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Abstract. In the microscopic world, multipartite entanglement has been
achieved with various types of nanometer-sized two-level systems such as
trapped ions, atoms and photons. On the macroscopic scale ranging from
micrometers to millimeters, recent experiments have demonstrated bipartite and
tripartite entanglement for electronic quantum circuits with superconducting
Josephson junctions. It remains challenging to bridge these largely different
length scales by constructing hybrid quantum systems. Doing so may allow
us to manipulate the entanglement of individual microscopic objects separated
by macroscopically large distances in a quantum circuit. Here we report on
the experimental demonstration of induced coherent interaction between two
intrinsic two-level states (TLSs) formed by atomic-scale defects in a solid via
a superconducting phase qubit. The tunable superconducting circuit serves as
a shuttle communicating quantum information between the two microscopic
TLSs. We present a detailed comparison between experiment and theory and find
excellent agreement over a wide range of parameters. We then use the theoretical
model to study the creation and movement of entanglement between the three
components of the quantum system.
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1. Introduction

Controllable coherent interaction between individual quantum systems is one of the
fundamental prerequisites for quantum information processing. This interaction allows one to
selectively entangle systems and to transfer quantum information between its individual parts.
The demonstration of such tunable interaction, allowing each individual part of a system to
controllably interact with every other part, is therefore a major step towards demonstrating
the possible use of a particular architecture for quantum information processing [1]. In atomic
systems, such quantum information transfer and processing are established, for example, via
long-range Coulomb [2] or magnetic dipole interactions [3]. Photonic systems utilize the Kerr-
type interaction in nonlinear crystals [4], whereas for superconducting qubits the interaction
is defined by the circuit design [5, 6]. In order to achieve tunability, it has proved useful to
introduce an additional quantum system acting as a mediator of the interaction between two
parts. This role can be played, for example, by a resonant cavity or additional, so-called ancilla
qubits [7, 8]. The use of ancilla qubits has been demonstrated, for example, with electron and
nuclear spins of 13C atoms in NV-defect centers of diamond [3] and with superconducting flux
qubits [9]. For superconducting systems, the use of a microwave cavity placed on the same
chip has proved very useful [10, 11]. For superconducting qubits, due to their nature as part
of an electronic circuit, the effect of the environment on the dynamics is often very strong.
This has led to a much better understanding of the nature of the environment, as well as to
improved qubit designs that are insensitive to certain of its characteristics [12, 13]. One part
of the environment is formed by the so-called two-level defect states (TLSs). Ensembles of
these TLSs are a general model for decoherence [14, 15] in a wide variety of systems including
glasses and mechanical resonators [16–21]. In superconducting phase qubits, which have large-
area Josephson junctions, one often finds signatures of individual two-level systems resonantly
interacting with the qubit [22]. TLSs are in general thought to be detrimental to the operation of
the qubit [23, 24], but since they are often more coherent than the qubit and their potential use
as a quantum memory has been demonstrated [25], it has been proposed to use the TLS itself as
computational qubits [26].

In this paper, we demonstrate a coherent interaction between two microscopic defect
states mediated by a superconducting phase qubit. The TLSs have fixed but different resonant
frequencies, and the phase qubit works as a frequency-tunable shuttle communicating quantum
information between them. The observed dynamical quantum beating signal between all three
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Figure 1. (a) Sketch of the experimental setup and circuit of the phase qubit with
two TLSs residing inside the qubit’s Josephson junction. (b) Excitation spectrum
of the phase qubit showing two avoided level crossings due to the coupling
with TLS1 and TLS2. The color bar denotes the excitation probability of the
qubit.

Table 1. The characteristics of the three subsystems: qubit, TLS1 and TLS2.
The resonance frequencies and the couplings between the qubit and the TLSs
are denoted by ω and v, respectively. The range for the holding position of the
qubit ωh is 7.65–8.00 GHz, covering the resonance frequencies of the TLSs. The
characteristic times are denoted by T1 (relaxation time) and T2 (dephasing time
as measured using a Ramsey experiment).

