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We present a low-temperature experimental test of the fluctuation theorem for electron transport

through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of

single charges flowing against the source-drain bias by using time-resolved charge detection with a

quantum point contact. We find that these trajectories appear with a frequency that agrees with the

theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the

charge detection is taken into account.
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The second law of thermodynamics states that a macro-
scopic system out of thermal equilibrium will irreversibly
move toward equilibrium driven by a steady increase of its
entropy. This macroscopic irreversibility occurs despite the
time-reversal symmetry of the underlying microscopic
equations of motion. Also, a microscopic system will
undergo an irreversible evolution on a long time scale,
but, over a sufficiently short observation time �, both
entropy-producing trajectories as well as their time-
reversed entropy-consuming counterparts occur. It is only
because of the statistics of these occurrences that a long-
term irreversible evolution is established. This phenome-
non is described by the fluctuation theorem [1,2].

Irrespective of the description of the trajectories being
system-specific, the fluctuation theorem (FT) relates the
probabilities P�ð�SÞ for processes that change the entropy
of the system by an amount �S during an arbitrary time �
by the equation

P�ð�SÞ
P�ð��SÞ ¼ e�S=kB ; (1)

where kB is the Boltzmann constant. In a seminal work,
Wang et al. [3] tested the FT by measuring force trajecto-
ries of a micron-scale latex bead in a liquid. Since then, the
FT has been tested in other systems [4–6], but all of those
earlier experiments were carried out in a classical regime
at room temperature. Experiments in the quantum regime
[7–9] have long been anticipated, and the use of quantum-
coherent mesoscopic conductors may lead to this goal.

However, at their typical operation temperatures T below
1 K, the requirement to resolve tiny fluctuations on the
energy scale kBT becomes an increasingly challenging
task. An interesting recent result in this direction has
been the verification of exact relations between current
and current noise as functions of the source-drain voltage
across an Aharonov-Bohm interferometer [10]. These re-
lations are naturally derived from the FT [Eq. (1)], as well
as the Onsager-Casimir and fluctuation-dissipation rela-
tions [11,12].
As a step toward the direct test of Eq. (1) in the quantum

regime, we verify the fluctuation theorem in single-
electron tunneling [13–15] at low temperatures, although
our experiment is carried out in the regime of classical
charge counting. We employ real-time detection of single-
electron charging [16,17] in quantum dots (QDs).
Monitoring the charge state of two QDs that are coupled
both in series and to source and drain electrodes (double
quantum dot [DQD]) allows us to measure the direction-
resolved charge flow through this device [18] and con-
sequently the current probability distribution. A recent
experiment following this line [19] revealed the impor-
tance of the backaction [20] of the charge-sensing device,
which was a quantum point contact [21] (QPC).
Backaction due to nonequilibrium QPC noise destroys
microreversibility in the DQD and leads to an apparent
temperature that significantly exceeds the bath temperature
[19,22,23]. This sensitivity to the measurement arises be-
cause the entropy fluctuations associated with single-
electron tunneling are 3 orders of magnitude smaller than
those at room temperature. In order to avoid the spurious
backaction, we employ an optimized sample design that
combines electron-beam and scanning-probe litho-
graphy [24]. It provides the high tunability and electronic
stability required for the experiment while maintaining a
good QPC-DQD coupling. We observe quantitative
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agreement between our data and theory in the near-
equilibrium regime after including a small correction due
to finite detector bandwidth [25], which is a technical
rather than physical complication and requires no fitting
parameter. In the regime far from equilibrium, our results
depend on the system details; we find that the FT describes
our data correctly in configurations where the DQD dy-
namics are those of a three-state Markovian system.

