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Abstract: Metal-helix based metamaterials have been introduced as 
compact and broadband circular polarizers. However, the end of the metal 
wire together with the helix center defines an axis in space, which 
unavoidably breaks the rotational symmetry at the metamaterial surface. 
This introduces linear birefringence. Symmetry can be recovered by 
considering an integer number, e.g. N = 4, of intertwined helices arranged to 
a square array. We show that the operation principles are fundamentally 
different though. Metamaterial circular polarizers based on N = 4 helices, 
unlike single helices, inherently require absorption of the constituent metal. 
Otherwise, the combination of a four-fold rotational axis and time-inversion 
symmetry strictly forbids circular-polarizer action. Our symmetry analysis 
is confirmed by extensive numerical calculations comparing results for 
perfect electric conductors with those for a free-electron Drude metal with 
finite damping. 
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1. Introduction 

Gold-helix metamaterials have been introduced as compact and broadband circular polarizers 
[1–3]. They can be seen as the circular counterpart of the good old wire-grid polarizer for 
linear polarization of light. Simple square arrays of circular helices with two and more pitches 
along the helix axis provide an operation bandwidth of nearly one octave [1] (for light 
propagating along the helix axis). Within this bandwidth, one circular polarization is 
transmitted, the other one is reflected. Metal absorption is not required and is actually rather 
unwanted. Several variations of this idea have meanwhile been published aiming at further 
improving the circular-polarizer performance. For example, three-dimensional bi-chiral 
arrangements [4,5] promise a more isotropic response, however, they largely deteriorate both 
the bandwidth and the extinction ratio [5]. Tapered helices increase the bandwidth to about 
1.5 octaves, increase the extinction, and reduce polarization conversion [6]. Simplified layer-
by-layer chiral designs [7–9] cannot quite match the performance of helix-based 
metamaterials, but these structures are closer to practical applications and allow for much 
larger sample footprints due to an inherently simpler fabrication process [9]. 

When looking at a circular helix along the helix axis (see Fig. 1(a)), the end of the wire 
forming the helix together with the central axis of the helix form a direction in space, which 
breaks the wanted full rotational symmetry of the chiral metamaterial [2]. In transmission, this 
fact leads to a small but unwanted degree of circular polarization conversion, e.g., incident 
left-handed circular polarization (LCP) is partially converted to emerging right-handed 
circular polarization (RCP). In reflection, this conversion effect is dramatic [2]. For a bulk 
metal, a bulk dielectric, or for an ideal isotropic chiral effective material under normal 
incidence of light onto a sample surface, e.g., LCP would be reflected as pure RCP. In sharp 
contrast, for metal-helix metamaterials, incident LCP is reflected as LCP, i.e., one gets nearly 
100% of polarization conversion in reflection [2]. 

To reduce or eliminate these unwanted polarization conversion effects, multiple (integer 
N) intertwined helices have previously been proposed [10,11]. For N = 2, they can be seen as 
the analog to the DNA double strands in biology. At first sight, one might be tempted to look 
at an N-helix metamaterial as a small modification of a metamaterial composed of single 
helices. In this work, we show that the operation principles are fundamentally different due to 
different symmetry. As a result, the optimization of the circular-polarizer action is very 
different, too. 

2. Symmetry based analysis 

Figure 1 illustrates unit cells of simple square arrays of single helices and multiple helices for 
N = 4. In the N = 4 case in (b), the symmetry of a single building block (“meta-atom”) and 
that of the array are identical. Both exhibit a four-fold rotational symmetry. N = 1, 2, 3, … do 
not fulfill this condition, N = 8, 12, 16,… would. However, the difficulty of fabrication 
obviously rapidly increases with increasing N. Thus, we only explicitly consider N = 4 in this 
letter. It is known that the operation bandwidth depends on the number of helix pitches along 
the helix axis [1,2]. We start our discussion with single pitches, where the resonances are 
simpler to understand [1]. At the end of this paper, we also consider several axial pitches for 
N = 4 helices. The dependence of the optical properties of single helices on the number of 
pitches resembles the expectation from end-fire helical antenna theory [12], has previously 
been published [1,2], and shall not be repeated here. 
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Fig. 1. Illustration of the unit cells of helix-metamaterial geometries considered in this work. In 
each case, top view (left) and oblique view (right) are depicted. (a) Single (N = 1) left-handed 
metal helices with axial period a arranged to a square array with lateral lattice constant a. The 
metal wire diameter is 0.1 ,d a= ×  the helix diameter is 0.6 .D a= ×  Note that the end of the 

metal wire together with the center axis of the helices defines an axis in space. This leads to a 
one-fold rotational axis. (b) Similarly arranged N = 4 intertwined helices recover a four-fold 
rotational axis compatible with the square-array symmetry. (c) Arrangement of single helices 
like in (a) effectively recovering four-fold rotational symmetry of the overall structure by 
laterally displacing the four helices from (b) within one new unit cell with lattice constant 2a. 