Qubit TLS1 TLS2
ω/2π (GHz) – 7.946 7.735
v/2π (MHz) – 36 23
T1 (ns) 120 380 410
T2 (ns) 90 580 810

systems verifies the multipartite interaction and the basic operations presented here offer the
possibility of establishing coherent control over many TLSs coupled to the Josephson junction
of any flux or phase qubit. A sketch of the experimental setup is shown in figure 1(a). The sample
is maintained at a temperature of around 35 mK in a dilution refrigerator. For details of the
experimental setup, see [27]. The coupling between the qubit and TLSs leads to characteristic
anticrossings in qubit spectroscopy (figure 1(b)). From their positions and sizes, one can infer
the level splitting of the TLSs as well as the strength of their coupling to the qubit. Using
resonant microwave driving of the TLSs when the qubit is far detuned [28], we are able to
determine their coherence properties. Table 1 gives eigenenergies ω, coupling strengths v and
the relaxation and dephasing rates for the qubit and both TLSs. Note that the decoherence times
of the TLSs are much longer in comparison to the phase qubit, and one of them shows T1-limited
dephasing [28].
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Figure 2. The experimental sequence used to establish a coherent interaction
between a phase qubit and a pair of TLSs. The qubit is first excited using a
π -pulse. The frequency of the qubit is then tuned to be resonant with TLS2 in
order to realize an

√
iSWAP-gate. The qubit is then biased at some frequency ωh

lying in the range that covers the resonances of both TLSs and is held there for
some time th. A subsequent

√
iSWAP with TLS2 and readout then gives a direct

signal of the interaction between the TLSs induced by the qubit.

2. Establishing a coherent interaction between the three subsystems

The pulse sequence applied to the circuit is shown in figure 2. Initially, the entire system is
prepared in its ground state. The qubit is detuned away from both TLSs and excited with a
π -pulse. A fast flux bias pulse (of rise time 2 ns) brings it in resonance with TLS2 and keeps
it there for a fixed time to perform an

√
iSWAP-gate [25, 29]. After this gate, one half of the

excitation remains in the qubit and the other half is transferred to TLS2, resulting in an entangled
state between these subsystems. To induce an interaction between all three components of our
system, the qubit is then tuned to a frequency ωh and is held there for a time th. This hold
position (ωh) is varied over a range that includes the resonance frequencies of both TLSs.
Depending on the detuning between qubit and TLS1 or TLS2 (1q1, 1q2) and the hold time,
the qubit acquires a phase with respect to TLS2 as well as exchanging population with one or
both TLSs. The population and acquired phase of the qubit can be revealed by performing an
additional

√
iSWAP-gate between the qubit and TLS2 followed by a readout of the qubit. The

results can be compared with an interference pattern. Depending on the relative phase between
the qubit and TLS2 the interference can be constructive or destructive, resulting in energy being
transferred to the qubit or to TLS2. The advantage of the protocol used here, in comparison to,
for example, just measuring the beating between the qubit and a TLS as a function of detuning,
is that the visibility does not decrease with detuning but depends only on the phase difference
between the qubit and TLS2 (and the dephasing processes).

3. Analysis of the experimental results

The measured escape probability, which corresponds to the probability of measuring the qubit
in its excited state, is presented in figure 3(a). The experiment was carried out in two ranges such
that the qubit is held close to the resonance with either TLS, resulting in two chevron patterns.
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Figure 3. Time and frequency domain evolution of the combined
qubit–TLS1–TLS2 system. Experimental (a) and theoretical (c) beating signals
of the qubit state with two TLSs. The color bar shows the measured/calculated
escape probability for the phase qubit. Experimental (b) and theoretical (d) FT
of the beating signal showing hyperbolas due to interaction between the qubit
and each of the TLSs. The vertical blue line indicates the TLS1–TLS2 detuning
121. The diagonal blue line follows the relation ω2 + 1q2. The anticrossing
on TLS2 hyperbola appears in resonance with TLS1 at a frequency of 112

and indicates the established interaction between two defects via the phase
qubit.

Figure 3(c) shows the result of a numerical simulation, which corresponds well to the measured
results. The time dependence of the system is calculated via the evolution of the density matrix
of the whole system [30] including decoherence in the Lindblad form [31]. The parameters for
the simulation are taken from independent measurements of the various coupling parameters
and decoherence rates (cf table 1). To study the system dynamics in greater detail, we solve the
coherent evolution of the system analytically at key points of interest. The resulting expressions
for the escape probability (see below) display the same qualitative behavior as the full numerical
simulations shown in figures 3(c) and (d) and figure 4.

