physical changes to the

machine, the revolution time T can only be adjusted by running off-momentum with T

given by:

T (δ) =
C

c

1√
1− 1

γ2

(
1 +

(
αc −

1

γ2

)
δ

)
, (2.59)

where δ = ∆p
p0

is the momentum offset, C the machine circumference, γ the relativistic

γ-factor and αc the momentum compaction factor.
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This change in momentum results in an orbit change d with

d = Diδ , (2.60)

where Di is the dispersion in the corresponding plane.

Furthermore, in the case of the electron beam, the change in momentum also causes a

change of the 4th synchrotron radiation integral according to Eqn. 1.67 and 1.68

∆I4i = 2I8iδ, with I8i =

∮
k2D2

i ds , (2.61)

and therefore the damping partition (Eqn. 1.56-1.58)

Jx = 1− I4x
I2
,

Jy = 1− I4y
I2
,

Js = 2 +
I4x+I4y

I2
.

(2.62)

A negative Ji leads to anti-damping instead of damping and in this case the beam would

most probably not survive much more than a few turns.

The question to be answered in this chapter is whether a circumference difference of about

±10 mm can still be compensated by running off-momentum with both beams. In the

case of the LHC, the largest tolerable orbit shift for machine protection reasons is about

1 mm in the arcs QFs leading to a momentum offset of ±5 × 10−4 [57]. Assuming equal

revolution times for on-momentum beams, the ideal electron ring circumference is given

by

Ce(δe = 0) =
Cp

√
γ2e−1
γ2e√

γ2p−1

γ2p

. (2.63)

The requirement of equal revolution times then leads to a relation between the proton

and electron beam momentum offset δp and δe for a given difference in circumference

∆C = Ce(δe)− Ce(δe = 0), explicitly:

δe(δp,∆C) =
αcpδpCp

√
1− 1

γ2e
−∆C

√
1− 1

γ2p

αce

(
Cp
√

1− 1
γ2e

+ ∆C
√

1− 1
γ2p

) , (2.64)

where Ce(δe = 0) has been replaced by Eqn. 2.63. As illustrated in Fig. 2.44, a circum-

ference difference of ±10 mm could not be compensated by only a momentum offset of

the LHC proton beam, but would imply a minimum electron beam momentum offset of

δe = ∓2.7 × 10−3. Using the LHeC lattice presented in [10] as optics reference, the max-

imum dispersion in the arcs is 0.56 m and over the full ring 1.68 m, resulting in an orbit

change for δp = 0 of

dmax,arc = 2.6 mm

dmax,tot = 7.8 mm
(2.65)

which is still tolerable with the current LHeC magnet apertures.

The change in horizontal and longitudinal damping partition, Jx and Js, is shown in

Fig. 2.45. In the absence of coupling, the vertical dispersion is 0 throughout the ring and Jy
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Figure 2.44: Required electron beam momentum offset in order to compensate a cirucumference

difference of ∆C.
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Figure 2.45: Change of damping partition Jx (left) and Js (right) due to an electron beam mo-

mentum offset δe required to compensate a circumference difference ∆C. In the

absence of coupling, the vertical dispersion is close to 0 throughout the ring and Jy

stays unchanged.

stays unchanged. A circumference error smaller than ±18
10 mm could still be compensated

by running off-momentum with both beams without reaching the anti-damping regime,

but leaving no flexibility for any adjustment of the momentum offset of both beams and

fixing the damping partition of the electron beam. In case of a circumference error larger

than ±18
10 mm, Jx or Js would be smaller than 0 and the electron beam would become

anti-damped. A standard way to change the damping partition is to use wigglers, but this

is only an option at injection, as at top energy the emitted synchrotron radiation power

becomes too large. Another, but time consuming option, would be a physical change of

the electron ring circumference, after determining the circumference error by a detailed

survey study or indirectly by measuring the damping partition of the electron ring during

the commissioning of the same. The change in circumference could be either obtained

by displacing parts of the ring, preferably the arcs, or by using the bypasses as large

doglegs. As the bypass in Point 1 uses the survey gallery and the bypass in Point 5 fully

bypasses the experiment in a separate tunnel, it will be easier to make adjustments in

Point 5. According to Eqn. 2.33, a change in circumference ∆s = ∆C is achieved by a
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simultaneous change in the bypass separation ∆BP, the inserted straight section sBP and

the straight section xBP parallel to the interaction region given by

∆BP(∆C) = 1

2 tan (
θBP
2

)
∆C ,

∆sBP(∆C) = 1

2 sin (
θBP
2

)
∆C ,

∆xBP(∆C) = 1

2 tan (
θBP
2

) tan θBP

∆C .

(2.66)

As shown in Fig. 2.46 a change of circumference of |∆C| < 10 mm would then result in

|∆BP| < 9.8 cm, |∆sBP| < 96.2 cm and |∆xBP| < 95.7 cm, which are all tolerable values.

Therefore, an adjustment over the bypass in Point 5 appears to be a feasible option.
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Figure 2.46: Change in bypass separation ∆BP (left), length of inserted straight section sBP and

the straight section xBP parallel to the interaction region (right) in Point 5, in order

to compensate a circumference difference of ∆C

After a successful realignment of the electron ring, the circumference differences should

be small enough that a synchronization between the electron and proton beam could be

achieved by adjusting the RF frequency of both beams. The feasibility of this method

was demonstrated with proton lead in the LHC [58] and also for electrons and protons in

HERA [59].
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2.5 Summary

One of the main challenges, maybe even the main challenge, of the LHeC project is the

installation of the electron ring on top of the already existing LHC proton ring. A detailed

survey study revealed [10], that the main challenges are the experiments in Point 1 and

Point 5, the QRL jumper connections in the arc and the DFBs in the insertions. In

this thesis (Sec. 2.2 and 2.3), it could be demonstrated, that it is possible to design an

electron ring layout and optics which avoids the main interferences with the LHC proton

ring and also reaches the design parameters defined in the LHeC CDR [10]. Furthermore,

a critical review of the design parameters (Sec. 2.1) revealed, that a higher luminosity

could possibly be reached, without an increase of the synchrotron radiation losses in the

interaction region, by decreasing the vertical proton beam β∗ to 0.5 m, and a corresponding

change of the electron beam optics and parameters.

Subsequent to the design of the layout and linear optics of the electron ring, different beam

dynamical aspects relevant for the LHeC electron ring design (Sec. 2.4) have been studied,

explicitly a local and three global chromaticity and off-momentum beta-beating correction

schemes, different coupling schemes to match the electron and proton beam size at the IP

and the effect of circumference errors on the damping partition.

The local chromaticity and off-momentum beta-beating correction scheme (Sec. 2.4.2)

featured almost in all points a better performance than the global correction schemes,

explicitly an almost linear chromaticity, a small off-momentum beta-beating - in particular

a small momentum dependence of the beta-function at the IP - and a small dependence

of the dynamic aperture on the momentum, and is therefore the preferred option.

To create the coupling in the electron ring, three different possibilities have been proposed:

1. global coupling of the complete ring, in which case the coupling is created with one

skew quadrupole (Sec. 2.4.3.1)

2. “global coupling” but with a decoupled interaction region, for which the correction

scheme is calculated using a perturbative approach (Sec. 2.4.3.2)

3. local coupling of the interaction region which is achieved by using two skew quadrupoles

installed close to the IP (Sec. 2.4.3.3)

The main disadvantage of the schemes with coupling in the main part of the electron ring

(Sec. 2.4.3.1 and Sec. 2.4.3.2) is that a fully coupled ring might be more difficult to operate.

Therefore, the local coupling of the interaction region is considered to be the best option,

as with this scheme the coupling is limited to the same.

At last, as the electron beam has to be synchronized with the LHC proton beam, the

circumferences of both rings have to be matched. The circumference errors of the LEP

and LHC rings were in the range of ±5 mm to ±10 mm and a similar error can be expected

for the LHeC electron ring. The standard approach to adjust the circumference is to run

off-momentum, which results in a change of the damping partition. The estimates of the

effect of the compensation of the circumference error on the damping partition (Sec. 2.4.4)

showed, that circumference errors smaller than ±18
10 mm could still be compensated by

running off-momentum with the electron and proton beam, but leaving no flexibility in the
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adjustment of the damping partition. For larger circumference errors, the electron beam

would experience a anti-damping effect. In this case, the circumference of the electron

ring could be changed by, for example, displacing parts of the ring or using the bypasses

as large doglegs.

Most lattice studies presented in this thesis are based on the ideal case of an unperturbed

linear lattice. In reality, the beam optics are distorted by various effects like for exam-

ple the non-linearities originating from magnet imperfections and alignment errors, the

momentum deviation due to the localized restoration of the synchrotron radiation losses

(energy sawtooth), the linear and non-linear beam-beam kick the beam experiences at the

interaction point, orbit deviations due to long-range beam-beam and impedance effects and

many more. These perturbations could be particularly harmful for all optics and optics

corrections sensitive to deviations of the phase advance like e.g. the chromatic correction

and local coupling schemes presented in Sec. 2.4.2, 2.4.3.2 and 2.4.3.3.

The next steps in the design of the LHeC electron ring layout and linear optics could be a

refinement of the layout and optics developed in this thesis, which would respect also all

smaller integrations constraints. Furthermore, skew and matching quadrupoles need to be

integrated in the interaction region for the matching of electron and proton beam size at

the IP and, in addition, spin rotators for further polarization studies. Some continuative

beam dynamical aspects to be studied are optics perturbations linked to dynamic aperture

and beam survival studies and relevant collective effects, in particular beam-beam effects.
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Lattices

In low energy machines like the PS Booster at CERN one of the dominant performance

limitations is the direct space-charge effect, which was introduced in Sec. 1.6.4. As the

space-charge effect is the influence of the self field of the beam on itself, the optics de-

termining amongst others the beam size can considerably influence emittance growth and

beam loss along the cycle1, which are both desired to be as small as possible.

At the time of the design of the PS Booster, a smooth variation of the beam size generated

by a triplet structure and a high symmetry and periodicity was considered advantageous

and the PS Booster was built accordingly. Modern machines like the CERN RCS [60]

proposed as alternative to the PS Booster 2 GeV energy upgrade [8], in general favour

FODO lattices, as the required focusing strength is smaller and in consequence the space

requirements are also. Furthermore, modern lattices tend to have a three or four fold

symmetry, as usually three to four dispersion free sections are required for injection, ex-

traction, RF and sometimes additionally collimation. Examples of modern lattices can

be found in e.g. [61], [62] and [63]. A short summary of the PS Booster and PS Booster

2 GeV energy upgrade is given in Sec. 3.1. The lattice and optics options developed in

the framework of this thesis and considered for the CERN RCS, or short RCS, feasibility

study [60] are presented in Sec. 3.2.

The study of the RCS and the obvious difference of its lattice and optics to the PS Booster

lattice and optics, motivated a more general study of lattices and their performance if direct

space-charge effects - in the following abbreviated with space-charge effects - are included.

At the start of the studies, it was suspected that the following lattice characteristics might

have an influence on the machine performance:

• variations of the beam size

• symmetry of the lattice and optics

• periodicity of the lattice and optics equivalent in this thesis to the number of lattice

cells
1A cycle is the time from one injection to the next.
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• phase advance per cell

• inserted straight sections connected to dispersion suppressor schemes and in general

the influence of dispersion

The initial expectation was that a small variation of the beam size, a high lattice symmetry

and periodicity, a small phase advance per cell and no inserted straight section would be

advantageous.

With regard to the above assumptions, different lattices have been studied in this thesis

which are summarized in Table 3.1. Some studies with an initially different motivation

revealed other aspects. These aspects will be discussed in the corresponding sections and

are listed in Table 3.1 together with the initial motivation.

lattice characteristic section lattices

initial motivation observed effect

variation 3.6.1 regular 16 cell lattice with

different cell types, explicitly a

FODO, doublet, triplet, long

doublet, collapsed triplet and

inverted triplet cell structure

symmetry 3.6.3 regular 16 cell triplet lattice

with symmetry 1, 2, 3, 4 and 16

phase advance,

symmetry and

periodicity

symmetry 3.6.4 regular 15, 16, 18, 21 and 24 cell

FODO lattice

phase advance weak/strong

symmetry

3.6.5 regular 15, 16, 18, 21 and 24 cell

FODO lattice with symmetry 1and periodicity

phase advance chromatic

detuning

3.6.6 regular 16 cell triplet lattice

with symmetry 1 and different

working points

dispersion 3.6.7 24 cell FODO lattice with 4× 1

and 2× 2 cells of straight

section and 21 cell FODO lattice

with 3× 2 cells of straight

section and half missing bend or

2π dispersion suppression

Table 3.1: Overview of lattices studied in this thesis with regard to lattice characteristic suspected

to have an influence on the machine performance. The following abbreviations are used:

“variation” for variation of the beam size, “symmetry” for symmetry of the lattice and

optics, “weak/strong symmetry” for the effect of weak and strong symmetry breaking

discussed in Sec. 3.6.5, “phase advance” for phase advance per cell, “dispersion” for the

effect of inserted straight sections, connected to dispersion suppressor schemes and in

general the influence of dispersion, and “2π dispersion suppression” for a dispersion

suppression by adjusting the phase advance to n · 2π over the arc.
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The beam and lattice parameters used for the general studies of the different lattices are

summarized in Sec. 3.3. The preparatory work for the space-charge simulations, i.e. mainly

the choice of simulation parameters expected to deliver reliable results, is summarized in

Sec. 3.4. In all simulations, the initial beam distribution has been matched to the linear

optics parameters of the unperturbed lattice, which leads to an initial mismatch of the

beam under space-charge effects. For the later interpretation of the simulation results it

is important to get an estimate of the order of magnitude of the increase of the emittance

due to this initial mismatch which is given in Sec. 3.5.
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3.1 PS Booster Lattice

In this chapter, a short overview of the optics, main characteristics and challenges of the

PS Booster after the 2 GeV energy upgrade [8] is given in Sec. 3.1.1. For the studies

of the performance of different lattices with regard to space-charge effects a simplified

version of the PS Booster lattice has been created and the parameters adjusted to the

RCS parameters in order to have an as small as possible interference from effects other

than the direct space-charge effect. This simplified version is described in chapter 3.1.2.

3.1.1 PS Booster 2 GeV energy upgrade

The PS Booster lattice consists of 16 triplet cells with the defocusing quadrupole in the

center. Two bending magnets are installed on both sides close to the triplet followed by a

longer straight section. The optics are shown in Fig. 3.1. The working point at injection
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Figure 3.1: PS Booster lattice and optics at injection.

for high intensity and brightness beams is Qx = 4.28, Qy = 4.55 and is slowly changed

during the ramp from 160 MeV at injection to 2 GeV at extraction. To minimize the

emittance blow-up during the ramp, trim quadrupoles are used for a compensation of

injection energy 160 MeV

extraction energy 2 GeV

circumference 1/4 CPS ≈ 157.08m

repetition rate 0.8 Hz

cell type triplet

number of cells 16

number of straight sections 0

symmetry 16

working point Qx = 4.28, Qy = 4.55

gamma transition 4.03

injection H− charge exchange injection

RF system VRF(h = 1) = 8 kV, VRF(h = 2) = 6 kV

Table 3.2: PS Booster parameters.
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the 2Qy = 9 resonance. As a consequence of the high periodicity, the lattice does not

contain any dispersion free straight sections and the H− beam delivered from LINAC4 will

therefore be injected in the bend-free section between two triplets. The resulting tight

requirements and the non-zero dispersion make the injection region the main challenge of

the Booster upgrade2. Due to the lack of dispersion free sections, the RF cavities are also

installed between two bends of the triplet cells. The PS Booster uses a double harmonic

RF system which allows for a larger bunching factor and therefore weaker space-charge

effect. Both cavities are operated in antiphase with a RF-voltage of 8 kV for the h = 1

cavity and 6 kV for the h = 2 cavity. The main parameters are summarized in Table 3.2.

3.1.2 Simplified PS Booster lattice

In order to compare the PS Booster lattices with other lattices, a simplified version of the

lattice has been created for the studies performed in this thesis including only the main

quadrupoles and dipoles. Furthermore, the vertical tune has been lowered by one integer
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Figure 3.2: Simplified PS Booster lattice and optics.

injection energy 160 MeV

extraction energy 2 GeV

circumference 1/4 CPS ≈ 157.08m

repetition rate 10 Hz

cell type triplet

number of cells 16

number of straight sections 0

symmetry 16

working point Qx = 4.28, Qy = 3.55

gamma transition 4.20

RF system VRF(h = 1) = 50 kV

Table 3.3: PS Booster parameters for the simplified PS Booster lattice.

2Note that most modern lattices therefore contain dispersion free sections for the injection region, RF

and extraction. On the other hand such modern lattices require insertions with dispersion suppressors

resulting in a low symmetry.
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to Qy = 3.55 for a more realistic comparison with lattices with symmetry 3 which is often

the preferred symmetry for modern lattices. In the case of symmetry 3 and with a vertical

tune of 4.55 the 2Qy = 9 resonance is systematic. As a consequence, matching to this

working point becomes difficult and large variation of the beta-function and emittance

growth have to be expected. Therefore, no machine with symmetry 3 would realistically

operate at this working point. Furthermore, the RF settings are adjusted to simplified

RCS parameters i.e. a single harmonic RF system with a voltage of 50 kV. The new

parameters are summarized in Table 3.3 and the optics shown in Fig. 3.2.

3.2 CERN RCS Lattice

A RCS to replace the present PS Booster has been proposed as an alternative to its

upgrade [64]. At this time, a circumference of only 1/7th of the PS circumference was

considered. The motivation behind this small circumference was to generate the LHC

25 ns and 50 ns beams3 by operating the RCS with a harmonic number of hRCS = 3,

and to fill 18 out of totally hPS = 21 PS buckets with only 6 transfers4, and thus avoid

the triple splitting in the PS. For the LHC 75 ns bunches, the natural choice for the PS

would be a harmonic number hPS = 14 and the 12 buckets could then be filled again with

6 transfers from the RCS, now operated at hRCS = 2. Due to the small circumference, a

high dipole filling factor was required which suggested a FODO structure and a three-fold

symmetry with three arcs and three straight sections for injection, extraction and RF. The

number of cells has been chosen as a compromise between a high enough gamma transition,

γtr > γextr = 3.13, and a not too high phase advance per cell. These considerations lead

to a lattice, which was first proposed at the Chamonix workshop 2011 [64], with a total

number of 15 cells with two quadrupole families and a dispersion suppression by adjusting

the phase advance to 2π over the arc. Furthermore, the horizontal tune had been set

between 4 and 5 in order to ensure a gamma transition around or larger than 4, implying

a still relatively high phase advance of > 100◦ per cell.
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Figure 3.3: RCS lattice and optics as proposed in the feasibility study [9].

3The LHC 25 ns and 50 ns beams are the beams required in the PS Booster in order to generate in the

end LHC beams with a 25 ns and 50 ns bunch spacing.
4Here a transfer corresponds to one injection into the PS.
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As suspected already at this stage of the study, the space available for correction magnets,

instrumentation and other equipment proved to be insufficient and the required dipole

field of 1.16 T at extraction could not be increased enough to allow for sufficient space

in the arcs [9]. The circumference was then increased to 4/21 of the PS circumference,

implying an operation of the RCS with h = 4 or h = 1. The following feasibility study [9]

was performed for h = 1 keeping h = 4 as possible option. The main parameters used

in this study are listed in Table 3.4. As preferred lattice, a 21 cell FODO lattice with

three straight sections and a dispersion suppression over a phase advance of 2π had been

chosen, of which the optics are shown in Fig. 3.3. The main reasons for this choice had

been integration and space requirements. Instead of concentrating on this one lattice, a

more general approach will be taken in the following and all interesting lattice options,

proposed for this study and designed in the framework of this thesis, will be discussed.

injection energy 160 MeV

extraction energy 2 GeV

circumference 4/21 CPS ≈ 119.68m

repetition rate 10 Hz

cell type FODO

number of cells 21

number of straight sections 3

symmetry 3

working point 4 < Qx, Qy < 5

gamma transition > 3.6

injection H− charge exchange injection

RF system VRF(h = 1 to 4) = 60 kV

Table 3.4: RCS parameters as proposed in the feasibility study [9].

All lattices considered for the RCS can be classified according to their dispersion suppres-

sion scheme:

• dispersion suppression over a phase advance of n · 2π along the arc discussed in

Sec. 3.2.1.

• a dedicated dispersion suppressor like e.g. a space saving missing half bend scheme

as introduced in Sec. 3.2.2.

