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Preface

Considering the expansion rates of the renewable energy sources in Germany in

recent years, the goal of the federal government to cover a share of 35% of elec-

tricity demand from renewable energies by 2020 seems to be rather exceeded. In

the past few years, a strong expansion of electricity supply systems based on wind

power and photovoltaic (PV) could be realized in Germany. At the end of 2012,

about 31 GW of wind power and about 33 GW of PV were installed. The fluctuat-

ing feed-in of electricity from these resources leads to situations in which almost

the entire load can be covered by these sources, but also to situations in which

these resources provide almost no electricity to serve the load. This development

significantly increases the uncertainty in energy markets, especially regarding the

wholesale prices of electricity. The players in the energy sector have to take into

account the uncertainty during their decision making process. This is where the

dissertation of Dogan Keles attaches. He analyses uncertainties in energy markets

and develops appropriate modeling approaches for their consideration particularly

in investment decision models. Exemplarily, he implements them to assess energy

storage technologies under uncertainty.

In this book, Dogan Keles successfully illustrates his work on the modeling of

electricity prices with the help of stochastic processes. In this context, he focuses

also on the relatively new phenomenon of negative prices. The integration of the

fluctuating feed-in from wind power plants in his models is also very innovative.

This approach helps to simulate electricity prices in order to take adequately into

account the so-called "merit-order effect of renewable energy". Finally, he illus-

trates the practical relevance of his models by using them for the techno-economic

evaluation of pumped storage hydropower plants and compressed air energy stor-

ages.



The studies of Dogan Keles were carried out within various projects at the Chair

of Energy Economics, Institute for Industrial Production (IIP), KIT. Thereby, he

also used his experiences gained during his research stay at the Department of

Industrial Engineering and Operations Research, University of California, Berke-

ley. His models and his new findings have encountered widespread interest and

have made Dogan Keles a much sought-after expert concerning the modelling of

uncertainties in energy markets. His high reputation in energy economics is also

reflected in an excellent list of publications.

Karlsruhe, 2013 Wolf Fichtner



Abstract

Due to the liberalization of electricity markets, electricity wholesale prices must

be regarded as an uncertain parameter within models for investment planning in

the energy sector. Another uncertain parameter is the fluctuant generation of re-

newable power due to the uncertain availability of wind or solar energy. Both

parameters play an important role if energy storages are dispatched and evaluated

based on market prices. And, as energy storages represent an important option

to cope with the increasing share of fluctuant power production, new methods are

necessary to evaluate the economical feasibility of different storage types and the

effect of support policies for them.

Before new evaluation methods incorporating uncertainty can be developed,

the stochastic and deterministic characteristics of the uncertain parameters have

to be analyzed and modeled adequately, so that simulation data can be produced

for the evaluation models. This work concentrates initially on the analysis and

modeling of electricity prices and wind power, which contributes the major share

within fluctuant generation of renewable power. A combined modeling approach

is developed and used for the generation of a large number of time series. The

combined modeling of both parameters has the advantage that simulated series

contain the so-called "merit order" effect of wind power feed-in on prices. The

consideration of this effect is especially important, if integrated plants, consisting

of wind power plants and energy storages, are economically evaluated.

In the main part of this work, a variety of models are developed for the evalu-

ation of energy storages under uncertainty. These models are then applied to the

investment evaluation of a compressed air energy storage (CAES) and pumped

storage hydropower (PSHP) plant. The results show that the model, based on

stochastic dynamic programming (SDP), delivers the best annual return and thus



the highest internal rate of return (IRR) amongst the methodologies which con-

sider electricity prices as uncertain.

Finally, an extended version of the SDP model is used for the investment eval-

uation of an integrated plant, consisting of a CAES and wind power plant. The

model results indicate that such a plant is not economically feasible, although a

flexibility premium is applied as a further support mechanism. The flexibility

mechanism of 15 e/MWh appears sensible in order to achieve a coordinated op-

eration between the energy storage and wind power plant, but it does not increase

the IRR to the level of current PSHP investments. A short analysis with other sup-

port mechanisms, such as capacity payments, for flexible power plants shows that

the desired IRR level can be achieved for investments in Germany, if the quantum

of capacity payments is similar to ones currently paid in Spain.
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1. Introduction

1.1. Background

Liberalization of electricity markets started in the 1990ies. At this time electricity

prices were regulated by public authorities (see Stoft (2002)). Power produc-

tion and investment planning in the electricity sector were exposed to only a few

limited uncertainties, such as primary energy prices and the development of the

demand curve. Among the primary energy prices, oil or coal prices were sub-

ject to limited long-term fluctuations, as these commodities were already traded

on widely liberalized markets. Investment planning and decisions could be made

under conditions that were usually known a priori. Peak load could be reliably

forecast and primary energy prices could be fixed with the help of long-term con-

tracts (see Olsina et al. (2007)).

However, since the liberalization of energy markets and the establishment of

new trade centers for electricity, such as the European Power Exchange (EPEX),

electricity has been increasingly traded on spot markets, where demand and supply

determine the equilibrium price in each hour. Although the majority of electric-

ity is traded via bilateral contracts, electricity spot prices remain the main driver

for power plant dispatch or electricity trade in general, as traders balance their

position with the help of liquid spot markets (see Konstantin (2009)).

Electricity spot prices are very volatile due to various reasons and their future

development is highly unpredictable. They describe a strong uncertainty not only

for power production planning, but also for investment evaluation based on the

cashflows resulting from the optimal power production plan. Investment decisions

in power plants or in any other technology, which is dispatched in the spot market,

have to be made considering uncertain electricity prices. Therefore, investment

1



1. Introduction

decision methods have to be designed in such a way that they can appropriately

capture this uncertain parameter.

In parallel with electricity prices, renewable power generation describes another

important source of uncertainty, if decisions on power plant dispatch, portfolio

optimization and on investments in energy technologies are made. Since the es-

tablishment of support mechanisms for renewable power generation, such as the

Renewable Energy Act in Germany and other European countries, the proportion

of fluctuant power generation has significantly increased. The residual load, which

describes the difference between the total electrical load and the delivered fluctu-

ant renewable power, has therefore become highly volatile (see Spliethoff et al.

(2011) and Maurer et al. (2012b)). The residual load and fluctuant renewable

power generation directly influence the dispatch of flexible conventional power

plants. Thus, uncertain renewable power generation also plays a key role for in-

vestment evaluations, which are completed based on volatile cash flows resulting

from power plant dispatch.

However, the growth of the share of renewables not only affects the power plant

dispatch and investments in power plant technology, it also necessitates new in-

vestments in additional energy technologies, such as transmission lines or energy

storages, to transport and distribute the produced renewable power adequately,

and to balance the fluctuations of power generation. Importantly, energy storages

should be introduced into the market in a bulk quantity (see Gatzen (2008)), if

the electricity system is transformed to one which is almost completely based on

renewable power production. But as investments in energy storage face the same

uncertainties as power plant investments do, this raises the question of how to

carry out a proper evaluation of these investments and how to analyze the impacts

of possible support policies on investment activity in this uncertain environment.

1.2. Investment decisions under uncertainty

The evaluation of investments in the energy sector has not been traditionally car-

ried out applying a sophisticated modeling approach for uncertain parameters.

Prior to the liberalization of energy markets, the number and distribution of uncer-

2



1.2. Investment decisions under uncertainty

tain parameters was limited to a specific range, so that perfect foresight strategies

and models were predominantly applied in the past. Sensitivity analyses were

additionally carried out to analyze the impacts of different developments of the

less predictable parameters. To capture uncertain developments in the long-term,

scenario analysis is still the most common methodology. With particular regard to

primary energy prices, a variety of assumptions are made for each scenario within

perfect foresight models. The goal is to achieve decision support based on the

overall analysis of all scenarios (see Keles et al. (2011)).

Due to novel market conditions, however, investment decisions now have to

be made in a significantly more uncertain environment. Perfect foresight strate-

gies are less appropriate, especially if very volatile parameters, such as electricity

prices or renewable power generation, have to be considered within the decision

process. New methodologies that can cope with these uncertain parameters have

to be developed. One of these methodologies is stochastic optimization, which

tries to find robust solutions, although one or a group of the parameters are uncer-

tain.

To incorporate uncertain parameters into stochastic optimization models, their

distribution has to be estimated and described. One of the methods describing

their distribution is to model them with the help of stochastic processes and to

generate scenario trees based on the simulation results of the stochastic processes

(see Gröwe-Kuska et al. (2003)). However, this method requires the probability

distribution of the uncertain parameters based on historical data. Alternatively, ex-

pert knowledge regarding the probability distribution can be also used to describe

possible future developments of uncertain parameters.

The probability distribution, generally represented by a stochastic tree, can then

be used within stochastic optimization models to find an optimal solution over all

possible developments of the uncertain parameter(s). The solution can contain the

optimal values for power plant dispatch or the optimal amount of investment in a

specific technology.

As the stochastic optimization represents an appropriate method, the question

arises, how to apply this methodology to evaluate necessary investments in energy

storages, considering very volatile parameters with fine time resolution, such as

3



1. Introduction

electricity spot prices and renewable power generation. Therefore, the focus of

this study targets the description and modeling of these uncertain parameters and

their incorporation into the developed stochastic optimization models.

1.3. Scope and structure of the work

The intention of this thesis is to develop an appropriate modeling approach for the

main uncertainties on liberalized energy markets, such as electricity prices and re-

newable power generation, and to analyze their impacts on energy storage evalua-

tion. The focus is firstly set on the modeling of short and mid-term developments

of uncertain parameters with the help of stochastic processes. The simulated price

and wind power generation paths are then used within different models, such as

stochastic optimization models. These models evaluate not only energy storages

under uncertainty, but also combined power plants consisting of an energy storage

facility and a power generation technology based on a fluctuant source, such as

wind power. The main research question that this part of the study focuses on is

whether an energy storage is economically feasible under current or 2020 electric-

ity price levels and structures or not. The analysis continues with which legislative

regulations and support mechanisms can have a positive effect on the economic

value of energy storages and of the combined power plants mentioned above. It

is expected that the support mechanisms will lead to an income improvement of

energy storages, but the question is: will these improvements lead to a positive

evaluation of energy storage investments, if a return rate of 8-10% (common for

energy investments) is applied? Last but not least the study concentrates also on

the effect of sophisticated strategies for energy storage dispatch based on stochas-

tic dynamic programming (SDP). Thereby, the target of the analysis is how much

the economic result of the storage dispatch can be improved with the help of an

SDP strategy compared to simple dispatch strategies.

To carry out this overall analysis and modeling approach, the work has been

structured as follows: Chapter 2 describes the main uncertain parameters and the

latest developments causing uncertainty in the electricity sector. The seasonal pat-

terns and the volatility of the uncertain parameters are analysed and described in

4



1.3. Scope and structure of the work

more detail in this section. The core findings of this detailed analysis will help

to determine the most relevant uncertain parameters for energy storage evalua-

tion. Furthermore, these findings will be used to develop consistent approaches

for modeling of relevant uncertainties.

Chapter 3 provides an overview of stochastic modeling approaches for liberal-

ized electricity markets. Initially the most common methodologies for the mod-

eling of uncertain parameters are introduced, following with some established

methods to incorporate uncertain input parameters into optimization models. This

chapter widely relies on the author’s own contributions to the paper Möst and

Keles (2010).

In chapter 4, the developed modeling approaches for electricity prices are de-

scribed in detail. Various modeling approaches for deterministic patterns and

stochastic residuals are developed and applied for electricity spot prices. As the

stochastic residuals can be modeled via different time-series and financial mod-

els, these approaches are implemented and used in a software environment to

make simulation runs for the residuals. Afterwards the outcomes of the different

models are compared to find the most appropriate approach for electricity price

residuals. Furthermore, the focus is also set on new modeling approaches, which

are developed to capture negative electricity prices and price processes switch-

ing between base and jump regimes. Finally, the importance of different model

components, that are developed to describe a specific characteristic of electric-

ity prices, is analyzed based on a range of error measures that are calculated for

model runs with and without each component. This analysis of a range of possi-

ble model components describes the most appropriate modeling approach. This

chapter is based on the author’s contributions to the paper Keles et al. (2012).

Chapter 5 introduces a modeling approach for another important uncertain pa-

rameter in the electricity sector, i.e. fluctuant wind power generation. This pa-

rameter has become more and more important recently due to its increasing share

within the gross power production of Germany and other European countries. The

modeling approach for wind power generation consists of an autoregressive time-

series model, which uses historical wind power feed-in values to calibrate the

model parameters and to simulate wind power feed-in paths with an hourly reso-

5



1. Introduction

lution for a whole year. The second issue, which is analyzed in this chapter, is the

impact of wind power feed-in on electricity spot prices. As electricity spot prices

are directly affected by the amount of renewable power feed-in due to the merit

order effect, the price reduction effect should be incorporated into the electricity

prices, especially if the simulated electricity prices and wind power feed-in paths

are jointly accounted for in further analyses.

Chapter 6 describes different strategies and modeling approaches for the opti-

mal dispatch of energy storages on the day-ahead spot market and minute reserve

power market, as well as the calculation of the maximal annual return that can

be earned due to each strategy. Based on maximal annual returns the investment

evaluation is then carried out in the next step. The models maximizing the annual

return contain not only a perfect foresight strategy, but also several modeling ap-

proaches to optimize the energy storage dispatch under uncertainty. The results

of the models based on uncertainty are compared with the results of the perfect

foresight strategy to detect the best strategy for energy storage dispatch under un-

certainty.

Examined methodologies are then applied in the evaluation of different bulk

energy storages, such as compressed air energy storage (CAES) power plants and

pumped storage hydropower (PSHP) plants. The economic feasibility of invest-

ments in these technologies is assessed for different interest rates and economic

lifetime assumptions.

In the second part of this chapter, the combined implementation of an energy

storage facility and a wind power plant is also modeled and various policy mech-

anisms are discussed. These policy mechanisms could be introduced to make

these kinds of integrated power plants financially viable and to achieve a more

coordinated operation of energy storages and wind power plants. A coordinated

operation could shift wind power produced in off-peak hours to peak hours. The

evaluation of a standalone wind power plant is also carried out in this second part

in order to have a complete overview about all related investment possibilities.

Chapter 7 lists all of the conclusions derived from the research results. Initially

all conclusions regarding modeling aspects of uncertainties and their incorpora-

tion into optimization models are discussed. Following which the main conclu-
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1.3. Scope and structure of the work

sions and recommendations for investors and policy makers are presented. The

chapter ends with, a short outlook on future research topics and on further ex-

tensions of the developed models. The study concludes with a short summary in

chapter 8.
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2. Uncertainties in liberalized electricity markets

Actors in electricity markets are facing new challenges and uncertainties driven by

the liberalization of the electricity markets, the introduction of new instruments

and markets, such as the carbon market, and structural changes in the energy

sector caused by the intensive financial support for renewable energies. While

the liberalization of the electricity markets replaced regulated producer prices for

electricity with volatile wholesale prices, which make earnings and profits uncer-

tain for power plant operators, the establishment of the carbon market lead to an

uncertain cost component among the electricity generation costs. The uncertainty

increases, if the operated power plant is based on a fluctuant power source, as it

is the case for wind power plants or photovoltaics, and if the produced electricity

is directly sold on the spot market1. Besides, the volatile power generation also

leads to an uncertain amount of electricity that has to be produced from conven-

tional sources to serve the so-called "residual load".

It is important to understand these new sources of uncertainty and their char-

acteristics. This is neccessary for an appropriate consideration of uncertainties

within models, which are applied to evaluate investments in new power plants and

energy storages. Therefore, the characteristics and impacts of the main uncertain-

ties, such as electricity prices, fuel prices and volatile renewable power generation,

are analysed in this part of the work. As the liberalization process is one of the

main sources of uncertainty, this process is firstly focused in the following.

2.1. Liberalization of electricity markets and structural changes

In 1996 European authorities started the liberalization of the European electricity

market (see Parliament (1996)) to allow free market access to participants on the

1In this case a quantity risk is added to the price risk.
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power generation as well as on the power consumption side. The liberalization

provides generators with the opportunity to sell the produced electricity on energy

markets or bilaterally to private energy suppliers, instead of selling it to public

suppliers or distributors via regulated prices. On the other hand consumers are

now free to choose their electricity supplier.

The former regulation of the electricity sector was criticized by companies from

other sectors, which disclaimed the existence of natural monopoly in the electric-

ity sector. Especially the so-called "economies of scale" caused by large-scale

power plants are less and less significant, as technological development leads to a

more decentralized electricity system with smaller power generation units (Schulz

(1996)). Also the argument of large irreversible costs, which justified the regula-

tion of the sector, is today mainly limited to investments into transport and distri-

bution grids. Irreversible costs are existent, if new competitors in the market have

to build up a large infrastructure, such as transmission lines, which cannot be used

for any other application (see Wietschel (2000)). Therefore new investments have

a low liquidity value, so that new investors are not competitive against existing

market players. However, as these costs are generally limited to the transmis-

sion and distribution system, the regulation of the sector should cover only these

parts of the electricity sector, but not the electricity generation and trading areas.

Hence, the EU parliament passed a EU directive to push the liberalization of the

electricity markets in the member states (see Parliament (1996)) and to deregulate

at least the electricity generation and trading sector.

Policy makers in Germany followed this EU directive and started the stepwise

liberalization and privatization of the energy sector in the late 1990ies. This pro-

cess led to an increased uncertainty in the energy sector. Hence, the liberalization

process in Germany is described in detail in the following.

2.1.1. Liberalization process in Germany

In Germany, the EU Directive was legally implemented by the law for the new

regulation of the energy sector (EnWG (1998)) and it was updated by the second

law, i.e. EnWG (2005) law. The aim of the new EnWG was to ensure a secure,
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2.1. Liberalization of electricity markets and structural changes

well-priced and environmentally friendly electricity and gas supply of the country.

These characteristics of energy supply were extended by the attributes "consumer

friendly" and "efficient" to set consumers into the focus of energy supply. Thus,

the lawmakers achieved a more cost competitive electricity generation and distri-

bution system, which in turn should lead to lower electricity prices for consumers

without loosing the security of supply.

To achieve these aims, the liberalization was continued by the new EnWG pre-

scribing the unbundling of the electricity sector. Due to the new legislation energy

companies were separated into their main parts: generation, transmission and

distribution. At the beginning of the unbundling process, the transmission and

distribution branches of the former regional energy suppliers were transformed

to seperate companies. Generation companies were also founded based on the

corresponding branches of the former integrated companies. Together with trans-

mission and distribution companies, they belonged to the same holding. More

precisely, the accounting and the operation of generation and transmission com-

panies as well as newly founded trading companies were completely seperated

from each other. Each of these companies was then self responsible for its eco-

nomic operation, even if they were belonging to the same holding company. After

the disposition of the main transmission companies by the energy holdings in the

last years2, the unbundling of the transmission system can be seen as completed.

Today, the unbundling process enables new market participants to produce and

to feed in their electricity into the grid of transmisson and distribution compa-

nies. Due to the EnWG the grid access has to be offered by system operators

to all energy suppliers applying the same conditions. However, the market ac-

cess is subject to charges for all market participants. Trading companies have to

pass through the same net usage charges, which are paid by their customers, to

the transmission and distribution companies. The height of net charges is deter-

mined by transmisson and distribution companies and it is to be permitted by the

Federal Network Agency (see BMWI (2008)). Therefore the transmission part of

2In 2013 only the TSO TransnetBW GmbH is still within the organization of one of the major energy

holdings in Germany.
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the electricity system remains a regulated sector, as it still constitutes a natural

monopoly.

2.1.2. Markets for electricity

The liberalization of the electricty sector lead to an important growth of elec-

tricity trading on energy exchanges. The main markets for electricity in Europe

are currently the exchanges Nordpool, the Intercontinental Exchange (ICE), the

Amsterdam Power Exchange (APX), the European Power Exchange (EPEX) and

European Energy Exchange (EEX). The EPEX Spot exchange is the merger of the

electricity spot market of the EEX and the French electricity exchange Powernext.

While EPEX is a market for spot trade, the EEX provides the trade of electricity

via derivative contracts, such as futures or options.

On electricity future markets derivative contracts are mainly financially settled

and do not contain the physical delivery of electricity. They are used for hedging

price risks by energy suppliers. The main contract types are futures, which are

offered as monthly, quarter yearly and yearly contracts. They contain the financial

balancing of payments, which would occur from the sale or purchase of a constant

volume of electricity during the period of validity, e.g. one month in the case of

monthly futures. The buyer of such a contract, i.e. the long side, gurantees the

purchase of electricity for the actual future price and is no longer affected by

growing spot prices in future. In contrast, the seller hedges his position against

falling spot prices (see Hull (2008)).

As the future market generally contains the financial settlement of the contracts,

its volume is a multiple of the amount of electricity physically consumed in the

EEX region. Another derivative product, the so-called "option", does not prescribe

its holder the purchase or sale of electricity, but the option to exercise the contract.

Consequently the holder of the option will only exercise it, if he expects a positive

cash flow. On the other hand, the seller of an option contract has to fulfill the

contract, if its buyer exercises it. Although options are further instruments energy

suppliers can use for hedging, they are still less important in electricty trade due

to the trade volumes at the EEX.
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Beside the derivative markets, the major markets for electricity trade are spot

markets, which enable the physical trade of electricity. The EPEX Spot market

covers the electricity trade for the middle European countries Germany, Austria,

Switzerland and France. The EPEX day-ahead market had a total turnover of

296.3 TWh in 2011 with a growing tendency (see Figure 2.1)3, so that the EPEX

Spot is meanwhile the largest market for day-ahead spot trade followed by the

NordPool ElSpot, whose trade volume made up 294.4 TWh in 2011.
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Figure 2.1.: Development of the trade volume at the main electricity spot markets (data source:

EPEX, NordPool, APX)

The physical trade of electricity at the EPEX takes place at two different spot

markets. The major market is the day ahead spot market, at which buy and sell

orders are possible until 12 noon for each hour of the following day. Beside the

hourly orders, it is also possible to trade block contracts, e.g. base or peak con-

tracts, which ensure the delivery of a constant amount of power during the delivery

block, i.e. the whole day for base contracts and the time between 08:00 am and

3The overall electricity consumption in the EPEX countries added up to 1155.5 TWh in 2011 (see

ENTSOE (2012)). That means that about 25.6 % of the total electricity consumption of these coun-

tries was served via the day-ahead spot trade.
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08:00 pm for peak contracts. At 12 noon the day-ahead auction is closed and the

auctioneer clears the market determining the equlibrium price between demand

and supply curves as the system price for each hour of the following day (see

EPEX (2012b)). The physical and finacial settlement of the trades are then carried

out by the clearing house of the EPEX on the next day.

However, in some cases the market is seen as unbalanced, e.g. supply and

demand curves do not meet at a price scale defined by given thresholds (see Table

A.1 in the appendix). Due to the latest "Operational Rules of the EPEX Spot",

a second auction is then initiated by the EPEX Spot, for which the traders are

encouraged to send new purchase or sale orders or to adjust earlier orders for

single or a couple of hours. Thereby only orders are considered which reduce

the imbalance in the system. The second auctioning is also carried out, if the

market conditions seem to be unusual, e.g. if one or several hourly prices strongly

differ from the other prices of the same day or from prices of the same hours of

a comparable day (see EPEX (2012a)). The second auctioning takes place soon

after 12 noon for all regions of EPEX except Switzerland4, so that finally the

day-ahead results can be published at 12:40 pm.

As already mentioned the day-ahead auction is the main spot market at the

EPEX and other exchanges. However, if after the orders on the day-ahead market,

the traders still have a surplus or shortage of electricity amounts in their portfolios,

they can sell their surplus or buy their required amounts at the other spot market,

the so-called intraday market. However, traders can also follow the strategy to

act mainly in this market. The main characteristic of the intraday market is that

electricity can be sold and purchased every 15 minutes for time slots of the same

day, but only until 45 minutes before delivery starts. If electricity suppliers need

power in the more short term, e.g. if the load of their consumers differs from their

registered schedule, they have to purchase and pay for balance power. To make

sure that there is enough available balance power in the system, the transmission

system operators (TSOs) buy reserve power on the markets established for reserve

energy.

4For Switzerland all the mechanisms are applied one hour earlier.
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Three different types of reserve power are purchased by the European TSOs:

the primary and secondary reserve power, which are mainly spinning reserves,

and the minute reserve power, which is a non-spinning reserve power. Spinning

reserve power is delivered by increasing or reducing the turbine output of the

power plants that are already online, while non-spinning reserve is delivered by

generators which are offline, but can be started within a few minutes. There are

also some so-called fast generators, which can also deliver secondary reserve as

a non-spinning reserve, e.g. pumped storage hydro power plants. But the non-

spinning reserves usually deliver minute reserve power, which has to be available

within 15 minutes after the request of the TSOs. Fast generators, like gas tur-

bines or pumped storage hydro power plants, are suited for that function, so that

operators of these power plants have to decide whether they offer their generator

capacity on the spot market or on the minute reserve power market.

In contrast, the primary reserve has to be delivered within 30 seconds after it is

requested. This power can be only delivered by power plants, which are already

online during the determined delivery period of primary reserve power. Secondary

reserve power has to be available within 5 minutes after its activation. It is usually

also delivered by power plants that are online. As mentioned above some energy

storage plants, such as pumped storage hydropower plants, can start within five

minutes and deliver secondary reserve power. Other energy storage types, such

as compressed air energy storages, need longer starting time (up to 15 minutes).

They can therefore offer only minute reserve power.

Different reserve power markets are established in Germany to fulfill the re-

quirements and specifications of each reserve power. The main difference in the

market design is the bidding and delivery period. While primary and secondary

reserves are auctioned weekly and the delivery period covers also a week5, the

minute reserve power is traded day-ahead for six 4-hour-blocks of the following

day. The minute reserve power is distinguished as positive and negative minute

reserve (see Regelleistung.net (2013)). Furthermore, each reserve power market

5Secondary reserve is traded for two different blocks within a week. While the high tariff block covers

the time between 8:00 am and 8:00 pm on working days, the low tariff block covers the remaining

time. For both blocks two different products, positive and negative secondary reserves, are traded.
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is characterized by different minimum order sizes, different number of time slots

per day for which the orders have to hold, and different payment schemes (see

Table 2.1).

Table 2.1.: Main properties of the German reserve power markets (source: Bundesnetzagentur

(2011a) and Bundesnetzagentur (2011b))

Primary reserve Secondary

reserve

Minute reserve

Minimum order size +/-1 MW +/-5 MW +/-5 MW

Order increment size 1 MW 1 MW 1 MW

# of time slots per day 1 2 6

Payments for reserve power power & energy power & energy

Delivery period 1 week 1 week 4 hours

Activation time within 30 seconds 5 minutes 15 minutes

2.1.3. Structural changes in the German energy sector

Beside its liberalization, the energy sector is affected by other regulatory mecha-

nisms that also cause significant changes. This mechanisms are listed as follows:

the introduction of the CO2-emission trading, the final decision about the phase

out of nuclear power plants after the Fukushima Daiichi accident, the introduction

of the Renewable Energy Act and the Combined Heat and Power Act.

The first mechanism, the emission trade via CO2-certificates, the so called Euro-

pean Union Allowances (EUA), was established in 2005 as a Europe-wide market

to fulfill the Kyoto target to reduce the annual CO2-emissions by 8 % until 2012

compared to 19906. To achive its target, the European Union signed the "EU
6The European Union strengthened its target with a self-commitment to 20 % reduction.
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Burden Sharing Agreement" that splits the EU targets to fifteen member states7.

The member states developed the so-called "National Allocation Plans (NAP)",

which contain caps for the number of certificates. The NAPs also allocate CO2-

certificates to different emission sources.

The European Commision decided the allocation of 95 % of the certificates free

of charge in the first period (2005-2007) of the emission trade and 90 % of the

certificates in the second period (2008-2012) (see Parliament (2003)). Thus, only

5 % of the certificates were auctioned by the member states in the first period.

The price of CO2-certificates declined to almost zero during the second half of the

first period, when information spread suggesting the system was overstocked with

certificates (see Öko-Institut (2010)).

In the second phase the cap for CO2-emissions is significantly reduced due to

the actual NAPs8. For Germany 452 million tons CO2-emissions per year are al-

lowed for the plants, which are affected by the emission certificate system, while

in the first period the cap amounted to 499 million tons CO2 per year. The Ger-

man NAP allocates CO2-certificates to existing power plants that have been in

operation before 01/01/2003 based on the average historical emissions of each

power plant and a technology based benchmark. That means that the amount of

emissions of a power plant e.g. from the period 2000-2005 is considered as basic

quantity for the number of allocated certificates. This basic quantity is then ad-

justed by the benchmark and is multiplied with the number of years in the second

phase of emission trade (see ZuG (2011)). The allocation of CO2-certificates to

new power plants only depends on the technology-based benchmark for the ap-

propriate technology. For each technology a different benchmark is defined: 365

g/kWh for gaseous fuels and 750 g/kWh for other fuels (see BMU (2006)).

Beside this new allocation plan, the cap for CO2-emissions and thus the total

number of CO2-certificates are reduced by more then 10 % in the second phase.

Together with the so-called "banking" enactment, which allows the use of certifi-

cates from the second phase also in the third phase, the new cap has lead to more

7Due to this agreement, Germany was obligated to reduce its CO2-emissions by 21 % compared to

1990 (see Commission (2000))
8The NAPs need the permission of the European Commission.
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or less stable CO2-certificate prices in the second phase. It can be concluded that

the development of the CO2-certificate prices will be one of the main parameters

for structural changes in the electricity sector rather in the mid- and long-term

than in the short-term.

The nuclear phase out is another regulatory mechanism, which changes the

constitution of power plant capacity in Germany. The nuclear phase out, which

was firstly decided in 2000, was delayed by the current government in October

2010 extending the operation time of the existing nuclear power plants. However,

after the Fukushima Daiichi nuclear disaster, the German government revised the

extension of the operating times and decided the immediate shutdown of eight

nuclear units, while the remaining nine units have to be shut down until 2022 (see

Bundestag (2011)). The nuclear phase out will lead to the planning and construc-

tion of new power plants based on coal and gas, if the gap after the total shutdown

of nuclear power plants cannot be closed by renewable energy technologies (see

Umweltbundesamt (2011)).

The increase of renewable capacity and thus the structural change of the Ger-

man electricity sector was boosted by the Renewable Energy Act (in German:

"Erneuerbare Eneergien Gesetz EEG") and the Act on Conservation, Modernisa-

tion and Extension of Combined Heat and Power (CHP)9. The latter act provides

bonuses and incentives for the installation of especially small-scale CHP plants to

push decentralized electricity generation. However, the more effective act is the

EEG, which ensures fixed feed-in tariffs (FITs) to investors for each unit of elec-

tricity produced from renewable energy sources (RES). The German EEG was first

established in 2000 and then updated by the amendments in 2004, 2006 and 2009.

The amendments adjust the height of the fixed tariffs depending on the costs and

the market penetration of each renewable technology. The dynamic adjustment of

the feed-in tariffs for renewable power lead to a strong growth of especially wind

power and photovoltaics (see Figure 2.2). The boost in photovoltaics (PV) and

thus the increase of necessary financial resources lead to the last amendment of

the EEG in June 2012, which significantly reduced the feed-in tariff for PV elec-

9orig.: "Gesetz für die Erhaltung, die Modernisierung und den Ausbau der Kraft-Wärme-Kopplung

(Kraft- Wärme-Kopplungsgesetz, KWKG)
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Figure 2.2.: Installed capacity and electricity generation of wind power plants and photovoltaics

tricity and limited the funding for photovoltaics to a maximum total capacity of

52 GW10. If this limit is reached, the feed-in scheme for PV shall completely be

removed.

The FIT system is funded by the so-called EEG charge that is paid by all elec-

tricity consumers, except energy intensive companies. Due to the high usage of

FIT (see Table 2.2), the EEG charge had to be raised in 2011 and in January 2013

to guarantee the financing of the RES power. The FITs vary for each renewable

energy technology and size and their height is annually reduced by a specific de-

gression rate for new installations. Beside the feed-in tariffs, the EEG guarantees

the primary feed-in of renewable electricity to the grid at any time. It can be

stated that the German EEG is a successful regulation to increase the share of

RES power. The feed-in tariff system is now applied by other European countries,

e.g. in France, whose RES funding was initially based on a certificate system.

The structural changes in the electricity sector caused by the EEG and other

energy policies, such as the establishment of different electricity markets, has

lead to new sources of uncertainties. These uncertainties have to be adequately

10Some 25 GW photovoltaics capacity was already installed at the end of 2011 (cp. in 2010 17.3 GW,

see BMU (2011)). The PV capacity exceeded the 30 GW mark in August 2012.
11Difference costs are the gap between total RES funding and the income for RES electricity on the

wholesale market. These difference costs has to be covered by the EEG charge.
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Table 2.2.: EEG funded electricity and funding quantities (source: BDEW (2012))

Year 2007 2008 2009 2010 2011

EEG funded electr. [TWh] 67.1 71.2 75.1 80.7 99.9

Average FIT [ct./kWh] 11.76 12.67 14.36 16.35 17.15

Total RES funding [bill. e] 7.9 9.0 10.8 13.2 17.1

Difference costs [bill. e]11 4.6 5.1 5.6 9.8 12.8

considered within the decision making process in the electricity sector. The main

uncertainties and some of their characteristics are described in the following.

2.2. Electricity price characteristics and uncertainty

Electricity wholesale prices, especially spot market prices, have become very

volatile since the liberalization and the establishment of electricity trade on en-

ergy exchanges, such as the European Energy Exchange or NordPool in Europe

or PJM and CAISO markets in the USA. Thereby electricity is generally traded via

hourly or block contracts on day-ahead spot markets12, while on future markets

electricity can be bought with monthly and (quarter) yearly contracts (see EEX

(2011)). The hourly trade of electricity on spot markets leads to prices which can

strongly vary for different hours of the day depending on the main driver, the ac-

tual electricity load (demand). The hourly varying prices are caused by the fact

that electricity is not or only in small quantities storable. Therefore the prices re-

sult from the marginal costs of the most expensive producing unit adjusted by a

scarcity premium, which is driven by the supply and demand situation.

12On the main US electricity markets (PJM, CAISO), the intraday electricity price settlements are done

every five minutes.
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Figure 2.3.: a) Average daily price curves b) Weekly price curves for different seasons (based on

2011 EPEX day-ahead prices)

2.2.1. Characteristics and volatility of electricity prices

Electricity prices at the EPEX display the characteristics of the system load, so

that price peaks occur at the same time periods as load peaks (see Weron (2006)).

The electrical load is higher in the midday hours on summer days or in the evening

hours on winter days. As the demand for electricity and thus the load is low at

night, electricity prices usually reach their minimum in this so-called offpeak time

(see Figure 2.3).

The EEX spot prices possess also a weekly pattern, which is caused by the

lower load at weekends or on holidays. The lower load at weekends is again

directly displayed by the lower electricity prices for the same time period13. A

further deterministic cycle determined for electricity prices is the annual season-

ality, which results from the different demand for electricity during each season of

the year. Beside the seasonal cycles, electricity prices are characterized by a long-

term trend, which corresponds to an average growth of the annual mean price by

2.80 e/MWh between the year 2002 to 201114. However, the price means of the

13The load-price relation is driven by the merit order of the power plant technologies that take part in

the EEX spot market (see Genoese (2010)).
14The growth of the annual average prices is determined as the growth rate of the linear regression line

fitted to the curve of the annual price means.
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Table 2.3.: Some basic statistics of electricity prices (data source: European Energy Exchange

(EEX))

[e/MWh] 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

mean 22.55 29.48 28.55 45.93 50.83 37.95 65.76 38.98 44.48 51.07

std 15.94 26.49 10.80 27.25 49.40 30.37 28.73 18.70 13.97 13.68

skewness 7.78 32.03 0.50 4.86 25.08 6.86 1.16 -1.13 -0.07 -0.66

SPE 71% 90% 38% 59% 97% 80% 44% 48% 31% 27%

single years can significantly vary from the regression line. As it can be observed

from Table 2.3, some annual means are clearly lower than the total mean (41.66

e/MWh), while others, such as the price mean in 2008, are distinctly above it.

But not only the annual price level is volatile, but also the inner-year distribu-

tion of the prices varies strongly. This can be observed from the high standard

deviation (std) of the electricity prices for each year. The "normalized" standard

deviation, which is called standard percentage error (SPE) in the following, even

reaches values over 90%, which is a sign for high inner-year volatility of electric-

ity prices. But as the SPEs and standard deviations vary each year, it can be stated

that the volatility is not constant over the years and that electricity price series are

heteroscedastic.

The high volatility can also be determined by drawing the boxplot of the elec-

tricity prices for the last years. The boxplot shows that the medians significantly

differ for the last six years. This issue highlights the different price levels before,

during and after the economic crisis in 2009 (see Figure 2.4).

Finally, the different quantile distances for each year indicate that the inner-year

volatility is not constant over the analysed time period. The quantile distances

of the years 2006 and 2008 are twice than the ones of the years 2009 to 2011.

The varying quantile distances are again a sign for heteroscedastic behaviour of

electricity prices.
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2.2.2. Price peaks

As it is visible from Figure 2.4, there are many prices beyond the whiskers of the

boxplot, especially beyond the upper whisker. These prices represent price peaks,

which occur in times when the difference between available power plant capacity

(excluding system reserves) and the system load becomes very small. This can

happen e.g. in cases of power plant outages at times of a high system load. There-

fore, these prices can be seen as scarcity prices, which are not explainable by the

marginal cost of the price setting power plant, as it should be the case in times of

non-scarcity due to the merit order pricing theory.
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Figure 2.4.: Boxplot of the electricity prices between 2006 and 2011 (data source: EEX, EPEX)

The price peaks or price changes into an upper price level are causing the typical

left-skewed distribution of electricity prices. The higher the positive values for

the skewness (see Table 2.3), the more left-skewed is the distribution. However,

the left-skewness does not exist in the last three years. The prices seem to be
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equally distributed around the mean. The small negative values for these years

even indicate that the prices are slightly right-distributed.

One reason for the change in the distribution is the new design of the EEX

day-ahead market, which allows negative prices since September 2008. Negative

prices are balancing the positive price peaks, which in turn leads to the more or

less non-skewed distribution of electricity prices in the last four years. Another

reason is the change in market mechanism, i.e. the introduction of a second auc-

tion, which can be initiated by the EPEX Spot, if e.g. equlibrium prices are not

found between -150 e/MWh and 500 e/MWh for one or a couple of hours (see

section 2.1.2). The second auction can result in the reduction of peak prices far

beyond 500 e/MWh, which in turn reduces the left-skewness of the distribution

of electricity prices.

The second auction seems to change also the amount and height of price peaks

determined by applying the Grubbs’ test for outliers (see Table 2.4). The test is

separately carried out for the electricity prices of each year15. The first analysis

of the outliers shows that their number as well as their mean considerably differ

for each year. It can be noticed that the number and the mean of outliers are lower

for the years 2010 and 2011. In 2011 only two values are determined as outliers

and their mean is slightly higher than the 100 e/MWh level, while the mean value

of the price peaks was close to 400 e/MWh in 2006 (see Table 2.4). This can

be seen as a result of the secondary auction introduced in 2011 in the day-ahead

spot market, but also as a result of better forecast tools for renewable electricity

feed-in, which enables more precise offers on the spot market.

The reduction of price peaks does not automatically equal to a reduction of the

volatility of the non-peak prices. For example, nearly the same standard deviation

can be notified for the years 2010 and 2011 (13.85 e/MWh and 13.55 e/MWh

respectively). Thus, it can be stated electricity prices will stay volatile and the

15One of the requirements of the Grubbs’ test for outliers is that the analysed series is normally dis-

tributed. As the price logs are rather normally distributed than the prices themselves, the test should

be applied for the logs. However, the logarithmisation transforms all peak values to values which

are closer to the mean of the series, so that almost all positive outliers are eliminated. Therefore, the

Grubbs’ test is still applied for the prices itself rouhgly assuming a normal distribution for them.
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Table 2.4.: Mean and number of outliers determined with the Grubbs’ test

2006 2007 2008 2009 2010 2011

# positive outliers 58 105 21 14 4 2

mean of the out-

liers [e/MWh]

390.60 208.73 234.19 126.80 125.51 115.67

volatility can even increase, if more renewable generation capacity is installed

without building up additional energy storage capacity.

2.3. Uncertain commodity prices

As electricity is still mostly produced from fossil primary energy sources, the un-

certainty of electricity prices depends on uncertain prices for fossil energy carriers.

The main price among the fuel prices is the crude oil price. As many contracts for

other fossil fuels are linked to the oil price development, the crude oil price can be

seen as the "lead currency" for different energy prices (see Villar and Joutz (2006)

and Jones et al. (2004)). Therefore, the development of the oil price is mainly

followed by other fuel prices. However, as the price development of other fuels is

also affected by other factors, e.g. outages of production facilities, gas and coal

prices do not fully correlate with the oil price (see Figure 2.5).

Although the trend of the oil prices was generally positive corresponding to an

annual growth of 7.51 $/barrel (10.14 %/a) in the last eight years (2004-2011), the

prices were subject to strong fluctuations resulting from different factors, such as

global economic development, global demand for oil and the supply situation in

the producing countries. For example, the global economic crisis in 2009 lead to

oil prices which equaled to only one third of that which were observed in the time

of strong economic activity, such as briefly before the economic crisis as well as

after the recovery of the global economy in 2011. Furthermore, analysing the oil
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2. Uncertainties in liberalized electricity markets

Figure 2.5.: Development of the fuel prices between 2004 and 2012 (data source: Intercontinen-

tal Exchange ICE)

prices of a single year, it can be noticed that they possess also a strong inner-year

volatility. For instance, the price curve of the Brent crude oil varied between 92

and 125 $/barrel in 2011.

Taking a closer look at the oil price volatility, it can be noted that the volatil-

ity σoil
Δ of the period 2004 to 2011 amounts to 1.83%/

√
d or 29.05%/

√
a. The

standard deviation σoil of the daily price settlements for Brent crude oil is equal

to 25.13 $/barrel for the same whole period. For the single years, however, σoil

varies strongly: A high daily σoil is noted in 2008 (28.25 $/barrel), when world

economy was exposed to disturbances due to the global financial crisis. However,

σoil was considerably lower (e.g. 5.52 $/barrel in 2006 or 6.96 $/barrel in 2011)

in years with a smooth running of the global economy.

The gas price follows the oil price process with a delay of a few months, which

can be especially noticed from the price development from 2007 on. Figure 2.5

shows that the up and downs of the Brent oil price since 2007 influence the UK

natural gas price, which shows similar up and downs, but a few months deferred

to the oil price. Besides, the gas price curve possesses a further strong peak in the

winter 2005 and 2006, which was caused by the outages of several important gas

production facilities in the Gulf of Mexico after the Hurricane Katrina. Therefore,
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2.3. Uncertain commodity prices

the volatility σgas
Δ of gas prices (53.81%/

√
a) is even higher than the oil price

volatility. Contrarily to the volatility, the growth rate of the gas prices adds up to

"only" 6.73 %/a for the last eight years and thus it is lower than that of the oil

price.

Among fossil fuel prices the coal price curve has the highest growth rate equal

to 15.31 %/a. The "Newcastle free on board (FOB)" coal price nearly tripled in the

last eight years reaching values far beyond 100 $/ton in 2011. The strong growth

of the coal price can be explained by the extremely high increase of global demand

for coal caused especially by developing countries, such as China and India (see

IEA (2007)). In contrast to that strong growth, the volatility of coal prices (about

30%/
√

a) is not as high as that of gas prices and it exceeds only slightly the oil

price volatility (see Table 2.5). Finally, it should be noted that coal price indices

are mainly monthly noted, so that for short-term analyses the coal price volatility

is irrelevant.

Table 2.5.: Trend and volatility of fuel prices between 2004 and 2011 (data source: ICE)

Price Brent oil UK natural gas Newcastle FOB

coal

Trend 7.51$/bl. ·a 0.27£/therm ·a 10.08$/ton ·a
10.14%/a 6.73%/a 15.31%/a

Volatility σΔ 1.83%/
√

d 3.39%/
√

d 8.92%/
√

m

29.05%/
√

a 53.81%/
√

a 30.90%/
√

a

std σ 25.13$/bl. 0.17£/therm 32.78$/ton

Beside fuel price uncertainties, the CO2-certificate prices describe another im-

portant source of uncertainty. This uncertain parameter influences the electric-

ity generation costs and has to be regarded within economic evaluation of power
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Figure 2.6.: CO2 price development in the second phase of EU emissions trading (2008-2012)

(data source: EEX)

plants. However, the determination and modeling of CO2-certificate price uncer-

tainty is a very challenging task. The CO2 prices are not only driven by liberalized

market mechanisms, but also by political decisions, which cannot be quantified

with a reasonable probability value. The uncertain regulatory environment is also

one of the reasons for the irregular process of the CO2 price curve. The irregular-

ity of CO2 prices can be espcially noted in the price drop in 2006, caused by the

oversupply of certificates and the regulation at that time. This regulation did not

allow the banking and use of certficicates in the second period.

