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In many organic molecules, the strong coupling of excess charges to vibrational modes leads to the forma-
tion of polarons, i.e., localized states of charge carriers and molecular deformations. At room temperature,
incoherent hopping of polarons along the molecule is the dominant mechanism of charge transport. We study
the situation far-from-equilibrium where, due to an applied voltage bias, the induced number of charge carriers
on the molecule is high and charge correlations become relevant. We develop a diagrammatic theory that
accounts in a finite system for all many-particle correlations and their effect on the incoherent transport. We
determine the I-V characteristics of short sequences of DNA by expanding the diagrammatic theory up to
second order in the hopping parameters. Correlations qualitatively modify the results as compared to those
obtained in a mean-field approximation.
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I. INTRODUCTION

Molecular electronics experiments performed during re-
cent years have probed the conductance and current-voltage
characteristics of a large variety of molecules. Several ex-
periments on long molecules indicate that transport is not
described by coherent Landauer transport or tunneling but
rather by an incoherent hopping of charge carriers along the
molecule. Examples are experiments on DNA �Refs. 1 and 2�
or oligophenyleneimine wires.3 In the latter experiment, the
length dependence of the conductance clearly demonstrated
the crossover from the coherent �tunneling� to the incoherent
transport regime at a molecule length of about 4 nm.

In many experiments, the molecule consists of repeated
segments �either identical or with chemical modifications�
where the quantum-mechanical hopping amplitude between
the segments can be tuned to some degree by the choice of
the “linker group.” If the hopping amplitude between the
segments is large �e.g., for stiff molecules with fully conju-
gated electron systems� the quantum-mechanical coherence
on the molecule can extend quite far at low temperatures,
such that even molecules of up to several nanometer length
display signs of coherent transport, at least within the
molecule.4,5 On the other hand, if the coupling of segments is
weak �e.g., for flexible molecules with weakly conjugated or
saturated linker groups� the coherence decays quickly, such
that charge carriers are typical localized over a single or a
few segments only. In this case, the molecule tends to change
its conformation in order to lower its energy when charged, a
process called polaron formation. The polaron is a combina-
tion of a charge carrier and the localized deformation. At
room temperature, charge transport is then dominated by in-
coherent hopping of polarons along the molecule. At low
temperature, coherent “bandlike” transport of polarons might
be observable.

The theoretical description of polaronic effects in
molecule-electrode setups so far either focused on molecular
single-level systems6–9 or described polaron hopping in long
molecules by assuming “simple” rate equations.10,11 Böttger

and Bryksin have shown in a rigorous description of polaron
transport in bulk systems that even in the absence of Cou-
lomb interactions phonon-mediated charge correlations be-
tween different sites develop.12 However, in their calcula-
tions they included these correlations only in a mean-field
like manner. The earlier rate equation approaches to polaron
hopping in nanoscale systems also treat correlations within
this mean-field approximation.

The mean-field approximation to many-particle correla-
tions can be justified in systems with low density of charge
carriers, and is a sufficient approximation for many doped
�organic� semiconductors. In molecular electronics experi-
ments, however, where a transport bias on the order of 1 V is
applied over a molecule of a few nanometer length, the av-
erage charge density may be much higher, and correlations
become relevant. For example, for small molecules often the
Coulomb interaction �or charging energy� dominates, leading
at low temperatures to transport characteristics similar to
single-electron transistors.13,14 With increasing molecule
size, the relevance of Coulomb blockade decreases, but still,
the transport along the molecule is affected by charge corre-
lations, either due to �nonlocal� Coulomb interaction or the
�retarded� interactions mediated by the coupling of charge
carriers to vibrational modes mentioned above. We will dem-
onstrate that in general such correlations are not sufficiently
described by a mean-field approach.

We have extended the diagrammatic approach by Boettger
and Bryksin to describe molecular systems coupled to metal-
lic electrodes. In the usual diagrammatic approach to small
molecules �or quantum dots�,15,16 the molecular eigenstates
including the Coulomb interaction are the basis of a pertur-
bative expansion in the weak coupling to metallic electrodes.
In contrast, in the present problem the “basis states” are “lo-
cal” to the molecule segments �e.g., a DNA base pair or a
phenylene ring�. The expansion parameters also include the
small hopping amplitudes between the molecular segments.
As the perturbation expansion usually involves a “self-
energy” resummation, where diagrams of a certain type �but
of arbitrarily high order� are accounted for, the occupation
numbers �or, in general, one-particle correlation functions�
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are coupled to higher-order correlations functions, unless the
system is noninteracting. Similar to, e.g., equation-of-motion
methods, a hierarchy of equations for the correlation func-
tions can be generated, which has to be truncated in some
manner �often following more numerical necessities than
physical arguments�.

The present paper demonstrates that an exact description
of correlation effects mediated by vibrational modes is pos-
sible for a finite-size system. This is because the hierarchy is
naturally truncated at the level of the highest possible corre-
lation function involving all “sites” of the molecule. The
resulting finite set of coupled linear equations for the occu-
pation number and the many-particle correlation functions
can then be solved without resorting to any further truncation
procedure. The many-particle correlation functions affect the
charge occupations and the transport for nonuniform sys-
tems, see Fig. 1.

As an example we study short DNA molecules coupled to
metallic electrodes. The DNA is modeled by a tight-binding
chain identifying each base pair with a single tight-binding
site. The sites describing either guanine-cytosine �GC� or
adenine-thymine �AT� base pairs have different on-site ener-
gies and are coupled by direction-�sequence-� dependent
hopping integrals tij �compare Table I�. The polarons are
formed by strong coupling of the charge degrees of freedom

to local base pair vibrations. To ensure energy dissipation,
these base pair vibrations are in turn coupled to a set of
harmonic oscillators, describing the influence of a dissipative
environment.

In the first part of this paper, we introduce the diagram-
matic technique describing incoherent polaron hopping
transport through molecules or other nanoscale systems
which are coupled to metallic electrodes. This technique al-
lows the description of polaron transport with the exact con-
sideration of correlation effects arising from the electron-
vibration interaction. The approximation of the technique lies
in the need to restrict the order of the expansion in small
hopping parameters. In the second part, we apply this dia-
grammatic technique to polaron hopping transport through
short DNA molecules coupled to metallic electrodes with the
following results: �i� correlations effects beyond the mean-
field approximation are relevant for the linear conductance in
inhomogeneous DNA molecules already for low charge den-
sities of less than 1%. �ii� When a transport bias is applied
over the molecule, correlation effects become important even
when the occupation in equilibrium is negligible. �iii� Inho-
mogeneous DNA molecules in general exhibit two maxima
in the zero-bias conductance as a function of equilibrium
chemical potential �gate voltage� and also in the differential
conductance as a function of applied transport bias. In con-
trast, the mean-field approach only displays one maximum.
�iv� Depending on the sequence, the secondary maxima can
be suppressed, as a consequence of a small hopping rate
limiting the transport through the system. Details of the dia-
grammatic technique are shown in Appendices A and C.

