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Abstract

The Large Hadron Collider provides a challenging environment, not only for ex-
perimentalists. Precise predictions are needed in order to use its potential to full
capacity. This thesis focuses on predictions including higher-order corrections in a
twofold way. Both results for a pure parton level calculation and for a calculation
incorporating a parton shower are presented.

Higgs boson plus photon production via vector boson fusion was implemented in
a fully flexible parton-level Monte-Carlo program. The results at next-to-leading
order accuracy are discussed. It is found that the corrections are large in some
regions of phase space.

For the simulation of a parton shower matched to a next-to-leading order ma-
trix element, a mixed-language runtime interface was established to use existing
matrix elements for Higgs boson production via vector boson fusion. Results are
discussed for different parton shower algorithms and matching schemes. The sim-
ulation is shown to have a substantial dependence on the shower algorithm and
matching scheme in some of the examined observables. This indicates a significant
systematical uncertainty in such calculations.

Zusammenfassung

Der Large Hadron Collider liefert nicht nur für Experimentalphysiker eine heraus-
fordernde Umgebung. Präzise Vorhersagen sind von Nöten um sein Potential voll
ausschöpfen zu können. Das Hauptaugenmerk dieser Arbeit liegt auf Vorhersagen,
die Korrekturen höherer Ordnung mit einfließen lassen. Dabei werden zwei Wege
beschritten. Sowohl Ergebnisse für eine Rechnung rein auf Partonniveau werden
präsentiert, als auch solche einer Rechnung, die einen Partonschauer beinhaltet.

Higgs-Boson-plus-Photon-Produktion durch Fusion schwacher Vektorbosonen
wurde in einem flexiblen Monte-Carlo-Programm auf Partonniveau implementiert.
Die Ergebnisse in nächstführender Ordnung werden diskutiert. Dabei stellt sich
heraus, dass die Korrekturen in manchen Phasenraumregionen groß sind.

Für die Simulation eines Partonschauers in Zusammenarbeit mit einem Matrix-
element nächstführender Ordnung wurde ein gemischtsprachiges Laufzeit-Interface
etabliert um bereits vorhandene Matrixelemente für Higgs-Boson-Produktion
durch Fusion schwacher Eichbosonen nutzen zu können. Die mit verschiedenen
Partonschauer-Algorithmen und Matching-Schemata erhaltenen Ergebnisse wer-
den gegenübergestellt. Dabei zeigt sich sowohl eine erhebliche Abhängigkeit vom
Partonschauer als auch vom Matching-Schema bei manchen der betrachteten
Observablen. Dies deutet auf signifikante systematische Unsicherheiten solcher
Rechnungen hin.
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Introduction

Curiosity has always been a major source of motivation of mankind. We, as a
race, could only be as successful biologically as we are because we have constantly
expanded our knowledge and understanding of nature. Our evolutionary history is
a history of the evolution of the human brain, that allowed us to develop control
over fire, speech and the motor skills to construct tools.

We have come a long way since then. Although in most cases not necessary
for survival anymore, curiosity is still a motor of society today. Our knowledge
of nature has increased to the very fundamental building blocks. Although we
know today that we can only model physics and will never know the “truth” about
subatomic processes, we still strive for a better understanding of the universe.

Philosophiæ Naturalis Principia Mathematica [1], published 1686/1687, is a
cornerstone of classical mechanics and already includes a first description of one
of the fundamental forces of nature: gravitation. Ironically, although it was the
first force to be described, it it still the worst understood today, at least at the
quantum level.

Another giant leap was achieved by James Clerk Maxwell, who developed a
consistent formulation of classical electromagnetism in 1865 [2]. The understanding
of the electromagnetic force was paving the way for modern physics as it introduced
fields as physical entities. Also, it was the first Lorentz-covariant theory, long before
the formulation of special relativity by Einstein.

The emergence of particle physics is not so clear. Important experimental
discoveries date back to the late 19th century, like the discoveries of X-Rays by
Röntgen or of radioactivity by Becquerel. On the theory side, the development
of quantum mechanics was clearly a mile stone, but not only for particle physics.
Technologies that could only be developed by a concise knowledge of quantum
mechanics influence our daily lives.

The first relativistic quantum field theory, quantum electrodynamics (QED),
was formulated within an ongoing struggle against divergencies by Dirac, Bethe,
Tomonaga, Schwinger, Dyson and others. In succession, two more fundamental
forces could be theoretically described: the strong and the weak force. To in-
corporate the latter within a unified description together with QED, the Higgs
mechanism of spontaneous symmetry breaking was introduced. It predicted a new
particle, the Higgs boson, that remained undiscovered for almost 50 years.

During the past decades, a tremendous effort was made to construct the most
powerful human made particle accelerator to date, the Large Hadron Collider
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INTRODUCTION

(LHC) and its experiments. It could verify the existence of a new resonance,
however, it is still unclear if it is the Higgs boson predicted by the Standard Model
of particle physics, which incorporates quantum chromodynamics (QCD) and elec-
troweak interactions.

Currently, there are seven experiments using the machine. The two largest
and most famous ones, the multi-purpose detectors ATLAS and CMS, are mainly
devoted to detect the Higgs boson and possible signals of physics beyond the Stan-
dard Model. ALICE is specialised to produce and measure quark-gluon plasma
within lead-lead collisions. LHCb is an asymmetric detector and focuses on mea-
surements of B mesons. It shares a cavern with the smaller MoEDAL experiment.
The main purpose of MoEDAL is to detect new stable, massive particles such as
magnetic monopoles. The two remaining experiments in the list, TOTEM and
LHCf, are both built to resolve particles in the very forward direction. One of the
goals of TOTEM is to measure the total cross section of proton-proton collisions.
LHCf tries to gain insight to the dynamics of cosmic rays by monitoring neutral
pions.

With such a broad physics programme aiming at new physics phenomena, the
wish for a better understanding of QCD, a theory which arose already during the
sixties and seventies of the last century, seems superfluous at first. However, to find
something new it is always necessary to know what is old. Especially to improve
the efficiency of ATLAS and CMS, the most precise predictions for observables are
needed. At such high energies as at the LHC, the largest distortions hereby come
from QCD induced processes.

Calculations for the LHC can be split into at least two different parts: The
calculation of the hard matrix element and the event simulation. The hard ma-
trix element is calculated up to a fixed order in the coupling constants. It can
be improved by including higher orders. For QCD, next-to-leading order (NLO)
calculations in the strong coupling constant are almost standard today.

The event simulation consists of several steps. First, an all order approximation
in the limit of soft and collinear emissions is delivered by a parton shower algo-
rithm. Then, hadronisation takes place and converts the final quarks and gluons
into bound states. In the final step, these bound states are allowed to decay into
observable particles. The thesis at hand is dealing both with matrix element calcu-
lations at NLO and with event simulation. However, the part on event simulation
will not cover the whole evolution, but only parton showers.

In Chapter 1, an introduction to the theoretical foundations is given to prepare
the ground for discussions. The Standard Model of particle physics and its particle
content is outlined. Electroweak theory is sketched in short by an explanation of
the basic principles of spontaneous symmetry breaking. The rise of gauge boson
masses and the production of SM Higgs bosons at the LHC are revisited. At the
end of the chapter, QCD and some of its implications such as asymptotic freedom
are explained.

Chapter 2 continues the discussion of the basics, but focuses on techniques
that are common within calculations in high-energy physics. An introduction to
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INTRODUCTION

Monte-Carlo methods is given. The structure of event generators is discussed and
the need for jet algorithms clarified. The idea of parton shower algorithms and
their validity are highlighted, as they make up a substantial part of this thesis. A
way of sequential phase space decomposition is introduced, which was used for the
parton-shower part of this work.

At the end of Chapter 2, the difficulties that arise in QCD at NLO are ex-
plained together with their solutions. For matrix element calculations, a subtrac-
tion formalism is needed to render the different integrals separately finite to make
them solvable by numerical integration. When entering a parton shower algorithm
with an NLO matrix element, new problems arise as there are certain kinematical
regimes that are populated by both approximations, which leads to a double count-
ing of contributions. These have to be removed for a consistent calculation. That
procedure is known as NLO matching. There are two different matching schemes
available: MC@NLO [3] and POWHEG [4,5].

Within Chapter 3, the second part of this thesis begins, which deals with NLO
QCD corrections to Hγjj production via vector boson fusion (VBF). VBF is one of
the dominant channels for Higgs boson production and due to its event topology, it
plays an important role not only for the detection of the Higgs boson, but also for
the measurement of its couplings. The additional photon in the process may help to
disentangle processes with a decay H → bb̄ from their QCD backgrounds. For this
thesis, the process of Hγjj production was calculated up to NLO QCD accuracy.
The calculation was implemented in form of a flexible Monte-Carlo program and
is publicly available within the package VBFNLO [6].

Chapter 4 starts the third part of the thesis at hand, which covers NLO matched
Hjj production by fusion of weak gauge bosons. This process is especially inter-
esting for parton shower simulations, as it features well-separated jets in different
detector hemispheres with a large gap in between, where radiation is suppressed.
For the matched calculations, the Matchbox addon to Herwig++ [7, 8] was used,
which allows automated fixed order and matched NLO calculations, once the ma-
trix elements and some bookkeeping information are supplied. As part of the work
for this thesis, an interface between Matchbox and VBFNLO was established, which
allows to use the VBFNLO Hjj matrix elements within Matchbox.

The chapter begins by explaining several details of Herwig++ that are needed
later on. The focus here lies on the generation of phase space and the parton
shower algorithms. The two different shower implementations that are available
within Herwig++ are explained. These are the default shower with Altarelli-Parisi
splitting kernels and the dipole shower, based on Catani-Seymour kernels. As the
latter has an additional freedom in the distribution of transverse momentum, two
different splitting schemes are contrasted.

Within Chapter 5, the setup of the analysis is described in detail. The steps
that were taken to ensure the validity of the implementation are also presented.

In Chapter 6, the two shower implementations are compared within a LO plus
shower calculation of the Hjj process. It is important to understand the modifica-
tions that are introduced during the shower. As the two shower algorithms differ
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INTRODUCTION

in their behaviour away from the soft and collinear limits, the comparison of the
two can be used to estimate the systematic uncertainties.

Chapter 7 is dedicated to the comparison of the two matching schemes,
MC@NLO and POWHEG. For precise predictions for the LHC, their differences
need to be known and their behaviour needs to be understood. Matchbox delivers
the ideal framework for such a comparison, as it allows to run both matching
schemes within the same setup.

At the end of this thesis, two appendices document the structure of the imple-
mentations that were needed for the calculations whose results were presented.
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Chapter 1

Foundations of high-energy physics

The first part of this thesis sheds light on the groundwork of contemporary high
energy particle physics. The historical background for the development of the
Standard Model (SM) of particle physics is outlined and the model is described
shortly. Subsequently, the two main ingredients of the SM, namely electroweak
theory and quantum chromodynamics (QCD), receive further discussion. By the
end of this chapter, the main ingredients of the SM and some of their implications
will have been explained, which compose the theoretical background of the work
at hand.

1.1 The Standard Model of particle physics
The SM is an outstandingly successful theory, capable of describing almost all
observed physical forces. Its predictions can be astonishingly exact, for example
in the case of the Landé g-factor. Its success is also an annoyance, at least from
some physicists point of view. Knowing that in the high-energy regime some new
theory must be valid, theorists around the world are trying to find hints that
point out how that new theory may look like. The SM describes three of the four
fundamental forces with an unrivalled precision. Gravity is not included as the
Einstein field equations can not be quantised in a consistent way because they
are not renormalisable. Although some ideas exist, no theory of quantum gravity
could be confirmed experimentally yet.

Particles in the SM can be differentiated into two groups: Fermions, with half-
integer spin and bosons with integer spin. Fermions are further divided into left-
and righthanded quarks, (

u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

,

uR, dR, cR, sR, tR, bR, (1.1)
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CHAPTER 1. FOUNDATIONS OF HIGH-ENERGY PHYSICS

and left- and righthanded leptons,(
e

νe

)
L

,

(
μ

νμ

)
L

,

(
τ

ντ

)
L

,

eR, νeR, μR, νμR, τR, ντ R. (1.2)

Lefthanded fields are doublets under SU(2)L transformations whereas righthanded
fields act as singlets. Therefore, it is debatable if the right-handed neutrinos νe,μ,τR
are already particles beyond the Standard Model as they do not directly participate
in any of the interactions of the SM, and thus remain undiscovered. However, they
are needed within the SM to generate nonzero neutrino masses, therefore they were
added here.

Bosons in the SM with spin 1 are the force carriers of the strong and electroweak
force

g A W± Z, (1.3)

which are called gluons, photons, W and Z bosons. In addition, there is a boson
of spin 0, the only fundamental scalar particle in the model, that is

H, (1.4)

the famous Higgs boson, which recently even made its way into daily news (under
a religiously crooked and misleading name that shall not be mentioned here).

The parts of the Standard Model emerged somewhere around the 70’s of the
last century, when many of the central ingredients were still missing, but were
discovered piece by piece. Discoveries included the gluon [9] 1979 at DESY, the W
boson [10] and the Z boson [11] 1983 at CERN, and the top quark [12,13] 1995 at
Fermilab.

One part was still missing: The Higgs boson, the quantum of a scalar field
breaking electroweak symmetry and leading to the observed particle masses, still
awaited its discovery. Very recently, a new resonance showed up [14, 15], which is
very probable a Higgs boson [16,17], but not necessarily the Higgs boson postulated
within the SM. Up to now, it is not known whether the newly discovered resonance
has spin 0 or 2 [18]. Spin 1 can be excluded because of observations of decays
into γ pairs, which is forbidden for spin 1 particles by the Landau-Yang theorem
[19,20] due to angular momentum conservation. Once its spin has been determined,
also the couplings of the new resonance will need to be measured to confirm the
existence of a SM-like Higgs boson.

1.2 Electroweak symmetry breaking
The current section is dedicated to the theory of electroweak interactions and the
Higgs boson. Within this section, the existence of a Higgs field is motivated by
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CHAPTER 1. FOUNDATIONS OF HIGH-ENERGY PHYSICS

gauge field masses, which can be generated by a Higgs field vacuum expectation
value. Subsequently, a detour to the experimental side is taken to explain the
basics of Higgs production at the LHC.

Electroweak forces in the Standard Model are described by an SU(2)L×U(1)Y
gauge theory. As explicit gauge boson mass terms break gauge invariance, they are
forbidden. To resolve this contradiction with the high observed masses of W and
Z bosons, the symmetry of the Lagrangian must be broken by the ground state,
which means by spontaneous symmetry breaking.

Defining an additional scalar field, the Higgs field

Φ =
1√
2

⎛
⎝ χ2(x) + iχ1(x)

v +H(x)− iχ3(x)

⎞
⎠ (1.5)

and its contribution to the Lagrangian

LHiggs =(DμΦ)
†DμΦ+ μ2Φ†Φ− λ

2
(Φ†Φ)2

+

Ng∑
i,j=1

(
yije L̄

iΦejR + yijd Q̄
iΦdjR + yjiu Q̄

iΦ̃uj
R + h.c.

)
, (1.6)

where the indices i and j run over all fermion generations and the covariant deriva-
tive is defined as

Dμ = ∂μ − i

2
g1Bμ − i

2
g2τ

aW a
μ , (1.7)

results in a ground state which breaks gauge invariance and which can be chosen
as 1√

2

(
0
v

)
. L and Q in (1.6) are the lefthanded isospin doublets of leptons and

quarks. eR, uR and dR are the righthanded singlets of leptons, up-type quarks
and down-type quarks respectively. Φ̃ is the hypercharge conjugate of Φ and the
coupling constants y{e,u,d} are called Yukawa couplings.

After the Higgs field acquires a vacuum expectation value, a U(1)EM symmetry
remains. The neutral components of the SU(2)L × U(1)Y gauge fields can be
redefined to yield the photon field A, respecting the U(1)EM symmetry, and the Z
field, orthogonal to A, by⎛
⎝Zμ

Aμ

⎞
⎠ =

1√
g22 + g12

⎛
⎝g2W

3
μ − g1Bμ

g2W
3
μ + g1Bμ

⎞
⎠ =

⎛
⎝cos θW − sin θW

sin θW cos θW

⎞
⎠
⎛
⎝W 3

μ

Bμ

⎞
⎠ . (1.8)

The remaining two components are composed to have positive and negative elec-
tromagnetic charge,

W+
μ =

1√
2
(W 1

μ − iW 2
μ),

W−
μ =

1√
2
(W 1

μ + iW 2
μ ). (1.9)
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Figure 1.1: SM branching ratios of the Higgs boson (from [21]). If the newly
discovered resonance at 126GeV is a SM Higgs, then decays into bb̄ pairs are
dominating.

Due to the Yukawa interaction terms in (1.5), also fermions receive a mass by
interacting with the vacuum expectation value of the Higgs field. This mass is
directly proportional to the coupling strength to the Higgs boson, so that the
production cross section and decay widths of a SM Higgs are largest when it can
couple to heavy particles.

1.2.1 Higgs boson production at the LHC

As the Higgs boson coupling is directly proportional to the mass of a particle,
the various production mechanisms involve heavy particles. The most important
production channels are

• Gluon fusion via heavy quark loops

• Fusion of W ad Z bosons (weak or vector boson fusion, WBF/VBF)

• Higgs-strahlung off heavy vector bosons

• Associated production with tt̄ pairs

The Feynman diagrams for all these processes are sketched in Figure 1.2.
Gluon fusion is a loop induced process which, in the SM, is dominated by t

quark loops. In models with two Higgs doublets, contributions from b quarks can
be enhanced. Although gluon fusion has been shown to exhibit a larger cross section
over the whole Higgs mass range (see Figure 1.3), the QCD induced process has
sizeable higher order corrections. The NLO corrections increase the cross section by
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(a)� (b)�
(c)� (d)� (e)�

Figure 1.2: Higgs production channels (from [22]): (a): Gluon fusion, (b): Fusion
of heavy gauge bosons, (c): Higgs-strahlung, (d): Gluon induced production in
association with t quarks, (e): Quark induced production in association with t
quarks.

10 2

10 3

10 4

10 5

100 200 300 400 500

qq → Wh

qq → Zh

gg → h

bb → h

qb → qth

gg,qq → tth

qq → qqh

mh [GeV]

σ [fb]

SM Higgs production

LHC

TeV4LHC Higgs working group

Figure 1.3: SM Higgs cross sections at the LHC with
√
S = 14TeV (from [23]).
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80% to 100% [24]. The NNLO corrections are known [25–27] and add again about
25% to the total cross section. The size of higher order correction goes together
with a large amount of additional radiations. The rich colour structure in gluon
fusion is adding another problem, as the phase space available for parton shower
emissions is large. The result is a highly populated, unspecific event structure.

VBF has the second largest cross section for a SM Higgs boson and Hjj produc-
tion via vector boson fusion is predicted to have a very specific event topology. The
t-channel Feynman diagram of the process results in events which are characterised
by a pronounced rapidity gap: The ideal event consists of two jets, widely sepa-
rated in rapidity, with a Higgs boson in the central region in between. The missing
colour exchange between the quark lines at leading order (LO) leads to suppressed
QCD radiation in the rapidity gap where the Higgs boson resides, thus providing
a relatively clean environment for measuring the Higgs decay products. Hjj VBF
processes have a residual scale dependence typically around 5% at NLO [28, 29],
which is reduced to below 2% at NNLO [30].

The third largest cross section is contributed by Higgs-strahlung. These pro-
cesses are experimentally interesting because of the decay modes H → W+W−

and H → bb̄, which allow the measurement of the Higgs boson couplings.
Associated production with tt̄ pairs has, for low Higgs masses, a very specific

signature with four b jets and two W bosons, making the identification very de-
pendent on correct b-tagging. It contributes only with a very small cross section,
but allows for the measurement of the t Yukawa coupling.