In the ongoing second period, the oversupply is avoided by more strict emission

caps and the actual political framework that allows the use of certificates of the

second phase within the third period. However, prices remained volatile also in the

second period, as the global economic crisis lead to a strong price decline at nearly

all commodity markets. While during the economic crisis in 2009 the CO2 price

fell to 8 e/ton, the price dropped in the financial crisis in 2011 below 8 e/ton (see

Figure 2.6). Between both crises the CO2 price recovered and reached even values

beyond 16 e/ton. This fluctuation of the CO2 prices can be also observed from

the high volatility value σCO2
Δ for the whole period, which equals to 2.2%/

√
day

or 40.4%
√

a.
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2.4. Volatile renewable power generation

The "market uncertainty" of CO2 prices in the second phase seems to be ex-

tended by regulatory uncertainties in and after the third phase. Although the

amount of certificates that will be auctioned in the third period (2013 and 2020)

is already decided and increased to 50 % (see Defra (2008)), it is unclear whether

or how the prices will react to this auctioning level. Besides, it is difficult to pre-

dict how CO2 prices will be affected by new national emission caps. Emission

caps will be adapted to reach the EU wide reduction target of 20 % of the an-

nual CO2 emissions until 2020 compared to base year 199016. CO2 prices will

therefore remain uncertain, depending on the latest political regulation for CO2

emissions. The probability of political decisions about emissions and thus of CO2

prices are very difficult to capture within investment evalaution or energy models.

It could be incorporated into that models applying different scenarios for several

price levels.

2.4. Volatile renewable power generation

The price uncertainties mentioned above are one of the main uncertainty types that

have a strong impact on the electricity sector. Further uncertainty types are related

to electricity demand and supply. Especially the supply of electricity has become

more and more volatile due to strong expansion of electricity generation from

renewable energy sources (RES), such as wind power and photovoltaics (PV).

The short-term fluctuation of RES complicates the dispatch of conventional power

plants, which deliver the residual load17.

The residual load has become very volatile, particularly due to the feed-in of

electricity from wind and solar resources. Thereby, the feed-in of e.g. wind power

can be very high throughout a day, while it is nearly zero on the following day.

On October 2009 4th wind power feed-in (WPF) firstly exceeded 40 % of the

electrical system load in Germany, which in turn lead to negative electricity spot

prices at about -500 e/MWh at the EEX (see EEX (2012)). However, the WPF

came down to almost zero on the next day, which lead to a residual load around 60

16This target equals to a reduction of 21 % until 2020 compared to 2005.
17The residual load is the difference between system load and fed-in RES electricity.
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Figure 2.7.: a) Wind power feed-in and system load on October 4th and 5th 2009 in Germany b)

Exemplary weekly wind power feed-in (data source: German TSOs)

GW (see Figure 2.7). It can be stated that more than 60 GW conventional power

plant or energy storage capacity is still required, although only some 20 GW can

be dispatched on days like October 4th.

The high volatility is also displayed by the WPF curve of exemplary weeks. The

strong up and downs of the WPF curve leads to the very high short-term volatility

of 15.2%/
√

h in 2011 (and 14.7%/
√

h in 2010 respectively).

However, wind power is not the only volatile RES power. In the last years the

feed-in of electricity from PV-modules has become more and more important. Due

to high feed-in tariffs, the PV capacity in Germany grew to more than 30 GW in

2012, which counts to more than one-sixth18 of the total electricity generation ca-

pacity of the country almost catching up with the onshore-wind capacity. Similar

to wind power, the PV electricity generation is also directly affected by the current

weather conditions. The cloudiness and duration of the sunshine period within a

day influences the amount of generated PV electricity. Although this amount is

also stochastic due to weather conditions, it follows some basic patterns. In con-

trast to WPF, which seems to be totally stochastic, despite weak daily and annual

cycles (see section 5.2.2.1), the PV electricity feed-in follows sinusoidal patterns.

The stochasticity of PV electricity lies in the height of the daily amplitude of the

18The total installed capacity of Germany corresponded to 167.8 GW in 2011 (see BDEW (2013)).
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2.4. Volatile renewable power generation

Figure 2.8.: Average daily PV power feed-in and exemplary feed-in for summer weeks in 2011

(data source: German TSOs)

feed-in curve. It can be observed that the feed-in curve possesses multiple times

higher peaks on non-cloudy days than on cloudy ones (see Figure 2.8).

The height of the daily cycles and peaks can considerably vary even for days

of the same week. Figure 2.8 visualises that the PV feed-in peaks are higher

for some days of a week than for the other days of the same week. And as the

process of the peaks is totally irregular (see Figure A.1 in the appendix), the height

of the feed-in peaks can be seen as a stochastic parameter driven by uncertain

weather conditions. The only pattern, which could be determined for the PV feed-

in peaks, is that the peaks are on average higher in spring and summer months

than on winter days. This can be explained by different off-axis angles of the

solar radiation. Finally, a high volatility (about 57%/
√

d) could be determined

for the curve of the daily feed-in peaks, which makes it again clear that the main

stochasticity of PV power feed-in lies in the height of the daily peaks.

Beside the height of the daily cycles, the duration of the PV power feed-in

within a day differs for each season of the year. As it can be also observed from

Figure 2.8, the day period, in which PV electricity is generated, is much smaller

in the winter (about eight hours) than in the summer. The daily cycle of the PV

electricity feed-in is almost sixteen hours long in the summer months.
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Figure 2.9.: Daily inflow quantities on the Rhine river at the Rheinfelden hydropower plant (data

source: BAFU (2012))

The last RES source, which leads to a volatile power generation, is hydropower.

Although the output of hydrostorage power plants can easily be adapted to actual

demand, the output of run-of-river hydropower plants are exposed to the uncertain

inflow rate, as these plant types possess only a very small storage capacity19. Thus,

their ouput goes along with the inflow rate, which indeed shows a strong seasonal

pattern, but is still subject to a strong stochastic component. The analysis of the

inflow volatility at the Rheinfelden run-of-river hydropower plant illustrates that

even the daily inflow quantity varies significantly throughout the year (see Figure

2.9). σΔ of the inflow is determined as 10.2%/
√

d at the location of this run-

of-river power plant, which is one of the biggest plants of this type at the Rhine

river. Finally, it can be stated, that although the volatility of the inflow quantitiy is

considerably high, it plays a minor role compared to the volatility of PV and wind

power production.

19Hydropower plants with a large storage capacity are exposed to the uncertain flow rate, but their power

production is only affected by the long-term fluctuation of the inflow rate.
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2.5. Other uncertainties in electricity markets

The availability of power plants is another uncertainty at the electricity supply

side. While planned revision and maintenance periods cannot be seen as a un-

certain reduction of power plant availability, outages are unpredictable and thus a

main source of uncertainty regarding the availability of power plants. Especially

lignite, coal and oil burning power plants are affected by power plant outages, so

that their availability decreases about 3-4% (see Table 2.6).

Table 2.6.: Stochastic non-availability of power plants (source: EWI et al. (2004))

Power plant technology Non-availability

coal power plant 4.2%

lignite power plant 3.2%

CHP power plants 2.0%

oil/gas condensation power station 4.2%

nuclear power plants 3.0%

gas turbines 5.0%

(pumped) storage hydropower plant 0.0%

Power plant outages and their non-availability are one reason for the activation

of reserve power. The main reason for the activation of reserve power, however,

are load and RES power prognosis errors, which have to be balanced with the help

of reserve power. As these errors are totally stochastic, the activation of reserve

power illustrates another short-term uncertainty. Schmoeller (2005) demonstrates

the correlation between activated reserve power and load as well as wind prognosis

errors.

Beside these short-term uncertainties, which affect especially the dispatch of

power plants and the trade at the spot market, there are long-term uncertainties,

which have an impact on the structural development of the electricity sector. The
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2. Uncertainties in liberalized electricity markets

long-term uncertainties are inter alia technological developments, political regu-

latories and the long-term demand development.

The technological development is pushed by different policies, which support

not only the research of new technologies, but also their market introduction.

Some of these technologies, such as the different RES technologies, are supported

to introduce them into the market in large-scale, while others are still at an early

phase of market introduction and need research funding. For both cases, the final

aim is to bring the specific costs of these technologies down to a level at which

they can compete against conventional power plants without receiving any fund-

ing. However, the time at which the costs of a funded technology will decrease to

the market parity is difficult to predict. The same goes even for wind energy that

already holds a big share within the German electricity generation. Although there

exist learning curves for the development of cost degression of new technologies,

the learning rates are spread within a wide interval, so that uncertainties regarding

the cost degression and market penetration rate of single energy technologies still

remain (see Weber (2005)).

Regulatory uncertainty is another uncertainty type, which influences the elec-

tricity sector especially in the long-term. Although one major uncertainty, i.e. the

role of nuclear power, seems to be eliminated in the German case, others remain.

One of these is the further development of the EU CO2 emission certificates mar-

ket within and after the third phase (2013 to 2020) and the uncertain height of

emission caps for the European countries (see section 2.3).

Another important regulatory uncertainty lies in the further funding policy, es-

pecially concerning the Renewable Energy Act (EEG). The EEG is amended ev-

ery three years adjusting the feed-in tariffs (FIT) for each RES technology. The

adjustment of the FIT follows the cost development of the renewable energy tech-

nologies. However, sometimes the FIT are also adapted to the market expansion

of the single technologies. If e.g. a technology enters the market in large amounts

and the EEG electricity costs for consumers seems to get out of control due to the

high quantity of electricity for which FIT has to be paid, the FIT rates are reduced

not only by the planned degression rate, but also by extra reduction rates. That is

why, due to the amendment of the German EEG in 2011, the FIT for PV power
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was lowered by applying an extra reduction of more than 15 % in 201120. A fur-

ther extraordinary reduction of about 15% was arranged in the latest adjustment

of the EEG in March 2012, which has been applied to installations after April

1st ,2012. The application of the extra reductions lead to a significantly decreased

FIT for 2012 compared to that which was originally planned (see Table 2.7).

PV is not the only technology, which was affected by the amendments of the

EEG in Germany. Wind power as well as bioenergy were also subject to different

new regulations established by the EEG amendments. Especially, the development

of the FIT system and the introduction of funding possibilities for direct sold RES

power substantially influences the development of RES technologies. As future

regulations regarding RES electricity cannot be foreseen, regulatory and political

uncertainties have to be considered within decisions in the electricity sector. How-

ever, as they can hardly be quantified, the only plausible way to incorporate them

into decision tools is applying scenario analyses.

The last long-term uncertainty is the future development of the electricity de-

mand. Depending on different energy efficiency, fuel price and climate protecting

scenarios, it is expected that electricity demand will decrease in the upcoming

decades in Germany. However, the reduction rate varies in each scenario due to

the applied energy effciency and fuel price assumptions (see Keles et al. (2011)).

Table 2.7.: Planned FIT for PV on roofs due to the different German EEG amendments

Act FIT 2012 [e-ct/kWh] FIT 2014 [e-ct/kWh]

EEG 2004 38.08 34.37

EEG 2009 32.06 26.54

EEG 2012 26.15 21.65

EEG 2012 adjusted21 19.50 15.31

20Originally an annual degression rate of 5 % was decided for the FIT of PV power. The extra reduction

was necessary after the boost of PV in 2010 by more than 7 GW.
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2.6. Conclusions

The number and volatility of uncertain parameters in liberalised markets increased

in the last years. The main sources for new uncertainty are liberalization of the

electricity sector, CO2 emission trading, support policies for renewable energies

and other structural changes in the energy sector. Important uncertainties in energy

markets can be listed as follows: electricity prices, fuel prices, CO2-certificate

prices, renewable power generation, power plant outages and political decisions

on energy market regulation.

Although all of the uncertainties mentioned above play an important role for the

development of the electricity sector, only the electricity spot price and the renew-

able power feed-in of the next 24 hours are decisive for the short-term power plant

dispatch. These parameters possess also the highest volatility values as presented

above. If an investment evaluation is carried out based on the cash flows result-

ing from the power plant dispatch, the uncertainty of these parameters should be

considered in any case. Therefore, electricity prices and WPF are considered as

uncertain parameters within the evaluation models described evaluation in chapter

6.

The PV power feed-in also plays an important role for the short-term power

plant dispatch in the meantime and thus for investment evaluations. However, as

up to now there is not enough data for a stochastic simulation of PV power gener-

ation, this parameter is not modeled and included into the evaluation models de-

scribed in chapter 6. Before the investment evaluation and electricity price models

as well as their results are presented, an overview of existing stochastic modeling

approaches, that cope with uncertain paramters, is introduced in the following.

21Due to the Renewable Energy Act that is currently in force.
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Energy companies are strongly affected by uncertain conditions, as they are ex-

posed to the different risks from liberalized energy markets in combination with

huge and to a large extent irreversible investments. Uncertainties that generation

companies are facing include the development of product prices for electricity as

well as for primary energy carriers, technological developments, availability of

power plants, the development of regulation and political context as well as the

behaviour of competitors (see chapter 2). Thereby, the need for decision support

tools in the energy business, mainly based on Operations Research models, has

significantly increased. Especially to cope with the different uncertain parame-

ters, several stochastic modeling approaches have been developed in the last few

years for liberalized energy markets.

This section aims to give an overview and a classification of stochastic mod-

els especially dealing with price risks in electricity markets1. The diversity of

these approaches makes it difficult to get a comprehensive overview of the field of

stochastic models and thus this survey should guide the way through the process

and describe the state-of-the-art in this research area, especially focusing on price

risks in electricity markets. A lot of stochastic energy models currently deal with

fluctuating feed-in of renewable energies. However, the stochasticity of feed-in of

wind and other renewable energies are not fully covered, but a short description

of the main approaches will be given in the following.

Furthermore, the approaches for coal, gas and oil price modeling are not de-

scribed in detail, but general approaches for electricity markets are considered in

1Beside stochastic models, deterministic models have been successfully used to give decision support in

liberalized energy markets. A good overview of electricity market modeling trends with deterministic

models can be found in Ventosa et al. (2005).
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this section. Thereby the focus is set on stochastic methods developed in Opera-

tions Research and financial mathematics with practical relevance and applicabil-

ity. Electricity markets are characterised by some technical features which deter-

mine the complexity of such models (see chapter 2). Electricity market modeling

usually requires the representation of the underlying characteristics and limita-

tions of the production assets. As these models take the technical characteristics

of the production system and the fundamental data into account, they are often

called fundamental models. Beside these fundamental models, sophisticated fi-

nancial and economic models can be used for modeling uncertain commodity

prices in the short term. In this survey, the various modeling approaches in the

energy business are classified as follows:

• stochastic models for electricity prices, commodity prices (primary energy

carriers) and other uncertain parameters (hydro inflow and wind distribu-

tions) (see section 3.1)

• scenario generation and reduction (see section 3.2), which is important for

the practical relevance and applicability in energy markets due to the need

for a structured handling of large data amounts, as well as

• stochastic optimization models for investment decisions, for short- and mid-

term power production planning as well as for long-term system optimization

(see section 3.3).

As the three fields cannot be examined separately from one another, they are

illustrated by selected integrated models which represent a complete approach.

Thereby the practical relevance of the different methods and their applicability

to real markets is of crucial importance. In a conclusive summary, shortcomings

of existing approaches and open issues that should be addressed by operation re-

search are critically discussed (see section 3.4).
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3.1. Stochastic processes for modeling uncertainties in electric power

generation

The first step of stochastic modeling is the analysis of the time-variant process of

the uncertain parameters. Whereas forecasting the uncertain load was the main

challenge before liberalization (for load forecasting see Hahn et al. (2009)), now

new uncertain parameters have to be considered in energy modeling, which are in-

ter alia electricity prices, commodity prices (e.g. fuel, CO2-certificates), fluctuant

inflow to hydro reservoirs and uncertain wind power generation. These param-

eters are analysed using different stochastic processes, such as mean-reversion

processes. Thereby historical data, which is available at the power exchanges,

is necessary for the estimation of the main stochastic parameters, e.g. mean and

volatility. In the following section, some of these stochastic processes applied to

different uncertain parameters are described and some selected models are listed

in Table 1.

3.1.1. A brief survey of electricity price models

Different theoretical methods can be applied for electricity price simulations. How-

ever, the various methods are also used for different research questions or planning

tasks. Thus, the different methods cannot directly be compared with each other as

each method has its strengths for a special planning task and also corresponding

weaknesses. In general, these methods can be classified into fundamental models,

game theory models2, financial mathematical models, statistical and economet-

ric time-series models as well as the technical analysis or expert system (Weber

(2005)).

Fundamental models preferably use a comprehensive modeling of the whole

electricity system with all suppliers, whereas each single power plant or technol-

ogy classes are described separately in the modeling approach. Detailed knowl-

edge of electricity demand as well as capacity use and maintenance hours of power

plants can be also incorporated into this kind of models. These models are often

2Ventosa presents a survey of electricity generation market modeling, distinguishing fundamental mod-

els, equilibrium models and simulation models (see Ventosa et al. (2005)).
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used to develop energy scenarios for long-term view (see Möst and Keles (2010))

and for middle- to long-term planning tasks and price forecasts, where especially

structural changes have to be taken into account.

Game theoretic approaches consider the strategic behaviour of different market

stakeholders. These models simulate competitive electricity markets and analyse

long-term equilibriums on the wholesale market in general based on a Cournot-

Nash framework (Hobbs (2001), Lise et al. (2006)). This kind of models is prefer-

ably used to test different market design options and to analyse the behaviour of

market participants.

Beside these equilibrium-focused models, the other two model types, financial

and time-series models, concentrate on price simulation based on historical prices

with an hourly or daily resolution. These models are especially used in risk man-

agement and for short-term price forecasts. The financial and time-series models

can be also grouped to the so-called stochastic models.

While some of these stochastic models separate stochastic and deterministic

parts (i.e. trend and seasonality) of the price process (see Karakatsani and Bunn

(2008)), others consider both in a single closed approach (see Lucia and Schwartz

(2002)). However, in some models, electricity prices are described only with a

stochastic process (regardless of any deterministic component). But considering

both deterministic and stochastic components delivers a more detailed and appro-

priate approach.

Electricity prices pt or their logarithms Xt can be seen as a mathematical com-

position of deterministic and stochastic components.

Xt = Xtrend
t +Xseason

t +Xresidue
t [3.1]

The deterministic components of the price logs are the trend Xtrend
t and annual

seasonality Xseason
t . Besides, there are models which simulate the power prices

multiplying all components with one another (see Schmoeller (2005)). In this

case the stochastic residues of historic price logs series form a weak stationary

process, if the original price logs are divided by their deterministic components.

A stationary process in turn is necessary, if the stochastic residues Xresidue
t are

modelled by an autoregressive moving average (ARMA) process.
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3.1. Stochastic processes for modeling uncertainties in electric power generation

But before a stochastic process can be applied to the stochastic residues of the

price logs, they have to be determined removing the deterministic components

trend and seasonality from the original data series.

The first component, the trend can be calculated via an exponential function,

assuming a constant annual growth rate for electricity prices. Alternatively, a

linear function can also be chosen for the trend component (see Schlittgen and

Streitberg (2001)), if the modelled time steps are discrete.

The model for the other deterministic component, seasonality, is a more com-

plex one, as it should consider load variations and thus price variations within a

day or on different day types, also according to specific load on these days. A

possible classification of day types, for example in four categories, can be made

as follows:

• Monday or working day after holiday

• Working day (Tuesday, Wednesday, Thursday)

• Friday or day before holidays

• Weekend day or holiday

The seasonality component can be modelled via different trigonometric func-

tions. There are sinusoidal oscillation functions which consider the basic and the

first harmonic oscillation (see Seifert and Uhrig-Homburg (2007)).

Xd,h = αd,h +
2

∑
i=1

β i
d,hcos

(
2iπ

t − τ
8760

)
+ γ i

d,hsin
(

2iπ
t − τ
8760

)
[3.2]

Other approaches use daily and monthly dummies representing the daily and

annual seasonality respectively. These approaches and the modeling methods for

the simulation of the stochastic component, such as ARMA-processes and mean-

reversion processes are implemented and applied on data from the German elec-

tricity market (see chapter 4) and will not be described in detail here.
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3. An overview of stochastic modeling approaches for liberalized electricity markets

3.1.2. Commodity prices

In the electric power industry, modeling of commodity prices focuses on the price

path simulation of prices of fuels, such as coal, gas and certainly oil. Some mod-

els (e.g. Muche (2007)) consider also CO2-certificate prices, since CO2-certificate

trading is established in electricity markets. However, one of the main uncertainty

for electric power producers is fuel prices. Different stochastic models have been

explored in the last few years, to handle uncertain fuel prices. Again, they use

mean-reversion processes and ARMA processes to describe the stochastic devel-

opment of the commodity prices. Some of the commodity price models consider

trend and seasonality of the price development similar to electricity price models

(see Heydari and Afzal (2008)). And some financial models include a second fac-

tor, the convenience yield3, which also follows also an MR Process (see Schwartz

(1997)). These models contain the correlation of the convenience yield and the

commodity prices. But more interesting is the correlation between different fuel

prices. Thereby the dependency of other fuel prices on the oil price plays a key

role. Analogue to electricity price simulations, the logarithms of the primary en-

ergy prices are generally modelled instead of the prices themselves (Xf = lnp f ).

Thereby f represents the index of fuel (primary energy carrier PEC) types. More

precise approaches (e.g. Weber (2005)) model the derivatives of the price logs

with the help of a mean-reversion process.

d(dXf ) = κ f (μdXf −dXf )+σdXf dWf [3.3]

whereas dWf = ε f
√

dt is a Wiener Process. Thereby the error term ε f of the

Wiener process dWf is standard normal distributed. For estimation purposes, the

continuous model is again changed into a discrete one based on discrete time

periods for the fuel price simulation; i.e. the marginal time interval is replaced

by a discrete time period Δt = 1. Based on the discrete approach, the oil price

is modelled firstly, as oil is still the most important world energy carrier. The oil

3The convenience yield can be defined as the surplus of holding the commodity itself instead of a future

contract. It plays a major role in times of scarcity of resources.
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3.1. Stochastic processes for modeling uncertainties in electric power generation

price simulation is followed by the simulation of the other fuel prices considering

correlations based on the oil price.

Δ(ΔXoil) = κoil(μΔXoil −ΔXoil)+σΔXoil εΔXoil ∼ N(0,1) [3.4]

For other energy carriers the mean-reversion model is extended by a term for

the difference to the long-term equilibrium oil price (XOil − θ f Xf ) and oil price

changes (ΔΔXOil) as further explanatory variables, considering correlations and

dependencies on the oil price:

Δ(ΔXf ) = κ f (μΔXf −ΔXf )+β f (XOil −θ f Xf )+ γ f ΔΔXOil +σΔXf εΔXf [3.5]

The new parameters represent the tendency to the oil price β f , the price ratio θ f

between the specific fuel price Xf and the oil price and at last a factor γ f describing

the dependency on the oil price change. After estimating these parameters from

historical data via the least-squares method, the extended mean-reversion process

can be applied for different fuel prices.

However, these mean-reversion models for fuel prices do not take deterministic

components as trend and seasonality into account. But as mentioned above, there

are models considering these components similar to electricity price modeling.

The trend function again generally contains a constant growth rate, whereas the

seasonality is described by again a trigonometric function (see 3.2). However, as

coal prices are noted quarterly, there are no significant seasonal effects noticeable,

so the models for coal do not include seasonality functions. In contrast to coal

prices, gas prices possess strong seasonal effects, which can be described by a

trigonometric functions.

After removing the deterministic components trend (and seasonality), the re-

ceived stochastic residues of fuel prices are modelled via ARMA processes. But

the ARMA model can only be applied to a stochastic process, if the process is

at least a weak stationary one and the error term (see 3.6) follows a White noise

process (see Hackl (2008)). The residual series of the detrended coal prices form a

strong stationary process, so the an ARMA process can be applied to the stochastic

series. If the a stochastic series is not stationary, it can be transformed into a sta-

tionary one using a filter (see Box et al. (2008)). This filter can be the differences

of two sequent residues forming a new residue series.
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3. An overview of stochastic modeling approaches for liberalized electricity markets

Sometimes a filter has to be applied d-times to receive a stationary process.

The composition of filtering the stochastic price series d-times and the proper

ARMA(p,q) process is also called autoregressive integrated moving average pro-

cess (ARIMA(p,d,q) process). For example, coal prices are modelled by Schmoeller

(2005) with the help of a ARIMA(1,1,0) process, while the gas prices are de-

scribed by an ARIMA(2,0,1) process.

These approaches describe independent models for coal and gas prices. But in

fact there is a correlation between both price processes. Therefore the ARIMA

(1,1,0) process for coal is extended, taking into account the correlation of the coal

price in t with the average gas price in t −ρ:

Xcoal,t = αXcoal,t−1 + γX̄gas,t−ρ + εt [3.6]

As mentioned above, coal prices are noted quarterly, so the coal price logs are

not modelled on the basis of daily price changes. However, if future expected

prices are required, e.g. for real option models (see 3.3), the AR(1) process for

electricity prices can be formulated also for coal prices (see Eq. 3.19), based on

the expected value from the perspective of today’s price logarithm X0. As the

risk-neutral process is required for real options, the AR(1) process is extended by

a term λ ·σ/κ , representing the market price of risk (see Hull (2005)).

E(XRN,t) = e−κtX0 +

(
α − λ ·σ

κ

)
(1− e−κt) ; Var0(XRN,t) =

σ2

2κ
(1− e−2κt)

[3.7]

Due to the log-normal distribution assumption of the prices, the expected prices

are calculated from their expected logs and variance as follows (see Jaillet et al.

(2004)):

E(p f u,RN,t) = eE(XRN,t)+
1
2Var0(XRN,t) [3.8]

This model for the coal price is similar to the one factor model developed by

Schwartz for the simulation of commodity prices. The one factor model is ex-

tended in the two factor approach by Gibson and Schwartz, which is based on two
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3.1. Stochastic processes for modeling uncertainties in electric power generation

mean-reversion processes, one for the commodity spot prices and a second one

for the convenience yield, regarding correlation between both parameters.

CO2-certificate prices are also simulated with the aid of ARMA processes or

mean-reversion processes, whereas risk-neutral processes are considered (see Wag-

ner (2007)) if the simulated prices are used again in a real option model. As CO2-

certificates and coal are storable products (in contrast to electricity), no larger

price jumps are expected in their price process. Therefore it is sufficient to apply a

standard mean-reversion process without any jump component for CO2-certificate

prices. At last, it is worth mentioning that the correlation of electricity prices and

CO2-certificate prices is also considered in the CO2-certificate price model by

Muche (2007). Therefore the error term of the risk-neutral ARMA process of the

CO2-certificate prices is extended by the product of the correlation coefficient ρec

and the error term of the electricity prices:

εCO2,t = εe,tρec + ε ′CO2,t

√
1−ρ2

ec [3.9]

Thereby ε ′CO2,t represents the original error random variable of the CO2-certificate

price process, εe,t the error random variable of the electricity prices. However,

only a few models simulate CO2-certificate prices. The behaviour of this highly

volatile market parameter should be further addressed in future research.

3.1.3. Other uncertain parameters

Other uncertain parameters which are considered in some electricity market mod-

els are especially inflow to hydro reservoirs and wind electricity production. A

lot of stochastic models for energy currently deal with fluctuating feed-in of re-

newable energies. However, it is not attempted to cover fully the stochastic issues

in wind and renewable energies, only some aspects are shortly mentioned in this

section.

Some models integrate different uncertainties into their stochastic modeling ap-

proach (see Fleten et al. (2002)). They describe uncertain parameters, like in-

flow to hydropower plants or the backup power for load balance, with the help of

ARIMA processes. As there is no deterministic part of the backup power process;
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3. An overview of stochastic modeling approaches for liberalized electricity markets

it is directly analysed by an ARIMA (1,0,1) process. But the inflow to hydropower

plants has a seasonal component. Thus the seasonal value for each month Xseas
m

is determined by the average inflow of the same named months m derived from

historical series:

XSeas
m =

12

T

T/12

∑
j=1

Xm+12( j−1) m = 1, ..,12 [3.10]

The stochastic residue process is defined by an ARIMA(2,0,2) process:

XR
t =

2

∑
i=1

αiXR
t−i +

2

∑
j=1

β jεt− j + εt [3.11]

The error term εt in the ARIMA(2,0,2) process represents a white noise process,

the simplest stochastic process, whose expected value equals zero and whose vari-

ance remains constant.

Another uncertain parameter which is often modelled in energy market mod-

els is the wind electricity generation depending on the forecasted wind speed.

Thereby the Weibull distribution, whose probability density and cumulative prob-

ability functions are defined as follows, fits the wind speed very well:

f (x) = αβxβ−1e−αxβ

F(x) = 1− e−αxβ [3.12]

The parameter α of the Weibull distribution is called shape parameter, while

β represents the scale parameter. Furthermore, ARMA models are again cho-

sen to describe the stochastic process of the Weibull distributed wind speed (see

Torres et al. (2005)). But before an ARMA model can be applied, generally the

wind data series are transformed (e.g. Box-Cox-Transformation) and standardized

because hourly wind data reveals cyclic behaviour. As the transformed and stan-

dardized data is not stationary, the ARMA process can be applied successfully.

Other models use any unvaried stochastic process combined with power spectral

density function (see Olsina et al. (2007)).

48



3.2. Scenario generation and reduction

     t - 3     t - 2              t - 1                 t   

    
}       

}      

p o   

p u   

p m   p m   

p o   

p u   

Figure 3.1.: Trinomial tree as an example of analytical scenario generation

3.2. Scenario generation and reduction

The different stochastic processes are used to simulate the uncertain parameters

and to generate future data for them. The simulations of each uncertain parameter

at a time can be combined to a scenario. The generation of a great number of

scenarios is a method to capture the uncertainties in energy markets. Thereby

two approaches of scenario generation have been successfully applied in energy

market models: the analytic and the simulative scenario generation.

3.2.1. Analytical scenario generation

Analytical scenario generation is based on binomial or trinomial trees, which in-

tegrate higher and lower values in t + 1 than the values in t for the uncertain pa-

rameters (see Pilipovic (2007)). Figure 3.1 illustrates a trinomial tree for scenario

generation.

The expected E(xt) value of the uncertain parameter follows a stochastic pro-

cess, e.g. an ARMA process, but it can be extended by adding two more branches

in each node (time step) to receive a trinomial tree. The value of the new leaves,
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3. An overview of stochastic modeling approaches for liberalized electricity markets

belonging to the new branches, is calculated by adding or subtracting the same

value Δx to the expected value. Δx is evaluated with the help of the variance of the

stochastic process (see Eq. 3.13).

Δx =
σ√

2pu/d
[3.13]

Thereby it is important to determine the probabilities of each branch. In a trino-

mial tree, the probability of the upper and the lower branches pu/d can be chosen

constant corresponding to one-sixth, while the probability of the middle branch

pm would in this case equal to two-thirds. The whole tree is built up repeating this

procedure forwards for each time step and for all existing nodes. Alternatively the

stochastic behaviour of uncertain parameters can be described via binomial trees

(see Göbelt (2001)).

3.2.2. Simulative scenario generation and scenario reduction

However, the more common approach in energy markets is the simulative scenario

generation. Therefore the uncertain parameters are simulated via the stochas-

tic processes described above (see section 3.1). With the help of Monte-Carlo-

Simulation, based on a great number of scenario simulations via the described

stochastic processes, the uncertainties can be handled very well. Thereby the

number of scenario simulations has to be so large that the "law of large num-

bers"’ can be applied to receive reasonable data for the uncertain parameters. But

if the generated scenarios should be used in a stochastic optimization model, the

large number of scenarios has to be reduced to a level at which the solution of the

optimization problem can be calculated within an acceptable time. The scenario

reduction of a stochastic optimization problem is done with the help of different

methodologies.

Recombining trees represent a feasible methodology to solve a stochastic opti-

mization problem. The idea of recombining trees is the combination of different

states (s1,s2,s3, ...) of a scenario tree with similar descendant subtrees to a single

state s′ at a time t. The probability of the appropriate branches of the former sub-

trees is cumulated and assigned to the new accordant subtree branches. Further,
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3.2. Scenario generation and reduction

t0  t0+1        t0+2         T-1               T

Figure 3.2.: Scenario lattice with different states

the former original states are summarized in a cluster of states, whose mean be-

comes the representative value for this state cluster at the appropriate time t. This

procedure is repeated as long as the required number of states (or clusters) n0 is

reached in each time. The number of states does not need to be truly constant

in each time step, but it simplifies the optimization problem to apply a constant

number of states to many stochastic models based on recombining trees. Finally,

the recombination procedure results in a scenario lattice with nodes representing

the different clusters of each time and arrows illustrating the transition between

clusters of time t and t +1 (see Figure 3.2).

Before a stochastic optimization problem based on such a lattice can be solved,

the probabilities of each state transition have to be determined. This can be done

via a Monte-Carlo simulation for the uncertain parameter, e.g. electricity price,

whereas the whole price range is divided into intervals with equal range (see Tseng

and Barz (2002)). These intervals represent the state clusters s of the scenario

lattice. The probability Prs,t→s′,t+1 of a transition s ∈ t to s′ ∈ t + 1 is defined as

the ratio between the number of transitions from the state s to s′ and the number

of all transitions from s to all other states in t +1.

Prs,t→s′,t+1 =
card
{

s|pt ∈ [pmin
s,t , pmax

s,t ]∧ pt+1 ∈ [pmin
s′,t+1, pmax

s′,t+1]
}

card
{

s|pt ∈ [pmin
s,t , pmax

s,t ]
} [3.14]

The transition probabilities and the means of the price intervals are used in

the next step to solve the stochastic optimization problem. For example, a profit

maximizing problem within a time period [t0,T ] , based on uncertain electricity
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3. An overview of stochastic modeling approaches for liberalized electricity markets

prices pEl
s,t and fuel prices pFU

s,t can be solved by maximizing the profit Gt in each

time step t and stage s backwards from the leaves (t = T ) to the root (t = t0):

G∗
t→T,s(X

El
t,s ) = max

((
pEl

s,t − pFU
s,t

1

μFU

)
XEl

t,s −COp
s,t (X

El
t,s )−CSt

s,t

+∑
s′

Prs,t→s′,t+1 ·G∗
t+1→T,s′(X

El
t+1,s′])

) [3.15]

This function (Eq. 3.15) maximizes the profit from electricity production and sales

in t, which consists of the optimal profit in t +1 and the revenues from electricity

output XEl
s,t reduced by the operational costs COp

s,t and the plant start-up costs CSt
s,t

in t. A more detailed description of optimization models will be introduced below

(see section 3.3).

Besides recombining trees, there are other approaches to reduce a large number

of scenarios generated with the help of a stochastic process. The received scenar-

ios are connected with a same root forming a scenario tree, whereas the root rep-

resents the initial value of the analyzed uncertain parameters. In the next step, this

"fan" of scenarios has to be transformed into a real scenario tree. The reduction

of the scenario fan can be done with combining similar ancestor branches instead

of the descendant subtrees in each time step. Therefore the Kantorovic-Distance,

applied often in power production and sale models, leads to a transport problem,

whose solution delivers the pair of scenario branches and the nodes which should

be composed to a single branch (see Dupacova et al. (2003)). However, mini-

mizing the Euclidean distance between each pair of branches would also deliver

the most similarities. After receiving the most similar two branches, one of them

can be eliminated and its probability can be added to the other. This is possi-

ble, because the new scenario tree is a subtree of the former tree (see Schmoeller

(2005)). But it is worth mentioning that the Euclidean distance is calculated for

all uncertain parameters in a common approach, assuming that the scenario tree is

representing the forecast development of all considered uncertainties jointly.
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3.3. Optimization models applied to power production and investment planning

3.3. Optimization models applied to power production and investment

planning

The reduced scenario tree or the scenario lattice, which are generated with the

methods described in section3.2.2, form the base of a stochastic optimization

model. In electricity markets, these optimization models concentrate on finding

out the optimal investment decision or the optimal power production plan for a

given time period. Some of these stochastic models even optimize whole energy

systems in a long-term view (see Göbelt (2001)). Table 3.2 gives a short overview

of some stochastic models developed for energy markets in recent years.

For each of the main application fields - investment decision (IDM), short/mid-

term power production planning (SMPP) and long-term system optimization (LSO)

- a different model is described in the following section to cover the main fields in

energy markets for which stochastic optimization models are used.

3.3.1. Short- and mid-term power production planning and portfolio

management

Portfolio management and production planning models optimize an objective func-

tion, which can describe the total costs or the profit of a whole energy system, par-

ticularly of an energy company. However, the profit maximizing approach fits the

objectives of an operator of power plants better. As operators of power plants are

private companies, they have to cover their costs as well gain profits on the short-

term and long-term. Otherwise investors will be not willing to invest in these

companies. In short-term power production models, the profit function G is de-

fined as the difference between total expected revenues R from electricity or other

energy sales and total expected costs C of generation. Some models also consider

a correction term for stock changes ΔS if the company is also dealing with other

energy carriers, such as heat or fuel (see Weber (2005)). G is maximized to find

out the optimal solution for unit commitment and power production.
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3.3. Optimization models applied to power production and investment planning

max G = R−C−ΔS

R =
T

∑
t=1

∑
s∈St

Prs
(
REL

t,s +RHT
t,s +RFU

t,s
) [3.16]

The total revenues of the power plant system consist of expected revenues of

electricity sales REL
t,s on the spot and OTC market, heat sales RHT

t,s on the OTC

market and (re)sales of fuels RFU
t,s on the OTC market. The revenues are calcu-

lated for each scenario s and time step t. The sales can be calculated from the sold

quantities multiplied with the time- and state-dependent prices of each commod-

ity.

REL
t,s = ∑

OTC
pEL

OTC,t,sX
EL
OTC,t,s + pEL

Spot,t,sX
EL
Spot,t,s

RHT
t,s = ∑

OTC
pHT

OTC,t,sX
HT
OTC,t,s

RFU
t,s = ∑

f∈F
∑

OTC
p f

OTC,t,sX
f

OTC,t,s

[3.17]

The total costs of the system or company are made up of power plant operating

costs Cu,t,s of each unit u and costs COTC,t,s (for fuel, heat or electricity purchase)

resulting from OTC contracts. Both cost components can be divided into variable

costs and fixed costs. Thus, the total cost function is formulated as follows:

C =
T

∑
t=1

∑
s∈St

(
∑

OTC

(
C f ix

OTC,t,s +Cvar
OTC,t,s

)
+ ∑

u∈U

(
C f ix

u,t,s +Cvar
u,t,s

))
[3.18]

The variable operation costs Cvar
u,t,s consider continuous operation as well as start-

up and shut-down costs of power generation, whereas binary variables determine

the operation mode, the start-up or shut down action. The variable contract costs

Cvar
OTC,t,s are determined by the mathematical product of the time-varying prices

pOTC and amounts YOTC for each purchase contract of electricity, heat and fuel.

Cvar
OTC,t,s = pEL

OTC,t,sY
EL
OTC,t,s + pHT

OTC,t,sY
HT
OTC,t,s + pFU

OTC,t,sY
FU
OTC,t,s [3.19]
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3. An overview of stochastic modeling approaches for liberalized electricity markets

The last component of the objective function, the stock change ΔS, corresponds

to the fuel storage changes, which can be determined by the difference between

the storage level for each fuel type f at the beginning S f (1) and at the end of the

planning period S f (T ) multiplied with the appropriate fuel prices:

ΔS = ∑
f∈F

p f ,1S f ,1 − p f ,T S f ,T [3.20]

However, beside these more general models, which optimize trade portfolios

combined with power generation planning, there are models which maximize the

profit of only electricity generation. The generation costs are described as the

plant operation costs above. Some models are based on linear cost functions for

the variable operation costs, but some consider a more detailed cost structure.

Troncoso et al. (2008) use a genetic algorithm to solve a non-linear model for

the optimal short-term electricity production. Thereby the total cost of electricity

production cost is minimized assuming a non-linear cost function. A quadratic

cost function is also used instead of a linear function for the operation costs Cvar
u,t,s

of each plant u at time t and state s by Tseng et al. (see Tseng and Barz (2002)),

whereas the start-up costs CSU
u,t,s are no longer fixed ones, but they depend on the

time SDu,t,s passed since the beginning of the last shut down:

Cvar
u,t,s(X

EL
u,t,s) = p f ,t,s

(
a0 +a1XEL

u,t,s +a2XEL2
u,t,s
)

[3.21]

CSU
u,t,s(Uu,t,s) =

⎧⎨
⎩ p f ,t,sbu

1

(
1− eSDu,t,s

)
+bu

2 Uu,t,s = 1

0 Uu,t,s = 0
[3.22]

The first summand of the first term for the start-up costs represents the fuel costs

in the start-up time; the second one bu
2 covers other costs for start-up (e.g. labour).

The binary variable Uu,t,s indicates the shut down status of a plant at time t and

state s (1 = plant is offline, 0 = plant is online).

Based on these cost functions, Tseng and Barz maximize the total profit func-

tion (Eq. 3.23).

58



3.3. Optimization models applied to power production and investment planning

Gt0→T (Uu,t,s,XEL
u,t,s) =

T

∑
t=0

∑
s∈St

Prs ∑
u∈U

(
pEL

t,s XEL
u,t,s − p f ,t,s

(
a0 +a1XEL

u,t,s +a2XEL2
u,t,s
)

−CSU
u,t,s(Uu,t,s)

)
[3.23]

This profit function can also be formulated as a recursive term, in which the

profit Gt→T between time t and T is calculated with the help of the expected profit

Gt+1→T between t + 1 to T adding the expected profit attained at time step t.

Therefore it is enough to maximize the profit in time step t and state s adding the

expected profit G∗t+1→T :

G∗s,t→T (Uu,t,s,XEL
u,t,s) = max

((
pEL

t,s XEL
u,t,s −Cvar

u,t,s(X
EL
u,t,s)−CSU

u,t,s(Uu,t,s)
)
+

∑
s∈St

Prs,t→s′,t+1G∗s′,t+1→T (Uu,t,s,XEL
u,t+1,s′)

) [3.24]

So the calculation has to be done backwards against the time axis. The recursive

computation ends at the single root state at time t0 resulting in the total profit

maximum during the planning horizon t0 to T .

At last, it is worth mentioning that these approaches for short- and mid-term

power production planning can be extended to optimize an energy system in the

long-term planning horizon.

3.3.2. Long-term system optimization

Long-term stochastic models can be solved - analogue to the others - with the

help of single-stage or multi-stage modeling for the uncertain parameters. While

single-stage models handle uncertainties at time t0, multi-stage models handle un-

certainties in each stage separately. Like the one developed by Göbelt (see Göbelt

(2001)) and derived from the MOTAD4 approach (see Tauer (1983)), single-stage
4MOTAD means "minimization of total absolute deviations". The approach was developed first by

Hazel in 1971 to handle risks in agricultural economics and was extended by Tauer as Target MOTAD

in 1983.
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3. An overview of stochastic modeling approaches for liberalized electricity markets

stochastic models use several input parameters adjusted via their standard devia-

tions within the objective (profit) function. In energy modeling, these uncertain

parameters are at the income side electricity prices pEL and at the cost side fuel

prices pFU and CO2-certificate prices pcert for the production of one unit elec-

tricity XEL. Besides, in these models the variable costs cvar
u , the fixed costs c f ix

u

of all plants and also investment costs cinv
u for new plant capacities Capu are also

taken into account. Further, instead of using constant values for the stochastic

parameters, as it is done in deterministic models, the standard deviation of each

parameter is subtracted at the income side or added at the cost side of the profit

function. But before subtracting or adding the standard deviation σ of each pa-

rameter, they are weighted with risk aversion coefficient γ . At last, it should be

pointed out that uncertainties on the demand side are also modelled with the help

of the standard deviation of the total demand Dt for time t. The standard devia-

tion is weighted with a probability factor PrD representing the probability that this

constraint should be fulfilled.

max

∑
t∈T

(1+r)−t

⎛
⎜⎜⎝

(
(pEL

t − γσEL
)

XEL
t

−∑u∈U

[((
pFU

t − γσFU
)

ηu +(pcert
t + γσcert)carbu + cvar

u
)

XEL
u,t + c f ix

u,t

]
−∑un∈Un

(
cinv

un + c f ix
un

)
Capun,t

⎞
⎟⎟⎠

[3.25]

∑
u∈Ut

XEL
u,t ≥ Dt +PrDσD

XEL
u,t ≤Capu

[3.26]

The advantages of single-stage modeling are the simple practicability and the

low effort for additional data. The complexity of the model corresponds to that of

the deterministic one, so that no extra computing time is necessary. The main dis-

advantage of single-stage stochastic modeling is that only the information about

uncertain parameters is used, which exits at the beginning of the planning period

because all decisions are made at the beginning.
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3.3. Optimization models applied to power production and investment planning

Figure 3.3.: Example of two-stage binomial decision tree

As multi-stage models can handle information that might appear later, they are

a much tougher approach than the single-stage approach and therefore their use is

more widespread. But the long computing time of this kind of models limits their

use for long-term problems. In this case a deterministic approach can be seen as a

multi-stage decision tree consisting of only one path with a probability of 100 %.