II. MODEL AND TECHNIQUE

The minimal Hamiltonian to describe polaron transport
through DNA is H=Hel+Hvib+Hel−vib+HL+HR+HT,L+HT,R
+Hbath with

Hel = �
i

�̂iai
†ai − �

�ij�
tijai

†aj ,

HT,L + HT,R = �
n,r,i

�trcnr
† ai + trai

†cnr� ,

Hvib = �
�

�
i

��i�B�i
† B�i +

1

2
	 ,

Hel−vib = �
�

�
i

��iai
†ai�B�i + B�i

† � . �1�

The term Hel models the electrons on the molecule with
operators ai

† ,ai in a single-orbital tight-binding representa-
tion. This implies that the molecule consists of N parts �la-
beled i�. The electronic properties of the molecule can then
be described by the molecular orbitals �usually the highest
occupied molecular orbital �HOMO� or lowest unoccupied
molecular orbital �LUMO�� of these subentities with on-site
energies �i and hopping tij between neighboring parts of the
molecule. The terms HL/R refer to the left and right elec-
trodes. They are modeled by noninteracting electrons, de-

TABLE I. Hopping integrals tij taken from Ref. 25 and adapted
to our model. The notation 5�-XY-3� indicates the direction along
the DNA strand �see, e.g., Fig. 1b in Ref. 24.� 5�-XY-3��all in
electron volt�.

X\Y G C A T

G 0.119 0.046 −0.186 −0.048

C −0.075 0.119 −0.037 −0.013

A −0.013 −0.048 −0.038 0.122

T −0.037 −0.186 0.148 −0.038

FIG. 1. �Color online� Sketch of charge carriers, hopping rates,
and correlations. �a� On a homogeneous chain the rates Wnm are all
equal. The occupations �l are independent of the two-particle cor-
relations �lm as the corresponding terms in the rate equation cancel
out, cf. Eq. �14�. �b� On an inhomogeneous chain the rates Wnm

�Wmn so the two-particle correlations �lm affect the occupations �l.
Since the modifications do not remain local, the transport through
the entire system is changed.
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scribed by operators cnL/R
† ,cnL/R, with a flat density of states

�e �wide band limit� and a chemical potential �L/R �set to
�=0 eV in equilibrium�. Since we do not focus on the de-
tails of the coupling between the molecule and the elec-
trodes, it is sufficiently described by HT,L+HT,R. The tunnel-
ing amplitudes are assumed to be independent of the
molecular orbital i and the quantum numbers of the electrode
states �. The coupling strength is then characterized by the
parameter 	L,R
�e
tL,R
2.

Polarons are formed due to strong coupling of electronic
and vibrational degrees of freedom. The vibrations labeled
� , i are described in Hvib, with bosonic operators B�i and B�i

†

for the vibrational mode with frequency ��i, i.e., every part
of the molecule can vibrate independently. Hel−vib couples the
electrons on the molecule to the vibrational modes, where
��i is the strengths for the local electron-vibration coupling
for the site i and mode �, respectively. To ensure energy
dissipation and thermal occupation of the vibrational states,
we couple every vibration to its own bath Hi,bath, the micro-
scopic details of which do not matter.

A perturbative treatment of the strong electron-vibration
coupling in the above Hamiltonian is not reasonable. Never-
theless, to allow for a perturbation expansion we apply the
so-called polaron or Lang-Firsov unitary transformation,

H̃ = eSHe−S �2�

with the generator

S = − �
�i

��i

���i
ai

†ai�B�i − B�i
† � . �3�

We introduce transformed electron and vibrational operators,

ãi = ai�i,

B̃�i = B�i −
��i

���i
ai

†ai

and polaron operators

�i = exp��
�

��i

���i
�B�i − B�i

† �� . �4�

Operators �i with different indices i act on different vibra-
tional states, therefore they commute for all times. In terms
of these quantities, the Hamiltonian reads

H̃ = H̃0 + H̃�,

H̃0 = �
i

��i − 
i�ai
†ai + �

�i

���i�B�i
† B�i +

1

2
	 + HL + HR,

H̃� = − �
�ij�

tijai
†�i

†aj� j + �
�,r,i

�trc�r
† ai�i + tr�ai

†�i
†c�r� , �5�


i = �
�

��i
2

���i
. �6�

H̃� describes the perturbation to the exactly solvable

Hamiltonian H̃0. The perturbation consists of the hopping
along the molecule and to/from the electrodes, where the
operators �i account for the creation and absorption of vibra-
tions in the hopping processes. Without the coupling to vi-
brations, the perturbation expansion makes sense only if the
hopping strengths tij or tr are small, e.g., compared to tem-
perature, especially for homogeneous chains. Coupling to vi-
brations leads to additional factors of the type ��i

†�t��i�0��
�and also expectation values with a larger, even number of �
operator products, cf. Appendix C�. These factors are
strongly energy-dependent �after Fourier transform� and are
known from the so-called “P�E�-theory” of tunneling in a
dissipative electromagnetic environment.17 However, even
the peak value of these factors is of order 1 /
, so the per-
turbation expansion is effectively controlled, if the polaron
binding energy 
 is large compared to the hopping strength.

A. Real-time expansion

There are two limits to polaron transport, coherent band-
like transport and incoherent hopping transport. For weak
electron-vibration coupling and low temperatures coherent
transport dominates, whereas for strong coupling and high
temperatures transport is a sequence of incoherent hopping
processes. In this work, we will focus on incoherent polaron
hopping. To describe the physics in this regime, we extend a
formalism developed by Böttger and Bryksin12 for polaron
transport in bulk systems to account for coupling to metallic
electrodes.

To calculate quantities of interest, e.g. the occupation
number �ai

†�t�ai�t�� and the current in a nonequilibrium situ-
ation with applied bias, we make a real-time expansion of the
occupation number along the Keldysh contour. The evolution
in the interaction picture introduces the time dependence,

ai�t� = aie
−i��i−
i�t = aie

−i�̃it,

Bi�t� = Bie
−i�it.

From here on we will use the shifted on-site energy
�̃i=�i−
i in all expressions.