For single helices, we have previously shown [1] that the circular-polarizer effect survives 
if the metal is described as a perfect electric conductor (PEC). For a PEC, absorption is 
strictly zero by definition. Thus, any difference in the metamaterial transmittance for incident 
LCP and RCP must be due to a difference in reflectance at the interfaces. For the case of N = 
4 helices we now show that, due to symmetry, the intensity reflectance and transmittance 
coefficients for LCP and RCP are strictly identical. 

Importantly, we shall not use the effective-medium approximation, the validity of which is 
somewhat questionable under our conditions, but rather consider the sample as a “black box” 
and only exploit its symmetries. Consider a plane wave of light impinging along the axis of 
the helices, i.e., along the z-axis. Thus, the electric field has components in the xy-plane. The 

reflected field vector rE


can be connected to the incident field vector iE


 by the field-

reflection 2x2 matrix r


 with complex-valued coefficients given by 

 
r i i

xx xy

yx yy

r r
E r E E

r r

 
= =   

 

  
 

 (1) 

Here, we have obviously tacitly neglected any diffracted orders. This assumption is justified 
for the conditions of interest in this work. For a four-fold symmetry of the structure, r


 must 

be invariant under rotations of 90 degrees and multiples thereof, i.e., r


must commute with 
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the 90-degree rotation matrix 90.M


 This is equivalent to invariance under the coordinate 

transformation 
1

90 90  .r M r M −=
  

 This condition leads to xx yyr r=  and .yx xyr r= −  Thus we 

have 
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−
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

 (2) 

To make the transition from this linear-polarization basis to a circular-polarization basis, we 

use the usual matrix S


 given by 

 

1 i1

1 i2
S

−
=

 
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 



 (3) 

The reflection coefficients in circular (“circ”) basis become 
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 (4) 

As argued above, incident LCP is reflected as RCP and vice versa. As usual, this change is 
simply due to the fact that the sense of rotation of the electric-field vector stays the same but 
the axis it is referred to, namely the wave vector of light, changes direction upon reflection. 
The zero off-diagonal elements in Eq. (4) mean that circular polarization conversion is strictly 
zero. By analogous reasoning, we can derive a transmission matrix circt


 with nonzero diagonal 

elements LCP LCPt  and RCP RCPt  and zero off-diagonal elements. 

Next, we exploit time-inversion symmetry. Consider an incident field vector in the 

circular basis, i,circ ,E


 with components i,LCP ,E  and i,RCP .E  As the conversions are zero, we 

can, for example, consider solely i,LCP .E  This leads to the transmitted and reflected field 

vector components 

 t,LCP LCP LCP i,LCP r,RCP RCP LCP i,LCP  and   .  E t E E t E= =
 (5) 

Upon time inversion, not only the time ,t t→ −  but also the wave vector k k→ −
 

 and any 
relative phase between the two vector components have to be inverted. Hence, the field 

vectors turn into their complex conjugates, see, e.g [13–15]. We now consider *

t,LCPE  and 

*

r,RCPE  as the incident field vector components. In general, the structure must not necessarily 

be symmetric with respect to inverting the propagation direction. For the incident field 
*
t,LCP ,E  that is propagating in the opposite direction we therefore introduce the reflection and 

transmission matrices circ'r


 and circ' .t


 Both matrices will again have zero off-diagonal 

elements due to four-fold rotational symmetry. Due to time-inversion symmetry [15], the 
following two equations must be satisfied 

 
* *

RCP RCP RCP LCP RCP LCP LCP LCP0 r 't r t= +     (6) 

 
* *

LCP RCP RCP LCP LCP LCP LCP LCP1 r ' .r t t= +     (7) 
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As the structure is assumed to be lossless, electromagnetic energy must be conserved. This 
yields 

 
* *

RCP LCP RCP LCP LCP LCP LCP LCP1 ' r' ' ' .r t t= +     (8) 

By solving Eqs. (6) and (7) for RCP LCP'r   and LCP LCP't   respectively and substituting 

appropriately into Eq. (8) we get 

 

22 2 2 *
LCP LCP RCP RCP RCP LCP LCP RCP RCP LCP1 .t t r r r− = −      

 (9) 