So the complexity of a model based on a non-branched decision tree corresponds

to the complexity of the deterministic model multiplied with the number of pos-

sible paths. This makes stochastic models with many stages and some thousand

nodes in an appropriate computing time impossible. Therefore scenario reduction

algorithms (see section 3.2) have to be applied before the optimization problem

can be solved. The results of scenario reduction are recombining trees or usual

decision trees (binomial, see Figure 3.3, trinomial trees, etc.).

Long-term system optimization models for energy markets usually consider a

time horizon of more than 20 years. So they can be seen as the time-extended ver-

sion of the profit maximizing approach for short- or mid-term power production

planning models, if the analysed system is an energy company. In this case, it is

suggested to use the profit maximizing approach in the long-term view. But if the

analysed system is the whole energy system of a country or of a region, it is wise

to choose the cost minimizing approach to maximize total welfare.
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3. An overview of stochastic modeling approaches for liberalized electricity markets

min

∑
t∈T

(1+r)−t ∑
s∈St

Prs

⎛
⎜⎜⎝∑u∈U

[((
pFU

t,s − γσFU
)

ηu +
(

pcert
t,s + γσcert

)
carbu + cvar

u
)

XEL
u,t,s

+c f ix
u,t,s

]

+∑un∈Un

(
cinv

un + c f ix
un

)
Capun,t,s

⎞
⎟⎟⎠

[3.27]

∑
u∈Ut

∑
s∈St

PrsXEL
u,t,s ≥ Dt +PrDσD

XEL
u,t,s ≤Capu

[3.28]

This simplified cost function considers the total costs of total electricity pro-

duction, i.e. fuel costs, variable costs, fixed costs and investment costs regarding

all available power plants u within the model horizon T. As emission trading has

been established, the emission certificate costs are also taken into account in deter-

ministic energy system models (see Barreto and Kypreos (2004) or Enzensberger

(2003)), but have to be integrated into stochastic energy models too.

The main constraint ensures that the expected value of electricity production in

each time t meets the demand. The second constraint ensures the availability of

enough power plant capacity in each state s of each time step t. Further constraints

can be added to this simplified multi-stage approach, if other market restrictions

exist.

These kind of multi-stage models deliver a tough solution for long-term system

optimization and therefore they are applied usually in uncertain electricity mar-

kets. They can also be applied to other energy markets adjusting the uncertain

parameters and the cost structure of the analysed energy market.

3.3.3. Investment decision models

Investment decision models generally calculate the value of energy investments

and deliver a strong decision base before starting huge and capital intensive in-

vestments in energy markets (power plants, gas storages, emission reduction tech-

nologies etc.). Traditional investment decision models use the net present value

approach and other basic evaluation methods. However, some advanced methods,

such as the real options approach, have been applied in some evaluation models
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3.3. Optimization models applied to power production and investment planning

for energy investments in recent years. The real options approach is used to calcu-

late the value of an investment, whereby some flexible mechanisms are taken into

account. Generally, an investor has the option to defer or to stop an investment at

the beginning phase. And this option or flexibility has a value which should be re-

garded within the evaluation of the investment. Another option is the shut down of

the power plant, if this is the core of an investment, and running the plant only if a

positive marginal return is expected. Actually this "real option" is evaluated with

the help of a stochastic model for the evaluation of a coal power plant, developed

by Muche (see Muche (2007)).

In this real options model the electricity price, the coal price and the carbon

price are modelled as stochastic parameters. They are simulated by mean re-

verting processes (see section 3.1). The price for electricity per unit (MWh) is

modelled for every day t and is declared as pe,t, which is a stochastic element

varying each day due to its set up at the day ahead market. Accordingly the price

for CO2-certificates is pc,t and has to be multiplied with a constant factor carb,

which defines the amount of CO2-certificates needed to produce one unit of elec-

tricity. This product equals to the costs of CO2 emissions during the production

of one unit of electricity. It is assumed that the plant is equipped with enough

CO2-certificates and the investors do not need to buy anymore, so the costs for

CO2-certificates have to be seen as opportunity costs, as they could be sold e.g. at

the EEX exchange. Another important cost component is the fuel cost, here the

coal price pcoal,t , which is multiplied with the constant heating value coal to eval-

uate the fuel costs for one MWh power production. Both the coal price and the

CO2-certificate price are stochastic parameters, which have to be estimated like

the electricity prices, while the following cost components are considered as de-

terministic ones. The other variable operating costs are summarized in cvar (also

a value for one MWh power output) and are considered as constant elements. Be-

sides, the fixed costs c f ix per MWh and the non-cash item depreciation cdep per

MWh are also included in the model. As a simplification, the taxes are added via
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3. An overview of stochastic modeling approaches for liberalized electricity markets

a tax rate s to the cash flow extended by the depreciations. Due to these definitions

the cash flow per MWh at day t is calculated as follows:

zt = pe,t − pc,tcarb− pcoal,tcoal − cvar − c f ix

−s
(

pe,t − pc,tcarb− pcoal,tcoal − cvar − c f ix − cdep
)

⇔ zt = (1− s)
(

pe,t − pc,tcarb− pcoal,tcoal − cvar − c f ix
)
+ s · cdep

[3.29]

The definition of days as planning time periods makes the use of electricity, CO2-

certificate and coal prices in t − 1 possible, which can be observed at the day

ahead-market. That is why the marginal return pe,t − pc,tcarb− pcoal,tcoal − cvar

of production can be used for the real option approach to evaluate the investment

in such a coal plant.

Depending on the optimal marginal return the operation of the power plant can

be planned, whereas a plant operation in time period t only makes sense if the

marginal return of this day t is positive. In this case the cash flow in t can be

calculated as a call option warrant on the underlying "electricity prices":

zt = max
[
pe,t − pc,tcarb− pcoal,tcoal − cvar,0

]
(1− s)− c f ix(1− s)+ scdep

[3.30]

Thereby the term max
[
pe,t − pc,tcarb− pcoal,tcoal − cvar,0

]
of the cash flow equa-

tion comes up with the cash flow structure of a European Call on the underlying

"electricity prices" with a striking price amounting to the sum of all variable costs.

Thus, the evaluation of the coal power plant can be done on the basis of these

Call Options for each day within the useful life of the plant. The risk-adjusted

total value of all these call options in t0 corresponds to the value of the coal power

plant in t0.

After simulating the electricity, CO2-certificate and coal prices using the ap-

proaches from section 3.1, Muche (2007) uses a real options approach for the

evaluation of a coal plant. Eq. 3.30 estimates the daily cash flow of the plant con-

sidering the option to operate the plant in t only if the marginal return is positive.

That means that the cash flow term illustrates a marginal return optimal plant op-
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eration. All daily expected cash flows zt within the service life are adjusted by the

risk-free interest, to calculate the net present value of the power plant (Eq. 3.31).

C0 =−I0 +
T

∑
t=1

ERN,0(zt)er f t [3.31]

Further it is worth mentioning that the risk neutral process of the electricity

prices is to be used if the real option approach is applied as an evaluation method.

Therefore the expected value of the cash flows is adjusted as ERN,0(zt) and it is

determined after N = 1000 simulations as the mean value of all simulations. Based

on the risk neutral expected value of all cash flows within the lifetime of the plant,

the risk neutral net present value C0 is calculated using the risk-free interest r f and

the initial investments I0. If the risk-neutral NPV C0 of a plant is positive, then the

investment is executed; otherwise it should be cancelled analogue to the familiar

NPV method.

In this section the evaluation of a coal plant is described via the real options

approach. But by making some adjustments, the evaluation method can be applied

also for other plant types, especially gas plants, and even for other investments in

energy technologies, such as energy storage power plants.

3.4. Conclusions

Many models based on a deterministic approach can be found in energy modeling

and they are suitable to cover several characteristics of today’s markets. However,

stochastic approaches are useful for the modeling of uncertain parameters, and

in recent years several approaches have been developed for the application in en-

ergy markets. This chapter represented a survey of stochastic models focusing on

electricity market prices, commodity prices and renewable power generation. The

approaches about modeling renewable power generation are presented very briefly

in this section, so that a separate overview about models dealing with fluctuating

feed-in of renewable energies could be useful given in future work. Furthermore,

this section introduces also some selected integrated approaches, which combine

econometric models for the simulation of uncertainties with system optimization

models. The reason for this combination can be seen in the fact that many risks
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in electricity markets are fundamentally related to the underlying cost structures.

This involves the application of integrated methods which combine the advantages

of standard methods in financial markets with fundamental energy market models.

At first, different econometric models, especially stochastic processes to sim-

ulate uncertain electricity and fuel prices, were described in this chapter. Some

of these models consider deterministic trends and seasonality as well as stochas-

tic components of the price processes. Others take price spikes, especially for

electricity prices, into account. These approaches are used especially in energy

trading companies to quantify price risks of trading position or of the power plant

portfolio. Changing framework conditions such as the introduction of emission

trading or the change in market design necessitates the development of new and

adapted methods. Especially models dealing with uncertain CO2 emission al-

lowance prices are still relatively rare and further efforts should be made in this

field5. The change in market design allowing negative electricity prices also ne-

cessitates some adaptations in energy models. The loss of an owner of long trading

positions in electricity markets was up to now limited. With the introduction of

negative prices, also owners of long trading positions are exposed to the risk of

losses, which has to be taken into account in novel econometric models.

Econometric models are often used to simulate price paths, which serve as input

for fundamental models. If the latter models are solved with these simulated price

paths, distributed computing can play a crucial role, as the models with different

input price paths can be solved in parallel. Standardized tools helping to distribute

the generated models and aggregating procedures for the solutions are necessary

for successful implementation in the energy industry. If the simulated price paths

are instead considered in an integrated stochastic optimization approach, scenario

reduction algorithms (see section 3.2) are a reasonable method for solving the

models within an acceptable amount of time. However, scenario reduction al-

gorithms are only applied for a small but growing number of stochastic models.

Several approaches have been developed and advanced in recent years, but fur-

ther research is still necessary in this field, especially when the stochastic models

5Fichtner (1999) describes models and strategies for energy suppliers focusing on the effect of carbon

trading on energy prices.
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are applied in the day-to-day business in energy trading. The reduced scenario

trees or the scenario lattice forms the basis for the stochastic models. In electricity

markets these models concentrate on determining the optimal investment decision

or the optimal power production plan for a given period. Thereby the objective

functions of these models include different simulated uncertain parameters and

they are optimized based on scenario states representing different values of the

uncertain parameters.

Beside system optimization models, which take the total energy system into ac-

count, models determining the value of a single power plant or the optimal short-

and mid-term plant dispatch of one energy supplier can be distinguished. It is im-

portant to stress that if the evaluation of a plant is done via a real options approach,

then the stochastic processes describing the uncertain parameters have to be ad-

justed by a term for the market price of risk. If several uncertain parameters, such

as e.g. gas prices, electricity prices, wind power generation and hydro inflow, are

considered in such a real option approach, the correlation between the different

price paths and other uncertainties has a significant impact on the results. Thus,

the correlation between different parameters has to be adequately considered.

In general, the overview of stochastic modeling approaches for liberalized elec-

tricity markets has shown that a combination of fundamental market models with

financial modeling approaches provides an interesting and useful approach to de-

rive electricity prices. The presented approaches can be used to derive both price

forecasts and uncertainty ranges for the future development of prices. These can

be used for the operational and strategic management of generation and trading

portfolios as well as for assessing the risks associated with these portfolios. Fur-

ther research in this field should aim at aggregating information e.g. with the help

of reduced scenario trees and at developing efficient decomposition approaches,

which allow dealing with a broad range of price and quantity uncertainty in rea-

sonable computation time.

Interactions between energy prices and technology choice are analysed within

the presented long-term optimization models. These models can be developed

further by also incorporating the impact of fluctuating generation uncertainty as

well as load uncertainty, e.g. due to new consumers such as electric vehicles,
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and their impact on optimal investments. In this regard additional investigations

are necessary to answer the questions of long-term price equilibriums and the

robustness of investment decisions under uncertainty. Furthermore, the questions

of market design and market power are of importance, so that supply adequacy

can be assured at the lowest possible costs.
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Since the liberalization, the good electricity is no more sold by public compa-

nies with fixed tariffs, but more and more on energy exchanges, where prices

are formed on day-ahead or intra-day spot markets. The prices on the spot mar-

kets vary in general for each hour of the day (see section 2.2). The load as one

main driver of electricity prices shows some noticeable patterns, such as the peak

at midday in summer days. This typical load pattern can also be recognized in

hourly electricity prices. As electricity prices follow more or less typical patterns,

these can be explained with deterministic functions.

Electricity spot prices are also influenced by uncertain parameters, such as

power plant outages and fluctuant renewable electricity generation. The uncer-

tainties are the drivers of the stochastic component of electricity prices. However,

the stochastic components are characterized by specific properties of electrical

energy, especially the non-storability1. Thus generation has to follow the more

or less inelastic demand (load) and traders of electricity with physical delivering

are forced to balance their accounts in every single hour independent of actual

offers. This leads to extraordinary fluctuations in prices on the one hand and to a

high correlation of the load and the electricity price curve on the other (see Weron

(2006)). In times of peak load, prices can thus skyrocket especially if additionally

unexpected capacity bottlenecks or breakdowns appear on the supply side (see

Lucia and Schwartz (2002)).

Furthermore the electricity prices display typical daily movements that are in-

fluenced by calendar effects on the one hand, meaning that the daily movement

shows a dependency on weekdays and weekends or holidays; and on the other

hand the shape of the daily movement changes throughout the saisons of a year

1Electricity cannot be stored in large quantities and is thus often classified as non-storable.
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(see Figure 2.3)2. While the midday peak is distinctive for the summer, an evening

peak is added for the spring and autumn season. This evening peak will finally

dominate the daily movement chart in the winter. Hence, for most of the electric-

ity market worldwide it can be concluded that electricity prices are characterized

by

• daily and weekly cycles and seasonality,

• high volatility,

• mean reversion and

• spikes or jumps (see Johnson and Barz (1999)).

The simulation of electricity prices should thus be based on an extended mod-

eling approach considering both deterministic and stochastic components of the

price process. Financial and time-series models are often chosen to simulate elec-

tricity prices in risk management and for a short-term planning interval.

In the following a combined approach is introduced, in which deterministic

components, such as daily and weekly cycles and long-term trend, are mod-

eled with the help of polynomial and trigonometric functions. Parameters of the

functions are estimated from historical data derived from the European Energy

Exchange (EEX). Afterwards different stochastic processes are applied for the

stochastic component of the electricity price process: mean reversion process,

(integrated) autoregressive moving average (ARMA or ARIMA) processes and

GARCH processes. Therefore these four kinds of stochastic models are com-

bined with the (same) deterministic model component. The different modeling

approaches for the stochastic component are evaluated to contribute to a better

understanding, which modeling approach is better suited to simulate electricity

prices.

In addition to the modeling of the stochastic component a regime-switching ap-

proach will be presented which captures price jumps more adequately. Therefore,

the presented approach differs between prices in a base regime and also in upper

2Both can mainly be traced back to the pattern of the load curve.

70



4.1. Negative electricity prices at the EEX

and lower jump regimes. Last but not least, a new approach, which enables the

modeling of negative prices, will be presented. Since 2008 market design allows

for negative prices at the European Energy Exchange, which also occurred for

several hours in the last years.

The modeling of negative prices is discussed by de Jong in the case of the Dutch

imbalance market Sewalt and de Jong (2007). A modeling approach considering

negative prices has been introduced by Schneider (2012) applying an area sine hy-

perbolic transformation and afterwards fitting a deterministic component as well

as a regime switching AR(1)-process. However, no financial and time series mod-

els for electricity prices exist, which consider the probability distribution of nega-

tive prices. In the following a new approach based on a Poisson process and on the

empiric stochastic distribution of negative prices is presented to consider negative

prices in electricity price modeling.

Furthermore different modeling approaches for electricity prices on the basis of

financial and time-series models are applied on EEX spot prices and their results

are compared to find the most appropriate approaches. But firstly, the histori-

cal process and the occurrence time of negative prices are analysed. Afterwards

the whole modeling approach for electricity prices is introduced, focusing on the

modeling of deterministic parts and different approached for the stochastic com-

ponent of electricity prices as well as on negative prices. Then the simulation

results of each model type and extension are evaluated and compared with each

other. The evaluation contains the comparison of the price duration curves of each

simulation with that of historical prices and of mean root square errors, to gain

information on the quality of the different modeling approaches. The introduced

models for electricity prices are critically reflected and the main characteristics

are summarized at the end.

4.1. Negative electricity prices at the EEX

Since September 1st 2008, negative price bids have been allowed at the German

power exchange EEX being the first energy exchange in Europe allowing nega-

tive prices. Negative electricity prices can occur due to special characteristics of
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Figure 4.1.: Occurrence of negative prices between 2008-2010 for different hours of the day (left)

and weekdays (right) (data source: EEX (2012))

the commodity electricity, such as limited load change flexibility, limited storage

capacities and combined production of heat and power etc. (see Genoese et al.

(2010)). From an economic perspective negative prices can be rational e.g. if the

costs to shut down and ramp up a power plant unit exceed the loss for accept-

ing negative prices. Negative prices also occur, if market actors have to fulfill

other contracts, e.g. a heat delivery contract of a combined-heat and power plant

(CHP), and therefore the power plant has to be run, although making losses due

to negative power prices.

Historical spot market data EEX (2012) from the period of September 1st 2008

to November 2010 show a total amount of 86 hours with negative prices. Mostly,

negative prices can be observed in the night and morning hours (23:00 to 08:00);

there were only four hours with a negative price in the remaining time period (see

Figure 4.1). The distribution of negative prices over the week has a maximum

on Sundays (including public holidays) with the remaining hours being concen-

trated on Mondays (see Figure 4.1). Summarizing, negative prices so far have

appeared during weekends and the off-peak period, which comprises the time be-

tween 20:00 and 08:00 o’clock at weekdays.

Figure 4.2 shows the absolute frequency of the prices in a histogram with clus-

ters of 2 e/MWh. Two distinct peaks are shown in the distribution, also called
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Figure 4.2.: Occurrence of negative prices 2008-2010 at different hours and weekdays (data

source: EEX (2012))4

bimodal distribution. One peak is in the far minimum and is assumed to follow

a lognormal distribution. The other part of the values is moderately negative and

assumed to be an exponentially distribution. To analyse these distribution assump-

tions, two tests are performed. First, the left part of the distribution is tested using

a X2-test, then the right part of the observed distribution is tested using a KS-test3.

For the X2-test the logarithms of the values are taken to achieve a normal distribu-

tion which can easily be tested within the MATLAB environment. Both tests show

that the distribution hypothesis cannot be neglected. The estimated distributions

are shown in section 4.2.3.

3The distribution of the right part is tested with the KS-test instead of the X2-test, as the latter test is

not applicable for exponential distributions.
4Due to Figure 4.2, the simulated negative prices below -80e/MWh seem to be uniformly rather than

normally distributed. This is caused by the small number N of realizations. However, a large number

of realizations would illustrate that these negative prices are also normally distributed as the historical

negative prices below -80e/MWh are. But for consistency reasons the number of simulated negative

prices is chosen as the historical one.

73



4. Modeling electricity spot prices considering negative prices

4.2. Modeling approaches for electricity price simulation

Stochastic models for electricity prices, such as financial and econometric time-

series models, will be analysed and compared with each other in this section.

Thereby financial mathematical models, such as those invoking Geometric Brow-

nian motion or the mean-reversion process, deal with the volatility of the electric-

ity prices, and can be used especially for the evaluation of derivatives or real op-

tions in energy markets (Hirsch (2009), Gibson and Schwartz (1990)). The other

theoretical model class, econometric time-series models, e.g. ARMA or GARCH

models (Garcia et al. (2005)), focuses on patterns or autocorrelation within the

historical price curve related to external impacts, such as electrical load, tempera-

ture, etc. The deterministic components of the price curve are analysed very well

in time-series models, while the stochastic component is brought into focus in fi-

nancial mathematical models5. These models are used to simulate hourly resolved

electricity prices in general for a short-term planning period of maximum one year

and their results are compared afterwards with real price curves (see Weron et al.

(2004) or Swider and Weber (2007)). But as these models do not concentrate

on the long-term price movements, which are analysed especially in fundamental

models, a combined approach, in which both long and short-term movements of

electricity prices can be simulated with fundamental models and stochastic pro-

cesses, is proposed in the section "critical reflection and outlook".

Before financial and time-series models can be applied on stochastic price se-

ries, the historical data has to be adjusted. Therefore, in the first step the deter-

ministic components are modeled and removed from historical price series. The

deterministic components contain the long-term trend, the weekly and daily cycle

and the annual seasonality. All of them are subtracted from the original electric-

ity price series. The resulting stochastic residuals are then used to estimate the

parameters of each stochastic process. With the help of the estimated parame-

ters and the corresponding stochastic process the stochastic components for all

hours of a year are generated. Furthermore, as jumps are one of the main charac-

5An overview of existing stochastic energy models including electricity price simulation is given in

Möst and Keles (2010)
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teristics of electricity prices, a regime-switching approach is applied to consider

this characteristic within the simulation of the stochastic component. Afterwards

all deterministic components are added again to the stochastic one to receive the

simulated electricity prices. In addition to the comparison of different modeling

approaches a novel model extension is presented, which is able to simulate nega-

tive electricity prices. Up to now, nearly all approaches have only been developed

to simulate positive prices.

The whole electricity price model is implemented in the software-tool MAT-

LAB and is illustrated in Figure 4.3.

4.2.1. Modeling approach for deterministic components

In a first step, prices are logarithmised and the price logs are passed to the il-

lustrated simulation tool instead of the prices themselves (see Figure 4.3). The

logarithms are used, as the lognormal distribution fits the empirical distribution

and captures the left-skewness of the electricity prices (see Lucia and Schwartz

(2002)). Besides, if electricity prices were assumed to be normally distributed,

this would result in negative values nearly half of the time. To avoid this, simu-

lation of the logarithms seems to be a reasonable solution. Since 2008, negative

prices have also been allowed to occur at the EEX. This change in market design

requires an adaptation of the presented modeling approach to capture negative

prices also. Therefore the negative values are transformed to positive ones, so that

the logarithmisation can be done for all values. After simulating and retransform-

ing the price logs, some of the electricity prices are changed to negative values

again representing the negative prices (see 4.2.3).

After the logaritmisation, the modeling approach is continued with the removal

of the long-term trend from the original price logs. The daily and weekly cycles

as well as the seasonal component are removed in the next steps receiving the

stochastic residues, which are used for the parameter estimation of the stochastic

processes (see 4.2.2). The trend is assumed to be a linear function, whose param-

eters X0 and γ are estimated with least-square error estimation (see Eq. 4.1).
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Figure 4.3.: Overview of the electricity price model
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XTrend
t = X0 + γ · t [4.1]

The trend curve is subtracted from the electricity price logs resulting in a de-

trended series, which is passed to the next data preparation step: weekly cycles are

removed from the price logs. The weekly cycle of the electricity prices is modeled

via an adjusted absolute sinus-function (cp. Eq. 4.2), as its structure is fitting the

weekly oscillation very well (for trigonometric functions applied for deterministic

cycles see Thome (2005)).

Xwc
t = αwc +βwc

∣∣∣sin
(π · t

168
−ϕwc

)∣∣∣ [4.2]

The parameters α and β of this function are estimated via linear regression

using least square errors, based on detrended historical series of electricity price

logarithms between 2002 and 2009. The phase shift parameter ϕ is determined

as the deviation from the time point, in which the weekly cycle reaches its mini-

mum in the historical series. To determine this time point the mean values of the

electricity prices are calculated for each hour of the 168 hours of a week. This

calculation delivers the seventh hour of sundays as the minimum value and as the

absolute value of the sinus function is considered for the weekly cycle, the phase

shift is set to "0" for this specific hour. If a simulation starts with another day

and time then the phase shift can be determined as the deviation to the last Sun-

day’s seventh hour. With the help of these parameter values the weekly season is

calculated and removed from the detrended price logs6.

In the next step, the daily cycle is defined as the hourly means for the 24 hours

of the day and is removed. Thereby it is worth mentioning that different daily

cycles are determined for each season (seas winter, spring, summer and autumn).

Xdc
i,seas =

24

T

(T/24)−1

∑
t=0

Xi+24t,seas∀i ∈ {1,2, ..,24}∨∀seas [4.3]

6The estimated values of the parameters depend strongly on the time-period of the data series used for

the estimation. This is discussed for stochastic oil price models by Heidorn et al. (2009)
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Figure 4.4.: Autocorrelation of hourly electricity price logs before and after deseasonalising for

200 Lags

The weekly and daily cycles are very important, as the autocorrelation function

(ACF) (see Figure 4.4) for the price series shows a considerable autocorrelation7

between the values of same hours of different days and between the same days of

different weeks.

The last seasonal effect is the annual cycle which can be modeled via the

trigonometric function of the basic oscillation presented by Seifert and Uhrig-

Homburg (2007):

Xac
d,h = αd,h +βd,hcos

(
2π

t − τ
8760

)
+ γd,hsin

(
2π

t − τ
8760

)
[4.4]

However, as the results of the trigonometric function above have not been sat-

isfying, the mean values of each month are calculated and defined as the seasonal

component instead of the basic oscillation. The monthly means are removed re-

sulting in a deseasonalised series (Eq. 4.5)

7Autocorrelation is the correlation between the series (Xt) and the adjusted series (Xt−q), which is the

same series moved by a lag of the length q (see Chatfield (2004))
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XS
t = Xt −

(
∑

d′∈{wd,sd,wed}
1
(
d′|d′ = d(t)

) 24

∑
h=1

Xh ·1(h|h = t mod 24)

+αwc +βwc

∣∣∣sin
(π · t

168
−ϕwc

)∣∣∣+ 12

∑
m′=1

X̄m′1(m′|m′ = m(t))
) [4.5]

This deseasonalised series (XS
t ) is assumed to contain only stochastic elements,

such as the volatility of the price logs and randomly occurring jumps or peaks,

which can be simulated via different stochastic processes described in the follow-

ing.

4.2.2. Modeling stochastic components with financial and time-series

models

An important characteristic of electricity prices are spikes, also called peaks, and

jump groups. Jump groups occur, as electricity prices jump into another price

level, in the following called "jump regime", and remain there for some hours.

Afterwards the prices jump back to the base price level, called "base regime".

Therefore a regime-switching approach is implemented into the price model to

simulate the transition of prices between the base and jump regime. The descrip-

tion of the regime-switching approach is described in 4.2.2.4, but at first the focus

is set on the modeling of the base regime. The base regime, which most of the

prices within a year can be allocated to, can be simulated via different stochastic

processes, such as geometric Brownian motion or the best known mean-reverting

process, the Ornstein-Uhlenbeck process. Due to these processes, which are de-

rived from financial mathematics, the marginal change rate dX of the electricity

prices are modelled instead of themselves (see Eq. 4.6). However, as electric-

ity prices are formed in a discrete hourly resolved framework, these processes

are mostly turned to discrete stochastic processes, as it is the case for time-series

models, such as autoregressive moving average (ARMA) or generalized autore-

gressive conditional heteroscedasticity (GARCH) processes. In this analysis the

mean-reversion process, the ARMA as well as integrated ARMA (ARIMA) pro-
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cesses and the GARCH process are implemented and evaluated to find the appro-

priate model, which can describe the electricity spot prices on the EEX best.

4.2.2.1. Mean reversion model

The mean-reversion process is one of the most applied stochastic processes for

electricity prices. As logarithms of the electricity prices (Xt = lnpt) are mod-

eled to reach variance stabilisation, the mean-reversion process or the so-called

Ornstein-Uhlenbeck process (see Uhlenbeck (1930)) can be formulated for the

price changes with the following stochastic differential equation (SDE):

dXS
t = κ(μ −XS

t )dt +σ ·dWt [4.6]

The first term of the mean reversion process describes the so-called drift compo-

nent (μ −XS
t ). The parameter κ determines the "reversion speed" of the stochas-

tic component to their long-term mean μ . The economic interpretation of this

mean-reversion component is that stochastic price fluctuations around the mean

and price peaks are only temporarily, caused by e.g. power plant outages or ca-

pacity shortages. The second term, the stochastic component dWt in fact, corre-

sponds to the standard Brownian motion. The stochastic driver is the so-called

Wiener Process dWt = εtdt1/2, whereby εt is a standard normally distributed ran-

dom variable (see Hull (2005), Muche (2007) Weron et al. (2004)). The SDE is

solved applying Ito’s Lemma, receiving the following exact solution derived from

Karatzas and Shreve (2000).

XS
t+1 = XS

t · e−κδ +μ(1− e−κδ )+σ

√
1− e−2κδ

2κ
· εt , εt ∼ N(0,1) [4.7]

The substitutions a = e−κδ , b = μ(1− e−κδ and σε = σ
√

1−e−2κδ
2κ lead to the

Eq. 4.8, whereas δ is the time difference between t and t +1, here i.e. one hour.

XS
t+1 = XS

t ·a+b+σε · εt , εt ∼ N(0,1) [4.8]

Using Maximum Likelihood (ML) estimates the parameters a,b,σε can be cal-

culated via the historical stochastic residues. Another approach for the parameter
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estimation is least-squares estimation. The resubstitution of the parameters a,b,σε

delivers the original parameters of the exact solution κ,μ and σ . With the help of

the estimated parameters the exact solution of the SDE is applied to generate the

stochastic component of a simulated price path.

4.2.2.2. ARMA and Integrated ARMA (ARIMA) models

The autoregressive moving average (ARMA) process describes another method

to simulate the stochastic residues. The ARMA process enables the simulation of

time dependences within a time-series. This process consists of two parts, the au-

toregressive and the moving average part. While the autoregressive component of

an ARMA process considers the last p-prices for the calculation of the electricity

price XS
t in t, the moving average component takes the weighted mean of the last

q error terms into account, i.e. the weighted moving average of the last q com-

ponents of the white noise process (see Swider and Weber (2007)). Therefore an

ARMA (p,q) process has the orders p and q representing the orders of each partial

process. The calculation of the price in t depends at last on a new error term εt ,

which can be e.g. normally or Laplace distributed.

XS
t =

p

∑
i=1

αiXS
t−i +

q

∑
j=1

β jεt− j + εt [4.9]

The parameters αi describe the weight of the impact of XS
t−i on the actual value

Xt for all i = 1, .., p. The parameters β j define the weights of the last q error terms

(innovations) εt− j ( j = 1, ..,q) within the moving average component. To apply

the ARMA model, the historical stochastic residuals XS
t of electricity prices have

to be normally distributed. But the normal distribution hypothesis is rejected by

the X2- and the Kolmogorov-Smirnov test. Therefore the historical residuals have

to be transformed to normally distributed residuals. The transformation can be

carried out using the inverse of the cumulative distribution function (CDF) of the

standard normal distribution F−1,SN(y) on the empiric CDF values FE(x). The

resulting series are standard normally distributed. Calibrating an ARMA model

with the standard normally distributed values and running simulations will gen-

erate again standard distributed stochastic components of electricity prices. To
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Figure 4.5.: Transformation of the historical stochastic residuals of electricity prices to standard

normal distributed residuals

receive the original distribution of the stochastic component, the simulated nor-

mally distributed residuals need to be retransformed using the inverse of the CDF

of the original empiric distribution F−1,E(x). Figure 4.5 illustrates the transfor-

mation and retransformation procedure.

Furthermore, the use of the ARMA process presumes that the stochastic residues

are weak stationary and the error terms (innovations) are normally distributed. If

these conditions are given in the stochastic residues, the approach of Box and

Jenkins (Box et al. (2008)) can be applied to find out the specification of the

ARMA model and to estimate its parameters8:

1. The specification of an ARMA model describes the orders p and q. Thereby

as much as possible time dependences should be captured on the one hand,

which can be achieved with high model orders; on the other hand the mod-

eling of very small time dependences should be avoided to reduce the model

order, as high model orders can lead to instability (see Schmoeller (2005)).

2. Then the parameters αi and β j as well as the variance of the white noise εt

have to be estimated from the original stochastic residues. For that purpose
8In this analysis the ARMA specification and the parameter estimation are realised with the GARCH-

Toolbox of MATLAB.
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a starting solution is generated for an autoregressive process (AR) with a

high order using least-square errors estimation. Afterwards the innovations

of this AR process are regarded to be equal to that of the specific ARMA

process. Using ML estimates the parameters of the original ARMA process

can be estimated and used for the simulation of the stochastic component

(Brockwell and Davis (2002), Schlittgen and Streitberg (2001)).

3. At last the model quality has to be checked, especially in regard to the model

orders p and q. If the model quality is not satisfying, a new model order has

to be chosen and the parameter estimation has to be started again.

As mentioned above ARMA models are based on at least weak-stationary time

series. That means that the expected value of the stochastic process Xt is constant

for all t and therefore independent from the time t. However, time series common

in practice do not show this characteristic, their expected value and their variance

can change over time. But as non stationary processes are more or less homoge-

neous, i.e. their behaviour in different periods is distinguished only by different,

slowly changing levels or locally deviating trend slopes, time series that are not

weak-stationary can be transferred into weak-stationary processes using linear fil-

ters. Filters are tools that help to eliminate or remove undesirable components

from a time series. Filter processes that are focused on adjusting the trends of

a time series, are called integrated ARMA processes or autoregressive integrated

moving average (ARIMA) processes. Filters adjusting seasonal changes are called

seasonal ARIMA processes (SARIMA(P,D,Q) process). A combination of both

filter techniques is also possible (Stier (2001); Thome (2005)). The approach of

Box und Jenkins tries to transfer time series with clear trends or cycles into sta-

tionary series using appropriate cycles. Of special interest are thereby difference

filters and their powers, that are preferably but not exclusively used. A difference

filter of first degree (or first order) is defined by

ΔXS
t = XS

t −XS
t−1 [4.10]

Where necessary, difference filters can be used repeatedly (d-times), to ob-

tain a weak stationary process. After applying the filter d-times, the time se-
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ries are passed through to an ARMA process, that is why the process is called

integrated ARMA process or ARIMA(p,d,q). As deterministic components are

filtered within the ARIMA process, the model could be directly applied for the

electricity price logs without removing the deterministic components, as it is de-

scribed in 4.2.1. However, the detrended and the deseasonalised price-logs could

still contain some deterministic parts. That is why both time-series, the price logs

series and the detrended and deseasonalised series are examined by ARIMA pro-

cesses separately (see 4.3), comparing the results afterwards.

4.2.2.3. GARCH process

Within the GARCH approach the assumption of homoscedasticity is dropped for

a heteroscedastic variance. That means the variance is no more constant within

all parts of the time series. Indeed time-series phases of lower and higher volatil-

ity alternate within electricity prices. In phases of higher volatility markets are

often nervous and electricity prices remain longer within the jump-regime, im-

plying a higher conditional probability for high price changes, when such price

movements have already occurred within the recent past. With GARCH mod-

els such behaviour of electricity prices can be described mathematically. In the

following the most common GARCH(p,q) process according to Engle and Boller-

slev (Engle (1982), Bollerslev (1986)) is described, which possesses the following

variance function (Eq. 4.11).

σ2
t = ω +

p

∑
i=1

αiσ2
t−i +

q

∑
j=1

β jε2
t− j [4.11]

The time-variant variance σ2
t contains a constant component ω , an autoregres-

sive part of the order p and a moving average part of the order q. Thereby it has

to be ensured, that the variance at any time t is positive, that means that param-

eters ω,αi,β j are positive or equal to zero at any time. These parameters can

be also determined by maximizing the Log-Likelihood function (Börger (2004),

Kreiss (2006) Swider and Weber (2007)). In practice GARCH(1,1) models are

frequently used, so that the Eq. eq:GARCH1 can be reduced to:
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4.2. Modeling approaches for electricity price simulation

σ2
t = ω +ασ2

t−1 +βε2
t−1 [4.12]

The GARCH approach is then used to simulate the stochastic component, as

the heteroscedastic variance is passed into an ARMA-process modeling the price

logs Xt (see 4.2.2.2). Therefore GARCH processes can be seen as an extension of

ARMA-processes with a time-variant variance for the normally distributed inno-

vations εt . At last it is worth mentioning that GARCH processes can handle the

heteroscedasticity caused by jumps. In this case a regime-switching approach

would not be necessary anymore to manage the different volatilities of jumps

groups and of the other prices. However, it has to be checked, if the applied

GARCH process can capture the whole heteroscedastic behaviour of the electric-

ity price or if including a regime-switching approach into the GARCH process

delivers more appropriate results.

4.2.2.4. Regime-switching approach

As mentioned before, electricity prices stay mainly at base price level, called "base

regime" and then jump into a higher price level; they stay there for some hours

and according to their mean-reverting characteristic they jump back to the base

price regime again (see Seifert and Uhrig-Homburg (2007)). For the case of price

logs a further regime can be added, i.e. the "lower jump regime" 9.

To capture the different price regimes, a regime-switching approach with differ-

ent models for base and jump regimes is introduced10. Thereby the base regime

is modelled with the help of the stochastic processes described above. The jump

regime is defined with an extended version of these stochastic processes simulat-

ing base price logs XS,base
t . In this approach, the same ARMA model extended by

a jump component is used for the jump regime. This maybe unusual and new in

the case of regime switching models, but it is not totally new for electricity price

9The analysis showed that some of the price logs are below a preset confidence interval representing

the base regime. Therefore the introduction of a lower jump regime is necessary.
10To avoid mismatching of high prices to the jump regime because of daily cycles or other seasonal

effects, the models for base and jump regimes are developed for the stochastic component, which

does not contain seasonal components (see 4.2.1).
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modeling, as it is derived from the jump diffusion approach (see Weron et al.

(2004)). The reason for using the same ARMA model for the jump regime is that

the jumps are not completely removed from the historical residues in this model,

but they are replaced by the mean of the residual series. This approach ensures

that the residual series is not shortened by elimination of a significant number of

jumps. So the replaced jumps are assumed as mean values for the estimation of

the ARMA or mean reversion parameters. The added "jump height" to the base

regime process corresponds to the deviation of the jump value from the mean.

Thus, the normal distribution applied for the jump height is based on parameters,

which are estimated from the historical deviations of the jump values from the

mean of the residues. Therefore the simulated jumps are consistent with the his-

torical and the approach is reasonable, as the mean and volatility of jumps are

considered by the applied mean and variance parameter within the applied normal

distribution and their occurrence time is considered by the regime switching prob-

abilities described in the following. Finally, it is worth mentioning that the use

of the extension of the same ARMA-model for the jump regime ensures the auto-

correlation between prices in the base and in the jump regime. Using a normally

distributed random variable with μ+/−
lnJ and σ2+/−

lnJ for the jump height and adding

it to XS,base
t in the case of the upper jump regime and subtracting in the case of the

lower regime, the jump regime can be described as follows:

XS, jump+
t = XS,base

t + ε+t,lnJε+t,lnJ ∼ N(μ+
lnJ,σ

2+
lnJ )

XS, jump−
t = XS,base

t − ε−t,lnJε−t,lnJ ∼ N(μ−
lnJ,σ

2−
lnJ )

[4.13]

For example, if an ARMA process is used for the base regime, the upper jump

regime is modelled as (the lower jump regime is analogue):

XS, jump+
t =

p

∑
i=1

αiXS
t−i +

q

∑
j=1

β jεt− j + εt ∼ N(με ,σ2
ε )+ ε+t,lnJ ∼ N(μ+

lnJ,σ
2+
lnJ )

[4.14]

To combine the different regimes to a common approach, transition probabili-

ties between the regimes and probabilities of remaining in the same regime have to

be calculated based on historical stochastic residues of electricity prices. Thereby
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it should be noted that the regime-switching model is separately applied for week-

days and weekend days and the transition probabilities are determined for each

case, as the number of jumps and the length of jump groups can conspicuously

differ for the two day types. Furthermore, the weekdays are separated into winter

and summer weekdays (the weekdays between October and March being declared

here as "winter days", whereas the others are denoted as "summer days"), as the

electricity prices for these day types also show a different "jump structure". A fur-

ther differentiation is made between upward and downward jumps, as the above

mentioned logarithmisation of electricity prices also causes a noticeable number

of jumps downwards. Hence, downward jumps are not to be understood as price

logs or residues with negative values, but as values which are below the level

μ − 3σ , while positive jumps are defined as values above the level μ + 3σ . A

last differentiation is done for the occurrence of upward and downward jumps

within a day. In this approach it is assumed that upward jumps occur in peak

period 08:00am to 08:00pm and downwards jumps vice versa. This limitation

can be observed in the historical data and is therefore applied within the simula-

tion. Transition probabilities for the three day types d as well as for upward and

downward jumps are calculated by the following formula applied to the stochastic

residues XS
t .

Probability for remaining in the base regime:

P11 =
card
{

t ∈ [t1,T ]|XS
t ∈ [μ −3σ ,μ +3σ ]∧XS

t+1 ∈ [μ −3σ ,μ +3σ ]
}

card
{

t ∈ [t1,T ]|XS
t ∈ [μ −3σ ,μ +3σ ]

}
[4.15]

Probability for moving from the base regime into the upper jump regime:

P12 =
card
{

t ∈ [t1,T ]|XS
t ∈ [μ −3σ ,μ +3σ ]∧XS

t+1 ∈ (μ +3σ , ln3000]
}

card
{

t ∈ [t1,T ]|XS
t ∈ [μ −3σ ,μ +3σ ]

}
[4.16]

Probability for moving from the upper jump regime into the base regime:

P21 =
card
{

t ∈ [t1,T ]|XS
t ∈ (μ +3σ , ln3000]∧XS

t+1 ∈ [μ −3σ ,μ +3σ ]
}

card
{

t ∈ [t1,T ]|XS
t ∈ (μ +3σ , ln3000]

}
[4.17]
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Probability for remaining in the upper jump regime:

P22 =
card
{

t ∈ [t1,T ]|XS
t ∈ (μ +3σ , ln3000]∧XS

t+1 ∈ (μ +3σ , ln3000]
}

card
{

t ∈ [t1,T ]|XS
t ∈ (μ +3σ , ln3000]

}
[4.18]

The upper interval limit ln3000 for upper jumps results from the fact that the

highest permitted prices at the EPEX are equal to 3000 e/MWh. The probabili-

ties for switching from the base regime to the lower jump regime and backwards

(P13,P31,P33) are calculated analogue to Eq. 4.15 - 4.18, whereas the correspond-

ing interval for downward jumps is defined as (−in f ,μ −3σ ]. These probabilities

are combined to a transition probabilities matrix Td for the appropriate type day

d, which has following structure:

Td =

⎡
⎢⎢⎣

P11 P12 P13

P21 P22 0

P31 0 P33

⎤
⎥⎥⎦ [4.19]

The 0 items in the matrix Td indicates that there is no transition from the upper

jump regime to the lower jump regime, as it is not plausible for electricity prices.

These kinds of transitions cannot be observed from historical data.

Based on the different transition matrices the regime switching is simulated for

each hour of the year, whereby a parameter regime is included in the model, mark-

ing whether the base or jump process is used for the simulation of the stochastic

component of the latest price. Thereby the regime = 0, if the base process is used,

and the regime = 1, if the upper jump process is applied. Furthermore a decision

variable δ is added to the model to describe the regime switch itself in each hour h,

whereby the value of δ is determined according to the algorithm shown in Figure

4.6, which incorporates positive jumps (or jump groups)11.

The decision variable δ is passed afterwards to the simulation tool, which uses

the base regime model or the jump regime model to simulate the stochastic com-

ponent XS
t depending on the value of δ . Eq. 4.20 shows the approach for modeling

the stochastic component using the ARMA model.

11For the lower jump regime the algorithm is analogous, but the value of δ (h) is set as −1, if a negative

jump occurs.
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h

Figure 4.6.: The regime-switching algorithm for positive jumps

XS,Sim
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑p
i=1 αiX

S,Sim
t−i +∑q

j=1 β jεt− j + εt δ (t) = 0

∑p
i=1 αiX

S,Sim
t−i +∑q

j=1 β jεt− j + εt + ε+lnJ,t δ (t) = 1

∑p
i=1 αiX

S,Sim
t−i +∑q

j=1 β jεt− j + εt − ε−lnJ,t δ (t) =−1

εt ∼ N(μεt ,σ
2
εt)

ε+logJ,t ∼ N(μ+
lnJ,σ

2+
lnJ )

ε−logJ,t ∼ N(μ−
lnJ,σ

2−
lnJ )

[4.20]

The simulation of electricity price paths for a year concludes with the addition

of the deterministic components to the stochastic one and retransformation of the
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received price logs into the original price level. Afterwards, the deterministic

components are added including the annual, daily and weekly cycle as well as a

trend. Finally, the simulated price logs are retransformed receiving a simulated

price path.

XSim
t−i = XS,Sim

t−i + ∑
d′∈{wd,sd,wed}

1(d′|d′ = d(t)) ·
24

∑
h

X̄h(h|h = tmod24)

+αwc +βwc

∣∣∣sin
(π · t

168
−ϕwc

)∣∣∣+ 12

∑
m′=1

1(m′|m′ = m(t)) · X̄m′

[4.21]

As the retransformed price logs only consist of positive prices, a method has

to be carried out to incorporate also negative prices, whereby the structure of the

negative prices should fit the historical one very well. In the following a method

is introduced to generate negative prices based on the statistical structure of his-

torical negative prices.