The occupation number of the molecule can be written as
�l�t�= �al

†�t�al�t��H̃. We express it in the interaction picture,

assuming that the perturbation H̃� is adiabatically turned on
from the time t0=−�,

�l�t� = �U
H̃0

† �t,− ��al
†alUH̃0

�t,− ���H̃0

with time-evolution operator

UH̃0
�t,− �� = T
exp�− i�

−�

t

dtH̃
H̃0
� �t��� . �7�

A Taylor expansion of the time-evolution operators

in H̃� defines a diagrammatic expansion. The forward time-
evolution operator UH̃0

�t ,−�� is expanded on the upper
branch of the Keldysh contour whereas the backward time-
evolution operator U

H̃0

† �t ,−�� is expanded on the lower
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branch �see Fig. 2�. The index H̃0 indicates that these opera-
tors are written in the interaction picture. The time-ordering

operator “T” in Eq. �7� �antitime-ordering operator “T̃”� en-
sures that the different times ti, arising from the Taylor ex-
pansion of the forward �backward� time evolution operator,
are ordered in the correct way along the contour. Note, of-
tentimes forward and backward time evolution operators are
combined and a contour ordering operator “Tk” is introduced
to ensure the correct ordering of times along the Keldysh
contour.18,19

In performing the expansion in the time-evolution opera-
tors, we obtain certain operator products, which we have to

average thermally. Since H̃0 is quadratic in the fermion op-
erators, these can be treated using Wick’s theorem. On
the other hand, the vibrational operator products, involving
various operators �i�tj�, cannot be factorized. The rules for
the evaluation of these operator products are given in Appen-
dix C.

A specific term in the Taylor expansion, is represented by
a diagram with a certain number of vertices on the upper and
lower branch of the Keldysh contour, where each vertex is
proportional either to tij �a hopping vertex� or tr �a tunneling
vertex�. Each vertex consists of one open circle � �symbol-
izing a destruction operator� and one crossed circle � �sym-
bolizing a creation operator�. All circles belonging to opera-
tors acting on the molecule are drawn on the inside of the
contour whereas circles belonging to electrode operators are
drawn on the outside of the contour �compare, e.g., Fig. 3�.

The different vertices are connected by fermion �solid� and
vibrational �dashed� lines and belong to different times ti,
which have to be �anti� time ordered along the �lower� upper
branch of the contour.

A feature of this expansion is that certain diagrams are
diverging even in first order. These diagrams can be identi-
fied by so called “free sections” �indicated by the dotted lines
in Fig. 3�. A free section is a part of the diagram between two
vertices �except for the clamp� where a vertical line can be
drawn such that only internal fermion lines are cut �neither a
phonon line nor an external fermion line belonging to the
electrodes�. In such a case, the vertical line always cuts an
even number of internal fermion lines, as many left as right
going. These left- and right-going lines are pairwise associ-
ated with the same site. In the evaluation of such a diagram,
this leads to a divergence which arises from the integral
�−�

t dt� exp�−i��̃m− �̃l�t�� with l=m. Physically this corre-
sponds to a free propagation for an infinitely long time. Thus,
an infinite number of diagrams has to be summed up in a
way similar to a “ladder” approximation.12,20,21 The regions
in between free sections �excluding the clamp� are called
irreducible blocks. They do not diverge.

In Fig. 3 such a ladder summation of a second-order irre-
ducible block representing a tunneling process is shown.
Similar to a Dyson series, the summation of an infinite num-
ber of diagrams can be written as a self-consistent equation
for the occupation number �.

For the interacting system we consider, certain diagrams
lead to equations coupling the occupation number to many-
particle correlation functions. This is illustrated in Fig. 4.
The dotted vertical lines denoted �i� and �ii� indicate free
sections which lead to divergences. Let us concentrate on the
free section �i� in Fig. 4�a�. To cure the divergence due to �i�,

FIG. 2. Schematic drawing of the Keldysh contour and the for-
ward and backward time-evolution operators. The open and crossed
circle �the clamp� represent the two operators al and al

†, respec-
tively, which are evaluated at time t.

FIG. 3. Ladder summation of a second-order irreducible block
representing two tunneling processes. The irreducible blocks are
separated by free sections �indicated by dotted lines�. The summa-
tion can be recast into a self-consistency equation for the occupa-
tion number �.

(a)

(b)

FIG. 4. �a� Sixth-order diagram in the real-time expansion of the
occupation number �U

H̃0

† �t�al
†alUH̃0

�t�� �b� Fourth-order diagram in

the real-time expansion of the two-particle correlation function
�U

H̃0

† �t2�al
†amam

† alUH̃0
�t2��. Free sections are indicated by the verti-

cal dotted lines.
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a ladder summation has to be performed over all diagrams
with the same divergence, i.e., the same free section. This
can be done in a complete and tractable manner by the in-
troduction of many-particle correlation functions.

Aside of this technical argument, there are also simple
physical arguments why �and when� the two-particle corre-
lation functions affect the behavior of the occupation num-
bers �and the current�. Consider a hopping process from sites
m to site n: the hopping probability is determined by a
second-order irreducible diagram and the occupation of the
initial and final site. Two-particle correlation functions ex-
press the probability to find, e.g., the initial site m occupied
and the final site n empty, such that the hopping process can
succeed. In general, the occupation of different sites is cor-
related, except in the trivial case when there is exactly one
particle on the �central� system. If the charge density is finite,
but very low, the charges are well described by a Boltzmann
distribution22,23 and the two-particle correlation functions
can be factorized in a “Hartree-Fock” type of approximation.
This approach was taken in earlier works.11,21–23

B. A hierarchy of many-particle correlation functions

By inspection of the part of diagram Fig. 4�a� left of the
free section �i� one notices that this resembles a diagram
arising from the real-time expansion of the two-particle cor-
relation function �U

H̃0

† �t2�al
†amam

† alUH̃0
�t2��, see Fig. 4�b�.

Straightforward generalization shows that the ladder summa-
tion for the diagram 4�a� consists of all diagrams that arise
from the real-time expansion of this particular two-particle
correlation function, placed to the left of the free section �i�,
as indicated by Fig. 5. In this way, an infinite number of
diagrams to the occupation number � can be accounted for
by involving this particular two-particle correlation function
with the particular irreducible block, given by the right part
of the diagram in Fig. 4�a� from the free section indicated by
�i� to the last vertex before the clamp. Other irreducible
blocks involve other type of many-particle correlations func-
tions. What kind of correlation function is needed can be
read off from the vertices of the irreducible block �following
the contour� that are connected to the fermion lines crossing
the free section �see also Appendix B�.

Figure 4�b� is only a particular diagram to the ex-
pansion of the two-particle correlation function
�U

H̃0

† �t2�al
†amam

† alUH̃0
�t2��. However, the arguments for re-

placing the free section �ii� in this diagram work the same
way as for the expansion for the occupation number �.

