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Abstract: The Hong-Ou-Mandel effect is studied in the context of two-
photon transport in a one-dimensional waveguide with a single scatterer.
We numerically investigate the scattering problem within a time-dependent,
wave-function-based framework. Depending on the realization of the
scatterer and its properties, we calculate the joint probability of finding both
photons on either side of the waveguide after scattering. We specifically
point out how Hong-Ou-Mandel interferometry techniques could be ex-
ploited to identify effective photon–photon interactions which are mediated
by the scatterer. The Hong-Ou-Mandel dip is discussed in detail for the case
of a single two-level atom embedded in the waveguide, and dissipation and
dephasing are taken into account by means of a quantum jump approach.
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1. Introduction

Two photons impinging on a balanced beam splitter from different ports leave the device to-
gether in either one of the two output ports. This rather counter-intuitive and inherently quantum
mechanical phenomenon, which is known as the Houng-Ou-Mandel effect, was demonstrated
experimentally in 1987 [1]. Since then, the topic of two-photon interference turned into a rich
and multifaceted field of research. Besides the generalization of the Hong-Ou-Mandel effect to
the multi-particle case [2] or the proposal of its fermionic analog [3], it is believed that Hong-
Ou-Mandel interference can be successfully exploited in the context of linear-optical quantum
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computation [4]. Indeed, since photons themselves rarely interact with each other, they seem
to be difficult to manipulate and process. The Hong-Ou-Mandel effect, however, solely relies
on the statistics of the involved particles and is therefore at the very heart of quantum op-
tics per se. To date, photon pairs can be routinely sent through optical fibers [5], and—due to
the rapid progress in the fabrications of nano-photonic components—integrated optical waveg-
uiding structures on silicon chips are very promising candidates towards more complicated
networks of multimode interference devices [6]. Furthermore, in the realm of optical metama-
terials, the measurement of the Hong-Ou-Mandel dip for magnetic plasmon waves has been
reported recently [7].

Of course, these examples only represent a very incomplete and biased selection from the
vast amount of publications available on this topic and a well-balanced review of all relevant
works is clearly beyond the scope of this paper. However, the beam splitter in a Hong-Ou-
Mandel setup is very often just regarded as an optical component with which one can study the
quantum mechanical nature of light by means of coincidence experiments. In this paper, we take
a slightly different viewpoint and address the question of how the Hong-Ou-Mandel effect can
be exploited—used as a probe—to learn something about the properties of the beam-splitting
device itself. This question is of direct relevance to the problem of two photons propagating
from different ends in a waveguide towards a scatterer, e.g., an artificial atom. We therefore
numerically investigate such a scattering problem in a time-dependent, wave-function-based
formalism [8,9].

The outline of this paper is as follows. In Sec. 2, we start by reviewing the quantum me-
chanical description of a beam splitter, the Hong-Ou-Mandel effect, and its relation to scatte-
ring problems. After a qualitative motivation for why the Hong-Ou-Mandel effect can serve as
a probe for effective photon–photon interactions, we introduce the types of scatterers which
are investigated in this paper, i.e., a local on-site potential and a two-level atom. We formu-
late the corresponding Hamiltonians with regard to a one-dimensional tight-binding waveguide
and present the beam-splitter conditions which are deduced from the stationary single-particle
scattering states. The numerical framework is explained in Sec. 3 and the central quantity of
this paper—the joint probability of finding both photons on either side of the waveguide after
scattering—is defined. In Sec. 4, we provide a detailed analysis of the Hong-Ou-Mandel dip for
the case of a local on-site potential and a two-level atom. Since the latter is a saturable absorber,
effective photon–photon interactions are important. In addition, we take dissipation ofT1-type
and dephasing ofT2-type into account. We conclude the paper in Sec. 5 and give a short outlook
on possible future work.

2. Fundamentals

2.1. The quantum-mechanical beam splitter as a four-port device and its relation to scattering
problems

A consistent quantum-mechanical treatment of a beam splitter requires its interpretation as a
four-port device [1, 10, 11]. Since the “usual” type of beam splitter does not induce direct in-
teractions between the involved particles—in the majority of cases photons—its single-particle
solution can be readily applied to the multi-particle case. With the help of the scattering matrix
formalism, the operators for the input ports 0 and 1 (a0 anda1) can be related to the output
ports 2 and 3 (operatorsa2 anda3, cf. Fig. 1). The transformation reads

(

a2

a3

)

= Ŝ

(

a0

a1

)

, (1)
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where

Ŝ=

(

t ′ r
r ′ t

)

(2)

representsthe scattering matrix with the corresponding reflection and transmission amplitudes
(cf. Ref. [10]). Note that up to this point no statement about the commutation and anticommua-
tion relations of the operators involved is required. This formalism is valid both for bosons and
fermions. The reciprocity relations and the conservation of the total probability can be deduced
by enforcing the same particle statistics for the operators describing the in- and output ports
(cf. Eq. (1)).