4.2.3. Modeling negative electricity prices

As it can be observed from the model overview (see Figure 4.3), negative electric-

ity prices are at first transformed to positive ones. The logarithms of the positive

values are then calculated. The price logarithms are in turn necessary, because

modeling price logs delivers more robust results due to the mentioned variance

stabilisation reason and the left-skewed characteristic of electricity prices.

The transformation procedure can be described as follows: All negative prices

within the historical time-series are coded to 0.01 e/MWh, the smallest positive

price value. Furthermore, the average relative frequency of negative prices is cal-

culated for the years after 2008, in which negative prices were allowed. This

average relative frequency is assumed as the future probability Prneg of negative

prices. Besides, the transformation procedure delivers also a series with the origi-

nal negative prices.

The probability Prneg and the distribution of the negative prices are required

to transform some of the simulated downward jumps (see 4.2.2.4) into negative

prices. The limitation of the retransformation to some of the downward jumps
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relies on the fact, that the initially transformed values are grouped to the class of

downward jumps in the historical price log series.

The retransformation of a simulated downward jump to a negative price is done

with the help of a uniformly distributed variable dq. If dq is smaller than or equal

to the adjusted probability Pr
′
neg of negative prices, a downward jump is replaced

by a negative value, and no action is performed if dq is higher than Pr
′
neg. Thereby

the probability Pr
′
neg is defined as the adjusted relative frequency of negative prices

within the series of downward jumps (see Eq. 4.22).

Pr
′
neg = Prneg · card(P jumpdown

t )

card(Pt)
[4.22]

In the case of a decision for a transformation, a negative price is generated as a

bimodal distributed random variable. More precisely, here the bimodal distribu-

tion is defined as a combination of the lognormal and the exponential distributions.

The analysis of the historical negative prices showed that the empirical distribution

of negative prices smaller than "-80 e/MWh" can be described by the lognormal

distribution. On the other hand, negative prices above -80 e/MWh follow the ex-

ponential distribution12. To decide which part of the bimodal distribution should

be chosen, another uniformly distributed variable dn is introduced. The realisation

of dn is then compared with the historical ratio r−80 - the ratio between the num-

ber of negative prices greater than -80 e/MWh and the total number of negative

prices-, so that the appropriate distribution can be chosen (see Eq. 4.23).

Psim
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pt,neg ∼ Exp(μ1,neg) dq ≤ Pr
′
neg ∧dn ≤ r−80

Pt,neg ∼ N(μ2,neg,σ2
2,neg) dq ≤ Pr

′
neg ∧dn > r−80

P
′sim
t else

[4.23]

It can be observed that the negative prices are handled separately in this ap-

proach, because of the use of price logs instead of the prices themselves within
12No negative prices occurred in the interval [-100;-60] e/MWh in the last two years. The choice of

-80 e/MWh as the switching price level from one part of the bimodal distribution to the other is

motivated by the fact, that indeed any prices have not occurred in the interval mentioned above, but

some could occur in future. To allow future prices within this interval, the upper border for the lower

prices is not chosen as -100 e/MWh and the lower border for the higher negative prices is not chosen

as -60 e/MWh. Instead, the middle of the interval [-100;-60] e/MWh is chosen.
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the stochastic model for variance stabilization reasons. To keep the approach with

logarithmisation, any kind of transformation of the negative ones to positives is

necessary. The transformation method introduced above, which replaces nega-

tive prices by downwards jumps (initialized by 0.01 e/MWh) and retransforming

some downward jumps at the end, is chosen, as this approach does not shifts the

level of price logs to another one. The majority of the prices are not affected and

their price logs remain unchanged. If another transformation is applied, in which

all prices are shifted, so that no negative prices occur, then the price logs are at

a different level. The volatility can differ very strongly after retransforming the

simulated price logs to real prices by the exponential function. The transforma-

tion by shifting the prices would indeed take negative prices into account in a

closed approach by keeping the modeling approach with price logs. Initial tests

of the author showed that the volatility of simulation results, applying a closed

approach, was totally deviated from the historical one after retransforming the

simulated price logs. The approach with separate modeling of negative prices is

therefore chosen in this analysis. However, it is worth mentioning that the intro-

duced approach is one method to generate adequate negative prices. This method

can further be developed in future work.

After the additional modeling of negative prices, several electricity price paths

are generated with the entire modeling approach for electricity prices. The simu-

lation results of the different stochastic models are compared in the following

4.3. Evaluation of the different stochastic models

The above described models are applied on the hourly electricity spot prices

gained from the EEX for the years 2002 to 2009. Based on these historical prices,

the models are calibrated estimating the parameters of deterministic as well as

stochastic models. After calibrating the models, several simulations are carried

out to evaluate the goodness of fit of each stochastic model for electricity price

simulation.
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Table 4.1.: Estimated model parameters based on historical price logs 2002-2009 (data source:

EEX)13

Stoch. Model MR ARMA

(5,1)

ARIMA

(1,1,1)

GARCH

(1,1)

MR

w/o

RS

ARIMA

w/o

deseas

Estimated μ 0.04 −0.001 −0.001 −− −2e−4 −0.015

parameters σε 0.17 0.10 0.10 −− 0.36 0.15

of MR-κ 0.21 −− −− −− 0.23 −−
stochastic αi 1.652

model 0.626

0.035

0.001

−− 0.004 0.719 0.249 −− −0.638

βi −− −0.932 −0.961 0.567 −− 0.614

GARCH-ω −− −− −− 0.013 −− −−

Estimated Trend: X0 3.07 3.07

parameters Y 1.16e5 1.16e5

of deter- Weekly α −0.45

ministic Cycle β 0.71 −−
components ρ 0.77

4.3.1. Estimated parameters and simulation results

The parameters of the different models are estimated using linear regression and

maximum likelihood (ML) estimation. Thereby the parameters of the determinis-

tic components are determined at first to calculate the deterministic components

of the electricity prices, which are removed from the historical prices in the next

step. The stochastic residues received are used for the estimation of the parameters

of the stochastic models shown in Table 4.1.
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From a graphical comparison of simulated and historical prices, it can be con-

cluded that the simulated electricity price curves of all price models are similar to

the observed price curves. Simulated electricity price curves possess also daily,

weekly and annual cycles. This is of course caused by the initial removal and

addition of these deterministic patterns. The other important properties, such as

single peaks or jump groups, are also generated within the simulated price paths.

Furthermore the mean-reverting property is captured very well not only by the

mean reversion process, but also by the other models (see Figure 4.7).

However, some of the models simulate price curves, which are more fluctuant in

the base regime than real prices. While the mean reversion process and especially

the ARMA(5,1)- process capture the stochastic volatility quite well, the others

show a higher volatility. As the GARCH-process delivers price paths which are

significantly more volatile than historical ones, it is less suitable for the simulation

of electricity prices, although it can handle the heteroscedasticity of the stochas-

tic residues. Heteroscedasticity of time-series means that the series are not uni-

formly distributed. If for example the normal distribution is applied, the variance

parameter should vary over the time (see section 4.2.2.3). The existence of the

heteroscedastic characteristic is tested, considering homoscedasticity within the

stochastic residues as null hypothesis, which is rejected for different significance

levels (α = 0.01 or 0.05) by the "archtest"-function, a test for homoscedasticity

(for tests for homoscedasticity see Gourieroux (1997)). That means the stochastic

residues still posses heteroscedastic behaviour. However, as the heteroscedasticity

is strongly reduced by the regime-switching and the deseasonalising approaches,

it could be disregarded, and satisfactory results can be also gained with the help

of mean-reversion process or ARMA-processes.

13The stability of model parameters has been checked, by estimating the parameters for several years

separately. The values of the estimated parameters do not change significantly over the time (see

Table A.2 in the appendix). They change only in the second comma decimal and a few in the first

comma decimal. Thus, it can be deduced that the parameters stay relatively stable applying different

historical time periods for model calibrating.
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Figure 4.7.: Historical and simulated price curves of the different price models for a week

4.3.2. Importance of the regime-switching and deseasonalising

approaches

The impact of the regime-switching and deseasonalising approach becomes clear,

if the results of model versions including these approaches are compared with the

model outputs without the approaches. In the latter case, the simulated price paths

are only based on the stochastic processes, which do not appropriately capture the

structure of electricity prices. The volatility of the simulated price paths is higher

than the historical and the seasonal cycles are missing, if the separate modeling

via de- and reseasonalizing is not applied. Besides, the analysis of price paths

generated by models without the regime-switching approach makes clear that not
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Figure 4.8.: Simulated price curves of ARIMA(1,1,1) model without deseasonalising and of a

GARCH(1,1) process without regime switching

only the volatility of the price paths is not well-fitted, but also jumps are not

adequately produced. The price paths are again more volatile than they are in

reality and more jumps than in real price paths are generated (see Figure 4.8).

In addition to the graphical comparison of simulated and historical price paths,

different quality factors, such as then root mean square error (RMSE), are calcu-

lated for the results of each model. But as the RMSE can vary strongly depending

on the historical price level of the chosen reference year, the mean average per-

centage error (MAPE) is also taken into account to get further meaningful results.

The MAPE represents the normalized deviation of simulated prices from histori-

cal ones in absolute numbers, whereas RMSE defines the Euclid distance between

the simulated and historical prices (Eq. A.5 and A.4). Both quality factors are

calculated for the sorted14 simulated price paths and the sorted real prices, also

called price duration curves (PDC). To achieve a more robust result, an expected

value for both parameters is determined based on N = 30 simulations for each

model. Besides these quality factors, the coefficient of determination R2 is also

calculated to examine the goodness of fit for the different models. Again an ex-

14The calculation with sorted prices results from the fact that the occurring time of jumps is stochastic

and differs from the time of jumps within historical prices. The calculation with the original series

would lead to falsified and non meaningful MRSEs.
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4.3. Evaluation of the different stochastic models

pected value for R2 is computed from 30 simulations. All results of the error terms

are summarized in Table 4.2.

The expected RMSE is lowest for the mean-reversion and ARMA(5,1) models,

if historical electricity prices between 2002 and 2009 are considered as histor-

ical data source and comparison period. But only if a single year is analysed,

the ARIMA models deliver a smaller RMSE. The other error term and valida-

tion factors, such as MAPE or R2, show that again the mean-reversion and the

ARIMA models deliver well-fitting price paths and PDCs. The ARMA models

also produce satisfactory results, although their error factors are calculated some-

what higher. Analysing the error terms of the fourth model group, i.e. the GARCH

models, it can be stated that these models are less applicable for the simulation of

the stochastic component of the prices, as the error terms are generally higher than

the other model errors and R2 of the GARCH models are significantly lower than

those of the others. Besides, the standard deviation of the simulated price paths

differs significantly from the historical one. A further analysis of the RMSE,

MAPE and R2 is done for the same models, but this time without the above de-

scribed regime-switching approach. The calculated expected error terms RMSE

and MAPE are higher by a multiple of the ones of model versions including the

regime-switching approach. Besides, the mean and standard deviation of price

paths differ very strongly from the historical values, if the regime-switching ap-

proach is disregarded. Therefore, it can be derived that this approach is essential

for electricity price simulation, if this kind of models is applied. Finally, the qual-

ity factors are calculated for the ARIMA(1,1,1) model, whereby the price logs

are not deseasonalised, i.e. the daily, weekly and annual cycles are not removed.

As the ARIMA model includes a difference filter, the seasonal effects should be

removed by this filter. However, the higher values for the error terms show that

this is not the case (see Table 4.2). Therefore the deseasonalising makes sense,

even if an ARIMA model is applied. But as mentioned above, the importance of

15In the table, the average results of 30 simulations instead of a large number of simulations are repre-

sented, as preliminary large number of simulations, i.e. several hundred runs showed that the results

differ only in the second decimal position after the comma from the results of runs with 30 simula-

tions. To save calculation time due to the large number of model variations, further runs have been

limited to 30 simulations.
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4. Modeling electricity spot prices considering negative prices

Table 4.2.: Expected MRSE, MAPE, R2, mean and standard deviation for different stochastic

models based on 30 simulations 15

RMSE [e/MWh] MAPE [%] R2 [%]

Stochastic Model 2008 2002-09 2008 2002-09 2008 2002-09

Mean-Reversion (MR) 6.11 3.67 6.50 3.82 50.90 13.54

ARMA(1,1) 6.91 4.81 8.4 6.6 46.1 12.17

*(5,1) 7.07 4.84 8.5 6.7 45.6 12.42

ARIMA(1,1,1) 5.95 4.79 7.4 5.4 48.3 12.80

*(5,1,1) 5.87 4.81 7.3 5.4 50.0 12.66

GARCH(1,1) 11.67 6.01 9.23 6.3 33.1 8.55

*(5,5) 11.07 5.46 9.30 6.4 30.9 7.69

MR w/o RS 17.52 5.57 17.10 7.60 31.49 18.99

GARCH(1,1)w/o RS 102.00 54.07 24.40 14.10 3.90 1.14

ARIMA(1,1,1)w/o des. 15.08 11.27 18.10 17.93 0.12 1.03

mean μ std σ
Stochastic Model 2008 2002-09 historical 2008 2002-09 historical

Mean-Reversion (MR) 67.65 39.03 34.61 29.21

ARMA(1,1) 65.25 38.45 34.41 30.5

*(5,1) 65.09 38.51 2008: 34.61 30.1 2008:

ARIMA(1,1,1) 64.93 37.96 65.75 34.01 29.5 28.66

*(5,1,1) 64.92 37.96 33.43 29.6

GARCH(1,1) 68.32 36.09 45.36 36.8

*(5,5) 68.46 39.91 50.41 40.0

MR w/o RS 68.99 38.51 2002-

09:

44.16 23.39 2002-09:

GARCH(1,1)w/o RS 76.46 43.37 39.99 135.81 101.81 40847

ARIMA(1,1,1)w/o des. 57.21 34.72 18.00 29.63
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4.3. Evaluation of the different stochastic models

Table 4.3.: Out-of-sample error measures of the different stochastic models for the period 2006-

200916

Stochastic Model RMSE

[e/MWh]

MAPE [%] R2 [%]

Mean-Reversion (MR) 10.78 18.02 10.24

ARMA(1,1), *(5,1) 10.06; 9.95 18.30; 18.15 8.75; 9.00

ARIMA(1,1,1), *(5,1,1) 12.25; 12.34 21.03; 21.06 9.95; 10.03

GARCH(1,1), *(5,5) 8.65; 8.43 16.32; 16.02 6.58; 7.37

MR w/o RS 12.74 19.64 10.82

GARCH(1,1) w/o RS 23.53 16.10 2.01

ARIMA(1,1,1) w/o des. 17.03 26.51 0.01

the deseasonalising and regime-switching becomes very clear, if the price paths

of the models without these approaches (Figure 4.8) are compared with the price

paths in Figure 4.7.

After the in-sample analysis of the model errors, different out-of-sample simu-

lations are carried out to determine the goodness-of-fit of the different approaches

for out-of-sample studies. Therefore the first half of historical prices (2002-2005)

is used to calibrate the models and afterwards simulations are run for the period

2006 to 2009. The simulated prices paths are compared with the historical prices

of 2006 to 2009. The performance of each model is illustrated in Table 4.3.

Considering all three measures, the mean-reversion model and the ARMA mod-

els again deliver the best results. Therefore they seem to be more adequate for

electricity price simulation. Finally, Table 4.3 shows that the results of the out-

16The out of-sample results are as expected worse than the in-sample analysis. However, due to the fact

that no fundamental parameters, such as oil price or economic development, are considered in the

modeling approaches, the achieved error measures are especially in the case of the mean-reversion

and ARMA models still acceptable. These results can be improved introducing fundamental data via

linear or multivariate regression to the time-series models. Another interesting approach would be to

combine in future work the models discussed here with fundamental energy system models, such as

MARKAL (Fishbone and Abilock (1981)), TIMES (Remme (2006)) or PERSEUS (Möst (2006)), to

capture structural changes of the energy system and further economic parameters.
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4. Modeling electricity spot prices considering negative prices

Figure 4.9.: Real and simulated price duration curves of price models with and without negative

prices

of-sample analysis also get worse, if the deseasonalizing and regime-switching

approaches are not applied. Thus, these two approaches are applied to the price

simulations in the following sections, to capture appropriately the properties of

electricity prices.

4.3.3. Model results with versus without negative prices

The simulation of price paths with negative prices improves the results of the price

models. This issue becomes obvious, if the price duration curves (PDC) based on

models with and without negative prices are analysed. Therefore the historical

PDC of 2009 is compared with simulated ones for the same year. Thereby a PDC

is simulated with the help of a model version considering negative prices, another

based on a model excluding negative prices. Figure 4.9 illustrates that with the

help of the approach described in 4.2.3 negative prices are well captured.

The improvement of the simulation becomes also evident, if the error mea-

sures of model simulations with and without negative prices are compared with

each other. The RMSE and MAPE are significantly smaller for simulations based

on the approach with negative prices than for that without. Only the expected

mean and standard deviation become negligibly worse applying the ARMA(5,1)
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4.4. Critical reflection of the electricity price models

Table 4.4.: Comparison of quality factors for models with and without the negative prices ap-

proach (based on 30 simulations for the year 2009)

RMSE [e/MWh] MAPE [%] R2 [%]

Stochastic Model with NP w/o NP historical with NP w/o NP historical

Mean-Rever. MR 9.05 10.65 14.09 14.42 37.17 36.95

ARMA (5,1) 8.87 10.63 14.52 15.01 31.63 32.22

mean μ std σ
Stochastic Model with NP w/o NP historical with NP w/o NP historical

Mean-Rever. MR 41.28 41.40 38.85 23.75 24.02 19.41

ARMA (5,1) 37.70 37.83 23.56 23.22

model with negative price modeling. However, these factors are also improved, if

the mean-reversion model is applied considering negative prices (see Table 4.4).

Therefore it can be stated that all in all the consideration of negative prices within

the modeling approach leads to not an immense but significant improvement of

the price simulation.

4.4. Critical reflection of the electricity price models

The above described models simulate different electricity price characteristics,

such as trend, seasonal cycles, jumps and stochastic volatility quite well. How-

ever, some of the models, such as the ARIMA(1,1,1) or GARCH(1,1)-processes,

generate higher volatile price paths. Therefore, electricity prices should be ini-

tially transformed, so that ARIMA and GARCH processes can be appropriately

applied. A possible transformation could be the repeated logarithmisation of the

price logs, as this could lead to further variance stabilisation17.

17The repeated logarithmisation of prices for variance stabilization reasons requires the repeated (re-)

transformation of negative values to positive ones. However, in this case it has to be checked, if the

new transformation leads to instability of the price process and if the occurring bias is acceptable or

not.
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4. Modeling electricity spot prices considering negative prices

Besides, the modeling approach for the deterministic components indeed con-

siders a long-term trend, but this trend is estimated from historical series and does

not contain distinctive structural changes, such as an extremely increasing share

of renewable generation capacities. These structural changes can lead to another

price level as the one estimated with the help of a historical trend curve. To cap-

ture changes of the power plant structure other models are necessary, especially

fundamental models. Future work could therefore focus on a combination of fun-

damental and stochastic models to consider both, price levels caused by significant

changes of the power plant mix and the above modelled short and mid-term char-

acteristics of electricity prices.

Furthermore the deterministic components are fitted iteratively by different meth-

ods. The iterative process can lead to different results depending on the order of

removal and addition of the different cycles. A simultaneously estimation of the

coefficients of the different cycles in a closed approach using a large regression

would avoid the question which order to choose. This approach was also tested

by the author. However, the fitting results are less satisfying. The RMSE of this

approach combined with the ARMA model is 6.37 e/MWh for a simulation for

the period between 2002 and 2009, while the one of the iterative approach is only

4.84 e/MWh. Moreover the daily and weekly structure of the electricity spot

prices is not captured adequately by the closed approach, as it is done by the it-

erative approach (see Figure A.2 in the appendix). For this reason and due to the

fact that the different cycles have different period length, which are in the ideal

case independent, the iterative approach has been applied in this study to model

seasonal cycles.

Besides, further work has to be carried out to improve the simulation of nega-

tive electricity prices. Single negative prices can be generated with the help of the

above described approach, but as negative prices occur consecutively for several

hours and as they show autocorrelation for a lag of some hours, an extended ap-

proach with an autoregressive approach could fit the structure of negative prices

better. The introduced approach can be also improved, if more historical data

including negative prices are available after some years.
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Moreover, the use of a bimodal distribution for the simulation of negative elec-

tricity prices raises the question, if there is a fundamental reason for the bimodal

distribution and if it is likely that the future negative prices will be also bimodally

distributed. It is hard to find a fundamental reason for the distribution of neg-

ative prices, as prices are formed in the spot market, where beside fundamental

reasons psychological and strategic behaviour of market actors play an important

role. Nevertheless, a reason for the two peaks of the negative price distribution

could be the fact, that in the case of negative prices near 0 the energy suppliers

are ready to pay a small "fee" for not shutting-down their middle-load plants (coal

plants) for a single or a few hours to avoid start-up or ramp costs. However, if

the wind penetration is very high and the load is very low, then the base-load

power plants, such as lignite or nuclear plants, are concerned by shut-down. But

the shut-down and start-up of these power plants for a couple of hours are much

costlier. Especially for nuclear power plants, these opportunity costs are higher

and quite uncertain as an authorisation from the state is necessary to restart. Thus,

the utilities try to avoid a shut-down and are willing to pay a much higher "fee"

(up to 120e/MWh and more) to get rid of the electricity, which they produce in

surplus.

It is possible that the distribution of negative prices posses two peaks, one

nearby 0e/MWh and one nearby 120e/MWh, due to these reasons. This is why

a two-peaking (bimodal) distribution is likely in future. However, depending on

future negative price observations, the distribution of negative prices might have

to be adapted or could also be confirmed.

Thus, the method introduced above is an initial approach, which generates neg-

ative prices, whose absolute values and occurrence probabilities are similar to that

of historical ones.

4.5. Conclusions

In this section different stochastic models are applied for the simulation of elec-

tricity prices, to evaluate and compare the different approaches. Therefore a model

with two modules is introduced, the first for the deterministic parts of electricity
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4. Modeling electricity spot prices considering negative prices

prices, the second for the stochastic parts. The separate analysis of deterministic

components and their removal from price logs is necessary to receive the stochas-

tic part of electricity prices, for which the application of the considered stochastic

process is reasonable. The removal of deterministic components from the histori-

cal prices and their addition to the simulated stochastic component is an adequate

method, even if the ARIMA process is used to model the electricity prices. The

analysis pointed out that a difference filter used within the ARIMA process can not

remove and add deterministic elements sufficiently. Therefore a separate handling

of the deterministic elements is more effective. Another remarkable outcome of

the analysis is the importance of a regime-switching approach for the adequate

simulation of price jumps. The stochastic processes are not able to simulate price

peaks or jump groups by themselves. Even the GARCH process, the only method

that can handle heteroscedasticity, cannot incorporate jumps with the height that is

usually observed in historical electricity prices. However, the introduced regime-

switching approach generates jumps, whose structure is fitting the historical ones

very well.

Furthermore, the evaluation of the different stochastic models showed that the

mean reversion and the ARMA(5,1) processes are fitting the daily and weekly

movements and especially the stochastic volatility very well, while the other mod-

els, especially GARCH processes, generate volatile price paths higher than the

historical ones. Furthermore the expected RMSE and MAPE are significantly

lower applying mean-reversion and AR(i)MA models instead of GARCH pro-

cesses, which is another sign for a good fit of the structure of historical electricity

prices by the former models. Finally, it could be determined that the novel ap-

proach for negative prices could successfully incorporate these prices and that it

leads to a significant improvement of the error measures RMSE and MAPE. A fur-

ther improvement of electricity price modeling could be achieved, if the impact of

renewable power generation on electricity prices is determined and appropriately

modeled. This impact is caused by the so-called merit order effect of renewable

power feed-in (see section 5.1), which is quantified and added to the electricity

price models in the following.
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5. Modeling wind power feed-in and its impacts on electricity
spot prices

The influence of electricity from renewable energy sources on spot market prices

is gaining in importance with increasing shares of renewable energy feed-in (see

Ryu et al. (2010)). The electricity feed-in from renewable resources reduces the

remaining system load, which has to be satisfied by conventional power capacities.

As the renewable feed-in shifts market prices along the merit-order curve of power

plants, this effect is often called the merit-order-effect of renewable energies (see

Sensfuss et al. (2008), Menanteau et al. (2003)). The following figures for the

German electricity system illustrate the impact of renewable feed-in especially

based on wind energy: wind energy capacities in Germany amounted to approx.

26 GW in 2010 which corresponded to more than 30 % of the maximum load

in that year1. This means that in times with a strong wind at least 30 % of the

maximum load are served by wind power, which replaces the adaequate amount

of conventional capacities. Thus, it is obvious that the feed-in from wind energy

has an significant impact on spot market prices.

As the feed-in from wind energy is increasingly important for electricity price

modeling, also financial and time-series models have to integrate this new uncer-

tain parameter in their modeling approach. Up to now, there exists hardly any

financial or time-series modeling approach which explicitly models wind power

feed-in and which incorporates this uncertainty of wind power feed-in into an elec-

tricity price model. Therefore this chapter presents an analysis of the wind power

feed-in (in Germany) and proposes a modeling approach for wind power feed-

in. At last it presents an integrated approach for the simulation of electricity spot

prices under consideration of wind power feed-in within a time-series modeling

approach.

1For the load data see BDEW (2013) or the websites of the German TSOs
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This chapter is structured as follows: The next section gives an overview about

the uncertainty in wind power generation and quantifies its impact on the elec-

tricity spot prices that is related to the merit-order effect of wind energy. Section

5.2.2 focuses on the simulation of wind power feed-in (WPF) based on the hourly

utilization of the overall wind power capacity installed in Germany. Thereby the

focus will be set on the removal of deterministic patterns, such as seasonality, and

on the modeling of stochastic properties of the hourly capacity utilization series.

The autoregressive behaviour of the stochastic part of the capacity utilization will

be captured by an recursive method simulating the change rate of the next capacity

utilization level by its preceding values. After generating the stochastic compo-

nent, the time-series will be reseasonalised to receive final capacity utilization

series representing the hourly WPF of a year.

The hourly WPF series will be used in section 5.2.3, to extend the simulation of

electricity prices considering the short-term impact of WPF. Thereby, an already

existing electricity model will be shortly described, before the focus is set on

model extensions integrating the impacts of WPF. The description of the extended

electricity price model will be followed by the summary of the main results in the

conclusions section, presenting also further work that can be carried out in that

area.

5.1. Impacts of wind power feed-in on electricity prices

The effect of wind power feed-in on electricity prices has been analyzed in various

papers (see Ray et al. (2010)). In general it can be distinguished between model

based analysis (see Sensfuss et al. (2008), Weigt (2009), Delarue et al. (2009),

Bode and Groscurth (2006), de Miera et al. (2008)) and statistical analysis. Main

goal of the statistical approaches is to quantify the price spread of market prices

with a high and a low wind feed in (see Jonsson et al. (2010), Neubarth et al.

(2006)).

The price reducing impact is also called merit-order effect (see Figure 5.1) and

can be explained with the right shift of the supply curve when wind power with

low variable costs is integrated into the supply curve. Assuming an inelastic de-
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mand, electricity price as intersection between supply and demand will thus de-

crease. The height of the merit-order effect depends apart from the feed-in of wind

power mainly on the two factors demand height and gradient of the supply curve.

The gradient of the supply curve depends mainly on the technologies, efficiencies,

fuel price spreads and the CO2 price.
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Figure 5.1.: Right shift of the merit order and the supply curve particularly due to wind power

feed-in

The merit-order effect can be quantified using the historical market prices from

the European Power Exchange (EPEX). A linear regression of market prices de-

pending on wind power feed-in shows that the electricity price decreases on av-

erage by 1.47 e for every additional GW of wind power2. However, this average

effect can not explain extreme price events (i.e. negative prices of -500 e/MWh).

Thus, the correlation of electricity price and wind power feed-in might depend on

the point of time and is presumably nonlinear.

In the following, the price reduction effect of wind power feed-in will be anal-

ysed depending on the demand situation. In advance, the time series of the prices

2Own calculation based on electricity spot prices from the EEX and wind power feed-in data (see

BDEW (2013)) for the years 2006 to 2009
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5. Modeling wind power feed-in and its impacts on electricity spot prices

is deseasonalized to expose the correlation between wind power feed-in and prices.

The deseasonalization is performed for yearly, weakly, and daily cycles (see sec-

tion 4.2.1).

For every hour of the period 2006-2009, a triple of electricity price, wind power

feed-in and demand (load) is formed and sorted ascendingly by the load. Thereby

2 GW clusters based on the load are formed for the data triples.

With a linear regression, the correlation of electricity price PL
t and wind power

feed-in W L
t is determined for every load interval L.

PL
t = αL ·W L

t +βL [5.1]

Figure 5.2.: Average change of the deseasonalized electricity price per GW wind power depend-

ing on load interval

Figure 5.2 shows the parameters αL (determined with Eq. 5.1). The values are

negative showing that the feed-in of wind power leads to lower electricity prices.

It also shows that the price reducing effect highly depends on the load situation

and can be significantly higher than the average reduction of 1.47 e/MWh per

GW wind power, which is also shown in Figure 5.2.
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5.1. Impacts of wind power feed-in on electricity prices

In the following, the price reduction is compared to the merit-order curve. Fig-

ure 5.3 shows the price reduction (absolute value) together with the merit-order

curve of the German electricity market. There are some characteristics in the price

reduction curve that can also be observed in the merit-order curve. The similar-

ities even increase if the price reduction curve depending on the load is shifted

to the left by the average wind power feed-in. This can be interpreted as a price

reduction curve of WPF depending on the residual demand.

There are four significant changes in the curve. These changes can be also

found in the merit-order curve. In area I (see Figure 5.3) a local peak of the price

reduction per GW feed-in can be observed. The comparable step in the merit-

order curve represents the change from lignite to coal fired power plants. Thus

the price reduction effect increases when lignite power plants are the price setting

units instead of coal fired power plants, as the shutdown of lignite power plants are

more costlier than coal power plants. Hence, power plant operators are accepting

also very low prices to avoid the shutdown and restart of a lignite power plant.

A similar step can be observed in area III. Here the corresponding switch in the

merit-order is from gas to coal fired power plants. In this case it is more expensive

to shutdown a coal power plant than a combined cycle power plant.

Another strong increase of the price reduction effect can be observed in area IV.

Here peak load power plants (oil or gas fired) have to be used. These are the most

expensive power plants because of their low efficiency and the high fuel price. If

the use of these power plants is avoided, the price reduction is very high. On the

other side, the flat areas (II and right of III) of the price reduction curve represent

quite a low price reduction. The merit-order curve shows the corresponding parts

with a low slope.

The price reducing effect in area I is much higher than in area III. This areas

represent the power plant switch from lignite to coal (area I) and coal to combined

cycle power plants (area III). As the spread of the variable costs is not in the same

ratio as the price reduction effect, there are other reasons for the higher reduction

in area I. In this area the occurrence of negative prices is high, because shut-down

and ramp-up costs are tried to be avoided and reserve requirements may cause

further restriction on the operation of power plants. Furthermore, combined heat
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5. Modeling wind power feed-in and its impacts on electricity spot prices

and power plants have to be kept online to fulfill contracts on heat delivery and

this can lead to excess supply and thus to negative prices.
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Figure 5.3.: Price reduction per GW wind power feed-in depending on the load level and the

German merit order curve (source: Erdmann (2008) and own calculation)

5.2. Integrated approach for modeling wind power feed-in and electricity

prices

As electricity prices are strongly influenced by the amount of wind power feed-in

to the grid, a combined approach of a wind power feed-in (WPF) and electric-

ity spot price model has been developed. Thereby the relationship between WPF

110



5.2. Integrated approach for modeling WPF and electricity prices

and prices, especially the price reduction effect of WPF on electricity prices (see

section 5.1), is taken into account. In the combined modeling approach, histori-

cal electricity price and WPF series are used to calibrate the model components,

which in turn are applied to generate simulated price and WPF series. The simu-

lation of prices and WPF allows the evaluation of power plant technologies, such

as wind parks, under uncertainty, as a big number of simulation runs can be car-

ried out to describe and handle the uncertainty. For the evaluation it is important

that both, the WPF series and electricity prices, are adequately simulated. The

advantage of the combined modeling approach is that it not only provides both

series, but it also captures the correlation between them. Therefore the following

combined modeling approach is introduced.

5.2.1. Overview of the modeling approach

The whole modeling approach consists of two main models. In the first model

WPF series are simulated for a whole year with an hourly resolution. In the sec-

ond model electricity spot prices are modeled using the simulated WPF series to

determine the price reduction effect of WPF via a linear regression approach.

The WPF model component is based on a stochastic process with an autoregres-

sive component. However, since historical WPF series show significant seasonal

patterns throughout the year and also within a day, in the first step they have

to be removed from the historical data3. This procedure avoids overlapping by

deterministic seasonal patterns during the analysis and simulation of the stochas-

tic component of WPF. The historical WPF series without the seasonal pattern

are then used to calibrate a stochastic process, which is applied to simulate the

stochastic component of WPF series. In the last step, the seasonal patterns are

again added to the stochastic component resulting in final WPF series.

Afterwards the simulated WPF series are processed to the electricity price mod-

ule, which also consists of two components, one for the simulation of the deter-

ministic elements of electricity prices (trend, daily, weekly and annual cycle) and

the other for the stochastic residuals. But before the electricity price module is

3Deseasonalization methods for time-series are precisely described in Kreiss (2006)
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Figure 5.4.: Overview of the WPF simulation model
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applied, it has to be calibrated. Therefore the historical electricity prices are inte-

grated to the model. However, the historical electricity prices contain beside the

deterministic components a further explanatory component, the price reduction

effect of WPF. That is why, this effect is removed from the prices at first and the

"WPF-impact-free" prices are then passed to the electricity price module. In the

electricity price module, the deterministic components of prices are removed; the

stochastic residuals are used for the calibration of the stochastic component via an

autoregressive time-series model (see Box et al. (2008)) and then simulated time

series are extended by adding the deterministic components. The resulting series

describe simulated electricity prices without any price reduction effect of WPF.

Thus, the WPF series simulated with the first module are now used to determine

the price reduction effect, which is determined via linear regression of electricity

prices on WPF. The addition of the WPF price reduction effect to the electricity

price series leads to completes electricity spot price simulation (see Figure 5.4).

5.2.2. Wind power feed-in model

In the following the first module of the combined approach, the WPF model, is de-

scribed, which simulates the progress of the wind power feed-in (WPF) through-

out a year. The WPF model focuses on the simulation of daily and seasonal pat-

terns as well as on the stochastic component of WPF. Within the model the histori-

cal WPF series for whole Germany are directly used to describe the characteristics

of WPF and to calibrate the model.

Existing studies about simulating wind power feed-in and models established

therein mostly depend on an indirect approach, as not wind power feed-in but

wind speed series are simulated based on historical data (see e.g. Safari (2011),

Torres et al. (2005) or Kamal and Jafri (1997)). The simulated wind speed se-

ries afterwards are transformed into WPF series. Generally, these studies consider

solely regional limited areas, since representative wind speed data for large ter-

ritories is hardly to find, due to wind speed’s high dependencies on local effects.

Papaefthymiou and Kloeckl (2008) modify the wind speed approach, as they pro-

pose to transform wind speed into WPF data at first and to model WPF afterwards.
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Using a Markov chain Monte Carlo method for modeling WPF, their approach im-

plicates a significant simplification of a stochastic model represented in a reduced

number of states and a higher level of accuracy.

According to Suomalainen et al. (2012) auto-regressive models as preferred by

Billington et al. (1995) and Markov models mentioned above do not take into ac-

count the high variability and correlation of wind power evident in daily, seasonal,

or annual seasonalities. That is why they identify in a first step seasonality, aver-

age wind speeds, and day types. Afterwards these characteristics of wind speed

are simulated with the help of AR-models and probability distribution matrices.

Kennedy and Rogers (2009) also apply seasonality adjusted wind power simula-

tion. However, these approaches also model wind speed at first and then transform

the output into WPF series.

Now it is worth mentioning that the model presented in this approach is no

longer based on wind speed data, but simulates WPF directly using historical WPF

data. The indirect modeling via wind speeds is not chosen in this approach, as

a representative wind speed for whole Germany cannot be found and separate

modeling of wind speeds for each wind power site is nearly impossible due to

the large number of wind power plants spread throughout Germany. Besides,

historical data is only available for the total wind power feed-in, but not for wind

speeds at each wind power site. Thus, a direct modeling approach for the total

wind power generation in Germany is developed.

Furthermore, the developed WPF model does not only simulate the amount

of wind energy feed-in, but also the percentage utilization level of the overall

generation capacity installed in Germany. More precisely, the average capacity

utilization is firstly modeled and then multiplied by the total installed capacity of

the analysed year resulting in a simulated WPF series for that year. With the help

of this method the future expansion of the overall capacity can be considered.

The underlying modeling approach for the simulation of the capacity utiliza-

tion is based on a recursive determination of its hourly values. Therefore every

capacity utilization value Wt is determined by its predecessor Wt−1 and the actual

change rate ΔWt in t, which itself is dependent on the previous capacity utiliza-

tion values Wt−q. This autoregressive procedure was chosen in order to meet the
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special behaviour of the capacity utilization level, as the historical values posses a

significant autocorrelation.4

The modeling approach based on the autoregressive approach is introduced in

the following, but at first the description of the seasonal patterns are presented.

The seasonal patterns have to be simulated at first and then removed from the

historical WPF series, so that the autoregressive model can be applied for the

stochastic residuals, i.e. the deseasonalised series.

5.2.2.1. Modeling seasonality of wind power feed-in

The analysis of the observed wind power feed-in data revealed significant seasonal

patterns. In the winter for example, the utilization of the installed capacity is sig-

nificantly higher than in the summer. This results from the geographical position

of Germany and corresponding weather changes: in Europe west winds are much

stronger in the winter than in the summer (see Raczkowsky (2008)).

Figure 5.5 depicts the development of the annual seasonality showing the av-

erage monthly 0.9 and 0.1 quantiles of the observed capacity utilization. The

average 0.1 as well as 0.9 quantiles are larger in winter than in summer months,

whereby the variation of the latter is significantly stronger. The stronger variation

of the 0.9 quantile is caused on the one hand by generally higher wind speeds

in the winter and by more frequent and stronger peaks of WPF due to a larger

number of storms on the other hand.

Beside the annual seasonality, the time series of capacity utilization are also

influenced by a strong daily cycle. The cause of this cycle is mainly the solar

radiation changing throughout the day, which causes partly extreme temperature

differences within the atmosphere resulting in the movement of large air masses.

At coastal areas air masses over land heat up faster than over see, which leads to

strong winds breezing from the see landwards. This effect becomes even stronger

in the afternoon hours and as a large share of the German wind power plants is

located in coastal regions (see Schaal and Kolshorn (2005)), the average WPF is

4The historical WPF series and the capacity utilization levels respectively originate from the network

operators and are published for each hour of the years 2006 to 2009 by BDEW (2013).
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Figure 5.5.: Monthly 10% and 90% quantiles of the capacity utilization (based on WPF data

between 2006 and 2009)

higher in the afternoon (see Figure 5.6). Furthermore it is noticeable that the min-

imum of average capacity utilization is in the early morning. This can explained

by the change of the wind direction from off-shore to on-shore between 8 pm and

10 pm.

Hence, these seasonal patterns need to be formally modeled and removed from

the time series in order to avoid bias within the analysis and simulation. The de-

seasonalized series can be used to calibrate a stochastic model, which in turn can

be applied to simulate the stochastic part of capacity utilization and WPF series

respectively.

a) Modeling annual seasonality
As already shown in Figure 5.5 the capacity utilization levels show a strong

seasonal variation throughout the year. The causes for the variation of the 0.1 and

0.9 quantiles are explained above and will not be examined anymore. Therefore

the focus is set on the mathematical description of the cycles and their removal

procedure in the following.

The mathematical components describing the seasonal cycle, i.e. the 0.1 and

0.9 quantiles, are separately calculated for each month m and year a of the time
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Figure 5.6.: Hourly means of the capacity utilization (based on WPF data between 2006 and

2009)

period, historical WPF data are available for. The differentiation of the seasonal

cycle for each year is done, as the amplitude of the annual seasonality is of differ-

ent strength in different years and thus each year needs to be separately deseason-

alized. The elimination of one single season for all years would otherwise result

in strong distortion. For that reason, at first the monthly 0.9 and 0.1 quantiles,

0.9qm,a and 0.1qm,a, are determined from the observed capacity utilization Wt for

each year a. From the monthly values the average annual 0.9 and 0.1 quantiles

0.9q∗a and 0.1q∗a are calculated for each year. In the next step the original capacity

utilization data is modified, so that they do not follow the monthly quantiles but

the average annual one representing the average trend for the specific year. To

achieve that, the utilization levels Wt have to be moved by a summand rm,a and

stretched by a factor sm,a. Thereby rm,a and sm,a are determined in that way, that

the adjusted monthly quantiles are equal to the annual quantiles. And as the opera-

tions, moving by rm,a and stretching by sm,a, influence the original data, they have

to be performed simultaneously. Consequently the moving and stretching factors
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need to be correlated, so that they are not distorted by another. The following

linear equation system and its solution delivers the needed parameters :

0.9qm,a · sm,a + rm,a = 0.9q∗a

0.1qm,a · sm,a + rm,a = 0.1q∗a
m = 1, ...,12

a = 1, ...,4

[5.2]

⇒ sm,a =
0.9q∗a −0.1 q∗a

0.9qm,a −0.1 qm,a
[5.3]

⇒ rm,a =−0.1qm,a · sm,a +0.1 q∗a [5.4]

Finally each value of the original utilization time series Wt is multiplied with

the stretch factor sm,a of the corresponding month m of the respective year a and

adjusted by the according value rm,a. The result is a first deseasonalized time

series W deseas,year
t without annual seasonalities.

W deseas,year
t,m,a = sm,a ·Wt,m,a + rm,a

t = 1, ...,N
[5.5]

b) Modeling daily cycles
To balance the daily seasonality of the capacity utilization, a similar method as

before in the annual deseasonalization is applied. Firstly, the average value W̄h

of the deseasonalized utilization W deaseas,year
t is determined for each hour of the

day throughout the complete horizon of the available data. Afterwards the hourly

means W̄h are subtracted from the corresponding values of the capacity utilization

W deaseas,year
t and the average capacity utilization W̄ of the complete time series is

added (see formula 5). This implies a movement of all values to the mean of the

complete capacity utilization depending on the hour of the day.

W deseas
t =W deseas,year

t −
24

∑
h=1

W̄h ·1(h|h = t mod 24)+W̄

t = 1, ...,N

[5.6]
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The resulting time series W deseas
t contains neither an annual nor a daily seasonality

and is therefore suitable as a basis for the stochastic simulation. In the follow-

ing section a novel approach is introduced to simulate the stochastic component,

whereby the simulation is based on the learnings from the statistical analysis of

the deseasonalized series.

5.2.2.2. Stochastic component of capacity utilization

In this section the simulation of the stochastic component W S
t of the capacity uti-

lization and WPF respectively will be carried out with an extended autoregressive

model (see Eq. 5.7). Thereby the focus will be set on the modeling of the change

rate ΔW S
t as a stochastic random variable depending on the average value of the q

preceding capacity utilizations W̄ S
t,q.

W S
t =W S

t−1 +ΔW S
t , ΔW S

t ∼ L(μ(W̄ S
t,q),b(W̄

S
t,q)) [5.7]

As the change rates ΔW S
t play a key role within the simulation of the stochastic

component of WPF, at first the stochastic distribution of ΔW S
t the and its parame-

ters has to be determined.

a) Distribution of the change rates and parameter estimation
The change rates ΔW S

t of the stochastic component of the historical capacity uti-

lizations seem to be Laplace distributed 5, as the density function of the Laplace

distribution fits the histogram of the change rates quite well (see Figure 5.7). The

Laplace distribution6, also called double exponential distribution, assumes a sym-

metric curve for the distribution of the change rates around the mean value, which

is equal to the modal value in this case. The symmetry in the histogram can be

also verified by the very low value for the skewness (S =−0.039).

Based on Laplace distributed random values, the change rate and capacity uti-

lization value could be simulated for each hour within the simulation time horizon.
5The null hypothesis of the two sample Kolmogorov-Smirnov test, which compares the distributions

of the historical change rates and a series generated with Laplace distribution, is not rejected at a

significance value of 1%. The null hypothesis indicates that both series posses the same stochastic

distribution.
6for density and distribution function see Eq. A.2 in the appendix
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Figure 5.7.: Distribution of the hourly change rates of historical capacity utilizations

However, a more detailed analysis showed that the distribution of the change rates

varies for different actual capacity utilization levels Lq
t , which is hereby defined as

the mean value of the last q capacity utilization values:

Lq
t = W̄ S

t,q =
1

q

q

∑
i=1

Wt−i [5.8]

The variation of the change rate for different capacity utilization levels Lq
t is

caused by the approximately S-shape growths of the capacity utilization curve.