1.3 Quantum chromodynamics
After the detour to Higgs physics in the last section, the current section is returning
to more theoretical aspects again. QCD and some of its implications are discussed.
These are the existence of asymptotic freedom and confinement. The latter is
posing a QCD inherent problem on low energy calculations while the former is
approving the correctness of perturbative expansion in the high energy regime.

After the discovery of an overwhelmingly large number of hadronic resonances,
the idea that these had to be bound states of a new class of elementary particles
arose. Mesons were thought to be made up of two constituents whereas Baryons
should consist of three such particles. Due to the Pauli principle, the discovery of
the Δ++ particle, a baryon with spin 3/2 meant also the advent of a new funda-
mental quantum number, the colour charge.

QCD is a non-abelian gauge theory describing strong interactions between
colour charged particles. The Lagrangian reads

L =

Nf∑
i=1

Ψ̄i(i /D −mi)Ψi − 1

4
Tr[F a

μνF
aμν ] (1.10)
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with Ψi being the quark field of type i, i ∈ u, d, c, s, b, t. The covariant derivative
is defined as

Dμ = ∂μ + ig
λa

2
Aa

μ (1.11)

with the Gell-Mann matrices λa being the generators of the related Lie algebra in
its defining representation. The Lie bracket is defined as

[
λa

2
,
λb

2
] = fabcλ

c

2
, (1.12)

where the structure constants can be derived as

fabc = −1

4

(
Tr[λaλbλc]− Tr[λcλbλa]

)
. (1.13)

The field strength tensor in (1.10) is defined by

F a
μν(x) = ∂μA

a
ν(x)− ∂νA

a
μ(x)− gfabcAb

μ(x)A
c
ν(x). (1.14)

A well known strategy to solve problems in physics is to use perturbation theory.
The general procedure is to solve an easier version of the problem and treat the
real problem as a minor deviation from the easier version, which can be Taylor-
expanded in a small parameter and then solved order by order until the necessary
precision is achieved.

In perturbative quantum field theory, transition matrix elements are calculated
within an expansion of the coupling constant αS = g2S/4π. The differential cross
section for a process a + b → X is then constructed with the help of the matrix
element for this process Ma+b→X , a phase space element dφX , and a flux factor
for the incoming particles as

dσa+b→X =
1

4
√

(pa · pb)2 − p2ap
2
b

|Ma+b→X | dφX . (1.15)

1.3.1 Asymptotic freedom and confinement

As with most other theories in modern physics, also QCD cannot be solved ex-
actly. Even worse, at low energies, its coupling constant is large, which makes it
impossible to solve by a perturbative expansion. Low energy bound states of QCD,
such as the proton, need to be accessed by other methods, like for example lattice
gauge theory. With increasing energy, however, its coupling constant decreases, so
that a solution by perturbative expansion becomes feasible.

The evolution of the strong coupling constant eases the intuitive understand-
ing of two remarkable features of QCD: Confinement and asymptotic freedom. To
the present day, no free colour charged objects have ever been observed. A very
appealing and simple picture of the problem is that the gluon field between colour
charged objects manifests itself in the form of a narrow flux tube, because the field
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itself carries colour. When separating the original colour charges more and more,
the energy density of the flux tube increases until it rips, inducing pair produc-
tion. However, the true theoretical foundations of confinement are not understood,
although there are several different proposals (see [31] for a review).

On the other side of the energy spectrum, in high energy reactions, it was
observed that the constituents of hadrons behave as free particles. For the the-
oretical study of this property, named asymptotic freedom, Gross, Politzer and
Wilczek [32, 33] were awarded with a Nobel prize in 2004.

The fact that the coupling constant needs to evolve with the energy scale of the
process is a consequence of the renormalisation programme. Within higher-order
calculations in quantum field theories, divergencies arise within loop diagrams.
When computing an amplitude with a loop, an integration over the loop momentum
needs to be done. As there is no natural limit on the upper boundary of the loop
momentum, the integrals may diverge as the integration range approaches infinity.

The problem is treated by introducing a subtraction point at which the integral
is split into a convergent and a divergent piece. When the divergencies are reg-
ularised and carried through the calculation, they can be absorbed by redefining
parameters of the Lagrangian. The motivation behind that approach is that bare
parameters of the theory are not measurable and thus, are undefined. Therefore,
nothing prevents them from being divergent. The ultraviolet divergencies from the
higher order calculation cancel against the divergencies in the bare parameters and
leave the measurable physical quantities as finite objects.

There is, however, an ambiguity in the procedure. The subtraction point is at
an arbitrary energy scale, so varying it may not affect the physical observables.
As the bare parameters should be fixed, a change in the subtraction point must
be accompanied with a change in more than one renormalised parameter which
cancels at the level of observables. In practice, this introduces a scaling behaviour
in the coupling constant of the theory, which can be expressed by the so-called
beta function,

Q2∂αS(Q
2)

∂Q2
= β(αS). (1.16)

Moving back to QCD, the behaviour of decreasing coupling at high energies
is explained by the actual form of the beta function. Just like other quantities
in high energy physics, it can be calculated order by order in the strong coupling
constant. As the beta function up to one-loop approximation

β
(
g(μ2)

)
=

∂g(μ2)

∂ ln(μ2)
= −g3 ((μ2))

16π2

(
11− 2

3
Nf

)
, (1.17)

which governs the evolution of αS, is negative for the known number of quark
flavours Nf = 6, the strong coupling constant must decrease with increasing energy.

During the transition from a high scale where the hard matrix element can be
calculated in perturbation theory down to a lower cutoff scale, additional radiative
emissions happen. They can be approximated in the limit of being soft and/or
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collinear, in which case their kinematical structure overcomes the smallness of the
coupling constant. This leads to the rise of large logarithmic corrections and is the
realm of the parton shower approximation, which will be explained later.

1.3.2 Parton distribution functions

For hadronic collisions where in the matrix element the incoming particles a and
b are constituents of a bound state, the differential cross section in (1.15) needs to
be convoluted with parton distribution functions (PDFs), as only the momentum
of the colliding hadron is fixed by the accelerator. The hadronic cross section is
written as

σHadronic =
∑
a,b

∫ 1

0

dxafa(xa, μF,a)

∫ 1

0

dxbfb(xb, μF,b)

∫
dσa,b. (1.18)

a and b index the type of incoming partons and σa,b is the corresponding partonic
cross section. The PDF factors fa and fb depend on the momentum fractions x of
the incoming partons and the factorisation scales μF .

PDFs give the probability to find a parton with a given momentum fraction x
at a certain factorisation scale μF inside the colliding hadron and open the possi-
bility to have a theoretically well defined initial state for the calculation of matrix
elements. As hadronic bound states necessarily comprise low energy physics, PDFs
contain non-perturbative physics which needs to be fitted to data. Their evolution
with varying scales, however, can be calculated with the help of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [34–36].
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Chapter 2

Calculational techniques for
numerical evaluations

After the fundamentals of phenomenological high energy physics were discussed in
the previous chapter, we move on to more specific solutions to problems in the field.
Within the current section, the basic ideas behind the methods used in the thesis at
hand shall be reviewed. The starting point is a general introduction into Monte-
Carlo methods, the name under which probabilistic calculation approaches are
subsumed. Afterwards, a summary of event generation to keep the overall picture
of the simulated processes in mind will be given before moving on to describing
a convenient way of phase space decomposition. At the end of this chapter, the
anatomy of NLO subtraction and matching formalisms will be discussed.

2.1 Monte-Carlo methods
The idea of using random acts cleverly chosen to converge to a desired solution is
not new. Already in the 18th century, Buffon proposed a way for the probabilistic
determination of π by throwing needles on a striped floor. The methods have quite
evolved since then. One of the most classic papers is [37], already proposing the
use of “modern computing machines”. Today, not only the speed of computers
has increased, but also intricate mechanisms have been developed to enhance the
convergence of Monte-Carlo integration, for example the VEGAS algorithm [38,39]
or, as a more recent implementation, the ExSample library [40].

The simplest procedure works as follows. An estimation of the integral

I =

∫
V

f (�x)dnx (2.1)

is achieved by evaluating f at N pseudo-random points �xi from a uniform prob-
ability distribution. In practice, the size of the integration volume V is unity, as
the random numbers are picked from an n-dimensional hypercube of edge length
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unity. The average

f̄ =
V

N

N∑
i=1

f (�xi) (2.2)

converges against the true value of I like 1/
√
N , independent of the integral di-

mensionality. This is the main advantage of Monte-Carlo integration over other
numerical integration procedures such as the trapezoid rule or the Simpson rule,
which converge slower in higher dimensions. If N is large enough, the error of the
result can be estimated by the sample variance

σI =
√

VAR(f) =

√√√√ 1

N − 1

N∑
i=1

f 2 (�xi)− N

N − 1
f̄ 2. (2.3)

This is a consequence from the central limit theorem, stating that the estimates
(2.2) converge to a normal distribution around the true value I.

Monte-Carlo integration can be improved by using a non-flat probability dis-
tribution from which the random numbers are drawn. For sake of simplicity, we
stick to a one-dimensional integral ∫

f(x)dx. (2.4)

This can be rewritten by defining an analytically integrable function g(x) which
approximates f(x), ∫

f(x)

g(x)
g(x)dx =

∫
f(x)

g(x)
dy. (2.5)

Now, the sampling can take place in terms of y and as f(x)
g(x)

≈ 1, the variance of
the integral is reduced.

For complicated functions, like for example a superposition of several peaks,
the approach can be extended to a multi-channel integration. Here, the integral is
rewritten in terms of a linear combination of integrable functions∑

i

αigi(x), (2.6)

each approximating the integral in distinct regions. Then, the integral can be split
into several parts by∫

f(x)∑
i αigi(x)

∑
i

αigi(x)dx =
∑
i

αi

∫
f(x)∑
i αigi(x)

dyi. (2.7)

The coefficients αi need to be adapted with regard to the contributions of each
integral to the total integral.

18



CHAPTER 2. CALCULATIONAL TECHNIQUES

In order to improve the accuracy, one can rely on importance sampling, i.e.
sampling points according to their contribution to the integral. To be independent
of the exact shape of the function to be integrated, the probability distribution can
be adapted in several steps. In the VEGAS algorithm, this happens by dividing the
integration volume into several same sized hypercubes at the beginning. After the
first iteration, the boundaries of the hypercubes are shifted, so that they become
hypercuboids of different sizes. The number of sampled points per hypercuboid is
approximately the same for each of them, so that the sampling densities rise in the
smaller hypercuboids.

ExSample uses another approach. Being built to maximise the unweighting
efficiency, the hypercubes are split instead of shifting their borders. After a certain
number of events, the algorithm splits cells which fail to produce an unweighting
efficiency below a user defined value. As such a splitting can happen along different
axes, the axis k which is split is determined in a way to minimise the gain value

gk(xk) =

∫ xk

x−
k
dx〈f〉k(x)−

∫ x+
k

xk
dx〈f〉k(x)∫ x+

k

x−
k

dx〈f〉k(x)
, (2.8)

where x±
k are the upper and lower boundaries of the cell. 〈f〉k(x) is the projection

of the integrand on the axis k. For reasons of simplicity, the splitting point xk is
chosen to be in the middle of the cell,

xk =
x+
k − x−

k

2
. (2.9)

2.2 Event generators
A large part of the work for the thesis at hand involved the calculation of NLO
matched Higgs production. Therefore, an abstract of event generation is given in
this section. Although the description is oriented closely at Herwig++, the event
generator used in the main part of this study, differences to other generators,
mainly PYTHIA [41], are emphasised wherever necessary. Special care will be
taken to explain how jet algorithms work, which allow the reduction of a complex
final state to few abstract objects. In an additional subsection, the legitimacy of
parton shower algorithms is justified by an examination of the collinear and soft
limits.

The general purpose of an event generator is to simulate the evolution from
the hard scale of the perturbatively calculated matrix element down to the soft
scale of stable and quasi-stable particles which can be measured in detectors. To
achieve this, several steps can be distinguished, each corresponding to one realm
of physics.

For the hard matrix element, the standard of precision is still the LO calcu-
lation, although many efforts are made to incorporate NLO matrix elements by
matching or merging methods. NLO matching is understood as incorporating
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higher order corrections of the hard matrix element consistently in a showered cal-
culation and will be described in a more detailed way in Section 2.4.2. The term
merging means employing matrix elements of varying jet multiplicity to improve
the prediction of multi-jet observables. For LO matrix elements, the CKKW [42]
method is widely used. The first conceptual paper of an extension to NLO was writ-
ten almost a decade ago [43], followed by different suggestions of schemes [44–47].

In some sense parallel to the hard matrix element, additional hard and soft
interactions may take place. At the LHC, the probability of having additional
semi-hard scatterings is large because the PDFs are probed in a kinematic regime
where even the subleading partonic content of the proton can initiate a perturbative
process. Such additional collisions which, while hard, are still softer than the
matrix element of interest, are called multiple partonic interactions (MPI). Both
in Herwig++ and in PYTHIA, they are brought in as additional QCD 2 → 2
scatterings.

After the shower initiating partons are present, the evolution can take place.
The final- and initial-state partons of the matrix element(s) are allowed to emit
QCD radiation. The forward evolution of the final state partons is called final-
state radiation (FSR). In contrast, the initial-state partons are evolved backwards
by initial-state radiation (ISR) down to a hard scale where they can be assigned
to the incoming hadrons. Within ISR, also final state particles are emitted, which
act as initiators of FSR themselves.

Parton showers can differ in the choice of the evolution variable and splitting
kernels. The only property that is fixed by QCD is the behaviour in the limit of
soft and/or collinear emissions. This leaves a freedom in the parametrisation of
splitting kernels away from that singular region. Herwig++ offers two different
showers, which are compared in detail in this work. The default option is also
based on DGLAP splitting kernels, but together with an evolution variable tied
to the opening angle of emissions. The latest shower implementation is based
on Catani-Seymour 2 → 3 dipole splitting kernels and is ordered in transverse
momentum.

When the shower evolution has lowered the scales down to a lower cutoff value,
which is typically chosen somewhere around 1GeV, hadronisation kicks in. At low
energies, perturbation theory breaks down. Here, lattice gauge theory allows pre-
dictions from first principles on a discretised spacetime. In collider phenomenology
however, it is fortunately sufficient to employ simple phenomenological models to
describe the transition from partonic to hadronic states. Two types of models are
to be accentuated here: string models and cluster models.

String models are based on the picture that the field between colour charged
particles forms a string-like object. The situation is sketched in Figure 2.1. Strings
are allowed to break up into smaller pieces by popping additional particle antipar-
ticle pairs out of the vacuum. These nonperturbatively produced particle pairs
may consist of qq̄ pairs or diquark pairs. Within so-called popcorn models, also
the simultaneous production of two qq̄ pairs in one step is introduced.
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Figure 2.1: Sketch of string hadronisation models, from [22]. Colour connected
partons form string-like objects, which are allowed to rip iteratively into smaller
pieces.

After a cascade of ripping processes, the resulting substrings are converted into
mesons and baryons based on their particle content. During the process, attached
gluons lead to kinks in the string, which affect the hadronic angular distributions.
Within PYTHIA, mostly the Lund string model is used, which is described in detail
in [48].

Cluster models are not motivated by a picture of the strong force building flux
tubes, but are based on a property of QCD that is known as colour preconfinement
[49]: Quark lines carrying the same colour index form clusters with a universal mass
distribution, peaked at low masses. The process is sketched in Figure 2.2.

In cluster models, gluons have to be split nonperturbatively into qq̄ pairs before
the recombination takes place. Then, colour-connected partons are joined to form
clusters. These are assumed to be highly excited hadron states and are able to
decay isotropically into the known hadrons in 1 → 2 processes. If a cluster mass
is too high, it may need to undergo one or more intermediate decays into lighter
clusters before it can be converted into hadrons. It may also occur that a cluster
is too light to decay into two hadrons. In this case, it is converted directly into a
single hadron.

The cluster model implemented in Herwig++ is described in [50]. In order to
improve the model, colour reconnection can be imposed. That means the exchange
of soft gluons before the cluster stage to minimise the invariant cluster mass, which
improves the agreement with experimental data [51].

2.2.1 Jet algorithms

QCD radiation, which is simulated within parton showers, tends to produce high
particle multiplicities in confined areas in the legoplot plane. Therefore, it is de-
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→

Figure 2.2: Hadronisation in cluster models. Gluons in the final state must undergo
a nonperturbative splitting before the conversion to clusters may take place. The
clusters are then decayed into the observed baryons and mesons.

sireable to reduce the information content of an event. To this end, jet algorithms
are introduced. A meaningful comparison between theory and experiment can only
be achieved after a suitable jet algorithm has been applied.

A basic requirement for the algorithm is to be infrared safe. The results are
not allowed to change if an additional soft particle is radiated. The splitting of
a particle into two collinear ones must also leave all jets invariant. The latter
property is known as collinear safety.

Two types of jet algorithms must be distinguished: Cone algorithms and algo-
rithms with sequential recombination. Cone algorithms try to define a jet as all
particles within a circle in the legoplot plane, spanned by pseudorapidity η and az-
imuthal angle φ. The diameter of the circle is an input parameter of the algorithm
while its centre is varied to find a position where it coincides with the barycentre
of the circle, which can for example be defined using transverse energy weighted
sums

ηconeCM =
∑
i

Ei
Tηi

Econe
T

φcone
CM =

∑
i

Ei
TΦi

Econe
T

. (2.10)

The index i runs over all particles within the circle area.
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The problem with cone algorithms is that the simpler ones lack infrared or
collinear safety as starting points need to be chosen from which stable cone posi-
tions are constructed iteratively. Existing exact, infrared and collinear safe cone
algorithms capable of finding all stable cones, for example the one suggested in [52],
need O(N2N ) steps to complete, where N is the number of particles to be con-
sidered. This is far too many to be utilised in hadron collisions. There exists an
infrared and collinear safe algorithm needing only O(N2 lnN) steps, SISCone [53],
which is only approximative in the sense that it may miss some stable cones.

The other type of jet algorithms are based on sequential recombination. Instead
of trying to fit all the detected particles into predetermined shapes at once, they
recombine them or remove them from the algorithm step by step until the final
jets are found.

An inclusive sequential recombination jet algorithm reads as follows:

1. All distances dij between objects (particles or protojets, in case one or more
recombinations took place already) i and j as well as the separations diB
between i and the beam axis are calculated as

dij = min(k2p
T,i, k

2p
T,j)

ΔR2
ij

D2
cone

, diB = k2p
T,i, (2.11)

where ΔRij is the legoplot distance between i and j and kT,i is the transverse
momentum of i. Dcone is a free parameter of the algorithm.

2. If the minimum of all dij and diB is a dij , then i and j are merged to a new
object which replaces the original particles i and j from the algorithm. If the
minimum distance is a diB, then i is identified as a final jet and also removed
from the algorithm.

3. If there are any objects left, repeat from the first step.

The parameter p in (2.11) is usually chosen to be p = 1, 0,−1. The corre-
sponding algorithms are called kT - [54, 55], Cambridge/Aachen [56, 57] and anti-
kT -algorithm [58] respectively. The anti-kT -algorithm is especially interesting, as
the borders of its jets are resistant concerning additional soft emissions. The recon-
structed jets show similar circular shapes in the legoplot plane as the ones that are
reconstructed by cone algorithms. That behaviour shows up due to the 1/k2

T pro-
portionality in the separation definition, which forces soft emissions to recombine
with hard ones first instead of with other soft emissions.

2.2.2 Parton showers

Although calculations within perturbative QCD usually give surprisingly predictive
results, this is not true for all phase space regions. The emission of additional
gluons in arbitrary QCD processes can lead to large logarithmic enhancements
ln(Λhard/Λcutoff), where Λhard/cutoff are the scale of the hard process and the shower
cutoff scale. The latter is usually chosen around 1GeV, where the perturbative
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expansion begins to break down. In the following, the basic principles of a parton
shower algorithm based on Altarelli-Parisi splitting functions will be discussed in
a very general way.