The general form of the scattering matrix above allows for a description of unbalanced beam
splitters which do not equally “split” a single photon into the two output ports. However, the
effect we aim at in the following—the Hong-Ou-Mandel effect—can be best understood for the
case where the beam splitter is balanced, i.e, a single particle scattering off the beam splitter
will be in one of the output arms with equal probability of 50%.

For simplicity, we restrict ourselves to the case of photons here. The reflected beam under-
goes a phase shift ofπ/2 and we thus havet ′ = t = 1/

√
2 andr = r ′ = i/

√
2 [10]. Next, we

consideran input state with two photons in different input ports, i.e.,

|in〉 = a†
0a†

1|0〉, (3)

where|0〉 represents the vacuum state. According to Eqs. (1) and (2), the corresponding output
state is

|out〉 =
1
2

(

a†
2 + ia†

3

)(

ia†
2 +a†

3

)

|0〉

=
i
2

(

a†
2a†

2 +a†
3a†

3

)

|0〉. (4)

This remarkable result, which is known as the Hong-Ou-Mandel effect [1], states that two
photons impinging on a beam splitter from different input ports leave the device “together”
in either one of the output ports. For a balanced beam splitter, the probability of finding one
photon in one output arm and the other photon in the other arm is zero. The Hong-Ou-Mandel
effect is a true quantum mechanical effect in the sense that it cannot be obtained in the limit
of a low-intensity coherent state (cf. Ref. [10]). The tendency of photons to “stick together”
is a consequence of the bosonic particle statistics. Fermions behave the opposite way, i.e., the
probability of finding two fermions in one output arm is zero.

In experiments, one usually faces photonic wave packets of finite width. The initial differ-
ence in the distance of both wave packets to the beam splitter determines their overlap at the
position of the beam splitter and thus influences the joint probability of both particles leaving
the device in the same port. The joint probability of both photons leaving the device in different
ports, which can be obtained from coincidence measurements, shows a dip as a function of the
difference in the separation to the beam splitter. This dip is known as the “Hong-Ou-Mandel
dip” and was first reported in 1987 [1].

Now, we establish a connection between the beam splitter as a four-port device and the
scattering of photons at a local impurity. In scattering theory, one usually divides the system
into left and right leads, e.g., a waveguide in the context of photons, and a local scattering
potential which is placed in the middle. By means of the scattering matrix formalism, a single-
particle input state|in〉 = |k〉 = a†

k|0〉 of momentumk is transformed into a transmitted and a
reflected momentum state according to|out〉= Ŝ|in〉 with

a†
k → Ŝa†

k = rka
†
−k + tka

†
k (5)
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Fig. 1. Schematic sketch of a beam splitter as a four-port device and its analogy to a scatte-
ring problem.

whererk andtk signify the reflection and transmission amplitudes, respectively. For an in-state
in the left lead, we need to demandk> 0, for the right leadk< 0. We thus have 4 “ports” in total,
namelyk > 0 andk < 0 for the left and the right lead, respectively (cf. Fig. 1). We assume the
magnitude of the momentum,|k|, to be unchanged here. In other words, we assume the single-
particle scattering process to be elastic and the Hamiltonian to be time-reversal symmetric.

The analogy to the aforementioned balanced beam splitter is completed by demanding|rk|2 =

|tk|2 = 1
2 which—strictly speaking—can only be achieved for a single frequency since beam

splitters are dispersive optical elements.

2.2. Hong-Ou-Mandel interferometry as a probe for photon–photon interactions

In many cases, the equations of motion for a single-photon state and a coherent state are iden-
tical or describe—at least approximately—the same dynamics in the low-intensity limit. Thus,
although the equations for a single photon are deduced from the Schrödinger equation, they do
not provide “more physics” than the corresponding equations for the coherent state. Of course,
the evolution is always given by the Heisenberg equations of motion (or the Schrödinger equa-
tion), for either single-photon or coherent states. The differences comes about in the phase
insensitivity of the single-photon state in contrast to the coherent state where the superposition
of the various components of different photon number have a defined phase relationship with
each other as well as an external phase reference. However, “true” quantum mechanical effects
which go beyond interference effects in a wave mechanical sense mainly occur for two reasons.