The lower chevron in figures 3(a) and (c) corresponds to the situation when the qubit is
held close to TLS2 and the observed oscillations simply correspond to energy transfer between
the qubit and TLS2. If we neglect the coupling to TLS1, the probability of finding the qubit in
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Figure 4. Dynamics of the final qubit population at each of the TLS resonances.
The simulated (solid line) and measured (dots) qubit occupation probabilities at
the holding position of the qubit ωh in resonance with TLS2 (a) and TLS1 (b).

its excited state while exactly in resonance with TLS2 can be expressed as

P2(th) ≈
1
2 (1 − cos v2th). (1)

This shows the simple oscillations with frequency of the qubit–TLS coupling that enables one
to coherently transfer information between the qubit and TLS. The comparison between the
theory and experiment for this case is shown in figure 4(a) at the point ωh = ω2. Both curves are
extracted from the plots in figures 3(a) and (c). The probability of the theoretical curve is scaled
linearly to match the observed measurement visibility.

As mentioned above, the protocol used here allows us to detune the qubit far from the
resonance with TLS2 without loss of visibility. This can be seen from figure 3(a), where a clear
oscillatory signal is observed over the range of more than 300 MHz. The equivalent theoretical
plot can be seen in figure 3(c). In the vicinity of TLS1, the chevron pattern develops an additional
overlaid feature, which is similar in structure to TLS2. It is exactly this feature that is the
signature of the induced TLS–TLS coupling. At the point where the qubit is held resonant
with TLS1, we can obtain a simplified analytical expression for the measurement probability by
assuming that the qubit is decoupled from one TLS while being in resonance with the other (the
derivation of equations (1) and (2) will be discussed in detail later):

P1(th) ≈

(
3

8
+

1

8
cos v1th −

1

2
cos

v1th

2
cos 121th

)
, (2)

where 121 = 2π × 211 MHz is the frequency difference between the two TLSs. This expression
shows temporal beating of the qubit population due to the induced coherent interaction with the
three frequencies v1, 121 − v1/2 and 121 + v1/2. The experimental and theoretical curves at
ωh = ω1 are extracted from figures 3(a) and (c) and plotted in figure 4(b) (the theoretical curve
is again scaled linearly to match the experiment).

To see the three frequency components more clearly, we show the Fourier transform
(FT) of the measured (figure 3(b)), and simulated (figure 3(d)), temporal evolutions of the
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escape probability. The frequency spectra contain the hyperbola
√

v2
2 + 12

q2 that relates the

swap frequency with the qubit–TLS2 detuning 1q2. This hyperbola shows an anticrossing in
the vicinity of TLS1, which has a splitting size equal to v1 = 36 MHz at the detuning frequency

of 121 = 211 MHz. Furthermore, an additional hyperbola
√

v2
1 + 12

q1 appears due to the direct

coupling between the qubit and TLS1. Here we stress that the fact that the three fundamental
frequencies appear in the system’s dynamic indicates the established interaction between all
three parts of the system and cannot be attributed to the interaction between any two parts.

4. Theoretical description

In addition to the numerical simulation of the three coupled two-level quantum systems
including decoherence effects [30], we also present a simplified theoretical picture yielding the
two analytical expressions (1) and (2). The Hamiltonian H of the entire system depends on the
frequency of the qubit, ωq , and of the TLSs, ωi , i = 1, 2, and on the interaction parts between
the qubit and the TLSs, vi , i = 1, 2:

H0(ωq) =
h̄

2
[ωqσz + ω1τ1,z + ω2τ2,z + v1(σ−τ1,+ + σ+τ1,−) + v2(σ−τ2,+ + σ+τ2,−)], (3)

with σ and τi , i = 1, 2, being the Pauli matrices for the qubit and TLSs, respectively. In the
following, |0〉, |1〉 will denote the states of the qubit and |gi〉, |ei〉, i = 1, 2, that of TLS1 and
TLS2, respectively. The exact solution of the time evolution of the system, although tractable,
is too complicated to provide useful insights. A clearer understanding is obtained by solving
the time evolution without decoherence in the limit that the qubit in the vicinity of one TLS is
decoupled from the other TLS. This approximation is justified in the case when 121 � v1, v2.
In this limit, the Hamiltonian becomes

Hi = H0(ωq = ωi) ≈
h̄

2
[ωiσz + ω1τ1,z + ω2τ2,z + vi(σ−τi,+ + σ+τi,−)], (4)

where i = 1, 2 indicates resonance with TLS1 or TLS2, respectively. We are still able to describe
the beating due to the effect of the two TLSs as the qubit is brought into resonance with each
in turn. The operator UiS = exp(−iH2tiS/h̄) describes the

√
iSWAP-gate operation between the

qubit and TLS2 while neglecting the interaction with TLS1. Here tiS = π/(2v2) is the time
needed for the gate. The evolution of the state vector during the holding time is given by the
unitary operator Uh,0(ωh, th) = exp(−iH0(ωh)th/h̄), which under our approximation gives us the
approximate operators Uh,i(th) = exp(−iHi th/h̄), i = 1, 2.