A similar equation can be derived for incident RCP 

 

22 2 2 *
RCP RCP LCP LCP LCP RCP RCP LCP LCP RCP1 .t t r r r− = −      

 (10) 

The squared moduli on the right-hand side of Eqs. (9) and (10) are equal and we therefore 
have 

 
2 2 2 2 2 2

LCP LCP RCP RCP RCP LCP RCP RCP LCP LCP LCP RCP .t t r t t r− = −       (11) 

Exploiting conservation of electromagnetic energy, i.e., 2 2

RCP LCP LCP LCP1 r t= +   and 
2 2

LCP RCP RCP RCP1 ,r t= +   this finally yields 

 LCP LCP RCP RCPt t=   (12) 

and accordingly 

 RCP LCP LCP RCP .r r=   (13) 

We note that this finding is consistent with and well known for bi-isotropic effective media 
[16], a subclass of bi-anisotropic effective media [17]. However, as the wavelength is not 
really much larger than the characteristic feature sizes for the helix structures of interest here, 
we feel that a reasoning based on the effective-medium approximation would not have been 
“water-proof”. 

Altogether, lossless N = 4 helices exhibit 

1. four-fold rotational symmetry along the helix axis and 

2. time-inversion symmetry (no losses and no static magnetic field). 

We consider the case that no diffracted orders other than the 0th orders in the forward and 
backward directions emerge. In this case, symmetry 1. alone implies that the circular 
polarization conversion is strictly zero for transmission and reflection. This aspect is desired. 
Unfortunately, the combination of symmetries 1. and 2. also implies that the intensity 
reflection coefficients for LCP and RCP are strictly identical (at any frequency). The same 
holds true for the LCP and RCP intensity transmission coefficients. The field transmission 
coefficients for LCP and RCP can have different phases though (like in, e.g., an optically 
active solution of chiral sugar molecules). This overall finding is quite counter-intuitive: The 
N = 4 helix structure is chiral – but its optical properties show hardly any traces of that. In 
particular, the structure just cannot act as a circular polarizer. 

However, finite losses would break time-inversion symmetry. In this case, different 
transmissions may result from finite propagation losses that can be different for LCP and RCP 
respectively due to the chiral nature of the helices. 
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3. Numerical calculations 

To test our symmetry considerations, we compare them to numerical calculations using the 
commercial software package CST Microwave Studio based on a finite-integration technique. 
The structure parameters for N = 1 and N = 4 are illustrated in Fig. 1(a) and 1(b) respectively. 
We choose a = 1 µm. We have performed calculations with and without the glass substrate, 
which does break the symmetry with respect to inverting the propagation direction [6]. The 
differences turn out to be very small though. Thus, for clarity, we only depict results without 
glass substrate here. For the frequencies depicted in Figs. 2 and 3, diffraction into free space 
cannot occur (the high-frequency end of about 300 THz corresponds to a free-space 
wavelength of 1 µm = a). 

We only show results for left-handed helices. For right-handed helices, LCP just needs to 
be exchanged by RCP and vice versa (by symmetry). 

We start our discussion with the conceptually simple case of metal helices made of a PEC, 
for which losses are strictly zero. It becomes obvious from Fig. 2(a) that the single-helix 
metamaterial does act as a circular polarizer, whereas the N = 4 helix metamaterial in Fig. 
2(b) shows strictly zero difference in intensity reflectance and transmittance between LCP and 
RCP at any frequency. This highlights the fundamental difference between the N = 1 and the 
N = 4 case, in agreement with our symmetry considerations in the preceding section. Energy 
conservation for a PEC means that the sum of all red curves in Fig. 2(a) at a given frequency 
is one (same for Fig. 2(b)). The same holds true for the blue curves. Our numerical 
calculations obey energy conservation to better than 1%. Within the PEC limit, due to the 
scalability of the Maxwell equations, the operation frequency can simply be scaled to any 
desired frequency. 

However, for small structures and high operation frequencies, the PEC assumption 
becomes unrealistic and the metal rather has to be described by the Drude free-electron 
model, which does lead to finite losses. Corresponding calculations for gold with plasma 

frequency 
16

PL 1.37 10 rad / sω = ×  and collision frequency 
14

col 1.2 10 rad / sω = ×  are shown 

in Fig. 2(c) and (d), where again a = 1 µm. When going from PEC to gold, the performance of 
the single-helix metamaterial in (c) deteriorates with respect to (a). In sharp contrast, the PEC 
N = 4 helix metamaterial in Fig. 2(b) shows no circular-polarizer action at all, while at least 
some difference between LCP and RCP intensity transmittance is found in (d). This highlights 
once again the fundamental difference in operation principles between the N = 1 and the N = 4 
case. In agreement with our symmetry considerations in the preceding section, all polarization 
conversions (dashed curves) are strictly zero for the N = 4 case, with and without losses. 