The reason for this classification is that in a machine with a relatively high RF volt-

age like the RCS and therefore large momentum spread, the dispersive part considerably

contributes to the maximum beam size and thus has to be minimized.

The general quality or suitability of a lattice can be judged by the following main require-

ments:

• small quadrupole strength: A high integrated quadrupole strength leads to longer

magnets and leaves less and in the worst case insufficient space for other equipment.
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In this case the circumference of the machine would have to be increased, resulting

in higher costs.

• small beta-function and dispersion: The reachable magnetic field is in general

determined by the pole tip field, which is given, e.g. in the case of a quadrupole

with a linear field dependency, by the required half aperture times the gradient. The

required aperture is in general defined by the beam size, which in turn is given by

the twiss parameters. Therefore, small twiss functions are essential for the feasibility

of every lattice.

• high gamma transition: Gamma transition is given in the case of a FODO lat-

tice and similar lattices approximately by the horizontal tune of the lattice and

can be comparatively increased or decreased by changing the lattice structure. In

the case of the RCS, it is desired to stay below gamma transition throughout the

whole cycle and so a high enough tune has to be chosen to ensure this, specifically

Qx > 4.0 ≈ γtrans. > γextr. = 3.13. On the other hand, a low phase advance per cell

results in a smaller variation of the beta-function and possibly less emittance blow-up

(see Sec. 3.6.6).

3.2.1 Dispersion suppression via n · 2π phase advance per arc

For lattices with small circumferences like the RCS a triplet structure is in most cases

not feasible, as the bend magnet filling factor is considerably smaller than for a FODO

or doublet structure and we will therefore limit the discussion in this section to those two

structures.

3.2.1.1 Comparison between FODO and doublet structure

To compare the two structures, the example of a 20 cell lattice with 4 straight sections and

2 quadrupole families is used. The magnet lengths are adjusted, so that the maximum

dipole field is approximately 1.3 T and the maximum quadrupole field around 10 T/m

which are the maximum values assumed for the RCS [9]. The optics are matched to

Qx/Qy = 5.40/4.57, where the horizontal tune is determined by the requirement of a 2π

phase advance per arc and the vertical tune set one integer lower than the horizontal to

avoid the Montague resonance [65]. The fractional part of the tune allows for a space-

charge tune-shift of approx. 0.5 in the vertical and 0.35 in the horizontal plane.

In general, the required integrated quadrupole strengths for a doublet lattice are twice

as large as for a FODO lattice. On the other hand, the doublet gives a higher gamma

transition in combination with smaller twiss functions (Fig. 3.4 (left)). In addition, it offers

a long continuous straight section, whereas for a FODO lattice the straight section is always

split up in two parts. The natural choice would be to place the injection and extraction

in one continuous straight section. However, in case of a FODO structure, the kick from

a defocusing quadrupole in the center of a straight section can be used beneficially for

the beam separation and the required space reduced from 6.2 m for a continuous straight

section to 2 × 2.6 m [66]. If for other reasons a continuous straight section is desired, a

third possibility is a “hybrid” structure with a doublet for the straight section and a FODO
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lattice in the arc as shown in Fig. 3.4 (right). In this case, four quadrupole families are

used for the matching of one period - two quadrupoles for the doublet structure and two

for the FODO.
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Figure 3.4: (left) Doublet lattice and optics.

(right) Hybrid lattice and optics with a FODO structure in the arc and a doublet in

the straight section.

As illustrated in Fig. 3.5, the maximum of the dispersion always occurs at a focusing

quadrupole and is reduced for the configuration with the defocusing quadrupole in the

center of the arc in the case of a FODO lattice. The dispersion can be still slightly

reduced by moving the bends as close as possible to the defocusing quadrupoles. Also in

the case of the doublet lattice, the dispersion is reduced if the bends are placed next to the

defocusing quadrupoles at the cost of more asymmetric lattice functions than for a lattice

with the bends in the center of the cell.
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Figure 3.5: Optics of (left) QF-0-QD-0-QF FODO lattice. (right) QD-0-QF-0-QD FODO lattice.

3.2.1.2 Symmetry and periodicity

Due to the smaller required quadrupole gradient and the new injection scheme which uses

the defocusing quadrupole in the center of the straight sections [66], the FODO structure

was retained for the RCS proposal and thus this structure will be used as example for the

comparison of the different lattice symmetries and periodicities. The lattices discussed in

this section all feature a n · 2π dispersion suppression scheme fixing the phase advance

per arc cell and with it the lattice tune. The number of cells per arc on the other hand

is given by the total number of cells and the lattice symmetry, interconnecting all three

parameters with each other. To give an idea of this restriction, Table 3.5 gives an overview

of all possible options considered for the RCS, where not acceptable parameters are marked

in red.
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no. of cells layout cells/straight cells/arc hor. tune φcell [deg]

15 triangle 1 4 3 3/4 90

> 1 too high phase advance per cell

16 race < 2 too tight for inj./extr.

2 6 2 2/3 60

5 1/3 120

3 5 3.2 72

6.4 144

> 3 too tight for bending

16 square 1 3 5 1/3 120

> 1 too tight for bending

18 race < 2 too tight for inj./extr.

2 9 2 2/3 60

5 1/3 120

3 5 3.2 72

6.4 144

> 3 too tight for bending

20 race < 2 too tight for inj./extr.

2 8 2.5 45

5.0 90

3 7 2.86 51.4

5.71 102.9

4 6 31
3 60

62
3 120

> 4 too tight for bending

20 square 1 4 5.0 90

2 3 62
3 120

> 2 too high phase advance per cell

21 triangle 1 6 3.5 60

2 5 4.2 72

22 race < 3 too tight for inj./extr.

3 8 2.75 45

5.5 90

4 7 3.14 51.4

6.29 102.9

> 4 too tight for bending

22 square < 2 too tight for inj./extr.

2 3.5 6.29 102.9

> 3 too high phase advance per cell

24 race < 4 too tight for inj./extr.

4 8 3.0 45

6.0 90
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> 4 too tight for bending

24 triangle < 3 too tight for inj./extr.

3 5 4.8 72

> 3 too tight for bending

24 square < 2 too tight for inj./extr.

2 4 6.0 90

3 3 8.0 120

> 3 too tight for tight for bending

Table 3.5: Lattice options considered for a dispersion suppression with n · 2π phase advance per

arc. The layout of the machine, here a racetrack (race), triangular (triangle) and

quadratic (square) layout, determines the symmetry of the machine: two-fold in the

case of the racetrack layout, three-fold in the case of the triangular layout and four-fold

in the case of the square layout. The minimum number of cells per straight section is

limited by the space required for injection, extraction and RF (too tight for inj./extr.),

whereas the maximum number of cells per straight section is limited by the maximum

achievable dipole field (too tight for bending) and the phase advance per cell still

considered to be acceptable (too high phase advance per cell)5. For some options,

the values for the phase advance per cell or the working are just on the edge of being

acceptable. These options are marked in red.

In the case of the racetrack option, the phase advance over one arc can be either 2π or

2× 2π. The first value always refers to 2π, the second to 2× 2π. In the case of the square

and triangle only a 2π phase advance per arc is possible as otherwise the phase advance

per cell becomes too large. All feasible options are summarized in Table 3.6.

symmetry no. of cells cells/straight cells/arc hor. tune φcell [deg]

race 20 2 8 5.0 90

22 3 8 5.5 90

24 4 8 6.0 90

triangle 15 1 4 3 3/4 90

21 2 5 4.2 72

24 3 5 4.8 72

square 20 1 4 5.0 90

24 2 4 6.0 90

Table 3.6: List of options with dispersion suppression with n · 2π phase advance per arc retained

for further studies.

3.2.1.3 Correction of the beta-beating with individual quadrupoles

An example for a lattice with a dispersion suppression by adjusting the phase advance to

2π over the arc is the 21 cell FODO lattice with 3×2 cells of straight sections, chosen in the

RCS feasibility study [9] with the only difference that in the case presented here and studied

4As the phase advance per arc has to be a multiple of 2π, the phase advance per arc cell increases, if

the number of cells per arc is decreased as is the case if more cells are used as straight section.
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further in Sec. 3.6.7, the circumference is adjusted to the PS Booster circumference. The

optics of this lattice with a working point of Qx/Qy = 4.47/3.42 and only two quadrupole

families - one focusing and one defocusing - are shown in Fig. 3.6 (left). The working point

has been moved away from the one chosen for the simplified PS Booster lattice as in this

case the 4Qy resonance was excited, leading to a strong emittance growth. The mismatch
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Figure 3.6: Example of a 21 cell FODO lattice with 3× 2 cells of straight section using a disper-

sion suppression by adjusting the phase advance to 2π over the arc. The mismatch

caused by the missing dipoles in the straight section can be considerable reduced

by additional individual matching quadrupoles next to the straight section and the

dispersion matched to 0 in the straight sections.

(left) Lattice and optics with two quadrupole families

(right) Lattice and optics with additional three focusing and two defocusing

quadrupoles marked in green.

introduced by the missing dipoles in the straight sections leads to a strong variation of

the vertical beta-function. The variation can be smoothed by allowing for more individual

quadrupoles as illustrated in Fig. 3.6 (right), where four focusing and three defocusing

quadrupoles were used for the correction. Furthermore, the dispersion can be matched

to zero in the straight sections, also in the case of a deviation from the ideal 2π phase

advance per arc, resulting in more flexibility in the choice of a working point. Lattices with

only two individual quadrupoles exhibit, in this case, residual dispersion in the straight

sections, as can be seen in the case of the 21 cell lattice in Fig. 3.6 (left).

3.2.2 Dispersion suppression with a half missing bend scheme

All lattices with a dispersion suppression by adjusting the phase advance to 2π over the arc

show a larger and more irregular dispersion in the arc than the regular lattices. This leads,

as described later in Sec. 3.6.7, to a large variation of the horizontal beam size, but also

initial instantaneous emittance growth for horizontal working points near the integer reso-

nance, where near means values as large as 0.3. The dispersion beating, being the source of

the phenomena listed above, can be reduced with a half missing bend dispersion suppressor

scheme. In this scheme, the last dipole before the straight section is shifted by half a cell,

making it possible to match the dispersion to the arc with individual quadrupoles, but

also reducing the length of the continuous straight section. The reduction of the length of

the continuous straight section could make the injection and extraction more challenging,

but on the other hand it could also facilitate it if the moved dipole and the quadrupoles in
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the straight section could be used for the separation of the incoming and outgoing beam

respectively.
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Figure 3.7: Example of a 21 cell FODO lattice with 3 × 2 cells of straight section and a half

missing bend dispersion suppressor. Individual quadrupoles are marked in green.

Exemplary for all lattices with straight sections, in particular also the ones discussed in the

preceding section (Sec. 3.2.1), a 21 cell FODO lattice with a half missing bend dispersion

suppressor is shown in Fig. 3.7. As expected, the dispersion is regular in the arc and the

maximum dispersion is reduced compared to the 21 cell FODO lattice with a dispersion

suppression by adjusting the phase advance to 2π over the arc (Fig. 3.6).

3.3 General Beam and Lattice Parameters

Most challenging in respect to the space-charge limit are the ultimate LHC 25 ns beams [44]

required for the HL-LHC upgrade [4] due to their small emittance and are thus used as

baseline parameters for the simulations presented in this thesis.

The standard assumption for the ultimate LHC 25 ns beam is a parabolic bunchshape with

a bunch length of 180 ns at 2 GeV and a longitudinal emittance of εlong = 5πσEσt = 2 eVs.

However, for a PS Booster like machine a parabolic squared distribution in the longitudinal

- and also transverse plane - is more realistic [67]. To obtain the corresponding parameters

leading to the same bunch length of 180 ns, but under the assumption of a parabolic

squared distribution with εlong = 7πσEσt, the emittance can simply be rescaled, leading

to εlong = 7
5 · 2 eVs. All beam parameters are summarized in Table 3.7.

number of particles per bunch 2.4× 1012

hor./vert. normalized emittance 2.5/2.5 mm mrad

long. emittance 2.8 eVs

Table 3.7: Ultimate LHC 25 ns beam parameters. The longitudinal emittance is rescaled as a

parabolic squared distribution is assumed instead of a parabolic distribution.

The RCS lattices for a machine replacing the existing PS Booster, which have been pro-

posed in [68] and are described in more detail in Sec. 3.2, all had a circumference of 4/21th
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of the PS circumference and were all very tight in respect to the available space. For the

following more general studies, the circumference was increased to the PS Booster cir-

cumference of 1/4th of the PS circumference, also making a direct comparison with the

PS Booster lattice possible. The RF parameters were adjusted to the shorter cycle of

10 Hz and the desired longitudinal emittance of 2.8 eVs leading to VRF = 50 kV. To have

as simple a system as possible, the double harmonic RF-system foreseen for the RCS and

also present in the existing PS Booster is replaced by a single harmonic system with h = 1.

Furthermore, the magnet length of all lattices is adjusted, so that all lattices have approx-

imately the same dipole strength and quadrupole gradient. All parameters are listed in

Table 3.8.

injection energy 160 MeV

extraction energy 2 GeV

circumference 1/4 CPS ≈ 157.08m

repetition rate 10 Hz

injection H− charge exchange injection

RF system VRF(h = 1) = 50 kV

Table 3.8: RCS parameters used for space-charge simulations.

For the general studies performed in this section which have the aim of studying the

influence of the space-charge effect, the above simplifications can and should be made, but

it also has to be kept in mind that those lattices do not represent realistic machines.

3.4 Space-Charge Simulation Method and Settings
For the comparison of the different lattices, the parallel Particle in Cell (PIC) routines

of the code PTC-ORBIT were used [69]. PTC-ORBIT combines the fully symplectic

Polymorphic Tracking Code PTC [34] with the well tested space-charge calculation routines

of ORBIT [70]. The general simulation method is to define regularly spaced points along

the lattice, so called nodes, at which the space-charge field of the beam is calculated and

the resulting kick then applied to the beam distribution. In between the space-charge

nodes the beam is tracked with PTC.

With the current computing power available, a full simulation of all beam particles over

several thousand turns is not feasible. Therefore, the beam distribution is modeled by

taking a subset of particles called macroparticles. The computing time can be further

reduced by simplification of the space-charge field calculation. For all simulations presented

in this thesis, a “2 1/2 D” model has been used. In this case, all particles, independent of

their longitudinal position, are projected in the transverse plane. The space-charge field is

then calculated by extending an equidistant transverse grid over the 2σ beam envelope and

determining the Green’s function of the charge distribution of the grid via a Fast Fourier

Transformation (FFT). The transverse field is then simply scaled with the longitudinal

beam distribution. Using the simplifications described above, the simulation becomes
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dependent on the number of macroparticles, the grid-size and the number of space-charge

kicks, and a set of adequate simulation parameters has to be found in a “convergence

study”, which has been carried in this thesis and is described in Sec. 3.4.2.

The simulation time can be further reduced by optimizing the lattice description used

for PTC and with it the time required for tracking of the particles. This optimization

performed in the framework of this thesis is described in Sec. 3.4.1.

3.4.1 Lattice description in PTC

As MAD-X provides powerful tools for matching and lattice design (see Sec. 1.8 about

MAD-X and PTC), all lattices were matched with MAD-X. To translate the lattice de-

scription from MAD-X to PTC-ORBIT, a dedicated algorithm exists.

Different algorithms, particularly a “drift-kick-drift” or “matrix-kick-matrix” model, are

implemented in PTC. In all simulations presented in this thesis, the “matrix-kick-matrix”

model has been used, as it produces the same phase advance between elements, and thus

tune, as the thick lens model, without costing more CPU time. Furthermore, the number

of integration steps for quadrupoles and sextupoles can be specified, and if the exact or

expanded Hamiltonian is used. The integration steps are then grouped in ORBIT nodes of

a maximum length defined by the user. Between each ORBIT node, a space-charge node

is placed.

To ensure that the created lattice description describes the linear and non-linear beam

dynamics correctly, the results of the normal form analysis and the dynamic aperture have

to be compared to a reference model believed to be a precise description of the lattice. As

reference model and final model the parameters listed in Table 3.9 have been used in this

thesis. In general, the lattice description has to be checked for each lattice. Exemplary

reference model final model

model “matrix-kick-matrix” “matrix-kick-matrix”

number of integration steps 10 -

thinlens - 0.05

order of symplectic integrator 6 2

Hamiltonian exact exact

Table 3.9: Simulation parameters for the reference and final model. The parameter thinlens is

the maximum integrated quadrupole strength per integration step. A quadrupole of

1 m and k = 1/m would be split in 20 integration steps for thinlens=0.05.

for all lattices, the results of the simplified PS Booster lattice (Sec. 3.1.2) with a working

point of Qx/Qy = 4.29/3.38, the working point used for the convergence study described

in Sec. 3.4.2, are presented in the following sections.

3.4.1.1 Comparison of the normal form analysis for the simplified PS Booster

lattice with Qx/Qy = 4.29/3.38

The comparison of the higher order chromaticities and anharmonicities defined in Sec.1.6.3

and Sec. 1.6.4 is an excellent way to check that the non-linear part of the lattice is modelled
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correctly. The results of the normal form analysis of the reference and final model are given

in Table 3.10 and show good agreement. As the lattice does not contain any non-linear

elements, the detuning with amplitude is very small. The only non-linearity of the lattice

comes from the fringe fields of the dipoles and quadrupoles with a dominating effect from

the quadrupoles. For all lattices the chromaticity is uncorrected, as is also the case for the

existing PS Booster, leading to a relatively large chromatic detuning.

reference model final model

Qx/Qy 4.29/3.38 4.29/3.38

dQx/dQy −6.38/− 10.84 −6.38/− 10.82

d2Qx/d
2Qy 172.91/316.78 172.85/316.67

ax,10/ay,10 13.65/47.88 13.65/47.88

ax,01/ay,01 47.88/52.45 47.88/52.44

Table 3.10: Comparison of the higher order chromaticities and anharmonicities of the reference

and final model.

It is essential for machines with large bending angles to use the exact Hamiltonian, as

otherwise the chromatic behaviour is not modelled correctly. This is also the case for the

lattices studied in this thesis. The exact Hamiltonian has thus been used for all lattices.

As an example, the results of the normal form analysis of the reference model using the

exact and the expanded Hamiltonian are listed in Table 3.11 and show, as expected, a

non-negligible difference, in particular in the linear chromaticity.

exact Hamiltonian expanded Hamiltonian

Qx/Qy 4.29/3.38 4.29/3.38

dQx/dQy −6.38/− 10.84 −6.74/− 10.18

d2Qx/d
2Qy 172.91/316.78 171.80/312.72

· · · · · · · · ·

Table 3.11: Comparison of the higher order chormaticities of the reference model using the exact

or expanded Hamiltonian.

3.4.1.2 Comparison of the dynamic aperture for the simplified PS Booster

lattice with Qx/Qy = 4.29/3.38

The dynamic aperture of the final and reference model for ∆E = 0, for half the maximum

energy spread (∆E = 1.53MeV) and for the full energy spread (∆E = 3.05MeV) are

shown in Fig. 3.8 and agree well except for σx = 0 and σy = 0. The disagreement in these

points does not really indicate a deficit of the chosen model, as points with σx/y = 0 are in

general difficult to simulate and results have to be treated with caution [71]. As the lattice

contains no non-linear elements, the dynamic aperture is determined by the resonances

excited by the dipole and quadrupole fringe fields. Disabling the fringe fields leads to a

basically infinite dynamic aperture.
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Figure 3.8: Dynamic aperture of the reference (solid) and final model (dashed) assuming LHC

25 ns beams (Table 3.7), where σx/y =
√
βx,yεx/y,rms denotes the betatron rms beam

size given by σx/σy = 4.60/4.96 mm

3.4.2 Dependence on simulation parameters - convergence study

In order to find a good set of simulation parameters delivering credible results in decent

computation time, a convergence study has been performed in this thesis for the simplified

PS Booster lattice (Sec. 3.1.2).

Qx/Qy 4.29/3.38

energy 160 MeV

circumference 1/4 CPS ≈ 157.08m

RF system VRF(h = 1) = 50 kV

hor./vert. normalized emittance 2.5/2.5 mm mrad

long. emittance 2.8 eVs

number of particles per bunch 1.2× 1012

number of turns 2000

Table 3.12: Simulation parameters used for the convergence study.