First, the inherent statistics of the underlying fundamental excitations, e.g., fermions, bosons,
spins, or polaritons as a mixture thereof, can cause such “true” quantum mechanical effects
since the concept of the fundamental commutation and anticommutation relations does not
exist for c-number fields. The Hong-Ou-Mandel effect is probably the most prominent example
in this regard, even though it is often only referred to as a two-particle interference effect.

Second, interacting particles can lead to a strong modification of the many-body solution in
contrast to the single particle case. The interactions might be either direct such as the Coulomb
interaction of electrons or effectively mediated, e.g., an effective photon–photon interaction
induced by a saturable absorber.

In Sec. 4, we demonstrate how the Hong-Ou-Mandel effect serves as a probe for identifying
effective photon–photon interactions. Influencing variables are selectively taken into account to
study their effects on the shape of the Hong-Ou-Mandel dip which we obtain from the solution
of the time-dependent problem.
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2.3. Types of impurities and their single-particle scattering solution

2.3.1. General form of the scattering equation

For the remainder of this discussion, the leads of the system are modeled as a one-dimensional

tight-binding waveguide with HamiltonianHleads= ∑x

(

h̄ωa†
xax−J(a†

x+1ax +a†
xax+1)

)

and the

local impurity couples to sitex0. This Hamiltonian describes a chain of identical and equally
spaced coupled optical resonators which form a waveguide whose dispersion relation is cen-
tered around the resonators’ resonance frequencyω. Such a system could, for instance, be
realized by appropriately placed micro-disk resonators. In that case, the nearest-neighbor hop-
ping constantJ is defined as the overlap integral of the electromagnetic field modes of adjacent
resonators [12]. Besides the realization in the field of cavity arrays, the Hamiltonian can be used
to approximately describe photon propagation in an optical fiber. Then, the quantityJ is chosen
such that the fibers dispersion relation is well-described around a certain operating wavelength
of interest. Similar to Ref. [13], the single-particle scattering solution is obtained by solving the
eigenvalue problem in the single-excitation subspace using the ansatz

ϕx =
{ eikx + rke−ikx x < x0

tkeikx x≥ x0
(6)

for the wave function amplitudes in the waveguide. The discrete scattering equation has the
generic form

0 = (h̄ω −E)ϕx−J(ϕx+1 +ϕx−1)+δxx0G(E)ϕx0 (7)

where E = εk = ω − 2Jcos(ka) is the eigenenergy corresponding to wavenumberk ∈
[−π/a,π/a] (for lattice constant a). The reflection amplitude is

rk = −e−2ik J2− (h̄ω −E +G(E)−Jeik)(h̄ω −E−Je−ik)

J2− (h̄ω −E +G(E)−Jeik)(h̄ω −E−Jeik)
. (8)

The functionG(E) depends on the actual realization of the impurity. Note that 1+ rk = tk and
the conservation of probability,|rk|2 + |tk|2 = 1, hold. We choose the zero of the energy of the
free waveguide to lie in the middle of the cosine band, i.e., we setω = 0 in the following.

2.3.2. Local on-site potential

A local on-site potential can be regarded as a deviation of the eigenfrequency of one of
the cavities forming the tight-binding waveguide. In that case, the total Hamiltonian reads
H = Hleads+Hpot, where

Hpot = ga†
0a0 (9)

is the contribution due to the impurity, which is part of the tight-binding chain itself andg is
the strength of the local on-site potential (cf. Fig. 2).

The functionG(E) then simply becomes (cf. Eq. (7))

G(E) = g. (10)

Consequently, the reflection amplitude takes the form

rk = − g
g−2iJsin(ka)

. (11)

Thus, the balanced beam splitter with|rk|2 = |tk|2 = 1
2 is realized for

g = ±2|J| |sin(ka)| . (12)
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Fig. 2. Schematic sketch of a local on-site potential (left panel) and a two-level atom (right
panel)in a tight-binding waveguide.

2.3.3. Local two-level system

A single two-level system coupled to the light modes of a tight-binding waveguide as well
as various extensions thereof were discussed recently in different contexts [8, 9, 13–21]. The
Hamiltonian takes the form of a single spin-1

2 locally side-coupled to a tight-binding waveguide,
i.e.,H = Hleads+HTLS, where

HTLS =
Ω
2

σz+V
(

a†
0σ− +a0σ+

)

. (13)

The transition energy of the two-level atom is denoted byΩ andV is the atom–cavity coupling
strength (cf. Fig. 2).