Therefore, we can write a linear equation for this two-
particle correlation function involving all other two-particle
correlation functions, the occupation number � and other
many-particle correlations functions. These many-particle
correlations fulfill yet another set of linear equations.

In this manner, a hierarchy of linear equations is estab-
lished. In principle, the approximation to the exact solution
of the problem lies so far solely in the limited number of
irreducible blocks that can be considered in a real calcula-
tion, i.e., in the order of expansion of the irreducible blocks
in the hopping and tunneling vertices. In practice, the ques-
tion arises whether the hierarchy of equations can be solved
exactly, or whether other approximations need to be applied,
like a truncation or a factorization of the many-particle cor-
relations functions.

C. Truncation of the hierarchy

An important feature of the real-time expansion of the
correlation functions is that certain diagrams vanish due to
the Pauli exclusion principle. For example, the diagram de-
picted in Fig. 6 arises in the expansion of the two-particle
correlation function and describes hopping process from site
m�m2 to m3 at time t2 and back to m at time t1. To its left
the irreducible block is coupled to the three-particle corre-
lation function �U

H̃0

† �0�am1

† am1
am2

† am3
am3

† am2
UH̃0

�0�� with m1

� l. For m3=m1� l there arises a special situation, the three
particle correlation function is zero since for fermions
nl̂�1−nl̂�=0 with n̂l=al

†al.
Furthermore, by similar arguments the Pauli exclusion

principle leads to a natural truncation of the hierarchy of
equations for any finite system. The N-particle correlation
function �U

H̃0

† �0�a1
†a1a2

†a2¯aN
† aNUH̃0

�0�� cannot couple to

any higher-order correlation function because they all vanish
�recall that N is the system size.� Thus, a closed set of linear
equations for the real-time expansion of all correlation func-
tions can be constructed. The formal solution of this set of
equations is simply a matter of backsubstitution.

In the earlier works,11,21–23 a Hartree-Fock factorization
was applied in which products of particle number operators
are replaced their expectation values. This leads to terms in
the expansion that should not exist if the exact correlation
functions were considered. The differences to the full theory
are small, if the electron or hole densities are so low that they
can be described by Boltzmann statistics. However, there is

FIG. 5. A second-order hopping diagram. The full lines repre-
sent fermion lines. The dashed line represents the sum of all
possible vibrational lines arising from the diagrammatic rules,
here it has a value Fl

+�t1− t2�Fm2

+ �t1− t2�+Fl
+�t1− t2�+Fm2

+ �t1− t2�
�cf. Appendix A�.

FIG. 6. A second-order hopping diagram. The full lines repre-
sent fermions, the dashed line represents the sum of all possible
vibrational lines arising from the diagrammatic rules, here it has a
value Fm

+ �t1− t2�Fm3

+ �t1− t2�+Fm
+ �t1− t2�+Fm3

+ �t1− t2�.
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the additional complication that the factorization leads to a
nonlinear self-consistency equation for the occupation num-
bers �i. At finite bias it can be quite difficult to find a con-
verging solution, especially as the system size becomes
larger. This difficulty is avoided in our present theory where
a solution to the linear equation set can be readily found by
standard numerical methods. Note, however, that the number
of correlation functions grows exponentially ��2N for spin-
less fermions�, so our method is limited to short chains. For
long chains, a truncation of the hierarchy at some level �be-
yond Hartree-Fock� is still needed. For the system we con-
sidered, factorizations of correlation function of the three-
particle level �and higher� proved to be very close to the
exact solution of the hierarchy �provided the nonlinear equa-
tions converged�.

Summarizing the above, the relation

d

dt
�l�t� = �

−�

t

dt1��
m1

�m1
�t1�Wm1l�t1 − t�

+ �
m1m2

�m1m2
�t1�Wm1m2l�t1 − t� + . . .� �8�

for the time derivative of the occupation number is obtained.
The diagrammatic rules for construction and evaluation of
irreducible blocks W are listed in Appendix A. The general-
ized �one- and two-particle� correlation functions �m1
��m1m2

� represent any order of the creation and destruction
operators am1

, am1

† �am1
,am1

† ,am2
,am2

† � that arises in the free
sections. Using the commutation relations for fermions, all
generalized correlation functions �m1. . .mj

can be expressed
by a sum of correlation functions �m1. . .mi

�of the same or
lower order� where we fix the order of creation and
destruction operators such that the creation operators at a site
are to the left of there destruction counterparts, i.e.,
�m1. . .mi

�am1

† am1
. . .ami

† ami
. In the rest of this paper, we only

use these ordered correlation functions �m1. . .mi
�note that the

occupation number is naturally defined by the one-particle
correlation function �m1

�.

D. Explicit equations for the considered model

In this paper, we want to calculate the stationary state of
the system when a constant, finite bias is applied between the
metallic electrodes. Therefore, all correlation functions must
be constant in time as well, such that Eq. �8� reduces to

0 =
d

dt
�l = �

m1

�m1�
−�

t

dt1Wm1l�t1�

+ �
m1m2

�m1m2�
−�

t

dt1Wm1m2l�t1� + . . . . �9�

Furthermore, we restrict ourselves to the lowest nonvanish-
ing order of diagrams, i.e., second order. Examples of two
such diagrams in the expansion of the occupation number
and two-particle correlation functions are given in Figs. 5
and 6. When comparing these two diagrams, it is clear that
they are mostly identical except for two additional fermion
lines in Fig. 6 which enter as Kronecker-delta symbol. Of

course, the corresponding irreducible blocks W couple to
different correlation functions determined by the fermion
lines leaving to and entering from the left.

According to the “mirror” rule, to every diagram one can
construct its complex conjugate by moving a vertex from the
upper part of the contour to the lower one �and vice versa�.
Following the rules given in the appendix the two diagrams
�Figs. 5 and 6� together with their respective complex con-
jugates and including the time integral of Eq. �9� have the
values

Wm1m2l = −

tl,m2


2

�2 Kl
2Km2

2 � dtei/���̃l−�̃m2
�t

��Fl
+�t�Fm2

+ �t� + Fl
+�t� + Fm2

+ �t���lm1
�10�

and

Wm1m2m3lm = −

tm,m3


2

�2 Km
2 Km3

2 � dtei/���̃m−�̃m3
�t

��Fm
+ �t�Fm3

+ �t� + Fm
+ �t� + Fm3

+ �t���lm1
�mm2

.