A simulation with full beam intensity is in general not suited for a convergence study, as

then the emittance behaviour is dominated by the blow-up caused by resonance excitation

due to the large space-charge tune-shift. To clearly see only the artefacts of the simulation,

the first step is to reduce the beam intensity, typically to half the intensity. With the

resulting smaller space-charge tune-spread, the working point is placed such that the tune

footprint avoids all resonances possibly causing blow-up. Explicitly in the case of the

simplified PS Booster lattice, the working point is moved below the half integer resonance,

as for the smaller beam intensity the core of the beam would constantly cross over the

resonance. The new working point is considered to be stable, if the emittance is constant at

zero beam intensity, so without space-charge. As a last step, the number of turns is chosen

large enough, so that all oscillation due to injection mismatch have vanished and the beam

distribution has adjusted to the lattice, including all non-linearities. To ensure this, the
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beam should be tracked over several oscillation periods. As the longitudinal synchrotron

motion is much slower than the transverse, it determines the tracking time and it is

usually enough to track over a few synchrotron periods. For the simplified PS Booster

lattice, the beam has been tracked over 2 000 turns, which corresponds to approximately

eight synchrotron periods which is considered to be sufficient time to test the stability of

the beam.

All simulations were performed for the LHC 25 ns beam (Table 3.7), resulting in the

corresponding parameters for the convergence study listed in Table 3.12.

3.4.2.1 Stability check of the working point used for the convergence study

The working point ofQx = 4.29, Qy = 3.38 used for the convergence study has been chosen

in a safe area well below the half integer resonance. The tune footprint and resonance

diagram are shown in Fig. 3.9 (left). The horizontal tune-spread is an artifact from ORBIT

where the tune for low amplitude particles is not correctly calculated as illustrated in

Fig. 3.9 (right). As the lattice does not contain any non-linear elements, the detuning with

amplitude is very small and the tune-spread is only caused by the chromatic detuning due

to the large chromaticities in the case of a triplet lattice.
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Figure 3.9: (left) Resonance diagram with resonances until 5th order and tune footprint from

PTC-ORBIT for Qx = 4.29, Qy = 3.38. Systematic resonances are shown in red,

non-systematic in blue and resonances due to skew elements are indicated with dashed

lines.

(right) Tune footprint from PTC-ORBIT color coded with the horizontal amplitude

n · Jx of the individual beam particles, where Jx is the action with 2Jx = εx,rms =

4.11µm. The tune-spread is mainly caused by the chromatic detuning (indicated in

black). The horizontal tune-spread is artificial, due to the fact that the tune is not

correctly calculated by ORBIT for particles with small horizontal amplitude particles.

The rms emittance shown in Fig. 3.10 remains constant over several synchrotron periods,

indicating that the chosen working point can be considered to be stable.

The difference in the initial rms emittance for different numbers of macroparticles is

very small and a statistical phenomenon. The small oscillation with the synchrotron fre-

quency of the horizontal emittance can be explained by the initial longitudinal mismatch,

which is also visible as an oscillation of the bunching factor with twice the synchrotron
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Figure 3.10: Time evolution of the horizontal (left) and vertical (right) rms emittance for zero

beam intensity and a working point of Qx = 4.29, Qy = 3.38. The oscillations of

the horizontal emittance with the synchrotron frequency are caused by the intial

longitudinal mismatch.
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Figure 3.11: Bunching factor for zero beam intensity and a working point of

Qx = 4.29, Qy = 3.38. The oscillation with twice the synchrotron frequency

is caused by the intial longitudinal mismatch.
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space in dashed and the linear approximation in dashed-dotted. The beam distri-

bution is matched to the phase-space area in linear approximation for simplicity.
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frequency (Fig. 3.11). The longitudinal mismatch occurs as the distribution is not matched

to the exact non-linear longitudinal phase space - dashed line in Fig. 3.12, but to the linear

approximation - dashed-pointed line in Fig. 3.12.

3.4.2.2 Dependence on the number of macroparticles

Because the 2 1/2 D model is a grid based algorithm, the number of macroparticles is

linked to the binning of the grid. If the binning of the grid is too large, particles with large

amplitudes also experience a strong space-charge kick, leading to an artificial emittance

growth. On the other hand, if the bin size is too small, the space-charge calculation is

dominated by statistical noise, again leading to artificial blow-up. A rule of thumb for

PTC-ORBIT is to use at least 10 macroparticles per gridpoint [72], and as a FFT is used

for the space-charge field calculation, the number of bins should be a power of 2 leading

to the set of simulation parameters listed in Table 3.13.

number of bins number of macroparticles

32 5× 104

64 1× 105

64 2× 105

128 5× 105

128 8.2× 105

Table 3.13: Simulation parameters used for the investigation of the dependence on the number

of macroparticles.

Comparing the development of the rms-emittance (Fig. 3.13) the simulation results con-

verge for a number of bins larger than 128 and more than 5 × 105 macroparticles, where

the criterion for convergence is that the emittance blow-up does not change considerably

with a further increase of the number of macroparticles.
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Figure 3.13: Time evolution of the horizontal (left) and vertical (right) rms emittance for

1.2× 1012 particles per bunch, a maximum distance of 1 m between space-charge

nodes (lmax) and with different number of macroparticles and number of bins.

3.4.2.3 Dependence on the grid binning

In Sec. 3.4.2.2 it has been shown that a minimum of 5 × 105 macroparticles is necessary.

To ensure that for this minimum number of macroparticles the right binning has been
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chosen, the number of bins has been varied from 24 = 16 to 27 = 128. Only for the small

number of 16 bins, a difference between the simulations is observed and a number of bins

of 128 can be considered to deliver reliable simulation results (Fig. 3.14).
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Figure 3.14: Time evolution of the horizontal (left) and vertical (right) rms emittance for

1.2× 1012 particles per bunch, 5× 105 macroparticles, a maximum distance of 1 m

between space-charge nodes (lmax) and different number of bins. Only for the small

number of 16 bins the emittance evolution differs from the simulation results with

a larger number of bins.

3.4.2.4 Dependence on the distance between space charge nodes

An artificial blow-up can not only be caused by an inappropriate choice of the number of

macroparticles and bins, but also by too large a distance between the space-charge nodes.

A large distance implies strong local non-linear kicks which lead to a stronger excitation of

resonances than uniformly distributed kicks. As a rule of thumb more than 10 space-charge

nodes per betatron period should be used in the case of PTC-ORBIT [72]. In the case of

the simplified PS Booster lattice with a working point around 4 and a length of 50 · π m,

the minimum distance would then be around 4 m. Fig. 3.15 shows the dependence on the

distance between space-charge nodes. The emittance behaviour differs only for the largest

distance studied (lmax = 4 m).
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Figure 3.15: Time evolution of the horizontal (left) and vertical (right) rms emittance for

1.2× 1012 particles per bunch, 5 × 105 macroparticles, 128 bins and varying dis-

tance lmax between space-charge nodes. Only the largest distance shows a larger

emittance growth.
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3.4.3 Conclusion

In Sec. 3.4.1.1 the final model of the lattice has been compared to a reference model to

ensure that the non-linear optics are also described correctly. It is essential to use the

exact Hamiltonian in order to obtain the correct chromatic effects.

In Sec. 3.4.2.2 to 3.4.2.4, the dependence of the simulation results on the number of

macroparticles, the binning and the distance between space-charge nodes has been investi-

gated. In Sec. 3.4.2.2 it has been shown that a minimum number of 5×105 macroparticles

is needed in combination with 128 bins. The 128 bins for 5× 105 macroparticles proved to

be more than sufficient (Sec. 3.4.2.3). The estimated distance between space-charge nodes

of 4 m resulted in an artificial emittanceblow-up (Sec. 3.4.2.4) and the baseline distance

has therefore been set to a save value of 1 m, which is significantly smaller than the value

expected applying the rule of thumb from [72].

In general, the space-charge calculations need little computation time compared to the

PTC tracking time [73]. Thus it is important to reduce the number of macroparticles, but

the number of bins and distance between space-charge nodes do not have to be extensively

optimized in regard to the CPU time. Therefore, the minimum number of macroparticles

of 5× 105, a rather large number of bins of 128 and a small distance of only 1 m between

the space-charge nodes have been chosen as baseline simulation parameters, summarized

in Table 3.14.

number of macroparticles 5× 105

number of bins 128

distance between space-charge nodes 1 m

Table 3.14: Simulation parameters used in this thesis.

3.5 Estimation of Emittance Increase due to Transverse Mis-

match

The equations of motion including space-charge are only linear for elliptical transverse

profiles (K.V. distribution), and can be analytically solved for the same, but not for any

other distribution (see Sec. 1.6.4). This makes it rather difficult and laborious to create

a matched initial distribution including all non-linearities introduced by the space-charge

field, and usually the initial distribution is only matched to the undisturbed lattice where

undisturbed denotes no space-charge nor other sources of non-linearities. For large inten-

sities it could therefore be possible that a different initial blow-up due to filamentation of

mismatch occurs for different lattices. This blow-up is expected to be ”fast” compared to

the blow-up due to resonance excitation. To get a rough estimate of the increase of the

emittance and change of the beta-function due to mismatch, an exemplary study using

the simplified PS Booster lattice has been performed in the framework of this thesis. It is

expected that the blow-up increases with the intensity. Analytical estimates for the scaling
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of emittance and beta function with the beam intensity are derived in Appendix H. Note

that Appendix H only treats the linear mismatch and not the non-linear mismatch due

to magnet non-linearities and space-charge. To obtain the estimate for the full intensity,

the distribution matched to the undisturbed lattice has been tracked for different inten-

sities over 200 turns corresponding to approximately 1 000 betatron oscillations, which is

considered to be sufficient to reach the new equilibrium distribution for the lattice with

space-charge. The emittance and beta-function were determined from the moments of the

distribution using Eqn. 1.18 and Eqn. 1.19

εz,rms =
√
σ2
zσ

2
z′ − σ2

zz′ , (3.1)

βz =
σ2
z

εz,rms
. (3.2)

The phase space coordinates z and z′ with z = x, y are only the part of the beta-

tron motion and are calculated under the assumption of intensity independent disper-

sion (Dz(I) = Dz(I = 0))

z = ztot −Dz
δp

p
, (3.3)

z′ = z′tot −D′z
δp

p
. (3.4)

The error made due to this assumption is expected to be small.

The simulations have been carried out for the nominal working point of Qx/Qy = 4.28/3.55

and the working point of Qx/Qy = 4.29/3.38 used for the convergence study (Sec. 3.4.2).

For the nominal high intensity tune of Qx/Qy = 4.28/3.55 a large emittance blow-up is

expected for low intensities due to the excitation of the vertical half integer resonance.

3.5.1 Simulation results for Qx = 4.29, Qy = 3.38

In Fig. 3.16 the beta-function as a function of the beam intensity is shown. As derived in

Appendix H, the beta-function depends linearly on the beam intensity

∆βx,y = ax,y · I .

The gradient obtained from the linear fit to the simulation results is

ax = 5.1× 10−14 m, ay = 1.3× 10−13 m (3.5)

yielding a relative change of the beta function for full intensity of

∆βx
βx,init

= 0.024,
∆βy
βy,init

= 0.053 (3.6)

As illustrated in Fig. 3.17, the rms emittance calculated from the beam distribution in-

creases quadratically with the beam intensity. The equation for the emittance growth

(Eqn. H.10) derived in Appendix H

∆ε

εinit
=

(aI)2

2βinit(βinit + a · I)
(3.7)
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Figure 3.16: Difference between horizontal (left) and vertical (right) beta-function of the undis-

turbed lattice and the beta-function determined from the tracked distribution after

200 turns for a working point of Qx/Qy = 4.29/3.38. The simulation results are

shown in blue and the linear fit in red.

gives the correct order of magnitude, but does not agree exactly with simulation results.

The difference could be due to non-linearities or dispersive effects, as the discrepancy is

larger in the horizontal plane. The quadratic fit to the emittance increase yields

∆εx
εx,init

= 4.89× 10−28 I2,
∆εy
εy,init

= 1.61× 10−28 I2 (3.8)

Extrapolating to the full beam intensity of 2.4× 1012 one obtains

∆εx
εx,init

= 0.0028,
∆εy
εy,init

= 0.00093 (3.9)
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Figure 3.17: Difference between horizontal (left) and vertical (right) rms emittance of the undis-

turbed lattice and the rms emittance determined from the tracked distribution after

200 turns for a working point of Qx/Qy = 4.29/3.38. In both planes the emittance

increases quadratically with the intensity as derived in appendix H. The simulation

results are shown in blue, the quadratic fit in red and the analytical estimation using

Eqn. H.10 in green.

3.5.2 Simulation results for Qx = 4.28, Qy = 3.55

The linear fit to the beta-function as a function of the intensity, shown in Fig. 3.18, yields

the following gradients:

ax = 4.73× 10−14 m, ay = 1.21× 10−13 m (3.10)



3.5. Estimation of Emittance Increase due to Transverse Mismatch 121

giving a relative change of the beta function for full intensity of

∆βx
βx,init

= 0.022,
∆βy
βy,init

= 0.052 (3.11)
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Figure 3.18: Difference between horizontal (left) and vertical (right) beta-function of the undis-

turbed lattice and the beta-function determined from the tracked distribution after

200 turns for a working point of Qx/Qy = 4.28/3.55. The simulation results are

shown in blue and the linear fit in red.
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Figure 3.19: Difference between horizontal (left) and vertical (right) rms emittance of the undis-

turbed lattice and the rms emittance determined from the tracked distribution after

200 turns for a working point of Qx/Qy = 4.28/3.55. In the vertical plane the in-

crease of the emittance is probably not caused by the mismatch but by the excitation

of the half integer resonance. The simulation results are shown in blue, the quadratic

fit in red and the analytical estimation using Eqn. H.10 in green.

Fig. 3.19 shows the emittance increase with intensity. As suspected, the emittance increase

in the vertical plane is dominated by the excitation of the half integer resonance. We

therefore estimate the increase of the emittance by using the quadratic fit for the horizontal

plane and Eqn. 3.7 for the vertical plane with ay given by 3.10

∆εx
εx,init

= 5.32× 10−28 I2,
∆εy
εy,init

= 2.34× 10−28 I2 (analytical) (3.12)

The extrapolation to the full beam intensity of 2.4× 1012 then yields

∆εx
εx,init

= 0.0031,
∆εy
εy,init

= 0.0013 (analytical) (3.13)
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3.5.3 Conclusion

The results of the studies on the mismatch due to generating macroparticle distributions

neglecting direct space-charge and lattice non-linearities are summarized in Table 3.15. For

both working points the beta-function shows a linear increase with intensity, leading to a

relatively small change at full intensity. For Qx/Qy = 4.29/3.38 the emittance increases

quadratically in both planes and an estimate can be obtained from the extrapolation of

the quadratic fit to the full intensity, while for Qx/Qy = 4.28/3.55 a large blow-up of the

vertical emittance is observed. This can be explained by the excitation of the vertical half

integer resonance in the case of Qx/Qy = 4.28/3.55. In this case an estimate can only be

obtained from Eqn. 3.7. For both planes the initial emittance increase due to mismatch

lies in the per-mil range and can thus be neglected in general.

Qx/Qy = 4.29/3.38 Qx/Qy = 4.28/3.55
∆βx
βx,init

0.024 0.022

∆βy
βy,init

0.053 0.052

∆εx
εx,init

0.0028 0.0031

∆εy
εy,init

0.00093 0.0013

Table 3.15: Results of the studies on initial betatron mismatch.

3.6 Lattice Studies

In this sections, the studies of the different lattices, investigated in the framework of this

thesis, are presented. Motivated by the different design of the PS Booster and RCS,

the lattices have been studied with respect to their different cell types, number of cells,

symmetries and dispersion suppressor schemes.

The general beam, lattice and simulation parameters used in all simulations are given

in Sec. 3.3 and Table 3.14. Assuming a cycle of 10 Hz and a linear ramp-up for 60%

of the cycle and 40% for the ramp-down, the full ramp-up would take about 100 000

turns. A simulation of the full ramp-up is therefore unrealistic due to excessive computing

requirements. As the space-charge force scales with 1/(βγ2), the space-charge effect is

most relevant at low energy and it is sufficient to simulate only a smaller number of turns

with realistic CPU time requirements, explicitly 10 000 turns have been simulated.

In order to compare only the influence of the space-charge effect, no fringe fields except

the very weak dipole fringe fields (which can not be disabled) have been simulated (except

in Sec. 3.6.2 which is explicitly addressing this subject).

3.6.1 Dependence on the lattice cell and variation of the beam size

Many modern lattices are based on a FODO cell structure, which exhibits a relatively

large variation of the beam size compared to a doublet or triplet lattice as used for the
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PS Booster. A very smooth variation of the beam size, and in particular small variations

of the ratio between the two transverse sizes, as featured by triplet focusing, results in an

almost uniformly distributed space-charge field, while a large variation of the beam size

entails a varying strength of the non-linear space-charge kick. The latter case is expected

to lead to stronger resonance excitation.

All lattices presented in this section consist of 16 equal cells and thus have a periodicity

and symmetry of 16 and are matched to a working point of Qx/Qy = 4.28/3.55.

3.6.1.1 Comparison of triplet, doublet, long doublet and FODO

The triplet lattice features the least variation of the beam size, then the doublet, the long

doublet (doublet with a larger distance between the quadrupoles) and finally the FODO

lattice with the largest variations. The maximum and minimum beam size for all four

unit triplet doublet long doublet FODO

σx,max/σx,min mm 6.02/4.56 7.89/4.29 8.26/4.00 8.46/3.62

∆σx mm 1.46 3.60 4.25 4.84

σy,max/σy,min mm 8.11/4.79 7.33/4.44 7.82/4.08 8.17/3.78

∆σy mm 3.32 2.89 3.75 4.39

Table 3.16: Maximum and minimum rms beam size for triplet, doublet, long doublet and FODO

lattice, where the notation ∆σx/y = σx/y,max − σx/y,min was used.

lattices is listed in Table 3.16. The optics are shown in Fig. 3.20 and the one rms beam

envelope for all four cell types in Fig. 3.21.
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Figure 3.20: Optics of the different lattice cells.
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Figure 3.21: One rms beam envelope of the 16 cell lattice built of different lattice cells. The beam

envelope has been calculated using the design transverse normalized rms emittance

of 2.5 µm and the rms momentum spread corresponding to the design longitudinal

emittance of 2.8 eVs.
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Figure 3.22: Time evolution of horizontal (left) and vertical (right) rms emittance for different

lattice cells.



3.6. Lattice Studies 125

Neglecting quadrupole fringe field effects, the least rms emittance growth is observed,

as expected, for the triplet lattice, followed by the doublet, while the long-doublet and

FODO cell exhibit the same emittance behaviour (Fig. 3.22). Comparing the difference

between the maximum and minimum beam size, the triplet has the smallest difference

in the horizontal plane, but a large difference in the vertical plane. This large difference

occurs only over a small length, which turns out to be of little importance (Sec. 3.6.1.2).

For the doublet, long doublet and FODO lattice the large variations are not limited to a

small section, as is the case for the triplet, and the difference between the maximum and

minimum beam size represents a qualitative measure for the expected emittance growth.

3.6.1.2 Variation of the beam size

The results of Sec. 3.6.1.1 indicate that not only the maximum variation of the beam size

plays an important role, but also the duration of the variation. To investigate this matter,

a triplet cell “collapsed” to almost zero length has been compared to the triplet cell of the

simplified PS Booster lattice. Both optics are shown in Fig. 3.23. In particular, the section

with a high vertical beta function is shortened in the case of the collapsed triplet cell and

with it the length of the large variation of the beam size.
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Figure 3.23: Optics and one rms beam envelope of the triplet and collapsed triplet cell lattice.

The beam envelope has been calculated using the design transverse normalized rms

emittance of 2.5 µm and the rms momentum spread corresponding to the design

longitudinal emittance of 2.8 eVs.

Simulations confirm this hypothesis as the emittance growth in the vertical plane for the

collapsed triplet is slightly less than for the triplet (Fig. 3.24 (right)) while the horizontal

plane stays unchanged (Fig. 3.24 (left)).

For most low energy circular accelerators, the space-charge effect is weaker in the horizontal

than in the vertical plane, due to the non-vanishing horizontal dispersion and thus larger
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Figure 3.24: Time evolution of horizontal (left) and vertical (right) rms emittance for the triplet,

collapsed triplet and inverted triplet lattice.

beam size. The comparison of the different cells revealed that the variation of the beam

size has a non-negligible influence on the emittance growth. In some cases e.g. the triplet

lattice, where a large variation is only given in one plane, it could therefore be advantageous

to have the large variation of the beam size in the plane with the larger beam size. Fig. 3.25

shows the optics of a 16 cell lattice with an inverted triplet cell, the QF is in the center

of the cell, for which the large variation of the beam size occurs in the horizontal plane.