The decline of the capacity utilization is a recursive S-curve noticeable again in

the historical data. This S-shape growth or decline of capacity utilization can be

explained by the fact, that the WPF is correlated with the cubic value of the wind

speed (Jarass et al. (2009)). This correlation causes a polynomial growth for the

WPF forming the first part of the S-curve. However, as the WPF is limited by the

installed wind power capacity in the regions, where the actual wind is occurring,

the growth is more and more dampened by the capacity bound. This effect forms

the second half of the approximated S-curve (see Figure A.3 in the appendix).

As the growth and decline of the capacity utilization posses a S-shape struc-

ture, the change rates are unequally distributed and have to be separately modeled

depending on the actual utilization level Lq
t . Therefore the overall Laplace distri-
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bution approach is replaced by an interval based one, whereby different Laplace

distribution parameters are applied depending on the actual utilization level Lq
t .

However, the development of an approach, that is based on Lq
t , requires the

appropriate number q of preceding utilization values, which influence the actual

change rate ΔWt . Thus, q corresponds to the optimal number of correlated values

W S
t−i(i = 1, ..,q) with the change rates ΔW S

t . To determine the optimal lag for this

correlation, several Lq
t series for different q are generated based on the historical

capacity utilizations. It could be afterwards proved that the highest correlation - in

absolute values - between the series of Lq
t and the change rates ΔWt exist for q= 11

(see Figure A.4 in the appendix). Thus, the actual ΔWt will be modeled based on

the mean values series of capacity utilization L11
t realized in the last eleven hours.

To capture the unequal distribution of the change rates ΔWt , the historical uti-

lization levels L11
t are sorted in an ascending order and separated in i intervals.

The corresponding ΔWt are also classified into i intervals. This approach delivers

two series for each class i, one for ΔW i
t and the other for L11,i

t . For each of the

intervals the probability distribution parameters of ΔW i
t are estimated separately

via Maximum-Likelihood estimation 7. Thereby it is worth mentioning that the

Laplace distribution, which describes the change rates, is handled as a double ex-

ponential distribution. Each of the exponential distributions (for density function

see Eq. A.3 in the appendix) represent one part of the Laplace distribution, the

one smaller than the modal value mi and the other greater than mi. To apply the

exponential distribution for both types, positive and negative change rates ΔW i
t , a

last modification has to be done: The modal value mi has to be moved to zero, so

that the adjusted ΔW̃ i
t are distributed around 0.

ΔW̃ i
t = ΔW i

t −mi [5.9]

7The classification in intervals and the application of different distributions for each class causes a

heteroscedasticity in the simulated capacity utilization series as it can be observed in the historical

series. Therefore the applied approach can be seen as a kind of ARCH model (see Engle (1982) or

Bollerslev (1986))
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Thus, the positive ΔW̃ i
t can be simulated via the first exponential distribution,

the negative ΔW̃ i
t via the other.8 The related distribution parameters μ i,+ and μ i,−

are estimated for each class i based on the corresponding classified data ΔW̃ i
t .

Figure 5.8 illustrates again the procedure of parameter estimation.

1. Distribution of 
Wt

i regarding Lt
i,q 2. Adjusting of Wt

i by mi
 

3. Seperation of Wt
i into 

right and leftside* changes 

~Exponenetial +/- 

Modal value mi
 

Mean of the leftside and 
rightside change rates +/- 

Figure 5.8.: Estimation procedure for the distribution parameters of change rates for interval i

A linear regression is applied for each of the estimated parameters mi, μ i,+ and

μ i,− and the according utilization levels L11,i
t , resulting in linear or polynomial

function f (L11
t ) describing the parameter value dependent on L11

t (see Eq. 5.10).

This functional description for the parameters avoids a separate registry of the

8More precisely, the absolute value of the negative ΔW̃ i
t can be simulated with the help of the second

exponential distribution, as this distribution describes only positive values.
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parameters of each interval in a table and recalling them from this table during the

simulation.

μ+
t ,μ−

t ,mt = f (L11
t ) = a0 +

n

∑
j=1

a j ·L11, j
t [5.10]

b) Simulation of the change rates and of the stochastic component of WPF
Based on the functions described above the parameters mt , μ+

t and μ−
t are newly

calculated subject to the actual capacity utilization level L11,Sim
t at each time step t

during the simulation. μ+
t and μ−

t respectively are used to generate a exponential

distributed random variable, which is adjusted by the modal value mt , representing

a new change rate ΔW Sim
t .

ΔW Sim
t =

⎧⎨
⎩ εt +mt εt ∼ Exp(μ+

t ) ,if zt = 1

−εt +mt εt ∼ Exp(μ−
t ) ,if zt = 0

[5.11]

As it noticeable from Eq. 5.11, a binary variable zt is introduced, which de-

termines the mathematical sign of the ΔW Sim
t , i.e. it denotes whether a positive

or negative ΔW Sim
t should be generated by applying the right side or left side

exponential distribution with the according μ+
t and μ−

t respectively. The binary

variable zt is generated based on a uniformly distributed variable ut , which is com-

pared with the probability of a positive change rate following n positive preceding

change rates, if the last n simulated change rates ΔW Sim
t− j ( j = 1, ...,n) are positive.

If the last m simulated change rates ΔW Sim
t−k (k = 1, ...,m) are negative, then ut is

compared with the probability of a positive ΔWt following m negative change rates

(see 5.129). The probabilities for each case are defined as the according relative

frequency within the historical data.

zt =

⎧⎨
⎩ 1 ut < P(ΔWt ≥ 0|ΔWt− j ≥ 0) | ut < P(ΔWt ≥ 0|ΔWt−k < 0)

0 else

j = 1, ...,n k = 1, ...,m

[5.12]

9The introduced probabilities P(ΔWt ≥ 0|ΔWt− j ≥ 0) and P(ΔWt ≥ 0|ΔWt−k < 0) are calculated based

on the historical change rates of the capacity utilization values between 2006 and 2009.
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The Eq. 5.7 - 5.12 can be now applied to simulate the capacity utilization values

W Sim
t for one year (8760 hours). However, the initial utilization level L11,Sim

1 and

the starting capacity utilization value W Sim
0 has to be previously defined. There-

fore the mean value of the last eleven historical WT−i (i = 0, ...,10) is determined

as the initial capacity utilization level L11,Sim
1 , which is required to simulate the

first change rate ΔW Sim
1 . Besides, the mean value of the overall historical capacity

utilizations W̄t is chosen as W Sim
0 . After this last preparations the autoregressive

model (Eq. 5.13) is applied delivering a capacity utilization series (W S,Sim
t ) with-

out seasonal pattern.

W S
t =W S

t−1 +ΔW S
t , ΔW S

t ∼ L(μ(LS
t,11),b(L

S
t,11)) [5.13]

The addition of the seasonal patterns - reversing Eq. 5.5 and Eq. 5.6 - leads

to a complete capacity utilization series W Sim
t for one year. A final operation, i.e.

the multiplication of the simulated series of capacity utilization with the overall

installed wind power capacity of a specific year, results in a WPF series for the

respective year. Figure 5.9 gives an overview of the whole WPF module.

5.2.3. Simulation of electricity spot prices under consideration of wind

power feed-in

After simulating the wind power feed-in for an exemplary year based on the actual

installed capacity in Germany, the impacts of WPF on the electricity spot prices

are modeled in the following. Therefore the regime-switching model based on

the ARMA(5,1)-process introduced in chapter 4 is extended to capture the WPF

impacts on the electricity prices, i.e. the price reduction effect (see section 5.1) of

WPF.

The electricity spot price models described in chapter 4 consider only the his-

torical behaviour of electricity prices. Since the extension of renewable energy ca-

pacities, especially that of wind power capacities, the impact of renewable power

feed-in on electricity prices has become more and more important. This impact

is also caused by the market design of the EEX spot market, which preferably

considers renewable energy feed-in at the supply side.
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Figure 5.9.: Overview of the WPF simulation model

The feed-in of renewable power leads to a electricity price reduction effect vary-

ing for different load levels. The extended price model is designed in a way that it

can capture this load-dependent effect. The shown load dependency is indirectly

incorporated into the model, by separately carrying out a linear regression for each

hour of the day based on the according data for electricity prices and WPF. This

is an approximate solution to bring the load dependency into the model without

explicitly integrating load data, as the variation of the load is reflected by the time

within the day and by the development of the electricity prices throughout the

day. Thus, a further modeling approach, that is used to simulate the electricity

load, is not needed. This approach also avoids further modeling errors, which
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would occur, if the load as another factor is also simulated and incorporated to the

model.

Executing a linear regression for each hour, based on the corresponding WPF

and electricity price data, the price reduction rate for each hour is determined,

as the gradient of the linear regression line. Thereby it is worth mentioning that

the linear regression between WPF and electricity prices series is not only hourly

differentiated, but it is also distinguished for different day types (summer, fall,

winter, spring weekdays and weekend days). Thus, for each hour h of each type

day d a separate price reduction rate ΔPh,d
WPF is determined equal to the appropriate

gradient of the linear regression rate. The determined price reduction rates are

illustrated in Figure A.5 in the appendix. The total price reduction of WPF in a

certain hour is then calculated as the product of ΔPh,d
WPF and the actual WPF W h,d.

The basic electricity price model is extended (see Figure 5.10) in a way that

• the total price reduction of WPF in each time step is removed from the his-

torical price series,

• the adjusted prices are passed to the basic model to calibrate the basic regime-

switching model,

• price series are simulated with the basic model

• and the price reduction effect is again added to the basic model outcome to

receive the final simulated prices.

More precisely, the subtraction of the negative price reduction values of WPF

from the historical price series in the first step (see Equation 5.14) is in fact an

addition of the absolute value of the price reduction, as the determined price re-

duction rates, i.e. the gradients of the linear regression lines, and thus the total

price reductions are negative. Hence, removing the price reduction values of WPF

leads to an upwards shift of the electricity price series (see Figure A.6 in the ap-

pendix).

P
′
t = Pt −∑

d′
1(d′|d′ = d(Pt)) ·

24

∑
h′

1(h′|h′ = tmod24) ·ΔPh,d
WPF ·Wt [5.14]
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Figure 5.10.: Overview of the extended electricity spot price model

The adjusted price series P
′
t are used for the modeling of the deterministic and

stochastic components due to the approach described in section 4.2. After simulat-

ing the electricity prices P
′Sim
t , which contain only the deterministic and stochastic

component, but not the price reduction effect of WPF, this effect is again added

to the simulated price series. Therefore, a WPF series W Sim
t is generated with the

WPF model described in section 5.2.2. The WPF series is then used to calculate

the corresponding price reduction values, which in turn are again added to the

simulated price components (see Eq. 5.15). The addition of the negative price

reduction values actually corresponds to a price shift downwards depending on

the height of the WPF value W Sim
t .

PSim
t = eXs,Sim

t +Xdet,Sim
t +∑

d′
1(d′|d′ = d(Pt)) ·

24

∑
h′

1(h′|h′ = tmod24) ·ΔPh,d
WPF ·W Sim

t

[5.15]

Based on these extended approach, electricity spot prices are simulated, which

now contain the impacts of WPF. These price simulations will be compared with

the basic model results in the following.
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5. Modeling wind power feed-in and its impacts on electricity spot prices

5.3. Wind and electricity price simulation results

Based on the combined modeling approach described above, 100 simulation runs

are carried out delivering WPF series and electricity prices. The WPF series are

generated via multiplying the capacity utilization series by the installed capacity

of the analysed year. For future years, the expected installed capacity has to be

estimated, so that WPF series for these years can be generated.

Besides, different electricity price series are produced with the two electricity

model versions. As already mentioned, the basic model version does not consider

a separate modeling approach for the WPF impacts on the electricity prices, the

extended does. Therefore it is important to find out, if the extended modeling

approach leads to an improvement of the electricity price simulation or not. How-

ever, an important outcome is that the price series based on the extended price

series contain the relationship between the WPF series and electricity prices. So,

if both series, electricity price and WPF series, are needed for further analysis,

these price series are the appropriate ones.

5.3.1. Results of the WPF simulation

Several capacity utilization and WPF series are simulated, after calculating sea-

sonality parameters and estimating stochastic model parameters with least squares

method. The determined parameter values are summarized in Table 5.1 and Table

A.3 in the appendix. An overall capacity of 26 GW10 is applied to calculate the

absolute WPF in each hour of the modeling time horizon, i.e. one year.

The results show that the simulated series posses the same patterns and structure

as the historical ones. Figure 5.11 shows that the historical and simulated WPF

curve posses similar upwards and downwards fluctuations. More precisely, the

length of upwards and downwards motions corresponds to a few hours (mostly

<15 hours). Another similarity is the short duration of WPF peaks occurring also

for only a few hours.

10This value corresponds to the installed wind power capacity in Germany at the end of 2010 (see BMU

(2011))
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Table 5.1.: Estimated parameters of the regression functions for m, μ+, μ−

a0 a1 a2

m -0.02356 0.0011 —

μ+ -0.0507 0.0541 0.0084

μ− 0.0425 0.0039 —

Besides, it can be observed from Figure 5.11 that the duration curves of sim-

ulated capacity utilization matches very well the historical one. The root mean

square error (RMSE), which is calculated on the basis of these duration curves, is

equal to 2.06 %. That means that the single values of the duration curves aver-

agely differ by 2.06 %. Considering the average capacity utilization level of wind

power plants for Germany, i.e. 19.2 %, the error of 2.06 % for capacity utilization

correpond to a percentage root mean square error (pRMSE) of 10.73 %. The low

values for the absolute and the percentage RMSE indicate an acceptable good-

ness of fit. Therefore the introduced modeling approach represents an appropriate

method to simulate capacity utilization series and respectively wind power feed-in

paths for onshore wind power plants in Germany.

5.3.2. Results of the electricity price simulation with and w/o wind power

impacts

Several electricity price simulations based on the basic and extended electricity

price models are carried out, using different data series for model calibration.

Thereby the models are at first calibrated using the data of a single year, e.g.

2008 or 2009, then applying the data of the whole period, price and WPF data

are available for. In Germany, the data for electricity spot prices are available

since 2002, i.e. since the foundation of the European Energy Exchange (EEX).

However, WPF data are published since 2006 by the German transmission system
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Figure 5.11.: Comparison of simulated and historical wind power feed-in (top) and duration

curves of capacity utilization (bottom)

operators (TSOs). Therefore, the multi-annual modeling is limited to the period

2006 to 2009. Based on the data for these periods, available at EEX (2007) and

BDEW (2013), the model parameters are separately determined (see Table 5.2).

Based on these estimated parameters, electricity price simulations are carried

out. The graphical analysis of the simulations shows that the price paths, gen-

erated with both models, differ only slightly from each other. The deterministic

components, such as daily and weekly cycles, are adequately captured by both

models. The stochastic volatility is also well described by both models, as shown
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5.3. Wind and electricity price simulation results

Table 5.2.: Estimated model parameters

Period 2009 2006 - 2009

Component Basic Extended Basic Extended

Trend X0 3.64 3.76 3.71 3.87

γ −3.53e−
05

−1.51e−
05

−1.85e−
06

−9.57e−
09

Weekly α −0.4730 −0.2708 −0.4858 −0.3840

Cycle β 0.7420 0.4248 0.7628 0.6029

ρ −1.6643 −1.6643 −3.0107 −3.0107

AR- αi 1.686 1.610 1.640 1.611

param. −0.676 −0.579 −0.598 −0.590

−0.022 −0.045 −0.050 −0.025

−0.065 0.000 −0.021 0.006

0.063 0.009 0.022 −0.010

MA-p. βi −0.932 −0.954 −0.927 −0.925

Normal μεt 3.78e−05 −1.09e−
04

−1.96e−
05

−1.12e−
05

distrib. σεt 0.210 0.149 0.167 0.126

in the graphical illustration of the simulated and historical prices for a week (see

Figure 5.12).

However, the effect of WPF on the prices and therefore the advances of the

extended modeling approach become clearer, if the WPF paths and the price re-

duction paths of WPF are analysed (see Figure 5.13). The electricity prices are

averagely reduced by some 5.90 e/MWh by an average WPF of about 4670 MW.

But the price reduction reaches maximum values about 130 e/MWh at hours with

high WPF.

Furthermore, the detailed analysis of error measures highlights the advances of

the extended modeling approach. Again based on data for a single year on the

one hand and for the whole period on the other, error measures, such as root mean
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5. Modeling wind power feed-in and its impacts on electricity spot prices

Figure 5.12.: Price simulation for a week based on 2009 data, considering WPF (left), without

WPF impacts (right)
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Figure 5.13.: Simulated WPF and absolute price reduction series

square error (RMSE) and mean average percentage error (MAPE), are determined.

The differences in the RMSEs, applying the data of the whole period, i.e. 2006 to

2009, are less significant. The error terms are only slightly better for the extended

case than for the basic case. However, if the MAPE is examined then the improve-

ment by the extended modeling approach becomes more obvious, whereas the R2

remains nearly unchanged.
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5.3. Wind and electricity price simulation results

Applying the 2009 data in both approaches, a significantly lower RMSE is de-

termined for the price simulations via the extended model compared to the ones

via the basic model. The MAPE corresponding to the extended approach with

WPF is also noticeably lower than the one of the basic model, whereas a higher

R2 expectedly results from the extended model (see Table 5.3).

Table 5.3.: Calculated error measures and other parameters of the simulated prices

Period 2009 2006-2009

Error measure Basic Extended Basic Extended

RMSE e/MWh 7.58 5.54 5.36 4.93

MAPE % 13.54 6.47 8.30 6.69

R2 % 34.29 36.50 11.94 11.72

σ e/MWh 22.09 19.51 29.38 27.52

kurtosis 15.72 71.40 418.99 546.82

μ e/MWh 36.41 37.88 44.40 45.25

skewness 1.46 1.35 8.68 10.59

Summarily it can be stated that the extended modeling approach, considering

the WPF impacts on electricity prices, leads to notably improvements of the elec-

tricity spot price simulation. It is also worth mentioning that the dependencies

between WPF and electricity spot prices are captured by this approach and the

simulated series of WPF and prices contain the correlation between each other.

This is advantageous in particular, if assets, such as wind farms, are evaluated

based on WPF series and on market prices instead of feed-in tariffs. Furthermore,

the simulation of WPF and electricity prices can help to design and to optimize the

operation of energy storage technologies. However, these evaluations and analy-

ses are not in the scope of this study, but they can be addressed by future research.
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5.4. Conclusions and future research

Wind power generation and feed-in have a significant impact on power prices.

Especially in hours with high electricity demand (load) a high WPF leads to an

immense price reduction, as the fed-in wind power avoids the dispatch of power

plants with high variable costs, such as gas turbines. Therefore, an appropriate

modeling approach for the simulation of the WPF is introduced based on an au-

toregressive method. It is worth mentioning that in this part of the thesis a direct

modeling approach is chosen instead of the modeling of wind speeds and the cal-

culation of WPF from the simulated wind speed series, a method, which can be

often found in literature (see Safari (2011) and Gökcek et al. (2007)).

The introduced autoregressive method considers the WPF of the last eleven

hours to determine the actual WPF incorporating a Laplace distributed term de-

scribing the change rate of the WPF. However, this method could be improved

in future work considering not only the preceding capacity utilization and WPF

values respectively for the calculation of the actual WPF value, but also the pre-

ceding change rates. This can be done by applying an autoregressive moving

average (ARMA) model. The improvement potential with an ARMA approach

for the simulation of WPF series may be limited, as the change rates of WPF

are already extensively modeled. This can be checked in further work applying

an ARMA approach for the simulation of WPF series. Anyway, the autoregres-

sive approach developed in this study simulates appropriate WPF series, whose

RMSE in percentage equals to only 10.73 % comparing the simulated series with

the historical WPF series between 2006 and 2009.

Furthermore, it should be mentioned that the load-dependency of WPF impacts

on electricity prices is only indirectly captured by calculating the WPF impacts,

i.e. the price reduction, depending on the actual time of day (hour). Thereby

it is assumed that the load varies over the day and its progress over the day is

constant for each analysed day type. That is why the time of the day is used to

diversify the price reduction, applying a separate linear regression of WPF series

and electricity prices for each hour of the day. This approach could be specified,

if the load series are directly incorporated into the modeling approach and the
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linear regression is carried out depending on load intervals and the related WPF

series and electricity prices. However, this specification can be addressed in future

research considering that a further uncertain variable, i.e. the load, has to be also

modeled via an appropriate approach.

Finally, it is worth mentioning that the main outcome of this part is that the

electricity price modeling can be significantly improved, if the price reduction

effect of WPF is considered in the so-called extended electricity spot price model.

The simulated price series posses significantly lower errors, especially a lower

RMSE and MAPE, if the extended price model is applied. Besides, the combined

approach of WPF and electricity price modeling captures the correlation between

both parameters, which means that the simulated electricity price paths contains

the impacts of the simulated WPF series. This issue is outstandingly important,

if both series are used in a further evaluation approach. If e.g. a mark-to-market

evaluation of wind power plants or integrated power plants, consiting of an energy

storage and wind power plant, is to be carried out, then the simulated series for

WPF and electricity prices are very reasonable, as the interdependencies between

both series are considered in the modeling approach.

In the following chapter, the simulated wind power feed-in and electricity price

series will be applied for the investment evalution of energy storages and inte-

grated power plants under uncertainty.
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6. Evaluation of energy storage and wind portfolios under
uncertainty

Gas or hydropower plants can easily balance fluctuant feed-in of wind or PV

electricity into the grid. Besides, emerging technologies like hydrogen storage

(Ball and Wietschel (2009)) or new large-scale batteries can contribute to bal-

ance supply and demand, but they are still economically not viable. The gap

between volatile electricity generation from renewable resources and load can

also be bridged with the help of other bulk energy storage technologies, such as

pumped storage hydropower (PSHP) or compressed-air energy storage (CAES)

plants. At times of high wind power production and lower demand, for exam-

ple, the surplus of electricity may be converted into pumped water or compressed

air and stored in a upper reservoir and cavern respectively, from which the wa-

ter or compressed air can be released again and used for electricity production

at times of peak load and lower wind electricity production. PSHP and CAES

plants can therefore contribute to the successful integration of large amounts of

volatile wind-based electrical production capacity into the energy system (Arsie

et al. (2007)). Therefore, the economic feasibility of both storage types is evalu-

ated in the following.

6.1. Evaluation of bulk energy storage plants considering electricity price

uncertainty

Several studies have been carried out to evaluate PSHP or CAES plants, oper-

ating in liberalized markets. However, most of the energy storage studies con-

sider PSHP plants (Lu et al. (2004)) or battery storage systems (Kazempour et al.

(2009)). While Lu et al. (2004) describe an optimal dispatch strategy for a PSHP

plant based on deterministic weekly spot prices, Kazempour et al. (2009) opti-
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6. Evaluation of energy storage and wind portfolios under uncertainty

mize the bids of different storage technologies, such as batteries and PSHPs, on

different energy markets including the day-ahead spot market, non-spinning and

spinning reserve market. They use weekly deterministic prices to determine the

optimal dispatch strategy of energy storages.

Beside the numerous studies about PSHP and other conventional energy stor-

ages, there are a meanwhile some studies which focus on CAES plants (see Green-

blatt et al. (2007), Swider and Weber (2007), Lund et al. (2009), Drury et al.

(2011) etc.). Greenblatt et al. (2007) describe how a "wind + CAES" system can

operate as a base load power plant and compare the economic value of this sys-

tem with "wind + gas turbine" systems, which can also provide base load. The

economic analysis is based on the total cost of each system, so that the study does

not include the market view and market prices for electricity. Swider and Weber

(2007) analyze the role of CAES plants in an electricity system with significant

wind power generation. They apply a bottom-up stochastic electricity system op-

timization model, in which new investments and technologies are added to the

system minimizing the system total cost. The approach of Lund et al. (2009) op-

timizes the dispatch of the storage based on a profit maximizing approach, but

deterministic prices only of the year 2003 from the Western Denmark system are

applied in the modeling approach. Besides, auxiliary services, like providing re-

serve power, are not considered in their profit maximizing approach. In contrast,

Drury et al. (2011) take the earnings on the reserve power market into account,

but again they use deterministic historical prices of the years 2007 to 2009 from

the NYISO market to determine the plant value.

As there is no study evaluating PSHP and CAES plants under uncertain elec-

tricity prices and renewable energy generation - according to the knowledge of

the author -, this study focuses on the evaluation of energy storage investments

under these uncertain parameters. To carry out the evaluation under uncertainty,

a stochastic dynamic programming (SDP) model has been developed (see sec-

tion 6.1.2.5). The SDP model optimizes the dispatch of PSHP and CAES plants,

whereby the real option to delay the dispatch is also considered. The economical

evaluation of both plant types based on the SDP model are compared with each

other and also with the results of other storage dispatch strategies, such as a "sim-
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ple strategy under uncertainty" and a Monte-Carlo simulation of plant dispatch

under perfect price foresight assumption (see section 6.1.2).

But before the dispatch strategies for energy storage power plants are described

in detail, the analysed plant types, i.e. PSHP and CAES plants, are shortly intro-

duced in the following.

6.1.1. Large scale power storage plants

Bulk energy storages play an important role to balance the discrepancy between

the electrical load and power production. On the one side they help to store the

energy for several hours in times of electricity overproduction and to deliver the

energy again to the system in times when electricity is most needed, e.g. if the

electrical load is peaking. On the other side bulk storages help to provide re-

serve power to keep the transmission system stable (see Black and Strbac (2007)).

Especially, PSHP and CAES plants can act in the minute and secondary reserve

power market and deliver electricity within a few minutes according to the design

of these markets.

6.1.1.1. Pumped storage hydropower plants

PSHP plants are large-scale energy storage facilities, which transform electrical

energy into potential energy and enable the storage of large amounts of energy.

First PSHP plants were developed at the end of the 19th century following the

general development of hydropower. Today this plant type is the most applied

technology for the transformation and storage of electrical energy (see Gieseke

et al. (2005) and Sterner et al. (2010)). PSHP plants are operated in two modes:

the first is the "pump operation" mode, in which electricity is used to pump water

from a lower reservoir into a higher one. In the so called "reservoir operation"

mode, the water is released back to the lower basin running a turbine and generator

to produce again electricity.

More detailed, the water, which is needed for the operation of PSHP plants, is

available in the lower reservoir, which can be an artificial or natural lake or a river.

The lower and the upper reservoirs are connected with a penstock, which passes
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Figure 6.1.: Design of an PSHP plant (source: own illustration)

the power house at the lower reservoir. The power house contains the technical

devices, which are needed to generate power or to transform electricity into po-

tential energy, i.e. pump, turbine and generator/motor (see Figure 6.1). In many

newer PSHP power plants the pump and turbine make up a single device, which

can execute both operations. The application of the so-called pump-turbines re-

duces the amount of investment, as a smaller number of devices is installed at the

plant. Furthermore, in larger PSHP plants there is a group of pump-turbines in-

stead of a single one, so that in some plants the capacity is increased to more than

1000 MW (e.g. Goldisthal PSHP plant).

Some economical issues have to be considered operating PSHP power plants.

The total efficiency of such power plants reaches values of at most about 80 %

due to losses during the pump or turbine operation (the PSHP plants installed

in Germany possess a technical efficiency between 60 % and 80 %, see DENA

(2010)). The energy losses of pump and turbine operation have to be balanced

by the price spread between the prices during both operations. An economical

operation is only reasonable if the "efficiency adjusted" price spread is positive.

Beside the efficiency of PSHP plants, the storage capacity plays a key role for

an economical operation. Technically, the storage capacity is determined by the
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volume of the upper reservoir and the head of water. To optimize the total costs

of a PSHP plants, a larger storage capacity is desirable, but higher construction

costs have to be also added into the calculation. Therefore, storage volume and

costs have to be balanced in a sensitive manner. The average storage capacity of

the PSHP plants operated in Germany corresponds to about 6.1 full load hours of

the installed turbine capacity (see Sterner et al. (2010)).

PSHP plants are used to achieve some techno-economic targets. The main goal

of PSHP operation is to transform off-peak energy to peak load electricity. Orig-

inally energy was bought and stored during off-peak time, when baseload power

plants produced electricity in surplus, and the stored energy was transformed to

electricity and sold at peak load hours, when electricity supply was scarce and

thus prices were quite high. However, since the share of fluctuant renewable ener-

gies increased, electricity surpluses are no more limited to off-peak hours, so that

PSHP plants are nowadays also used to balance fluctuant electricity generation

from renewable energy sources. Beside these reasons for PSHP plant commit-

ment, these plants are also used to deliver some basic ancillary services, such as

delivering secondary or minute reserve power (see Gieseke et al. (2005)). Besides,

PSHP plants are also used for black starts after a power failure in the grid or in its

sections (see OakRidge (2010)). Hence, PSHP plants play an important role for a

smooth running of the electricity system.

6.1.1.2. Compressed air energy storage power plants

Compressed air energy storage (CAES) can store energy in the form of com-

pressed air in large caverns. Although the concept of this technology exists since

the 1970ies, there are only two operating CAES power plants in the world (Huntorf

constructed in 1978, McIntosh in 1991). However, several power plant projects

of this type are nowadays discussed worldwide (see BINE (2007), van der Linden

(2006)), as energy storage becomes more and more important due to the strong

extension of fluctuant electricity generation.

CAES power plants are operated in two modes: compressor operation and tur-

bine operation mode. During the compressor operation ambient air is drawn in
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and compressed into a storage, which is generally a subsurface cavern. However,

there are also plans for artificial storages above the ground (see Schoenung and

Burns (1996) or Baker (2008)). But as this type of storage is costlier, the favored

option will remain natural caverns. Furthermore, the storages have to possess

large volumes, as the energy intensity of the compressed air is quite low. Hence,

large geologic formations serve as appropriate storage chambers (see EPRI-DOE

(2003)).

During the turbine operation, the compressed air is released and heated up,

before it is fed to a turbine to generate again electricity. The heating of the released

air is necessary, as gases cool down, if they are expanded in a turbine. For an

efficient turbine operation it is essential that the air possess ambient temperature

after its expansion at the turbine. The heating up of the compressed air can be

carried out burning natural gas at the turbine or the heat can come from a heat

storage, which could be filled with the heat resulting from the earlier compression

process. If gas is burned with compressed air at the turbine and thus external

heat is added to the system, the process is called diabatic and the corresponding

plants diabatic CAES (see Figure 6.2 and EPRI-DOE (2003)). If no external heat

is added to the system (plant), the process and the CAES are called adiabatic (see

Zunft et al. (2006)).

Diabatic CAES do not use the heat which originates from the compression pro-

cess. This heat is released to the environment with the help of heat exchangers.

The heat release leads to important energy and efficiency losses. Energy losses

can occur also during a possible cooling down of compressed air in the storage.

To heat up the compressed air, it is mixed with natural gas in the turbine and the

gas mix is burned in the turbine generating electricity. This type of turbine oper-

ation corresponds to that of a regular gas turbine operation. Both existing CAES

types are based on this technology.

The total efficiency of a diabatic CAES power plant cannot be easily deter-

mined, as the total plant operation uses partly off-peak electricity and partly nat-

ural gas for generating electricity in peak load times. Actually, these plants reach

a roundtrip efficiency above 50%, if they are operated at their optimum workload.

Compared to a usual gas turbine, the CAES turbine operation itself is more effi-
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Figure 6.2.: The structure of a CAES power plant (source: own illustration)

cient. The required gas amount for generating a kWh electricity is reduced from 3

kWh gas to approximately 1.5 kWh (see Gatzen (2008)). A CAES power plant is

also very efficient, if the turbine is run at partial load, as the amount of compressed

air used for turbine operation can be exactly regulated. This is due to the fact that

the required compressed air comes from the storage and not from pre-operated

compressors (see EPRI-DOE (2003)). The availability of a storage enables the

operation of the compressor at its optimum workload, although the turbine is run

at partial load.

In an adiabatic CAES power plant the heat, which comes from the air compres-

sion process, is transferred to a heat medium with the help of heat exchangers.

This heat is again used for the heating of the compressed air, before it is lead in

to the turbine. Depending on the size of the heat storage, the additional burning

of natural gas can be reduced or completely replaced. The use of the compres-

sion heat increases the efficiency of the total plant to values above 65 % (see

EPRI-DOE (2003)). Therefore, this technology is in the focus of research and

development departments of major companies. A first pilot plant is planned to be

constructed in Strassfurt (Germany) by RWE (see ADELE project, RWE (2013)).
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Similar to PSHP plants, CAES power plants are also used for the short-term

storage of electricity and its supply at peak load times. They balance the load

between off-peak and peak times. They can be also used for short-term load bal-

ancing, as they can deliver positive or negative reserve power. The black start ca-

pability is a further ancillary service that can be provided by CAES power plants.

It is expected that CAES power plants will also contribute to the smooth feed-in of

fluctuant renewable electricity generation in the near future. Therefore, the focus

will be set in their techno-economical evaluation in the following.

6.1.2. Models and strategies for dispatching energy storage power plants

under uncertainty

Different methods and strategies can be applied to optimise the dispatch of energy

storages and to evaluate PSHP and diabatic CAES based on the return of these

optimal dispatch strategies. As many of the existing approaches incorporate deter-

ministic input parameters known a priori, in this part of the thesis methodologies

are developed that can capture uncertain parameters. Uncertainties considered

within the different approaches are electricity spot prices and wind power genera-

tion. All evaluation approaches focus on the assessment of energy stroage invest-

ments based on optimum annual returns. Optimum annual returns are calculated

based on hourly cash flows, which are generated applying different strategies for

storage dispatch. For each strategy a different modeling approach is introduced,

whereby the same input data is applied in all models. Figure 6.3 gives a general

overview about the structure, input data and output of the models.

The different models for each dispatch strategy use electricity spot prices, that

are simulated with the electricity models described in chapter 4. Further economic

parameters, such as CO2-certificate prices, gas prices or variable and fix costs,

and technical parameters (efficiency, turbine and pump capacity, storage volume

etc.) are also incorporated into the models. Besides, bids on two markets (day-

ahead spot and minute reserve power market) are considered to increase the annual

return. The results of the models contain the optimal annual return, the amount of

bids on both markets and technical parameters, such as full load hours of turbine
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Figure 6.3.: Overview of model input/output and structure

and pump or compressor. However, these results can strongly vary depending on

the dispatch strategy and the appropriate model (see section 6.1.3).

Four dispatch strategies and models have been developed: In the first strategy,

the prices are assumed to be known apriori and an overall optimization with per-

fect price foresight is carried out for given yearly price paths. More precisely,

a Monte-Carlo simulation, maximizing the annual return for 1000 different price

paths, is applied to get an expected value for the optimal annual return. The sec-

ond strategy is called "simple strategy under uncertainty", whereby the spread

between peak and off-peak prices is compared and if this spread is positive within

a single day, the energy storage is charged and discharged producing electricity in

the peak hours of the day. The daily returns for each price scenario are cumulated

via a stochastic recombining tree to determine the annual return.

The third strategy is again based on an optimization approach, which is maxi-

mizing the cash flows day-by-day, which in turn are added up to the annual return

based on the same stochastic tree for uncertain price development. The fourth and

main strategy applies a stochastic dynamic programming (SDP) approach with the
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help of the same recombining tree and optimizes jointly the daily cash flows and

expected returns of future days. These four strategies will be precisely described

in the following.

6.1.2.1. First strategy: perfect foresight optimization with Monte-Carlo

simulation

Within the Monte-Carlo simulation1, the annual return R is separately maximized

for each run of an optimization problem, which calculates the optimal dispatch of

a PSHP or a CAES power plant in each hour h of the year considering of several

constraints, e.g. storage level constraint. In total 1000 runs of the optimization

model are carried out forming the Monte-Carlo simulation. A higher number of

runs (e.g. 10000) is also possible, but it would lead to very long calculation times

without significantly improving the results.

The different runs of the Monte Carlo simulation2 are performed based on dif-

ferent annual price paths, which themselves are realizations of the electricity spot

price model (see section 4.2). This means, within a model run the annual return

of the energy storage plant is optimized assuming a perfect foresight of electricity

prices. That is why the result of the Monte-Carlo simulation for the annual re-

turn can be seen as an upper limit and the net present value calculated from these

annual returns represents a maximum value.

Having a closer look at the optimization model, which is used in the Monte-

Carlo simulation, it can be noted that the annual return R forms the objective

function, which describes the sum of contribution margins in all of the 8760 hours

of the year. The contribution margins themselves are calculated based on the

bidding strategy of the operator on spot and reserve power markets. This means

that the operator of such a plant has the possibility to generate income either on the

spot market by selling electricity or on the reserve power market by offering the

turbine capacity of the storage plant. More precisely, the turbine capacity can be

1Monte-Carlo techniques are also applied to electricity markets by Amelin (2004) dicussing which

electricity market models are suited for Monte-Carlo simulation. Khalid and Langhe (2010) also

apply Monte-Carlo techniques to carry out energy demand forecasts.
2For the definition and procedure of a Monte Carlo simulation see also Binder and Heermann (2010).
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offered in the minute reserve power market3. This is due to the fact that PSHP and

CAES plants fulfill the requirements of the minute reserve market4, as they need

a start-up time of only some seconds or a few minutes respectively (see Stoddard

(1996)).

The amount of electricity sold in hour h on the spot market is defined as Xspot
h

and the power sold on the reserve market as Xreserve
ts

5. Xspot
h is priced with the

electricity price pEL
h received from the electricity price simulation. The amount

of power sold in the reserve power market Xreserve
ts has to be provided for a time

slice (ts) of four hours. As the reserve power market has a different time solution,

the hours of a year have to be matched with 4h-time slices ts. Four subsequent

hours starting with hour h1 are matched to the same time slice ts1 and the next

four hours to the next time slice ts2 and so on. At the end, 2190 time slices are

received for 8760 hours of a year6. Due to this so-called slice-map, six time slices

are modeled for each day. This procedure enables the formulation of a single

optimization problem for both, reserve power and spot electricity.

The reserve power Xreserve
ts of time slice ts is charged with the minimum prices

preserve
ts observed on the minumum reserve power market. Minimum prices are

chosen, to guarantee that the power offered on this market is completely sold. This

approach also maximizes the annual return of the energy storage plants for the

worst case on the reserve market. Alternatively, for a less risk-averse investor this

assumption can be changed by using average or even maximum historical reserve

power prices. However, the analysis is continued for the risk-averse investor in

the following applying minimum prices as reserve power prices. This approach

captures the guaranteed income on the reserve power market.

A further assumption is that no costs for turbine operation occur if the turbine

capacity is sold on the reserve power market. This is due to simplification reasons,

3In this thesis only the minute reserve market is considered for the evaluation of both energy storage

types. However, in the case of PSHP plants the secondary reserve power market can play also a role,

which can be adressed by future reasearch.
4The technical constraint of this market requires that reserve energy has to be delivered after 15 minutes

if it is requested (see section 2.1.2).
5For bidding strategies on the spot market based on uncertain prices (see also Conejo et al. (2003)).
6For simplification reasons, leap years are not considered.
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as it is assumed that the reserve power Xreserve
ts has to be kept ready, but is not

delivered7. Therefore, no electricity has to be produced and thus no gas, CO2-

certificates or compressed air and water from the reservoir respectively are used

in this mode. The energy only has to be kept in the cavern storage / reservoir to

guarantee the capacity within the time during which the sold reserve power must

remain available. This is one of the main constraints of the optimization problem

discussed in the following.

max R(Sh,X
spot
h ,Xcomp

h ,Xreserve
ts ) =

8760

∑
h=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
pEL

h − pFU
h · 1

μFU

−pCER
h · 1

μFU ·EFFU − cturb
var

)
·Xspot

h

−(pEL
h + ccomp

var ) ·Xcomp
h

−cturb,LC ·Xturb,LC
h

−ccomp,LC ·Xcomp,LC
h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
2190

∑
ts=1

preserve
ts ·Xreserve

ts

[6.1]

Major cost components within the objective function (Eq. 6.1) are expenses for

the amount of electricity Xcomp
h , which the compressor or the pump needs to charge

the storage with compressed air and water respectively. Further cost components

are - in the case of the diabatic CAES plant - gas costs and CO2-certificate costs.

These costs depend on the amount of electricity produced and sold on the spot

market. The gas amount used for electricity production is equal to the produced

electricity sold on the spot market Xspot
h multiplied by the "fuel factor" 1/μFU .

The fuel factor defines the amount of gas needed to produce 1 MWh electricity

in the diabatic CAES plant. The gas volume used in each hour h is valued using

appropriate gas prices of the year 2011. The CO2-emissions are calculated as

7This simplification is reasoned by the fact, that the reserve power is evaluated by minimum reserve

power prices, assuming that the offers for reserve energy prices can be kept very high to avoid the

delivery of energy. In reality, minute reserve energy is delivered, if the difference between load and

electricity feed-in to the grid cannot be balanced with primary and secondary reserve energy.
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the product of the fuel consumption and the emission factor EFFU , which is here

assumed to be 0.2 t/MWh for gas (own calculation based on the data from Wagner

(2007)). The CO2-emissions are also priced with historical prices pCER
d of the year

2011. However, in the case of a PSHP plant no gas and CO2-emissions will occur,

so that the objective function can be formulated as follows:

max R(Sh,X
spot
h ,X pump

h ,Xreserve
ts ) =

8760

∑
h=1

⎡
⎢⎢⎢⎢⎣

(
pEL

h − cturb
var
) ·Xspot

h

−(pEL
h + cpump

var ) ·X pump
h

−cturb,LC ·Xturb,LC
h

−ccomp,LC ·X pump,LC
h

⎤
⎥⎥⎥⎥⎦

+
2190

∑
ts=1

preserve
ts ·Xreserve

ts

[6.2]

The objective function above has to be solved under the so-called "storage con-

straint". The turbine can be run and electricity or power capacity can be sold in

hour h or time slice ts to that amount to which the storage level Sh makes it possi-

ble. The storage level is measured by the electricity output, which can be produced

with the compressed air in the cavern (in units of MWhel). Sh is increased by the

electricity amount used for the compressor or pump power Xcomp
h multiplied by

the "compressed air factor (CAF)" and pump efficiency μpump respectively. These

factors define how much electricity can be produced with 1MWhel stored energy.

For example, the CAF of the diabatic CAES plant analysed here equals to the

quotient 1/0.66. This in turn indicates that 0.66MWhel compressed air is needed

for one MWhel turbine output. Accordingly if the pump efficiency μpump of the

PSHP plant corresponds to e.g. 0.8, this suggests that 1/0.8MWhel electricity is

needed for one MWhel turbine output. The turbine output, which correponds to

the power sold on the spot market Xspot
h , contrarily reduces the storage level Sh.

Eq. 6.3 defines this relationship:

Sh = Sh−1 +Xcomp
h ·CAF −Xspot

h ∀h = 2..8760

Sh = Sh−1 +X pump
h ·μpump −Xspot

h ∀h = 2..8760
[6.3]
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A further constraint regarding the storage level describes the relationship between

the sold reserve power Xreserve
ts and the storage level Sh itself (6.4).

Xreserve
ts ≤ min

h∈ts

[
1

4
Sh

]
∀ts ∈ T S [6.4]

Eq. 6.4 also shows that the sold reserve power Xreserve
ts is lower or equal to a

quarter of the storage level. This is caused by the fact that bids on the minute

reserve power market have to last for four hours in the German energy market.

This indicates that the storage level has to guarantee the offered reserve power

for these four hours (see Bundesnetzagentur (2011a)). A reserve market bid for a

time slice ts is then limited by the minimum quarter of the storage levels within

the hours of this time slice.

Another constraint limits the offered power amount on both markets, as the sold

reserve power Xreserve
ts and the power sold on the spot market Xspot

h cannot in sum

exceed the maximum turbine capacity Xturb
max :

Xspot
h +Xreserve

ts ≤ Xturb
max ∀h ∈ ts∧∀ts ∈ T S [6.5]

Furthermore the offers in the different markets also have a minimum limit. They

have to be above the minimum turbine capacity Xturb
min or equal to zero. The amount

of electricity bought to run the compressor or pump has also to be above their min-

imum capacity Xcomp
min . These constraints result from the technical feature of the

power storage components, as they cannot be run under their minimum capacity:

Xturb
min ≤ Xspot

h ,Xreserve
rs ∨ Xspot

h ,Xreserve
ts = 0 ∀h = 1..8760, ts ∈ T S [6.6]

Xcomp
min ≤ Xcomp

h ≤ Xcomp
max ∨ Xcomp

h = 0 ∀h = 1..8760 [6.7]

The last constraints ensure that the load variation Xturb,LC
h and Xcomp,LC

h within

an hour corresponds to the difference between power output before and after the

load variation. This constraint holds for both the compressor/pump and the tur-

bine. As the turbine output is sold on the spot market, the load variation equals

tothe difference between the sold electricity ΔXspot
h in hours h and h−1 (see 6.8).
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Xturb,LC
h =

∣∣Xspot
h −Xspot

h−1

∣∣ , Xcomp,LC
h =

∣∣Xcomp
h −Xcomp

h−1

∣∣ ∀h = 2..8760 [6.8]

Finally, it is worth mentioning that, applying a Monte-Carlo simulation with

1000 scenarios in the software environment GAMS, the calculation time of the

perfect foresight model is about 8 hours on an PC with Intel Core Duo CPU 2.4

GHz and 4 GB RAM.