Starting with the ground state |g10g2〉, the qubit is excited, which results in the state |g11g2〉.
The state after the first

√
iSWAP is then given by |9iS〉 = UiS|g11g2〉 = (|g11g2〉 − i|g10e2〉)/

√
2.

In the next step, the interaction between all components of our system is established. Including
the full Hamiltonian in the time evolution, this is described by the equation |90(ωh, th)〉 =

Uh,0(ωh, th)UiS|g11g2〉. Finally, after performing the second
√

iSWAP-gate, we measure the
escape probability. Equations (1) and (2) are obtained from the general time evolution by using
the approximated operators Uh,i describing the situations where the qubit is held resonant with
either one of the TLSs. We then have

Pi(t) ≈ |〈1|UiSUh,i(th)UiS|g11g2〉|
2, i = 1, 2. (5)
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Figure 5. Simulation of the excitation probability of, and entanglement between,
each of the three system components before the second

√
iSWAP. (a) Simulated

excitation probabilities of the qubit (solid), TLS1 (dotted) and TLS2 (dashed),
while holding the qubit at resonance with TLS1 for the time th. (b) The
concurrence between each individual pair of subsystems (qubit–TLS2, dashed
line; qubit–TLS1, dotted line; TLS1–TLS2, solid line) after tracing out the third
component.

5. Three-way entanglement between the qubit and two-level states

However, for theoretical analysis of the tripartite dynamics the interesting state of the system is
just before the final

√
iSWAP; as this is before TLS2 it is disentangled from the system. At the

resonance frequency of TLS1 ωh = ω1, we find the approximated expression for the state vector
to be

|90(ωh = ω1, th)〉 ≈ Uh,1(th)UiS|g11g2〉

= −
i

√
2
|g10e2〉 +

e−i121th

√
2

(
−i sin

v1th

2
|e10g2〉 + cos

v1th

2
|g11g2〉

)
. (6)

As expected, half of the population is located in TLS2 and its state |g10e2〉 does not show
any coherent time evolution. In contrast, the qubit and TLS1 exchange population while
accumulating a phase with respect to TLS2 with the frequency 121. The population of the
various components obtained from the numerical treatment is plotted in figure 5(a). Here, fast
oscillations in the probability curves of the qubit and TLS2, which have opposite phase, can be
recognized. They indicate that the qubit–TLS2 coupling is still not negligible but this does not
disrupt the overall dynamics. The vanishing and reappearing of the fast oscillations indicate the
presence of two frequencies that are close to each other. This is consistent with the spectrum
of the oscillations shown in figures 3(b) and (d) and by equation (2), which yields the two
frequencies 121 ± v1/2.

To further study this interplay between the two defects, we use our theoretical model
to calculate the entanglement present in the tripartite system. In figure 5(b), we plot the
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concurrence [32] between each pair of system components (while tracing over the third). The
concurrence is an entanglement measure yielding a number between 0 (no entanglement) and
1 (full entanglement). The initial entanglement between the qubit and TLS2 (via the

√
iSWAP)

subsequently oscillates between the different components, reaching a maximum between TLS2
and either the qubit or TLS1, depending of the location of the majority of the population. In
contrast, the concurrence between the qubit and TLS1 shows a beating with double frequency,
as the maximal entanglement between these two subsystems is established twice a cycle.
Interspersed between these points, we see points of genuine tripartite entanglement, due to
the interaction between all three components. This multipartite entanglement is of the W state
class, as our initial condition restricts us to the single-excitation subspace and therefore the
‘three-tangle’ is precisely zero [33, 34]. We note that tripartite entanglement of the W-type was
recently reported for systems consisting of three superconducting qubits [35, 36].

6. Summary

In conclusion, we have presented evidence for controlled interaction between two microscopic
defect states mediated by a phase qubit. During the implementation of the pulse sequence, the
tunable qubit serves as a quantum shuttle, providing a bridge between two TLSs and establishing
a coherent tripartite interaction. The Fourier spectrum of the observed qubit–TLSs beating
contains clear evidence of such an interaction between all parts of the system over a time
scale limited by the coherence of the system. This demonstration shows the possibility of using
coherent interaction between many TLSs for the implementation of quantum gates.
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