Compared to the triplet, the inverted triplet exhibits a smaller emittance growth in the
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Figure 3.25: Optics and one rms beam envelope for the inverted triplet cell (QD-QF-QD). The

beam envelope has been calculated using the design transverse normalized rms emit-

tance of 2.5 µm and the rms momentum spread corresponding to the design longi-

tudinal emittance of 2.8 eVs.

vertical and a slightly larger growth in the horizontal (Fig. 3.24), which is just the desired

behaviour. In reality, a larger variation of the horizontal beam size is often not practical

as it implies a large beam size at all or some of the focusing quadrupoles, resulting in a

large required magnet aperture, limiting the achievable quadrupole gradients.

3.6.2 Influence of fringe fields

In all other sections, no fringe fields (only the very weak dipole fringe fields as they cannot

be disabled) have been simulated in order to isolate the emittance blow-up caused by the

space-charge effect. In reality, fringe fields are always present. To give an example of the

influence of fringe fields, Fig. 3.26 shows the emittance evolution for the triplet, doublet

and FODO cell lattice of Sec. 3.6.1.1, but now including both dipole and quadrupole fringe

fields. First one notes that the emittance blow up, mainly in the vertical plane, is in all
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cases considerably higher than for the lattices without fringe fields. Furthermore, the

triplet and doublet lattice now show more or less the same emittance growth in contrast

to the results obtained in Sec. 3.6.1.1 where the triplet lattice showed the smaller emittance

growth. Also including the fringe fields the FODO lattice still shows the largest emittance

growth despite the by approximately a factor of two smaller integrated quadrupole strength

with regard to the doublet cell lattice.

0 2000 4000 6000 8000
4.115

4.120

4.125

4.130

4.135

4.140

Turns

Ε x
,r

m
s
Μm

FODO
Doublet
Triplet

with fringe fields

0 2000 4000 6000 8000
4.12

4.14

4.16

4.18

4.20

4.22

4.24

4.26

Turns

FODO
Doublet
Triplet

with fringe fields

Ε y
,r

m
s
Μm

Figure 3.26: Time evolution of horizontal (left) and vertical (right) rms emittance for different

lattice cells including fringe fields.

A second example is the collapsed triplet cell lattice of Sec. 3.6.1.2. Including the quadrupole

fringe fields in the simulation, a very large emittance growth illustrated in Fig. 3.27 is ob-

served for the collapsed triplet due to the very high quadrupole gradients required for this

lattice.
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Figure 3.27: Time evolution of horizontal (left) and vertical (right) rms emittance for the triplet

and collapsed triplet including fringe fields.

In general, a smoother focusing and small variation of the beam size, which is advantageous

in the case of strong space-charge effects, can be achieved with a large number of strong

focusing magnets, but the effect of the fringe fields would most probably undo the beneficial

effect of the small variation of the beam size. For a realistic estimate of the blow-up to be

expected in a real machine, the effect of the fringe fields has to be taken into account.

3.6.3 Influence of weak symmetry breaking

The lattices proposed for the CERN RCS all possessed a low symmetry of 2, 3 or 4

compared to 16 for the PS Booster. In this section, the importance of symmetries is
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studied on the example of variations of the simplified PS Booster lattice (Sec. 3.1.2).

The symmetry of the lattice is broken by shortening the bends in one triplet cell. The

beta-beating introduced is corrected by matching the modified cell to the arc with the

quadrupole triplet next to the shortened bends. The phase advance is then rematched by

adjusting the phase advance of the arc cell. This procedure is repeated until the target

tune of Qx/Qy = 4.28/3.55 is reached. Fig. 3.28 shows the optics for the lattice with

symmetry 1, with and without beta-beating correction, Fig. 3.29 shows the optics of the

lattices with symmetry 2 and 4 and beta-beating correction, and the simplified PS Booster

lattice with symmetry 16 is shown in Fig. 3.2.
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Figure 3.28: Optics of the simplified PS Booster lattice with symmetry 1.

(left) With beta-beating correction (right) Without beta-beating correction

0 50 100 150
0

5

10

15

s�m

H
Β

x
,

Β
y

,-
1D

x
-

1D
y

L
�
m

0 50 100 150
0

5

10

15

s�m

H
Β

x
,

Β
y

,-
1D

x
-

1D
y

L
�
m

Figure 3.29: Optics of the simplified PS Booster lattice with symmetry 2 (left) and symmetry 4

(right) and beta-beating correction in both cases.
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Figure 3.30: Time evolution of horizontal (left) and vertical (right) rms emittance for symmetry 1,

2, 4 and 16.

The time evolution of the rms emittance for the different lattice symmetries is plotted

in Fig. 3.30. As expected, the lattice with the lowest symmetry (symmetry 1) shows the
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largest blow-up. In the case of the lattice with a symmetry of 2 the emittance growth is

already considerably reduced and no difference can be seen between symmetry 4 and 16.

In order to understand this result better, especially why the lattices with symmetry 4

and 16 feature the same emittance evolution, the tool of an analysis of the beam moments

has been used. In general, the rms emittance blow-up in the case of space-charge dominated

beams is mostly caused by the coherent excitation of resonances [74]. Which resonances

are excited coherently can be obtained by a Fourier analysis of the beam moments [27].

The order of the excited resonance corresponds directly to the coherent oscillation of

the corresponding moment of the distribution. For example, the excitation of the 4Qy

resonance would appear as a coherent oscillation of the < y4 > moment and the excitation

of the Qx + 3Qy resonance as a coherent oscillation of the < xy3 > moment.

0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

35

Tune

A
m

pl
it

ud
e Symmetry 1

Symmetry 2

Symmetry 4

Symmetry 16

<y4
>

0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

Tune

A
m

pl
it

ud
e Symmetry 1

Symmetry 2

Symmetry 4

Symmetry 16

<xy3
>

Figure 3.31: Discrete Fourier Transformation of the < y4 > (left) and < xy3 > (right) moment

of the beam after 1024 turns.

Two examples of a Fourier transformation of the < y4 > and < xy3 > moment for the

different symmetries are given in Fig. 3.31. A coherent oscillation of the < y4 > moment

is visible for symmetry 1 and 2, appearing as a high amplitude at a tune of 1.0, while for

< xy3 > the amplitude is 0 close to a tune of 1.0, but non-zero for the tune of the machine

of 0.55.

symmetry

moment 16 4 2 1

< x > 0 0 0 0

< y > 0 0 0 0

< x2 > 2.57 2.57 2.57 2.57

< xy > 0 0 0 0

< y2 > 0 0 0 0

< x3 > 0 0 0 0

< x2y > 0 0 0 0

< xy2 > 0 0 0 0

< y3 > 0 0 0 0

< x4 > 115.71 115.69 115.59 115.80

< x3y > 0 0 0 0

< x2y2 > 11.53 11.46 11.56 12.18

< xy3 > 0 0 0 0
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< y4 > 0 0 4.40 32.21

< x5 > 63.0 61.09 63.31 62.07

< x4y > 5.66 4.26 6.41 3.85

< x3y2 > 4.78 4.52 4.92 6.52

< x2y3 > 0 1.02 0 0

< xy4 > 3.05 2.77 4.80 12.90

< y5 > 0 0 0 0

Table 3.17: Maximum amplitude close to a tune of 1.0 of the Fourier analysis of the beam mo-

ments after 1 024 turns for symmetry 1, 2, 4 and 16 . Raised amplitudes are indicated

in red.
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Figure 3.32: Resonance diagram until 5th order and tune footprint for symmetry 1, 2, 4 and 16.
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The maximum amplitude close to a tune of 1.0 of the beam moments up to 5th order

for the different symmetries is listed in Table 3.17. To determine which resonances are

excited, only the moments of the first 1 024 turns have been analysed, as the results

of the analysis of all turns is dominated by the emittance growth, e.g. an increase of the

amplitude of the < y2 > momentum, erroneously leading to the conclusion of the excitation

of the vertical half integer resonance. The moment analysis leads to the conclusion that

the emittance growth for symmetry 2 and 1 is caused by the excitation of the 4Qy and

Qx + 4Qy resonance, which are not excited or less excited for symmetry 4 and 16, as

both resonances are systematic for symmetry 2 and 1, but non-systematic for symmetry 4

and 16 (Fig. 3.32), confirming the results of the moment analysis.

3.6.4 Dependence on the symmetry and periodicity and relevance of

systematic resonances.

To avoid the Montague resonance [65], it is furthermore advisable to choose different integer

parts of the tune. In addition, a small phase advance per cell is advantageous (Sec. 3.6.6),
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Figure 3.33: Optics of one FODO cell for periodicity 15, 16, 18, 21 and 24 and a working point

of Qx/Qy = 4.28/3.55.
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implying a preference for a high number of lattice cells. All these constraints often do not

leave much choice for the area of possible working points and it is important to choose the

symmetry of the machine carefully, as it determines which resonances are systematic or

non-systematic. In this section, the importance of systematic resonances is investigated on

the example of a FODO cell lattice with a varying number of cells, explicitly 15, 16, 18, 21

and 24 cells and a working point of Qx/Qy = 4.28/3.55. The same dipole field is assumed

for all lattices and the dipole length adjusted accordingly. The length of the quadrupoles

is kept constant as the gradient does not change considerably for all lattices. The optics

of one lattice cell are shown in Fig. 3.33 for the different number of cells. The maximum

dispersion and beta-function depend only weakly on the phase advance for the lattices

considered (Appendix A), resulting in a smoother lattice with an increasing number of

cells. The emittance growth is expected to decrease with an increasing number of cells

(see Sec. 3.6.6), in disagreement with the obtained results shown in Fig. 3.34, revealing

strong variations but, at first sight, no correlation with the phase advance per cell, i.e.

for the lattices with symmetry 16 and 24 very little blow-up has been found while the

lattices with symmetry 15, 18 and 21 show a large blow-up. The emittance development
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Figure 3.34: Time evolution of horizontal (left) and vertical (right) rms emittance for a periodicity

and symmetry of 15, 16, 18, 21 and 24.
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Figure 3.35: Time evolution of horizontal (left) and vertical (right) rms emittance for a period-

icity/symmetry of 16 and 24.

can be explained by the excitation of systematic resonances of 4th respectively 5th order.

Fig. 3.36 shows that the tune foot print crosses the 2Qx + 2Qy for 15, the Qx + 4Qy for 18

and the 5Qx resonance for 21 cells and that no systematic resonances are crossed for 16 and

24 cells for which only a comparably small emittance growth is observed. The results of
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Figure 3.36: Resonance diagram and tune footprint for periodicity 15, 16, 18, 21 and 24.
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the moment analysis summarized in Table 3.18 confirm that in the case of 18 and 21 cells,

the systematic resonance being crossed exhibits a higher amplitude than for the other

symmetries and that in the case of 16 and 24 cells, none of the moments show a larger

amplitude. For the 18 cell lattice the 4Qy resonance has a higher amplitude in addition to

the Qx+4Qy without being systematic. In the case of 15 cells, a large amplitude would be

expected for the x2y2 moment, but instead none of the moments has a particularly high

amplitude. Taking a closer look at the 16 and 24 cell FODO lattice where in both cases

periodicity

moment 15 16 18 21 24

< x > 0 0 0 0 0

< y > 0 0 0 0 0

< x2 > 2.30 2.36 2.45 2.57 2.62

< xy > 0 0 0 0 0

< y2 > 0 0 0 0 0

< x3 > 0 0 0 1.14 0

< x2y > 0 0 0 0 0

< xy2 > 0 0 0 0 0

< y3 > 0 0 0 0 0

< x4 > 94.00 96.74 102.09 111.18 112.31

< x3y > 0 0 0 0 0

< x2y2 > 10.55 10.70 11.45 11.55 11.70

< xy3 > 0 0 0 0 0

< y4 > 2.16 1.11 6.01 1.37 0

< x5 > 22.36 - 43.80 183.78 48.99

< x4y > 2.80 - 2.48 3.52 2.94

< x3y2 > 3.97 - 5.45 4.09 3.44

< x2y3 > 0 - 0 0 0

< xy4 > 0 - 6.19 2.94 1.29

< y5 > 0 - 0 0 0

Table 3.18: Maximum amplitude close to a tune of 1.0 of the Fourier analysis of the beam mo-

ments after 512 turns for periodicity 15, 16, 18, 21 and 24, where the periodicity is

equal to the number of cells. The analysis is already performed after 512 turns as

for 1024 turns the results are already dominated by the influence of the emittance

growth. Raised amplitudes are indicated in red.

no systematic resonances are crossed, the emittance growth (Fig. 3.35) is smaller in the

case of the 24 cell lattice, in agreement with the assumption that a smaller phase advance

per cell and also a smaller variation of the beam size leads to a smaller emittance growth.

It should be noted that the smaller variation of the beam size is in this case mainly due

to the decrease of the cell length with the number of cells and not primarily due to the

phase advance (Appendix A).
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3.6.5 Weak and strong symmetry breaking and variation of the beam

size

In Sec. 3.6.4 it has been shown on the example of a FODO cell lattice with a varying number

of cells, that systematic resonances can lead to considerable emittance growth, even if only

space-charge effects and no magnet imperfections or random errors are considered. In this

section, the focus lies on the symmetry breaking. The symmetry is broken and reduced to 1

in all cases by shortening the bends of one cell. Due to the symmetry of 1, all resonances

become systematic. The beta-beating introduced by the shorter bends is corrected by

matching the twiss functions of the shorter cell to the arc cell with individual quadrupoles

and then readjusting the phase advance per cell.

3.6.5.1 FODO lattices with weak symmetry breaking

In this section, the perturbation and variation of the beam size is kept as minimal as

possible. The beam envelope is shown in Fig. 3.37 and Fig. 3.38. All lattices have the same

working point of Qx/Qy = 4.28/3.55. Due to the correction of the beta-beating and the

relatively small perturbation introduced by the bends, the symmetry is only weakly broken,

visible as an emittance evolution (Fig. 3.39) similar to the lattices with the unbroken

symmetry (Fig. 3.34), and therefore suggests a remaining influence of all systematic
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Figure 3.37: One rms beam envelope of FODO cell lattices with 15, 16, 18 and 21 cells and

symmetry 1. The lattices are matched keeping the variation of the beam size as

small as possible. The beam envelope has been calculated using the design transverse

normalized rms emittance of 2.5 µm and the rms momentum spread corresponding

to the design longitudinal emittance of 2.8 eVs.
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24 cells, φx/y = 64.2/53.7
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Figure 3.38: One rms beam envelope of the 24 cell FODO lattice with symmetry 1. The lattice

is matched keeping the variation of the beam size as small as possible. The beam

envelope has been calculated using the design transverse normalized rms emittance

of 2.5 µm and the rms momentum spread corresponding to the design longitudinal

emittance of 2.8 eVs.

number of cells

moment 15 16 18 21 24

< x > 0 0 0 0 0

< y > 0 0 0 0 0

< x2 > 2.27 2.34 2.44 2.56 2.61

< xy > 0 0 0 0 0

< y2 > 3.95 0 0 0 0

< x3 > 0 0 0 1.10 0

< x2y > 0 0 0 0 0

< xy2 > 2.02 0 0 0 0

< y3 > 0 0 0 0 0

< x4 > 92.29 95.91 101.55 110.64 112.17

< x3y > 0 0 0 0 0

< x2y2 > 41.62 10.88 11.24 11.40 11.90

< xy3 > 0 0 0 0 0

< y4 > 692.88 4.87 6.26 1.91 5.03

< x5 > 24.16 35.16 43.51 170.94 48.65

< x4y > 2.72 2.31 3.25 4.10 2.82

< x3y2 > 33.35 2.59 4.72 3.90 3.84

< x2y3 > 4.21 0 0 0 0

< xy4 > 441.49 2.59 5.03 3.51 2.74

< y5 > 36.69 0 0 0 0

Table 3.19: Maximum amplitude close to a tune of 1.0 of the Fourier analysis of the beam mo-

ments after 512 turns for 15, 16, 18, 21 and 24 cell FODO lattices with symmetry 1

and weak symmetry breaking. Raised amplitudes are indicated in red.
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resonances also visible in the moment analysis (Table 3.19). In the case of the 15 cell

lattice, a very strong emittance growth is observed, resulting in an increase in amplitude

of different moments and no conclusion can be drawn about a single resonance being the

cause of the emittance growth. This is in accordance with the results of the lattice with

15 cells and symmetry 15, for which also no resonance seemed to be explicitly excited, in

particular, not the systematic 2Qx + 2Qy resonance (see Sec. 3.6.4).
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Figure 3.39: Time evolution of horizontal (left) and vertical (right) rms emittance for a FODO

lattice with 15, 16, 18, 21 and 24 cells and symmetry 1.

3.6.5.2 FODO lattices with strong symmetry breaking

In this section, different 16 cell FODO lattices with symmetry 1 and different integer parts

of the tunes matched in two different ways are compared, explicitly Qx/Qy = 2.28/1.55,

Qx/Qy = 3.28/2.55 and Qx/Qy = 4.28/3.55. The original motivation was to study the

dependence on the phase advance per cell, as with symmetry 1 all resonances are systematic

and therefore the resonance diagram independent of the integer part of the tune. It

turns out that the emittance growth strongly depends on the way of correcting the beta-

beating and if a large variation of the beam size and therefore strong symmetry breaking

is introduced or not. Fig. 3.40 and 3.41 show the beam envelope and the horizontal and

vertical emittance for the three different working points, each with two different solutions

to match the region with the perturbation to the regular cells, where Optics 1 are always

the solution leading to smaller variations of the beam size and Optics 2 the one with the

larger variations.

For the smallest working point of Qx/Qy = 2.28/1.55 (Fig. 3.40 (top)), the shorter bends

represent a relatively large distortion and the optics of the cell with shorter bends differ

considerably from the optics of a normal arc cell. As a consequence, both lattices show a

large emittance growth, despite the small phase advance per cell. Furthermore, Optics 2

are an excellent example of an almost uniform focusing around the ring except at the

position of the shorter bends, where the vertical beam size is small, resulting in a strong

non-linear kick at this position, leading to a large emittance growth.

The intermediate working point of Qx/Qy = 3.28/2.55 (Fig. 3.40 (bottom)) gives an

example of two extreme matching cases. Optics 1 features a good correction of the beta-

beating compared to Optics 2, which shows a large variation of the beam size at the location

of the shorter bends. Due to the “weaker” symmetry breaking in the case of Optics 1 and

the introduction of a large variation of the beam size, thus strong non-linear kick, in the
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Figure 3.40: One rms beam envelope for two different optics (Optics 1 (left) and Optics 2 (right))

and working points (Qx/Qy = 2.28/1.55 (top) and Qx/Qy = 3.28/2.55 (bottom))

of a 16 cell FODO lattices with symmetry 1, and time evolution of horizontal (left)

and vertical (right) rms emittance of the same. For both working points, Optics 1

is the optics with a relatively small variation of the beam size and weak symme-

try breaking, and Optics 2 the optics with a large variation of the beam size and

strong symmetry breaking. The beam envelope has been calculated using the de-

sign transverse normalized rms emittance of 2.5 µm and the rms momentum spread

corresponding to the design longitudinal emittance of 2.8 eVs.
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case of Optics 2, the emittance growth of Optics 1 is considerably smaller compared to

Optics 2.

The two optics matched to the highest working point of Qx/Qy = 4.28/3.55 (Fig. 3.41) are

an example for how a slightly different way of matching can already result in a significant

change of the time evolution of the emittance.
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Figure 3.41: (top) One rms beam envelope of two different matches of the 16 cell FODO lat-

tices with symmetry 1 and a working point of Qx/Qy = 4.28/3.55: Optics 1 with

a relatively small variation of the beam size and weak symmetry breaking (left)

and Optics 2 with a large variation of the beam size and strong symmetry break-

ing (right). The beam envelope has been calculated using the design transverse

normalized rms emittance of 2.5 µm and the rms momentum spread corresponding

to the design longitudinal emittance of 2.8 eVs.

(bottom) Time evolution of horizontal (left) and vertical (right) rms emittance for

Optics 1 and Optics 2.

3.6.5.3 Beta-beating correction

In all examples of symmetry breaking by shortening the dipoles in certain cells, the beta-

beating introduced has been corrected by matching the modified cell to the normal arc

cell with individual quadrupoles and so minimizing the variation of the beam size and

localizing the resulting irregular twiss functions to the modified cell. The question now is

whether this correction is actually beneficial or not.