�11�

Explicit expressions for the constants Kl and the functions
Fl

+�t� are given in the Appendix A. The common element of
all second-order hopping diagrams in the expansion of the
various correlation functions may be defined as

Wlm =

tl,m
2

�2 Kl
2Km

2� dtei/���̃l−�̃m�t

��Fl
+�t�Fm

+ �t� + Fl
+�t� + Fm

+ �t�� . �12�

For the second-order diagrams describing the hopping to and
from the electrodes there exist also such common elements.
They are, respectively,

W−
L = 	L� dE

2��
�1 − fL�E��K1

2�F1
+��̃1 − E� + ���̃1 − E�� ,

W+
L = 	L� dE

2��
fL�E�K1

2�F1
+�E − �̃1� + ��E − �̃1�� , �13�

where 	L=2�
tL
2�e, fL�E� is the Fermi function in left lead,
and F1

+�E� is the Fourier transform of F1
+�t�. For the right

interface a similar expression holds involving fR�E� and
FN

+�E�.
Evaluating all second-order diagrams simplified rate

equations for the single-particle occupation number can be
stated as

d

dt
�l = �

m

�− ��l − �lm�Wlm + ��m − �ml�Wml� , �14�

SCHMIDT, HETTLER, AND SCHÖN PHYSICAL REVIEW B 82, 155113 �2010�

155113-6



d

dt
�1 = − �1W−

L + �1 − �1�W+
L − ��1 − �12�W12 + ��2 − �21�W21.

�15�

For the two-particle correlation functions on the inside of the
molecule and connected to the left electrode the rate equa-
tions have similar form

d

dt
�lm = �

n

�− ��lm − �lmn�Wln + ��mn − �lmn�Wnl

− ��lm − �lmn�Wmn + ��ln − �lmn�Wnm� �16�

and

d

dt
�12 = − �12W−

L + ��2 − �12�W+
L

− ��12 − �123�W23 + ��13 − �123�W32. �17�

All other rate equations not presented above are constructed
in an analogous way. This leads to a closed set of linear
equations for all correlation functions up to the order of the
system size N.

The theory is current conserving as Eqs. �14� and �15� are
the continuity equations for the occupation of site l and 1,
respectively, which equal zero in the steady-state situation
we consider. Thus the current can be computed at any point
of the entire system. For convenience, we choose to compute
the current through the left lead given by

IL = e�− �1W−
L + �1 − �1�W+

L� . �18�

Note that all many-particle correlation functions drop out of
this expression. They influence the current only via their ef-
fect on the occupation at the first site, �1.

E. Polaron hopping transport in DNA

In this section, we apply the above presented diagram-
matic approach to polaron hopping transport in DNA, which
we have already studied earlier in a more simplified ap-
proach, involving the Hartree-Fock factorization.11 DNA
consists of a sequence of base pairs adenine and thymine and
guanine and cytosine, which form a double helical ladder
structure. The electronic properties of DNA are determined
by the HOMO, situated on the guanine and adenine bases,
and the LUMO, situated on cytosine and thymine bases.24

To describe polaron-hole hopping, the relevant molecular
orbital is the HOMO. We describe the DNA chain in a mini-
mal tight-binding model where each tight-binding site repre-
sents one HOMO either on a guanine or an adenine base.
Both on-site energies �i and hopping integrals tij depend on
the base pair sequence. For the direction-dependent hopping
matrix elements tij we use the values obtained from density
functional theory by Siebbeles et al.25 Adapting these values
to our model of base pairs we obtain the next-neighbor hop-
ping elements listed in Table I.

As shown by Alexandre et al.26 and also other authors27–29

polarons are formed on DNA molecules, although the size of
these polarons is still controversial. Fits to the temperature
dependence of the linear conductance of experiments on long

��1000 base pairs� DNA segments like Ref. 1 support the
idea of small polaron formation with a local DNA
distortion.30,31 In this work, we assume that the size of po-
larons is restricted to single DNA base pairs. Such small
polarons are formed due to strong coupling of the electro-
nic degrees of freedom to local vibrational modes of the
DNA base pairs. Exemplary, we consider only a single
vibrational mode per base-pair, the so-called stretch modes
with frequencies ��i=16 meV for a GC base pair and
��i=11 meV for an AT base pair.32

The electron-vibration coupling strengths are chosen in
such a way that the reorganization energy or polaron shifts
�compare Eq. �6��, 
A=0.18 eV and 
G=0.47 eV, fit the
values extracted from experiments and listed by Olofsson
et al.33 These values probably underestimate the effect of the
solvent on the reorganization energy.

To ensure energy dissipation and thermal occupation of
the vibrations each base pair i is coupled to a local environ-
ment, Hi,bath, the microscopic details of which do not matter.
This coupling changes the vibrations’ spectra from discrete
modes �i to continuous spectra,

Di��� =
1

�
� �i���

�� − �i�2 + �i���2 −
�i���

�� + �i�2 + �i���2	
�19�

with frequency dependent broadening �i���.6 The actual
form of �i��� depends on the properties of the bath. A rea-
sonable choice which assures also convergence at low and
high frequencies is �i���=�0

�3

�i
3 ���c−�� with �0=0.5 meV

and a cutoff of the order of ��c=0.045 eV. To account for
the spectral function of the base pair vibrations, the substitu-
tion ��→�d�Di��� has to be made in all equations intro-
duced above.

III. RESULTS

The main focus of this paper is the investigation of the
influence of correlations on the electronic transport charac-
teristics. To do so, we compare our present theory with exact
correlation effects to our previous approach involving a
Hartree-Fock factorization that deals with correlations only
on the mean-field level. For simplicity, we denote the latter
approach as “mean-field correlations.”

It should be noted that correlation effects do not influence
the transport properties of homogeneous DNA sequences or
other homogeneous molecules. This is because for a homo-
geneous system, not only �lm=�ml �this is always true by
definition of the correlation functions�, but also the hopping
rates for forward and backward hopping processes are iden-
tical, Wlm=Wml. Therefore, the two-particle correlation
functions drop out of Eqs. �14� and �15� for the occupation
numbers, and consequently do not influence the current. The
I-V curves are therefore identical, no matter whether exact
correlations or mean-field correlations are considered.