The starting point is the observation that upon emission of a gluon off an
external line with momentum p and mass m, an additional propagator of the form

1

(p± q)2 −m2
=

±1

2ωE(1− v cos θ)
, (2.12)

needs to be inserted. Here, q and ω denote the gluon momentum and energy while
E and v are energy and velocity of the emitting parton. The propagator in (2.12)
gives a large contribution if either the emitted gluon is soft (ω → 0) or the emitting
parton is soft (v → 1) and the additional gluon is emitted collinearly to it (θ → 0).
The latter case will be discussed first.

In the limit of an additional collinear emission within an n parton process with
differential cross section dσn, the differential cross section factorises into [59]

dσn+1 = dσn
dq̃2

q̃2
dz

αS

2π
Pĩj→ij(z), (2.13)

which was already averaged over the azimuthal angle of the additional emission.
The variable q̃2 is the energy scale of the emission and z is the energy fraction
the emission carries away. Pĩj→ij(z) is the corresponding splitting function for the
process and, for the case of massive partons, given by [7, 60]

Pq̃→qg =
CF

1− z

[
1 + z2 − 2m2

q

zq̃2

]

Pg̃→gg = CA

[
z

1− z
+

1− z

z
+ z (1− z)

]

Pg̃→qq̄ = TR

[
1− 2z (1− z) +

2m2
q

z (1− z) q̃2

]
. (2.14)

These are the Altarelli-Parisi splitting kernels. There are other possible parametri-
sations of the QCD singularities which can also be used as shower kernels, for ex-
ample within antenna showers [61] or of course in the dipole shower implemented
in Herwig++ [62].

The collinear factorisation theorem (2.13) can be used to calculate more than
one emission. In order to avoid collinear infinities, the shower cutoff scale Λcutoff

is introduced and the probability of having no resolved emission, i.e. no emission
above Λcutoff , within an interval dq̃2 is given by

1−
∑
i,j

dq̃2

q̃2
dz

αS

2π
Pĩj→ij(z). (2.15)

Making the transition to a finite continuous interval, the no-emission probability for
each possible splitting exponentiates and gives rise to the corresponding Sudakov
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form factor

Δĩj→ij(q̃
2
a, q̃

2
b ) = exp

[
−
∫ q̃2b

q̃2a

dq̃′2

q̃′2

∫
dz

αS

2π
Pĩj→ij(z)Θ(p2T )

]
(2.16)

which is the probability of having no emission between the two scales q̃2a and q̃2b .
The additional Heaviside function comes into play to accommodate the proper
phase space boundaries of the z integration.

So far, only the collinear limit was incorporated in the Sudakov form factor, but
also in the soft limit, where the energy ω of the additional emission becomes small
in (2.12), large contributions arise. In the soft limit, the factorisation theorem
reads [59]

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π

∑
i,j

CijWij (2.17)

with Ω as the solid angle of the emission and a colour factor Cij . Wij is the antenna
function

Wij =
E2

gpi · pj
(pi · q)(pj · q) =

1− vivj cos θij
(1− vi cos θiq)(1− vj cos θjq)

. (2.18)

Assuming both possible emitter lines i and j to be massless, this can be rewritten
to yield

Wij = W
[i]
ij +W

[j]
ij (2.19)

by using the definition

W
[i]
ij =

1

2

(
Wij +

1

1− cos θiq
− 1

1− cos θjq

)
. (2.20)

Integrating (2.20) over the azimuthal angle of the emission,
∫ 2π

0

dΦiq W
[i]
ij =

1

1− cos θiq
·Θ(θij − θiq), (2.21)

reveals that emissions are only allowed within a cone of opening angle θij . Thus,
additional soft emissions are restricted to successively smaller emission angles.
This property of (2.21) is known as angular ordering and arises from destructive
interference of soft gluons. The evolution scale choices of the Herwig++ default
and dipole shower respect angular ordering.

So far, the very basics of event generation were sketched and some of its details,
namely the need for jet algorithms and their realisation, were discussed. In the end,
the need for an all-order expansion with a parton shower algorithm was reasoned.
However, the scope of the current section was only introductory. A substantial
part of this thesis at hand is devoted to the comparison of two different shower
implementations. These are treated in Section 4 in more detail.
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2.3 Phase space decomposition
As the integration of a field theoretical cross section does not immediately involve
an integral over the random number space but an integral over the physical phase
space, an appropriate mapping between the two is needed. Such a mapping should
be chosen in a way to smoothen peaks in the integrated function. The best way is
to approximate the antiderivative of the integrated function, as the substitution

y(x) = F (x) + Δ(x), (2.22)

where

F ′(x) = f(x), (2.23)
Δ′(x) = ε(x), |ε(x)| � f(x),

in an integral ∫
dxf(x) =

∫
dy

1

1 + ε(x)/f(x)
≈
∫

dy
(
1− ε(x)

f(x)

)
(2.24)

lowers the variance of the integral. By this, the Monte Carlo error can be reduced
drastically.

In quantum field theory, usually many diagrams contribute to a single process.
The peak structure of the squared sum of those is governed by the propagators of
the single diagrams, but can be altered by gauge cancellations. A good approxima-
tion to the real structure is to model the peak structure of each squared diagram
separately and do a multi-channel phase space integration. The individual phase
space mapping can be achieved with a sequential splitting algorithm.

As already mentioned in [63], a convenient phase space decomposition in terms
of invariant masses is obtained as follows. Let

dΦn(pa + pb; p1, . . . , pn) = (2π)4δ(4)

(
pa + pb −

n∑
i=1

pi

)
n∏

i=1

d4pi
(2π)4

δ(p2i −m2
i )Θ(p0i )

(2.25)

be the phase space of the kinematical process pa + pb →
∑n

i=1 pi. With the defini-
tions

qk =
k∑

j=1

pj , M2
k = q2k, (2.26)

the phase space can be rewritten by inserting unity

1 =

∫
dM2

n−1δ(q
2
n−1 −M2

n−1)Θ(q0n−1)×
∫

d4qn−1δ
(4)(pa + pb − qn−1 − pn) (2.27)
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Figure 2.3: Recursive building of the phase space for s-channel splittings.

in (2.25). Note that each of the integrals in (2.27) separately reduces to unity by
integration of the δ-distributions. The result can be expressed as

dΦn(pa + pb; p1, . . . , pn)

=

∫
dM2

n−1

∫
d4qn−1

d4pn
(2π4)

× δ(4)(pa + pb − qn−1 − pn)δ(q
2
n−1 −M2

n−1)δ(p
2
n −M2

n)Θ(q0n−1)Θ(p0n)

× (2π)4δ(4)

(
qn−1 −

n−1∑
i=1

pi

)
n−1∏
i=1

d4pi
(2π)4

δ(p2i −M2
i )Θ(p0i )

=

∫ (
√
s−Mn)2

(
∑n−1

i=1 Mi)2
dM2

n−1

∫
dΦ2(pa + pb; qn−1, pn) · dΦn−1(qn−1; p1, . . . , pn−1) (2.28)

which can be interpreted diagrammatically as seen in Figure 2.3. The upper and
lower bounds of the integration range of M2

n−1 can be deduced by the fact that
it needs to be at least enough energy to generate the minimally allowed invariant
masses downstream but not more than what is maximally available. In the centre-
of-mass frame of the decaying virtual particle of momentum qn, the generation of
azimuthal and polar angles in the process Mn → pn+Mn−1 is trivial. The involved
two-particle phase space can be written as

Φ2(pa + pb; qn−1, pn) =

∫ |�qn−1|d|En−1|dΩn−1

4
√
s

δ

(
En−1 − s+M2

n−1 −m2
n

2
√
s

)

=

√
λ
(
s,M2

n−1, m
2
n

)
8s

∫ 2π

0

dϕn−1

∫ 1

−1

d cos θn−1, (2.29)

with the Källén function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. (2.30)

For a sequence of s-channel splittings, the propagator invariants can be gener-
ated consecutively by repeated application of (2.28). Recurrent boosts into the rest
frame of the generated propagator are needed to map out the solid angle variables
of the decomposition.
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Figure 2.4: Recursive building of the phase space for t-channel splittings.

For t-channel splittings, the interpretation of (2.28) is not as straightforward
because the calculation of the limits on the invariant is more involved. The polar
angle is related to the Mandelstam variable,

tk−1 = (pa − qk−1)
2 = m2

a +M2
k−1 − 2EaEk−1 + 2|�pa||�pk−1| cos θk−1. (2.31)

Hence it is convenient to change the integration variable to

dt = 2|�pa||�pn−1|d cos θn−1 (2.32)

and (2.29) changes to

Φ2(pa + pb; qn−1, pn) =
1

8spa

∫ 2π

0

dϕn−1

∫ t+n−1

t−n−1

dtn−1, (2.33)

where the limits on the tn−1-integration as derived from (2.31) are given by

t±n−1 = m2
a +M2

n−1 − 2EaEn−1 ± 2|�pa||�pn−1|. (2.34)

The diagrammatical interpretation of the splitting is sketched in Figure 2.4.
For repeated mappings of t-channel propagators, boosts to the rest frame of the
decaying virtual particles qk are necessary just like in the case of s-channel split-
tings.

2.4 QCD at next-to-leading order
As mentioned in Section 1.3, QCD can be solved perturbatively if the energy scale
of the process is sufficiently high, as the coupling constant is small then. However,
it is still about a factor of 10 larger than the QED coupling constant. Therefore,
higher order terms in QCD calculations are needed much earlier than in the QED
case. As it is convenient to calculate cross sections and observable distributions by
Monte-Carlo integration, a way of dealing with singularities, which naturally arise
within higher order calculations, must be found. In the following, the formalism of
dipole subtraction is described, which is also the tool of choice for the calculations
that were done for the thesis at hand.
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Subsequently, the problems that arise when applying a parton shower to an
NLO calculation are discussed. These problems arise by double counting of terms
that may either be generated by the NLO matrix element or by the shower expan-
sion of the Born terms therein. Solutions of the problem involve either a modifica-
tion of the expanded matrix elements or a modification of the first shower emission
to keep the results after the shower correct to NLO.

2.4.1 Dipole subtraction

The general form of an NLO QCD cross section at a hadron collider reads

σNLO =
∑
a,b

∫ 1

0

dxafa(xa)

∫ 1

0

dxbfb(xb)

·
[∫

m

dσa,b
B +

∫
m

dσa,b
V +

∫
m+1

dσa,b
R

]
, (2.35)

where the dependences on factorisation and renormalisation scales were dropped.
a and b index the incoming partons with the parton distribution functions (PDFs)
fa and fb giving their respective densities in the colliding hadrons. σa,b

B , σa,b
V and

σa,b
R are the corresponding partonic Born, renormalised virtual and real-emission

differential cross sections for the process a + b → X. The number of final-state
particles in the given process is given by m.

As the virtual differential cross section contains infrared divergencies which
cancel against soft and collinear divergencies arising by integration of the real-
emission contributions, the total cross section is finite at NLO [64, 65]. However,
due to the complexity of the involved matrix elements and phase space integrals,
usually the only way to get a result is to do a numerical calculation. As the phase
space integrals typically exhibit a high dimensionality, Monte Carlo integration is
the best solution here. Each integral has to be treated separately then, so the
cancellation of singularities has to be done beforehand. Only after the analytical
cancellation of divergencies, the different integrals are finite and can be treated by
Monte-Carlo methods. A popular approach for such a subtraction scheme is the
Catani-Seymour dipole subtraction [66].

The general procedure is to construct so-called dipole terms,

dσa,b
A =

∑
Dipoles

dσa,b
B ⊗

(
dV a,b

Dipole + dṼ a,b
Dipole

)
(2.36)

that feature the same singularity structure as the real-emission matrix element
within their process-independent parts dVDipole and dṼ a,b

Dipole. The dṼ a,b
Dipole terms

are remnants of the cancellation of singularities that arise from emissions collinear
to one of the initial-state hadrons. The dVDipole terms actually cancel singularities
themselves. The process-independent parts of the subtraction terms can be ana-
lytically integrated over a one-parton phase space once and for all. The symbol ⊗
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denotes that there is no true factorisation, but rather a convolution of colour and
spin correlated matrix elements with dipole terms.

The dipole terms are inserted into (2.35) by adding and subtracting them.
Rearranging and factorising out initial-state collinear singularities into the PDFs
results in

σNLO =
∑
a,b

∫ 1

0

dxafa(xa)

∫ 1

0

dxbf(xb)

∫
m

dσa,b
B

+
∑
a,b

∫ 1

0

dxaf̃a(xa)

∫ 1

0

dxbf̃(xb)

·
[∫

m

[
dσa,b

V + dσa,b
B ⊗ I

]
+

∫
dx
∫
m

[
dσa,b

B ⊗ (P(x) +K(x))
]

+

∫
m+1

[
dσa,b

R −
∑

Dipoles

dσa,b
B ⊗

(
dV a,b

Dipole + dṼ a,b
Dipole

)]]
, (2.37)

where each integral is rendered separately finite by construction of the subtraction
terms. The finite collinear remainder containing the P and K insertion operators
arises as a relic of the absorption of the singularities stemming from emissions
collinear to the incoming hadrons.

2.4.2 NLO matching

When running a parton shower with the Sudakov form factor

Δξ(q0, q1) = exp

{
−
∫ q21

q20

dq′2

q′2

∫
dz

αS

2π
Pξ(z, q

′)

}

≈ 1−
∫ q21

q20

dq′2

q′2

∫
dz

αS

2π
Pξ(z, q

′) (2.38)

on a Born configuration, higher order terms arise. The index ξ numbers the pos-
sible splitting functions Pξ. When requiring at most one additional splitting, the
situation after the shower can be calculated by summing the probabilities of either
none or exactly one additional splitting, folded with the differential Born cross
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section. The observable after the parton shower then takes the form

〈O〉PS =
∑
a,b

∫ 1

0

dxafa(xa)

∫ 1

0

dxbf(xb)

·
[∫

m

dσa,b
B F

(m)
O Δξ(qc, qmax)

+

∫
m

dσa,b
B

∫ q2max

q2c

dq′2

q′2

∫
dzF (m+1)

O

αS

2π
Pξ(z, q)Δξ(q, qmax)

]

≈
∑
a,b

∫ 1

0

dxafa(xa)

∫ 1

0

dxbf(xb)

·
[∫

m

dσa,b
B F

(m)
O

{
1−

∫
q2>q2c

dPξ

}
+

∫
m

dσa,b
B

∫
q2>q2c

dPξF
(m+1)
O

]
. (2.39)

Here, F (m)
O is the jet-defining function for an m parton configuration. q2c and q2max

give the lower cutoff scale and the maximal allowed scale of the shower respectively.
The term in the second line of (2.39) is responsible for the probability to have no
branching at all while the term in the third line gives the probability to have one
splitting at a scale between q2c and q2max and none above. The last line introduces
the notation ∫

q2>q2c

dPξ =

∫ q2max

q2c

dq′2

q′2

∫
dz

αS

2π
Pξ(z, q

′). (2.40)

These higher-order terms in (2.39) are the leading logarithmic approximation
of the NLO matrix elements by the parton shower. When naively acting with a
parton shower on an NLO matrix element, these approximations would be double
counted. Knowing the expansion of the shower’s Sudakov form factor, however, the
additional terms can be subtracted from the NLO matrix element before showering,

〈O〉MC@NLO =

∫
m

F
(m)
O

[
dσa,b

B + dσa,b
V + dσa,b

B ⊗ I
]

+

∫
dx
∫
m

F
(m)
O

[
dσa,b

B ⊗ (P(x) +K(x))
]

+

∫
m

F
(m)
O

[
dσa,b

B

∫
1

dPξ −
∑

Dipoles

∫
1

σa,b
B ⊗

(
dV a,b

Dipole + dṼ a,b
Dipole

)]

+

∫
m+1

F
(m+1)
O

[
dσa,b

R − dσa,b
B dPξ

]
. (2.41)

Equation (2.41) was derived in [3] under the name of MC@NLO matching.
After exponentiation with a parton shower and expansion in the strong coupling
constant, it reproduces the correct NLO cross section. It is also important to
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note that by construction, terms with m particle configurations and terms with
m+ 1 particle configurations carry separately finite weights, so that in a practical
implementation, they can be treated separately. Further, we have neglected terms
of the form

∫
dσa,b

B

∫ qc

0

dPξ

[
Fm
O − Fm+1

O

]
, (2.42)

which are only power corrections vanishing for a sufficiently small shower cutoff
scale qc.

The MC@NLO matching scheme has two possible drawbacks, one being the fact
that there is a small fraction of events with a negative weight as the integrands
of (2.41) are not necessarily positive definite. In practice, this does not pose
a problem as the only drawback with respect to a positive definite integrand is a
larger runtime for the Monte Carlo integration to get to the same level of precision.

The other, more severe drawback is, that the subtraction terms derived from
(2.39) depend on the Sudakov form factor of the parton shower. Hence, the pro-
cedure has to be adapted to a certain shower evolution. On the other hand, this
can also be used to simplify the structure of the calculation substantially. By
employing the same splitting functions in the Sudakov form factor as in the NLO
subtraction scheme, the second to last line of (2.41) vanishes and only

〈O〉dipPSMC@NLO =

∫
m

F
(m)
O

[
dσa,b

B + dσa,b
V + dσa,b

B ⊗ I +

∫
dx dσa,b

B ⊗ (P(x) +K(x))

]

+

∫
m+1

F
(m+1)
O

[
dσa,b

R − dσa,b
B dPξ

]

=

∫
m

F
(m)
O dσa,b

S
+

∫
m+1

F
(m+1)
O dσa,b

H
(2.43)

remains. A shower achieving this simplification, based on Catani-Seymour dipole
splittings, was implemented into Herwig++ and publicly released recently [62].
Equation (2.43) consists of two terms that enter the shower separately: Soft events
dσa,b

S
, based on a Born-like m-parton configuration and hard events dσa,b

H
, where

the shower starts from a real-emission configuration with m+ 1 partons.
Going back to (2.41), another toehold for its simplification can be found within

its last line. Dropping this contribution can be achieved by using a Sudakov form
factor for the first shower emission that mimics the exact real-emission contribution
so that

dσa,b
B

∫
1

dPξ = dσa,b
R . (2.44)

This matching scheme is known as POsitive Weight Hard Emission Generator
(POWHEG) [4, 5]. The parton shower evolution is then piled upon parton-level
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events with born kinematics only, having the weight of the B̄ function, which
consists of Born, virtual and integrated subtracted real-emission contributions,

〈O〉POWHEG =

∫
m

F
(m)
O

[
dσa,b

B + dσa,b
V + dσa,b

B ⊗ I +

∫
dx dσa,b

B ⊗ (P(x) +K(x))

+ dσa,b
R −

∑
Dipoles

∫
1

σa,b
B ⊗

(
dV a,b

Dipole + dṼ a,b
Dipole

)]

=

∫
m

F
(m)
O B̄a,bdΦm. (2.45)

The hardest emission is handled by a Sudakov form factor which depends explicitly
on the exact squared real emission and Born matrix elements R (Φm,ΦX) and
B (Φm)

ΔNLO(p⊥) = exp

[
−
∫
1

dΦX
R (Φm,ΦX)

B (Φm)
θ
(
pX⊥ − p⊥

)]
, (2.46)

where X is the additional emission.
The POWHEG matching scheme works very well with a p⊥-ordered shower.

With an angular ordered shower however, some peculiarities have to be minded,
as the POWHEG NLO emission does not respect the angular ordering. In order
to produce soft emissions at a larger emission angle as the POWHEG emission, a
so called truncated shower needs to be employed.

Afterwards, the hardest emission is generated using the Sudakov of (2.46),
before further partons can be emitted. To ensure that the POWHEG emission is
indeed the hardest one, emissions that produce a higher transverse momentum are
vetoed, i.e. if such an emission occurs, it is rejected.