In the preceding sections it has been shown that the symmetry of the lattice and also how

the symmetry is broken plays an important role. This also applies for the beta-beating

correction. Fig. 3.42 shows the beam envelope and emittance for a 16 cell triplet lattice

with symmetry 1. By not correcting the beta-beating, the weak symmetry breaking, in the
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Figure 3.42: (top) One rms beam envelope of 16 cell triplet lattice with symmetry 1, a working

point of Qx/Qy = 4.28/3.55 and with (left) and without (right) beta-beating correc-

tion. The beam envelope has been calculated using the design transverse normalized

rms emittance of 2.5 µm and the rms momentum spread corresponding to the design

longitudinal emittance of 2.8 eVs.

(bottom) Time evolution of horizontal (left) and vertical (right) rms emittance for

the optics with and without beta-beating correction.

With beta-beating correction

0 50 100 150
4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

s�m

H
Σ

x
,Σ

yL
�
m

m

Without beta-beating correction

0 50 100 150
4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

s�m

H
Σ

x
,Σ

yL
�
m

m

0 2000 4000 6000 8000

4.115

4.120

4.125

4.130

4.135

Turns

Ε x
,r

m
s
Μm

without correction
with correction

Symmetry 4

0 2000 4000 6000 8000

4.12

4.13

4.14

4.15

Turns

without correction
with correction

Symmetry 4

Ε y
,r

m
s
Μm

Figure 3.43: (top) One rms beam envelope of 16 cell triplet lattice with symmetry 4, a working

point of Qx/Qy = 4.28/3.55 and with (left) and without (right) beta-beating correc-

tion. The beam envelope has been calculated using the design transverse normalized

rms emittance of 2.5 µm and the rms momentum spread corresponding to the design

longitudinal emittance of 2.8 eVs.

(bottom) Time evolution of horizontal (left) and vertical (right) rms emittance for

the optics with and without beta-beating correction.
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case of the lattice with correction, turns into a strong breaking of the symmetry, resulting

in a large emittance growth.

For comparison, in the case of the 16 cell triplet lattice with symmetry 4, the beta-beating

correction does not change the emittance growth (Fig. 3.43). The reason is that the

introduced beta-beating preserves the 4-fold symmetry of the lattice, which is the lowest

symmetry with no systematic resonances in the region of the tune footprint (Sec. 3.6.3).

In addition, the introduced beta-beating is rather small and with it also the variation of

the beam size.

3.6.6 Dependence on the phase advance per cell and chromatic detuning

In the early design phases of many smaller machines and also for the RCS one of the

main issues is to reduce the machine circumference which is mostly done by increasing

the magnet filling factor. In addition to driving the magnet strength to the achievable

limit, an improvement of the filling factor can also be achieved with a smaller number of

cells, as less space is taken by the necessary gaps between the magnets. The drawback

of a small number of cells is the resulting high phase advance per cell, which leads to a

stronger excitation of all resonances and a larger variation of the beam size. This increase

in phase advance can often not be avoided as the horizontal tune at least is limited by the

minimum acceptable gamma transition in order to stay below transition throughout the

cycle.

To study the effect of a smaller phase advance per cell, the integer part of the tune of

the 16 cell triplet lattice with symmetry 1 introduced in Sec. 3.6.3 is varied in integer

steps between Qx/Qy = 2.28/1.55 and Qx/Qy = 5.28/4.55. The phase advance per cell

for the different lattices is listed in Table 3.20 and the beam envelope shown in Fig. 3.44.

As the lattice has symmetry 1, all resonances are systematic and the resonance diagram

tune phase advance per cell (hor./vert.)

Qx = 2.11, Qy = 1.53 47.5/34.5

Qx = 2.28, Qy = 1.55 51.3/34.9

Qx = 3.28, Qy = 2.55 73.8/57.5

Qx = 4.28, Qy = 3.55 96.3/80.3

Qx = 5.28, Qy = 4.55 118.9/104.5

Table 3.20: Phase advance per cell for the different working points

is independent of the integer part of the tune. This applies only partly to the case of

the 16 cell triplet lattice, as the symmetry is only weakly broken and resonances being

systematic in the case of the full 16 fold symmetry can still have a stronger effect on

the emittance growth than non-systematic ones. Comparing the time evolution of the

emittance for the different working points (Fig. 3.45) an increase of the emittance growth

with the phase advance per cell is in general visible.
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Figure 3.44: One rms beam envelope of the 16 cell triplet lattice with symmetry 1 and varying

working point. The beam envelope has been calculated using the design transverse

normalized rms emittance of 2.5 µm and the rms momentum spread corresponding

to the design longitudinal emittance of 2.8 eVs.
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Figure 3.45: Time evolution of horizontal (left) and vertical (right) rms emittance for dif-

ferent phase advances per cell. The tune is varied in integer steps between

Qx/Qy = 2.28/1.55 and Qx/Qy = 5.28/4.55.
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Nevertheless, it has to be kept in mind that the growth rate is also influenced by the

following two effects:

• Weak symmetry breaking: As studied in Sec. 3.6.5, the symmetry is not nec-

essarily fully broken if the bends are shortened in one cell and the beta-beating

corrected. Therefore, the resonance diagram and the excitation of the different reso-

nances cannot be assumed to be fully independent of the integer part of the working

point. Furthermore, depending on the matching and the beta-beating caused by the

shorter bends, the symmetry breaking can have a stronger or weaker effect. The

tune footprint and the resonance diagram for the full symmetry of 16 are shown in

Fig. 3.46.

• Chromatic detuning: Due to the relatively strong quadrupoles of a triplet lat-

tice and the high beta function at the central quadrupole, the chromatic detuning

increases rapidly with the phase advance per cell especially for the vertical plane.

Table 3.21 lists the chromaticities for the different working points and Fig. 3.46

shows the chromatic detuning for the full momentum spread. The chromatic detun-

tune −Q′x −Q′y

Qx = 2.11, Qy = 1.53 2.29 4.35

Qx = 2.28, Qy = 1.55 2.58 4.68

Qx = 3.28, Qy = 2.55 4.56 7.25

Qx = 4.28, Qy = 3.55 6.43 11.17

Qx = 5.28, Qy = 4.55 8.51 17.43

Table 3.21: Chromaticities for the different working points.

ing has two major effects: for small tunes the tune footprint shrinks - especially in

the vertical plane - and the core moves closer to the half integer or 4Qy resonance

respectively, resulting in a possible instability of the beam core. For a high phase

advance per cell, the large detuning with momentum gives rise to a large emittance

growth in both planes and makes it difficult to find a stable area accommodating the

full tune footprint.

For the lowest tune of Qx/Qy = 2.28/1.55 the beam is stable for the first 4 000 turns

but then a large emittance blow-up is observed in the horizontal plane. By moving the

working point further away from the 4Qx and 5Qx resonance the beam stays stable at

least over the tracked 10 000 turns and the emittance growth is therefore most likely

caused by the horizontal 4th or 5th order resonance. A moment analysis could not reveal

any further information as the results are probably dominated by the effect of the integer

resonance or dispersion respectively in the case of Qx/Qy = 2.11/1.53. The influence of

the integer resonance is visible as an initial oscillation of the horizontal emittance and

later stabilization at a higher value compared to Qx/Qy = 2.28/1.55, as also seen in the

case of almost all lattices in Sec. 3.6.7. The straightforward alternative explanation for

the oscillation and then stabilization would be a large initial mismatch of the beam. This
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Figure 3.46: Resonance diagram until 5th order for symmetry 16 and tune footprint for symme-

try 1 of the initial beam distribtution after 1 turn. The chromatic detuning for the

full momentum spread is shown in black.
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possibility can be excluded, as the same behaviour should then also be visible in the case

of Qx/Qy = 2.28/1.55 and is estimated to be small (Sec. 3.5) anyway.

3.6.7 Influence of dispersion

Until now, only lattices without any long straight sections have been studied. This section

is devoted to lattices including straight sections, similar to the ones considered for the

RCS. Three different lattices, representative for this type, have been studied:

A) 24 cell FODO lattice with symmetry 4 and 4× 1 cell of straight section

B) 24 cell FODO lattice with symmetry 2 and 2× 2 cells of straight section

C) 21 cell FODO lattice with symmetry 3 and 3× 2 cells of straight section

and for each lattice type three different types of optics which can be grouped according to

the dispersion suppression scheme

1) dispersion suppression with a phase advance of 2π over the arc - resulting in disper-

sion beating in the arc - without correction of the beta-beating.

2) dispersion suppression with a phase advance of 2π over the arc - resulting in dis-

persion beating in the arc - with correction of the beta-beating using individual

quadrupoles.

3) a half missing bend dispersion suppressor

First, the simulation results of the 24 cell lattices are discussed followed by the 21 cell

lattices.

3.6.7.1 Interpretation of tune footprints and time evolution of the rms emit-

tance

The simulation results of the lattices with straight sections are at first sight puzzling due

to the following general observations:

• an initial oscillation of the horizontal emittance in the presence of space-charge effects

which decreases if the horizontal tune is moved away from the integer resonance6

(Fig. 3.48)

• the shape of the tune footprint obtained with PTC-ORBIT (Fig. 3.51)

Both results can be explained by the large linear dispersion, a resulting, tune dependent,

linear and non linear dispersion mismatch introduced by space-charge and a non-negligible

second order dispersion term.

6This is not the case for the 21 cell FODO lattice with 3× 2 cells of straight section (see Sec. 3.6.7.4).

The different behaviour compared to the 24 cell lattices with straight sections (Sec. 3.6.7.2 and 3.6.7.3) is

probably due to the systematic 2Qx and 5Qx resonance between which the particles are “trapped”. For

more details see Sec. 3.6.7.4.
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The contribution of the second order dispersion, illustrated in Fig. 3.47, turned out be

an indication for the non linearity of the dispersion and the strength of the dispersion

mismatch to be expected due to the space-charge detuning.
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Figure 3.47: Contribution of the second order dispersion to the dispersion. The black curve is

D2δ for +δ and the red curve for −δ, with δ being the rms momentum spread.

(left) Regular 24 cell FODO lattice with a negligible second order dispersion term.

(right) 24 cell FODO lattice with 4 × 1 cells of straight section and 2π dispersion

suppression for Qx/Qy = 4.28/3.55 (solid line) and Qx/Qy = 4.47/3.45 (dashed

line). The second order term is non-negligible and increases if the working point

approaches the integer resonance. Similar results are obtained for all lattices with

straight sections presented in this thesis.

The initial oscillation of the horizontal emittance, shown in Fig. 3.48, is caused by a dis-

persion and smaller betatron mismatch introduced by space-charge, which increases for

particles with a single particle tune approaching the integer resonance7. In the absence of

the strong space-charge detuning, the oscillation then vanishes (Fig. 3.49). In addition to

the linear dispersion mismatch, the effect of the second order dispersion and its mismatch

could become non-negligible (Fig. 3.47). To investigate the influence of a second order dis-

persion term, the initial distribution has been generated and the emittance calculated, also

including the second order dispersion, and compared to the results taking only the linear

dispersion into account (Fig. 3.50). Explicitly, the emittance is obtained by subtracting

the closed-orbit shift

xco = Dxδ +
1

2
D2xδ

2 (3.14)

from the horizontal position. In one case only the linear term is taken into account, as

done in PTC-ORBIT (calc. D in Fig. 3.50), and in the other case also the second order

term (calc. D2 in Fig. 3.50). Then the emittance is determined from the first and second

beam moments, where the dispersion is obtained from the optics calculated with PTC.

7The dispersion and second order dispersion both satisfy differential equations similar to the one of a

closed-orbit distortion due to dipole field errors, explicitly [75]:

D′′ +

(
kx +

1

ρ2

)
D =

1

ρ

D′′2 +

(
kx +

1

ρ2

)
D2 = κ

(
ρ, ρ′, k, k′, D, D′

)
where κ (ρ, ρ′, k, k′, D, D′) stands for a polynomial in ρ, ρ′, k, k′, D and D′. Similar as the closed-orbit

distortion due to dipole field errors, the dispersion and second order dispersion are thus most sensitive to

tunes close to the integer resonance.
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Figure 3.48: Time evolution over the first 40 turns of the horizontal (left) and vertical (right)

rms emittance calculated with PTC-ORBIT for the regular 24 cell FODO lattice

(Sym 24) and the 24 cell FODO lattice with 4 × 1 cells straight sections (Sym 4)

for different working points. The initial oscillation of the horizontal emittances

decreases if the working point is moved away from the integer resonance.
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Figure 3.49: Time evolution over the first 40 turns of the horizontal (left) and vertical (right) rms

emittance calculated with PTC-ORBIT for the 24 cell FODO lattice with 4×1 cells

straight sections with a working point of Qx/Qy = 4.47/3.45. The initial oscillation

of the horizontal emittance decreases with intensity due to the decreasing dispersion

mismatch.
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Figure 3.50: Time evolution over the first 40 turns of the horizontal (left) and vertical (right)

rms emittance for the 24 cell FODO lattice with 4 × 1 cells of straight sections

with a working point of Qx/Qy = 4.47/3.45. The initial distribution has been

generated taking only the linear dispersion (Dist. D) and the linear and second

order dispersion (Dist. D2) into account. The same is valid for the emittance which

has been calculated including only the linear dispersion (calc. D) and the linear and

second order dispersion (calc. D2).
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The initial distribution is generated in a reverse way to the emittance calculation (Dist. D

in Fig. 3.50 in case of only linear dispersion terms and Dist. D2 in the case of terms until

second order). Including the second order dispersion term in the generation of the initial

distribution and in the emittance calculation respectively leads to an very small“reduction”

of the emittance. Once the initial oscillation has vanished (roughly after 20 turns) the

reduction is approximately constant. As lattices showing a large initial oscillation of the

emittance in general also showed a large reduction of the emittance if the second order

dispersion was included, the magnitude of the reduction is an indication for the magnitude

of the dispersion mismatch due to space-charge detuning.

The second initially puzzling result is the tune footprint obtained with PTC-ORBIT,

which is shown in Fig. 3.51.The tune calculation of the individual particles implemented

in PTC-ORBIT takes only the linear dispersion into account, resulting in an incorrect

calculation of the closed-orbit, and thus tune, due to the non-negligible higher order dis-

persion terms. This leads to a large artificial horizontal tune-shift for off-momentum beam

particles resulting in a large horizontal tune-spread of the beam.

Neglecting space-charge effects (Nb = 0)
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Figure 3.51: Resonance diagram until 5th order for symmetry 4 and tune footprint obtained

with PTC-ORBIT of the initial distribution for the 24 cell FODO lattice with 4×
1 straight sections, dispersion suppression over 2π, beta-beating correction with

individual quadrupoles and a working point of Qx/Qy = 4.47/3.45. The initial

distribution has been matched taking only the linear dispersion into account. The

large tune-spread in the horizontal for off-momentum particles is an artefact of the

tune calculation performed in PTC-ORBIT, for which only the linear dispersion is

taken into account.

(left) The second order (lattice optics) dispersion is non-negligible and thus PTC-

ORBIT calculates the wrong closed-orbit for off-momentum particles, resulting in

an incorrect calculation of the tune of the same.

(right) The mismatch between the lattice optics dispersion and the dispersion seen

by the particles increases for single particle tunes approaching the integer resonance

leading to a large tune-spread of the beam in the case of strong space-charge effects.
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The results presented in this section are important for the later interpretation of the long-

term tracking results, where the emittance is calculated after each turn only with PTC-

ORBIT and only each 500 turns including the second order (lattice optics) dispersion

term. The increase of the initial oscillation and absolute value of the horizontal emittance

for horizontal working points approaching the integer resonance suggests a stronger non-

linearity of the dispersion function than given by the pure optics parameters of the lattice.

This dependence of the dispersion function on the particle momentum due to the space-

charge detuning is not taken into account. Thus, larger emittance values might be obtained

just due to the difference between the dispersion obtained from the pure lattice optics

without space-charge and the “real” dispersion seen by the beam particles including space-

charge. Nevertheless, a good guess of the influence of the higher order dispersion terms

caused by the space-charge detuning can be obtained from the“reduction”of the emittance

if, in addition, the second order dispersion is taken into account in the calculation. The

emittance blow-up of the different lattices can thus be qualitatively compared, but in the

case of a comparison of the absolute values the effect of the non-linear dispersion has to

be kept in mind.

3.6.7.2 24 cell FODO lattice with 4× 1 cells of straight section

For the 24 cell FODO lattice with 4 × 1 cells of straight section the condition of a phase

advance of 2π over the arc for dispersion suppression is fulfilled for a horizontal working

Qx/Qy = 4.80/3.55 no ind. quad.
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Figure 3.52: Optics and one rms beam envelope of the 24 cell FODO lattice with 4 × 1 cells of

straight section with only two quadrupole families (no ind. quad) and with additional

individual quadrupoles for beta-beating correction (ind. quad). The beam envelope

has been calculated using the design transverse normalized rms emittance of 2.5 µm

and the rms momentum spread corresponding to the design longitudinal emittance

of 2.8 eVs.
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point of Qx = 4.8. The optics and beam envelope of this lattice with only one focusing and

one defocusing quadrupole family is shown Fig. 3.52 (left). A horizontal working point of

4.8 however is not advisable, as it is located close to the systematic 5Qx resonance (see

Fig. 3.51). The option of moving the working point towards the half integer resonance 4.5

is expected to result in a large emittance blow-up. This example points out the dilemma of

the limited flexibility due to the restriction to only two quadrupole families. The resulting

limited freedom to choose a suitable working point can considerably reduce the machine

performance. In addition to the unfortunate working point, the lattice with only two

quadrupole families also exhibits a large variation of the beam size (Fig. 3.52 (left)). With

more quadrupole families, the working point can be moved and the variation of the beam

size reduced. Representative for all lattices with additional individual quadrupoles the

optics and beam envelope of the lattice with a working point of Qx/Qy = 4.47/3.45 are

shown in Fig. 3.52 (right). This lattice (Qx/Qy = 4.47/3.45 ind in Fig. 3.53) also exhibits
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Figure 3.53: Time evolution of horizontal (left) and vertical (right) rms emittance for the 24 cell

FODO lattice with 4× 1 cells of straight section with only two quadrupole families

(no ind) and with additional individual quadrupoles for beta-beating correction (ind)

and for the regular 24 cell FODO lattice (FODO 24 cells). The values indicated with

diamonds are the emittances calculated including the second order dispersion. For

all simulations, the initial distribution has been generated taking only the linear

dispersion into account.

the smallest emittance blow-up of the 24 cell lattices with 4 × 1 cells of straight straight

section. Compared to the lattice with only two quadrupole families (Qx/Qy = 4.80/3.55

no ind in Fig. 3.53), the emittance blow-up is small, but large in comparison to the regular

24 cell FODO lattice (FODO 24 cells in Fig. 3.53), especially in the horizontal plane.

For smaller horizontal tunes, and in particular for Qx = 4.28 (Qx/Qy = 4.28/3.55 ind
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in Fig. 3.53), the horizontal emittance executes large oscillations over the first 20 turns,

which are better visible in the emittance development over the first 40 turns shown in

Fig. 3.48.

For this lattice type, a missing bend dispersion suppressor is not possible, as the straight

section only consists of one cell. Also a significant reduction of the maximum dispersion

using more quadrupole families has not been possible.

3.6.7.3 24 cell FODO lattice with 2× 2 cells of straight section

For the 24 cell FODO lattice with 2×2 cells of straight section, a racetrack layout, the con-

dition for dispersion suppression is fulfilled for 2×2π phase advance per arc, resulting in a

Qx/Qy = 4.80/3.55 no ind. quad.
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Figure 3.54: Optics and one rms beam envelope of the 24 cell FODO lattice with 2 × 2 cells

of straight section with only two quadrupole families (no ind. quad), with addi-

tional individual quadrupoles for beta-beating correction (ind. quad) and with a

half missing bend dispersion suppression scheme (disp.). The beam envelope has

been calculated using the design transverse normalized rms emittance of 2.5 µm and

the rms momentum spread corresponding to the design longitudinal emittance of

2.8 eVs.
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horizontal working point of Qx = 4.8. Fig. 3.54 shows the optics of the lattice with only two

quadrupole families (Qx/Qy = 4.80/3.55 no ind. quad.), a typical lattice with additional

individual quadrupole families for beta-beating correction (Qx/Qy = 4.38/3.55 ind. quad.)

and a lattice with a half missing bend dispersion suppressor (Qx/Qy = 4.38/3.55 disp.).