A. Zero-bias conductance

As noted earlier the difference between the two ap-
proaches is small, when the occupation of holes or electrons
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is small so that the occupation is described by a Boltzmann
distribution function. To demonstrate this Fig. 7 shows the
zero-bias conductance G0 as a function of chemical potential
� of the equilibrium electrodes for a DNA molecule with
sequence AAAGAAAA with mean-field correlations �black
solid line� and exact correlations �red dashed line�. We have
chosen the reference point �=0 to lie above the �polaron
shifted� guanine and adenine states, i.e., in the HOMO-
LUMO gap of DNA. As can be seen from the figure,
especially from the inset on logarithmic scale, for values of
��−0.5 eV and above ��−0.15 eV the two curves agree
with each other. In the first region, the electron occupation
number is very small, whereas in the latter the hole occupa-
tion is very low. On the other hand, in the central region of
the plot both curves differ strongly. The zero-bias conduc-
tance is much lower when correlation effects are exactly ac-
counted for. Furthermore, the red curve exhibits two maxima
around the chemical potentials that agree with the on-site
energies of adenine ��̃A� and guanine ��̃G�. The black curve,
with mean-field correlation effects, only shows a single
broad maximum. Similar to coherent quantum transport
through molecules, the mean-field type approximation of
correlations overestimates the �zero-bias� conductance and
current and only shows a very simplified energetical struc-
ture.

As an illustration, the effect of exact correlations on the
occupation of the bases for the sequence AAAGAAAA is
shown in Fig. 8. The curves show the difference of the oc-
cupation for the two approaches for the first �black solid line�
fourth �red dashed line� and eighth �blue dashed-dotted line�
base of the DNA molecule AAAGAAAA as a function of
chemical potential �. The values were calculated for a small
transport bias Vb=0.01 V, which is in the linear regime. The
sign and magnitude of the occupation difference changes
with the bias direction and strength, respectively.

The maximum in occupation difference for the adenine
and guanine bases is reached for chemical potential values
which are close to the on-site energies of either adenine or
guanine, respectively. The effect of the correlation is the
strongest for the isolated guanine base in the center of the
sequence, where the maximum difference in occupation is
three orders of magnitude greater than for the adenine bases.
The occupations of the other adenine bases �not shown�, are
similar to the ones depicted in Fig. 8.

B. Finite-bias differential conductance

In experiments, a variation in the chemical potential is
rather difficult to achieve. In molecular electronics, this is
usually achieved by using a backgate electrode under an in-
sulating substrate. However, for DNA the complication arises
that its conformational structure is much influenced by the
surface potential of the substrate and the electric potentials of
the back gate. Oftentimes, though, the I-V characteristics can
be probed in setups where the molecules are in free suspen-
sion �mechanical break junctions� or standing upright in mo-
lecular monolayers.

When applying a transport bias Vb=�L−�R over the mol-
ecule, rather than applying a linear profile we let the external
potential drop at the two electrode-molecule interfaces by
equal amounts. For the applied bias range considered, the
difference is minor for inhomogeneous chains. Homoge-
neous chains are slightly more disturbed as they become in
effect also inhomogeneous so correlation effects will be
present to a small degree. We neglect image charge effects.
They could be relevant, if the sequence differs from homo-
geneity only at the contact base pair.

At finite transport bias, the occupation of the various mo-
lecular segments �base pairs in the case of the DNA� changes
from their equilibrium values. These occupational changes
can be translated into local potentials. The resulting potential
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FIG. 7. �Color online� Zero-bias conductance G0 as a function
of chemical potential � for the DNA molecule with sequence
AAAGAAAA with mean-field correlations �black solid line� and
exact correlations �red dashed line�. The parameters used are
�A=−0.26 eV, �G=+0.25 eV relative to the zero point of the
chemical potential, polaron shifts 
A=0.18 eV and 
G=0.47 eV,
symmetric coupling to leads with linewidths 	L=	R=0.001 eV,
vibrational energies ��A=11 meV, ��G=16 meV, and room tem-
perature kBT=25 meV. The inset shows the same plot on logarith-
mic scale to stress that both models agree for very low and high
occupation.
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FIG. 8. �Color online� Lower graph: difference of the occupa-
tion for exact and mean-field correlations for the first �black solid
line� fourth �red dashed line� and eighth �blue dashed-dotted line�
base of the DNA molecule AAAGAAAA as a function of chemical
potential �. The used transport bias is Vb=0.01 V, which is in the
linear regime. As reference in the upper graph the plot of Fig. 7 is
repeated. Parameters as in Fig. 7.
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profile can be interpreted as a position dependent “local
chemical potential” that changes with the applied bias. As
this local chemical potential moves over the energies of the
base pair levels, similar effects as in Fig. 7 are expected. In
Fig. 9 we show the differential conductance dI /dVb as a
function of applied transport bias Vb. The red curve including
exact correlation effects shows two maxima for both positive
and negative bias whereas the black line with mean-field
correlations only has single peaks. For small bias both curves
agree very well, as the charge carrier occupation in this re-
gime is very low. Note that again the mean-field approach
overestimates the �differential� conductance everywhere, ex-
cept for large positive bias, where the second peak exists in a
bias region where the mean-field approach shows exponen-
tially small conductance.

From these calculations it becomes clear that at finite
transport bias the charge carrier occupations have regions,
where mean-field type of correlations are insufficient to de-
scribe polaron hopping transport through molecules like
DNA.

We now discuss the position of the maxima in the zero-
bias and differential conductance. For a homogeneous mol-
ecule, both G0 and dI /dVb only have a single maximum,
namely when the chemical potential �or the transport bias� is
in resonance with the level energy of the DNA base pairs
��̃G=−0.22 eV and �̃A=−0.44 eV�. Including exact correla-
tions, for the DNA molecule AAAGAAAA there are two
maxima in the zero-bias conductance as a function of chemi-
cal potential, or in the differential conductance, for both
positive and negative transport bias �see Figs. 7 and 9�.
These maxima can also be associated with the level energies
of the two different types of bases, adenine and guanine.
However, the exact positions of the maxima in the zero-bias
conductance deviate slightly from their expected resonance
positions due to charge rearrangement effects between gua-
nine and adenine bases. Since the hopping rates increase
strongly with temperature, the charge rearrangement also in-
creases. Thus the position of the maxima is temperature de-
pendent.

For the differential conductance, the positions of the
maxima are shifted more strongly as a finite transport bias

will lead to much stronger charge rearrangements �polariza-
tion�. This effect is increasingly important for the maxima at
higher bias, i.e., the second maxima are shifted more
strongly from the anticipated resonance positions of the ad-
enine bases energy as compared to the first maxima relating
to the guanine energies. The charge rearrangement and there-
fore the position of the conductance maxima is quite sensi-
tive to the considered DNA sequence �see also discussion in
Ref. 11�.

C. Sequence effects

Are there always as many maxima as different species of
molecular segments with different on-site energies, if exact
correlations are considered? The black solid curve in Fig. 10
shows the zero-bias conductance as a function of chemical
potential for the DNA sequence AAAGGAAA. This se-
quence is only a slight modification as compared to AAA-
GAAAA studied above, nevertheless the zero-bias conduc-
tance exhibits only a single maximum, the “adenine”-peak is
missing. A similar behavior is observed for the differential
conductance as a function of applied bias.