In Herwig++, such a situation arises when employing the default shower. The
shower evolution then splits into three parts:

1. Truncated shower: Soft and wide-angle emissions

2. POWHEG emissions with the hardest transverse momentum of all branchings

3. Vetoed shower: Further evolution with smaller angles and lower transverse
momenta

The dipole shower, which takes transverse momentum as its evolution variable,
does not need to be split into different regimes. The first emission is just replaced
with the POWHEG emission and further evolution follows the Sudakov form factor
of the dipole shower.

Both matching schemes, MC@NLO and POWHEG, recover the correct be-
haviour up to NLO after expansion with the parton shower. Also, both schemes
generate the correct leading logarithms. Beyond that, they differ. Therefore, a
substantial part of this thesis is to compare the predictions obtained by the two
approaches within the same setup in order to gain information on the size of these
differences which can be considered systematic uncertainties.
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Summary of part I
The first part of this thesis gives an introduction to the basic principles and
methods that are used later on. The field theoretical background is established
by illustrating electroweak symmetry breaking and QCD. Both are substantial
parts of the SM, the best confirmed theory of particle interactions known to date.

It is explained that due to QCD being a non-abelian gauge theory, which re-
sults in charged gauge bosons, properties as asymptotic freedom and confinement
arise. Although not being able to treat soft physics within perturbation theory
in the strong coupling constant, the perturbative results at high energy scales are
predictive. The DGLAP evolution allows for the factorisation of soft physics in
the initial state into experimentally measurable quantities, the PDFs.

Additional radiations, which cannot be treated in the Feynman diagram ap-
proach, can not be neglected completely. Large logarithms arise in the all-order
expansion by soft and/or collinear divergencies. In this limit, a parton shower
approach should be followed to improve the results.

NLO terms can be numerically calculated by Monte-Carlo methods with the
help of an NLO subtraction scheme such as Catani-Seymour dipole subtraction.
However, they are also approximated by a parton shower and a Born matrix el-
ement. This leads to the problem of double counting when trying to operate a
shower on an NLO matrix element. Two solutions are discussed: The MC@NLO
scheme, where the double counted terms are explicitly subtracted before shower-
ing and the POWHEG scheme, which uses a special Sudakov form factor for the
hardest emission. This POWHEG-Sudakov incorporates the exact real emission
matrix element.

For a calculation beyond leading order, jet algorithms need to be employed.
They also allow to compare experimental and theoretical results by reducing the
complexity of a high multiplicity final state to few theoretically well-defined objects.
Care has to be taken within the construction of a jet algorithm to ensure collinear
and infrared safety.

After having established an understanding of the basics of high energy physics
in the current part, the next part of the thesis shows the application within the
calculation of Hγjj production at NLO QCD.
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Part II

Higgs plus photon production at
NLO
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Chapter 3

Higgs boson production in
association with a photon via vector
boson fusion

The recent discovery of a Higgs boson candidate is a milestone in high energy
physics. To achieve certainty that it is the Higgs boson predicted by the SM, all
its couplings have to be measured and compared with theoretical predictions. The
experimental determination of the Hbb̄ Yukawa coupling is a difficult task, as the
signal channel is spoiled by QCD backgrounds with high cross sections. There were
several proposals of new analysis methods to cope with these challenging problems.
Exploring the jet substructure in “fat-jets” [67, 68] can help improving the signal-
to-background ratio. Another possibility arises by requiring the presence of an
additional W boson in Higgs production via vector boson fusion [69, 70], which is
unfortunately also leading to a decreasing cross section. To some extent, this can
be prevented by requiring an additional photon instead of a W boson.

The bulk of the backgrounds to the H → bb̄ decay channel are composed of
gluonic components (see Figure 3.1). Due to the nonexistence of a gluon-photon
coupling in the Standard Model, the requirement of an extra photon leads to a
drastic suppression of the QCD backgrounds. The mechanism works in an opposite
way than applying a central jet veto: Instead of forbidding the typical additional
radiation of the background process, the signal is required to show central photon
radiation, which is uncommon for the expected backgrounds.

In addition to coupling effects, there is also a destructive interference in quark
scattering by a neutral gauge boson in the t-channel of diagrams where photons
are emitted from incoming and outgoing fermion lines, respectively. This effect
not only arises in QCD background processes, but also in the ZZ fusion signal
process. Thereby, not only the relevant background processes are suppressed, but
also the ZZ fusion component of the signal channel. WW fusion is unaffected by
the interference, so it experiences a relative enhancement.

In [71], a detailed signal and background analysis at leading order was pre-
sented. The work was done using the automated tools ALPGEN [72] and MadE-
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��
Figure 3.1: Some of the relevant Feynman diagrams of the QCD background to
H → bb̄. Gluonic components compose a large part of the cross section.
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vent [73]. The authors found that the additional photon requirement reduces the
signal by a factor of approximately 1/100 whereas the background is reduced by
a factor of 1/3000. The resulting statistical significances S/

√
B are somewhere

between 2 and 3 for a 14 TeV collider with an integrated luminosity of 100/fb.
It was also mentioned that the additional photon can improve the experimental
triggering. Additional selection cuts were proposed on the invariant mass of the
bb̄γ system.

A later parton shower study [74] of signals and backgrounds using ALPGEN
followed by a full PYTHIA [41] event generation could confirm the results for
realistic final states. They used different cuts than [71], resulting in a slightly
lower significance of 1 � S/

√
B � 2.

For a precise prediction and reliable estimates of theoretical uncertainties, an
LO calculation is not sufficient. In order to improve the prediction, a next-to-
leading order calculation has been performed in this work. Three independent
implementations of the whole process were developed by the authors of [75,76]. The
implementation of the author of the thesis at hand is based on HELAS subroutines
[77] and was proven to be the fastest one, therefore this calculation was chosen to
be published as part of the parton-level Monte-Carlo program VBFNLO [6].

3.1 Elements of the calculation

3.1.1 Approximations

To minimise computing time, several approximations have been used which have
proven their validity already within other VBF-type processes. As the most inter-
esting phase space regions are those where the two tagging jets are widely separated
in rapidity, the VBFNLO implementation neglects interference terms between t-
and u-channel diagrams, which are present for identical quark flavours only. This is
known as “VBF approximation”. It was shown that these disregarded contributions
are small in the relevant regions for Higgs searches in the VBF channel [29].

In addition, diagrams with annihilation processes qq̄ → ZHγ and a subsequent
decay Z → qq̄ are neglected. In the calculation, all fermion masses are set to zero.
The Hγjj production process is simulated separately and then combined with a
subsequent decay of the Higgs boson into two generic fermions. In the results which
are shown in Section 3.3, the branching ratio is set to unity, i.e. all decay channels
are summed up. Contributions with external bottom or top quarks in the initial
state are neglected and the Cabibbo-Kobayashi-Maskawa matrix is approximated
by the identity matrix.

3.1.2 Real and virtual corrections

Due to colour conservation, virtual contributions where a gluon connects the two
incoming fermion lines vanish within the VBF approximation. The only loop
corrections that contribute are composed of self-energies, triangle and box diagrams

39



CHAPTER 3. HIGGS PLUS PHOTON PRODUCTION AT NLO

��
Figure 3.2: Representative Feynman diagrams of virtual corrections to Hγjj pro-
duction. The graph type with the triple gauge boson vertex on the left is only
possible for t-channel exchange of Z bosons and receives only the shown vertex
correction. The other graph applies to both W and Z boson exchange and fea-
tures self-energy, vertex and the shown box loop correction.

with an additional gluon attached to a single quark line. Two of the relevant
diagrams which give corrections to the upper quark line are shown in Figure 3.2.
The combination of all virtual corrections to quark line i can be cast into the
general form of the virtual amplitude

Mi
V = MB

αs(μR)

2π
CF

(
4πμ2

R

Q2
i

)ε

Γ(1 + ε)

(
− 2

ε2
− 3

ε
+ cvirt

)
+ M̃i

V , (3.1)

where CF = 4/3 and cvirt = π2/3− 7 in dimensional reduction (cvirt = π2/3− 8 in
conventional dimensional regularisation). Qi is related to the momentum transfer
from the initial-state fermion with momentum piin to the final state fermion with
momentum pifi by Q2

i = −(piin − pifi)
2.

The finite amplitudes M̃i
V are evaluated by the help of Passarino-Veltman ten-

sor reduction [78]. A detailed description of the loop calculations and subroutines
that are used for the publicly available version of this process can be found in [79].

For a small number of phase space points, numerical instabilities occur. These
arise because of small Gram determinants in the Passarino-Veltman reduction for-
malism. To prevent them from spoiling the convergence of the integration, a gauge
check has been introduced: The virtual amplitudes have to fulfil Ward identities
at every phase space point up to a user defined precision. If a phase space point
violates the Ward identities, the virtual contributions M̃i

V from this point are re-
moved. It was checked that the fraction of phase space points that do not fulfil
the gauge check with a relative accuracy of at least 10−3 is less than 0.1 permille.
By varying the required accuracy, it was checked that the numerical error due to
removing these contributions is small.

The real-emission diagrams are obtained by insertions of a gluon at all possible
points in the LO diagrams. Also, new channels with gluons in the initial state
have to be considered. They are crossing-related to the ones with a gluon in
the final state. The Catani-Seymour subtraction formalism, described in Section
2.4.1, was employed to combine them with the virtual corrections. The integrated
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counterterm in form of the insertion operator is given by

〈I(ε)〉 = |MB|2αs(μR)

2π

(
4πμ2

R

Q2
i

)2

Γ(1 + ε)

[
2

ε2
+

3

ε
+ 9− 4

3
π2

]
. (3.2)

3.1.3 Checks

The building blocks of the calculation have been tested thoroughly. The three
independent implementations, which were developed by the authors of [75, 76],
were compared both at the amplitude level and at the level of integrated cross
sections. The individual amplitudes agreed perfectly and the cross sections were
consistent within the achieved statistical uncertainties at the sub-permille level.

A cross check of the amplitudes against MadGraph [80] at a randomly drawn
set of phase space points has shown agreement to about 12 digits. Integrated LO
cross sections were also compared to results from MadEvent [73, 81] and showed
agreement within the accuracies of the two programs.

QED gauge invariance of the leading-order, real-emission and virtual contribu-
tions was tested by replacing the photon polarisation vector with its momentum
and checking that the resulting contributions vanish. The same method was utilised
to check the QCD gauge invariance of the real-emission contributions by replacing
the gluon polarisation vector with its momentum.

3.2 Parameters and cuts
A value of 126GeV for the Higgs mass is chosen in the following. Before the dis-
covery of a new resonance at the LHC, results for Hγjj production were published
in [75, 76] for a Higgs mass of 120GeV. The setup used within the following gen-
erally keeps the other parameters that were used in these two publications fixed,
but they are reviewed here for completeness.

As the determination of the Hbb̄ Yukawa coupling is a long-term goal in the
LHC experimental program, we assume a hadronic centre-of-mass energy of

√
S =

14TeV in the following analysis. The masses of the electroweak gauge bosons
are chosen as mW = 80.398GeV and mZ = 91.188GeV and the Fermi constant
is GF = 1.166 × 10−5/GeV. These parameters allow for the calculation of the
electroweak coupling constant αQED and the sine of the Weinberg angle sin θW
with the help of LO electroweak relations.

The CTEQ6L1 PDF set [82] at LO and the CTEQ10 PDFs [83] at NLO are
used as defaults unless stated otherwise. To approximate the error of the PDF
choice, results with the MSTW2008 PDFs [84] are also shown.

The kT jet algorithm [54, 55, 85] in the form as described in [52] with a cone
parameter of D = 0.7 is used to reconstruct jets from final state partons with
rapidities |yp| ≤ 5. The E-scheme is used to recombine the partonic momenta,
which means that the jet momentum is just the sum of the four momenta of its
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constituents. At least two outgoing jets are required with

pTj > 20GeV, |yj| ≤ 5, (3.3)

where pTj and |yj| denote transverse momentum and rapidity of the recombined
jet. The jets are numbered by their ordering in transverse momentum and the two
jets with the largest pT will be referred to as tagging jets.

The Frixione isolation criterion [86] is used to avoid collinear singularities of
the photon with other final-state particles. The naive solution of cutting away all
emissions close to the photon would spoil the convergence behaviour of the Catani-
Seymour subtraction formalism as the correct cancellation of infrared singularities
needs real-emission contributions within the whole phase space. Frixione suggested
to only allow events if the energy deposited in a cone around the photon is lower
than ∑

i:ΔRiγ<ΔR

pT i ≤ 1− cosΔR

1− cos δ0
pTγ ∀ΔR ≤ δ0. (3.4)

The index i sums over all final-state partons found within a legoplot distance of
ΔR around the photon. pT i denotes the transverse momentum, and ΔRiγ the
separation of parton i from the photon. δ0 stands for a fixed separation and is a
free parameter of the cut. The parameter takes the value

δ0 = 0.7 (3.5)

throughout the analysis presented here.
As already mentioned before, the branching ratio of the Higgs decay to bb̄ is not

included in the results presented here. However, the general impact of the Higgs
decay products, labelled d in the following, on phase space cuts is accounted for.
We require the photon and the Higgs decay products, which are generated by an
isotropic decay, to be central and to have sufficiently large transverse momenta,

|yγ| < 2.5, |yd| < 2.5,

pT,γ > 20GeV, pT,d > 20GeV. (3.6)

In the inclusive-cuts scenario, the two tagging jets must fulfil the requirement
of a small minimum invariant mass,

mtag
jj > 100GeV, (3.7)

and all particles and jets have to be separated by

ΔRdd > 0.4, ΔRdγ > 0.4, ΔRjd > 0.4, ΔRjγ > 0.4. (3.8)

A different set of more stringent cuts is applied within the VBF cuts scenario.
Here, a larger invariant mass of the tagging jets is required,

mtag
jj > 600GeV, (3.9)

42



CHAPTER 3. HIGGS PLUS PHOTON PRODUCTION AT NLO

as well as larger separations of the particles

ΔRdd > 0.7, ΔRdγ > 0.7, ΔRjd > 0.7, ΔRjγ > 0.7. (3.10)

As the analysis aims at decays into b-quarks, the separation of the decay particles
was increased to improve the tagging. In addition, the two tagging jets are required
to be well separated in rapidity,

|yj1 − yj2| > 4, (3.11)

and to be emitted into different detector hemispheres,

yj1yj2 < 0. (3.12)

Within the VBF cuts, the Higgs decay products and the photon need to be located
in the rapidity gap between the tagging jets,

min(yj1, yj2) ≤yd ≤ max(yj1, yj2)

min(yj1, yj2) ≤yγ ≤ max(yj1, yj2). (3.13)

3.3 Results
The factorisation scale μF and the renormalisation scale μR were varied in order
to estimate the dependence of the results on these unphysical scales. This can be
seen as an estimate for the size of higher order corrections. The factorisation and
renormalisation scales depend on a basic scale parameter μ0,

μF = ξFμ0, μR = ξRμ0. (3.14)

ξF and ξR are called factorisation scale factor and renormalisation scale factor,
respectively.

Two different choices for μ0 were made. The more common one for VBF-type
reactions is related to the momentum transfer of the attached electroweak bosons,

μ2
0,i = Q2

i =

∣∣∣∣∣piin −
∑

k∈final state
pik

∣∣∣∣∣
2

. (3.15)

Here the sum runs over all final-state partons on line i, so there can be one or
two summands depending if the scale is calculated for a real-emission or a Born-
type configuration. With this choice of a scale parameter, two different scales are
applied to the upper and lower fermion line. Another possible choice is to sum
transverse momenta of all jets and set

μ2
0 = m2

H +
∑
jets

p2Tj. (3.16)
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σinclusive[fb] for
√
S = 14 TeV and mH = 126GeV

LO

CTEQ MSTW

ξ μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj

0.5 28.68 27.44 28.60 27.24

1.0 27.55 26.34 27.37 26.07

2.0 26.45 25.30 26.19 24.96

NLO

CTEQ MSTW

ξ μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj

0.5 28.22 28.75 28.06 28.60

1.0 28.55 28.85 28.41 28.76

2.0 28.67 28.85 28.58 28.76

σVBF[fb] for
√
S = 14 TeV and mH = 126GeV

LO

CTEQ MSTW

ξ μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj

0.5 15.63 14.43 15.43 14.16

1.0 14.55 13.48 14.29 13.16

2.0 13.60 12.63 13.29 12.28

NLO

CTEQ MSTW

ξ μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj μ2
0 = Q2

i μ2
0 = m2

H +
∑

p2Tj

0.5 14.61 14.87 14.56 14.83

1.0 14.81 14.89 14.76 14.84

2.0 14.86 14.79 14.80 14.72

Table 3.1: Cross sections obtained for different values of the scale factor ξ = ξF =
ξR within inclusive (top) and VBF cuts (bottom). The errors of the results are
below the permille level.
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Figure 3.3: Cross sections with CTEQ PDFs as function of the scale factor ξ.

The general behaviour upon variation of the scale factors and basic scale choices
can be seen in Figure 3.3. For the graphs, the scale factors were varied between
values of 0.1 to 10. Also, the impact of independent variation of the renormalisation
and factorisation scale is shown.

The integrated cross sections for inclusive and VBF cuts are collected in Ta-
ble 3.1. For the table, the scale factors were set to ξF = ξR = ξ and were varied
between ξ = 0.5 and ξ = 2.0. The variation of the cross section in that range de-
creases from about 15% at LO to 2% at NLO for VBF cuts. For inclusive cuts, the
scale variation is only 8% already at LO and the NLO stabilises the dependencies
again up to around 2%. The K-factor, defined as

K =
σNLO

σLO
, (3.17)

is generally larger for the μ2
0 = m2

H +
∑

p2Tj scale choice than for μ2
0 = Q2

i . Also,
the impact of the scale variation on the latter is smaller.

In order to examine the impact of the PDF choice, the results for both CTEQ
and MSTW PDFs are listed in Table 3.1. At LO, switching from CTEQ to MSTW
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Figure 3.4: Rapidity separation distribution of the tagging jets and corresponding
distribution of the δ function as defined in (3.18) for inclusive cuts.

decreases the cross section by about 1% and thereby affects the cross section less
than the scale variation. When going to NLO, the relative importance of the PDF
uncertainty increases as the scale dependence decreases. Both uncertainties end
up being small and of comparable size of about 2%. The choice of the basic scale
factor μ0 shows an effect on the cross sections of the same magnitude.

Understanding the kinematic properties of the tagging jets is of vital impor-
tance when it comes to the selection of VBF events at a collider experiment. The
rapidity separation of the tagging jets in VBF-like reactions is generally larger than
in QCD-induced background processes (see for example [87]). The invariant mass
distributions also peak at higher values. Therefore, to diminish background influ-
ences, both, rapidity separation and invariant mass of the tagging jets, belong to
the most efficient observables to cut on. Figure 3.4 shows the rapidity separation
of the two tagging jets in Hγjj production for inclusive cuts. In the lower end
of the distribution, the shape receives large corrections by additional radiations.
This can happen primarily if the two hardest emissions stem from the same fermion
line. However, these parts are removed when switching to the VBF cuts scenario.
The bulk of the Δyj1j2 distribution is shifted to slightly larger values, although the
NLO-corrected curve follows the LO result closely.

In Figure 3.5, the invariant mass distribution of the two hardest jets is plotted,
again for inclusive cuts. Unlike the relevant QCD background, the mjj distribution
in Hγjj production peaks at high values and falls off slowly. It is only mildly
affected by QCD corrections, which shift the curve to lower values of the invariant
mass.

To analyse the phase space dependence of NLO corrections and scale uncer-
tainties, the variable

δ(O) =
dσ(ξF , ξR)/dO

dσNLO(ξ = 1)/dO − 1 (3.18)
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Figure 3.5: Invariant mass distribution of the tagging jets and corresponding dis-
tribution of the δ function for inclusive cuts.
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Figure 3.6: Transverse momentum distribution of the hardest jet and corresponding
distribution of the δ function for VBF cuts.

is of avail. dσ(ξ)/dO in the numerator can be either the LO or NLO differential
cross section, which is normalised to the NLO distribution with the same scale
parameter choice μ0 and a fixed scale parameter ξ = 1. In the case at hand, the
scale factors ξF and ξR are set to equal values which are varied from 0.5 to 2.0.