The single-particle solution to this problem yields

G(E) =
V2

E−Ω
(14)

andthus

rk =
V2

2iJsin(ka)(−Ω−2Jcos(ka))−V2 . (15)

|rk|2 = |tk|2 = 1
2 resultsin

V = ±
√

|2Jsin(ka)(−2Jcos(ka)−Ω)|. (16)

For instance,k = 3π
4a yieldsV = ±

√√
2|J|

∣

∣

∣

√
2J−Ω

∣

∣

∣
.

2.4. Influencing variables for the Hong-Ou-Mandel dip

In reality, various mechanisms lead to a fading of the Hong-Ou-Mandel dip. As mentioned
before, wave packets have a finite width. Thus, the temporal overlap of two excitations at the
position of the scatterer does not only depend on the difference in the initial distance to the latter
but also on the widths of the wave packets. In realistic scenarios, single-particle excitations
might experience a non-vanishing group velocity dispersion, which also influences the time of
overlap at the position of the scatterer. Moreover, since the scattering solutions presented above
are energy eigenstates, the “balanced beam splitter condition” can only be met for a single
frequency out of the spectrum of the initial pulses.

From a theoretical point of view, it is interesting to monitor the qualitative change of the
Hong-Ou-mandel dip when the energy levels of the scatterer are smoothly changed from the
harmonic to the strongly anharmonic case, i.e., when the transition from a harmonic oscillator
to a two-level system is performed.

Additionally, in almost every realistic situation where atoms are coupled to light modes, dis-
sipation and dephasing are important. The general form of a Lindblad master equation with
a relaxation operator̂R has the form∂tρ = i

h̄[ρ,H] + L (ρ), whereρ denotes the density
matrix and the Lindbladian readsL (ρ) = R̂ρR̂†− 1

2{R̂†R̂,ρ} (curly brackets denote an anti-
commutator). In this formulation, dissipation ofT1-type is described by the relaxation operator
R̂T1 =

√

1/T1σ−. Dephasing ofT2-type requiresR̂T2 =
√

1/(2T2)σz [22,23].
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Fig. 3. Schematic sketch of the two-excitation initial state.

3. Time evolution, initial states, and physical quantities

In order to obtain the transport dynamics, we evolve quantum states in time according to

|Ψ(t)〉 = e−
i
h̄Ht |Ψ(0)〉, (17)

where|Ψ(t)〉 stands for the state vector of radiation field and scatterer [8, 9, 14]. In the case
of open quantum systems, i.e., if dissipation and dephasing are taken into account, a stochas-
tic quantum jump formalism adapted from Refs. [22, 23] is applied. The deterministic part
of the time evolution is carried out using Krylov-subspace-based operator-exponential tech-
niques [24–26].

Since the Hong-Ou-Mandel effect requires a minimum of two excitations to be investigated,
we choose our initial states to be of the form

|Ψ(0)〉 = ∑
x1x2

Φx1x2a†
x1

a†
x2
|0〉, (18)

whereΦx1x2 is a boson-symmetric product of single-particle pulses launched from different
ends of the waveguide (cf. Fig. 3). To be precise, the wave function is of the form

Φx1x2 ∝
(

ϕk(1)
0 x(1)

c s(1)

x1 ·ϕk(2)
0 x(2)

c s(2)

x2

+ ϕk(1)
0 x(1)

c s(1)

x2 ·ϕk(2)
0 x(2)

c s(2)

x1

)

, (19)

whereϕk0xcs
x ∝ e

(x−xc)2a2

2s2 eik0ax is a Gaussian wave function with carrier wavenumberk0, center

xc, and widths. Unless stated otherwise, we choosek(1)
0 =−k(2)

0 ≡ k0 = 3π
4a , s(1) = s(2) ≡ s= 7a,

x(1)
c ≡ xc = 50, andx(2)

c = N + 1− xc + ∆x/a in the following. Na is the total length of the
waveguide. The relative displacement∆x is varied from−30a to +30a in order to record the
Hong-Ou-Mandel dip. When∆x = 0, both pulses initially have the same distance to the scatterer.
The waveguide consists ofN = 199 sites and the scatterer couples to sitex0 = (N+1)/2= 100.
For the remainder, we take the nearest-neighbor hopping strengthJ > 0 as our fundamental
energy scale. Consequently, time is measured in units ofh̄/J. Moreover, lengths are given
in units of the lattice constanta so that carrier wave numbers have the unit 1/a. We choose
∆t = 0.1h̄/J, which is smaller than any other time scale in the system, as the fundamental time
step in the stochastic time evolution. For more information on the details of the simulation
technique itself, we refer to Ref. [8].