Does this mean that for this sequence the adenine reso-
nance does not occur? It turns out that it is just suppressed.
The red dashed curve in Fig. 10 is calculated for the same
sequence but with a hopping rate WGG enhanced by a factor
100. In this curve again two maxima are visible, both in the
zero-bias and differential conductance. Obviously, the ad-
enine resonances were present but the resulting transport is
strongly suppressed by the low hopping rate WGG for our
model of DNA parameters.

At first glance, it might appear strange that the hopping
rate between two guanine base pairs is so much limiting the
transport at energies related to the adenine base pairs. How-
ever, this effect can be easily explained by looking at the
current between the two guanine bases of the above DNA
sequence. From Eq. �14� one can deduce
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FIG. 9. �Color online� Differential conductance dI /dVb �loga-
rithmic scale� as a function of applied bias Vb for the DNA mol-
ecule with sequence AAAGAAAA, for mean-field correlations
�black solid line� and exact correlations �red dashed line�. Param-
eters as in Fig. 7 but with the equilibrium chemical potential of the
electrodes fixed at �=0 eV.
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FIG. 10. �Color online� The zero-bias conductance G0 as a func-
tion of chemical potential � for the DNA sequence AAAGGAAA
�black solid line� with exact correlations. Only a single maximum
around the guanine energy is displayed. For the dashed line the
hopping rate between the two central guanine bases is enhanced by
a factor 100. This shows that the maximum at the adenine energy in
the sequence AAAGGAAA is suppressed due to the peculiar hop-
ping parameters relevant for DNA. Other parameters as in Fig. 7.
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I = e��4 − �45�W45 + e��5 − �45�W54 = e��4 − �5�WGG,

�20�

where the sites 4 and 5 denote the two guanine bases and for
the second line W45=W54=WGG was used.

As the current is conserved, the above equation is identi-
cal to the current obtained from Eq. �18�. Obviously, a small
rate WGG leads in general to a small current. However, the
important matter lies in the difference of occupations
��4−�5� of the two guanine bases �for a small applied trans-
port bias� that varies strongly depending on the chemical
potential. For the DNA sequence AAAGGAAA, the current
reaches its maximum value when the difference in occupa-
tion between the two guanine sites is the greatest. This is
the case when the guanine on-site energy is in resonance
with the chemical potential, i.e., around �=−0.22 eV, as at
this energy the guanine occupation changes rapidly from
unity to zero while lowering the chemical potential. For
much lower values of the chemical potential �in particular,
��−0.44 eV� the occupation of the guanine bases is al-
ready close to zero and thus the occupation differences are
also small. The double guanine segment limits the current
the molecule can support at the adenine energy around
−0.44 eV.

If we artificially enhance the rate WGG by a factor 100,
see dashed line in Fig. 10 the conductance is overall in-
creased, though not by a factor of 100. The increase is much
stronger around the adenine energy than around the guanine
energy. Removing the original bottleneck, even small occu-
pation differences between the guanines lead now to a fairly
sized conductance around the adenine energy. As the conduc-
tance at the guanine energy increases only slightly despite
the 100-fold increased rate, the guanine occupation differ-
ence at the guanine energy is actually reduced almost by the
same factor. Similar argument hold again for the suppression
of the adenine related maxima in the differential conduc-
tance.

IV. SUMMARY

We have presented a diagrammatic real-time approach to
polaron hopping through molecules coupled to metallic elec-
trodes, taking into account vibration-mediated charge corre-
lations. This technique leads to a hierarchy of linear rate
equations for the occupation and many-particle correlation
functions, which is naturally truncated for a finite-size sys-
tem. Thus, an exact description of correlation effects is pos-
sible for a given order of the perturbation expansion in the
hopping parameters. Using short DNA molecules as an ex-
ample, we show that including exact correlations lowers the
zero-bias conductance of inhomogeneous DNA sequences
when the average charge occupation is sufficiently high. For
exponentially small charge occupation, a mean-field descrip-
tion of the correlations is adequate. For the I-V characteris-
tics, the inclusion of exact correlation effects is necessary
since at the experimentally relevant bias voltage the local
charge densities are generally non-negligible. We further
have shown that for short DNA molecules consisting of two
different types of base pairs, the zero-bias and differential
conductance shows two maxima. Depending on the specific

sequence, one of these maxima can be suppressed due to low
hopping rates.
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APPENDIX A: CONSTRUCTION OF IRREDUCIBLE
BLOCK DIAGRAMS

Below we will state the rules for the construction and
evaluation of irreducible block diagrams. The rules for pure
hopping diagrams, i.e., those containing only vertices 
tij,
were developed by Böttger and Bryksin.12 We extended their
theory adding new rules to treat diagrams with tunneling
vertices 
ti�

r .
The perturbative expansion can be visualized by the con-

struction of diagrams which are equivalent to expressions in
the analytic expansion. The main contribution to the dia-
grams comes from so-called irreducible blocks, which, as the
name implies, cannot be decomposed into more simple dia-
grams. The main feature of an irreducible block diagram is,
that it does not diverge, when integrating over the internal
times ti. Irreducible blocks can be identified by their property
of not allowing free sections. A free section is a vertical line
drawn between the leftmost vertex and the rightmost vertex
�except for the clamp� that does not cross either a phonon
line or an external fermion �tunneling� line.

The rules come in two sets: the first for the construction
and labeling of possible diagram, the second set for the
evaluation of a particular diagram. The rules are general for
all orders of perturbation theory.

�1� Draw the Keldysh time contour as a rectangle which is
open to the left, corresponding to t→−�.

�2� For a diagram of order n we draw on the contour
n+1 pair vertices consisting of one open circle � �symbol-
izing a destruction operator� and one crossed circle � �sym-
bolizing a creation operator�. All circles belonging to opera-
tors acting on the molecule are drawn on the inside of the
contour whereas circles belonging to electrode operators are
drawn on the outside of the contour. Therefore, if the pair
vertex is due to a tunneling process tr one circle is on the
inside and the other one is on the outside of the contour. The
circles of a hopping process are both drawn on the inside of
the contour where the open circle is always “earlier” along
the Keldysh contour than the crossed circle. As we calculate
diagrams to evaluate the density matrix, we draw one pair
vertex �also called “clamp”12� at the inside of the right ver-
tical line of the Keldysh contour, corresponding to time t.
The other n vertices are drawn at n times ti on either the
upper or lower branch of the Keldysh contour �where t2 is
the leftmost, earliest time and t1 is the rightmost, latest time�.