Our measurements were performed in a 3He=4He dilu-
tion refrigerator on the sample shown in Fig. 1(a). The dark
parts in the atomic-force micrograph correspond to the
conductive (nondepleted) parts of a two-dimensional
electron gas located 34 nm below the surface of a
GaAs=Al0:3Ga0:7As heterostructure (sheet density nS ¼
4:9� 1015 m�2, mobility � ¼ 33 m2 V�1 s�1, as deter-
mined at T ¼ 4:2 K). Confinement is achieved in one
part with Ti/Au gates (the upper half of the image), which
are biased with negative voltages. The thin vertical finger
gates are only slightly biased in order to maintain a small
tunneling coupling between the two QDs (white disks) and
the source and drain leads. The horizontal lines are created
by local anodic oxidation; they electrically separate the
DQD from the charge detector QPC in the lower half of the
image. The detector’s conductance GQPC is sensitive to

the charge on the DQD and abruptly decreases if an elec-

tron is loaded to either of the two QDs. Figure 1(b) shows a
color plot of the time-averaged QPC conductance as a
function of the two gate voltages VG1 and VG2, which
control the number of electrons on the DQD [26]. Four
regions of stable charge are visible as regions of constant
QPC conductance, up to a background that is linear in VG1

and VG2. We estimate that each QD holds about 80 elec-
trons, but for ease of notation we consider only the number
of excess electrons and denote the four relevant charge
states of the DQD as empty (0), singly occupied (L, R), and
doubly occupied (2). At the borders of these regions,
thermal fluctuations of the charge occur.
In particular, at the charge-degeneracy point marked by a

dot in the color plot, the QPC conductance fluctuates
rapidly between three levels corresponding to the states
0, L, and R, as shown in Fig. 1(c). By counting the number
of transitions between L and R, we can determine the total
number n of electrons that pass through the center barrier
of the DQD during an acquisition time �. If � is large
compared to the typical dwell time of an electron inside
the DQD, the electron passing through the center barrier
will typically reach one of the leads, where it equilibrates
with the thermal bath at temperature T. The entropy change
�S will then be equal for all charge fluctuations with equal
n [9,12,15]. The change can be either positive or negative,
depending on the direction of the charge flow with respect
to the bias direction. As the dissipated heat neVDQD is

determined by the source-drain voltage across the DQD,
�S is given by neVDQD=T, and the FT for our system is

P�ðnÞ
P�ð�nÞ ¼ eneVDQD=kBT: (2)

The QPC is biased with a voltage of 300 �V, and its
conductance is recorded by using a room-temperature
current-to-voltage converter and digitizer. The signal is
then filtered by software at a bandwidth of 0.4 kHz, further
resampled at 1.5 kHz, and stored for analysis. Two con-
ductance thresholds are defined in the middle between
neighboring conductance levels. In the algorithm that de-
termines the chronological sequence of DQD states, we
build in the requirement that at least three successive data
points must lie in the same conductance interval for the
DQD state to be accepted. The reason for this choice
becomes clear when we take a closer look at the GQPC

time traces provided in Figs. 1(d) and 1(e). The GQPC

signal in panel (d) exhibits a direct transition from level
0 to level L. Because of the finite rise time, two of the
sampled data points happen to lie between thresholds 1 and
2. If these were to be assigned to level R, a false transition
from R to L would be counted, which would reduce the net
flow n in the corresponding time segment by 1. In com-
parison, the signal in panel (e) shows a short, yet clear,
dwell time in the level R.
Figure 2(a) shows an example of a P�ðnÞ distribution

measured at an electron-bath temperature of 330 mK and

FIG. 1. (a) Atomic-force micrograph of the sample. Electrons
can travel between the source and drain via the two quantum dots
marked by disks. The conductance GQPC of the quantum point

contact serves to read out the charge state of the quantum dots.
(b) By using the two gates G1 and G2, the charge state of the
sample is controllably switched between empty (0), singly
occupied [left (L), right (R)], and doubly (2) occupied. These
four states are visible as panels of distinct GQPC in the plot.