With the knowledge of the two-excitation state vector|Ψ(t)〉 at all times, the calculation of
arbitrary physical quantities becomes possible. According to Refs. [8,9,14], the time evolution
of the occupation numbers〈a†

xax〉(t) allows us to monitor the motion of the wave packet in real
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Fig. 4. Hong-Ou-Mandel dip for a system where a local scattering potential is coupled
to a photonic tight-binding waveguide. The latter consists ofN = 199 sites and the local
scatterer in form of an on-site potential is coupled to sitex0 = 100. The strength of the
potential isg = 2|J| |sin(k0a)|, which is the condition for a balanced beam splitter (cf.
Eqs. (9) and (12)). We operate at a carrier wavenumber ofk0 = π

2a .

space.However, occupation numbers do not explicitly reveal correlations between the reflected
and transmitted amounts of the two-excitation wave packet. Therefore, in order to obtain the
Hong-Ou-Mandel dip, we define the quantity

PLR =

∑x∈L
y∈R

〈a†
ya†

xaxay〉

∑x,y∈L∪R〈a†
ya†

xaxay〉
, (20)

which is the joint probability of finding one photon on the left (L= {1,2, . . . ,x0−1}) and the
other on the right-hand side (R= {x0 + 1, . . . ,N}) of the scatterer. Here, the sitex0 to which
the scatterer is coupled is explicitly excluded from the summation since any excitation which
might be trapped [14] either does not contribute to propagating modes or, for realistic systems,
eventually decays into a loss channel in the long-time limit. Expression (20) has to be evaluated
for times after the wave packets have scattered at the impurity but before the reflected and
transmitted pulses are influenced by the system’s hard-wall boundaries (for details we refer to
Ref. [8]). Plotted as a function of∆x, i.e., as a function of the spatial separation of both incoming
wave packets (cf. Fig. 3), Eq. (20) reproduces the famous Hong-Ou-Mandel dip.

4. Results and discussion

In this section, we present results on the numerical study of Hong-Ou-Mandel interferometry
according to the setup as described above. We start with a scatterer in form of a local on-
site potential. This setup resembles the situation of a “usual” beam splitter and results in a
Hong-Ou-Mandel dip as originally reported in [1]. We then continue by replacing the local
on-site potential with a two-level atom and gradually change its properties in order to study the
resulting effects on the shape of the Hong-Ou-Mandel dip.

4.1. Local on-site potential in a tight-binding waveguide

In Fig. 4, we display the Hong-Ou-Mandel dip for a system as described in Sec. 2.3.2 and
Eq. (9). We setg = 2|J| |sin(k0a)| and operate at a carrier wavenumber ofk0 = π

2a. The coin-
cidence probability of one photon being left and the other one being right practically vanishes
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Fig. 5. Hong-Ou-Mandel dip for a system where a two-level system is coupled to a photonic
tight-bindingwaveguide. For a central carrier wave number ofk0 = 3π

4a , the beam splitter

condition readsV =

√√
2|J|

∣

∣

∣

√
2J−Ω

∣

∣

∣
. Note that by varying the atomic transition energy

relative to the cosine band, the atom-photon coupling strengthV changes as well due to the
beam splitter constraint. The combinations of transition energy and coupling strength used
areΩ = 0:V =

√
2J, Ω = 0.4J: V = 1.198J, Ω = 0.6J: V = 1.073J, Ω = 0.8J: V = 0.932J,

Ω = 1.0J: V = 0.765J, Ω = 1.2J: V = 0.550J.

for perfect overlap of the wave packets at the position of the scatterer, i.e., at∆x = 0. For large
separations, both wave packets pass the scatterer individually. Thus, one can read off the single-
photon transmission probability at∆x ∼ ±30awhich is (nearly) perfect 50%. The reason why
the local on-site potential works that well as a beam splitter for non-monochromatic excita-
tions is because the reflectivity does not change for small deviations around the central carrier
wavenumber ofk0 = π

2a, i.e., ∂k |rk|2 |k=π/2a= 0 (not shown). This special property is due to a
combination of the scatterer being part of the chain, i.e., it is not side-coupled, and the cosine
dispersion of the tight-binding waveguide. Furthermore, effects due to non-linear dispersion are
reduced since the group-velocity dispersion is zero atk0 = π

2a.