Plots for the transverse momenta of the two hardest jets and the corresponding
distribution δ(pTj1/2) are shown in Figures 3.6 and 3.7. It can be observed that
the NLO QCD corrections are positive and in particular considerable in the lower
end of the distribution. For high transverse momenta above a certain value, which
depends on the scale factor, the sign of the corrections changes. The scale uncer-
tainty at LO, which can be inferred as the bands in between the two LO curves
for ξ = 0.5 and ξ = 2.0, increases with the transverse momentum, reaching almost
20% at pTj1 = 200GeV.
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Figure 3.7: Transverse momentum distribution of the second hardest jet and cor-
responding distribution of the δ function within the VBF cuts scenario.

The remaining scale uncertainties for the NLO approximation, on the other
hand, are very stable. The width of the envelope increases with higher transverse
momenta. Over the whole plotted range, the scale uncertainties stay well below
5%.

The rapidities of the tagging jets are depicted in Figure 3.8 and Figure 3.9.
Everywhere but in the central region, the NLO corrections are positive. This is
also the region where the scale uncertainty at NLO attains its highest value of
around 8%.

Another experimentally interesting distribution is the azimuthal angle differ-
ence of the tagging jets ΔΦjj . Although generally taken between 0 and π, its
definition can be extended to an interval from −π to π [87] by

ΔΦjj = Φjηmax − Φjηmin
. (3.19)

Here, Φjηmax/min
is the azimuthal angle of the tagging jet with the larger/smaller

pseudorapidity. This definition is manifestly invariant under the mirroring of the
z-axis, as the sign of the pseudorapidity also changes under this transformation.
The benefit of this modified definition is to distinguish between different CP-mixed
couplings in models beyond the SM [88,89]. In a multi-particle environment beyond
the NLO approximation, even the definition of ΔΦjj needs to be adapted, as
additional splittings conceal the tensor structure of the underlying coupling [90].

In Figure 3.10, the azimuthal angle separation of the tagging jets in Hγjj pro-
duction is depicted. The shape is rather insensitive to NLO corrections, although
the corrections are slightly larger for back-to-back situations. At NLO, the depen-
dence of the scale uncertainties on the value of ΔΦj1j2 decreases. The remaining
uncertainty is about 2% over the whole observable range.

To illustrate the position of a final-state particle or jet X in relation to the
tagging jets without being biased by the boost of the centre-of-mass system, in
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Figure 3.8: Rapidity distribution of the hardest tagging jet and corresponding
distribution of the δ function for VBF cuts.
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Figure 3.9: Rapidity distribution of the second hardest tagging jet and correspond-
ing distribution of the δ function for VBF cuts. In the central region, the results
are numerically unstable as the cross section decreases to zero here.
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Figure 3.11: y∗H distribution as defined in (3.20). The distribution shows a clear
preference for central emission of the Higgs boson.
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Figure 3.12: y∗A distribution as defined in (3.20). Due to the enhancement of the
charged current subprocesses, the photon, just like the Higgs boson, shows a broad
peak in the central region.

VBF-like reactions often the variable

y∗X = yX − |yj1 − yj2|
2

(3.20)

is considered. X is taken to be either the Higgs boson or the photon in Figure 3.11
and Figure 3.12 respectively. Both distributions peak at 0, which is expected in
VBF-like reactions, as they favour this topology. At LO, the scale uncertainties
are largely dependent on the values of y∗H/A. This dependence decreases vastly at
NLO, where the remaining uncertainties appear flat and add up to about 2%.

Summary of part II
As part of the work for this thesis, the cross section for Hγjj production via
vector boson fusion was calculated at NLO QCD. The code of the author was
released publicly as part of the parton-level Monte-Carlo program VBFNLO. It
allows the calculation of cross sections and kinematical distributions within flexible
cuts settings. The VBF approximation made for the implementation is valid if a
large rapidity separation of the tagging jets is required.

Results were shown for two different sets of cuts, one being an inclusive set
and the other requiring realistic VBF selection cuts. In order to estimate the PDF
uncertainty, two different PDF choices were made, namely CTEQ and MSTW. The
calculation has shown that the impact of the PDF choice on the cross section is
small and around 2%. In addition, the program was run with different scale choices
and the scale factors were varied to determine the remaining scale uncertainties of
the total cross section. These have shown to be small and of the order of the PDF
uncertainties.
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Different kinematical distributions were examined to gain information about
the differential influence of the NLO corrections. Depending on the observable and
the region of phase space, corrections can be substantial. The differential scale
uncertainties were also investigated and are reduced drastically compared to the
LO results.

The next part of this thesis is dealing with effects that arise when going be-
yond a fixed order calculation. For this purpose, parton showers are applied to
Hjj production via VBF. New sources of uncertainties show up by the shower
implementations and, when going to NLO, also by the matching scheme that is
used.
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NLO matched Higgs boson
production via vector boson fusion
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Chapter 4

Herwig++ generalities

4.1 Matchbox

Matchbox is an addon to Herwig++. Its main purpose is to deliver a frame-
work for automated NLO matchings. Within Matchbox, both MC@NLO-type and
POWHEG-type matchings can be computed once the matrix elements are set up.
For a convenient implementation of new matrix elements, the generation of Catani-
Seymour dipole subtraction terms is also fully automated within the framework.

To implement a new process, the user has to supply spin and colour correlated
matrix elements as defined in [66] and Born, virtual and real-emission contribu-
tions. The event generator needs to be given information about the Feynman
diagrams of the process and colour flows in the large-NC limit. In its current
version, both can be generated automatically.

Matchbox implements two different ways of interfacing external parton-level
Monte Carlos. First, the user can supply squared matrix elements. The other
option is handing over colour ordered amplitudes, which can be more convenient
depending on the structure of the parton-level Monte Carlo. In the calculation
presented in this study, the first option is chosen and VBFNLO is used to supply
the squared matrix elements.

Within this study, an interface between Matchbox and the parton-level Monte-
Carlo program VBFNLO was established in order to calculate Hjj production
via VBF within different setups. As VBFNLO is written in FORTRAN77 and
Herwig++ in C++, a mixed language interface had to be established. This was
achieved using the framework provided by cfortran.h [91]. Details on the imple-
mentation of the interface are given in Appendix B.

During the work on the project, Matchbox could be tested thoroughly. The
need for many new features such as automatic phase space generation and different
samplers arose during the implementation of Hjj production. As Hjj was one of
the first external matrix elements that were interfaced with Matchbox, several issues
had to be identified and fixed. In that way, the project at hand also served as a
good debugging environment for Matchbox.
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4.2 Samplers
Matchbox comes with an adaptive sampler for Sudakov-type distributions, ExSam-
ple [40]. For cross-checks, two more random number samplers are implemented.
The FlatBinSampler does as the name implies and returns evenly distributed ran-
dom numbers. The third built-in sampler is called ProjectingBinSampler and incor-
porates a VEGAS-like adaption to the integrand. However, the boundaries of the
individual grid cells are not shifted after each iteration. Instead, each cell is evenly
split into two or more new ones to refine the probability distribution.

4.3 Phase space generation
Matchbox also features an automated phase space generator, the TreePhasespace,
based on the phase space decomposition described in Section 2.3. To avoid biases
introduced with the numerical safety cuts, the momenta are not always generated
in a tree-like structure starting from the same incoming parton, but the starting
parton is chosen randomly. The information on the Feynman diagrams of the
process is taken from the Herwig++ internal Tree2toNDiagram class, which every
process has to supply. For processes featuring more than one diagram, more than
one phase space mapping is possible, leading to a multi-channel approach. The
random number density relevant for the channel selection can be adapted by the
sampler, so that for each phase space region, the most contributing channels can
be selected with a higher chance. For debugging purposes, an implementation of
the flat phase space generator RAMBO [92] is also supplied.

As the peak structure of a matrix element changes with the involved particle
masses, the TreePhasespace implementation features different kinds of mappings
for different types of propagators. Always, each dimensionful quantity is given in
units of the partonic center-of-mass energy of the process Ŝ.

The invariant m for a particle with a non-zero decay width Γ and on-shell mass
M can be calculated with a Breit-Wigner mapping. The probability distribution
of the invariant is

pBW(x) =
1

(x− z)2 + |wz| (4.1)

where z is the pole and w the width of the resonance. For the mapping,

IBW
r =

1√
wz

[
arctan

u− z√
wz

− arctan
l − z√
wz

]
(4.2)

and

IBW
0 =

1√
wz

arctan
l − z√
wz

, (4.3)
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are defined with u and l as upper and lower bounds on the invariant to be mapped.
Each parameter is expressed in units of Ŝ,

z =
M2

Ŝ
,

w =
Γ2

Ŝ
,

u =
m2

max

Ŝ
,

l =
m2

min

Ŝ
. (4.4)

Then, the invariant can be generated as

m2

Ŝ
= x = z +

√
w tan

[√
w
(RIBW

r + IBW
0

)]
, (4.5)

using a random number R.
For propagators with vanishing decay width, the situation is slightly more com-

plicated as there can be a singularity involved in the allowed mass range. For mass-
less particles, the amplitude follows a 1/q2 shape. However, in practical situations
this is behaviour is often softened by gauge cancellations. Therefore, it was opted
to map the invariants by a reciprocal function away from the singular region. In the
vicinity of the singularity z, two cutoffs x0 and xc need to be introduced. The value
of both cutoffs can be changed by the user. In the interval [z−xc, z+xc], no invari-
ants are generated whereas within the intervals [z−x0, z− xc] and [z+ xc, z+ x0],
the invariants are mapped using a flat probability distribution

pflat(x) = 1, (4.6)

by

x = l +R(u− l). (4.7)

In the intervals (−∞, z − x0] and [z + x0,∞), where the mapping is following
an inverse probability distribution

pflat(x) =
1

|x− z| , (4.8)

the generation of the invariant works as follows. Again, u and l are the boundaries
of the interval. Let z be the pole outside the interval with z < l, then

I inv,+r = ln
u− z

l − z
,

I inv,+0 = ln (l − z) . (4.9)
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If the pole is above the interval, z > u, then the parameters of the mapping are
defined as

I inv,−r = ln
z − l

z − u
,

I inv,−0 = ln (z − u) . (4.10)

In both cases, the mapping is carried out by

x = z + sign (u− z) exp
[RI inv,±r + I inv,±0

]
. (4.11)

4.4 Herwig++ default shower
The Herwig++ default shower implementation is based on generalised Altarelli-
Parisi splitting functions. These allow for 1 → 2 splittings of the involved coloured
particles. The shower evolution is performed within a Sudakov decomposition of
the involved momenta,

qi = αip+ βin+ q⊥i, (4.12)

where p is the momentum of the initiating parton. n is a lightlike vector, chosen
anticollinear to p, maximising n · p. q⊥i is perpendicular to both p and n. βi is
fixed by the relation

βi =
q2
⊥i + q2i − α2

im
2

2αip · n . (4.13)

As the participating particles are considered to be massless in the shower stage,
momenta cannot be conserved after each splitting. In order to only mildly violate
momentum conservation, the shower algorithm starts with the determination of
the shower variables which characterise each splitting. These are the light cone
momentum fraction z

zi =
αi

αi−1
(4.14)

and the azimuthal angle of the relative transverse momentum

p⊥i = q⊥i − ziq⊥i−1, (4.15)

which is given with respect to the direction of p. The third shower variable involved
is the shower evolution scale q. The evolution variable is chosen differently in
initial-state radiation than in final state radiation. The choices are described in
great detail in [7].

After these are determined, the shower evolution stops and the physical mo-
menta are reconstructed. The outgoing partons are set on shell and the coefficients
of the Sudakov basis are calculated iteratively. As this renders the intermediate
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partons off shell, all momenta of the particles in the final-state shower undergo
a Lorentz transformation which, for final state radiation, is required to leave the
centre-of-mass energy untouched by the shower evolution. The rescaling factor
determining this Lorentz transformation is defined by∑

j

√
p2
j +m2

j =
∑
J

√
k2q2

J + q2J =
√
s. (4.16)

Here, pj are the momenta of the partons involved in the hard matrix element before
the shower, qJ are those after the shower and mJ is the mass of particle J .

For initial-state radiation, the required conditions for the Lorentz boost depend
on if the colour-connected partner of the shower-initiating particle is incoming or
outgoing. In the former case, the rescaling is chosen in a way to preserve both
energy and rapidity of the partonic centre-of-mass system and the boost is applied
to all jets emerging from initial-state radiation. If the hard parton starting the
shower shares a colour line with an outgoing particle in the hard matrix element,
the boost is required to leave the momentum transfer Q2 of the system invariant.

4.5 Dipole shower
Recently, a new shower algorithm was implemented into Herwig++, based on
Catani-Seymour dipoles [62, 93]. It features 2 → 3 splittings, so that momenta
can be conserved in each step of the shower. With the Catani-Seymour splitting
kernels, the MC@NLO matching, described in Section 2.4.2, can be greatly sim-
plified. The dipole shower is ordered in transverse momentum of the emissions, so
within an implementation of the POWHEG matching scheme no truncated show-
ers are needed to model soft wide-angle emissions. As an additional benefit, the
structure of the dipole splitting kernels allows for an almost complete phase space
coverage, unlike in the default shower implementation.

In any implemented process, information about the involved colour lines in
the large NC limit is given to Herwig++. The dipole shower first starts to order
particles connected by the same colour line and their anticolour line into singlet
objects called dipole chains. To achieve this, the process x + y → a + b + c + · · ·
is crossed to x+ y + ā+ b̄+ c̄+ · · · = 0, i.e. an outgoing colour line is interpreted
as an incoming anticolour line.

For each of those dipole chains, all possible dipole splittings together with all
possible emitter-spectator assignments are considered. The algorithm determines
which of the competing splittings is carried to execution by assigning a splitting
scale to each of them with a probability deduced from the relevant Sudakov form
factor. The splitting with the highest splitting scale is actioned, leading to a modi-
fication of the dipole chain it is emitted from. Among the possible modifications is
also the breakup of a chain, in which case both parts of the chain undergo separate
evolution from this point on.

The dipole shower proceeds on the same chain until the chosen splitting scale is
below the infrared cutoff, typically around 1GeV. Another dipole chain is chosen
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�pa pj → �
qa

q

qj

Figure 4.1: Initial-final state splitting in the non-collinear scheme. Both emitter
and emission pick up transverse momentum.

then and undergoes the shower evolution until no more splittings above the cutoff
are found. This is pursued until all dipole chains were processed and the algorithm
is terminated.

4.5.1 Splitting schemes

There are different roads that can be chosen to implement Catani-Seymour split-
tings with an initial state emitter a and final state spectator j. Reviewing the
kinematics in [66], the generated momenta can be partitioned in multiple ways
which differ by Lorentz transformations. One of the possibilities is to assign no
transverse momentum to the spectator at all. Then, the transverse momentum
has to be balanced by the emitter and its emission. This option shall be called
non-collinear scheme in the following and is sketched in Figure 4.1. In this case,
the kinematics of the splitting (pa, pj) → (qa, q, qj) can be parameterised with

x =
pa · pj

(pa − pj) · qa , u =
qj · qa

(pa − pj) · qa (4.17)

as

qa =
1− u

x− u
pa +

u

x

1− x

x− u
pj +

1

u− x
k⊥, (4.18)

q =
1− x

x− u
pa +

u

x

1− u

x− u
pj +

1

u− x
k⊥, (4.19)

qj =
(
1− u

x

)
pj . (4.20)

The other extreme of distributing the generated transverse momentum is to
assign it to the spectator solely. This situation is depicted in Figure 4.2. The
emitter’s momentum stays collinear to its momentum before the emission in this
case. This is what will be called collinear scheme from now on. It can be parame-
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�pa pj → �qa
q

qj

Figure 4.2: Initial-final state splitting in the collinear scheme. The emitter stays
collinear after the emission.

terised by x and u as defined in (4.17), leading to the momenta

qa =
1

x
pa, (4.21)

q =
(1− x)(1− u)

x
pa + upj + k⊥, (4.22)

qj =
(1− x)u

x
pa + (1− u)pj − k⊥, (4.23)

after splitting. Here, the indexing is kept the same as in the non-collinear scheme
described above.

In the non-collinear scheme, the initial-state parton picks up transverse momen-
tum and is no longer on the beamline. The event needs to be realigned to render
the incoming momenta on the z-axis. To this end, the whole event is Lorentz
transformed. The required transformation consists of a boost into the centre-of-
mass system of the incoming partons after termination of the shower, which yields
them to be anticollinear to each other, but not necessarily along the beamline. To
provide that, an additional rotation of the event needs to be performed. Lorentz
transformations involved in the realignment are not necessarily small.

For one splitting of an initial-final dipole, the collinear and non-collinear scheme
produce identical results. For a realistic setting, they differ as the realignment in
the non-collinear scheme is applied to the whole event only once after the termi-
nation of the shower. The situation in the collinear scheme can be interpreted as
boosting the involved momenta in each splitting.
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Chapter 5

Preliminaries

During the past decades, many processes were examined to find ideal potential
signals for a Higgs boson at the LHC. Vector boson fusion is one of the keystones
in both ATLAS [94] and CMS Higgs searches [95].

The basic principles that make the VBF processes promising for Higgs searches,
namely the large rapidity separation between the tagging jets and the restricted
colour flows leading to suppressed radiation in the rapidity gap, are the ones that
are also interesting from a theorists point of view when it comes to parton showers.
The colour flows in the matrix elements result in a challenging environment, there-
fore Hjj production is a good starting point for a comparison of the Herwig++
default and dipole shower implementations as well as the two matching schemes
supplied by the Matchbox addon, MC@NLO and POWHEG.

5.1 Setup of the analysis
In the simulation of a parton shower, two different stages of cuts appear. Before
an event is showered, generation cuts are applied to the partons in the hard matrix
element which is evaluated. For an NLO matrix element, the generation cuts are
of course applied to already recombined jets, as the Catani-Seymour algorithm
requires an infrared and collinear safe definition of final state objects. Generation
cuts decide if the event even enters the shower algorithm at all or gets sorted
out beforehand. Another set of cuts can be applied after the event generation and
works on recombined jets. These are called analysis cuts as they need to be fulfilled
by an event to enter the analysis routines.

For a realistic analysis, generation cuts should always be looser than the analysis
cuts as events might migrate over the cut borders in both ways. Too soft generation
cuts, on the other side, lead to an increasing need for computing power, as the time
consuming event generation needs to be run for many events which are discarded.

In the following analyses, wherever “results after shower” are mentioned, no
effects of hadronisation, decays of instable particles or underlying event simula-
tion enter the results, as this is beyond the scope of this study. All parts of the
simulation but the shower were switched off.

63



CHAPTER 5. PRELIMINARIES

After the simulation, a jet algorithm is run on the particles in the final state.
The default that is used here is the kT -jet algorithm, as implemented by the FastJet
package [96, 97]. The jet resolution parameter is set to Dcone = 0.7. The recombi-
nation of momenta takes place in the E-scheme, which means simply adding the
four momenta.