(c) Time dependence of GQPC close to the charge-degeneracy

point marked by a dot in (b), displaying fluctuations between
three levels: L, R, and 0. (d) and (e): GQPC time segments

showing examples (d) of a direct transition from 0 to L, and
(e) of a transition from 0 to L via R.
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with VDQD ¼ 0 �V. It is based on the counting analysis of

3000 GQPC time segments, each with length � ¼ 2 s. The

choice of � is such to minimize the combined error that
originates both from the imperfect long-time limit
[9,12,15,19] (favoring large �) and from statistics (favoring
small �). The distribution is symmetric about n ¼ 0, i.e.,
there is no net charge flow in equilibrium, as expected. The
amount of charge flow at zero DQD bias (compared to the
charge flow at finite DQD bias) is a sensitive measure for
the strength of residual QPC backaction. Because of left-
right asymmetries in the DQD, such as a nonzero level
detuning, QPC backaction generically leads to nonequilib-
rium charge flow in a ratchet-type effect [27,28].

When VDQD is increased to 20 �V, the distribution

shifts toward positive n, as shown in Fig. 2(b), and, on
average, an electron number of hni ¼ 2:5 is transferred.
Still, for some of the time segments, the charge flow is
against the applied bias (n < 0), which results in a tempo-
rary decrease of the system entropy. Similar measurements
are carried out at temperatures of 500 mK and 700 mK
[29]. These are shown in Figs. 2(c)–2(e), where the data
points are the logarithm of the left-hand side of Eq. (2),
measured at VDQD ¼ 0 �V and VDQD ¼ 20 �V, respec-

tively. The expression ln½P�ðnÞ=P�ð�nÞ� follows the ex-
pected linear behavior close to the theoretical curve
neVDQD=kBT (solid lines).

In the nonzero-bias case, there is a systematic deviation
of 20% to 30% in the slope. This deviation can be under-
stood by taking into account the limited bandwidth of the
charge detection. A charge-switching event in the DQD is
detected in the QPC only after a reaction time of 1=�det,
which in our case is determined both by the rise time of the
measurement electronics and by the rejection of short
events built into the analysis algorithm. If the charge state
switches back too fast, the event is missed. Following the
ideas presented in Ref. [30], Utsumi et al. [25] calculated
the effect of the finite bandwidth. They found that, up to
order 1=�det, the finite bandwidth has the same effect as a
prefactor �BW < 1 to the term eVDQD=kBT, just as we

have observed in our experiment. The factor �BW ¼
kBT lnw�=eVDQD is expressed in terms of the six transition

rates �ij between the states i, j ¼ L, R, 0,

w� � wþ 1� w

�det

�
�L0�0R

�LR

þ �RL�L0

�R0

þ �0R�RL

�0L

�
; (3)

where w ¼ expðeVDQD=kBTÞ. Qualitatively, the effect can
be understood as follows. At a nonzero bias, transitions
directed toward the drain occur with faster rates (�L0, �RL,
�0R) than those directed toward the source (�0L, �LR, �R0).
It is therefore more likely that the detector misses a charge
flowing toward the drain than toward the source. In
short, the ratio P�ðnÞ=P�ð�nÞ becomes underestimated
for n > 0. It is important to stress that, despite the similar
phenomenology, the correction we employ here has a very
different quality than the effective temperature due to the
QPC backaction introduced in Ref. [19]. QPC backaction
implies excitation of degrees of freedom in the microscopic
system of interest, whereas the effect of finite bandwidth is
a matter of the imperfect room-temperature electronics and
leaves the microscopic system unperturbed. Additional
data on the dependence of P�ðnÞ on QPC bias voltage is
presented in the Supplemental Material to this article .
In the finite-bandwidth model, �det plays the role of a

mean inverse reaction time of the detector. We use a
simulation to determine this parameter for our particular
detection scheme. A square pulse of duration �p is filtered

and resampled the same way as the experimental signal.
Our value of �det ¼ ð0:59� 0:12Þ kHz is then defined as
the inverse of the minimum �p for which at least three

sampled points reach 50% of the square-pulse amplitude.
The dashed lines in Figs. 2(c)–2(e) show the theoretical
expectation calculated with this value for �det and the
experimentally determined �ij [18], and indeed agree

much better with the experiment. The gray shaded areas
indicate the uncertainty in the slope which is mainly de-
termined by the uncertainty in �det. We emphasize that this
analysis does not involve any free parameters.