4.2. Local two-level system in a tight-binding waveguide—the Hong-Ou-Mandel effect as a
probe for photon–photon interactions

Now, we turn to the question of how a two-level system, which—in contrast to an on-site
potential—is a saturable scatterer, qualitatively influences the Hong-Ou-Mandel dip. In the
single-excitation subspace, there is no difference whether the atomic degree of freedom is
treated as as such or merely replaced by a bosonic site. However, two excitations can dramat-
ically change the transport properties as was already demonstrated in the context of radiation
trapping in Refs. [9,14]. For this trapping effect to be most efficient, the photon energy should
be on resonance with the atomic transition energy. This resonance condition cannot be fulfilled
in the Hong-Ou-Mandel setup because the “balanced beam splitter condition” is required to
achieve single-particle reflection and transmission with equal probability (cf. Eq. (16)). In the

following, we chooseV =

√√
2|J|

∣

∣

∣

√
2J−Ω

∣

∣

∣
(cf. Sec. 2.3.3) andk0 = 3π

4a (cf. Sec. 3).

4.2.1. Influence of the atomic transition energy on the Hong-Ou-Mandel dip

We start by varying the atomic transition energyΩ whilst keeping the beam splitter condition
from Eq. (16). For instance, the Zeeman or Stark effect provide possible mechanisms of tuning
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Fig. 6. Hong-Ou-Mandel dip for the same system as investigated in Fig. 5 butfor Ω = J and
different strengths of the anharmonicityU (see text for details). ForU = 0, the fading of the
Hong-Ou-Mandel dip is solely due to beam splitter imperfections at the single-photon level.
The fading depends non-monotonically on the anharmonicity (see text for explanation).
The single-photon limit (∆→±∞) is independent of the actual value of the anharmonicity.
In the inset, we display the the depth of the Hong-Ou-Mandel dip as a function of the
anharmonicityU (the gray line is just a guide to the eye).

the atomic transition energy. Increasing the atomic transition energy fromΩ = 0 to Ω = 1.2J
has several consequences. First, the atom–photon detuningΩ−εk=3π/4a = Ω−

√
2J is reduced.

Second, the atom–photon coupling strengthV is decreased. From Fig. 5 we can read off the
tendency that the deviation from a perfect Hong-Ou-Mandel dip becomes more pronounced
as the detuning is reduced. This is in line with Refs. [9, 14] because radiation trapping, which
is one consequence of effective photon–photon interactions, is most efficient ifV ∼ J and the
resonance condition is fulfilled.

Mechanisms leading to such an effective photon–photon interaction can be identified in a
faded Hong-Ou-Mandel dip. The fading is stronger than one would expect if only single-photon
effects due to an unbalanced beam splitter were considered. This can be seen in Fig. 5 by noting
that the limit of vanishing pulse overlap at the scatterer (∆x →±∞) is nearly immune to changes
in the atom–photon detuning. Since this limit represents individual particles passing the device,
the fading of the Hong-Ou-Mandel dip must be due to effective photon–photon interactions
whose effects can—at least in theory—be separated from signatures which are only induced by
beam splitter imperfections.

The latter results in not all curves in Fig. 5 meeting exactly atPLR = 0.5. The two-level atom
acts as a dispersive beam splitter and—in contrast to the on-site potential—the atomic degree
of freedom is side-coupled. Additionally, we operate in the non-linear regime of the dispersion
relation (k0 = 3π

4a ). Thus, the reflectivity does change to first order in small deviations around

k0 = 3π
4a , i.e.,∂k |rk|2 |k=3π/4a 6= 0 (not shown). As an example, we choseΩ = J in all subsequent

considerations.

4.2.2. From the harmonic oscillator to the two-level system

From a theoretical point of view, the transition from a harmonic oscillator to a two-level system,
i.e., from the harmonic to the strongly anharmonic case is most elucidating. In line with Refs. [9,
14], we therefore replace the Pauli operators of the two-level system in Eq. (13) by bosonic
operatorsb and b†. Specifically, the formulationΩ

2 σz → Ωb†b+Ub†b(b†b− 1) describes a
harmonic oscillator forU = 0 and a two-level system in the limitU → ∞.
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Fig. 7. Left panel: Hong-Ou-Mandel dip for the same parameters as in Fig. 5 withΩ = J but
the two-level system experiences losses ofT1-type. Even though losses ofT1-type lead to
irreversible photon loss, the single-photon limit is independent of the value ofT1 because
of the normalization of Eq. (20). The black dashed curve represents the lossless case in
which T1 = ∞. We used 500 samples in the simulation for the stochastic time evolution.
Right panel: Influence of pure dephasing ofT2-type on the Hong-Ou-Mandel dip. Moderate
dephasing times affect the depth of the Hong-Ou-Mandel dip but leave the single-photon
limit practically unchanged. Very short dephasing times change the single-particle transport
characteristics and, therefore, the single-photon limit in the Hong-Ou-Mandel dip. The
black dashed curve represents the lossless case in whichT2 = ∞. We used 2000 samples in
the simulation for the stochastic time evolution.