5.1.1 Analysis cuts

A recombined object is called a jet if it features a transverse momentum of

pT,j > 20GeV (5.1)

and lies within the rapidity range

−5 > yj > 5. (5.2)

An event needs to feature at least two jets to be analysed.
The matrix element for Hjj production via vector boson fusion that is employed

for this study makes use of the VBF approximation, which neglects t- and u-
channel interferences. Therefore, the tagging jets are required to be separated in
pseudorapidity by at least

|ηj1 − ηj2| > 4.0. (5.3)

In addition, they need to reside in different detector hemispheres

ηj1 · ηj2 < 0 (5.4)

and exhibit a large invariant mass

mj1j2 > 600GeV. (5.5)

5.1.2 Generation cuts

For NLO matrix elements, the generation cuts are not applied to partons but to al-
ready recombined objects, as a jet algorithm is involved. To avoid confusion, these
(possibly) recombined objects are subsumed under the term recombined partons
in this section. The generation cuts are as follows. The matrix element is required
to feature at least two recombined partons with transverse momenta larger than

pT,p > 15GeV (5.6)

and reside in the rapidity range between

−5.5 < yp < 5.5, (5.7)

which both are slightly weaker requirements as in the analysis cuts. The only
additional property that has to be met is a pseudorapidity separation of

|ηp1 − ηp2| > 2.0. (5.8)

Both the requirements for different detector hemispheres and for a minimum in-
variant mass of the tagging jets are dropped at this stage of the simulation.
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5.1.3 PDFs and other parameters

A hadronic centre-of-mass energy of 8TeV is assumed throughout the analysis.
For LO runs, the CTEQ6L1 [82] PDFs were employed. Wherever NLO results are
shown, the CTEQ10 PDF set was used [83]. Cross sections and distributions were
calculated using weighted events with the FlatBinSampler without any adaption to
the integrand in order to increase stability. The phase space generation was carried
out within Matchbox by the TreePhasespace generator. The cutoff parameters were
chosen as xc = 10−6 and x0 = 10−2.

The factorisation and renormalisation scales are given as products of a basic
scale parameter μ0 and scale factors ξF/R,

μ2
F = ξFμ

2
0, μ2

R = ξRμ
2
0. (5.9)

The scale factors were set to unity unless stated otherwise. The basic scale pa-
rameter μ0 was chosen as the maximum transverse momentum of the recombined
partons in the matrix element,

μ0 = max(ppj). (5.10)

All results in the following section show the production of a real Higgs boson.
Its decay was not simulated, neither was a branching ratio included in any of the
cross sections or plots. Wherever results employing the dipole shower are presented,
the non-collinear emission scheme was used as defined in Section 4.5, unless stated
otherwise.

5.2 Validation
The implementation of the matrix element interface was tested by comparing
the interfaced calculation within Matchbox against the results obtained from the
VBFNLO standalone program. The leading-order integrands were compared for a
representative set of phase space points with full agreement.

Both programs were also compared at the level of total cross sections. They
agree within the numerical errors of a few permille. Distributions calculated with
the two programs are also in agreement (see Figures 5.1-5.3).

As an important part of this work consisted of the usage of the automated
dipole subtraction procedure in Matchbox, which constructs the needed insertion
operators as described in Section 2.4.2, the relevant subtraction terms had to be
validated as well. For two of the included subprocesses and representative ob-
servables,

∑
σDipole/σReal is plotted in Figure 5.4 against relevant observables in

which the real emission contribution becomes singular. These are the energy of
the gluon and the invariant mass of the gluon and one of the outgoing quarks.
For small values on the x-axis,

∑
σDipole/σReal is expected to converge to unity, as

the dipole contribution should equal the real emission contribution in the singular
region. Figure 5.4 shows that this is indeed the case. The convergence behaviour is

65



CHAPTER 5. PRELIMINARIES

0.8
1

1.2

0 100 200 300 400 500
p⊥j1 [GeV]

0

0.002

0.004

0.006

0.008

0.01

0.012

1/
σ
d
σ
/d

p ⊥
j1

[1
/G

eV
]

VBFNLO
Matchbox

0.8
1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
yj1

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

1/
σ
d
σ
/d

y j
1

VBFNLO
Matchbox

0.8
1

1.2

0 50 100 150 200 250 300
p⊥j2 [GeV]

0

0.005

0.01

0.015

0.02

0.025

1/
σ
d
σ
/d

p ⊥
j2

[1
/G

eV
]

VBFNLO
Matchbox

0.8
1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
yj2

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

1/
σ
d
σ
/d

y j
2

VBFNLO
Matchbox

0.8
1

1.2

0 1 2 3 4 5 6 7 8 9 10
yjj

0

0.05

0.1

0.15

0.2

0.25

0.3

1/
σ
d
σ
/d

y j
j

VBFNLO
Matchbox

Figure 5.1: Comparison of Matchbox and VBFNLO for Hjj production at leading
order. For each of the observables, the ratio dσMatchbox/dσVBFNLO is plotted.
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Figure 5.2: Comparison of Matchbox and VBFNLO for Hjjj production at leading
order. For each of the observables, the ratio dσMatchbox/dσVBFNLO is plotted.
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Figure 5.3: Comparison of Matchbox and VBFNLO for Hjj production at NLO.
The binwise statistical errors are not handled properly at NLO, so they were left
out. The convergence behaviour for a plain NLO calculation within Matchbox is
worse than within VBFNLO, as Matchbox evaluates each subprocess separately,
which makes it harder to obtain the required accuracy.
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Figure 5.4:
∑

σDipole/σReal for some of the subprocesses. In the left panel, the
energy of the emitted gluon is plotted on the horizontal axis. The right panel
shows the convergence behaviour as a function of the invariant mass of the outgoing
d quark and the gluon. The filled area is the area between the minimum and
maximum value of

∑
σDipole/σReal in each bin.
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equally good for hundreds of other subprocesses and observables, which were also
checked.

The newly implemented phase space generator TreePhasespace was tested by
integrating a matrix element which was set to a constant value. Within the ac-
quired accuracy, it delivered the same phase space volume as the implementation
of RAMBO. As RAMBO generates physical momenta with a flat distribution in
phase space and uses a higher-dimensional random number space for this, it is
considerably slower than other phase space generators.

The comparison of cross sections obtained with the TreePhasespace against
RAMBO was not possible in a reliable way. The central-limit theorem states that
Monte Carlo estimates converge to a normal distribution around the true value. In
this way, the uncertainty of the calculation can be estimated. When using RAMBO
however, the convergence was so slow that a robust error estimate of the result was
not achievable in a feasible time. As the results acquired with Matchbox, which
uses the TreePhasespace generator, agree with the ones obtained from VBFNLO,
which uses its own phase space generator, TreePhasespace was already checked with
the comparison against VBFNLO. In Figure 5.5, results from 1000 runs are plotted.
The histograms represent the frequency with which a cross section in the respective
bin is obtained. It is clearly visible that for a flat sampling, the TreePhasespace
shows the best convergence behaviour of the three phase space generators.

It can also be noticed that RAMBO is far away from being normally distributed
for the case of 225 phase space points. Obviously, the central-limit theorem can-
not be applied in this case because the integration with RAMBO converges too
slow. A side effect is that the error estimates gained within the calculation cannot
be trusted. For the case at hand, they were largely underestimated. The lesson
that can be learned from this is a very general one that can be extended to other
processes: Care has to be taken when doing a Monte-Carlo integration. The ap-
plicability of the central-limit theorem and the validity of the error estimation are
sometimes taken for granted, but one has to keep in mind that they either need a
sufficiently large number of phase space points or a good integrator.

In the current section, it was shown that the established interface between
Matchbox and VBFNLO is working and that cross sections and distributions ob-
tained within the two programs match. The Catani-Seymour dipole subtraction,
which is carried out within Matchbox, converges and the subtracted results are
finite. It was shown that TreePhasespace, the phase space generator of Matchbox,
delivers the same cross sections as the VBFNLO-internal phase space generator. In
the case of a flat sampling of random number space, TreePhasespace has proven
to have the better convergence behaviour. As the validity of the implementation
has been evidenced, the next chapter deals with first results and focuses on the
comparison of the two shower implementations within Herwig++.
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Figure 5.5: Inclusive cross sections for uu → uugh at a 14TeV collider. Each
graph corresponds to the binned results from 1000 runs with different seeds using
a flat sampling of random numbers. The calculations for the upper two plots were
running 225 phase space points whereas each run in the lower plot comprises 230

points. TreePhasespace shows a faster convergence towards the true cross section
than the VBFNLO phase space. RAMBO is not able to compete with any of them.
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Shower effects on Hjj production at
LO

The momenta which are generated within a parton shower depend on the details of
its implementation. Different splitting kernels may be used, as the only property
that they are bound to is the correctness within the soft and collinear limits.
The basic shower properties of the two shower implementations available within
Herwig++ were reviewed in Sections 4.4 and 4.5. There, it was explained that
within the dipole shower, there is still a freedom in the distribution of the transverse
recoil, which has to be observed.

Results for Hjj production in a parton shower approach were already examined
before, e.g. in [98]. Therefore, the following chapter focuses on differences between
the Herwig++ default shower and the new dipole shower. These disparities may
also be interpreted as an estimate of the systematic uncertainties that arise in the
LO plus parton shower calculation.

6.1 Tagging jet kinematics
The following results show Hjj production via vector boson fusion in the setup as
described in Section 5.1. As a reminder, note that all simulation steps beyond the
shower were turned off.

In the LO calculation already two outgoing partons are present. Due to the
limited colour structure of the Hjj matrix element, the parton shower emissions are

Shower Cross section σ[fb]

Dipole shower 400.4
Default shower 401.6

Table 6.1: Cross sections obtained with the two showers.
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Figure 6.1: Transverse momentum distributions (upper row) and rapidity distri-
butions (lower row) of the two tagging jets.

expected to be close to the shower-initiating partons. Hence, observables regarding
the two hardest jets should only experience a minor alteration. That this is indeed
the case is depicted in Figure 6.1. There, the transverse momenta and rapidities
of the tagging jets are shown. The two shower algorithms both hardly modify
the shape of the distributions, but only the cross section, which drops about 3%.
This drop arises because events that fulfil the cuts at parton level may radiate in
forbidden regions and are rejected. An example for such a behaviour is a parton
with a transverse momentum just above the pT cut resulting in two jets, each below
the minimum pT . Such an event will be rejected with a high probability as it is
unlikely that the other remaining parton will produce two jets with the required
rapidity separation. The cross sections obtained with the two shower algorithms
are given in Table 6.1. The largest difference between the shower algorithms in
Figure 6.1 arises in the tail region of the transverse momentum of the hardest jet.
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Figure 6.2: Distribution of the absolute value of the pseudorapidity difference of
the two hardest jets. In the left plot, all graphs are normalised to their respective
cross section while in the plot on the right, the graphs are normalised to unity.

The dipole shower generates harder jets than the default shower, which is especially
visible in the tail region. Here, the distribution of the dipole shower complies with
the LO parton level result while the default shower lies below.

In the left plot in Figure 6.2, the pseudorapidity separations of the tagging jets
are plotted. The right panel shows the same distribution, but here each of the
graphs was normalised to unity to enhance the visibility of the shape alteration.
Both shower implementations tend to lose more events with lower pseudorapidity
separations than with higher ones. The explanation for this behaviour is found
within the stringent cut on Δηj1j2: Shower-initiating partons in the hard matrix
element which are close to the cut border have a higher probability to result in a
situation after the shower, which is cut away.

On the other hand, migrations into the other direction can also happen. An
event with a pseudorapidity separation Δηp1p2 < 4 of the partons in its matrix
element can receive a kick by the shower, leading to an event topology with jets
that are allowed to pass the analysis cuts. To assess if the loss or the gain of such
migration effects predominates, both effects have to be quantified. The amount of
gained events can be enquired by accessing the information of the parton kinemat-
ics in a run with cuts as described in Section 5.1. For each event that passes the
analysis cuts, not only the post-shower jets are histogrammed but also the corre-
sponding matrix element kinematics. If the partons had not passed the analysis
cuts, but the jets do, the event can be considered as gained by the shower.

To quantify the loss of events, another strategy needs to be followed. A new
simulation needs to be done with generation cuts set equal to the former analysis
cuts (i.e. (5.1) to (5.5) applied to the hard partons). In this run, the analysis
cuts are completely inclusive so that every possible post-shower configuration is
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Default shower Dipole shower

Observable Loss Gain Loss Gain

ηj1 · ηj2 2.3% 0.3% 1.6% 0.2%

Δηj1j2 2.6% 2.4% 2.1% 3.2%

mj1j2 7.1% 5.4% 6.5% 6.0%

Table 6.2: Fractions of events that are lost and gained by the shower algorithm.
These are defined by normalisation of the respective cross sections in the curves of
Figure 6.3 to the cross section present after the shower with cuts as described in
Section 5.1.

histogrammed. If the generated jets are outside of the former analysis cuts, the
event would have been lost within the normal setup.

Comparing the resulting histograms in regions which are forbidden by the orig-
inal analysis cuts of (5.1) to (5.5), conclusions concerning the net loss or gain can
be drawn differentially in each variable. Especially interesting observables to in-
vestigate here are the ones which are related with the VBF selection cuts, namely
pseudorapidity separation, pseudorapidity product and invariant mass of the tag-
ging jets, as experience has shown that these are heavily influenced by shower
effects.

The results for the observables concerning pseudorapidity characteristics are
shown in Figure 6.3 for the default shower. The “gain” curves, as defined above,
comprise all hard matrix elements which are found to be in accordance with the
applied analysis cuts after the shower. In contrast, the “loss” curves are those
where the hard matrix element fulfils the analysis cuts, but which are modified by
the shower in a way so that they move out of the allowed kinematical region.

The magnitude of the effect is still small in both cases and of the order of a
few percent, depending on the examined observable and shower. The percentage
of lost and gained events, defined as lost and gained cross sections normalised to
the total cross section after the shower, is shown in Table 6.2.

When examining the distribution of ηj1 · ηj2 in Figure 6.3, it is obvious that
an appreciable number of events is lost because it shows jets in the same detector
hemisphere after the shower. The distribution of lost events peaks at a value
between 2 < ηj1 · ηj2 < 4, depending on the shower algorithms used. Such a
prominent peak away from the cut border is a strong hint for a behaviour which not
only moderately modifies the kinematical structure of the underlying hard matrix
element but rather reshuffles the event topology. A glance at the pseudorapidity
separation Δηj1j2 of the lost events hardens the suspicion. The distribution of
Δηj1j2 is split into two distinct regions: A narrow peak towards the cut border of
Δηj1j2 = 4 and a broader part with a local maximum around Δηj1j2 = 0.7, a value
which corresponds to the cone parameter in the jet algorithm that was used.
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Figure 6.3: Gain and loss of events, plotted differentially in the pseudorapidity
related observables Δηp1p2 and ηj1 · ηj2. An event is defined as gained if its hard
matrix element would pass the generation cuts, but not the analysis cuts. Contrari-
wise, an event is defined as lost if its hard matrix element passes the analysis cuts,
but its showered state does not. The left row of plots shows results obtained with
the default shower implementation while in the right row, dipole shower results are
shown.
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Figure 6.4: Dijet invariant mass distribution of the tagging jets.

The observed behaviour of reshufflings in observables concerning the two tag-
ging jets can be easily explained by the fact that these are observables which are
vulnerable to the ordering of the jets in transverse momentum. It is clear that if
the two hardest jets emerge from the same parton in the primary matrix element,
this ordering is disturbed. The fact that such a situation usually results in two jets
close in the legoplot plane also explains the peak at Δηj1j2 = 0.7.

In Figure 6.3, both shower implementations show qualitatively the same char-
acteristics, but differ quantitatively. The dipole-showered results suffer less from
a reordering of jets, but seem to have a larger possibility to modify the directions
of the primary partons. Looking at the Δηj1j2 distributions, the number of gained
events by the shower is larger for the dipole shower than for the default shower.

The dijet invariant mass distribution of the tagging jet pair, plotted in Fig-
ure 6.4, shows a deviation in the high-mass range. The LO matrix element produces
less events in this tail region. The question arises, if the shower itself produces these
high mass clusters or if this is a side effect of events migrating over cut borders in
another observable, leading to cross correlations.

To clarify this, let us imagine high mass diparton invariant masses would occur
strongly peaked in starting configurations with parton pseudorapidity separations
just below 4. As we have seen, such a configuration is likely to finish the shower
with jets of Δηj1j2 > 4. Even if the shower modifies the invariant mass present
in the partonic configuration only negligibly, such a correlation would lead to a
strong enhancement in the mj1j2 distribution.

Figure 6.5 shows that the deviation does not stem from such a cross correlation.
There, the dijet invariant mass distribution is depicted as calculated within the
leading-order approximation together with the partons in the hard process. The
latter were collected as the “gain” graphs described within the previous sections, i.e.
for each showered event which passes the analysis cuts, the partonic observable was
histogrammed using the kinematics in the underlying hard matrix element. The
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Figure 6.5: Dijet invariant mass distribution for the partons in the hard matrix
element.

three graphs are indistinguishable in the high-mass region, indicating that the
departure of the showered calculations from the leading-order prediction, at least
to some extent, stems from the shower.

Distributions of the gained and lost events in the dijet invariant mass are dis-
played in Figure 6.6. The graphs exhibit the same characteristics that were already
present in the rapidity separation of the tagging jets. The distribution of the lost
events is a superposition of two peak structures, the lower one resulting presumably
from events where the tagging jets after the shower stem from the same parton.
Again, the dipole shower crops up as being somewhat less affected by these kinds
of splittings than the default shower implementation.

6.2 Additional jets
In the LO plus parton shower calculation, the third hardest and softer jets are solely
generated by the shower algorithm, although the evolution of parton showers is of
course heavily influenced by the colour structure of the matrix element. Differences
in the shower algorithms show up in these higher order emissions. The quality of
shower approximations can be compared by checking their predictions against the
results from the parton-level NLO calculation, which includes the possibility of
three jets at fixed order.

The first thing that can be noticed when regarding the transverse momentum
and rapidity distributions of the third jets in Figure 6.7 is that the three-jet cross
sections of the approximations differ considerably. The dipole showered calculation
has the largest cross section, followed by the NLO results. The default shower yields
the lowest cross section.

77



CHAPTER 6. SHOWER EFFECTS ON HJJ PRODUCTION AT LO

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600

dσ
/d

m
j1

j2
[fb

/G
eV

]

mj1j2 [GeV]

invariant mass mj1j2

Loss, default shower
Gain, default shower

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600
dσ

/d
m

j1
j2

[fb
/G

eV
]

mj1j2 [GeV]

invariant mass mj1j2

Loss, dipole shower
Gain, dipole shower

Figure 6.6: Gained and lost events by the cut on a minimum invariant mass of the
tagging jets. The left panel shows the results of the default-shower calculation.
For the graphs in the right panel, the dipole shower was employed. The default
shower loses more events than the dipole shower, especially in the central region
with 100GeV < mj1j2 < 300GeV.

Note that in [99], where a similar calculation with the default shower was done,
but with a decaying Higgs boson into a τ+τ− pair, the situation is different. There,
additional cuts on the jet-τ legoplot separation influence the calculations unequally,
leading to different proportions of the three-jet cross sections.

To explain the different cross sections of the two shower algorithms in the case
at hand, the almost complete phase space coverage of the dipole shower has to be
noted [62]. This results in a higher chance of hard emissions at a relatively large
angle than what can be accomplished by the default shower. As only emissions
sufficiently far away from the primary parton can be resolved separately by the jet
algorithm, the dipole shower therefore has a larger three-jet cross section than the
default implementation.

The different shapes of the rapidity distributions in Figure 6.7 can be explained
by the fact that shower emissions tend to fill the phase space regions between
colour-connected partons. This behaviour is sketched in Figure 6.8. Together with
the distinct topology in weak-boson-fusion events with widely separated tagging
jets, this typically results in third jets with large absolute rapidity values.

As the Higgs boson resides in the gap between the tagging jets, the third jets in
a shower simulation should end up further away from it than predicted by the NLO
calculation. In Figure 6.9, the distribution in the absolute value of this separation

Δyhj3 = |yh − yj3| (6.1)

is plotted. As expected, the shower curves peak at larger rapidity separations.
However, in the vicinity of the Higgs boson, the two shower algorithms lead to the
same differential cross section. As the Higgs boson is supposed to be central in the
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Figure 6.7: Transverse momentum and rapidity distributions of the third hardest
jet.

Figure 6.8: Shower emitting into the angles between colour-connected partons.
The grey blob delimits the hard matrix element from the shower.

detector, the situation is comparable to the rapidity graph in Figure 6.7, where in
the central region the shower algorithms also coincide.