FIG. 2. (a), (b): Experimental probability distributions for the
net electron number n transferred through the DQD during time
� ¼ 2 s for two different DQD source-drain voltages VDQD. (c),

(d), and (e): Comparison of experimental data with theory for
three different bath temperatures. The data points correspond to
the left-hand side of Eq. (2) and describe the probability ratio of
forward (þ n, entropy-producing) and backward (� n, entropy-
consuming) processes for a given n. The solid lines mark the
expected exponential behavior expðneVDQD=kBTÞ for the two

source-drain voltages 0 �V (dark blue, horizontal) and 20 �V
(red, inclined). If the finite bandwidth of the detector is taken
into account [25,30] (dashed lines), experiment and theory agree
within the statistical uncertainty of the data. (Error bars indicate
the estimated standard deviation. The gray bands around the
dashed lines indicate the uncertainty in the finite-bandwidth
correction.)
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The DQD voltage of 20 �V used in the temperature-
dependence measurements is comparable with the thermal
voltage kBT=e ¼ 28 . . . 58 �V, so the system is not too far
from thermal equilibrium. The FT also applies far away
from equilibrium, however. To test its predictions in
this regime, we have also performed bias-dependence
measurements with VDQD up to 120 �V, i.e., about 4:3�
kBT=e at T ¼ 330 mK. The data are shown in Fig. 3 and
are based on the analysis of 2000 GQPC time segments of

length � ¼ 2 s for each DQD voltage. For clarity and to
reduce the statistical error for large voltages, we plot an
integrated version of the FT relating the total fractions of
entropy-producing and entropy-consuming cycles:P

n<0

P�ðnÞ
P
n>0

P�ðnÞ ¼
P
n>0

P�ðnÞe�neVDQD=kBT

P
n>0

P�ðnÞ : (4)

In our measurements of the VDQD dependence, we keep

the gate voltages VG1 and VG2 fixed. The choice of VG1 and
VG2 determines the level arrangement of the DQD with
respect to the electrochemical potentials of the leads and is
a priori not relevant for the validity of Eq. (4). In our
measurements, we observe a rather strong effect of this
choice, which is not fully understood. Thus, we plot
in Figs. 3(a) and 3(c) the data of two representative

measurements. The differing gate-voltage configurations
in the two measurements result in differing relative ar-
rangements of the electrochemical potentials of source,
drain, left, and right QD (denoted by �S ¼ eVDQD=2,

�D ¼ �eVDQD=2, �L, and �R, respectively). In measure-

ment (a), we have �L ��R � 80 �eV and ð�L þ
�RÞ=2 � 10 �eV, whereas in measurement (b), we have
�L ��R � 55 �eV and ð�L þ�RÞ=2 � �5 �eV, as
determined by finite-bias spectroscopy.
The red data points in Fig. 3(a) plot the left-hand side of

Eq. (4) as a function of the source-drain voltage. The
quantity rapidly decreases with the voltage, as charge
transfer against the bias occurs less and less frequently.
Measurements at even higher DQD voltages are eventually
limited by the necessary, exponentially increasing mea-
surement time. The blue circles plot the right-hand side,
calculated without the finite-bandwidth correction. Similar
to the low-bias case, there is a systematic deviation. For the
black crosses, the exponent in Eq. (4) is replaced with the
bandwidth-corrected version �BWneVDQD=kBT, and we

see that the observed deviation can entirely be attributed
to this measurement issue.
In the second measurement shown in Fig. 3(c), there is a

larger discrepancy between the two sides of Eq. (4) which
goes beyond the effect of the finite detector bandwidth. We