The beta-beating correction with individual quadrupoles already considerably reduces the

variation of the beta-function and allows the choice of a better working point. The lattice

with a half missing bend dispersion suppressor features a significant reduction of the max-

imum dispersion, the smallest variation of the beam size and a regular beta-function and

dispersion in the arc.

The dispersion matching to the arc has the very positive effect, that the strong oscillation

of the horizontal emittance during the first 20 turns almost disappears (Fig. 3.55). As
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Figure 3.55: Time evolution over the first 40 turns of the horizontal (left) and vertical (right)

rms emittance for the 24 cell FODO lattice with 2 × 2 cells of straight section.

The results for the lattices with a dispersion suppression by adjusting the phase

advance to 2π over the arc and individual quadrupoles is indicated with “ind” and

the ones for the lattices with a half missing bend dispersion suppressor with “disp”.

For comparison also the regular 24 cell FODO lattice is shown which is indicated

with “FODO 24 cells”. The emittances from PTC-ORBIT, including only the linear

dispersion, are marked with circles, and the emittances calculated, including the

second order dispersion, with diamonds. For all simulations, the initial distribution

has been created taking the linear and second order dispersion into account.

expected, the effect is particularly strong for the lattices with a working point closer to

the integer resonance (Qx/Qy = 4.28/3.55). For all lattices with additional individual

quadrupoles, horizontal working points larger than Qx = 4.4 have not been included in

the study, as they would most likely exhibit a large horizontal emittance growth due to

the systematic 5Qx resonances at Qx = 4.4 and several systematic 4th and 5th order

resonances for 4.4 < Qx < 5.0 (see Fig. 3.32 for the resonance diagram).

The crossing of several systematic resonances also explains the large horizontal emittance

growth of the lattice with only two quadrupole families (Qx/Qy = 4.80/3.55 no ind

in Fig. 3.56), while the large variation of the beam size is most likely the cause of the

large vertical emittance growth. The large blow-up of the vertical emittance in the case of

the lattice with a dispersion suppression by adjusting the phase advance over the arc to

2× 2π, additional quadrupole families for beta-beating correction and a working point of

Qx/Qy = 4.28/3.55 is not understood (Qx/Qy = 4.28/3.55 ind in Fig. 3.56), but seems to
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disappear together with the reduction of the initial oscillation of the horizontal emittance

by changing the horizontal working point to Qx/Qy = 4.28/3.55 (Qx/Qy = 4.38/3.55 ind in

Fig. 3.56). The lattices with a half missing bend dispersion suppressor (Qx/Qy = 4.28/3.55

and Qx/Qy = 4.38/3.55 disp in Fig. 3.56) feature the smallest emittance growth with a

large reduction of the initial and overall blow-up in the horizontal plane. The blow-up in

the vertical plane is only slightly reduced.
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Figure 3.56: Time evolution of horizontal (left) and vertical (right) rms emittance for the 24 cell

FODO lattices with 2× 2 cells of straight section with only two quadrupole families

(no ind), with additional individual quadrupoles for beta-beating correction (ind)

and with a half missing bend dispersion suppression scheme (disp) and for the regular

24 cell FODO lattice (FODO 24 cells). The values indicated with diamonds are the

emittances calculated, including the second order dispersion. For all simulations the

initial distribution has been created taking the linear and second order dispersion

into account.

3.6.7.4 21 cell FODO lattice with 3× 2 cells of straight section

The regular 21 cell FODO lattice presented in Sec. 3.6.4 exhibits a large emittance blow-

up due to the systematic 5Qx resonance at Qx = 4.2. For the studies performed in

this section, the working point has been changed to Qx/Qy = 4.47/3.42, resulting in an

emittance growth comparable to the regular 24 cell FODO lattice (Fig. 3.57)8.

8The vertical emittance growth of the 21 cell lattice now lies between the 16 and 24 cell lattice, con-

firming the assumption that the emittance growth increases with the phase advance per cell (Sec. 3.6.6).

Nevertheless, one should be careful with the interpretation of this result as it is quite sensitive to the choice

of the working point for the different lattices, as can be seen on the example of the 21 cell lattice matched

to Qx/Qy = 4.28/3.55 and Qx/Qy = 4.47/3.42.
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Figure 3.57: Time evolution of horizontal (left) and vertical (right) rms emittance for regular

FODO lattices with 16, 21 and 24 cells. By changing the working point of the

21 cell lattice, the emittance growth could be reduced to a level comparaple with

the 24 cell lattice.

The 21 cell FODO lattices with 3 × 2 cells of straight section presented in this section

have all been matched to this new working point (or very close to it), in particular also

the lattice with only two quadrupole families, resulting in some residual dispersion in the

straight sections (Qx/Qy = 4.47/3.42 no ind. quad. in Fig. 3.58). The optics and beam

envelope of two representative 21 cell FODO lattices with 3 × 2 cells of straight section

Qx/Qy = 4.47/3.42 no ind. quad.
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Figure 3.58: Optics and one rms beam envelope of the 21 cell FODO lattices with 3× 2 cells of

straight section with only two quadrupole families (no ind. quad) and with additional

individual quadrupoles for beta-beating correction (ind. quad). The beam envelope

has been calculated using the design transverse normalized rms emittance of 2.5 µm

and the rms momentum spread corresponding to the design longitudinal emittance

of 2.8 eVs.
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and a dispersion suppression by adjusting the phase advance to 2π over the arc are shown

in Fig. 3.58 - one without beta-beating correction (Qx/Qy = 4.47/3.42 no ind. quad.) and

one with beta-beating correction (Qx/Qy = 4.47/3.42 ind. quad.), and of the lattice with a

half missing bend scheme (Qx/Qy = 4.47/3.42 disp. match 1) featuring the least emittance

growth in Fig. 3.59.
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Figure 3.59: Optics and one rms beam envelope of the 21 cell FODO lattices with 3× 2 cells of

straight section with only two quadrupole families (no ind. quad), with additional

individual quadrupoles for beta-beating correction (ind. quad) and with a half miss-

ing bend dispersion suppression scheme (disp. match 1). The beam envelope has

been calculated using the design transverse normalized rms emittance of 2.5 µm and

the rms momentum spread corresponding to the design longitudinal emittance of

2.8 eVs.

As in the case of the 24 cell FODO lattice with straight sections, the beta-beating is reduced

for the lattice with additional quadrupole families (Qx/Qy = 4.47/3.42 ind. quad.). In

addition, the dispersion beating in the arc vanishes by changing to a half missing bend

dispersion suppression scheme (Qx/Qy = 4.47/3.42 disp. match 1).

The time evolution of the emittance for all lattices and the regular 21 cell FODO lattice

is shown in Fig. 3.60 and an exemplary tune footprint in Fig. 3.61. First of all, the

simulation results differ in three points from the ones obtained for the 24 cell FODO

lattice with straight sections:

• The initial oscillations of the horizontal emittance over the first 20 turns are small.

• The agreement of the calculation of the emittance, taking only the linear dispersion

into account, with the calculation of the emittance, taking the linear and second order

dispersion into account, indicates that higher order dispersion effects have become

negligible or at least less relevant.

• The tune footprint does not show the artificially large spread in the horizontal phase-

space.

This difference is most probably due to the systematic 5Qx and 2Qx resonances between

which the particles are trapped. The proximity of the two systematic resonances makes

the system quite sensitive to any small changes and it might be, that the lattices perform

quite differently if the working point, or the variation of the beam size, is slightly changed.
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Figure 3.60: Time evolution of horizontal (left) and vertical (right) rms emittance for the 21 cell

FODO lattices with 3× 2 cells of straight section with only two quadrupole families

(no ind), with additional individual quadrupoles for beta-beating correction (ind)

and with a half missing bend dispersion suppression scheme (disp) and for the regular

21 cell FODO lattice (FODO 21 cells). The values indicated with diamonds are the

emittances calculated including the second order dispersion. For all simulations the

initial distribution has been created taking only the linear dispersion into account.
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Figure 3.61: Resonance diagram until 5th order and tune footprint obtained with PTC-ORBIT

of the initial distribution for the regular 21 cell FODO lattice (left) and the 21 cell

FODO lattice with 3 × 2 cells of straight sections, dispersion suppression by ad-

justing the phase advance to 2× 2π over the arc and only two quadrupole families.

Both lattices are matched to the working point Qx/Qy = 4.47/3.42. The initial

distribution has been matched in both cases, taking only the linear dispesion into

account.
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Two examples to back up this assumption are two different half missing bend lattices of an

earlier matching attempt, one with only a larger variation of the beam size (Fig. 3.62 (left)),

and one with a larger variation of the beam size and a very slight change of the hori-

zontal working point to Qx/Qy = 4.45/3.42 (Fig. 3.62 (right)). All three missing bend
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Figure 3.62: Optics of two different matches of the 21 cell FODO lattices with 3 × 2 cells of

straight section and a half missing bend dispersion suppressor scheme.

lattices (Qx/Qy = 4.47/3.42 disp. match 1, Qx/Qy = 4.47/3.42 disp. match 2 and

Qx/Qy = 4.45/3.42 disp. in Fig. 3.60) exhibit quite different emittance evolutions.

One explanation for the initial oscillations of the emittance visible in several cases (see

Fig. 3.60) could be betatron mismatch. Due to the proximity of the working point to

the horizontal and vertical half integer resonance, and in addition that the horizontal

half integer resonance is systematic, the beta-beating is suspected to be increased and

amplitude dependent, thus leading to an amplitude dependent beta-beating and initial

betatron mismatch. Nevertheless, the initial oscillations could still be caused by dispersion

mismatch or have an entirely different origin, raising the general question of the cause of

emittance blow-up and the reason for the different shapes of emittance growth.

The lattice with a dispersion suppression by adjusting the phase advance to 2π over the

arc and only two quadrupole families (Qx/Qy = 4.47/3.42 no ind in Fig. 3.60)shows an

particularly large sudden increase of the vertical emittance in the beginning. As the < y4 >

moments exhibits a raised amplitude (Table 3.22), the increase could also be, in this case,

due to the excitation of the 4Qy resonance.

Qx/Qy = 4.47/3.42 Qx/Qy = 4.45/3.42

disp. over 2π half missing bend

moment regular no ind quad ind quad match 1 match 2 match 1

< x > 0 0 0 0 0 0

< y > 0 0 0 0 0 0

< x2 > 2.21 0 0 0 0 0

< xy > 0 0 0 0 0 0

< y2 > 0 0 0 0 0 0

< x3 > 0 0 0 0 0 0

< x2y > 0 0 0 0 0 0

< xy2 > 0 0 0 0 0 0

< y3 > 0 0 0 0 0 0
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< x4 > 88.14 1.12 1.61 0 1.31 2.91

< x3y > 0 0 0 0 0 0

< x2y2 > 9.91 0 0 0 0 1.66

< xy3 > 0 0 0 0 0 0

< y4 > 0 6.40 1.74 2.00 1.05 2.38

< x5 > 30.82 1.61 1.11 0 0 0

< x4y > 2.99 0 0 0 0 0

< x3y2 > 2.01 0 0 0 0 0

< x2y3 > 0 0 0 0 0 0

< xy4 > 1.12 0 0 0 0 0

< y5 > 1.06 1.71 0 1.41 1.11 0

Table 3.22: Maximum amplitude close to a tune of 1.0 of the Fourier analysis of the beam mo-

ments after 512 turns for the regular 21 cell FODO lattice (regular) and the 21 cell

FODO lattices with 3 × 2 cells of straight section with a dispersion suppression by

adjusting the phase advance to 2π over the arc (disp. over 2π) and a half missing

bend scheme (half missing bend). Raised amplitudes are indicated in red.

In summary, a reduction of the emittance growth in both planes could be obtained with

a half missing bend dispersion suppressor scheme (Qx/Qy = 4.47/3.42 disp. match 1 in

Fig. 3.60). In the case of the dispersion suppression by adjusting the phase advance to

2 × 2π over the arc, the decrease of the variation of the beam size leads to an increase

in the horizontal and a decrease in the vertical plane, but to no real improvement. In all

cases, the origin of the emittance growth is difficult to determine, but good candidates

are the excitation of the two systematic resonances - 5Qx and 2Qx - or the horizontal and

vertical half integer resonance and betatron or dispersion mismatch.
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3.7 Conclusion
The main question brought up by the study of a RCS as alternative to the PS Booster

upgrade is:

“Can the RCS lattice, representative for modern high brightness, space-charge

dominated lattices, deliver beams with higher brightness than the PS Booster

(upgrade), representing the more traditional lattices.”

First of all, this question cannot be directly answered, as in this thesis only the influence

of the direct space-charge effect on the time evolution of the emittance has been studied

and many effects relevant in real machines, like e.g. the effect of the injection process, the

ramp and the extraction, fringe fields, magnet imperfections, alignment errors, etc., have

been neglected. Nevertheless, the results of the studies of different lattice types obtained

in this thesis indicate, that the RCS could probably not deliver as bright beams as the

PS Booster after the 2 GeV energy upgrade.

The main results of the studies of different lattice types (Sec. 3.6) can be summarized in

a list of lattice and optics characteristics and their influence on the time evolution of the

rms emittance, equivalent to the brightness of the beam, as all simulations were carried

out for the same beam intensity. These lattice and optics characteristics are:

• Symmetry: For all lattices studied in this thesis, the crossing of systematic res-

onances led to an increase of the rms emittance growth. As the lattice symmetry

defines which resonances are systematic and which ones are non-systematic, the sym-

metry becomes a quite important characteristic of the lattice and optics.

This was first shown in Sec. 3.6.3 on the example of a 16 cell triplet lattice with

symmetry 1, 2, 4 and 16, in which case the symmetry of 16 was (weakly) broken by

shortening the bends of 1, 2 and 4 cells respectively. In the following comparison

of regular FODO lattices consisting of 15, 16, 18, 21 and 24 cell (Sec. 3.6.4), the

increase of the emittance growth due to the crossing of systematic resonances could

be further confirmed. The study presented in Sec. 3.6.5 of 15, 16, 18, 21 and 24 cell

FODO lattices but now with symmetry 1 revealed that also a weak perturbation of

the symmetry leads to an increased emittance blow-up. A much larger emittance

growth was though observed for the lattices with a stronger perturbation of the

symmetry.

• Variation of the beam size: The original assumption was, that a larger variation

of the beam size would also result in a larger emittance growth.

The only clear example identified in this study which backs up this assumption

turned out to be the comparison of different cell types (Sec. 3.6.1). In this case, a

larger emittance growth was indeed observed for the cells with larger variations of

the beam size.

In the case of the other lattices (Sec. 3.6.3-3.6.5), the difference in emittance growth

was mainly caused by the impact of the symmetry of the lattice and optics and the

chosen working point. The variation of the beam size was in this case responsible for

the breaking of the symmetry: a very localized and large disturbance of the otherwise

periodic variation of the beam size, resulted in a strong breaking of the symmetry
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and vice versa. The best illustration of the weak and strong symmetry breaking

due to the different variation of the beam size is the comparison of the two different

optics of the same lattice (Sec. 3.6.5.2).

• Chromatic detuning: The variation of the working point of the 16 cell triplet

lattice with symmetry 1 (Sec. 3.6.6) made clear that the chromatic detuning, partic-

ularly strong in the case of the triplet lattice, represents a non-negligible contribu-

tion to the total tune spread. In the particular case of the triplet lattices with large

working points, the chromatic detuning leads to an unacceptably large tune spread,

(strongly) suggesting a chromaticity correction with sextupole magnets9.

• Dispersion suppressor scheme: Several FODO lattices with straight sections

(Sec. 3.6.7) and two dispersion suppressor schemes considered for the RCS, i.e. dis-

persion suppression by adjusting the phase advance to n · 2π over the arc and a half

missing bend dispersion suppressor scheme, were studied.

An obvious disadvantage of lattices with a dispersion suppression by adjusting the

phase advance to n · 2π over the arc is the fixed working point in the case of the

lattices with only two quadrupole families, and in addition large beta-beating. By

introducing more quadrupole families, both problems could be mitigated. All lattices

with a dispersion suppression by adjusting the phase advance to n · 2π over the arc

showed initial oscillations and increase of the horizontal emittance, in particular for

working points close to the integer resonance. This could be explained by a disper-

sion and betatron mismatch introduced by space-charge, which increases for particles

with a single particle tune approaching the integer resonance. This mismatch is es-

pecially strong for the dispersion suppression by adjusting the phase advance to n·2π
over the arc, compared to the half missing bend dispersion suppression, due to the

large maximum dispersion characteristic for this scheme and the interconnection of

dispersion suppression and working point.

In summary, the lattices with a half missing bend scheme all feature a flexible choice

of the working point, a smaller variation of the beam size due to the regular disper-

sion in the arc and smaller beta-beating in the complete ring and, most importantly,

a significant reduction of the initial oscillation of the horizontal emittance.

In consideration of all the disadvantages of the dispersion suppression by adjusting

the phase advance to n · 2π over the arc and their mitigation in the case of a disper-

sion suppression with a missing bend scheme, the dispersion suppression with a half

missing bend scheme turned out to be in general the better choice. Nevertheless,

for lattices with only one cell of straight section a half missing bend scheme is not

feasible and the dispersion suppression by adjusting the phase advance to n · 2π over

the arc represents the only option. The only drawback of the half missing bend

scheme is that the injection and extraction could become more challenging due to

9This is only true in the case of the RCS. For slowly cycling machines like the PS Booster the energy

spread is significantly smaller due to the smaller required RF voltage. The contribution of the chromatic

detuning to the total tune spread is therefore smaller and thus even in the case of a triplet lattice with a

high working point, no chromaticity correction would be needed.
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the smaller continuous straight sections available and the straight section could not

be long enough to host all required RF cavities and eventually collimators.

The assumption that a smaller phase advance per cell would result in a smaller emittance

growth turned out to be very difficult to investigate, as the influence of the symmetry and

symmetry breaking was, for all lattices studied in regard to this assumption, the dominant

effect. The comparison of the 16, 21 and 24 cell lattice (Fig. 3.57) showed the expected

behaviour, but it has to be kept in mind that this result depends strongly on the chosen

working point.

Coming back to the initial question whether a PS Booster or RCS like lattice would be

the better choice, the lattice and optics of both machines are shown in Fig. 3.63 and the

most important characteristics compared in Table 3.23.
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Figure 3.63: PS Booster (left) and RCS (right) lattice and optics at injection.

PS Booster RCS

cell type triplet FODO

hor./vert. working point 4.28/4.55 4.20/3.57

number of cells 16 21

hor./vert. phase advance per cell [◦] 96.3/102.4 72.0/61.2

symmetry 16 3

dispersion free straight sections - 3

dispersion suppressor scheme - 2π over the arc

variation of beam size (in comparison) small large

Table 3.23: Comparison of the PS Booster and RCS lattice and optics.

Applying the results summarized above, the PS Booster is the better choice in all points

except the relatively high phase advance per cell. However, the triplet cell structure of

the PS Booster lattice features a very small variation of the beam size compared to a

FODO or doublet structure and is thus expected to exhibit a comparably small emittance

growth. With a symmetry of 16 and a working point of Qx/Qy = 4.28/4.55, no systematic

resonances are crossed for the PS Booster, while for the RCS with a symmetry of 3 and

a working point of Qx/Qy = 4.20/3.57, the working point is placed right on the system-

atic 5Qx resonance. By introducing more quadrupole families, the working point of the

RCS could be moved and, in addition, also the large beta-beating reduced. Furthermore,

because of the dispersion suppression by adjusting the phase advance to 2π over the arc



162 3. Design of Space-Charge Dominated Lattices

and the small fractional horizontal tune of 0.2, a large initial oscillation of the horizontal

emittance is to be expected in the case of the RCS.

For the RCS, lattices with a four or two fold symmetry and different number of cells

have also been proposed (Sec. 3.2), but the main challenges of all lattices remains the low

symmetry and the dispersion suppression.

Besides the practical application to the RCS lattice, the general studies of different lattice

types also gave motivation for further general or fundamental studies like for example:

• The investigation of the relevance of coherent and incoherent excitation of resonances.

• The investigation of the cause of the different shapes of the time evolution of the

rms emittance.

• The influence of the variation of the beam size on the non-linearity of the optical

functions seen by the beam particles.

• The non-linearity of the dispersion seen by the beam particles in the case of lattices

with straight sections.



Summary

After the discovery of a Higg’s like particle in 2012, the main objective of the LHC physics

is to further investigate its nature and to continue the search for physics beyond the

standard model. As the cross section of the processes under study are in general very

small, a major upgrade of the LHC, the HL-LHC upgrade, is foreseen around 2020 aiming

at a total integrated luminosity of 3000 fb−1 during 10-12 years of operation. To reach

this goal, the upgrade of the LHC also entails an upgrade of the injector chain delivering

the beam to the LHC.