The rapidity offsets of the third jet to the tagging jets in Figure 6.10 reveal
that both showers in general react very differently. When employing the default
shower, the third jet is slightly more frequently close to the hardest jet. With the
dipole shower, the situation is reversed and an abundance of events is generated
with the third jet in the proximity to the second hardest jet.
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Figure 6.10: Pseudorapidity separation distribution of the tagging jets from a third
jet.
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6.3 IF splitting schemes
As described in Section 4.5, it is unclear how the transverse momentum generated
by initial-final dipole splitting kernels needs to be distributed. There is no first
principle that guides this choice. The two options implemented in Herwig++ are

• The non-collinear scheme: The transverse momentum is evened out between
the initial-state emitter and the final-state emission. This scheme is used by
default.

• The collinear scheme: All transverse momentum is generated in the final-
state only and distributed to emission and spectator. The emitter receives
no pT at all.

For a single emission, the collinear and non-collinear schemes only differ by a
boost, which is applied after termination of the parton shower during the realign-
ment phase anyway in order to render the incoming hadrons collinear to the beam
pipe. For more than one emission, however, the results of the two splitting schemes
can differ significantly.

Obviously, the non-collinear scheme generates more transverse momentum for
the incoming hadrons than the collinear scheme. This affects the magnitude of
the realignment boost and thereby, in principle, also all event observables. How-
ever, the distributions are in general very stable when switching between the two
schemes. Especially for the two tagging jets, there is no visible difference between
the schemes in Figure 6.11, where the transverse momenta and rapidities of the
tagging jets are plotted.

Also visible in Figure 6.11 are the rapidity and transverse momentum distri-
bution of the third jet. Note that the three-jet cross sections in the two splitting
schemes differ. In the yj3 plot, they differ solely in the outer regions, where the
third jet is supposed to be close to one of the two tagging jets. A similar behaviour
can also be investigated in the legoplot separations of the third jet to the first and
second jet in Figure 6.12. Obviously, distributions are modified mostly in regions
with adjacent jets.

Depicted in Figure 6.13 are the pseudorapidity separations of the tagging jets
and the third jet. There are larger separations within the non-collinear scheme. As
there is more transverse momentum produced for the initial-state hadrons when
the non-collinear scheme is applied, the realignment boost has a larger magnitude
in this case. Examining Figure 6.13, it can be speculated that this boost has the
tendency to shift the event topology towards larger rapidity separations.

The result of this behaviour stands out more prominently when looking at the
azimuthal angle separations of the third jet to the leading ones in Figure 6.14.
In the plots, not only the two different splitting schemes are shown but also the
default shower and NLO results are given as a reference. The observable range can
be divided into two parts: The outer and inner regions with |Δφjj| > Dcone and
|Δφjj| < Dcone, respectively.
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Figure 6.11: Transverse momentum and rapidity distributions of the three hardest
jets.
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Figure 6.12: Legoplot separation distribution of the third hardest jet and the two
tagging jets.
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Figure 6.13: Pseudorapidity separation distributions of the third hardest jet and
the two tagging jets.
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Figure 6.14: Azimuthal angle separation distribution of the tagging jets and the
third jet.

In the outer region, the chosen splitting scheme does not show much of an
influence. The default shower, however, undershoots the dipole shower by far
there. This can be explained by the restricted phase space of the default shower.
With an increasing azimuthal angle separation, the kinematics tend to move away
from the region where the default shower is allowed to emit into.

In the inner region, default shower and the dipole shower with the collinear
scheme lead to almost the same results and are much closer to the NLO curve.
Using the dipole shower with the non-collinear splitting scheme deviates much from
this expectation and results in substantial more emissions in the central region.

The explanation of this behaviour is tied closely to the jet algorithm. Radiation
close to the tagging jets will tend to be assigned to them, while only radiation at
wider angles will be defined as a separate jet. The realignment boost does not
leave distances in the legoplot plane invariant, so that an emission which would
have been absorbed by one of the tagging jets may end up with a larger separation,
forming its own jet.

A side effect of this behaviour is a modification of the pT distributions of the
tagging jets in the non-collinear splitting scheme if the third jet lies in the central
region of ΔΦjj . This is depicted in Figure 6.15. It is clearly visible that there is a
tendency in the non-collinear splitting scheme to produce more soft tagging jets if
a third jet is nearby, while in the high pT region, both splitting schemes coincide.
These soft jets are just the jets which have lost pT by radiation that is forming its
own jet in the non-collinear scheme. In the collinear scheme on the other hand, the
radiation is recombined into the tagging jets so that they do not lose transverse
momentum, as the effects of the realignment boost are much smaller.

From Figure 6.14, it looks like the collinear scheme seems to be the correct
way to treat initial-final splittings, as it deviates less from the NLO prediction.
However, this cannot be concluded without comparison to experimental data.
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Figure 6.15: Transverse momentum distributions of the tagging jets if the third jet
is close (left column) in azimuthal angle separation Δφjj. The right column shows
the cases where the third jet is either not existent or has a larger Δφjj separation
to the relevant tagging jet. The shapes are identical if the third jet is far away.
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6.4 Summary of leading-order effects
Summarising the shower effects that arise within the LO showered calculation, it
has to be mentioned that the jets already present within the matrix element calcu-
lation are hardly affected. This is especially true for the dipole shower. The default
shower leads to a slight modification of the transverse momentum distribution of
the hardest jet. In the high-pT region, it fell below the fixed order prediction. The
total cross section is affected by events migrating over cut borders.

The distributions of the third hardest jet, however, are very dependent on the
details of the shower implementation. The dipole shower has proven to result in
third jets with a larger transverse momentum than the default shower. In addition,
the dipole shower produces a larger three-jet cross section than the default shower,
which is closer to the NLO parton level prediction. Due to the better phase space
coverage, the distributions of the dipole shower are closer to the NLO curves than
the default showered results. However, there are regions where they do not comply
completely. This is expected, as both showers are only correct within the regions
of soft and collinear singularities, where the NLO calculation lacks predictivity.

The two different splitting schemes of the dipole shower show almost no in-
fluence on the most observables that were examined. When investigating the
azimuthal angle separations of the tagging jets and the third jet, a prominent
discrepancy shows up between the two. The non-collinear scheme leads to strongly
increased population of the central regions of ΔΦj1j3 and ΔΦj2j3. This could be
accredited to a combined effect of the realignment boost, leading to larger legoplot
separations of the emissions, and the jet algorithm which could then resolve them
as separate jets.
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Chapter 7

NLO-matched Hjj production

After a discussion of effects occurring within a LO showered calculation in the
last chapter, the current chapter focuses on the features arising in NLO matched
calculations. Special care will be taken to work out the differences between the
MC@NLO and POWHEG matching schemes. The two schemes were described
in Section 2.4.2. The basic difference is that in POWHEG, the shower algorithm
carries out the real emissions and therefore, only matrix elements with Born kine-
matics need to be showered. In MC@NLO, both born and real-emission kinematics
matrix elements are showered, but no adapted Sudakov form factor is needed to
handle the real emissions. Within the Matchbox framework, both schemes can be
carried out exactly with the dipole shower. Comparisons with the results from the
LO plus dipole shower section will be drawn wherever necessary.

7.1 Tagging-jet properties
The influence of the MC@NLO and POWHEG matching schemes on the tagging
jet kinematics is examined within this section. As seen in the previous chapter,
the pure shower does not show a large impact here. As the LO approximation
already describes the shapes of the observables with a reasonable precision, only
minor alterations are expected when incorporating the NLO corrections within the
shower.

Transverse momenta and rapidities of the tagging jets are shown in Figure 7.1.
The differential distribution of σ/σNLO is plotted in Figure 7.2. Within MC@NLO,

Matching scheme Cross section σ[fb]

MC@NLO 422.1
POWHEG 422.4

Table 7.1: Cross sections obtained with the different matching schemes.
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Figure 7.1: Transverse momentum distributions (upper row) and rapidity distri-
butions (lower row) of the two tagging jets.
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Figure 7.2: Differential distribution of σ/σNLO in dependence of the tagging jet
transverse momenta.

more transverse momentum is drained from the hardest tagging jet than within
POWHEG. As with the LO showered results, migration effects lead to a decreasing
cross section after the shower. The POWHEG matching scheme shows about the
same cross section as MC@NLO for the case at hand (see Table 7.1). As expected,
both matching schemes hardly affect the shape of the distributions.

As motivated in Section 6.2, the colour structure of vector boson fusion enforces
shower emissions mainly in regions between the beamline and leading partons in the
hard matrix element. The result is a marginal shift of the rapidities of the leading
jets to larger values as compared to the unshowered calculation in Figure 7.1,
where the rapidities of the tagging jets are depicted together with their transverse
momenta.

In Figure 7.3, the pseudorapidity separation distribution is plotted. Examining
the right panel, where the distributions are normalised to unity, it is noticeable
that, for both matching schemes, the peak is shifted to slightly larger values of
Δηj1j2 by the parton shower, which is also a consequence of the shower emission
topology.

The transverse momentum distribution of the third jet, which is plotted in
Figure 7.4 alongside the corresponding rapidity distributions, reveals POWHEG
to produce softer and in general less additional radiation than MC@NLO. In
W+W−jj production via vector boson fusion, the same behaviour was described
in [100], where the hard matrix element was interfaced with POWHEG-BOX [101]
to PYTHIA. This seems to be a contradiction to some previously published results
from other groups [102, 103], which will be reviewed in the following.

In [102], which describes POWHEG matching in Higgs production via gluon
fusion together with a DGLAP-based parton shower, the Higgs transverse momen-
tum was examined. At LO, the transverse momentum vanishes due to momentum
conservation, but at NLO, the additional jet recoils against the Higgs, leaving it
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Figure 7.3: Distribution of the absolute value of the pseudorapidity difference of
the two hardest jets. In the plot on the right, the graphs are normalised to unity.
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Figure 7.4: Transverse momentum distribution of the third hardest jet. The left
and right panel show the same distribution, the former on a logarithmic scale and
the latter on a linear scale.
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Figure 7.5: Transverse momentum distribution of the third hardest jet. Analysing
the curves only with the POWHEG emission reveals that subsequent radiation is
responsible for a substantial drop of the differential cross section in the whole pT
range.

with a non-zero pT . In the publication, it was shown that the generated transverse
momentum in the POWHEG scheme was larger than both the MC@NLO and
plain NLO results in the high pT region. It was advocated that this behaviour is a
result of NNLO terms that arise when exponentiating the B̄ function (2.45) with
the parton shower. For large transverse momenta of the Higgs boson, the NLO
and matched calculations disagree by terms

B̄(ΦRad)

B(ΦRad)
= 1 +O(αS). (7.1)

It was also demonstrated in [102] that the NNLO result supports the POWHEG
prediction.

The same behaviour was also seen in [103], where, amongst others, also results
from gluon fusion processes are shown, which were obtained using a dipole shower.
Though, the authors of [103] oppose the previous study [102] in the interpretation,
holding the unrestricted phase space of the POWHEG shower responsible.

Reviewing these previous results, the reduced three-jet cross section in the
POWHEG matching scheme in W+W−jj and the Hjj production case at hand is
indeed a surprise at first glance. However, in both previous studies [102] and [103],
the observable was an inclusive quantity. In VBF processes on the other hand,
additional radiation together with the phase space cuts which are applied to the
event may have a large influence just by purely kinematical effects. In Figure 7.5,
the pTj3 distribution is plotted in the POWHEG matching scheme without any
additional emissions. It shows that the three-jet differential cross section is much
larger if only one emission is permitted. The explanation for the fully showered
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Figure 7.6: Rapidity distribution of the third hardest jet.

POWHEG results undershooting the NLO distribution is then simply found in the
interplay of shower radiation and cuts, leading to more events failing the cuts.

The rapidity of the third hardest jet is plotted in Figure 7.6. Within the central
rapidity region, the POWHEG prediction overshoots the NLO results. If the third
jet is emitted with a rapidity around yj3 = 0, the situation corresponds to a hard
wide-angle splitting and as such, is a realm where the NLO approximation can
be trusted. However, the evolution kernel R/B in the POWHEG Sudakov form
factor gives rise to non-leading logarithmic terms, which may result in substantial
differences when compared to the NLO parton level result.

The MC@NLO matching scheme, on the other hand, is following the predictions
of the NLO calculation in the central region. Within MC@NLO, the production of
third jets can either happen by starting with a real-emission matrix element or by
additional radiation on top of a hard matrix element with Born kinematics. The
latter formally also introduces higher order effects away from the soft and collinear
regions. In the case of the rapidity of the third hardest jet in the central region,
they seem to have little impact however.

Opposed to the central dip regions of yj3, the peak regions correspond to
collinear splittings, as the tagging jets also peak in the same rapidity regions.
The separation of collinear and hard splitting regions can be accentuated even
more by considering the distribution of

y∗j3 = yj3 − 1

2
(yj1 + yj2) , (7.2)

which gives the rapidity difference of the third jet relative to the mean rapidity of
the tagging jets [104]. This way, the dependence on the longitudinal boost of the
centre-of-mass frame of the colliding partons can be circumvented.

For the case at hand, y∗j3 is depicted in Figure 7.7. Just as in the yj3 distri-
bution in Figure 7.6, the MC@NLO and NLO results agree in the central region
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Figure 7.7: Distribution of the y∗j3 observable as defined in (7.2).

characterised by hard splittings, while POWHEG shows too much activity. The LO
dipole-showered output is also plotted, allowing for a comparison to results gained
within the soft/collinear approximation. Apparently, the possibility of starting
from real-emission matrix elements within MC@NLO is already a large improve-
ment in the region around y∗j3 = 0.

As with yj3, also in Figure 7.7 the peak regions and their outward flanks cor-
respond to regions where a collinear splitting occurred. These are regions where
higher-order terms become large due to sizeable kinematical effects overcoming the
smallness of the coupling constant. Here, the all-order expansion within the par-
ton shower approximation should be trusted more than the fixed-order prediction.
The MC@NLO result and the LO showered calculation show an indistinguishable
behaviour here.

At the outward flanks of y∗j3, POWHEG undershoots even the NLO prediction.
Supposedly, this is the region where an abundance of real-emission partons lose pT
by additional shower emissions, so that they cannot be identified as jets anymore.
The assumption is supported by Figure 7.4, where the transverse momentum of
the third jet within the POWHEG matching scheme has shown to deviate from
the NLO expectation by a steeper slope. POWHEG also exhibits less radiation
over the whole pT range, which is a clear indication of an even drain of transverse
momentum by subsequent shower emissions.

In the normalised legoplot separations in Figure 7.8, the collinear splitting
regions correspond to the narrow and, cum grano salis, also the wide peaks at
legoplot separations of around 1 and 6. The depleted region in between is the
region which is characterised by hard additional emissions. It is clearly visible
that in the regions where the third jet is close to one of the tagging jets, the
POWHEG matching scheme leaves the NLO distribution almost invariant. As
POWHEG always starts from the three-jet real-emission configuration, the room
for an enhancement of this region is expectedly small.
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Figure 7.8: Distributions of the legoplot separations of the third jet to the hardest
(left panel) and second hardest (right panel) jet. The edge at ΔRjj = π arises
because the azimuthal angle separation, which goes into ΔRjj , gives only contri-
butions up to that value.

Another important feature of the distributions in Figure 7.8 is that in the
POWHEG scheme, the third jets tend to have larger legoplot separations from the
tagging jets.

While Figure 7.8 shows that additional jets produced by the dipole shower are
rarely radiated far away from the tagging jets, the MC@NLO matched results again
show an intermediate behaviour with results closing in on the NLO predictions.
Both within the area of radiation close to one of the tagging jets as well as in
the hard wide-angle case, MC@NLO gives predictions much closer to the NLO
distributions than the dipole shower alone.

The azimuthal separations in Figure 7.9 of the third jet to each of the tagging
jets show a somewhat differing behaviour of the matching schemes especially in the
central region. As a reminder, all results within the present section were gained
using the non-collinear realignment scheme. The two realignment schemes of the
dipole shower have shown very different results here as described in Section 6.3.
There, the increase in the central region could be attributed to an increase of
emissions which could be identified as separate jets.

In the matched case, POWHEG shows approximately the same activity than
the NLO curve over the whole range of azimuthal angle separation. As shown
before, the third jets within the POWHEG matching scheme also suffer from a pT
drain that decreases their resolvability. The result is comparable to what happens
within the collinear splitting scheme. Also in the POWHEG scheme additional
emissions get assigned to the tagging jets or not resolved at all. This then prevents
the central regions of ΔΦj1j3 and ΔΦj2j3 to be filled.
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Figure 7.9: Azimuthal angle separation distribution of the tagging jets.

In the NLO case, MC@NLO yields the same distribution in the central region
as the LO dipole showered calculation. Obviously, this is a region which is very
much governed by shower and jet algorithm effects.

In the outer regions of Δφj1j3 and Δφj2j3, the MC@NLO curve shows an en-
hancement over the LO dipole showered result and is closer to the NLO prediction.
As these outer regions in Δφj1/2j3 are areas which correspond to a back-to-back
situation with one of the tagging jets, it is expected to benefit from the matching.

7.2 K-factors
The corrections that arise within the matched calculation depend on the region of
phase space that is considered. To bring out the differences of the matching schemes
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Figure 7.10: Differential K-factor distibution in dependence the transverse mo-
menta of the three hardest jets.

in this context, a differential K-factor over an observable O can be defined as

dK
dO =

d
(
σmatched/σLO+PS

)
dO . (7.3)

The differential K-factors in dependence of the transverse momenta of the three
tagging jets are shown in Figure 7.10. Although the fluctuations are rather large
at the statistics that could be acquired, general tendencies can be recognised.

For the two tagging jets, which are already present in the plain LO calculation,
the K-factors show a dependence of the matching scheme. For transverse momenta
of about pTj1 � 80GeV and pTj2 � 60GeV, the corrections picked up by the
MC@NLO matching scheme are larger than those within the POWHEG approach.
As we have seen that the formation of a third jet is suppressed within POWHEG,
this behaviour is an indication that the POWHEG emissions are picked up by the
jet algorithm and assigned to the tagging jets.
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Figure 7.11: Differential K-factor distribution in dependence of the legoplot and
rapidty separations.

The K-factor of the pT of the hardest tagging jet within the MC@NLO match-
ing scheme is increasing steeply on the lower end of the spectrum and reaches ap-
proximately 109% at 40GeV. For increasing transverse momentum, the K-factor
stays almost constant. Within the POWHEG matching scheme, the situation is
different. Here, the K-factor rises slower than within MC@NLO and reaches its
maximum of 112% at pTj1 = 130GeV.

The third hardest jet is not present in the LO matrix element. Therefore,
predictions concerning it are only accurate up to leading order in the strong cou-
pling constant. As its distribution is unaffected by NLO subtraction terms, its
differential K-factor is smoother with the given statistics.

As already shown previously, the third jets emerging within the MC@NLO
matching scheme are much harder than the ones emitted within POWHEG. In
Figure 7.10, this is visible again. Within the MC@NLO scheme, the differential
K-factor for pTj3 shows a constant growth from 105% to over 125% in the plotted
range of transverse momenta ranging from 20GeV to 80GeV. The POWHEG
equivalent on the other hand shows a completely different behaviour. Here, the
differential K-factor is decreasing before reaching its minimum of about 96% at
pTj3 ≈ 40GeV. Then, it rises slightly but stays below 100% for transverse momenta
of below 65GeV.

The differential K-factors in dependence of legoplot and rapidity separations of
the tagging jets are shown in Figure 7.11. The higher order corrections in both
observables are positive all over the plotted range and decrease in size for higher
separations in both matching schemes.

Within the POWHEG matching scheme, the differential K-factors of both lego-
plot and rapidity separations show a steeper slope in the tail regions than within
the MC@NLO matched calculation. The shapes of the distributions show that
POWHEG emissions tend to be more central and in the direction between the
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tagging jets. The same behaviour could be seen in Figure 7.7, where the y∗ dis-
tribution was plotted and the three-jet cross section was vastly enhanced in the
central region.