FIG. 3. (a) The red data points show the VDQD dependence of the left-hand side of Eq. (4), which is the ratio of entropy-consuming vs
entropy-producing cycles, with error bars that indicate its estimated standard deviation. The blue circles show the right-hand side,
which is the average of the Boltzmann factor among the entropy-consuming cycles. The FT [Eq. (4)] is satisfied if the finite detector
bandwidth is taken into account in the form of a correction factor �BW to the exponent in Eq. (4) (shown as crosses). The uncertainty in
the finite-bandwidth correction is comparable to the error in P�ðn < 0Þ=P�ðn > 0Þ for all bias voltages. (b) Dwell-time distributions of
theGQPC signal in the states L, R, and 0, as extracted from the data set in (a) at the point VDQD ¼ 0 �V. (c) and (d) Same as (a) and (b),

but measured at a slightly different gate-voltage configuration. In this case, the dwell times at zero bias (d) are nonexponentially
distributed for the states L and R. The finite-bandwidth model [the crosses in (c)] is not valid for this case but plotted for comparison.
(e) Diagram of the decay of a single-charge state L (black rectangle) that consists of two internal QD states L1 and L2. Such a process
can lead to nonexponentially distributed charge-dwell times as shown in (d).
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observe that this discrepancy coincides with the presence
of nonexponential distributions of the random dwell times
in the three DQD charge states. Figs. 3(a) and 3(d) show
the histograms of the signal dwell times in L, R, and 0,
measured at VDQD ¼ 0 �V for the two configurations. In

configuration (a), the dwell times follow exponential dis-
tributions with a single lifetime. This is not the case in
configuration (c), where the states L and R are not charac-
terized by a single lifetime. This is indicative of the popu-
lation of additional (excited) states in the DQD [32]. When
we consider the example of the left QD, a nonzero popu-
lation pL2 of a long-lived excited state L2 means that the
charge state L can no longer be identified with the QD
ground state L1. The QPC, which monitors the dy-
namics of the charge states, sees a dwell time t in the
state L distributed according to pL1t

�1
L1 expð�t=tL1Þ þ

pL2t
�1
L2 expð�t=tL2Þ, where tL1 and tL2 are the decay times

of the two QD states into R and 0 [cf. Fig. 3(e)]. In
configuration (c), the QD energies are lower than those in
configuration (a), and this fact makes population of excited
states more probable. Although the precise level arrange-
ment cannot be reconstructed from our data, the measure-
ment in Fig. 3(c) demonstrates the sensitivity of such a test
of the FT to the details of the DQD level structure.

In conclusion, we have presented an extensive quantita-
tive test of the fluctuation theorem for electron transport
through a DQD, covering different temperatures and strong
nonequilibrium transport conditions. Our results validate
the theory in the near-equilibrium regime with a good
accuracy. A remaining discrepancy is very well explained
with a master-equation model of the finite-bandwidth de-
tection. This agreement proves the usefulness of this cor-
rective approach in compensating for a slow detector. In
the regime far from equilibrium, our results display a
strong dependence on the internal DQD level structure
controlled by gate voltages. In configurations where our
system is well described as a three-state Markovian sys-
tem, we observe a good agreement with theory, demon-
strating the potential of the DQD as a model system for the
study of nonequilibrium thermodynamics. Our results an-
ticipate the test of the FT in quantum-coherent electron
transport, which requires the measurement of thermal fluc-
tuations on a sub-Kelvin energy scale.
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B. KÜNG et al. PHYS. REV. X 2, 011001 (2012)

011001-6

http://dx.doi.org/10.1103/PhysRevB.81.125331
http://dx.doi.org/10.1103/PhysRevB.81.125331
http://dx.doi.org/10.1103/PhysRevLett.99.206804
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevB.84.165114
http://dx.doi.org/10.1103/PhysRevB.84.075323
http://dx.doi.org/10.1103/PhysRevB.84.075323
http://dx.doi.org/10.1063/1.3501977
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/PhysRevLett.97.176803
http://dx.doi.org/10.1103/PhysRevLett.97.176803
http://dx.doi.org/10.1103/PhysRevB.79.035303
http://dx.doi.org/10.1103/PhysRevB.79.035303
http://dx.doi.org/10.1103/PhysRevLett.96.100201
http://link.aps.org/supplemental/10.1103/PhysRevX.2.011001
http://link.aps.org/supplemental/10.1103/PhysRevX.2.011001
http://dx.doi.org/10.1103/PhysRevB.74.195305