So far, we have only discussed metamaterials composed of single helix pitches in this 
paper. The N = 1 case is known [1] to exhibit significantly larger bandwidth for two or more 
pitches along the helix axis, which is identical to the propagation direction of light. Figure 3 
shows that the behavior is similar for the N = 4 helix metamaterial. When going from Fig. 
3(a) to 3(d), the extinction depth increases with increasing number of pitches. This is simply 
due to the fact that one circular polarization (LCP) experiences much larger resonant 
absorption losses than the other one (RCP). Thus, with increasing number of pitches, hence 
increasing sample thickness, the difference in optical density between LCP and RCP 
increases. At the same time, the operation bandwidth (see gray areas) increases from one to 
six pitches. Intuitively, the bandwidth larger than a factor of three (i.e., 1.5 octaves) stems 
from the strong interaction among the different helix pitches [1], somewhat similar to the 
interaction of the primary and the secondary coil in a transformer [2]. At the same time, the 
operation bandwidth (see gray areas) increases from one to six pitches. Intuitively, the 
bandwidth larger than a factor of three (i.e., 1.5 octaves) stems from the strong interaction 
among the different helix pitches [1], somewhat similar to the interaction of the primary and 
the secondary coil in a transformer [2]. 
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Fig. 2. Calculated normal-incidence intensity transmittance (solid), reflectance (solid), and 
conversion spectra (dashed). Incident left-handed circular polarization (LCP) is shown in red, 
incident right-handed circular polarization (RCP) in blue. In cases where no blue curve is 
visible, the blue curve is identical to the red one to within the curve linewidth. The left-handed 
N = 1 (left column, i.e., (a) and (c)) and N = 4 (right column, i.e., (b) and (d)) structures are 
defined in Fig. 1(a) and Fig. 1(b), respectively. The insets at the top repeat the top view onto a 
unit cell. For the top row of the overall 2 2×  matrix (i.e., (a) and (b)), the metal is treated as a 
lossless perfect electric conductor (PEC), for the bottom row (i.e., (c) and (d)) as a free-
electron Drude model with finite damping/losses (gold parameters). 
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Fig. 3. As Fig. 2(d), but for more than one helix pitch along the helix axis as indicated. (a) 
same as Fig. 2(d) with 1 pitch, (b) 2 pitches, (c) 3 pitches, and (d) 6 pitches. Note that all 
conversions (dashed) are strictly zero. In reflection, no blue solid curves are visible because 
they are identical to the red ones to within the curve linewidth. The equal gray areas in (a)-(d) 
highlight the frequency interval for which broadband circular-polarizer action is observed for 
several axial pitches. 

Finally, we briefly mention that our above symmetry reasoning also applies to the 
metamaterial structure illustrated in Fig. 1(c). Here, four-fold rotational symmetry is 
recovered by changing the rotation of the adjacent N = 1 helices in one larger unit cell. Our 
corresponding numerical calculations (not depicted) exhibit zero circular polarization 
conversion for transmittance and reflectance and strictly no circular-polarizer action for any 
frequency within the PEC limit, just like for the N = 4 helices in Fig. 2(b). 
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4. Conclusions 

In conclusion, due to four-fold rotational symmetry, the optical properties of metamaterials 
based on square arrays of N = 4 helices are fundamentally different from those of 
metamaterials based on N = 1 helices. For the N = 4 case, one does completely eliminate 
circular polarization conversion for both reflection and transmission, whereas polarization 
conversion is inherently unavoidable for N = 1. Unfortunately, without metal losses, one also 
completely eliminates the desired circular-polarizer effect for N = 4. The circular-polarizer 
effect can be recovered for finite metal losses. This implies that the structure is no longer 
easily scalable to any operation frequency and that certain inherent losses must be accepted. 
On the positive side, circular polarization conversion is strictly zero for N = 4 in reflection 
and transmission even in the presence of losses. 

Normal direct laser writing (DLW) has allowed for realizing single-helix metamaterials at 
operation wavelengths of a few micrometers, but fabrication of N = 4 helices in that range 
presently appears out of reach with regular DLW. However, recent progress regarding 
stimulated-emission-depletion (STED) DLW [18] raises hopes that even metallic N = 4 helix 
metamaterials may become experimental reality in the not-too-distant future. 
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