In this thesis, different lattice and optics options of a RCS as alternative to the 2 GeV

energy upgrade of the PS Booster - the second accelerator in the LHC injector chain - have

been studied. Essential for reaching the performance goal of the HL-LHC is the emittance

preservation and minimization of beam losses throughout the injector chain, thus also in

the PS Booster or a future RCS. In this respect the PS Booster is currently, and a future

RCS would most likely be, mainly limited by space-charge effects. Motivated by the study

of the RCS and the obvious differences between the RCS lattice and optics chosen for the

technical report [9] and the PS Booster lattice and optics, the performance of different

lattice and optics types including space-charge effects has been compared. The studies

revealed, that the symmetry of the lattice plays a central role as it determines which

resonances are systematic. In general, a larger emittance growth was observed if the tune

footprint of the beam crossed a systematic resonance, thus making lattices with a higher

symmetry, and consequently less systematic resonances, favourable. Furthermore, a large

variation of the beam size entailed in most cases also a larger emittance growth. In the

case of lattices with a broken symmetry, which is e.g. the case for lattices with an injection

region, a larger variation of the beam size in addition leads to a “stronger” breaking of

the symmetry resulting in a larger emittance growth. The lattices with inserted straight

sections and a dispersion suppression by adjusting the phase advance to 2π over the arc

all showed a dispersion beating in the arc. This dispersion beating introduces, under the

influence of space-charge effects, a dependence of the dispersion seen by the individual

beam particles on their tune, which results in turn in a larger emittance growth. This

effect can be mitigated with a half missing bend dispersion suppressor, which allows to

match the dispersion to the regular dispersion in the arc. In summary, the studies suggest

that a PS Booster like lattice would be preferential over the RCS lattice with respect to

space-charge effects. However, the performed studies did not include the influence of the

injection process and the ramp, possible difficulties during the extraction, the influence of

fringe fields, magnetic field and alignment errors, possible resonance compensation schemes
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etc., and further studies would be needed to come to a final conclusion about which lattice

and optics are the better choice.

In addition to an upgrade of the LHC, also the possibility of deep-inelastic lepton-nucleon

scattering at the LHC has been proposed - the LHeC - which would further complement

and complete the LHC physics program.

In this thesis, an electron ring lattice and optics of the “Ring-Ring ” configuration - except

the interaction region - has been designed, which reaches the design parameters detailed

in the CDR [10] and which presents a feasible option for the integration of an electron ring

in the existing LHC tunnel, considered to be one of the main challenges of the Ring-Ring

option. Furthermore, different beam dynamical aspects have been studied: chromatic

corrections, different possibilities to create coupling and the influence of circumference

errors on the damping partition. In detail, a local chromaticity and off-momentum beta-

beating correction scheme has been developed featuring a reduction of the beta-beating,

the chromatic detuning and the dependence of the dynamic aperture on the momentum.

In contrast to other machines, coupling is needed in the case of the LHeC in order to match

the electron beam size to the proton beam size at the interaction point and avoid beam

losses and a reduction of the proton beam lifetime [37]. As coupling schemes, three differ-

ent possibilities have been considered: global coupling created with one skew quadrupole,

global coupling of the ring, but with a decoupled interaction region, and localized coupling

in the interaction region, where the preferred option is the localized coupling in the inter-

action region. At last, the estimates of the effect of a circumference errors on the damping

partition showed that circumference errors smaller than ±18
10 can still be compensated by

running off-momentum with the electron as well as proton beam. In the case of larger

circumference errors, the electron beam would become anti-damped. In this case, the cir-

cumference of the electron ring could be changed by, for example, displacing parts of the

ring or using the bypasses as large doglegs. The next steps in the design of the LHeC are

a refinement of the lattice and optics with respect to all, and not only the main, integra-

tion constraints, the development of an interaction region layout and optics including the

beam separation, matching of the electron beam size to the proton beam size at the IP

and eventually spin rotators, and further studies of beam dynamics, optics perturbations

and collective effects, in particular beam-beam effects.
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A Thin Lens Approximation of a FODO Cell

The most important formulas for a FODO cell in thin lens approximation are summarized

in this section. To simplify the formulas the focusing and defocusing quadrupole have

equal strength k with f = 1
kl � l > 0. Under these assumptions, the transfer matrix of a

quadrupole and a drift space in the transverse plane is then given by

MQF
QD

=

(
1 0

∓ 1
f 1

)
, Mdrift =

(
1 s

0 1

)
, (A.1)

leading to the following expression for the transfer matrix of one FODO cell of length L

without dipoles

MFODO = MQFHMdriftMQDMdriftMQFH

=

 1− 1
2

(
L
2f

)2
L+ L2

4f(
L2

16f3

)
− L

4f2
1− 1

2

(
L
2f

)2

 , (A.2)

where the notation QFH stands for a horizontally focusing half quadrupole.

Including the effect of the dipoles with a bending radius θ, the transfer matrix for the

dispersion is given by

MFODO = MQFHMdipoleMQDMdipoleMQFH

=


1− L2

8f2
L2

4f + L L(8f+L)θ
8f

L(L−4f)
16f3

1− L2

8f2
(32f2−4Lf−L2)θ

16f2

0 0 1

 . (A.3)

Using Eqn. A.2 and A.3, expressions for the twiss parameters can be derived. The phase

advance is then given by:

sin (φ/2) =
L

4f
(A.4)

The motion is stable if |trace(M)| < 2, which is equivalent to

f >
L

4
. (A.5)

The minimum and maximum beta-function can be expressed by the phase advance and

the length of the cell

βmax =
(1 + sin φ

2 )L

sinφ
, βmin =

(1− sin φ
2 )L

sinφ
. (A.6)
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Both increase with the length of the FODO cell. The dependence on the phase advance

is illustrated in Fig. A.1 (left). The maximum beta-function takes its minimum for 76◦

while the difference between the maximum and minimum beta-function increases with the

phase advance.

Neglecting dispersion - and strictly speaking only valid for large machines - the natural

chromaticity (Eqn. 1.38) of one cell is given by

ξx,y = − 1

4π

(
βmax − βmin

f

)
(A.6, A.4)

= − 1

π
tan

φ

2
. (A.7)

Assuming that the dipole length is equal to half the cell length ldipole = L/2, and neglect-

ing focusing effects due to the bends (large machine approximation), the maximum and

minimum dispersion are given by:

Dmax =
Lθ(2 + sin φ

2 )

4 sin2 φ
2

, Dmin =
Lθ(2− sin φ

2 )

4 sin2 φ
2

, (A.8)

and decrease with the phase advance (Fig. A.1 (right)).
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Figure A.1: Maximum and minimum beta-function (left) and dispersion (right) as function of

the phase advance φ

In thin lens approximation the momentum compaction factor can be approximated by:

αc ≈
∑
i

〈Di〉θi

with 〈Di〉 the average dispersion function and θi the bending angle in the ith dipole leading

to

αc ≈
(Dmax +Dmin)

L
NCellθ

(A.8)
=

θ2

sin2 (φ/2)
≈ 1

ν2
x

, (A.9)

where νx is the betatron tune. For gamma transition one then obtains:

γT =

√
1

αc

(A.9)
≈ νx . (A.10)

Assuming that the dipoles fill all space between the quadrupoles, the horizontal equilibrium

emittance of a synchrotron radiation dominated machine is given by [14]

εx =
(2− 3

2 sin2 (φ2 ) + 1
15 sin4 (φ2 ))

sin2 (φ2 ) sinφ

θ3

Jx
. (A.11)

The emittance decreases with increasing damping partition Jx, and the minimum emit-

tance is obtained for 136◦ independent of Jx (Fig. A.2).
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Figure A.2: Horizontal equilibrium emittance of a FODO cell as function of the phase advance φ.

B Phasor

In order to fulfil the phase advance conditions required for some optics, the phase advance

can be modulated by inserting a symplectic matrix R(∆φx,∆φy) which does not change the

twiss functions and dispersion but modifies the phase advance within a range of ±π. This

method is a practical tool to try out some phase advance dependent optics modification

without rematching the concerned section or even the complete ring. Assuming no coupling

and no vertical dispersion, the constraint of no change of the twiss functions, horizontal

dispersion and angular dispersion yields for the matrix R(∆φx,∆φy) [76]:

R(∆φx,∆φy) =



R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0

0 0 R43 R44 0 0

R51 R52 0 0 1 0

0 0 0 0 0 1


with

R11 = cos (∆φx) + αx sin (∆φx), R12 = βx sin (∆φx),

R21 = −γx sin (∆φx), R22 = cos (∆φx)− αx sin (∆φx),
(B.1)

R33 = cos (∆φy) + αy sin (∆φy), R34 = βy sin (∆φy),

R43 = −γy sin (∆φy), R44 = cos (∆φy)− αy sin (∆φy),

R16 = Dx(1−R11)−D′xR12, R26 = D′x(1−R22)−D′xR21,

R51 = D′x(1−R11) +DxR21, R52 = Dx(R22 − 1)−D′xR12,

where βx/y, αx/y, γx/y, Dx and D′x denote the twiss functions, the horizontal dispersion

and the horizontal angular dispersion at the location of the matrix.
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C Chromaticity and Off-Momentum Beta-Beating Correc-

tion Using Sextupoles

The basic principle of chromaticity correction using sextupole magnets has been introduced

in Section 1.4.3. In large lepton machines like the LHeC, the second order chromaticity and

the off-momentum beta-beating also play an important role. Uncorrected, they can lead

to a large detuning with momentum for large amplitude particles and a strong momentum

dependence of the beta-function at the IP and hence loss in luminosity.

In a collider, the low-beta insertions usually significantly contribute to the off-momentum

beta-beating and second order chromaticity. A method to correct both parameters by

creating a beta-beating wave in the arc is presented in this section. As only a short

summary of the theoretical background will be given, it is referred to e.g. [76], [77], [75],

[78] and [79] for further details.

C.1 Off-momentum beta-beating and second order chromaticity

Expressions for the second order chromaticity and off-momentum beta-beating can be

derived by treating the chromatic effects as focusing errors in the Hill’s equation and

calculating the resulting twiss parameters including the distortion [76], leading to

Q′x,y = − 1

4π

C∫
0

ds1 k
(1)
x,y(s1)βx,y(s1) , (C.1)

Q′′x,y =
1

2π

C∫
0

ds1 k
(2)
x,y(s1)βx,y(s1)− (C.2)

1

8π sin (2πQx,y)

C∫
0

ds1

C∫
0

ds2 k
(1)
x,y(s1)βx,y(s1)k(1)

x,y(s2)βx,y(s2)

· cos (2 |φx,y(s1)− φx,y(s2)| − 2πQx,y) ,

β′x,y
βx,y

=
1

2 sin (2πQx,y)

C∫
0

ds1 k
(1)
x,y(s1)βx,y(s1) cos (2 |φx,y(s1)− φx,y(s)| − 2πQx,y) , (C.3)

where β(s) is the unperturbed beta-function for an on-momentum particle and k
(1)
x,y and

k
(2)
x,y are defined as

k(1)
x (s) = (k(s) +

1

ρ2(s)
)−m(s)Dx(s) , (C.4)

k(1)
y (s) = −k +m(s)Dx(s) , (C.5)

k(2)
x (s) = k(1)

x (s) +m(s)D(2)
x (s) , (C.6)

k(2)
y (s) = k(1)

y (s)−m(s)D(2)
x (s) (C.7)

with ρ being the dipole bending radius, k the normalized quadrupole and m the normalized

sextupole strength. As the first and second order dispersion Dx and D
(2)
x in general satisfy



Appendix 169

similar differential equations [75], they are of the same order of magnitude. Hence, the

first term of Eqn. C.2, proportional to

k(2)
x = k(1)

x +mD(2)
x = (k +

1

ρ2
)−mDx +mD(2)

x ≈ k +
1

ρ2
,

k(2)
y = k(1)

y −mD(2)
x = −k +mDx −mD(2)

x ≈ −k ,

becomes of the order of the natural chromaticity of the ring and is in general negligible.

Under this approximation, the second order chromaticity Q′′ and the off-momentum beta-

beating are related by

Q′′x,y = − 1

4π

C∫
0

ds k(1)
x,y(s)β

′
x,y(s) . (C.8)

Thus, correcting the off-momentum beta-beating indirectly leads to a reduction of the

second order chromaticity.

In colliders, the low-beta insertions in general contribute considerably to the off-momentum

beta-beating due to the high beta-function and high gradients in the final focus magnets.

One way to reduce the beta-beating is to compensate the beta-beating wave originating

from one IP with the following IP by choosing a phase of π
2 mod[π] or 2πQ+ π

2 mod[π]

between the IPs [76]. As the LHeC only contains one low-beta insertion, this first option

is not applicable. The second possibility is to use different sextupole families, which will

be described in the following sections and has been applied to the LHeC in the framework

of this thesis (Sec. 2.4.2).

C.2 Concepts of off-momentum beta-beating correction using sextupole

families

The off-momentum beta-beating can be described by two chromatic variables and an

invariant as introduced by Montague in [77] and implemented in MAD-X [32]. The two

chromatic variables A and B, omitting in the following the index x and y for the horizontal

and vertical plane, are defined by

A = lim
δ→0

(
1

δ

α(δ)β(0)− α(0)β(δ)√
β(δ)β(0)

)
, (C.9)

B = lim
δ→0

(
1

δ

β(δ)− β(0)√
β(δ)β(0)

)
= lim

δ→0

(
1

δ

∆β

β

)
(C.10)

with δ = (p − p0)/p0 and can be seen as the mismatch of the off-momentum betatron

envelope in respect to the on-momentum one.

In an achromatic region with ∆k = lim
δ→0

(
1
δ (k(δ)− k(0))

)
= 0, A and B oscillate with twice

the betatron frequency satisfying the equation

d2A

dφ2
+ 4A = 0,

d2B

dφ2
+ 4B = 0 . (C.11)

Similar to the Courant-Snyder invariant in the case of the linear betatron motion, one can

define the chromatic W -function

W =
1

2

√
A2 +B2 , (C.12)
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which is a measure of the strength of chromatic perturbations and an invariant in achro-

matic regions. As in the case of linear coupling, the chromatic variables A and B and the

W -function can be represented by vectors in the complex plane, where the W -function is

replaced by the W -vector with

W =
1

2
(A+ iB) . (C.13)

Most important for the concept of this formalism is that in chromatic regions with ∆k 6= 0,

the chromatic variable A is changed, but not B and thus also the absolute value of the

W -vector given by the W -function. In the following achromatic regions, all three variables

continue to oscillate with twice the betatron frequency until they suffer the next jump

in A respectively W in the next chromatic region. This simplified picture of “jumps” is

only valid in thin lens approximation, where exemplary the change of A in the case of a

quadrupole of strength kl and length l and sextupoles in a dispersive region with strength

ml and length l is given by [77]

∆A = −β(0)k(0)l, ∆B = 0 for a quadrupole ,

∆A = −β(0)Dm(0)l, ∆B = 0 for a sextupole .
(C.14)

In the case of a simple FODO lattice, being the building block of the arc in most large

collider lattices, the chromatic effect of the FODO cell quadrupoles can be canceled by

placing a sextupole with m(0)lsD ≈ k(0)lq next to each quadrupole, forming an achromatic

doublet. In general, it is advantageous to place the sextupoles as close as possible to

the quadrupoles as the beta-function takes its extrema at the center of the quadrupoles,

making the correction more efficient due to the maximum of the beta-function in the plane

to be corrected and minimizing the distortion in the other plane. Furthermore, as the

dispersion function fulfills a similar differential equation as the beta-function, it also takes

its maximum respectively minimum at the location of the quadrupoles, leading to a more

efficient correction if the sextupoles are placed as close as possible to the quadrupoles10. As

a rule of thumb, the strength of individual sextupoles should be kept as small as possible

in order to reduce geometric aberrations and resonance excitation.

In the case of insertions, a local correction is in most cases not advisable as

• most insertions are required to be dispersion free, resulting in a rather inefficient

chromatic correction in this region due to the vanishing dispersion

• the low-beta insertions with their strong final focus quadrupoles and high beta func-

tions induce large chromatic errors, which would require strong individual sextupoles

Instead, the chromatic error induced by the insertion can be corrected by using the arc

sextupoles. In this case, a W -vector compensating the W -vector of the insertion is slowly

built up in the arc by reducing or increasing the strength of different arc sextupoles. For

this purpose, the arc sextupoles are grouped into 2(N + 1) interleaved families

(SF, SD; SF1, SD1; . . . ; SFN, SDN)︸ ︷︷ ︸
1st group

(SF, SD; SF1, SD1; SF2, SD2; . . . ; SFN, SDN)︸ ︷︷ ︸
2nd group

(SF, SD; SF1, SD1; . . . ; SFN, SDN)︸ ︷︷ ︸
3rd group

. . . (SF, SD; SF1, SD1; . . . ; SFN, SDN)︸ ︷︷ ︸
last group

,

10Usually the lattice only includes horizontal bends and thus only the strength of the sextupoles correcting

the horizontal plane is reduced.
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where initially all focusing and defocusing sextupoles have the same strength and compen-

sate the natural chromaticity of the machine. By incrementing the strength of e.g. the SF

family by ∆mSF
, the chromatic variable A, and thus the W -vector, changes and oscillates

with double the betatron frequency until it reaches the next member of its family (N + 1)

cells later. In order to now coherently increase the W -vector, the phase advance 2φ of

the second member of the sextupole family should be an exact multiple of 2π. This is

illustrated in Fig. C.3.

A

B
1

2
3

SF

Figure C.3: Coherent built-up of the W -vector in the arc. The phase advance 2φ between mem-

bers of one family has to be a multiple of 2π.

This principle holds for all 2(N + 1) sextupole families, leading to the following relation

between the number of sextupole families 2(N + 1) and the phase advance φ0 per arc cell

2nπ = 2(N + 1)φ0, with n, N ∈ N . (C.15)

Furthermore, as shown in [80], the geometric aberrations up to second order, induced by

two equal sextupoles, spaced by a phase advance of π, exactly cancel each other out11.

Thus, in order to reduce the geometric aberrations induced by the sextupoles, each family

should contain an even number of sextupoles.

A

B

A

B

SF1SF2

SFSF

SF1

Figure C.4: W -vectors of the focusing sextupoles in the case of 90◦ (left) and 60◦ (right) phase

advance per cell.

Taking the above two conditions into account, 4 families are needed for a 90◦ and 6 families

for a 60◦ phase advance per cell . The resulting W -vectors of the sextupole families are

11More precise the transfer matrix of two equal sextupoles separated by a phase advance of π is minus

unity.
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shown for both cases in Fig. C.4. For a full compensation, a minimum of 6 independent

families is needed, two for Wx, two for Wy and two for the linear chromaticities ξx and ξy.

In principle, the sextupoles could also be arranged in a non-interleaved or partly interleaved

scheme, which has been tried out for some LEP lattice [78]. In this case, the non-interleaved

scheme provided a better correction with a larger dynamic aperture for small momentum

offsets, but failed for larger momentum offsets as present in a lepton collider like LEP.

Therefore, the interleaved schemes are in general considered to be the better choice.

Until now, only the build-up of the W -vector in the arc has been discussed. In addition,

the correction can be further improved in the case of a low-beta insertion by not only

imposing constraints on the phase advance between the arc sextupoles, but also between

the final focus magnets and the first arc sextupole. As the final focus magnets as well as

the arc sextupoles only change A, the W -vector should rotate by

2φFF,S = 0 mod[π] (C.16)

between the first sextupole of the correcting family (S) and the final focus magnets (FF)

in order to add up coherently (Fig. C.5). In general, the final focus magnets extend over

A

B

1

2

3

final focus
correcting
sextupole family

Figure C.5: Correction of the W vector created in a low-beta insertion. For an optimal correction

the phase advance between the final focus magnets and the first sextupole of the

correcting family has to be a multiple of 2φ = 0 mod[π].

a larger area and thus are not suited for the practical matching of the phase advance. It

is easier to take the IP as a point of reference instead. As the phase advance between the

final focus magnets and the IP is approximately π/2, the condition C.16 is fulfilled if

2φIP,S = 0 mod[π] , (C.17)

and can also be used for a first adjustment of the phase advance, followed by an actual

matching of the W -function to W = 0 for a fine adjustment of the beta-beating correction

as done in the case of the LHeC in the framework of this thesis (Sec. 2.4.2).