6.1.2.2. Scenario tree for strategies under uncertainty

The method described in section 6.1.2.1 assumes a perfect price foresight of elec-

tricity spot prices, which is not given in real markets. Therefore, other methods

and strategies that capture this price uncertainty will be developed in the following

and compared with the best case approach, the perfect price foresight. However, to

apply the new methods, at first a stochastic tree describing the price development

has to be generated. The 1000 price paths applied in the Monte-Carlo simulation

are "reduced" to a recombining stochastic tree following the approach described

by Weber (2005):

The first step of the tree generation is that each of the 1000 price paths is divided

into 365 price sections, which represent prices for the 24 hours of each day d.

The seperated price paths are moved to a three-dimensional price matrix. Its first

dimension stands for the 1000 price paths, the second for the 365 days, the third

for the 24 hours in each price section. The price matrix is used to reduce the price

scenarios s and to generate a scenario tree applying the k-means algorithm (see

MacQueen (1967)). The resulting tree describes either ten or thirty price clusters

ps for each day d, whereby each price cluster is represented by its centroid8 of the

cluster (see Figure 6.4).

Beside the price clusters and their centroids, transition probabilities between

price clusters ps on day d and ps′ on day d + 1 are necessary to generate the re-

combining tree. These transition probabilities are calculated based on the number

8The centroid is defined as the price section (24 hours-price path) that has the smallest distance sum

from the other price sections, which are grouped into the same cluster.
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d0              d1                   d2                D-1            D=365 

dDpssbCF end
dpssbdDpssbS

CF

psdPr
psdpsdTpr

ps 

Figure 6.4.: Recombining tree for the price development

of transitions between price scenarios clustered in ps and price scenarios clus-

tered in ps′. The number of these transitions is divided by the total number of

transitions from ps to all clusters on day d+1 to receive the transition probability

T prd,ps→d+1,ps′.

T prd,ps→d+1,ps′ =
card
{

s|∀sd ∈ psd ∧ sd+1 ∈ ps′d+1

}
card {s|∀sd ∈ psd} [6.9]

The transitions to the price clusters on the first day d1 correspond to the prob-

abilities of occurrence of the first day clusters. They are calculated as the ratio

between scenarios matched to the price clusters and the total number of price sce-

narios of d1.

Prd1,ps =
card
{

s|∀sd ∈ psd1

}
card {s} [6.10]

Based on these probabilities and the price cluster centroids ps, which repre-

sent the prices for 24 hours of day d, the power plant is dispatched applying the

following models and strategies respectively.
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6.1.2.3. Second strategy: simple model under uncertainty

A simple strategy can be a heuristic approach that focuses on electricity prices

in peak hours pp and offpeak pop hours9. If the spread between peak prices pp

and offpeak prices pop is positive, then the operator of an energy storage will be

willing to exploit this timely arbitrage opportunity. He will therefore charge the

storage at off-peak hours and discharge it and run the turbine at peak hours.

A simple strategy under uncertainty could work then in a way that the operator

compares the highest price of peak time hp
1 with the lowest price at off peak-time

hop
1 in each day d and corresponding price scenario ps. Based on these prices

the spread between charging and discharging the storage is calculated. If the

price spread is positive, these hours are added to a list K representing the pos-

itive spreads. Then the next hours hp
2 and hop

2 are analysed and if the spread is

again positive, they are also added to the list K. This procedure is repeated k-

times resulting in a list K, in which the last positive spread can be found between

the prices of the hours hp
k and hop

k .

Based on the positive spread list K, the operator purchases electricity from the

spot market and runs the energy storage plant in the pump mode with full load

X pump
max beginning in the hour hop

1 until hop
k . If the difference between storage ca-

pacity Smax and the storage level Shop
j

is smaller than X pump
max times η tot than the

pump output is adjusted to this difference. It is important to stress that the storage

level Sh is again noted as the amount of output power producable with the stored

energy amount.

X pump
hop

j
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X pump
max i f Smax −Shop

j
≥ η totX pump

max

(Smax −Shop
j
)/η tot i f 0 ≤ Smax −Shop

j
≤ η totX pump

max ∀hop
j = hop

1 ..hop
k

0 else

[6.11]

The term (Smax − Shop
j
)/η tot has to be changed into (Smax − Shop

j
) ·CAF , where

CAF is again the "compressed air factor" described in section 6.1.2.1, if the com-
9Due to the electricity market design of the European Energy Exchange (EEX), peak hours are defined

as the time between 8:00 and 20:00, while the offpeak time is contrarily the time between 20:00 and

08:00.

153



6. Evaluation of energy storage and wind portfolios under uncertainty

pressor output of the CAES plant Xcomp
hop

j
is calculated. The change of the storage

level according to this operation of the pump and compressor respectively corre-

sponds to:

Shop
j
= Shop

j −1 +η tot ·X pump
hop

j
∀hop

j = hop
1 ..hop

k

Shop
j
= Shop

j −1 +CAF ·Xcomp
hop

j
∀hop

j = hop
1 ..hop

k

[6.12]

In the peak hours hp
1to hp

k the plant is operated in the full load turbine mode

Xturb
max as long as the storage is not empty. If the storage level Shp

j
is smaller than

the maximum output capacity of the turbine, then the turbine output level Xturb
hp

j
is reduced to this level Shp

j
. A simplification within this strategy is that all the

content of the storage has to be emptied until the end of the day. Thus, the turbine

is operated until Shp
j

equals to "0".

Xturb
hp

j
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xturb
max i f Shp

j
≥ Xturb

max

Shp
j

i f 0 ≤ Shp
j
≤ Xturb

max

0 else

[6.13]

The produced electricity is sold again on the spot market earning a positive

daily return or contribution margin CMd,ps. In the case of a PSHP plant, the dailiy

return CMd,ps can be calculated as follows:

CMd,ps =

kd,ps

∑
j=1

(
pEL(hp

j )X
turb
hp

j
− pEL(hop

j )X pump
hop

j

)
[6.14]

The daily return of a CAES power plant is calculated by subtracting further

cost components from the term in Eq. 6.14. Notably, the costs for gas and CO2-

certificates, which are necessary if electricity is produced, have to be regarded in

the daily return calculation. The extended calculation is then formulated in Eq.

6.15.

CMd,ps =

kd,ps

∑
j=1

⎡
⎢⎢⎢⎣
(

pEL(hp
j )− pFU

h · 1
μFU

−pCER
h · 1

μFU ·EFFU − cturb
var

)
·Xturb

hp
j

−(pEL(hop
j )+ ccomp

var ) ·Xcomp
hop

j

⎤
⎥⎥⎥⎦ [6.15]
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Based on the daily return for each day d and price scenario ps the annual return

R can be determined. The daily returns are summed up considering the transition

probabilities from price scenarios ps at day d to price scenarios ps′ on day d +1.

For example, the daily returns CMd+1→D,ps′ from day d + 1 to D are weighted

with the appropriate transition probability T prd,ps→d+1,ps′ and added to the daily

return CMd,ps of day d, resulting in the overall return CMd→D,ps from d to D.

CMd→D,ps =CMd,ps +∑
ps′

T prd,ps→d+1,ps′ ·CMd+1→D,ps′ ∀d = 1..364 [6.16]

The backwards calculation of the CFd→D,ps from D to d1 delivers the annual

return for different psd1
. The CFd1→D,ps are weighted with the occurrence proba-

bility of each psd1
, resulting in the expected value of the annual return R.

R = ∑
ps

Prd1,ps ·CMd1→D,ps [6.17]

The simple strategy is implemented in the MATLAB software environment.

The calculation time equals to only a few seconds on the same PC mentioned in

section 6.1.2.1.

6.1.2.4. Third strategy: day-by-day optimization

The day-by-day optimization differs from the "simple strategy under uncertainty"

in a way that the daily commitment of the storage components is optimized.

Thereby, the daily returns CMd,ps are maximized running a mixed-integer linear

program (MILP). The objective function of the MILP again represents the con-

tribution margin, but contrarily to the prefect foresight model (section 6.1.2.1)

only the one of the next 24 hours. The extended daily return CMd,ps,sb is calcu-

lated for each price cluster ps and for different starting storage levels sb at day

d. The optimization is then carried out for the distinguished variables, storage

volume Sd,ps,sb,h, spot market bid Xspot
d,ps,sb,h and reserve market bids Xreserve,pos

d,ps,sb,ts and

Xreserve,neg
d,ps,sb,ts as well as compressor or pump output Xcomp/pump

d,ps,sb,h for each hour h of

day d, price cluster (scenario) ps and starting the storage level sb. The income and

cost components are the same as in the perfect price foresight approach. However,

this time they are separately calculated for each price scenario ps and starting level

155



6. Evaluation of energy storage and wind portfolios under uncertainty

sb on each day d. The objective function of the dispatch problem of a CAES can

be formulated as follows10:

max CMd,ps,sb(X
spot
d,ps,sb,h, ...) =

24

∑
h=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
pEL

d,ps,h − pFU
d · 1

μFU

−pCER
d · 1

μFU ·EFFU − cturb
var

)
·Xspot

d,ps,sb,h

−
(

pEL
d,ps,h + ccomp

var

)
·Xcomp

d,ps,sb,h

−cturb,LC ·Xturb,LC
d,ps,sb,h

−ccomp,LC ·Xcomp,LC
d,ps,sb,h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
6

∑
ts=1

(
preserve,pos

d,ts ·Xreserve,pos
d,ps,sb,ts + preserve,neg

d,ts ·Xreserve,neg
d,ps,sb,ts

)
[6.18]

The solution to this optimization problem has to be subject to the same restric-

tions as in the perfect price foresight approach, but again further distinguished

for the price scenarios ps and starting levels sb. The formulation of the model

restrictions is illustrated for the CAES model in Eq. 6.19, but it can be anlogously

formulated for the PSHP plant.

Sd,ps,sb,h = Sd,ps,sb,h−1 +Xcomp
d,ps,sb,h ·CAF −Xspot

d,ps,sb,h ∀h = 2..24

Xreserve,pos
d,ps,sb,ts ≤ min

h∈ts

[
1

4
Sd,ps,sb,h

]
∀ts ∈ T S

Xreserve,neg
d,ps,sb,ts ≤ min

h∈ts

[
1

4

(
Smax −Sd,ps,sb,h

)] ∀ts ∈ T S

Xspot
d,ps,sb,h +Xreserve,pos

d,ps,sb,ts ≤ Xturb
max ∀h ∈ ts∧∀ts ∈ T S

Xcomp
d,ps,sb,h +Xreserve,neg

d,ps,sb,ts ≤ Xcomp
max ∀h ∈ ts∧∀ts ∈ T S

Smin ≤ Sd,ps,sb,h ≤ Smax ∀h = 1..24

[6.19]

The first restriction again describes the relationship between storage level Sd,ps,sb,h

and turbine Xspot
d,ps,sb,h as well as compressor output Xcomp

d,ps,sb,h. The next restrictions

10In the case of a PSHP plant, the objective function can be formulated analogue to Eq. 6.2
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limit the bids on positive and negative reserve market. Again only a quarter of

the minimum storage level of the four hours of time slice ts can be offered in the

positive and a quarter of the difference Smax − Sd,ps,sb,h on the negative minute

reserve market. The other restrictions regarding reserve market and spot market

bids are set up to keep the capacity limits of turbine and compressor. All bids on

the different markets have generally to be made subject to capacity limits.

The starting storage level sb is introduced, to ensure that the end storage level

Sd,ps,sb,h24
of day d and the starting storage level of following day d+1 are equal11.

This constraint has to be considered for the addition of the daily contribution

margins to determine the annual return. The optimal daily contribution margins

are summed up considering again the transition probabilities from price scenar-

ios ps at day d to price scenarios ps′ at day d + 1. For example, the optimal

CM∗
d+1→D,ps′sb′ from day d + 1 to D, which are weighted with the appropriate

transition probability T prd,ps→d+1,ps′, are added to that of day d, leading to the

overall contribution margin CM∗
d→D,ps,sb from d to D.

CMd→D,ps,sb =CM∗
d,ps,sb +∑

ps′
T prd,ps→d+1,ps′ ·CM∗

d+1→D,ps′,sb′

∀ps, ps′ ∈ PS ∈ PS,d = 1..364,sb = 0..4

[6.20]

The summary of the single optimizations to an overall optimization problem

based on the recombining tree (see Figure 6.4) determines the structure of the

annual return in the "day-by-day optimization strategy". It is important that those

CM∗
d+1→D,ps,sb are chosen for the addition (Eq. 6.20), which fulfill the so-called

"time-coupled constraint". This constraint is a formalization of the restriction

already mentioned and guarantees that the end storage level at day d and starting

storage level at d +1 are equal.

Sd,ps,sb,h24
= Send

d,ps,sb = sbd+1,ps′ ·Smax ∀ps, ps′ ∈ PS ∈ PS,d = 1..364,sb = 0..4

[6.21]

11The optimization results for each day will suggest an empty storage at the end of the day. However, if

negative prices occur in the last hours of a day, the results will indicate the charging of the storage.

In this case the storage will not be empty at the end of a day.
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Furthermore, the number of possible starting states sbd,ps are limited, so that

the optimization problem can be solved in an acceptable computing time. Five

beginning storage states are defined, i.e. sb = 0,1,2,3,4. The number of elements

in sb is caused by the chosen storage size, which exactly corresponds to four

times of the turbine output. The five beginning storage states indicate, whether the

storage is empty (sb0), quarter full (sb1), half full (sb2), three quarters full (sb3) or

completely filled (sb4) at the beginning of a day. As the number of starting states

sb is limited to five storage states, the time-coupled constraint is formulated by

adding a set of five binary variables bsb to the optimization problem (Eq. 6.18 - Eq.

6.21). Hence, the time-coupled constraint of the SDP problem can be formulated

as follows:

Send
d,ps,sb = ∑

sb′
bsb′ · sb′ ·Smax ∧∑

sb′
bsb′ = 1 ∀ps, ps′ ∈ PS,∀d = 1..364 [6.22]

Under the consideration of this time-coupled constraint, the backward compu-

tation of the contribution margins CM∗
d→D,ps,sb from day D(= 365) to first day d1

leads to the total annual return R. As the five beginning storage states sbd1
are

also applied to the first day, the optimal annual return for each ps of day d1 is

finally chosen as the one CM∗
d1→D,ps,sb, whose beginning state corresponds to the

pre-defined final state of the storage Send
D at the end of the model horizon.

R = ∑
ps

∑
sb

(
Prd1,psCM∗

d1→D,ps,sb | sb ·Smax = Send
D

)
[6.23]

6.1.2.5. Fourth strategy: stochastic dynamic programming

The model described in section 6.1.2.4 is extended in the following, to capture the

"real option" of delaying the discharge of the CAES or PSHP storage. The stored

energy is then used for electricity generation not only at the same day of charging,

but also at following days, especially if higher electricity prices are expected in

the coming days. More precisely, it can be optimal to use the storage volume for

electricity production at day d, if the plant dispatch is optimized only for day d.

However, if a longer period is considered, it can be economically more reasonable,
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to delay the discharge of the storage, if e.g. a higher income can be generated on

the next day or later.

To consider this real option within the optimization problem, possible future

returns are also considered in the objective function. The end storage state of each

day d is optimized in a way that the return CMd,ps,sb of day d and the cumulative

returns CM∗
d+1→D,ps′,sb′ from day d +1 to D are conjointly maximized. The opti-

mization will then result in that starting level "sb′ ·Smax" of d +1 and end storage

level of day d, that maximize the total return CMd→D,ps,sb.

The optimization steps are again carried out starting in D and moving backwards

in the recombining tree, resulting in stochastic dynamic programming (SDP) model12.

The new objective function covers the whole income from day d to the end of the

model horizon D:

max CMd→D,ps,sb(Send
d,ps,sb, ...) =CMd,ps,sb +∑

ps′
T prd,ps→d+1,ps′ ·CM∗

d+1→D,ps′,sb′

[6.24]

12Xi and Sioshansi (2012) apply also an SDP model to cooptimize distributed energy storage. The

developed model is especially able to cooptimize different uses of a battery in a home as a distributed

storage device. Epe et al. (2009) apply a stochastic optimization model with recombining trees to

analyse the influences of decentralized power generation and energy storage on cost-efficient power

supply.
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In the case of a diabatic CAES plant, the objective function can be formulated

as follows:

max CMd→D,ps,sb(X
spot
d,ps,sb,h, ...) =

24

∑
h=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
pEL

d,ps,h − pFU
d · 1

μFU

−pCER
d · 1

μFU ·EFFU − cturb
var

)
·Xspot

d,ps,sb,h

−
(

pEL
d,ps,h + ccomp

var

)
·Xcomp

d,ps,sb,h

−cturb,LC ·Xturb,LC
d,ps,sb,h

−ccomp,LC ·Xcomp,LC
d,ps,sb,h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
6

∑
ts=1

preserve
d,ts ·Xreserve

d,ps,sb,ts

+∑
ps′

bsb′ ·T prd,ps→d+1,ps′ ·CM∗
d+1→D,ps′,sb′

[6.25]

This optimization problem again has to be solved subject to the time-coupled

constraint 6.22 and subject to the other constraints described in 6.19. The back-

ward computation from D = 365 to d = 1 again delivers for each starting price

scenario ps and storage state sb the optimal annual return under uncertainty. In

the final step the annual returns CM∗
d1→D,ps,sb are again chosen as the optimal an-

nual return of the CAES, whose beginning storage state sb is equal to the end

storage state of D, i.e. Send
D (see Eq. 6.23). The resulting optimal annual return

can be used for further economic evaluation.

Finally, it is worth mentioning that the difference between the annual return

calculated in the day-by-day optimization and the one from the SDP model makes

up the so-called "real option value (ROV) to wait" or "value of flexibility (VOF)".

As mentioned above the day-by-day optimization does not consider the option that

the earnings could be increased, if the discharge of the storage is delayed by one

day or a couple of days. But as the SDP model captures this option incorporating

possible future returns (CM∗
d+1→D,ps′,sb′) into the objective function, the difference

of both optimization results exactly corresponds to the ROV.

This model is again implemented in the software environment GAMS. The SDP

model consists of 54750 single optimization steps. Each optimization corresponds
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to a mixed-integer linear programming model with approximately 400 linear vari-

ables, 20 binary variables and 400 constraints. The running time of the SDP model

as well as of the day-by-day model depends on the number of price clusters ps.

If the model is set up with 10 price clusters ps at each day d, the running time

is approximately 2 hours. However, if 30 price clusters ps are applied, the total

computing time equals to more than 10 hours. The running time is therefore not

linear to the number of price clusters ps. This relationship can be reasoned by

the fact, that the number of optimization steps triples, while the number of model

variables also triples. Therefore, the complexity of the model possess a stronger

growth than a linear growth.

In the following the results of all strategies and models are preseneted for dif-

ferent case studies. Futhermore these results will be used for the economic eval-

uation of investments in energy storage plants based on net present value (NPV)

and ROV approaches.

6.1.3. Evaluation of CAES power plants under uncertainty

The developed models and strategies are applied firstly for the investment evalu-

ation of a diabatic CAES power plant, secondly for the evaluation of a pumped

hydro storage power plant (PSHP). The investment evaluations are carried out

based on optimal annual returns, which are earned due to the different dispatch

strategies introduced above. A further differenciation of the analysis is done for

the markets that are available for the operators of energy storages. In the first step,

it is assumed that the operators are only acting on the spot market, in the second

step they can also bid on the minute reserve power market.

As mentioned above, the first analysed power plant is a CAES power plant with

a storage capacity of 1000 MWhout
el and a turbine size of 250 MW . The further

applied plant data is illustrated in Table 6.1.

Based on this data, the economic feasibility of CAES investments is evaluated

in the following, applying simulated electricity prices of the years 2011 and 2020.

The 2011 evaluation is performed with the help of all strategies comparing their

results. For the 2020 evaluation, only the SDP strategy is applied. Thereby, it is
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Table 6.1.: Applied techno-economic input data of the CAES power plant (data source: Gatzen

(2008) and own assumption)

specific investments 625 e/kW

annual O&M costs 9000 e/MWTurbCap

storage capacity 1000 MWhout
el

turbine capacity (min./max.) 90 - 250 MW

compressor capacity 70 - 150 MW

compressed-air factor (CAF) 0.66 MWhin/MWhout

gas heat ratio 1.13 MWhin,gas/MWhout,el

roundtrip effciency 56 %

economic lifetime 25 a

discount rate 5-10 %

discussed how different scenarios for the mean levels of gas and electricity prices

in 2020 influence the evaluation results.

6.1.3.1. Results based on 2011 prices

Beside the techno-economic data described above, 1000 electricity paths, that are

simulated for the base year 2011, are applied within the evaluation models. The

electricity price model, which delivers the simulated price paths, is calibrated with

the historical electricity spot prices between 2006 and 2011. Finally, historical

CO2 certficate prices, gas prices and minute reserve power prices of the year 2010

(and 2011 respectively) are directly incorporated into the evaluation models.

A first analysis of the storage dispatch shows that in all strategies the storage is

filled with compressed air in the night hours reaching the maximum storage ca-

pacity early in the morning (see Figure 6.5), although the starting point of storage

charging is different for each strategy. Another common characteristic is that all

strategies discharge the storage at peak load hours following the high electricity

spot prices. The main difference in the storage dispatch occurs in the evening

hours of the analysed day: The more complex strategies "perfect foresight" and
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Figure 6.5.: Daily process of the storage level for an exemplary price path

the "SDP strategy" start filling the storage again in the evening hours, as they

expect positive income in the following days. The simple strategy and the day-by-

day optimization let the storage empty after discharging it. This results from the

logic of these methods, which do not incorporate the prices and possible returns

of following hours and days into the determination of the optimal strategy, as they

carry out the optimization only for the analysed day.

Based on the optimal storage dispatch strategy, the evaluation of the CAES

power plant is firstly done for the case that the plant is only operated on the spot

market. An annual return of 13.89 MMe is calculated for the CAES power plant,

if the unit dispatch follows the "perfect foresight with MC simulation strategy".

The "simple scenario under uncertainty" is far away from this result, achieving an

annual return of only 9.06 MMe (about 65 % of the perfect foresight strategy)13.

The annual return of the SDP strategy (about 10.12 MMe) is considerably higher

making up nearly 75 % of the perfect foresight strategy, the upper threshold (see

13The annual return determined with the perfect foresight strategy can be seen as an upper threshold for

the yearly earnings of the CAES power plant, as the optimization is carried out under best conditions,

i.e. a priori known prices, which are not given in reality.
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Table 6.2.: Results of the CAES plant evaluation for the different plant dispatch strategies

Perfect fore-

sight / MC

Simple

Strategy

Day-

by-day

optm.

SDP

strategy

Annual return [MMe] 13.89 9.06 10.09 10.12

Spot market rev. [MMe] 43.32 24.61 39.62 39.57

Annual expenses [MMe] 29.43 15.55 29.53 29.45

Annuity (i = 8%) + O&M exp. 16.89

Internal rate of return 5.5% 0.6% 1.9% 2.0%

Full load hours turbine [h] 2436 1461 2363 2359

Full load hours compr. [h] 2680 1605 2599 2590

Calculation time 8h a few sec ∼ 10h ∼ 10h

1000scen. 30 cluster 30 cluster

Table 6.2). Furthermore, it can be noted that the SDP strategy achieves a slightly

higher annual return than the day-by-day optimization. This indicates that the

"value of flexibility" or the annual value of the real option to delay the storage

dispatch corresponds to only 0.03 MMe14.

The spot market revenues and expenses of the perfect foresight strategy are sig-

nificantly higher, which indicates that the CAES power plant comes into operation

in more hours in the perfect foresight strategy than in the other strategies. This

result is confirmed by the highest number of full load hours for both, turbine and

compressor, in the perfect foresight strategy. The result is plausible, as in the per-

fect foresight strategy the unit commitment for a whole year is optimized at once,

so that every positive spread between charging and discharging the storage is ex-

ploited. However, the SDP strategy, which is based on uncertain prices, achieves

14The real option value is defined as the difference between the annual returns of the SDP strategy and

the day-by-day optimization strategy.
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also a significantly higher number of full load hours than the simple strategy. The

number of full load hours is increased by more than 60 % with the help of the SDP

method compared to the simple strategy, but the annual return can be improved by

only 11.7 %.

However, the increased annual return of the SDP strategy is still lower than the

annuity of the investment + O&M expenses (16.89 MMe) based on an interest

rate of 8 % and economical lifetime 25 years. If a discount rate of only 5 % is

applied, the annual return does still not cover the annuity (11.08 MMe) of the

CAES power plant. If the annual O&M expenses are also added to the annuity,

the difference between annual return and annuity adds up to -2.19 MMe. This

suggests that the investment is inefficient even by a low discount rate about 5 %.

The only strategy, which exceeds the annuity at 5 % discount rate, is the perfect

foresight strategy achieving a negligible higher value of 0.56 MMe. The internal

rate of return of the investement reaches 5.5 % in this strategy and only 2 % in the

SDP stratgy, which is another sign for the uneconomical investment, if the CAES

is only operated in the spot market.

The economic efficiency of the investment can be increased, if the optimization

of the unit commitment covers both markets, the spot and minute reserve mar-

ket. The results based on the data described above show that the annual return is

considerably improved by the option to take part on both markets (see Table 6.3).

Thereby it is worth mentioning that the growth of the annual return is stronger

in the SDP strategy (+1.12 MMe) than in the perfect foresight strategy (+0.51

MMe). This can be due to the fact that in the SDP strategy the reserve power

prices are assumed to be known a priori, while spot prices are still handled as

uncertain. Thus, the offers on the reserve power could be exploited rather by the

SDP strategy than by the perfect foresight strategy. Hence, the SDP annual return

increases from almost 75 % to 78 % of the return, which is calculated with the

help of the perfect foresight strategy, if the CAES power plant is also operated on

the reserve market.

Finally, the annual returns of the different strategies and markets are compared

with the annuity of the CAES power plant investment applying different discount

rates for its calculation. The comparison illustrates again that only if low discount
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Table 6.3.: Results of the CAES plant evaluation based on different market participation

Perfect foresight / MC SDP strategy

Spot Spot and Spot Spot and

market reserve market reserve

Annual return [MMe] 13.89 14.40 10.12 11.24

Spot market rev. [MMe] 43.32 41.26 39.57 36.62

Reserve market rev. [MMe] — 0.91 — 1.44

Annual expenses [MMe] 29.43 27.77 29.45 26.83

Annuity (i = 8%) + O&M exp. 16.89

Internal rate of return 5.5% 6.0% 2.0% 3.0%

Full load hours turbine [h] 2436 2294 2359 2167

Full load hours compr. [h] 2680 2524 2590 2378

Bids pos. minute reserve [h] — 1348 — 1319

Bids neg. minute reserve [h] — 827 — 1949

rates are applied, the investment can be evaluated as economically efficient. How-

ever, for discount rates beyond 6 % all strategies suggest to decline the investment

(see Figure 6.6).

6.1.3.2. Results for the scenario year 2020

The evaluations above are carried out based on electricity prices simulated for

the year 2011. However, evaluation results of the CAES investment can signifi-

cantly change and the investment can probably be efficient, if the electricity price

structure changes in future and the price volatility increases, which in turn could

lead to higher short-term price spreads. This is expected, especially if the share

of fluctuant power generation rises and the residual load becomes more volatile.

Therefore, in the following the CAES investment evaluation is repeated for the
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Figure 6.6.: Comparison of the annual returns of the different strategies with the annuity of the

CAES investment

year 2020 assuming an overall installed wind capacity of 40 GW15 for Germany.

Based on this capacity assumption, wind power feed-in series and corresponding

electricity price paths are simulated for the reference year 2020. The simulated

price series are then used within the SDP model to recalculate the optimum annual

return under uncertainty for the CAES power plant constructed in 2020.

Furthermore, different price tendencies and scenarios regarding the long-term

development of electricity and gas prices are applied in the SDP model to compare

the economic efficency of the CAES investment under different scenarios. In

the first scenario "S1", a moderate growth of both, electricity and gas prices, is

assumed until 2020. A moderate annual growth rate of the electricity price is

also determined for the electricity prices between 2006 and 2011 at the EEX. This

growth rate is used as trend parameter within the electricity price simulation. The

simulated electricity price paths for the year 2020 possess a comparatively low

mean (about 59 e/MWh) in scenario "S1". As for the gas prices historical data is

1539 GW onshore wind capacity are assumed for 2020 in the Leitstudie 2011 of the Federal Ministry

for the Environment, Nature Conservation and Nuclear Safety (see BMU (2012)), while only 35.75

GW were assumed in the Leitstudie 2010. Hence, the author increased the value to 40 GW installed

onshore wind capacity in 2020.
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applied in the CAES evaluation models, the gas prices of the year 2010 are used

in the first scenario representing a moderate gas price level.

In the second scenario "S2" a high gas price level is adapted, more precisely the

gas prices of the year 201116, while the electricity prices are kept the same as in

scenario S1. Scenario S3 corresponds to S1 and S4 to S2 respectively, but in these

scenarios the electricity price period used for the calibration of the price models

is reduced to 2007 to 2011. The reduced period is chosen, as a higher growth rate

of electricity prices is determined for this period. The impacts of a high growth

rate will be analysed in the scenarios S3 and S4. Summarily, S1 represents a low

electricity and gas price level, S2 a low electricity, but a high gas price level in

2020. S3 assumes a high electricity price and a low gas price level, while S4

represents a high electricity and gas price level.

The SDP model runs for the different scenarios show that a higher annual return

can be expected in 2020 compared to the results for base year 2011, if the overall

installed wind capacity increases to 40 GW. However, the height of the annual

return varies considerably in each scenario. The highest annual return can be

earned in the high electricity price, low gas price scenario (S3) reaching the double

of scenario S2, for which the assumptions are vice versa17.

Analyzing these scenarios, it can be noted that in the scenario with moderate

growth of electricity and gas prices (S1), the annual return reaches 16.32 MMe,

which is still lower than the annuity of the investment, applying a discount rate of

8 %, plus the annual O&M-costs. Therefore, it can be stated that in the moderate

price growth scenario the CAES investment is still away from beeing economi-

cally efficient in 2020. In the high price growth scenario (S4), however, the SDP

model delivers an optimum annual return of 19.38 MMe, which is higher than

the 8 %-annuity and which is almost as high as the 10 %-annuity. The CAES

investment can be definitely evaluated positive in this case. Table 6.4 shows also

16The mean of the gas prices in 2011 (22.74 e/MWh) was significantly higher than the one in 2010

(17.25 e/MWh).
17The assumption of low gas prices and high electricity price or vice versa does not reflect the funda-

mental relationship between both parameters. Scenario S1 (low prices for both) or scenario S4 (high

prices for both parameters) seem to be rather realistic than the others, as they consider the positive

relation between both price parameters.
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Table 6.4.: Results of the CAES plant evaluation for the different scenarios and year 2020

S1 S2 S3 S4

mean electricity price [e/MWh] 59.94 59.94 77.32 77.32

mean gas price [e/MWh] 17.25 22.74 17.25 22.74

Annual return [MMe] 16.32 12.09 25.45 19.38

Spot market rev. [MMe] 57.32 39.38 103.14 76.56

Reserve market rev. [MMe] 1.17 0.99 0.73 0.72

Annual expenses [MMe] 42.16 28.88 78.42 57.90

Annuity (i = 8%) + O&M exp. 16.89

Full load hours turbine [h] 2943 1920 4449 3088

Full load hours compr. [h] 3233 2107 4889 3393

Bids pos. minute reserve [h] 983 261 550 156

Bids neg. minute reserve [h] 1504 1938 765 1209

that the reserve market plays only a small role for generating revenues with the

CAES plant.

Furthermore, net present values (NPV) of the CAES investment are calculated

for different discount rates and economical lifetime assumptions. Assuming a dis-

count rate above 8%, the NPV is negative in the low electricity price scenarios S1

and S2, independent from the applied economical lifetime of 20 or 25 years. For

the high electricity and high gas price scenario (S4) a positive NPV is calculated

in the case of a lifetime equal to 20 years and discount rates up to 9%. The NPV is

even positive for discount rates up to 10% in the case of 25 years lifetime. In the

less realistic scenario with high electricity prices, but low gas prices in 2020 (S3),

the NPV is even positive for discount rates beyond 12% in any case (see Figure

6.7).

Thus, it can be concluded that the CAES investment is economically feasible,

assuming an economic lifetime of 20 or 25 years, if a high growth rate for elec-
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Figure 6.7.: a) NPV of the CAES power plant for different discount rates and different scenarios

(lifetime=25a) b) NPV (lifetime=20a)

tricity spot prices (similar to that between 2007 and 2011) can be expected until

2020. In the case of low growth rates for the electricity price level, CAES invest-

ments will remain uneconomical, whether a higher (25 years) or a lower lifetime

(20 years) is applied within the evaluation models.

6.1.4. Evaluation of PSHP plants under uncertainty

For the evaluation of PSHP plants a representative unit, i.e. the Goldisthal pumped

storage hydropower plant, is chosen as a case study. The choice of this PSHP

plant is motivated by the fact that it is one of the latest constructed PSHP plants

and the investment was completely performed by a private company. Therefore,

it is expected that this energy storage type is rather feasible than the CAES plant

analyzed above. The model data of the Goldisthal PSHP plant is given in Table

6.5.

As it can be obeserved from the power plant data, the efficiency of the PSHP

plant is much higher than the roundtrip efficency of the CAES plant, while the

specific investments and the annual O&M costs are lower. This first analysis in-

dicates that the PSHP plant is economically more attractive than the CAES plant

analysed above. Indeed, running the SDP model with the PSHP plant data and the

170



6.1. Evaluation of bulk energy storage plants considering electricity price uncertainty

Table 6.5.: Applied techno-economic input data of the PSHP plant (data source: Goldisthal

PSHP)

specific investments 585 e/kW

annual O&M costs 4500 e/MWTurbCap

storage capacity 8885 MWhout
el

pumpturbine capacity 1060 MW

effciency 80%

economic lifetime 25 a

discount rate 5-10%

simulated prices for the base year 2011, a very high annual return (67.66 MMe)

is achieved. This value significantly outranges the annuity of the investment at a

discount rate of 5% (44 MMe) and reaches almost the annuity applying a 10%

discount rate (68.31 MMe). The internal rate of return (IRR) of the PSHP plant

investment consequently equals to 9.4%, which allows a positive evaluation of the

investment. This is ecpecially the case, if the IRR of the PSHP is compared with

the expected rate of returns of other investments in the energy sector and if it is

compared with the discount rates applied in other studies (see Teisberg (1994),

Roques et al. (2006) and King and Hall (2011)). Comparing the result of the

PSHP plant evaluation with the one of the CAES power plant, it can be concluded

that the investment in a PSHP plant should be preferred, if a appropriate location

for a PSHP plant is still available in the Phelix area18 and if the above applied

techno-economic data is still given for PSHP investments.

After analyzing energy storage power plants as stand-alone investments, inte-

grated power plants consisting of an energy storage and a wind power plant at the

same location is evaluated next. The combination of both plant types to an inte-

grated power plant is very interesting option to strengthen an energy system, as

this new plant could produce and feed-in electricity into the grid in a more smooth

way. The integrated power plants will be evaluated again on the basis of uncer-

18Phelix is the index for electricity spot prices at the EPEX for trades covering Germany and Austria.
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tain electricity prices and wind power generation. However, the analysis will at

first continue with the evaluation of stand-alone wind power plants based on the

same uncertain parameters and the latest support policies for renewable power

generation. This evaluation will help to present all analyses in a general context.

6.2. Mark-to-market evaluation of wind power plants under uncertainty

The German funding mechanism for renewable energy technologies has been

based on fixed feed-in tariffs (FIT) for the last 12 years. However, since 2009 fur-

ther mechanisms were introduced to bring the RES facilities closer to the deregu-

lated market. These include the so-called "green power privilege"19 and the "mar-

ket premium" mechanism for directly sold RES power20. The market premium

MP for electricity from a specific RES is equal to the difference between the cor-

responding fixed tariff and the weighted average of electricity prices during the

hours in which the specific RES electricity is produced. For example, the wind

market premium MPm for month m is calculated as the difference between the

FITWind and the average market value MV of all units of wind power produced

in the whole country in the previous month. The market value in turn is the to-

tal wind power production XWind
h in each hour weighted with the appropriate spot

market price pEL
h .

MPm+1 = FITWind − ∑Hm
h=1 pEL

h ·XWind
h

∑Hm
h=1 XWind

h

∀m [6.26]

MPd = ∑
m
(MPm ·1(d|d ∈ m)) ∀d = 1..365 [6.27]

A wind power plant operator receives a market premium for each unit wind

power directly sold on the spot market additionally to the electricity spot price.

Thus, if his power generation perfectly correlates with the overall wind power

19Due to the latest renewable energy legislation Bundestag (2012) energy suppliers are partly exempted

from the EEG charge (max. 2 e-ct/kWh), if they provide 50 % of their total electricity supply from

renewable resources and if 20 % of this renewable energy comes from fluctuant resources, such as

wind and solar.
20see Bundestag (2009) and Bundestag (2012)
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generation, his income on the spot market and the market premium will add up to

the earnings he would achieve in the fixed tariff system. However, if his generation

occurs in times of peak load and high prices, his earnings are significantly higher

than in the case of fixed FIT (see Schäfer et al. (2012)), as the market premium is

constant throughout the day and does not depend on the earnings of a single wind

power plant21.

Since the introduction of the market premium at the beginning of 2012, the mar-

ket premium mechanism has been more and more favoured especially by wind

power plant operators. On average, this system enables higher incomes than the

fixed tariff system. This is due to the fact that the market premium mechanism

contains a further premium, the so-called management premium (see Förstner

(2012)). The management premium helps to balance the costs for prognosis errors

and increases the total revenues for a kWh electricity above the guaranteed fixed

FIT (see Bundestag (2012)).

Because of that reason and due to the fact that it conforms better to a market

evaluation than the other systems, the evaluation of wind power plants will be

carried out based on the market premium mechanism in the following.

6.2.1. Evaluation method

A simple simulation method is developed for the evaluation of a wind power

plant or park. According to this method the wind power plant is operated all the

time, when wind is available, except in times in which the electricity prices be-

come negative and fall below the negative value of the market premium. In these

times/hours, the contribution margin would become negative and so the operation

would be uneconomical.

Based on this dispatch method, the daily return CMWind
d,ps of the wind power

plant is calculated as the difference between all income components (spot price

pEL
d,ps,h, market premium MPd and management premium ManageP) and the spe-

cific costs of wind power generation. These costs consist of the specific operation

21The market premiums are newly calculated at the end of each month for the following month de-

pending on the spot prices and corresponding RES power production of all wind power plants in the

elapsing month.
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and maintenance costs cOuM and the "specific costs for prognosis errors" cerror.

The specific costs for prognosis errors are defined as the costs for balance power,

which is needed for compensating wind prognosis errors, averagely portioned to

every produced unit of wind power.

CMWind
d,ps =

24

∑
h=1

(pEL
d,ps,h +MPd +ManageP− cOuM − cerror) ·XWind

d,ps,h

∀d = 1..D, ps ∈ PS

[6.28]

The applied electricity price paths pEL
d,ps,h are the same prices which were ap-

plied in section 6.1.3.1 for the evaluation of energy storages. Furthermore, the

same recombining scenarios tree for electricity prices and the related transition

probabilities from section 6.1.2.2 are used to add up the daily returns to the an-

nual return of the wind power plant. The use of the same scenario tree is consistent

with the evaluation of energy storages and makes a comparison between different

investment options possible. Besides, it is worth mentioning that simulated wind

power generation paths XWind
d,ps,h are jointly clustered with the corresponding elec-

tricity price paths pEL
d,ps,h to keep the relationship between wind power feed-in and

prices, which is described in chapter 5. Hence, the recombining tree represents

both, the clustered electricity price paths as well as the appropriate electricity

feed-in paths of the evaluated wind power plant.

Based on this recombing tree the returns CMWind
d→D,ps from d to D are recursively

calculated with the help of the returns CMWind
d→D,ps from d + 1 to D similar to the

approach in Eq. 6.16:

CMWind
d→D,ps =CMWind

d,ps +∑
ps′

T prd,ps→d+1,ps′ ·CMWind
d+1→D,ps′ ∀d = 1..D−1 [6.29]

Finally, the weighted average of all CMWind
d1→D,ps from the first day d1 to D over

all price paths psd1 makes up the annual return of the wind power plant.
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6.2. Mark-to-market evaluation of wind power plants under uncertainty

6.2.2. Evaluation of a wind power plant based on the market premium

mechanism

Based on the simple approach described above, the value of a wind power plant

can be calculated considering the uncertain development of prices and wind power

generation. The evaluation method is applied for a case study consisting of a 100

MW wind power park. The specific investments of the wind power plant are

assumed as 1247 e/kW according to Hirschl et al. (2010). The total investment

sum amounts then to 124.7 MMe for the entire plant. Furthermore, it is assumed

that specific operation and maintanence costs cOuM of the wind power plant equal

to 1.2 e/MWh, while the "specific costs for prognosis errors" cerror correspond to

2.2 e/MWh (see Krohn et al. (2009)).

Considering this cost structure and the stochastic tree of prices for the anal-

ysed year 2011, the annual return of the whole wind park is calculated as 17.53

MMe. This value is only achieveable, if market premiums are included into the

calculation. The market premiums are determined on the basis of the 2011 wind

power feed-in tariffs for on shore wind, corresponding to 9.41 e-ct/kWh with all

bonuses. The FIT for wind is reduced to 4.87 e-ct/kWh after five years. This

period is extended, if the production of a wind power plant goes below 150 % of

the reference production, which is seperately determined by a given wind speed

for the location of the wind park/power plant and by the state of the art wind

technology. The extension correponds to two month for every 0.75 % shortfall

(see Bundestag (2012)). This suggests that if a wind power plant is analysed,

whose power production corresponds to 125% of the reference production, the

wind power plant would receive the higher FIT for an extended period that cor-

responds to the missing 25%. The extension would then ammount to 66 months

or 5.5 years for an average wind power plant. Hence, the increased FIT of 9.41

e-ct/kWh would be paid for 10.5 years on average.

These 10.5 years are applied for the determination of the annual return in this

case study. Afterwards, the market premium is removed, as it is would be negative,
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if the FIT is reduced to 4.87 e-ct/kWh after 10.5 years 22. The annual return

for the time after the initial 10.5 years is therefore calculated without the market

premium. Based on the same price structure mentioned above, the annual return

equals to only 7.35 MMe without the market premium. This reduced annual

return has to be taken into account, if the evaluation of the wind power plant is

carried out assuming a higher economic lifetime than the 10.5 years. The annual

returns are compared with the annuity of the investment, for which a discount rate

of 8 % and a lifetime (N) of 10.5 years (and 15 years respectively) is applied.

Table 6.6 summarizes the main results of the evaluation and the correponding

input values for FIT, market premium, etc.

Table 6.6.: Main input data and results of the wind power plant evaluation

first 10.5 a after 10.5

a

FIT [e-ct/kWh] 9.41 4.87

market premium 9.41 - MV 0

management premium [e-ct/kWh] 1.2 0

specific O&M costs [e/MWh] 1.2

specific costs for prognosis

errors [e/MWh] 2.2

expected full load hours 1721h

expected generation [GWh] 172.1

annual return [MM e] 17.53 7.35

annuity (i=8 %, N=10.5 a) [MM e] 18.5

annuity (i=8 %, N=15 a) [MM e] 14.6

22The current market value (2011) of electricity is about 5.1e-ct/kWh. Therefore the difference between

reduced FIT and market value would become negative assuming that the market value of wind power

corresponds to the current value of electricity.
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The results show that the full load hours of the wind power plant equals to 1721

hours, which correspond to an availability factor of about 19 %23. This indicates

that the wind power plant is dispatched nearly all the time, if wind is available.

This result is quite obvious, as electricity prices fell below the negative value of

the market premium (minus the variable costs) only in a few hours of the year.

Thus, it is economically feasible to dispatch the wind power plant nearly all the

time.

A very high annual return can be achieved in the first 10.5 years, during which

the market premium is paid. However, this annual return is still nearly 1 MMe

below the annuity of the investment at a discount rate of 8% and an applied life-

time of 10.5 years. But if the investment period is increased to 15 years, then the

overall investment expenses of 219 MMe(=14.6MMe x 15a), which are calcu-

lated based on the same interest rate of 8%, can be covered almost completely by

the annual returns of the first 15 years, which add up to 217.14 MMe. Hence, in-

vestments in wind power plants are profitable under the new funding mechanism

with market premiums, if a lifetime of 15 years and annual discount rate of 8% is

applied, which are quite usual values for RES projects.