�3� Each open circles � on the inside of the contour has
one ingoing fermion line �arrow pointing to the vertex� and
each crossed circle � has one outgoing fermion line �arrow
pointing away from the vertex� which is locally directed
along the Keldysh contour.
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�4� Complementary circles outside the contour are pair-
wise connected by a fermion line drawn outside of the con-
tour. Since this line corresponds to an electron propagating in
electrode r the connected circles have to belong to the same
electrode r, otherwise the diagram contribution is zero.

�5� The clamp is always connected by a fermion line to
the rightmost vertex �other than the clamp� drawn inside of
the contour, i.e., the clamp and the rightmost vertex are as-
sociated with the same state. If the rightmost vertex is a
hopping vertex, the fermion line is directed along the con-
tour. If the rightmost vertex is a tunneling vertex, the inside
circle �open or crossed� is connected to the complementary
circle of the clamp, no matter what the direction of the fer-
mion line.

�6� The remaining unconnected inside circles have fer-
mion lines going into �coming from� the region left of the
diagram �t→−�� without intersecting each other.

�7� Each circle belongs to one specific state for the mol-
ecule or the electrode. We label the molecule states �sites� by
latin characters �e.g., m ,n , . . .� and the electrode states by
Greek characters �e.g., ��. Note that the two circles of a
hopping vertex cannot correspond to the same state �site�.
Since we want to calculate the density matrix �l then both
circles of the clamp are associated with the state �site� l.

�8� Except for the clamp, the circles on the inside of the
contour must be connected by phonon lines so that the dia-
gram has no free section, as defined above. One circle can be
connected to more than one phonon line. All diagrams with
different number of phonon lines �but still without free sec-
tions� have to be considered. Only circles belonging to the
same state �site� can be connected by a phonon line. There-
fore, the two circles of a hopping vertex cannot be con-
nected.

The rules for evaluating a diagram are as follows:
�1� A hopping vertex at time ti is associated with a factor

�itnmKnKme−i��n−�m��ti−t2� where the creation operator
�crossed circle� corresponds to site label n and the destruc-
tion operator to the site label m �recall that t2 is the leftmost
time of the diagram�. A tunneling vertex is associated with a
factor �itrKme−i���−�m��ti−t2� or �itrKne−i��n−����ti−t2� if the cre-
ation operator acts on the electrode or on the molecule, re-
spectively. Vertices on the upper half of the contour have the
minus sign, vertices on the lower half of the contour have the
plus sign. The factor

Km = exp
−
1

2�
�
���m

��
	2

�2N���� + 1�� .

�2� The outside fermion lines of the electrodes r contrib-
ute a factor 1− f�

r or f�
r depending whether they run in the

direction of the contour or against it. Here f�
r is the Fermi

function at energy ��−�r, with the chemical potential �r.
�3� The fermion lines entering �leaving� the irreducible

block from �to� the left are labeled from top to bottom, with
one ingoing and one outgoing line belonging to pairwise the
same state. The labels determine the indices of the irreduc-
ible block, e.g., Wm1m2l�t�. The line attached to the clamp and
leaving to the left is associated with a Kronecker delta func-
tion of the states the line connects.

A phonon line connecting two circles both associated to a
state �site� m has a value

Fm
� �ti − tj� = exp��Am�ti − tj�� − 1, with

Am�t� = �
�
���m

��
	2cos����t + i��/2��

sinh�����/2�
,

where the circle at time ti is later on the contour than the
circle at time tj. The factor � is determined by the type of
circles the line connects. If the circles are different �=+1,
otherwise �=−1.

�1� Multiply with a factor �−1�M+N, where M is the num-
ber of intersections of fermion lines on the outside of the
contour �tunneling lines� and N is the number of intersections
of fermion lines on the inside of the contour.

�2� We integrate over all internal times ti �except t1 and t2�
and sum over all electrode states � and all internal molecule
states i , j, except the states associated with the clamp.

As an example Fig. 11 shows a second-order diagram for
a hopping process between molecule and metallic electrode.
Following the rules listed above the value of this diagram is

Wm1,l = �− 1��− i�2
tr
2�m1lKl
2�

�

f�e−i��̃l−����t1−t2�Fl
+�t1 − t2�

= 	r�m1lKl
2� dE

2��
fr�E�Fl

+��̃l − E� .

The last line is valid in the wideband limit with
	L,R
�e
tL,R
2.

APPENDIX B: DETERMINATION OF THE CORRELATION
FUNCTION

The correlation function with which the irreducible block
is convoluted can be easily constructed from the diagrams.
Lines leaving the block correspond to creation operators,
lines entering the block correspond to destruction operators.
The order of operators from left to right in the correlation
functions corresponds to the order of the lines leaving/
entering the diagram from bottom to top.

For example, let us consider some irreducible block
Wm1m2m3l�t� which has the following order of the terminals at
the left of the diagram from bottom to top: m3 outgoing, m2
ingoing, m3 ingoing, m1 outgoing, m2 outgoing, and m1 in-
going. Thus this rate will be convoluted with the third-order
correlation function,

FIG. 11. An example diagram for a second-order hopping pro-
cess between an electrode and the molecule. It is evaluated in
Appendix A.
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�U
H̃0

† �0�am3

† am2
am3

am1

† am2

† am1
UH̃0

�0��H̃ = �m1m3
− �m1m2m3

.

APPENDIX C: VIBRATIONAL OPERATOR
PRODUCTS

In the perturbation expansion of the single-particle den-
sity matrix �l�t�= �al

†�t�al�t��H̃ to order n in the perturbative

Hamiltonian H�˜ �Eq. �5��, one obtains up to n vibrational
operators �equal number of � and �†� at different times
which act upon the same vibrational states,

��k�t1��k
†�t2��k�t3� ¯ �k

†�tn��H0

= �exp
−
1

2�
�
� �k�

�k�
	2

�2N��k�� + 1��	n

�exp���12Ak�t1 − t2�� + TC��13Ak�t1 − t3��

+ TC��3,nAk�t3 − tn�� + ¯� ,

where

�ij = 
+ 1 when �k�ti��k
†�tj� or �k

†�tj��k�ti� ,

− 1 when �k�ti��k�tj� or �k
†�ti��k

†�tj� .
�

The expression TC in TC��12Ak�t1− t2�� ensures, that t1 is later
on the contour than t2 and Ak�t1− t2� is given by

Ak�t1 − t2� = �
�
� �k�

�k�
	2cos��k��t1 − t2 + i��/2��

sinh���k��/2�
.

For a correlator with n operators �k and �k
† acting on the

same state one gets N= �n��n−1�
2 different terms Ak�ti− tj� in the

exponential function. This is due to the various operator
commutations involved in deriving the above expression.
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