C.3 Phase sensitivity of the off-momentum beta-beating correction us-

ing the arc sextupole families

A critical aspect of the correction of the chromatic error induced by a low-beta insertion

with the arc sextupoles is the phase sensitivity, meaning the sensitivity to the deviation of
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the phase advance between members of one family to the optimal one. Exemplarily, the

case of the LHeC with a phase advance of 90◦ in the horizontal and 60◦ in the vertical

plane will be investigated in this section. In this case, the off-momentum beta-beating

induced by the final focus magnets on the left side IL,IRx,y is corrected with the adjacent arc

to the left, and equally for the right side, leading in the case of the left side of the IP to

IL,IRx,y = IL,arc
x,y (C.18)

(C.3)
=

1

2 sin (2πQx,y)

s(IP)∫
s(arc)

ds1 k
(1)
x,y(s1)βx,y(s1)ei(2|φx,y(s1)−φx,y(s)|−2πQx,y) ,

where s(arc) denotes the s-coordinate of the beginning of the arc and s(IP) the s-coordinate

of the IP, and the cos(. . .) term has been substituted by the exponential function ei(...). A

similar expression is obtained for the right side of the IP. Assuming that φx(s) < φx(s1),

that the natural chromaticity is corrected by the arc sextupoles and that the beta-function

and dispersion are the same at all focusing and defocusing sextupoles, one obtains for the

horizontal plane

IL,arc
x =

e−i2(πQx+φx(s))

2 sin (2πQx)︸ ︷︷ ︸
Cx(s)

(
Nc−1∑
k=0

(−1)k∆mSF
βx,SF

Dx,SF
ei2(kφcx+φLx )

)
+ Ix(∆mSDi

)

= Cx(s)∆mSF
βx,SF

Dx,SF

sin (Ncδφ
c
x)

sin (δφcx)
ei((Nc−1)δφcx+2φLx ) + Ix(∆mSDi

) , (C.19)

where Nc is the number of arc cells, φcx,y the phase advance per cell, δφcx,y the deviation

of the arc cell phase advance per cell from 90◦ in the horizontal respectively 60◦ in the

vertical plane, φLx,y the phase advance from the IP to the first focusing sextupole SF and

∆mSFi,Di
= mSF,D

−mSFi,Di
the up and down excitation of the ith sextupole family with

mSF,D
the sextupole strength to correct the natural chromaticity. In the case of φcx = π/2

phase advance in the horizontal plane, thus 2 families, one family has to be increased by

∆mSF
and the other one decreased by ∆mSF

in order to not change the linear chormaticity,

thus ∆mSF1
= −∆mSF2

=: ∆mSF
. The contribution of the defocusing sextupole families

SDi has been summarized in the term Ix(∆mSDi
) and is expected to be small due to the

small beta-function and dispersion at the location of the SDi sextupoles.

From Eqn. C.19, two important conclusions can be drawn:

• an optimal correction is obtained if the phase advance between the IP and the first

arc sextupole is a multiple of π
2

(Nc − 1)δφcx + 2φLx = 0 mod[π] . (C.20)

• the diffracting function ζ(u) = sin (Ncu)
sin (u) takes its maximum Nc for u = 0, thus in

the case of no phase errors. For an increasing number of cells, Nc, ζ(u) starts to

fall steeply for u 6= 0, meaning that the correction scheme becomes sensitive to even

small phase errors.
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For the vertical plane with a phase advance of 60◦, the expression for IL,arc
y becomes a bit

more complicated as the defocusing sextupoles are not orthogonal to each other:

IL,arc
y = Cy(s)

 3∑
j=1

Nc/3−1∑
k=0

∆mSDj
βy,SD

Dx,SD
ei2(kφcy+(j−1)π

3
+φLy )

+ Iy(∆mSF
)

= Cy(s)
3∑
j=1

∆mSDj
βy,SDj

Dx,SDj

sin (Nc3 δφ
c
x)

sin (δφcx)
ei((

Nc
3
−1)δφcy+2(j π

3
+φLy ))

+Iy(∆mSF
) , (C.21)

where Cy(s) = e−i2(πQy+φy(s))

2 sin (2πQy) is defined analogous to the horizontal plane and Iy(∆mSF
)

summarizes the contribution of the focusing quadrupoles and is considered to be small.

As the sextupoles are all placed at the same position in the cell, the twiss parameters at

their position are the same, i.e. βy,SDj
= βy,SD

and Dx,SDj
= Dx,SD

. This also implies that
3∑
j=1

∆mSDj
= 0, in order to not change the linear chromaticity.

In the case of the vertical plane, similar conclusions as for the horizontal plane can be

drawn with the following differences

• an optimal correction is obtained if the phase advance between the IP and one of

the defocusing arc sextupoles is a multiple of π
2

((Nc/3− 1)δφcy + 2(j
π

3
+ φLy )) = 0 mod[π] . (C.22)

Usually, the family with a phase advance closest to π
2 in respect to the IP is chosen,

so that only a small rematch of the lattice is necessary.

• the number of cells Nc is replaced by the number of sextupoles per family, i.e. Nc
3 in

the argument of the diffracting function ζ(u), thus also in this case, the correction

scheme becomes more sensitive to phase errors with an increasing number of arc

cells.

D Equilibrium Emittance with Coupling

The expression Eqn. 1.65 for the transverse emittances

εi = Cq
γ2

Ji

I5i

I2
, i = x, y (D.1)

yields that the sum over the product of the damping partition number and emittance is

constant

Jxεx + Jyεy = Cqγ
2 I5x + I5y

I2
= const , (D.2)

leading to the following relation between the emittances of the coupled and uncoupled

lattice:

Jxεx + Jyεy = J0xε0x + J0yε0y , (D.3)

where the index 0 denotes the parameters of the uncoupled machine.
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In most storage rings dominated by synchrotron radiation, the vertical dispersion and

emittance are both very small in the case of no coupling, and Eqn. D.3 simplifies to:

Jxεx + Jyεy = Jxε0x . (D.4)

Defining the coupling constant κ as the ratio between horizontal and vertical emittance

εy = κεx , (D.5)

the horizontal and vertical emittance in the coupled case read

εx =
ε0xJ0x

Jx + Jyκ
, εy =

ε0xJ0xκ

Jx + Jyκ
. (D.6)

Furthermore, under the assumption of no vertical dispersion in the coupled as well as un-

coupled case, I4y vanishes and the damping partition numbers, using Robinson’s criterion,

are given by:

Jx = 3− Js ,
Jy = 1 .

(D.7)

With the additional condition of Jx = J0x, Eqn. D.6 yields

εx =
ε0xJx
Jx + κ

, εy =
ε0xJxκ

Jx + κ
. (D.8)

E Damping Decrements and Equilibrium Emittances in the

Case of Coupling

In this section, a short summary of the method by Chao [21], [81] to obtain expressions

for the damping decrements and equilibrium emittances is given. This summary also has

the intention to define the damping decrements and equilibrium emittances as understood

in this formalism and implemented in MAD-X [32].

E.1 Damping decrements

The damping decrements can be derived by including the effect of radiation damping in the

6×6 transport matrices of the elements [21]. For example, an electron passing through an

RF cavity will change its longitudinal momentum while keeping the transverse momentum

unchanged, resulting in a reduction of the slopes x′ and y′. In the matrix formalism, this

change is expressed by replacing the affected matrix elements m22 and m44 by

m22 = m44 = 1− u

E0
, (E.1)

where u is the energy gain at the RF cavity and E0 the energy of the reference particle.

Similar expressions can be derived for quadrupoles, sextupoles etc. By concatenating all

matrices from the initial position s to s+C, where C is the circumference of the ring, one

then obtains the one-turn transfer matrix D(s). The eigenvalues of D(s) are then given by
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e−αk±i2πνk , k = 1, 2, 3 where νk is the tune of mode k and αk the damping decrements.

It follows that

e−2(α1+α2+α3) = det (D(s)) , (E.2)

which reduces to the Robinson criterion (Eqn. 1.60) for weak damping

α1 + α2 + α3 =
2U0

E0
, (E.3)

where U0 is the energy loss per turn and the horizontal, vertical and longitudinal damping

decrements in Eqn. 1.60 have taken the place of the damping decrements of the three

eigen-modes.

E.2 Equilibrium emittances in the case of coupling

In an electron storage ring, the beam distribution can in general be assumed to be Gaussian

and can be written in the following form

f(x) =
1

(2π)3
√

det(Σ)
e−

1
2
xTΣ−1x , (E.4)

where Σ is the envelope matrix with

Σij = 〈(x− x̄)i(x− x̄)j〉 =

∫
(x− x̄)i(x− x̄)jf(x), dx (E.5)

and xi the canonical coordinates of the state vector x.

In [21] it is shown that the envelope matrix Σ(s), including the effect of radiation damping

and diffusion due to quantum excitation, is given in terms of the eigenvectors vk of the

coupled 6× 6 one-turn matrix T (s) without radiation, explicitly

Σij(s) = 〈xixj〉(s) = 2
∑

k=1,2,3

〈|Ak|2〉Re [vki(s)vkj(s)] (E.6)

with

〈|Ak|2〉 = CL
γ5

αk

∮
|vk5(s)|2

|ρ(s)|3
, (E.7)

where vki is the ith component of the vector vk, αk the damping decrements, CL = 55
48
√

3
re~
me

and ρ(s) the bending radius.

The envelope matrix or the beam distribution respectively - not taking the effect of syn-

chrotron radiation into account - can be now expressed in terms of the quadratic invariants

gi, defined by gi = xTGix with gi(s) = gi(s+C) for all x and Gi being a symmetric matrix

with T TGiT = Gi, explicitly [81]:

f(x) =
1

π3〈g1〉〈g2〉〈g3〉
e
− g1
〈g1〉
− g2
〈g2〉
− g3
〈g3〉 , (E.8)

where the average of gi is defined by 〈gi〉 =
∫
dx gif(x). Assuming now that the distri-

bution remains a function of the invariants gi, one obtains an evolution equation for the

envelope matrix and the invariants 〈gi〉, including the effect of synchrotron radiation. The

equilibrium values of the invariants 〈gi〉eq are then defined as

〈gi〉(s+ C) = 〈gi〉(s) = 〈gi〉eq(s) . (E.9)
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Using the explicit expressions for the envelope matrix [81] ,one obtains that the equilibrium

values of the invariants are independent of s and given by

〈gi〉eq =
d̄i

2χi
, (E.10)

where d̄i is the diffusion coefficient and χi the global damping decrements, both indepen-

dent of s. For the exact definition of d̄i and χi it is referred to [81]. Using the definition of

the envelope matrix and that it can be expressed with the equilibrium values of 〈gi〉, one

obtains for the equilibrium emittance of the three different modes

εi,eq =
1

2
〈gi〉eq . (E.11)

Note that this definition of the emittance is independent of s.

F Hamiltonian Perturbation Theory Including Linear Cou-

pling

This short summary of the Hamiltonian perturbation theory including linear coupling is

based on [82], which is referred to for further details.

Applying a row of canonical transformation the Hamiltonian can be reduced to the linear

coupling perturbation term:

H ′ = N(s)xy , (F.1)

where N(s) is the strength of one skew quadrupole. Using

z(s) =
√

2Jz
√
βz(s) cos (Φz(s) + φz), z = x, y

where Jz is the action, βz(s) the beta-function, φz the initial phase and Φz(s) is the

periodic betatron phase, one obtains

H ′ = 2N(s)
√
JxJyβx(s)βy(s) cos (Φx(s) + φx) cos Φy(s) + φy) . (F.2)

The equation of motions for this Hamiltonian cannot be solved exactly. In order to get an

approximate solution, the Hamiltonian is split up in a periodic and a non-periodic part

H ′ = 2N(s)
√
JxJyβx(s)βy(s) cos (Φx(s) + φx) cos Φy(s) + φy)

=
∑

j,k=±1

N(s)
√
βx(s)βy(s)e

ik(Φx(s)+jΦy(s)−(Qx+jQy) 2πs
L

)︸ ︷︷ ︸
periodic in s

·

√
JxJy
2 eik(φx+jφy+(Qx+jQy) 2πs

L
) ,

(F.3)

where Qz is the betatron tune.

Substituting s with the azimuthal angle θ = 2πs
L and scaling the Hamiltonian with L

2π to

preserve the equations of motion, one can develop the periodic part of the Hamiltonian

into a Fourier series

L

2π
N(s)

√
βx(s)βy(s)e

ik(Φx(s)+jΦy(s)−(Qx+jQy)θ) =
∑
q

κjkqe
ikqθ (F.4)
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with

κjkq = κjqe
ikφjq =

1

2π

∫ s0+L

s0

ds N(s)
√
βx(s)βy(s)e

ik(Φx(s)+jΦy(s)−(Qx+jQy+q)θ) . (F.5)

The effect of a skew quadrupole on the equations of motion is then given by κjkq and

consists of an absolute value κjq independent of k and a phase eikφjq , which changes sign

with k.

Substituting the exponential function with the cosine, one finally obtains:

H ′ =
∑
q

∑
j=±1

κjq
√
JxJy cos (φx + jφy + (Qx + jQy + q)θ + φjq) . (F.6)

Note that the above Hamiltonian is independent of k. Furthermore, it consists of different

perturbations, which oscillate with different frequencies. Most frequencies are higher than

the revolution frequency of the particles Qx±Qy+q > 1. Assuming that the perturbations

are small, only the perturbations which sum up over several turns have an effect and the

rest can be neglected, i.e. perturbations with a period of

Qx ±Qy + q ≈ 0, q ∈ Z , (F.7)

where Qx + Qy = q is the linear sum resonance (j = 1) and Qx − Qy = q is the linear

difference resonance (j = −1).

In thin-lens approximation, the Fourier coefficients κjkq of Eqn. F.5 can be simplified,

yielding for the contribution of one skew quadrupole to the sum resonance (j = 1)

κ1ie
iφ1i =

1

2π
Ni

√
βxiβyi︸ ︷︷ ︸

=κ1i

eiψi , (F.8)

where Ni is the integrated quadrupole strength and ψi = Φxi + Φyi, and for the difference

resonance (j = −1)

κ−1ie
iφ−1i =

1

2π
Ni

√
βxiβyi︸ ︷︷ ︸

=κ−1i

eiϕi (F.9)

with ϕi = Φxi − Φyi. The total contribution to the sum and difference resonance is then

just the sum over all contributions.

G LHeC Parameters

The beam and lattice parameters used and achieved with the optics designed in this thesis

are listed in Table 3.24 and Table 3.25 and the magnet strengths and RF parameters are

summarized in Table 3.26 and Table 3.27. The damping times, damping partition numbers,

longitudinal parameters and optics parameters are given for the uncoupled lattice. The

emittance values given are the unnormalized rms emittances εrms at the top energy of

60 GeV with εrms = εnormalized/(βγ).



Appendix 179

beam energy 60 GeV

number of particles per bunch 1.98× 1010

number of bunches 2808

synchrotron radiation loss per turn 437.2 MeV

synchrotron radiation power 43.72 MW

damping Partition Jx/Jy/Js 1.5/1/1.5

hor./vert./long. damping time τx/τy/τs (κ = 0) 0.016/0.024/0.016 s

polarization time 61.7 min

hor. rms emittance (κ = 0) 5.55 nm

emittance ratio εy = κεx 0.5

hor./vert. rms emittance (κ = 0.5) 4.16/2.08 nm

fractional energy spread σE/E (κ = 0) 0.00116

bunch length (κ = 0) 5.72 mm

Table 3.24: LHeC beam parameters.

circumference 26658.8832 m

momentum compaction 0.0807× 10−3

hor./vert. tune 123.155/83.123

hor./vert. linear chromaticity 2.0/2.0

synchr. tune 0.069

max. horiz./vert. beta (total) 140.4/135.0 m

max. horiz./vert. dispersion (total) 1.68/0.0 m

max. horiz./vert. beta (arc) 82.5/103.3 m

max. horiz./vert. dispersion (arc) 0.56/0.0 m

Table 3.25: LHeC lattice and optics parameters. The maximum beta and dispersion values are

given for the optics not including the interaction region.
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dipoles

number 3080

length 5.35 m

bending radius 2622.56 m

magnetic field at 10-60 GeV 0.0127− 0.0763 T

hor./vert. half aperture 30/20 mm

arc quadrupoles

number (QF/QD) 336/336

length 1 m

normalized magnetic field (QF/QD) 0.052/− 0.042 1/m

magnetic field at 60 GeV (QF/QD) 10.28/− 8.4 T/m

aperture radius 30 mm

individual quadrupoles

number (QF/QD) 148/148

length (QF/QD) 1/0.7 m

max. normalized magnetic field (QF/QD) 0.090/− 0.086 1/m

magnetic field at 60 GeV (QF/QD) < 18 T/m

aperture radius 30 mm

Table 3.26: LHeC magnet parameters excluding the magnets needed for the interaction region.

number of cavities 112

number of 8-cavity cryo modules 14

RF voltage 560 MV

RF voltage for 50 h quantum lifetime 510 MV

RF frequency 721.421 MHz

harmonic number 64152

Table 3.27: LHeC RF parameters.
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H Analytical Estimate of the Linear Transverse Mismatch
Let α1, β1 and γ1 be the twiss parameters of the distribution matched to the linear lattice

without space-charge. The phase space coordinates z and z′ of a particle with the single

particle emittance ε1 and phase φ are given by Eqn. 1.20:

z =
√
β1ε1 cosφ, z′ = −

√
ε1
β1

(sinφ+ α1 cosφ) . (H.1)

Note that a particle distribution matched to a machine (linear, neglecting e.g. direct

space-charge) is given by a uniform distribution in phase φ and any distribution in ε1.

The rms emittance of the beam is then just one half of the average of the single particle

emittances.

Assuming now that α2, β2 and γ2 are the new twiss parameters. The single particle

emittance of this particle is then described by the Courant-Snyder Invariant (Eqn. 1.17)

γ2z
2 + 2α2zz

′ + β2z
′2 = ε2 . (H.2)

Inserting Eqn. H.1 into Eqn. H.2, one obtains for the single particle emittance ε2 of the

mismatched beam

ε2(φ) = ε1

((
γ2β1 − 2α2α1 +

β2

β1
α2

1

)
cos2 φ+

β2

β1
sin2 φ (H.3)

+

(
β2

β1
α1 − 2α2

)
cosφ sinφ

)
.

The average single particle emittance ε2 is then given by the average over the phase angle

φ, leading to

ε2 =
1

2π

∫ 2π

0
ε2(φ) dφ =

ε1
2

(β1γ2 − 2α2α1 + β2γ1) . (H.4)

The rms emittance of the beam after filamentation of the mismatch is obtained after

averaging over the single particle emittances

ε2,rms = ε1,rms
(β1γ2 − 2α2α1 + β2γ1)

2
, (H.5)

and the relative blow-up is given by

∆ε

ε
=
ε2,rms − ε1,rms

ε1,rms
=

(α1 − α2)2 − (β1 − β2) (γ1 − γ2)

2
. (H.6)

At a point of symmetry with α2 = α1 = 0, Eqn. H.6 reduces to

∆ε

ε
=

(∆β)2

2β1β2
≈ 1

2

(
∆β

β1

)2

, (H.7)

where ∆β = β2−β1. From Eqn. H.7 it is obvious that a transverse mismatch always leads

to emittance growth and never to a reduction in agreement with the law of phase space

conservation.

In order to apply Eqn. H.7, the change of the twiss parameters caused by the space-charge

effect has to be calculated. In linear approximation and neglecting the variation of the

beam size, the effect can be treated like a constant quadrupole error increasing linearly

with the beam intensity I (Sec. 1.7.3):

kSC = ã · I , (H.8)
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where ã depends only on the beam distribution. After Eqn. 1.79, the linear dependence

of kSC results also in a linear dependence of ∆β on the beam intensity I

∆β = kSC

(
− β1

2 sin 2πQ1

∫ C

0
β(s) cos (2Q1(π + φ− φ1))ds

)
︸ ︷︷ ︸

constant for all intensities

(H.8)
= ã

(
− β1

2 sin 2πQ1

∫ C

0
β(s) cos (2Q1(π + φ− φ1))ds

)
︸ ︷︷ ︸

=:a

·I

= a · I . (H.9)

According to Eqn. H.7 this leads in turn to a quadratic dependence of the relative emittance

growth on the intensity

∆ε

ε1
=

(∆β)2

2β1β2
=

(aI)2

2β1(β1 + a · I)
= const. · I2 . (H.10)
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