6.3. Combined evaluation of energy storage and wind power plants

Wind power plants and energy storages could be aggregated on a single site to a

combined power station, which could be flexibly dispatched, delivering electricity

for base or peak load contracts. However, due to the current market design in

Germany, there is no financial incentive for a coordinated operation of energy

storage and wind power plants, even if they are located on the same site. This

results also from the fact that since 2011 new energy storages are exempt from net

charges and from the EEG charge24, which can be seen as an important incentive

for energy storage investments. Thus, the energy storage operator has to pay only

the price for the purchased electricity itself. The purchase costs of electricity

23This availability value is averagely calculated for wind power plants in the north of Germany.
24New energy storage plants are exempt from net and EEG charges for 20 years after their construction

and existing plants for 10 years, if their power output is upgraded by 15 % and their storage volume

by 5 % (see EnWG (2012)).
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from the grid/market is now equal to the costs of electricity purchased from wind

power plants25. A storage operator will therefore adapt the storage operation only

to the current price structure. The availability of wind power from a nearby plant

does not play a role for his decision on storage operation. This indicates that the

operation of energy storage and wind power plants must not be coordinated, even

if they are located at the same plant site. For this reason, the incentives for energy

storage has to be rethought and changed in a way that a coordinated operation of

wind power plants and energy storages leads to a positive portfolio effect. This

could in turn lead to an adjustment of the storage operation to the availability of

wind power26.

Possible changes could be the introduction of a fixed payment (e.g. capacity

payment) instead of the exemption from network and EEG charges. Another in-

strument could be the introduction of a "flexibility premium", which could be paid

for shifting wind power production from offpeak hours to peak hours by using a

nearby energy storage for this operation. In the following, the latter mechanism is

implemented into an extended version of the SDP model introduced in section 6.1,

which was used for the evaluation of energy storages. The extended SDP model

evaluates an integrated power plant that consists of an energy storage and a wind

power plant considering the uncertainty of electricity prices and of wind power

production.

6.3.1. Model extensions for portfolio evaluation

The main extension lies within the objective function of the SDP model, which

optimizes the sum of the daily returns between day d and the end of the plan-

ning period D. Thereby, further terms representing the daily returns of the wind

power plants are added to the objective function. The first term (pEL
d,ps,h +MPd +

ManageP) ·XWind,spot
d,ps,sb,h illustrates the wind power sold on the spot market within

day d, priced with the current spot price and the corresponding market premium

25The value of wind power in a specific hour corresponds to the spot market price for this hour, which

is in turn exactly the price the energy storage operator has to pay for grid electricity if he is exempt

of charges and taxes.
26The coordinated operation is desired, as it can relax possible congestions in the electricity grid
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6.3. Combined evaluation of energy storage and wind power plants

MPd as well as the management premium ManageP on day d. If some part of

the wind power generated on day d is stored, the stored amount XWind,Storage
d,ps,sb,h is

valued with MPd including the management premium and the flexibility premium

FlexPh mentioned above. FlexPh is set to a positive value for offpeak hours and

to "zero" for peak hours27. This approach promotes the storage of wind power

surpluses in offpeak times. The objective function of the model for a combined

plant, consisting of a CAES and a wind power plant can be formulated as in Eq.

6.30.

Beside the adjustment of the objective function, the constraint equations have to

be also adjusted and new constraints have to be added to the SDP model to capture

the restrictions related to the storage and sales of wind power. The main change

is done in the first line of Eq. 6.19 to consider the amount of stored wind power

XWind,Storage
d,ps,sb,h within the determination of the storage level in hour h. Thereby it is

worth mentioning that the storage level in h is calculated on the basis of the storage

level of h− 1. The previous storage level of the first hour h1 corresponds to the

beginning storage level of the day sbd,ps ·Smax leading to the second constraint in

Eq. 6.32.

27In this approach the flexibility premium is only differentiated for two time slots (peak and offpeak).

However, the impacts of a more differentiated flexibility premium could be analyzed in future anal-

yses.
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max CMd→D,ps,sb(X
spot
d,ps,sb,h, ...) =

24

∑
h=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
pEL

d,ps,h − pFU
d · 1

μFU

−pCER
d · 1

μFU ·EFFU − cturb
var

)
·Xspot

d,ps,sb,h

+(pEL
d,ps,h +MPd +ManageP) ·XWind,spot

d,ps,sb,h

+(FlexPh +MPd +ManageP) ·XWind,Storage
d,ps,sb,h

−
(

pEL
d,ps,h + ccomp

var

)
·Xcomp

d,ps,sb,h

−cturb,LC ·Xturb,LC
d,ps,sb,h

−ccomp,LC ·Xcomp,LC
d,ps,sb,h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
6

∑
ts=1

preserve
d,ts ·Xreserve

d,ps,sb,ts

+∑
ps′

bsb′ ·T prd,ps→d+1,ps′ ·CM∗
d+1→D,ps′,sb′

[6.30]

Sd,ps,sb,h = Sd,ps,sb,h−1+Xcomp
d,ps,sb,h ·CAF+XWind,Storage

d,ps,sb,h ·CAF−Xspot
d,ps,sb,h ∀h= 2..24

[6.31]

Sd,ps,sb,h1
= sbd,ps ·Smax+Xcomp

d,ps,sb,h1
·CAF+XWind,Storage

d,ps,sb,h1
·CAF−Xspot

d,ps,sb,h1
∀d, ps,sb

[6.32]

Furthermore, the amount of wind power stored in the CAES XWind,Storage
d,ps,sb,h and

the amount sold on the spot market XWind,spot
d,ps,sb,h has to be consistent with the overall

electricity production of the wind power plant. Eq. 6.33 ensures that this con-

straint is taken into account within the optimization.

XWind
d,ps,sb,h = XWind,Storage

d,ps,sb,h ·CAF +XWind,spot
d,ps,sb,h ∀d, ps,sb,h = 1..24 [6.33]

A further consistency constraint affects the compressor operation, which guar-

antees that in total it cannot absorb more power from the wind power plant XWind,Storage
d,ps,sb,h

and from the grid XComp
d,ps,sb,h than its maximum capacity XComp

max .
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XWind,Storage
d,ps,sb,h +XComp

d,ps,sb,h = XComp,total
d,ps,sb,h ≤ XComp

max ∀d, ps,sb,h = 1..24 [6.34]

To ensure that the flexibility premium FlexPh is paid only for shifting offpeak

wind power to peak load hours using the storage, a further constraint is introduced.

This constraint forbids the turbine operation of the CAES power in offpeak hours,

if at the same time wind power is charged to the CAES. Otherwise the stored

wind power could be simultaneously used for the turbine operation, as the tech-

nical characteristics of a CAES power plant enable the simultaneous operation

of compressor and turbine. Therefore, this kind of operation has to be forbid-

den by regulation to avoid that the operator of the combined power plant receives

the flexibility premium without really shifting offpeak wind power to peak hours.

Mathematically, this constraint means that the turbine output, which corresponds

to the sales on the market, Xspot
d,ps,sb,h has to be zero, if XWind,Storage

d,ps,sb,h possesses a

positive value in offpeak hours.

Xspot
d,ps,sb,h =

⎧⎨
⎩ 0 XWind,Storage

d,ps,sb,h > 0∧h = 1..8∨h = 21..24

Y |Xturb
min < Y < Xturb

min ∨0 else

[6.35]

Beside these adjusted or added constraints, the other constraints of the SDP

model are taken without any changes from the basic model into the extended

model. In the following this model will be applied for the evaluation of an in-

tegrated plant, consisting of the CAES and wind power plant analysed in section

6.1.3 and 6.2.2 respectively.

6.3.2. Market-based evaluation of an integrated plant

The extended SDP model optimizes the dispatch of the energy storage and adjusts

its operation to the wind availability due to flexibility premium payments. The

optimization under uncertain prices and wind power generation is carried out for

an integrated power plant, consisting of the CAES analysed in section 6.1 (turbine
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capacity of 250 MW) and of a wind power plant with a capacity of 100 MW. Based

on further data for the power plant components introduced in Table 6.1 and 6.6,

the annual return is optimized with the help of the extended SDP model for two

cases: in the first case no flexibility premium is applied for shifting wind power

from offpeak hours to peak hours, while in the second case a flexiblity premium

of 1.5 e-ct/kWh28 is applied.

The results show that the flexibility premium has a very little effect on the earn-

ings of the integrated power plant. The annual return rises from 27.90 MMe to

only 28.43 MMe, which corresponds to a 1.8 % increase in total. The increased

annual return is nearly at the same level of the annuity of the total investment

(28.65 MMe) considering an economical lifetime of 20 years and an interest rate

of 8 %. It should be mentioned that these annual returns are calculated on the

basis of the market premium mechanism for directly sold wind power as it is ap-

plied in section 6.2. They are only achievable in the first 10.5 years after the

construction of the integrated plant assuming that its specific wind power produc-

tion corresponds to 125% of the reference production in Germany. However, if

all the premiums are removed after 10.5 years due to the assumption that the mar-

ket price will be higher than the reduced FIT (see section 6.2.2), then the annual

return of the integrated plant equals to 18.25 MMe. Thus, the average annual

return of the integrated power plant corresponds to 23.31 MMe in the flexibility

premium case and to 23.59 MMe without this premium. As these average annual

returns are below the annuity of the investment, an integrated power plant with the

configuration mentioned above is not economically feasible, if investors expect an

internal rate of return of 8 % per year.

Furthermore the applied flexibility premium (FP) of 1.5 e-ct/kWh causes that

a total amount of only 244 compressor full load hours of wind power, which is

generated by the 100 MW wind power plant, are shifted to the CAES plant and

are brought to the market at peak hours. This number of compressor full load

hours corresponds to 36.6 GWh. This indicates that 43.6 % of the total 83.90

28This value is chosen, as a similar flexibility premium is paid for biogas power plants due to the current

renewable energy legislation, if a gas storage is constructed at the power plant site.

182



6.3. Combined evaluation of energy storage and wind power plants

GWh wind power produced at off-peak times are made available at peak times.

Table 6.7 summarizes the main results for the integrated power plant.

Besides, if the number of the turbine full load hours for the case with FP (2141

h) is compared with the case without FP (2161 h), it can be observed that the

turbine is slightly less often dispatched in the case with FP. This can be seen as

an inconsistency in the first. However, this outcome is caused by the constraint of

no turbine operation during offpeak times, if wind power is stored in the CAES

plant. Due to this model assumption the integrated power plant would not receive

the FP, if it does not shift offpeak power to peak hours. If the compressor is

run with wind power to shift this power into peak hours, no turbine operation is

therefore allowed. The total number of hours, in which the turbine is allowed

to be dispatched on the spot market, is reduced by this constraint compared to

the case without FP. Thus, the reduced turbine full load hours are consistent with

the FP assumptions. Furthermore, the full load hours of the turbine are reduced

only by 0.9 % applying the FP and the constraint for shifting offpeak wind power.

Nevertheless, almost 44 % of the produced offpeak wind power is shifted to peak

hours, which makes the FP a successful policy in this respect and the insignificant

reduction of the storage dispatch acceptable.

6.3.2.1. The impact of net charges on storage value

The analyses above are carried out without applying any net charges on electricity

purchases of the energy storage from the grid. However, if net charges are applied,

the annual return of such an intergrated power plant for the first 10.5 years would

be reduced to 25.7 MMe and 26.2 MMe respectively, which corresponds to a

decrease of the earnings by 8 %. The average annual return for the first 20 years

would then be equal to 21.1 MMe and 21.4 MM e in the case of net charges and

FP29.

Table 6.7 also highlights that the number of compressor full load hours resulting

from wind power is increased from 244 h to 321 h, if net charges in the height of

29As a reminder: For the first 10.5 years the integrated power plant would receive market premium for

directly sold wind power and other premia, after 10.5 years the plant would not receive any premia.
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Table 6.7.: Results of the integrated power plant evaluation under different policies for the first

10.5 years

without net charges with net charges

without

FP

with FP without

FP

with FP

Annual return [MMe] 27.90 28.43 25.65 26.20

Spot market rev. [MMe] 53.23 51.70 42.78 43.57

Reserve market rev. [MMe] 1.44 1.44 1.61 1.59

Annual expenses [MMe] 26.77 24.70 18.74 18.90

Annuity (i = 8 %) + O&M exp. 28.65

Full load hours turbine [h] 2161 2141 1584 1606

Full load hours compr. (grid) [h] 2373 2111 1468 1445

Full load hours compr. [h] 0 244 273 321

from wind power [= GWh] 0 36.6 41.0 48.2

Directly sold wind power [GWh] 163.8 127.2 122.7 115.6

FLH pos. minute reserve [h] 1320 1390 1613 1575

FLH neg. minute reserve [h] 1950 1956 2285 2299

8.5 e/MWh30 are again introduced. That means that the amount of stored wind

power rises from 36.6 GWh to 48.15 GWh. Consequently, the amount of wind

power directly sold on the spot market is reduced from 127.2 GWh to 115.6 GWh.

Besides, the number of full load hours, in which the compressor is driven by

power from the grid, decreases by almost 32 % from 2111 h to 1445 h, if net

charges are applied. The output of the turbine is analogously reduced, as the

net charges lead to a further cost component that reduces the number of hours,

in which the operation of the storage is economically feasible. Contrarily, an

30This figure represents the actual level of net charges in Germany for purchasing electricity from the

high voltage grid (see Tennet (2012)).
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increase can be observed for the full load hours on the minute reserve market,

for both positive and negative minute reserve power, as the introduction of net

charges does not lead to an additional cost component for bids on the reserve

power market assuming that the bids on this market are designed in that way

that reserve energy is kept ready, but it is in fact not requested and not delivered.

Hence, the optimization of the power plant dispatch leads to an higher dispatch of

the power plant components on the minute reserve power market, if net charges

reduce the attractivity of bids on the spot market.

The analysis of the NPVs for the different cases shows also that the NPV be-

comes negative for interest rates from 4.7 % on (see Figure 6.8), if net charges are

payable for the purchase of grid electricty, even if the FP mentioned above is paid

for shifted wind power. If net charges are not imposed on energy storages, the

NPV is negative for interest rates beyond 6 %. Investments in integrated power

plants become more economic. The internal rate of return (IRR) of 6 % is also

much higher than the one of the single CAES power plant investment evaluated

with actual electricity prices (see section 6.1.3.1). Nevertheless, it is still too low

compared with other investments in the energy sector, such as the pumped stor-

age hydropower plant that is introduced in section 6.1.4. Hence, it is not to be

expected that investments in such an integrated power plant will be carried out,

even if energy storages remain exempt from net and EEG charges and a FP of 1.5

e-ct/kWh is paid for shifting wind power from offpeak hours to peak hours.

6.3.2.2. Changing the configuration of the integrated power plant

The IRR indeed increases from 3 % in the case of the single CAES power plant

to 6 % in the case of the integrated CAES and wind power plant. However, this

increase results mainly from the wind power plant component of the integrated

power plant, which has comparatively higher annual returns thanks to the market

premium mechanism. Therefore, it raises the question, how much the IRR can

be increased and how much offpeak wind power can be shifted to peak times, if

the configuration of the integrated power plant is changed in a way that e.g. the

capacity of the wind power plant is doubled to 200 MW.
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Figure 6.8.: NPV for different discount rates and lifetime considering flexibility premium (with

and without net charges)

Due to the SDP model outcome under uncertain prices and wind power gener-

ation, the integrated power plant based on the new configuration (250 MW CAES

and 200 MW wind power plant) optimally shifts 524 compressor full load hours

from offpeak to peak hours. This number of full load hours corresponds to 78.6

GWh wind power, which in turn is up to 46.8 % of the 167.8 GWh offpeak wind

power. Hence, the amount of shifted offpeak wind power can be slightly improved

from 43.6 % (see above) to 46.8 % by doubling the wind capacity within the inte-

grated power plant.

Besides, the new integrated power plant could achieve an annual return of 45.6

MMe in the first 10.5 years, for which it receives the market premium for wind

power output. The annual return of the further 9.5 years -assuming an economi-

cal lifetime of 20 years - is equal to 25.2 MMe, if all funding premiums (market

and management premium) are removed. The average annual return is then cal-

culated as 35.9 MMe, while the annuity of the modified power plant amounts to

41.3 MMe applying the 8 % interest rate. There is again a discrepancy of ap-

proximately 5.4 MMe between the annuity and the average annual return. Anal-

ogously, the IRR of this new investment equals to 6.15 %, which is only slightly

above the IRR of the integrated power plant with 100 MW wind capacity. This

suggests that the IRR and thus the economic feasibility cannot be increased just by
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increasing the capacity of the wind power plant component of the integrated plant.

Hence, other funding or market mechanisms have to be established, if investments

in such energy technologies are to be fostered.

6.3.3. Discussion of alternative policies

The flexibility premium introduced in 6.3.2 does not considerably improve the

economic feasibility of investments in an integrated energy storage and wind

power plant. Therefore, the question arises, how to design energy policy in a

way that these kinds of energy storage investments can be fostered, as they seem

to be necessary to balance the fluctuations of renewable power generation.

A first measure could be increasing the flexibility premium to a level, at which

the average annual return of an integrated wind and energy storage plant becomes

higher than the annuity of the investment calculated on the basis of a sector spe-

cific interest rate, e.g. between 8 % and 12 %. Another solution could be the

redesign of the EEG feed-in tariffs (FIT) for fluctuant renewables. These renew-

able technologies could receive higher FIT, if they are built together with an en-

ergy storage system, which makes them flexible. A higher flexibility premium or

higher EEG tariffs, however, would be a strong subsidy of a specific technology,

which would lead to market distortions. Besides, it is politically very difficult to

raise the FIT and thus the EEG charge for consumers, as there is strong oppo-

sition against further increases of the EEG charges within the population. The

public discussion goes rather in the direction, how to reduce or at least to keep

EEG charges at the level of the last adjustments (5.3 e-ct/kWh). Other funding

mechanisms, which do not lead to a further increase of the EEG charge, have

therefore to be found as an appropriate policy solution.

The introduction of a mechanism to promote flexible generation capacity, which

has a high availability rate and which can balance the fluctuations of renewables,

could stimulate investments in storage technologies. One of these mechanisms is

the capacity payments mechanism31, which guarantees flexible power generation

31The introduction of a capacity mechanism is currently discussed in Germany (see Maurer et al. (2012a)

and Nicolosi (2012))
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technologies a certain amount of income to cover their fixed costs, independent

from their actual power generation.

In the case of the integrated power plant consisting of the 250 MW CAES and

100 MW wind power plant, the annual capacity payments would have to be as

high as the difference between the annuity of the total investment and the average

annual return. Without any other funding mechanisms, but considering the ex-

emption from net and EEG charges, the average return was determined as 23.31

MMe by the SDP model, while the annuity of the total investment was calculated

as 28.65 MMe applying an interest rate of 8 % and a lifetime of 20 years. This

suggests that an investor has to receive an annual capacity payment equal to the

difference (5.34 MMe), to cover his fixed costs and to receive an acceptable yield

return of 8 % for the investment. If the 5.34 MMe capacity payment are com-

pletely allocated to the 250 MW turbine output of the CAES, the specific capacity

payment would correspond to 21360 e/MW*a 32. This amount is similar to the

capacity payment, which was paid in the last years and which is currently paid

in Spain for conventional power plant capacities that have an availability rate of

almost 100 % (see BOE (2012)). The capacity payments scheme seems to be a

successful mechanism to promote investments in energy storage capacity. How-

ever, the introduction of a new mechanism, such as capacity payments, can have

a strong impact on the energy market. For example, electricity price peaks can

be avoided, if a capacity surplus is built up or if e.g. a price cap is also intro-

duced, which is common in energy markets with a capacity mechanism. Hence,

all aspects of such a mechanism has to be considered within the decision making

process.

6.4. Conclusions

In this chapter different methods are introduced to evaluate bulk energy storages,

such as CAES power plants or pumped storage hydropower plants, which can

balance the inflexible power generation from fluctuant renewable energy sources.

32Almost the same number is calculated for the adjusted power plant with 250 MW CAES and 200 MW

wind power capacity.
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Among all introduced methods for the dispatch of energy storages, the perfect

foresight optimization delivers the highest annual return for energy storage in-

vestments. However, this method is not applicable in reality, as prices, especially

electricity spot prices, are uncertain and not really predictable. The results of the

methods considering price uncertainty are more realistic. Among these methods

the stochastic dynamic programming (SDP) model delivers the highest annual re-

turn. It achieves almost 75 % of the annual return of the perfect foresight strategy,

while the "simple strategy under uncertainty" method ahieves only 65 %. The

SDP model is therefore well suitable to optimize the dispatch of energy storages

and to earn the highest contribution margins under uncertain parameters.

However, the annual return, calculated with the help of the SDP model based

on 2011 prices, is not sufficient to cover the annuity of CAES investments, if

an acceptable interest rate of 8 % is applied. CAES investments can become

economically feasible in 2020, if electricity prices grow as strong as they did

between 2007 and 2011 (see scenarios S3 and S4 in Table 6.4). Investments in

PSHP plants, such as the Goldisthal hydropower plant, however, are economically

feasible at the current price level and under the chosen framework conditions.

The analysis of the economic feasibility of wind power plants under the new

market premium mechanism delivered a positive result, if on average, a wind

power plant produces the same amount energy as all wind power plants in Ger-

many. If the wind power production is evenly distributed over the day (peak and

offpeak hours), an internal rate of return (IRR) above 9 % can be achieved. How-

ever, this result is only possible, if market premiums for wind power are paid

at the current level. If the premiums are significantly reduced by policy makers

in the future, the economical feasibility will not be given anymore assuming the

investment expenses remain unchanged.

Furthermore, the economic feasibility of the combination of CAES and wind

power plants has been also analyzed in this chapter. An integrated power plant,

consisting of a 250 MW CAES power plant and a 100 MW or 200 MW wind

power plant, has a higher IRR than a stand-alone CAES power plant. However, it

still does not deliver the yield returns usually expected by investors in the energy

sector. Even the introduction of an extra flexibility premium is not sufficient to
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increase the IRR of an investment in an integrated power plant to the level of

PSHP plants.

Other mechanisms supporting investments in power plant capacity, such as ca-

pacity payments, seem to be more appropriate than a flexibility premium mech-

anism. A first analysis showed that investments in bulk energy storages, such as

CAES power plants, can be economically feasible at the current price level, if

capacity payments, as high as actually paid in Spain, are offered to CAES invest-

ments in Germany. However, the impacts of this mechanism on the electricity

market has to be precisely analyzed by further work, before it can be introduced.
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In this thesis uncertainties in liberalized electricity markets are analyzed and dis-

cussed in detail. An appropriate modeling approach for the main uncertainties,

i.e. electricity spot prices and wind power generation, is developed and afterwards

their integration into optimization models is demonstrated. Finally, investments

in energy storage and wind power plant technologies are evaluated based on this

integrated modeling approach.

The main conclusions derived from the analyses are clustered into two groups:

the lessons learned from modeling uncertainties and the the most significant re-

sults for investors of energy storage and for policy makers. Finally, the modeling

work and its results are critically reflected presenting possible improvements and

future research areas for the evaluation of energy storage and power plant tech-

nologies under uncertainty.

7.1. Conclusions regarding modeling uncertainty

The electricity price modeling indicates that financial or time-series approaches

on their own are not sufficient to simulate the main characteristics of electricity

spot prices. To capture all characteristics, such as seasonal, weekly and daily

cycles or price peaks, each has to be handled within a separate modeling approach.

The separate modeling and removal of the deterministic seasonal cycles leads to

a better performance of time-series and financial models, as their application to

the stochastic residuals and their parameter calibration are not distorted by the

deterministic components. The approach of seperate modeling of deterministic

and stochastic components is also tested against an overall approach, in which

all components are jointly modeled. The simulation results show that a seperate
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handling of deterministic and stochastic components leads to significantly better

simulations results than the combined approach.

A further analysis is carried out to find the appropriate approach to simulate

price jumps and peaks. The analysis suggests that a regime-switching (RS) ap-

proach delivers more reliable results than a single time-series model, although

the time-series model is based on a heteroscedastic approach, such as a GARCH

process, which can capture time-variable volatility. The root mean square error

(RMSE), which is one of the main quality factors applied to compare model re-

sults with real data, is higher by a multiple in the case of models without an RS

or deseasonalizing approach than in the case with an RS and deseasonalizing ap-

proach (see section 4.3.2). Therefore, it is strongly recommended to apply RS and

deseasonalizing approaches within electricity price models.

Among the analysed financial and time-series models, applied to stochastic

residuals of electricity spot prices derived from the EPEX, the mean reversion

and the ARMA(5,1) models deliver smaller errors than more sophisticated mod-

els, such as ARIMA or GARCH processes. The results of these models can be

further improved, if an approach for negative electricity prices is included addi-

tionally to the RS and deseasonalization approaches. The simulation results with

negative prices fit real price paths better. These occur with a specific frequency

since their permission in 2008 at the EPEX. Considering negative prices, the error

term of the price simulation is indeed slightly lower, but even a few hours with

negative prices are very important for energy storage operators. Operators can

exploit these negative prices and increase the value of the storage by charging it

in these hours. It can be concluded that an electricity price model should consider

not only approaches for seasonal cycles and price peaks, but also for negative

prices.

Beside electricity price modeling this thesis proposes an alternative autoregres-

sive approach for modeling wind power generation and feed-in. According to this

approach, seasonal and daily cycles, which could be determined within historical

data, are again modeled seperately and removed, so that the autoregressive process

can be applied only to the stochastic residuals. The proposed modeling approach
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adequately captures the structure and distribution of historical wind power feed-in

values as shown by the lower RMSE between simulated and historical series.

There is a fundamental relation between wind power feed-in (WPF) and elec-

tricity prices, i.e. the merit order effect of renewable power generation. Therefore,

the WPF simulation is integrated into the electricity price models to capture the

merit order effect of WPF. This causes a reduction of electricity spot prices de-

pendent on the amount of generated wind power. Consideration of the impacts

of wind power on prices leads to a further improvement of the electricity price

modeling. This is demonstrated by the smaller RMSE between simulated and his-

torical electricity prices (see Table 5.3). In addition, the integrated modeling of

WPF and electricity prices delivers consistent data for evaluation models, that rely

on both parameters. This includes models that are developed to evaluate invest-

ments in wind power plants, or in integrated power plants consisting of energy

storage and wind power facilities.

In the final step of the modeling work, several optimization approaches are de-

veloped for the evaluation of energy storages and integrated power plants under

uncertainty. The optimization approaches considering uncertainty are compared

with each other and with a perfect foresight optimization, in which electricity

prices are assumed to be known in advance. The results show that the stochastic

dynamic programming (SDP) approach delivers the best results among the ap-

proaches under uncertainty and that it achieves approximately 75 % of the annual

return that is earned with the help of a perfect foresight strategy. As the uncertainty

is taken into account within the SDP strategy, it represents an adequate methodol-

ogy for the optimal dispatch of energy storages in order to gain maximum earnings

under unknown electricity prices.

In summary it can be concluded that the developed models adequately describe

uncertain parameters and that they can be used for the evaluation of energy storage

and other power plant technology under uncertainty.
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7.2. Recommendations concerning the viability of energy storage

The modeling approaches with the lowest errors are used to generate large num-

bers of simulated series of electricity prices and WPF for the years 2011 and

2020. These are then passed to a range of optimization models in order to deter-

mine the economic value of energy storages under uncertainty. The energy storage

evaluation demonstrates that investments in diabatic CAES power plants are not

economically feasible either in the approaches under uncertainty or in a perfect

foresight strategy if the 2011 level of electricity prices is applied to the price sim-

ulation and to the evaluation models. The internal rate of return (IRR) of CAES

investments is far below the rate of the latest investments in PSHP plants, even if

a perfect foresight assumption is applied within the optimization model (see sec-

tion 6.1.3). Therefore, investments in this technology are not recommended at the

current price level.

However, the investment decision can be reassessed in the case of a price de-

velopment with high growth rates until the end of this decade. Analyses for the

year 2020 show that CAES investments can become financially viable, if electric-

ity prices would on average grow as fast as they did between the years 2007 and

2011 and in the less likely event that gas prices stay at the 2011 level. In this case

the annual return of the CAES power plant becomes higher than the annuity of the

investment based on interest rates up to 8 %. Thus, the IRR of the CAES power

plant comes closer to that of PSHP plants assessed at today’s price level at the

EPEX. PSHP plants, such as the Goldisthal power plant, can reach an IRR of al-

most 10 % under the assumed market parameters and given plant data. This IRR

value is quite acceptable for investments in the energy sector. The construction

of this type of energy storage can therefore be strongly recommended, if a loca-

tion similar to the Goldisthal site can be found and techno-economic parameters

remain unchanged.

The evaluation of wind power plants under the new market premium mechanism

suggests that investments in these power plants are economically reasonable under

this new funding policy, if the new wind power plant can produce power at the

average efficiency level of all wind power plants in Germany. In this case the IRR
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is sufficient to cover the annuity of the investment, for which an interest rate of 8

% is used.

After analysing energy storages and wind power plants as individual units, the

question arises, whether both technologies could be combined into an integrated

power plant and how the economically feasibility of such an integrated plant could

be achieved. Does this kind of integrated power plant represent an appropriate so-

lution for an energy system based on renewable power generation? Initial analysis

shows that IRR calculated for investments in such a plant considering uncertainty

reach values slightly above 6 %. This IRR level does not significantly change,

even if a flexibility premium is paid as a further support payment for the cordi-

nated operation of both units of an integrated power plant. The applied flexibility

premium of 1.5 e-ct for each kWh of wind power shifted from off-peak to peak

hours is enough to shift move more than 40 % of the offpeak wind power to peak

hours, but it is not enough for investors and operators of such an integrated power

plant to earn the 8 % annuity of the investment.

The exemption of energy storages from net charges due to the latest Energy

Economics Act (German: EnWG) can be seen as an important step into the right

direction. With the help of this measure the annual return of energy storages or

of integrated power plants can be increased by almost 9 %. However, the im-

pacts of this policy on the financial resources of transmission lines has to be also

considered, if energy storage is increasingly introduced into the market.

Furthermore, energy storages are exempt from EEG charges in Germany due to

the same legislation. This regulation can be seen as essential for any economic

operation of energy storages in the future if this charge is raised to nearly 5.3 e-

ct/kWh from 2013 onwards, reaching the current mean level of electricity prices

at the EPEX. If this amount of EEG charges is applied to energy storages, it will

significantly increase the costs which an energy storage oprator has to pay for

electricity purchases. This is because energy storages are mainly charged at times

when electricity price is considerably lower than the mean electricity price. The

total costs of electricity purchase therefore would be more than twice the costs

without EEG charges, suggesting that an economic operation of energy storages

would not be possible. It is therefore suggested that the EEG charge exemption
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could be valid for the whole lifetime of energy storages and not only, as in the

current situation, for the first 20 years in the case of new investments and 10 years

in the case of constructional expansions at the existing energy storage plants.

In this thesis, it is also shown that PSHP plant investments are economically

feasible, if the framework and plant data of these investments are similar to the

one applied in the case study within this work. It should be noted however that

investments in other bulk energy storages, such as CAES, are performing poorly

at the current price level. They can be positively evaluated only in a high growth

scenario for electricity prices until 2020. However, as the technical potential for

PSHP plants is limited, further storage capacities are necessary. Policy makers

should consider additional incentive measures for CAES and other energy stor-

ages. Only then might a holistic concept be developed to transform the current

energy system into a renewable energy based one. A short analysis also shows

that the introduction of capacity payments, as high as they are currently paid in

Spain for conventional power plants, would be sufficient to make CAES invest-

ments economically reasonable in Germany. The difference between the annuity

of the investment (interest rate 8 %) and the annual return of a CAES power plant

would in this case exactly correspond to the earnings derived from capacity pay-

ments. This support mechanism could be adressed and precisely evaluated in

future work to derive robust policy recommendations.

7.3. Critical reflection and future research

Within this thesis only the main short-term uncertainties, electricity price and

wind power feed-in, are considered for the evaluation of energy storages and inte-

grated power plants. However, other uncertainties, such as power generation from

photovoltaics (PV) or reserve power prices, should be also considered, as they

affect electricity spot prices, which in turn directly determine the value of energy

storages. PV power generation reduces peak prices, especially at midday, so that

the earnings of energy storages decrease on days with high PV power production.

The impacts of PV power generation can be incorporated into the existing mod-

els in the same way as done for WPF, if sufficient data is available to describe
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the stochastic distribution and other characteristics of PV power generation. This

indicates an adequate integration of the PV effect is possible after several years,

when sufficient time-series of data is available.

The other short-term uncertainty, i.e. prices for minute reserve power, can be

added to the existing modeling approach, if the relationship of spot and reserve

power prices can be clearly determined. However, this is a very challenging task,

as the prices for minute reserve are not uniquely noted. Each bid, that receives

a contract by the TSOs, is priced at its own offered price. Therefore, a series of

prices exists for minute reserve power in each time slice. Hence, future research

should rather concentrate on the short-term modeling of PV power generation and

its impacts on spot prices rather than on modeling of reserve power prices. This

latter parameter cannot be easily modeled.

Besides these short-term uncertainties, the long-term uncertainty of fuel prices

also plays a role for the evaluation of diabatic CAES power plant. This CAES

type does not only use compressed air from the storage, but also gas for electricity

generation. Although a holistic approach could take this uncertainty into account,

too, it is not necessary to regard it as a main aspect, especially if the evaluation

of energy storages is carried out based on strategies for the short-term storage

dispatch. The modeling approaches introduced above do not consider uncertainty

of fuel prices. It could be incorporated in extended versions within future work,

but it should be kept in mind that the greater the number of uncertain parameters

that are added to a model, the more sophisticated and harder it is to solve. Hence,

the inclusion of uncertainty should be limited to the main parameters.

The uncertain parameters this work focuses on are modeled with the help of a

range of stochastic processes. New approaches are developed for specific char-

acteristics of these parameters. Approaches are developed to capture new char-

acteritics of electricity prices, for example negative values. The approach for the

modeling of negative prices is a first step that can be further developed, when

larger amounts of data with negative prices are available. Importantly, the stochas-

tic distribution of negative prices can be replaced or adjusted within the modeling

approach, if new data indicates changes in the distribution of negative prices.
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Improvements regarding the integration of the electricity price and WPF models

can be done, if the correlation between both parameters is analysed and described

more precisely. The linear regression approach can be adjusted by increasing its

dimension or by removing possible errors which distort a precise analysis of the

relationship between electricity prices and WPF. However, the description of this

relationship is already significantly improved in the existing model by applying a

seperate linear regression for each hour of the day.

As described in section 5.2.3, the linear regression for each hour is developed to

capture the load dependency of the merit order effect of WPF on electricity prices.

If this load-dependency is directly incorporated into the model, its accuracy could

be increased. Thus, the price reduction effect of WPF would be determined for

each load interval and not for each hour of the day. The load intervals procedure

would also describe the fundamental aspect of the merit order effect more ade-

quately. This approach could be specified in future work, carrying out the linear

regression for each load interval.

It is worth mentioning that the integrated model for electricity prices and WPF

simulates hourly series for both parameters for a mid-term planning horizon, i.e.

a whole year. But if the model is applied to the short-term simulation (single day),

further information, such as wind speed prognoses, could also be integrated to

the modeling approach. In this case a forecast could be set up for the day-ahead

electricity prices based on the WPF expectation for the next day. However, the

approach developed in this work is sufficient, if the simulated series are used for

the evaluation of power plants or energy storages.

Energy storages are evaluated in this work with respect to the main technical

aspects of storage operation. For example, the maximum turbine and compressor

capacities are considered if bids are made on different energy markets for the same

time slice. However, the technical details of each storage type could be modeled

more precisely. Importantly though note that the relationship between changes

of the storage level and the turbine output is assumed to be linear, as the storage

level is roughly quantified as the amount of output energy. To specify the storage

level in detail, the storage level could be metered by the pressure level of the

compressed air in the case of a CAES or by the storage depth in the case of PSHP
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plants. This requires an adequate modeling of the nonlinearities between storage

level and turbine output. Although a detailed description of the storage is always

advantageous, it is in fact only necessary, if the focus of the analysis is set on the

technical aspects of storage dispatch. For an economic evaluation, the modeling

approaches introduced in chapter 6 seem to be sufficient.

The case studies, for which the evaluation models are applied for, are a diabatic

CAES power plant and a PSHP plant with a specific configuration of their techno-

economic parameters. Although the chosen case studies are already efficient in

terms of their technical and economic operation, the models could be also used for

other parametric configurations of these energy storage types. It would therefore

be possible to check whether plants with another configuration can reach a better

economic result than the ones analysed in this work.

The models could be used to evaluate not only other configurations of PSHP

and CAES power plants, but also other bulk energy storages, such as hydrogen or

electrochemical storages, if some smaller adjustments are made within the mod-

eling approaches. However, as PSHP and diabatic CAES power plants are - in

terms of actual investment expenses - the most economic ones among the differ-

ent storage types, they have been the focus of the scope of this study. However,

if a significant drop in investment expenses is expected for another storage type,

this type could be adressed within future research using the developed models.
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8. Summary

The liberalization of the electricity market and structural changes, that are also

caused by strong support mechanisms for renewable power production, lead to

new uncertainties including volatile electricity prices and fluctuant generation of

wind and solar technology based power. Significantly, uncertain electricity whole-

sale prices have to receive increased consideration, if new investments are carried

out on energy markets or if existing power plant technologies are dispatched on

different energy markets. Similarly the expansion of renewable power technolo-

gies requires investments in energy storage technologies to balance the fluctua-

tions of electricity generation. Energy storage technologies face the same market

uncertainties suggesting investments in energy storages will only be made if they

are economically feasible under the uncertain conditions. To carry out an ap-

propriate assessment, new methods are necessary to evaluate energy storage and

power plant technologies under conditions of increasing uncertainty.

Within this thesis the main uncertainties actors face on liberalized electricity

markets are analysed. These uncertainties are electricity prices, energy commod-

ity prices, fluctuant renewable power generation and political uncertainties regard-

ing the further development of carbon and renewable energy legislation. Amongst

these uncertainties electricity spot prices and wind power feed-in seem to be the

most volatile and play a key role for the short-term planning of power plant oper-

ations. The power plant operation and the resulting cashflows in turn have to be

taken into account, if investments in energy technologies are to be evaluated based

on market prices.

The impacts of wind power generation on electricity prices are analysed and a

method is developed for the combined simulation of wind power feed-in (WPF)

and electricity prices. More precisely, the WPF method, which contains an au-

toregressive stochastic process, has been integrated into a regime-switching time-
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series model, which simulates electricity spot prices under consideration of WPF.

The electricity price model also includes approaches to describe all characteristics

of power prices, such as daily and weekly cycles or negative prices. The stochastic

distribution of electricity prices is considered with the help of financial or time-

series models. Nevertheless, the main innovation of the electricity models is the

integration of WPF impacts on prices. The main advantage of this integrated mod-

eling of electricity prices and WPF is that the merit order effect of WPF, i.e. the

reduction of electricity prices by the feed-in of renewable power, is adequately

captured.

The integrated model for the simulation of wind power and electricity prices

is then used to generate a large number of price and WPF series. These series

are in turn used to build a stochastic tree describing the distribution of the uncer-

tain parameters. The stochastic tree is then applied within stochastic optimization

models to evaluate energy investments and power portfolios under uncertainty. As

there is hardly any prior published work evaluating PSHP and CAES plants under

uncertain electricity prices and WPF, the focus is set on the evaluation of these

storage types. Accordingly, a stochastic dynamic programming (SDP) model is

developed, which optimizes the dispatch of energy storage plants and maximizes

the annual return considering the real option value of energy storages. The real

option analysed in this work enables the delay of the unit dispatch for a couple of

hours or days, if later earnings are expected to be higher.

The developed SDP models are applied to the economic evaluation of both plant

types mentioned above and the results are compared with each other and also with

the results of other storage dispatch strategies, such as the Monte-Carlo simulation

of the storage dispatch under perfect price foresight and a "simple strategy under

uncertainty". The evaluation results show that investments in CAES power plants

are not economically feasible under the current electricity price structure, while

PSHP plants seem to fulfill the rate of return expectations of investors in the energy

sector, if an appropriate location can be found and the applied market and plant

data count for future investments. The SDP model achieves higher internal rate

of return than other strategies that incorporate uncertainty, but this improvement

is still insufficient to assess the investment in this technology as economically
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reasonable. However, CAES investments can become feasible in the future, if the

mean level and volatility of electricity prices increase in the next decade. The

volatility increase is very likely due to the growing share of renewables in the

electricity mix, but an increase of the mean level is not certain, as the higher share

of renewable power feed-in with marginal costs almost at zero leads to lower spot

prices. The trend curve of electricity prices between 2006 and 2011 confirms this

expectation.

In a further analysis the coordinated dispatch of energy storages and wind power

plants is analyzed. It could be noted that after the exemption from grid charges

for energy storages by the latest amendment of the Energy Economics Act, there

is no direct incentive to coordinate the dispatch of the energy storage with the

availability of wind power, even if both plants are located at the same site. A

coordinated operation of both plants, however, is desirable to shift off-peak wind

power to peak load hours and to balance fluctuant generation. Hence, the analy-

sis focuses on the issue of whether the introduction of a flexibility premium for a

combined plant, consisting of an energy storage and a wind power plant, would

lead to a coordinated operation or not. The analysis shows that a flexibility pre-

mium incentive, as high as it is currently paid for biogas power plants, would not

be sufficient to promote investments into energy storage at wind power plant sites.