In Fig. 6, we display the Hong-Ou-Mandel dip for different strengths of the anharmonicityU .
In the absence of interaction (U = 0), the Hong-Ou-Mandel dip becomes “perfect” besides the
beam splitter imperfections due to the single-excitation transport characteristics. ForU > 0, i.e,
in the interacting system, the fading of the Hong-Ou-Mandel dip depends non-monotonically
on the value of the anharmonicity until it saturates in the limitU → ∞.

This behavior can be understood as follows. As demonstrated in Refs. [9,14], the interactions
induced by a finiteU-term become most pronounced if the atom–photon detuning is zero. How-
ever, in the Hong-Ou-Mandel setup, the resonance condition is not fulfilled since the scatterer
acts as a beam splitter. To further understand this non-monotonicity, it is helpful to consider the
detuning between two impinging photons and the energy they had in case they double-occupied
the atomic site, i.e.,δ = nΩ+Un(n−1)−nεk0, wheren= 2 andεk0 is the single-photon energy.
If the single-particle resonance condition, i.e.,Ω = εk0, was fulfilled,δ would grow monotoni-
cally asU is increased. In the Hong-Ou-Mandel dip in Fig. 6,Ω− εk0 = (1−

√
2)J < 0 so that

δ changes its sign asU grows. This eventually leads to the non-monotonic dependence of the
depth of the Hong-Ou-Mandel dip.

Note again that the offset in Fig. 6 in the limit of∆ → ±∞ is independent of the actual
value of the anharmonicity. In this limit, the excitations pass the device individually as single
particles.

4.2.3. Influence of dissipation and dephasing

In reality, even if the waveguide is considered to be practically lossless, the two-level system
still suffers from non-radiative losses and the coupling to non-guided modes (subsumed in
time constantT1) as well as from pure dephasing, i.e., the randomization of the phase relation
between the atom’s ground and excited state, (subsumed in time constantT2).

In Fig. 7, we study the effect of differentT1-times on the shape of the Hong-Ou-Mandel dip.
Once a photon is lost, i.e., theT1-relaxation operator was applied to the two-particle state (cf.
Sec. 2.4), the wave function collapses to a single-particle state and two-particle coincidences
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Fig. 8. Single-particle transmittanceT througha two-level system which is subjected to
pure dephasing ofT2-type. For strong dephasing, i.e.,T2-times comparable to the temporal
overlap of the wavepacket at the position of the atom, the transmission is, for parameters
we chose here, enhanced. We usedk0 = 3π

4a , s = 12a, andxc = 50 as parameters for the
initial wave packet and 1000 samples in the simulation for the stochastic time evolution.
The transmittance is defined in line with Ref. [8]. The solid line is just a guide to the eye.

become impossible, which leads to a less pronounced Hong-Ou-Mandel dip. However, since
the definition of the joint probabilityPLR in Eq. (20) is normalized to the total probability, the
single-photon limit is independent of the value ofT1. Note that in the quantum jump approach
as described in Refs. [22, 23], all wave function trajectories enter the expectation values in
Eq. (20), including those that represent zero coincidences.

The effect of pure dephasing on the Hong-Ou-mandel dip is displayed in Fig. 7. The two-
level atom mediates the effective photon–photon interaction less efficiently once the phase co-
herence between the atom and the impinging photons is destroyed. This leads to a fading of the
Hong-Ou-Mandel dip but for moderateT2-times the single-photon limit seems to be practically
unaffected. Only very short dephasing times lead to a significant change in the single-photon
transport which results in the beam splitter being unbalanced and thus the single-photon limit
changes.

This can be understood as follows. Pure dephasing can be regarded as the temporal fluctua-
tion of the atom’s level spacing. In the regime of strong dephasing, the detuning between the
instantaneous atomic transition energy and the photon energy according to the central carrier
wavenumber of the wave packet thus strongly fluctuates. This, in turn, implies that the condition
for equal reflection and transmission of a monochromatic wave is only fulfilled for very short
instances of time. In the present setup, this enhances the transmittance of the single-excitation
wave packet (see Fig. 8). The transmittance is defined as [8]T = 1

2〈a†
x0

ax0
〉+ ∑N

x=x0+1〈a†
xax〉 .

For the parameters chosen here,T2-times comparable to the temporal overlapτ of the wave
packet at the position of the atom lead to an enhanced transmission. As a crude estimate,
τ ∼ s/vg, wherevg = 2aJh̄−1sin(k0a) is the group velocity.