Policy makers must therefore consider other support mechanisms, e.g. capac-

ity mechanisms, to foster investments in energy storage power plants. This is

especially important at locations with a high share of renewable power produc-

tion. A first analysis shows that capacity payments, as high as currently paid in

Spain, would be sufficient to facilitate the introduction of new diabatic CAES

power plants into the German market. Further analyses can be adressed by future

research to evaluate this mechanism and others, to determine a market design in

which sufficient energy storage investments are undertaken.
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8. Summary

A.1. Equations

Volatility:

σΔ =

√
1

Δt
1

T −1

T

∑
t=1

(Δxt − x̄t)2

Δxt =
pt+Δt − pt

pt

[A.1]

Laplace distribution function:

F(x) =
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2e
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[A.2]

Exponential distribution function:

F(x) =
∫ x

−∞
fμ(t)dt =

⎧⎨
⎩ 1− e−

x
μ x ≥ 0

0 x < 0
[A.3]

Root mean square error:

RMSE =

√
∑n

i=1(x̃i − xi)2

n
[A.4]

Mean average percentage error:

MAPE =
1

n
·

n

∑
i=1

|x̃i − xi|
xi

[A.5]
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A.2. Tables

Table A.1.: Thresholds for triggering the second auction and main times for the day-ahead market

(source: EPEX (2012a))

Market Area Lower Thresh-

old

Upper

Threshold

Order Book

Closure Time

Result Publica-

tion Time

Switzerland 0 e/MWh 500 e/MWh 11:00 am from 11:10 am

Austria/Germany -150 e/MWh 500 e/MWh 12 noon from 12:40 pm

France -150 e/MWh 500 e/MWh 12 noon from 12:40 pm

Table A.2.: Estimated model parameters of the ARMA(5,1) and mean reversion model for elec-

tricity prices of different years

Parameter 2004 2005 2006 2007 2008 2009

ARMA(5,1) μ ,σ -2.2e-5;

0.123

8.6e-6;

0.108

-4.5e-5;

0.143

-3.7e-6;

0.169

-2.3e-6;

0.134

-3.7e-5;

0.210

αi 1.553; 1.613; 1.527; 1.593; 1.645; 1.653;

-0.601; -0.545; -0.499; -0.534; -0.614; -0601;

0.042; -0.076; 0.050; -0.028; -0.007; -0.058;

-0.034; 0.036; 0.016; -0.032; -0.041; -0.034;

0.023 -0.032 -0.007 -0.005 0.011 0.034

βi -0.826 -0.948 -0.864 -0.931 -0.942 -0.934

MR- μ 0.026 0.003 0.026 0.037 0.047 0.076

Modell σ 0.138 0.122 0.162 0.191 0.151 0.238

κ 0.216 0.195 0.223 0.203 0.230 0.258
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Table A.3.: Seasonality parameters calculated with the help of Equation (5.3) and (5.4)

month rm,a sm,a 0.1qm,a 0.9qm,a

1 0.0121 0.7431 0.0870 0.5532

2 0.0143 0.7354 0.0348 0.5485

3 -0.0012 0.8526 0.0584 0.4720

4 -0.0077 1.4710 0.0329 0.2911

5 -0.0067 1.1174 0.0354 0.3313

6 0.0099 1.0224 0.0249 0.2552

7 -0.0176 1.3401 0.0334 0.2704

8 -0.0133 1.7779 0.0279 0.2636

9 0.0003 1.1374 0.0349 0.3218

10 0.0024 1.0423 0.0336 0.3743

11 0.0018 0.6233 0.0664 0.5588

12 -0.0214 1.2238 0.0308 0.4863
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A.3. Figures

Figure A.1.: Maximum daily PV power feed-in for total Germany in 2011

Figure A.2.: Real and simulated price paths for a week applying a closed regression for all sea-

sonal cycles
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(based on WPF data 2006-2009)
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Figure A.5.: The hourly price reduction rates for each day type
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B. Abbreviations

APX Amsterdam Power Exchange

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

CAES Compressed air energy storage

CAF Compressed air factor

CAISO California Independent System Operator

CDF Cumulative distribution function

CHP Combined heat and power

CM Contribution margin

CO2 Carbon dioxide

EEG Erneuerbare-Energien-Gesetz, Renewable Energy Act

EEX European Energy Exchange

EF Emission factor

EGARCH Exponential general autoregressive conditional heteroscedasticity

EnWG Energiewirtschaftsgesetz, Energy Economics Act

EPEX European Power Exchange

EUA European Union allowances

FIT Feed-in tariff

FOB Free on board

FP Flexibility premium

GARCH General autoregressive conditional heteroscedasticity

ICE Intercontinental Exchange

IEA International Energy Agency

IDM Investment decision

IRR Internal rate of return

LSO Long-term system optimization
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B. Abbreviations

MAPE Mean absolute percentage error

MILP Mixed integer linear progamming

ML Maximum likelihood

MM Million

MP Market Premium

MR Mean reversion

NAP National allocation plan

NPV Net present value

NYISO New York Independent System Operator

O&M Operation and management

OTC Over the counter

OU Ornstein-Uhlenbeck

PDC Price duration curve

PEC Primary energy carrier

PJM Pennsylvania-New Jersey-Maryland Interconnection

PSHP Pumped-storage hydropower

PV Photovoltaics

RES Renewable energy sources

RMSE Root mean square error

ROV Real option value

RS Regime switching

SARIMA Seasonal autoregressive integrated moving average

SDP Stochastic dynamic programming

SMPP Short/mid-term power production planning

SPE Standard percentage error

TSO Transmission system operator

VARIMA Vector autoregressive integrated moving average

VOF Value of flexibility

WPF Wind power feed-in

212



C. List of Figures

2.1 Development of the trade volume at the main electricity spot mar-

kets (data source: EPEX, NordPool, APX) . . . . . . . . . . . . . . 13

2.2 Installed capacity and electricity generation of wind power plants

and photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 a) Average daily price curves b) Weekly price curves for different

seasons (based on 2011 EPEX day-ahead prices) . . . . . . . . . . 21

2.4 Boxplot of the electricity prices between 2006 and 2011 (data source:

EEX, EPEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Development of the fuel prices between 2004 and 2012 (data source:

Intercontinental Exchange ICE) . . . . . . . . . . . . . . . . . . . 26

2.6 CO2 price development in the second phase of EU emissions trad-

ing (2008-2012) (data source: EEX) . . . . . . . . . . . . . . . . . 28

2.7 a) Wind power feed-in and system load on October 4th and 5th 2009

in Germany b) Exemplary weekly wind power feed-in (data source:

German TSOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Average daily PV power feed-in and exemplary feed-in for summer

weeks in 2011 (data source: German TSOs) . . . . . . . . . . . . . 31

2.9 Daily inflow quantities on the Rhine river at the Rheinfelden hy-

dropower plant (data source: BAFU (2012)) . . . . . . . . . . . . . 32

3.1 Trinomial tree as an example of analytical scenario generation . . . 49

3.2 Scenario lattice with different states . . . . . . . . . . . . . . . . . 51

3.3 Example of two-stage binomial decision tree . . . . . . . . . . . . 61

4.1 Occurrence of negative prices between 2008-2010 for different hours

of the day (left) and weekdays (right) (data source: EEX (2012)) . 72

213



C. List of Figures

4.2 Occurrence of negative prices 2008-2010 at different hours and

weekdays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Overview of the electricity price model . . . . . . . . . . . . . . . 76

4.4 Autocorrelation of hourly electricity price logs before and after de-

seasonalising for 200 Lags . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Transformation of the historical stochastic residuals of electricity

prices to standard normal distributed residuals . . . . . . . . . . . . 82

4.6 The regime-switching algorithm for positive jumps . . . . . . . . . 89

4.7 Historical and simulated price curves of the different price models

for a week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 Simulated price curves of ARIMA(1,1,1) model without deseason-

alising and of a GARCH(1,1) process without regime switching . . 96

4.9 Real and simulated price duration curves of price models with and

without negative prices . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Right shift of the merit order and the supply curve particularly due

to wind power feed-in . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Average change of the deseasonalized electricity price per GW wind

power depending on load interval . . . . . . . . . . . . . . . . . . 108

5.3 Price reduction per GW wind power feed-in depending on the load

level and the German merit order curve (source: Erdmann (2008)

and own calculation) . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Overview of the WPF simulation model . . . . . . . . . . . . . . . 112

5.5 Monthly 10% and 90% quantiles of the capacity utilization (based

on WPF data between 2006 and 2009) . . . . . . . . . . . . . . . . 116

5.6 Hourly means of the capacity utilization (based on WPF data be-

tween 2006 and 2009) . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Distribution of the hourly change rates of historical capacity utiliza-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8 Estimation procedure for the distribution parameters of change rates

for interval i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.9 Overview of the WPF simulation model . . . . . . . . . . . . . . . 125

214



5.10 Overview of the extended electricity spot price model . . . . . . . . 127

5.11 Comparison of simulated and historical wind power feed-in (top)

and duration curves of capacity utilization (bottom) . . . . . . . . . 130

5.12 Price simulation for a week based on 2009 data, considering WPF

(left), without WPF impacts (right) . . . . . . . . . . . . . . . . . . 132

5.13 Simulated WPF and absolute price reduction series . . . . . . . . . 132

6.1 Design of an PSHP plant (source: own illustration) . . . . . . . . . 140

6.2 The structure of a CAES power plant (source: own illustration) . . . 143

6.3 Overview of model input/output and structure . . . . . . . . . . . . 145

6.4 Recombining tree for the price development . . . . . . . . . . . . . 152

6.5 Daily process of the storage level for an exemplary price path . . . 163

6.6 Comparison of the annual returns of the different strategies with the

annuity of the CAES investment . . . . . . . . . . . . . . . . . . . 167

6.7 a) NPV of the CAES power plant for different discount rates and

different scenarios (lifetime=25a) b) NPV (lifetime=20a) . . . . . . 170

6.8 NPV for different discount rates and lifetime considering flexibility

premium (with and without net charges) . . . . . . . . . . . . . . . 186

A.1 Maximum daily PV power feed-in for total Germany in 2011 . . . . 208

A.2 Real and simulated price paths for a week applying a closed regres-

sion for all seasonal cycles . . . . . . . . . . . . . . . . . . . . . . 208

A.3 A typical pattern in the historical WPF curve: Progress of the hourly

WPF at a windy day . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.4 Correlation between change rates and capacity utilization levels

with different lags (based on WPF data 2006-2009) . . . . . . . . . 209

A.5 The hourly price reduction rates for each day type . . . . . . . . . . 210

A.6 An excerpt of the historical and WPF adjusted electricity price series 210

215





D. List of Tables

2.1 Main properties of the German reserve power markets (source: Bun-

desnetzagentur (2011a) and Bundesnetzagentur (2011b)) . . . . . . 16

2.2 EEG funded electricity and funding quantities (source: BDEW (2012)) 20

2.3 Some basic statistics of electricity prices (data source: European

Energy Exchange (EEX)) . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Mean and number of outliers determined with the Grubbs’ test . . . 25

2.5 Trend and volatility of fuel prices between 2004 and 2011 (data

source: ICE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Stochastic non-availability of power plants (source: EWI et al. (2004)) 33

2.7 Planned FIT for PV on roofs due to the different German EEG

amendments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Stochastic electricity and commodity price models - Overview . . . 41

3.1 Stochastic electricity and commodity price models - Overview . . . 42

3.2 Overview of stochastic modeling approaches for energy markets . . 54

3.2 Overview of stochastic modeling approaches for energy markets . . 55

3.2 Overview of stochastic modeling approaches for energy markets . . 56

4.1 Estimated model parameters based on historical price logs 2002-2009 93

4.2 Expected MRSE, MAPE, R2, mean and standard deviation for dif-

ferent stochastic models based on 30 simulations . . . . . . . . . . 98

4.3 Out-of-sample error measures of the different stochastic models for

the period 2006-2009 . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Comparison of quality factors for models with and without the neg-

ative prices approach (based on 30 simulations for the year 2009) . 101

5.1 Estimated parameters of the regression functions for m, μ+, μ− . . 129

217



D. List of Tables

5.2 Estimated model parameters . . . . . . . . . . . . . . . . . . . . . 131

5.3 Calculated error measures and other parameters of the simulated

prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 Applied techno-economic input data of the CAES power plant (data

source: Gatzen (2008) and own assumption) . . . . . . . . . . . . . 162

6.2 Results of the CAES plant evaluation for the different plant dispatch

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Results of the CAES plant evaluation based on different market par-

ticipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4 Results of the CAES plant evaluation for the different scenarios and

year 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5 Applied techno-economic input data of the PSHP plant (data source:

Goldisthal PSHP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.6 Main input data and results of the wind power plant evaluation . . . 176

6.7 Results of the integrated power plant evaluation under different

policies for the first 10.5 years . . . . . . . . . . . . . . . . . . . . 184

A.1 Thresholds for triggering the second auction and main times for the

day-ahead market (source: EPEX (2012a)) . . . . . . . . . . . . . 206

A.2 Estimated model parameters of the ARMA(5,1) and mean reversion

model for electricity prices of different years . . . . . . . . . . . . 206

A.3 Seasonality parameters calculated with the help of Equation (5.3)

and (5.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

218



E. Bibliography

Amelin, M. (2004). On Monte Carlo Simulation and Analysis of Electricity Mar-

kets. PhD thesis, Royal Institute of Technology, Department of Electrical Engi-

neering, Stockholm.

Arsie, V., Marano, M., Moran, G., and Rizzo, G. (2007). Optimal Management of

a Wind/CAES Power Plant by Means of Neural Network Wind Speed Forecast.

In European Wind Energy Conference & Exhibition, Milan. The European Wind

Energy Association (EWEA).

BAFU (2012). Hydrologische Daten Rheinfelden (2091),

Bundesamt für Umwelt, Schweizerische Eidgenossenschaft.

http://www.hydrodaten.admin.ch/de/2091.html?#historische_daten, 10 Oct.

2012.

Baker, J. (2008). New technology and possible advances in energy storage. Energy

Policy, 36(12):4368 – 4373.

Ball, M. and Wietschel, M. (2009). The Hydrogen Economy. Cambridge Univer-

sity Press, Cambridge.

Barlow, M. (2002). A diffusion model for electricity prices. Mathematical Fi-

nance, 12(4):287–298.

Barreto, L. and Kypreos, S. (2004). Emissions trading and technology deployment

in an energy-systems ”bottom-up” model with technology learning. European

Journal of Operational Research, 158(1):243–261.

BDEW (2012). Erneuerbare Energien und das EEG: Zahlen, Fakten, Grafiken

(2011). Technical report, BDEW Bundesverband der Energie- und Wasser-

wirtschaft e.V., Berlin.

219



E. Bibliography

BDEW (2013). Website of the BDEW, BDEW Bundesverband der Energie-

und Wasserwirtschaft e.V. http://www.bdew.de/internet.nsf/id/energiemix-de,

15 Jan. 2013.

Billington, R., Chen, H., and Ghajar, R. (1995). Time-series Models for Relia-

bility Evaluation of Power Systems including Wind Energy. Microelectronics

Reliability, 36:1253–1261.

Binder, K. and Heermann, D. W. (2010). Monte Carlo Simulation in Statistical

Physics: An Introduction. Springer, Berlin Heidelberg.

BINE (2007). Druckluftspeicherkraftwerke. Bundesminis-

terium füer Umwelt, Naturschutz und Reaktorsicherheit (BMU),

http://www.bine.info/fileadmin/content/Publikationen/Projekt-

Infos/2007/Projekt-Info_05-2007/projekt_0507internet-x.pdf, 22 Oct. 2012.

Black, M. and Strbac, G. (2007). Value of Bulk Energy Storage for Managing

Wind Power Fluctuations. IEEE TRANSACTIONS ON ENERGY CONVER-

SION, 22(1):197–205.

Blyth, W., Bradley, R., Bunn, D., Clarke, C., Wilson, T., and Yang, M. (2007).

Investment risks under uncertain climate policy. Energy Policy, 35(11):5766–

5773.

BMU (2006). NATIONALER ALLOKATIONSPLAN 2008-2012 für die BUN-

DESREPUBLIK DEUTSCHLAND. Technical report, Federal Ministry for the

Environment, Nature Conservation and Nuclear Safety, Berlin.

BMU (2011). Erneuerbare Energien in Zahlen - Nationale und internationale En-

twicklung. Technical report, Federal Ministry for the Environment, Nature Con-

servation and Nuclear Safety, Berlin.

BMU (2012). Langfristszenarien und Strategien für den Ausbau der erneuerbaren

Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und

global. Technical report, Federal Ministry for the Environment, Nature Conser-

vation and Nuclear Safety.

220



E. Bibliography

BMWI (2008). Anreizregulierungsverordnung - Verordnung über die Anreizreg-

ulierung der Energieversorgungsnetze. Technical report, Federal Ministry of

Economics and Technology, Berlin.

Bode, S. and Groscurth, H. (2006). Zur Wirkung des EEG auf den Strompreis.

Technical report, Hamburg Institute of International Economics (HWWA),

Hamburg. HWWA Discussion Paper.

BOE (2012). Real Decreto-ley 13/2012, de 30 de marzo. Num. 78, sec. i. pag.

26876, BOLETIN OFICIAL DEL ESTADO, Gobierno de Espana.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.

Journal of Econometrics, 31(3):307–327.

Börger, R. (2004). Erweiterung eines Strompreismodells um GARCH-Prozesse.

Gesellschaft f. Finanz- u. Aktuarwiss., Ulm.

Bowden, N. and Payne, J. (2008). Short-term forecasting of electricity prices for

MISO hubs: Evidence from ARIMA-EGARCH models. Energy Economics,

30(6):3186–3197.

Box, G., Jenkins, G., and Reinsel, G. (2008). Times Series Analysis: Forecasting

and Control. John Wiley & Sons, 4th edition.

Brockwell, P. and Davis, R. (2002). Introduction to Time Series and Forecasting.

Springer, New York, 2nd edition.

Bundesnetzagentur (2011a). Beschluss vom 18.10.2011, Az: BK6-10-097. Tech-

nical report, Beschlusskammer 6 der Bundesnetzagentur.

Bundesnetzagentur (2011b). Beschlüsse vom 12.04.2011, Az: BK6-10-098 und

Az: BK6-10-097. Technical report, Beschlusskammer 6 der Bundesnetzagentur.

Bundestag (2009). Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-

Energien-Gesetz - EEG). Technical report, Erneuerbare-Energien-Gesetz vom

25. Oktober 2008 (BGBl. I S. 2074), das zuletzt durch Artikel 2 Absatz 69 des

Gesetzes vom 22. Dezember 2011 (BGBl. I S. 3044) geändert worden.

221



E. Bibliography

Bundestag (2011). Dreizehntes Gesetz zur Änderung des Atomgesetzes Vom 31.

Juli 2011. Technical report, Bundesgesetzblatt Jahrgang 2011 Teil I Nr. 43,

ausgegeben zu Bonn am 5. August 2011.

Bundestag (2012). Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-

Energien-Gesetz - EEG). Technical report, Konsolidierte (unverbindliche) Fas-

sung des Gesetzestextes in der ab 1. Januar 2012 geltenden Fassung.

Chatfield, C. (2004). The Analysis of Times Series: An Introduction. Chapman &

Hall/CRC, London, 6th edition.

Commission, E. (2000). Green Paper on greenhouse gas emissions trading within

the European Union, COM (2000)87. Technical report, European Commission,

Brussels.

Conejo, A., Nogales, F., and Arroyo, J. (2003). Price-taker bidding strategy under

price uncertainty. IEEE Transactions on Power Systems, 17(2):1081–1088.

de Miera, G. S., del Rio Gonzalez, P., and Vizcaino, I. (2008). Analysing the

impact of renewable electricity support schemes on power prices: The case of

wind electricity in Spain. Energy Policy, 36(9):3345 – 3359.

Defra (2008). Consultation on proposed EU Emissions Trading System from

2013. Technical report, Department for Environment, Food and Rural Affairs,

London.

Delarue, E., Luickx, P., and Dhaeseleer, W. (2009). The actual effect of wind

power on overall electricity generation costs and CO2 emissions. Energy Con-

version and Management, 50(2009):1450–1456.

DENA (2010). Analyse der Notwendigkeit des Ausbaus von Pumpspe-

icherkraftwerken und anderen Stromspeichern zur Integration der erneuerbaren

Energien. Technical report, Deutsche Energie-Agentur GmbH, Berlin.

Drury, E., Denholm, P., and Sioshansi, R. (2011). The Value of Compressed Air

Energy Storage in Energy and Reserve Markets. Energy, 36(8):4959–4973.

222



E. Bibliography

Dupacova, J., Gröwe-Kuska, N., and Römisch, W. (2003). Scenario Reduction in

Stochastic Programming - An Approach Using Probability Metrics. Mathemat-

ical Programming, Ser. A.95:493–511.

EEX (2007). Einführung in den Börsenhandel an der EEX auf Xetra und Eurex.

Technical report, European Energy Exchange (EEX), Leipzig.

EEX (2011). EEX Product Brochure Power. Technical report, European Energy

Exchange, Leipzig.

EEX (2012). Website of the European Energy Exchange. www.eex.de, 21 Jan.

2013.

Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates

of the Variance of United Kingdom Inflation. Econometrica, 50(4):987–1007.

ENTSOE (2012). Website of the European Network of Transmission System

Operators for Electricity (ENTSOE). https://www.entsoe.eu/resources/data-

portal/country-packages/, 10 Sep. 2012.

EnWG (1998). Gesetz zur Neuregelung des Energiewirtschaftsrechts vom 24.

April 1998. Technical report, BGBl. Teil I S. 730, Berlin.

EnWG (2005). Zweites Gesetz zur Neuregelung des Energiewirtschaftsrechts vom

24. April 1998. Technical report, BGBI Teil I, S.1953, Berlin.

EnWG (2012). Energiewirtschaftsgesetz vom 7. Juli 2005 (BGBl. I S. 1970,

3621), zuletzt geändert durch Art. 2 des Gesetzes vom 16. Januar 2012. Tech-

nical report, BGBl. I 2011, S. 1554, I 2012 S. 74., Berlin.

Enzensberger, N. (2003). Entwicklung und Anwendung eines Strom- und Zerti-

fikatemodells für den europäischen Energiesektor. VDI Verlag, Düsseldorf.

Epe, A., Küchler, C., Römisch, W., Vigerske, S., Wagner, H.-J., Weber, C., and

Woll, O. (2009). Stochastic Programming with Recombining Scenario Trees -

Optimization of Dispersed Energy Supply, in: Optimization in the Energy In-

dustry. Springer, Berlin Heidelberg.

223



E. Bibliography

EPEX (2012a). EPEX SPOT NOTE - Day Ahead Auction Parameters. Technical

report, European Power Exchange (EPEX), Paris.

EPEX (2012b). EPEX Spot Operational Rules - 07/05/2012. Technical report,

European Power Exchange (EPEX), Paris.

EPRI-DOE (2003). Handbook of Energy Storage for Transmission & Distribution

Applications. Technical report, U.S.Department of Energy, Washington.

Erdmann, G. (2008). Börsenpreise von

Stromfutures und die drohende Stromlücke.

http://www.prognoseforum.de/workshop/ws_17_04_08/Stromluecke.htm,

30 Nov. 2012.

EWI, IE, and RWI (2004). Gesamtwirtschaftliche, sektorale und ökologische

Auswirkungen des Erneuerbare Energien Gesetzes (EEG). Technical report,

Energiewirtschaftlichen Instituts an der Universität zu Köln (EWI), Instituts für

Energetik & Umwelt gGmbH (IE) und Rheinisch-Westfälischen Instituts für

Wirtschaftsforschung (RWI) im Auftrag des Bundesministeriums für Wirtschaft

und Arbeit (BMWA).

Felix, B. and Weber, C. (2007). Bewertung von Gasspeichern mittels rekom-

binierenden Bäumen. Zeitschrift für Energiewirtschaft, 31(2018):129–136.

Fichtner, W. (1999). Strategische Optionen der Energieversorger zur CO2-

Minderung: ein Energie-und Stoffflussmodell zur Entscheidungsunterstützung.

Erich Schmidt Verlag, Berlin.

Fishbone, L. and Abilock, H. (1981). MARKAL: A linear programming model

for energy systems analysis: Technical Description of the BNL version. Inter-

national Journal of Energy Research, 5(4):353–375.

Fleten, S.-E. and Kristoffersen, T. (2008). Short-term hydropower production

planning by stochastic programming. Computers & Operations Research,

35(8):2656–2671.

224



E. Bibliography

Fleten, S.-E., Stein, W., and Ziemba, W. (2002). Hedging Electricity Portfolios via

Stochastic Programming. IMA Volumes on Mathematics and Its Applications,

128(Decision Making Under Uncertainty: Energy and Power (C. Greengard, A.

Ruszczynski eds.)):71–93.

Förstner, U. (2012). Klima und Energie. In Umweltschutztechnik. Springer, Berlin

Heidelberg.

Garcia, R., van Akkeren, M., and Garcia, J. (2005). A GARCH Forecasting Model

to Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems,

20(2):867–874.

Gatzen, C. (2008). The Economics of Power Storage - Theory and Empirical

Analysis for Central Europe. Oldenburg Industrieverlag, München.

Genoese, F., Genoese, M., and Wietschel, M. (2010). Occurrence of negative

prices on the German spot market for electricity and their influence on balancing

power markets. In 7th International Conference on the European Energy Market

(EEM).

Genoese, M. (2010). Energiewirtschaftliche Analysen des deutschen Strommark-

tes mit agentenbasierter Simulation. Nomos Verlagsgesellschaft, Baden-Baden.

Gibson, R. and Schwartz, E. (1990). Stochastic convenience yield and the pricing

of oil contingent claims. Journal of Finance, 45(3):959–976.

Gieseke, J., Mosonyi, E., and Heimerl, S. (2005). Wasserkraftanlagen - Planung,

Bau und Betrieb. Springer, Berlin.

Göbelt, M. (2001). Entwicklung eines Modells für die Investitions- und Produk-

tionsprogrammplanung von Energieversorgungsunternehmen im liberalisierten

Markt. PhD thesis, Universität Karlsruhe, Karlsruhe.

Gökcek, M., Bayulken, A., and Bekdemir, S. (2007). Investigation of wind char-

acteristics and wind energy potential in Kirklareli, Turkey. Renewable Energy,

32(10):1739 – 1752.

225



E. Bibliography

Gourieroux, C. (1997). ARCH Models and Financial Applications. Springer, New

York.

Greenblatt, J., Succar, S., Denkenberger, D., Williams, R., and Socolow, R.

(2007). Baseload wind energy: modeling the competition between gas turbines

and compressed air energy storage for supplemental generation. Energy Policy,

35(3):1474–1492.

Gröwe-Kuska, Heitsch, H., and Röemisch, W. (2003). Scenario Reduction and

Scenario Tree Construction for Power Management Problems. In Power Tech

Conference Proceedings, 2003 IEEE Bologna.

Hackl, P. (2008). Einführung in die Ökonometrie. Addison-Wesley, München.

Hahn, H., Meyer-Nieberg, S., and Pickl, S. (2009). Electric load forecasting meth-

ods: Tools for decision making. European Journal of Operational Research,

199(3):902–907.

Heidorn, C., Kalisch, F., and Hufendiek, K. (2009). Modellierung der Ölpreisen-

twicklung seit 2000 - Eine kritische Beurteilung stochastischer und fundamen-

taler Ansätze der Preismodellierung. In 8. Fachtagung Optimierung in der En-

ergiewirtschaft, pages 151–161, Duesseldorf. VDI-Verlag.

Heydari, S. and Afzal, S. (2008). Evaluating a Gas-Fired Power Plant: a Compar-

ison of Ordinary Linear Models, Regime-Switching Approaches, and Models

with Stochastic Volatility. In 31st International Conference of the International

Association for Energy Economics, Istanbul. IAEE.

Hirsch, G. (2009). Pricing of hourly exerciseable electricity swing options using

different price processes. Journal of Energy Markets, 2(2):3–46.

Hirschl, B., Aretz, A., Prahl, A., Böther, T., Heinbach, K., Pick, D., and Funcke,

S. (2010). Kommunale Wertschöpfung durch Erneuerbare Energien. Technical

report, Institut für ökologische Wirtschaftsforschung (IOeW), Berlin.

226



E. Bibliography

Hobbs, B. (2001). Linear complementarity models of Nash-Cournot competition

in bilateral and POOLCO power markets. IEEE Transactions on Power Systems,

16(2):194–202.

Hull, J. (2005). Options, Futures and Other Derivatives. Prentice Hall, New

Jersey, 6th edition.

Hull, J. C. (2008). Fundamentals of Futures and Options Markets and Derivagem.

Prentice Hall, New Jersey, 6th edition.

Hundt, M., Sun, N., and Swider, D. (2008). Modellunterstützte Investition-

sentscheidungen fuer den Bau neuer Kraftwerke. In Optimierung in der En-

ergiewirtschaft, number VDIBericht 2018, pages 157–173, Düsseldorf. VDI-

Verlag.

IEA (2007). World Energy Outlook 2007 - China and India Insights. Number

600. International Energy Agency, Paris.

Jaillet, P., Ronn, E., and Tompaidis, S. (2004). Valuation of Commodity-Based

Swing Options. Management Science, 50(7):909–921.

Jarass, L., Obermair, G., and Voigt, W. (2009). Windenergie - Zuverlässige Inte-

gration in die Energieversorgung. Springer, Berlin, 2nd edition.

Johnson, B. and Barz, G. (1999). Selecting Stochastic Process for Modelling Elec-

tricity Prices. In Jameson, R., editor, Energy Modelling and the Management of

Uncertainty, volume Risk Books, pages 3–22. Risk Books, London.

Jones, D., Leiby, P., and Paik, I. (2004). OIL PRICE SHOCKS AND THE

MACROECONOMY: WHAT HAS BEEN LEARNED SINCE 1996. The En-

ergy Journal, 25(2):1–32.

Jonsson, T., Pinson, P., and Madsen, H. (2010). On the market impact of wind

energy forecasts. Energy Economics, 32(2):313 – 320.

Kamal, L. and Jafri, Y. (1997). Time series models to simulate and forecast hourly

averaged wind speed in Quetta, Pakistan. Solar Energy, 61(1):23–32.

227



E. Bibliography

Kanudia, A. and Loulou, R. (1998). Robust responses to climate change via

stochastic MARKAL: The case of Quebec. European Journal of Operational

Research, 106(1):15–30.

Karakatsani, N. and Bunn, D. (2008). Forecasting electricity prices:The impact of

fundamentals and time-varying coefficients. International Journal of Forecast-

ing, 24(4):764–785.

Karatzas, I. and Shreve, S. (2000). Brownian Motion and Stochastic Cauculus.

Springer, New York, 2nd edition.

Kazempour, S., Moghaddam, M., Haghifam, M., and Yousefi, G. (2009). Electric

energy storage systems in a market-based economy: Comparison of emerging

and traditional technologies. Renewable Energy, 34(12):2630–2639.

Keles, D., Genoese, M., Möst, D., and Fichtner, W. (2012). Comparison of ex-

tended mean-reversion and time series models for electricity spot price simula-

tion considering negative prices. Energy Economics, 34(4):1012–1032.

Keles, D., Möst, D., and Fichtner, W. (2011). The development of the German en-

ergy market until 2030 - A critical survey of selected scenarios. Energy Policy,

39(2):812–825.

Kennedy, S. and Rogers, P. (2009). A Probabilistic Model for Simulating Long-

Term Wind-Power Output. Wind Engineering, 27(3):167–181.

Khalid, Q. and Langhe, R. (2010). Evaluation and monitring of energy consump-

tion patterns using statistical modeling and simulation. In 6th International

Conference on Emerging Technologies (ICET).

King, C. W. and Hall, C. A. (2011). Relating Financial and Energy Return on

Investment. Sustainability, 3:1810–1832.

Konstantin, P. (2009). Praxisbuch Energiewirtschaft: Energieumwandlung, -

transport und -beschaffung im liberalisierten Markt. Springer, Berlin, 2nd edi-

tion.

228



E. Bibliography

Kreiss, J. P. (2006). Einführung in die Zeitreihenanalyse. Springer, Berlin Hei-

delberg.

Krey, V., Martinsen, D., and Wagner, H. (2007). Effects of stochastic energy

prices on long-term energy-economics scenarios. Energy, 32(12):2340–4349.

Krohn, S., Morthorst, P.-E., and Awerbuch, S. (2009). The Economics of Wind

Energy - A report by the European Wind Energy Association. Technical report,

European Wind Energy Association, Brussels.

Kumbaroglu, G., Madlener, R., and Demirel, M. (2008). A real options evaluation

model for the diffusion prospects of new renewable power generation technolo-

gies. Energy Economics, 30(4):1882–1908.

Ladurantaye, D., Gendreau, M., and Potvin, J. (2009). Optimizing profits from

hydroelectricity production. Computers & Operations Research, 36(2):499–

529.

Lise, W., Lindeerhof, V., Kuik, O., Kemfert, C., Oestling, R., and Heinzow, T.

(2006). A game theoretic model of the Northwestern European electricity mar-

ket - market power and the environment. Energy Policy, 34(15):2123–2136.

Lu, N., Chow, J., and Desrochers, A. (2004). Pumped-storage hydro-turbine bid-

ding strategies in a competitive electricity market. IEEE Transactions on Power

Systems, 19(2):834–841.

Lucia, J. and Schwartz, E. (2002). Electricity Prices and Power Derivatives: Evi-

dence from the Nordic Power Exchange. Review of Derivative Research, 5(1):5–

50.

Lund, H., Salgi, G., Elmegaard, b., and Andersen, A. (2009). Optimal operation

strategies of compressed air energy storage (CAES) on electricity spot market

with fluctuating prices. Applied Thermal Engineering, 29(5-6):799–806.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Berkeley Symposium on Mathematical Statistics and Probabil-

ity, volume 1, pages 281–297, Berkeley. University of California Press.

229



E. Bibliography

Maurer, C., Tersteegen, B., and Jasper, J. (2012a). Kapazitätsmechanismen

in Deutschland und Europa: Wann gibt es wirklich einen Bedarf? En-

ergiewirtschaftliche Tagesfragen, 62(3):32–37.

Maurer, C., Tersteegen, B., and Zimmer, C. (2012b). Anforderungen an den

konventionellen Kraftwerkspark - wieviel und welche Kraftwerkskapazität wird

benötigt? Zeitschrift für Energiewirtschaft, 36(2):147–154.

Menanteau, P., Finon, D., and Lamy, M.-L. (2003). Prices versus quantities:

choosing policies for promoting the development of renewable energy. Energy

Policy, 31(8):799 – 812.

Möst, D. (2006). Zur Wettbewerbsfähigkeit der Wasserkraft in liberalisierten

Elektrizitätsmaerkten - eine modellgestützte Analyse dargestellt am Beispiel des

schweizerischen Energieversorgungssystems. Peter Lang Verlag, Karlsruhe.

Möst, D. and Keles, D. (2010). A survey of stochastic modelling approaches

for liberalised electricity markets. European Journal of Operational Research,

207(2):543–556.

Muche, T. (2007). Investitionsbewertung in der Elektrizitätswirtschaft mit dem

Realoptionsansatz. Zeitschrift für Energiewirtschaft, 31(2):137–150.

Neubarth, J., Woll, O., Weber, C., and Gerecht, M. (2006). Beeinflussung der

Spotmarktpreise durch Windstromerzeugung. Energiewirtschaftliche Tagesfra-

gen, 56(7):42–45.

Nicolosi, M. (2012). Notwendigkeit und Ausgestaltungsmöglichkeiten eines Ka-

pazitätsmechanismus für Deutschland - Zwischenbericht. Technical report,

ECOFYS Germany GmbH, Berlin.

OakRidge (2010). Summary Report of the 2010 Technology Summit Meeting on

Pumped Storage Hydropower. Technical report, Oak Ridge National Labora-

tory, Washington.

230



E. Bibliography

Öko-Institut (2010). Kostenlose CO2-Zertifikate und CDM/JI im EU-

Emissionshandel - Analyse von ausgewählten Branchen und Unternehmen in

Deutschland. Technical report, Umweltstiftung WWF Deutschland, Berlin.

Olsina, F., Roescher, M., Larisson, C., and Garces, F. (2007). Short-term opti-

mal wind power generation capacity in liberalized electricity markets. Energy

Policy, 35(2):1257–1273.

Papaefthymiou, G. and Kloeckl, B. (2008). MCMC for Wind Power Simulation.

IEEE Transactions on Energy Conversion, 23(1):234 – 240.

Parliament, E. (1996). DIRECTIVE 96/92/EC OF THE EUROPEAN PARLIA-

MENT AND OF THE COUNCIL of 19 December 1996 concerning common

rules for the internal market in electricity. Technical report, European Parlia-

ment and Council, Brussels.

Parliament, E. (2003). Richtlinie 2003/87/EG des Europäischen Parlaments und

des Rates vom 13. Oktober 2003 über ein System für den Handel mit Treibhaus-

gasemissionszertifikaten in der Gemeinschaft und zur Änderung der Richtlinie

96/61/EG des Rates. Technical report, European Parliament and Council, Brus-

sels.

Pilipovic, D. (2007). Energy Risk - Valuing and Managing Energy Derivatives.

McGraw-Hill Professional, New York, 2nd edition.

Raczkowsky, B. (2008). Lexikon Erdkunde - Geografische Fachbegriffe. Stark

Verlag GmbH, Hallbergmoos.

Ray, S., Munksgaard, J., Morthorst, P. E., and Sinner, A.-F. (2010). Wind Energy

and Electricity Prices - Exploring the merit order effect. Technical report, A lit-

erature review by Poeyry for the European Wind Energy Association (EWEA),

Brussels.

Regelleistung.net (2013). Internetplattform zur Vergabe von Regelleistung.

www.regelleistung.net, 15 Jan. 2013.

231



E. Bibliography

Remme, U. (2006). Zukünftige Rolle erneuerbarer Energien in Deutschland: Sen-

sitivitätsanalysen mit einem linearen Optimierungsmodell. PhD thesis, Univer-

sität Stuttgart.

Roques, F., Nuttall, W. J., and Newbery, D. M. (2006). Using Probabilistic Anal-

ysis to Value Power Generation Investments Under Uncertainty. Cambridge

working papers in economics, Faculty of Economics, University of Cambridge.

RWE (2013). ADELE - ein Speicher für grü-

nen Strom, Sechs Fragen zum Projekt in Strassfurt.

www.rwe.com/app/Pressecenter/Download.aspx?pmid=4005594&datei=2,

23 Jan. 2013.

Ryu, S., Um, S., and Kim, S. (2010). The Impact of Wind Power Generation on

Wholesale Electricity Price at Peak Time Demand in Korea. In Yao, T., editor,

Zero-Carbon Energy Kyoto 2009, Green Energy and Technology, pages 79–84.

Springer, Japan.

Safari, B. (2011). Modeling wind speed and wind power distributions in Rwanda.

Renewable and Sustainable Energy Reviews, 15(2):925 – 935.

Schaal, P. and Kolshorn, J. (2005). Windenergie quo vadis? - Entwicklungspoten-

ziale der Windenergie auf Binnenlandstandorten in Niedersachsen und Sachsen-

Anhalt. Raumforschung und Raumordnung, 63(6):432–443.

Schäfer, A., WIENEN, B., and MOSER, A. (2012). Alternative Vergütungsmod-

elle regenerativer Erzeugungsanlgen. In 12. Symposium Energieinnovation.

Graz, Austria.

Schlittgen, R. and Streitberg, B. (2001). Zeitreihenanalyse. Oldenburg Verlag,

München Wien, 9th edition.

Schmoeller, H. (2005). Modellierung von Unsicherheiten bei der mittelfristigen

Stromerzeugungs- und Handelsplanung. Klinkenberg Verlag, Aachen.

Schneider, S. (2012). Power spot price models with negative prices. Journal of

Energy Markets, online. http://mpra.ub.uni-muenchen.de/29958/.

232



E. Bibliography

Schoenung, S. and Burns, C. (1996). Utility energy storage applications studies.

Energy Conversion, IEEE Transactions on, 11(3):658 –665.

Schulz, G. (1996). Preisbildung in der Energiewirtschaft - Eine Analyse rel-

evanter Preisbildungskonzeptionen unter preis- und wettbewerbstheoretischen

Gesichtspunkten. etv - Energiewirtschaft und Technik Verlag, Essen.

Schwartz, E. (1997). The stochastic behaviour of Commodity Prices: Implications

for Valuation and Hedging. Journal of Finance, 52(3):923–973.

Seifert, J. and Uhrig-Homburg, M. (2007). Modelling jumps in electricity prices:

theory and empirical evidence. Review of Derivative Research, 10(1):59–85.

Sensfuss, F., Genoese, M., Ragwitz, M., and Moest, D. (2008). Agent-based

simulation of electricity markets - A literature review. Energy Studies Review,

15(2):19–47.

Sewalt, M. and de Jong, C. (2007). Negative prices in electricity markets. Com-

modities Now, pages 74–77.

Spliethoff, H., Wauschkuhn, A., and Schuhbauer, C. (2011). Anforderungen an

zukünftige Kraftwerke. Chemie Ingenieur Technik, 83(11):1792–1804.

Sterner, M., Gerhardt, N., Saint-Drenan, Y.-M., von Oehsen, A., Hochloff, P.,

Kocmajewski, M., Jentsch, M., Lichtner, P., Pape, C., Bofinger, S., and Rohrig,

K. (2010). Energiewirtschaftliche Bewertung von Pumpspeicherkraftwerken

und anderen Speichern im zukünftigen Stromversorgungssystem. Technical

report, Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES)

Kassel, FuE-Bereich Energiewirtschaft und Netzbetrieb.

Stier, W. (2001). Methoden der Zeitreihenanalyse. Springer, Berlin Heidelberg.

Stoddard, L. (1996). Emerging Technologies. In Drbal, L., Westra, K., and Pads,

B., editors, Power Plant Enrgineering, pages 781–808. Springer, New York.

Stoft, S. (2002). Power System Economics - Designing Markets for Electricity.

John Wiley & Sons, New York.

233



E. Bibliography

Suomalainen, K., Silva, C., Ferrao, P., and Connors, S. (2012). Synthetic wind

speed scenarios including diurnal effects: Implications for wind power dimen-

sioning. Energy, 37(1):41–50.

Swider, D. (2006). Handel an Regelenergie- und Spotmärkten: Methoden zur

Entscheidungsunterstützung für Netz- und Kraftwerksbetreiber. Deutscher

Universitäts-Verlag, Wiesbaden.

Swider, D. and Weber, C. (2007). Extended ARMA models for estimating price

developments on day-ahead electricity markets. Electric Power Systems Re-

search, 77(5-6):583–593.

Tauer, L. (1983). Target Motad. American Journal of Agricultural Economics,

65(3):606–610.

Teisberg, E. O. (1994). An Option Valuation Analysis of Investment Choices by

a Regulated Firm. Management Science, 40(4):535–548.

Tennet (2012). Website of the TSO Tennet.

http://www.tennettso.de/site/Transparenz/veroeffentlichungen/netzentgelte/entgelt-

fuer-die-netznutzung, 05 Oct. 2012.

Thome, H. (2005). Zeitreihenanalyse. Oldenburg Wissenschaftsverlag, München.

Torres, J., Garcia, A., De Blas, M., and A., D. F. (2005). Forecast of hourly wind

speed with ARMA models in Navarre (Spain). Solar Energy, 79(1):65–77.

Troncoso, A., Riquelme, J., Aguilar-Ruiz, J., and Riquelme Santos, J. (2008).

Evolutionary techniques applied to the optimal short-term scheduling of the

electrical energy production. European Journal of Operational Research,

185(3):1114–1127.

Tseng, C. and Barz, G. (2002). Short-Term Generation Asset Valuation: A Real

Options Approach. Operation Research, 50(2):297–310.

Uhlenbeck, G.E.;Ornstein, L. (1930). On the theory of Brownian motion. Physic

Review, 36:823–841.

234



E. Bibliography

Umweltbundesamt (2011). Umstrukturierung der Stromversorgung in Deutsch-

land. Technical report, Pressestelle des Umweltbundesamtes.

van der Linden, S. (2006). Bulk energy storage potential in the USA, current

developments and future prospects. Energy, 31(15):3446 – 3457.

Ventosa, M., Baillo, A., Ramos, A., and Rivier, M. (2005). Electricity market

modeling trends. Energy Policy, 33(7):897–913.

Villar, J. and Joutz, F. (2006). The Relationship Between Crude Oil and Natural

Gas Prices. Technical report, Energy Information Administration, Office of Oil

and Gas, Washington.

Wagner, M. (2007). CO2-Emissionszertifikate - Preismodellierung und Derivate-

bewertung. Universitaetsverlag Karlsruhe, Karlsruhe.

Weber, C. (2005). Uncertainty in the Electric Power Industry. Springer, New

York.

Weigt, H. (2009). Germanys Wind Energy: The potential for fossil capacity re-

placement and cost saving. Applied Energy, 86(10):1857–1860.

Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices: A

Statistical Approach. John Wiley & Sons, Chichester.

Weron, R., Bierbrauer, M., and Trueck, S. (2004). Modelling electricity prices:

jump diffusion and regime switching. PHYSICA A, 336(2004):39–48.

Wietschel, M. (2000). Produktion und Energie: Planung und Steuerung indus-

trieller Energie- und Stoffströme. Peter Lang, Frankfurt.

Xi, X. and Sioshansi, R. (2012). A Stochastic Dynamic Programming Model for

Co-optimization of Distributed Energy Storage. Energy Economics, in Review.

Yang, M., Blyth, W., Bradley, R., Bunn, D., Clarke, C., and Wilson, T. (2008).

Evaluating the power investment options with uncertainty in climate policy. En-

ergy Economics, 30(4):1933–1950.

235



E. Bibliography

ZuG (2011). Gesetz über den nationalen Zuteilungsplan für Treibhausgas-

Emissionsberechtigungen in der Zuteilungsperiode 2008 bis 2012 (Zuteilungs-

gesetz 2012 - ZuG 2012), Zuteilungsgesetz 2012 vom 7. August 2007 (BGBl. I

S. 1788), das zuletzt durch Artikel 2 Absatz 23 des Gesetzes vom 22. Dezember

2011 (BGBl. I S. 3044) geändert worden ist. Technical report, Bundestag.

Zunft, S., Jakiel, C., Koller, M., and Bullough, C. (2006). Adiabatic Compressed

Air Energy Storage for the Grid Integration of Wind Power. In Sixth Interna-

tional Conference on Large-Scale Integration of Wind Power and Transmission

Networks for Offshore Windfarms, Delft, Netherlands.

236







Band 1	 National Integrated Assessment Modelling zur Bewertung 
	 umweltpolitischer Instrumente. 
	 Entwicklung des otello-Modellsystems und dessen Anwendung 
	 auf die Bundesrepublik Deutschland. 2012
	 ISBN 978-3-86644-853-7

Band 2 	 Erhöhung der Energie- und Ressourceneffizienz und 
	 Reduzierung der Treibhausgasemissionen in der Eisen-, 
	 Stahl- und Zinkindustrie (ERESTRE). 2013
	 ISBN 978-3-86644-857-5

Band 3	 Frederik Trippe
	 Techno-ökonomische Bewertung alternativer Verfahrens- 
	 konfigurationen zur Herstellung von Biomass-to-Liquid (BtL)  
	 Kraftstoffen und Chemikalien. 2013
	 ISBN 978-3-7315-0031-5

Band 4	 Dogan Keles
	� Uncertainties in energy markets and their  

consideration in energy storage evaluation. 2013
	 ISBN 978-3-7315-0046-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar  
oder als Druckausgabe zu bestellen. 

Produktion und Energie

Karlsruher Institut für Technologie (KIT)
Institut für Industriebetriebslehre und Industrielle Produktion  
Deutsch-Französisches Institut für Umweltforschung

ISSN 2194-2404 



This book successfully illustrates the modeling of electricity prices with the help of sto-
chastic processes. In this context, the relatively new phenomenon of negative prices 
is also focused. The integration of the fluctuating feed-in from wind power plants in 
electricity price models is also very innovative. This approach helps to simulate electri-
city prices in order to take adequately into account the so-called „merit-order effect 
of renewable energy“. Finally, the practical relevance of these models is illustrated 
by using them for the techno-economic evaluation of pumped storage hydropower 
plants and compressed air energy storages.

9 783731 500469

ISBN 978-3-7315-0046-9

INSTITUT FÜR INDUSTRIEBETRIEBSLEHRE UND INDUSTRIELLE PRODUKTION 

DEUTSCH-FRANZÖSISCHES INSTITUT FÜR UMWELTFORSCHUNG

U
n

ce
rt

ai
n

ti
es

 in
 e

n
er

g
y 

m
ar

ke
ts

D
. K

EL
ES

ISSN 2194-2404 
ISBN 978-3-7315-0046-9      



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.16667
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.16667
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.08333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Europe ISO Coated FOGRA27)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars true
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (Coated FOGRA39 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