From the above investigations one might get the impression that a clear-cut separation of
the influences of the open system dynamics (T1 and T2) and the actual interaction between
two excitations is impossible and one still would have to speculate to which degree an im-
perfect Hong-Ou-Mandel dip really is the signature for effective photon–photon interactions.
We would like to emphasize that the previous studies were driven by the explicit knowledge
of the stationary, i.e., the monochromatic, single-particle solution yielding a condition for the
balanced beam splitter. This condition is, as was shown, not perfectly met for pulses of finite
width. However, given a fixed width of the wave packets and fixed values ofT1 andT2, the
condition for the balanced beam splitter can be recovered in a trial-and-error fashion by tuning
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the two-level system’s transition energy or coupling strength such that in a single-photon setup
reflectionand transmission occur with equal probability. In addition to that, carefully designed
and/or tunable dispersion relations such as those available in photonic crystal waveguides [27]
can reduce group velocity dispersion over a broad range of carrier wave numbers which makes
the beam splitter less dispersive for frequencies of interest.

Alternatively, the Hong-Ou-Mandel interferometry technique could also be exploited to
probe the environment by comparison of the measured Hong-Ou-Mandel dip and the “clean”
theoretical curve. A numerical fit in which the parameters of the environment are tuned such
that the two curves match, finally allows to determineT1 and/orT2 times. In that case, how-
ever, one still would need sufficient knowledge about possible sources of eitherT1-dissipation
or T2-dephasing, since these two quantities cannot be clearly separated from one another in the
Hong-Ou-Mandel dip.

5. Conclusion and outlook

In conclusion, we analyzed in detail the dynamics of two photons impinging from both ends
of a tight-binding waveguide on a local scatterer. This scenario is intimately related to the fun-
damental Hong-Ou-Mandel effect. Specifically, the joint probability of finding one photon on
either side of the impurity after scattering can be calculated numerically in a time-dependent,
wave-function-based formalism. As a function of the initial difference in the wave packet sep-
aration to the impurity, this quantity is nothing but the famous Hong-Ou-Mandel dip.

In case the local scatterer is just given as an on-site potential, we demonstrated that the
Hong-Ou-Mandel effect can become perfect in the sense that the joint probability is zero for
maximal wave packet overlap at the scatterer. To this end, we adjusted the parameters of the
on-site potential such that a (monochromatic) single photon is reflected and transmitted with
equal probability.

We then applied the same strategy to the case of a single two-level system embedded in the
waveguide. In this case, we demonstrated that the Hong-Ou-Mandel effect can be less pro-
nounced, i.e., the joint probability is not zero, even though beam splitter imperfections on the
single-photon level due to non-zero group velocity dispersion were taken into account. We
therefore concluded that an “imperfect” Hong-Ou-Mandel dip can be interpreted as the sig-
nature for effective photon–photon interactions which are mediated by the two-level system.
In addition, we related our findings to our earlier works [9, 14] in order to get a coherent and
complete picture of the dynamics.

We then proceeded by investigating the influence of dissipation and dephasing on the shape
of the Hong-Ou-Mandel dip. To this end, we employed a stochastic quantum jump approach and
considered the two-level system to be subject to relaxation ofT1-type as well as pure dephasing
of T2-type. Due to the normalization of the joint probability to the total probability in the system,
T1-relaxation only affects the depth of the Hong-Ou-Mandel dip.T2-dephasing can also change
the offset since the single-photon transmittance is modified. Knowing these properties, Hong-
Ou-Mandel interferometry techniques can—at least in principle—also be exploited to probe the
environment.

A variety of extensions and modifications to our work presented in this paper can be en-
visioned for future investigations. For instance, the Hong-Ou-Mandel effect could serve as a
probe to identify signatures from more complicated structures such as Jaynes-Cummings cavi-
ties, Kerr-nonlinear media, or tunable few-level systems. Especially driven three-level systems
might be interesting candidates towards a tunable Hong-Ou-Mandel effect. Besides this, the
Hong-Ou-Mandel setup is also worth investigating in the context of polaritons such as those
emerging in Jaynes-Cummings-Hubbard systems [28–33] and plasmonic elements [34–36].
Here, due to the mixed nature of the elementary excitations, coincidences can be investigated

#164805 - $15.00 USD Received 16 Mar 2012; revised 3 May 2012; accepted 5 May 2012; published 16 May 2012
(C) 2012 OSA 21 May 2012 / Vol. 20,  No. 11 / OPTICS EXPRESS  12339



beyond the photon–photon sector.
Since—byits very nature—the Hong-Ou-Mandel effect is a two-particle phenomenon, our

computational framework [8,9] is perfectly suited and readily applicable to the aforementioned
scenarios which are important for and at the heart of of solid-state-based quantum optical de-
vices.
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