The corrections that are gained within the NLO matched calculations are size-
able and exceed 10% in some regions of phase space. They depend on the matching
scheme which adds a new source of systematical uncertainty that is introduced be-
yond the fixed order calculation.

7.3 Scale variations
Scale choices introduce unphysical scale dependencies in the simulated observables.
In the current section, scale uncertainties that are already present within the LO
and NLO calculations will be investigated, as they also have an impact on the
matched calculation. These are the uncertainties that are introduced by the choice
of the renormalisation and factorisation scales μR and μF . In order to estimate
the scale uncertainties in the LO showered calculation and their remainders in the
matched calculation, the choices of the scale factors defined in (5.9) were varied
independently in the range of 0.5 < ξ < 2.0.

Factorisation and renormalisation scales influence both the hard matrix element
and the shower evolution. The evolution of the strong coupling constant depends
on the chosen renormalisation scale, therefore the whole shower is affected by a
change in μR. The choice of a factorisation scale, on the other hand, does only affect
splittings with an initial state emitter or spectator, as the splitting probabilities
comprise PDF ratios in these cases [62].

Figures 7.12 - 7.16 depict the scale uncertainties in different jet observables.
Each figure consists of three different plots. In the upper panel, μF and muR are
varied simultaneously. In the middle panel, only μF is varied and in the lower
panel, only μR is varied. The MC@NLO matched results are given by coloured
histograms. In each plot, there are also two black histograms which show the LO
showered results with the same setups as in the MC@NLO matched results in the
same panel.

In the top panels where the scale factors are varied both, it is visible that the
scale dependence is smaller within the matched calculation than within the LO
showered one. The same holds for the second panel, where only the factorisation
scale factor is varied.

When varying the renormalisation scale factors only, a different behaviour shows
up when the considered observable is already present in the LO matrix element.
As this has no dependence on αS in the case of Hjj production via VBF, the only
renormalisation scale dependence in a LO showered calculation is introduced by
the parton shower. It was shown that the enhancements of the tagging jets that can
be expected by the shower are small, therefore also the introduced uncertainty is a
small effect. In the matched calculation however, already the matrix elements con-
tain a factor of αS. This contributes to the total renormalisation scale uncertainty,
which has about the same magnitude for the LO and matched calculations.
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Figure 7.12: Scale dependencies of the transverse momentum distribution of the
hardest tagging jet.
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MC@NLO, μF = 0.5, μR = 0.5
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Figure 7.13: Scale dependencies of the transverse momentum distribution of the
second hardest tagging jet.
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MC@NLO, μF = 0.5, μR = 0.5
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Figure 7.14: Scale dependencies of the transverse momentum distribution of the
third hardest jet.
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Figure 7.15: Scale dependencies of the legoplot separation distribution of the tag-
ging jets.
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MC@NLO, μF = 0.5, μR = 0.5
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Figure 7.16: Scale dependencies of the rapidity separation distribution of the tag-
ging jets.
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7.4 Summary
The POWHEG and MC@NLO matching schemes were compared in the case of
Hjj production via vector boson fusion. The two schemes lead a reduced cross
section relative to the NLO result. For the tagging jets, the matched results show
the same behaviour. The shapes of the distributions are only mildly affected when
compared to the NLO predictions.

The three-jet cross sections for the two matching schemes differ. Within
POWHEG, the three-jet cross section matches the one predicted by the NLO
calculation. The emissions, however, are softer and more central. MC@NLO,
on the other hand, has a larger probability to emit third jets than the fixed
order calculation. Third jets within MC@NLO tend to be more directed into the
forward and backward regions.

It was shown that the differential K-factors within the matched calculation are
not only dependent on the considered observable and region of phase space, but
also very much on the matching scheme that was used. POWHEG and MC@NLO
behave very differently and the corrections that are picked up within the matched
calculation exceed 10% for some observables and regions of phase space.

The dependence on the factorisation scale in the matched calculation is smaller
than in the LO showered one. The behaviour upon variation of the renormalisation
scale factor depends on if the examined observable is already present at LO.
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Summary

The Large Hadron Collider is in operation for several years now, covering a wide
range of experimental interests. The conclusions that might be drawn from the
acquired data do not solely depend on the (already outstanding) quality of the
detectors at the experiments. Precise and robust theoretical predictions for signal
and background processes are also needed to cope with the highly challenging envi-
ronment in hadron collisions. This goal can be achieved by higher order corrections,
event simulations or a mixture of both within NLO-matched calculations.

The first part of this thesis consisted of an introduction into the field theoretical
basics and the techniques that are used within calculations in high-energy physics.
The Standard Model and its constituent theories were described. The problems
that arise within plain and showered NLO calculations were clarified. A knowledge
on their solutions by NLO subtraction and NLO matching was procured.

The second part of the thesis at hand delivered NLO QCD corrections to Hγjj
production at the LHC. The additional photon is required to improve background
suppression within events with H → bb̄ decays. The process was implemented in
form of a fully flexible Monte-Carlo program. The code developed within this the-
sis, which was released as part of the package VBFNLO, was carefully checked
against automatically generated code and independent implementations of the
same process.

Total cross sections for different PDFs and scale choices were presented. The
residual impact of the choice of PDF and scale are small and of the order of 2%.
It was shown that the differential K-factors and scale uncertainties are dependent
on the observable and region of phase space. When going from LO to NLO, the
differential and total scale uncertainties are reduced drastically.

With the third part, the door to showered calculations was opened. Aiming
at a NLO-matched calculation of Hjj production, an interface between Matchbox,
an addon to Herwig++, and VBFNLO was established as part of this work. This
was achieved in a machine independent mixed language approach supported by the
cfortran.h header file. All VBFNLO subroutines and common blocks that had to
be accessed from Matchbox had to be prototyped in C++.

Before discussing the results of NLO-matched Hjj production, a description
of some of the internal structure of Herwig++ was given. The relevant chapter
focused on the generation of phase space and the two shower implementations that
are available within Herwig++, namely the default and the dipole shower.
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SUMMARY

The analysis setup that was used in the result sections of Hjj production was
described. It was shown that the interfaced calculation and the original implemen-
tation in VBFNLO give the same results at fixed order. It was validated that the
automated dipole subtraction which is carried out within Matchbox gives finite re-
sults as the subtraction terms match the real emission contributions in the singular
regions.

Results were presented for a showered calculation of Hjj production at leading
order. The two tagging jets were only mildly affected by shower emissions. The
most prominent feature here was a loss of transverse momentum of the hardest
jet when the default shower was applied. The dipole shower, on the other hand,
resulted in the same pT distribution as the leading order matrix element.

The third hardest jets, being produced only by shower emissions, show a large
dependence on the parton shower implementation in all observables that were
investigated. In general, the dipole shower has a larger phase space available for
emissions, which gives rise to major differences in higher order observables.

Results for NLO-matched Hjj production were also shown, both for MC@NLO
and POWHEG matching schemes. The matching schemes could easily be switched
within the unified framework provided by Matchbox. The presented results were
obtained with the dipole shower. Observables concerning the tagging jets show only
negligible modifications of shapes. Concerning predictions of observables influenced
by third jets, the two matching schemes have shown to differ both in shape and
normalisation.

The present work is an attempt to improve predictions for hadron collisions and
understand their systematical uncertainties. It is a contribution to the striving for
knowledge about the most fundamental properties of nature. To this end, tools
for NLO corrections and parton showers were written and made publicly available,
which are expected to be relevant for analyses of data acquired at the LHC.
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Appendix A

Structure of the implementation of
Hγjj in VBFNLO

As the implementation of Hγjj in VBFNLO deviates from the style of most other
processes, the following shall serve as a documentation. The basic idea of the im-
plementation is to calculate bi-spinor currents JIOXXX in the HELAS framework
once per phase space point. As they are needed for several processes, they are
stored in common blocks. The definitions for the HELAS currents and spinors
can be found in [77]. Before the matrix elements are calculated in the subrou-
tines HAjj(j)_ME (HAjj_subtr_ME for the subtraction terms), the bi-spinor cur-
rents are evaluated once for all crossing-related subprocesses within the subroutines
Get_HAjj(j)_currents (Get_HAjj_subtr_currents for the subtraction terms).

In the subroutine Get_HAjj_couplings, the common block

COMMON /HAJJCOUPL/ GBF

is filled. In GBF, all couplings for the Hγjj process are stored.
Get_HAjj_currents fills the following common blocks.

COMMON /HAJJCURRENTS/ Curr12,Curr21,Curr34,Curr43,
$ Curr1A2,Curr2A1,Curr3A4,Curr4A3,
$ Curr12tbv,Curr21tbv,Curr34tbv,Curr43tbv,
$ Higgs,fac

COMMON /HAJJCURRENTSVIRT/ SpinorI,SpinorO,Photon,
$ Curr12H,Curr21H,Curr34H,Curr43H,
$ pIntBosU,pIntBosL,scale,
$ alsUpperc2o4pi,alsLowerc2o4pi,alsULcvirtc2o4pi

The variables needed for the LO calculation are defined as follows:

• CurrXY(6,3:4,-1:1,2:3): Bi-spinor current with attached weak boson
propagator, as sketched in Figure A.1. Arguments: Current (four-momentum
and spinor components), incoming flavour type (up- or down-type), helicity
(positive or negative), attached weak boson type (Z or W ).
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• CurrXAY(6,3:4,-1:1,2,-1:1,2:3): Bi-spinor current with attached photon
and weak boson propagator, as sketched in Figure A.2. Arguments: Current,
incoming flavour type, fermion helicity, photon insertion leg (1 to 2 for upper
line, 3 to 4 for lower line), photon helicity, attached weak boson type.

• CurrXYtbv(6,3:4,-1:1,-1:1): Bi-spinor current with attached triple gauge
boson vertex, as sketched in Figure A.3. Arguments: Current, incoming
flavour type, fermion helicity, photon helicity.

• Higgs(6): Higgs spinor.

• fac: Phase space and colour factor.

For the virtual corrections, another common block is defined containing:

• SpinorI/O(6,4,-1:1): Incoming/outgoing spinor. Arguments: Spinor, par-
ticle number, particle helicity.

• Photon(6,-1:1): Photon spinor. Arguments: Spinor, photon helicity.

• CurrXYH(6,3:4,-1:1,2:3): Bi-spinor current with attached Higgs boson
and weak boson propagator, as sketched in Figure A.4. Arguments: Current,
incoming flavour type, fermion helicity, attached weak boson type.

• pIntBosU/L(0:4): Momentum and invariant mass of the weak boson prop-
agator attached to the upper/lower fermion line.

• scale: Scale of the process.

• alsUpperc2o4pi, alsLowerc2o4pi: αs
C2

4π
with αs of the upper or lower line

and C2 = 4/3.

• alsULcvirtc2o4pi:
(
αUpper
s + αLower

s

)
C2

4π
cvirt with cvirt as a finite remainder

of the CS subtraction.

As there are two different p̃-kinematics involved in the subtraction, the currents
which are needed for the dipole subtraction matrix elements have an additional in-
dex. They are stored in a separate common block, which is filled by the subroutine
Get_HAjj_subtr_currents.

COMMON /HAJJSUBTRCURRENTS/ Curr12,Curr21,Curr34,Curr43,
$ Curr1A2,Curr2A1,Curr3A4,Curr4A3,
$ Curr12tbv,Curr21tbv,Curr34tbv,Curr43tbv,
$ Higgs,fac

To the list of arguments, a new entry is inserted in the second place defining the
kinematics. That results in the following changes:

• CurrXY(6,2:3,3:4,-1:1,2:3): Arguments: Current, p̃-kinematics, incom-
ing flavour type, helicity, attached weak boson type.

108



APPENDIX A. STRUCTURE OF THE IMPLEMENTATION OF HγJJ IN
VBFNLO

• CurrXAY(6,2:3,3:4,-1:1,2,-1:1,2:3): Arguments: Current, p̃-
kinematics, incoming flavour type, fermion helicity, photon insertion
leg (1 to 2 for upper line, 3 to 4 for lower line), photon helicity, attached
weak boson type.

• CurrXYtbv(6,2:3,3:4,-1:1,-1:1): Arguments: Current, p̃-kinematics, in-
coming flavour type, fermion helicity, photon helicity.

For the real-emission part, a larger common block is needed as more currents
need to be stored. Its variables are calculated in Get_HAjjj_currents.

COMMON /HAJJJCURRENTS/ fac,Higgs,Curr12,Curr21,Curr34,Curr43,
$ Curr12A,Curr21A,Curr34A,Curr43A,
$ Curr12GO,Curr21GO,Curr34GO,Curr43GO,Curr21GI,Curr43GI,
$ Curr12GOt1Z,Curr21GOt1Z,Curr34GOt1Z,Curr43GOt1Z,
$ Curr21GIt1Z,Curr43GIt1Z,Curr12GOt2Z,Curr21GOt2Z,
$ Curr34GOt2Z,Curr43GOt2Z,Curr21GIt2Z,Curr43GIt2Z,
$ Curr12GOt1W,Curr21GOt1W,Curr34GOt1W,Curr43GOt1W,
$ Curr21GIt1W,Curr43GIt1W,Curr12GOt2W,Curr21GOt2W,
$ Curr34GOt2W,Curr43GOt2W,Curr21GIt2W,Curr43GIt2W,
$ Curr12tbv,Curr21tbv,Curr34tbv,Curr43tbv,
$ Curr12GOtbv,Curr21GOtbv,Curr34GOtbv,Curr43GOtbv,
$ Curr21GItbv,Curr43GItbv

The arrays are indexed as defined below.

• CurrXY(6,3:4,-1:1,2:3): Bi-spinor current with attached weak boson
propagator, as sketched in Figure A.1. Arguments: Current, fermion type,
fermion helicity, weak boson type.

• CurrXYA(6,3:4,-1:1,2,-1:1,2:3): Bi-spinor current with attached weak
boson propagator and photon, as sketched in Figure A.2. Arguments: Cur-
rent, flavour type, fermion helicity, photon insertion leg (1 to 2 for upper
line, 3 to 4 for lower line), photon helicity, weak boson type.

• CurrXYGO(6,3:4,-1:1,4,-1:1,2:3): Bi-spinor current with attached weak
boson propagator and outgoing gluon, as sketched in Figure A.5. Arguments:
Current, flavour type, fermion helicity, gluon insertion leg (1 to 2 for upper
line, 3 to 4 for lower line), gluon helicity, weak boson type.

• CurrXYGI(6,3:4,-1:1,4,-1:1,2:3): Bi-spinor current with attached weak
boson propagator and incoming gluon, as sketched in Figure A.6. Arguments:
Current, flavour type, fermion helicity, gluon insertion leg, gluon helicity,
weak boson type.

• CurrXYGIt1W/Z(6,3:4,-1:1,-1:1,-1:1,2,2): Bi-spinor current with
attached W/Z-boson propagator and photon plus an incoming gluon, as
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sketched in Figure A.7. Along the fermion line, one massless boson is
emitted on each side of the weak boson propagator. Arguments: Current,
flavour type, fermion heliciy, photon helicity, gluon helicity, photon insertion
leg referring to the uncrossed diagram, gluon insertion leg referring to the
uncrossed diagram (for the last two arguments: 1 to 2 for upper line, 3 to 4
for lower line).

• CurrXYGIt2W/Z(6,3:4,-1:1,-1:1,-1:1,2,2): Bi-spinor current with
attached W/Z-boson propagator and photon plus an incoming gluon, as
sketched in Figure A.8. Along the fermion line, both massless bosons
are emitted on the same side of the weak boson propagator. Arguments:
Current, flavour type, fermion helicity, photon helicity, gluon helicity,
insertion leg referring to the uncrossed diagram (1 to 2 for upper line, 3
to 4 for lower line), insertion order (1 for photon emission prior to gluon
emission, 2 else).

• CurrXYGOt1W/Z(6,3:4,-1:1,-1:1,-1:1,2,2): Bi-spinor current with
attached W/Z-boson propagator and photon plus an outgoing gluon, as
sketched in Figure A.9. Along the fermion line, one massless boson is emitted
on each side of the weak boson propagator. Arguments: Current, flavour
type, fermion helicity, photon helicity, gluon helicity, photon insertion leg (1
to 2 for upper line, 3 to 4 for lower line), gluon insertion leg.

• CurrXYGOt2W/Z(6,3:4,-1:1,-1:1,-1:1,2,2): Bi-spinor current with
attached W/Z-boson propagator and photon plus an outgoing gluon, as
sketched in Figure A.10. Along the fermion line, both massless bosons
are emitted on the same side of the weak boson propagator. Arguments:
Current, flavour type, fermion helicity, photon helicity, gluon helicity,
insertion leg (1 to 2 for upper line, 3 to 4 for lower line), insertion order (1
for photon emission prior to gluon emission, 2 else).

• CurrXYtbv(6,3:4,-1:1,-1:1): Bi-spinor current with attached triple gauge
boson vertex, as sketched in Figure A.3. Arguments: Current, flavour type,
fermion helicity, photon helicity

• CurrXYGOtbv(6,3:4,-1:1,-1:1,2,-1:1): Bi-spinor current with attached
triple gauge boson vertex and outgoing gluon, as sketched in Figure A.11.
Arguments: Current, flavour type, fermion helicity, photon helicity, gluon
insertion leg (1 to 2 for upper line, 3 to 4 for lower line), gluon helicity.

• CurrXYGItbv(6,3:4,-1:1,-1:1,2,-1:1): Bi-spinor current with attached
triple gauge boson vertex and incoming gluon, as sketched in Figure A.12.
Arguments: Current, flavour type, fermion helicity, photon helicity, gluon
insertion leg (1 to 2 for upper line, 3 to 4 for lower line), gluon helicity.

• Higgs(6): Higgs spinor.
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• fac: Phase space and colour factor.
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�
Figure A.1: CurrXY

�
Figure A.2: CurrXYA

�
Figure A.3: CurrXYtbv

�
Figure A.4: CurrXYH

�
Figure A.5: CurrXYGO

�
Figure A.6: CurrXYGI

�
Figure A.7: CurrXYGIt1W/Z

�
Figure A.8: CurrXYGIt2W/Z

�
Figure A.9: CurrXYGOt1W/Z

�
Figure A.10: CurrXYGOt2W/Z

�
Figure A.11: CurrXYGOtbv

�
Figure A.12: CurrXYGItbv
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Appendix B

Interface between Herwig++ and
VBFNLO

For the NLO matched Hjj production via VBF, an interface was established be-
tween VBFNLO and Herwig++. As VBFNLO is coded in FORTRAN77, some diffi-
culties arise. The definitions of arrays are handled differently in FORTRAN77 and
C++. While in FORTRAN77, array indices start by default with 1 but can be de-
fined differently, the definition in C++ is that 0 always indexes the first element of
an array. Further complications arise by the fact that for multidimensional arrays,
the order of indices is inverted when accessed from the other language. As there
is no check at compile time whether the definitions match, these and other differ-
ences make the interface very prone to errors. The purpose of this chapter is to
give a complete overview of the definitions that were made inside Herwig++, which
might be helpful for future adaptions of the code, as the work on both programs
is ongoing.

The interface to VBFNLO was established using the framework provided by
cfortran.h [91]. All functions and common blocks that needed to be interfaced are
prototyped in one single file VBFNLOPrototypes.h. The definition of the common
blocks takes place in VBFNLOCommonBlocks.h, which needs to be included in every
class accessing VBFNLO.

The implemented classes show a twofold structure. The Amplitude objects
contain every information needed for the evaluation of the squared matrix element.
In the ME objects, only the initialisation of diagrams and colour lines takes place.
The following classes were implemented in Herwig++:

• VBFNLOAmplitudeBase, VBFNLOMEBase: Initialise process independent SM
parameters in VBFNLO, such as quark masses and electroweak parameters.
Call SETEWPARA, CTRANS and KOPPLN.

• VBFNLOAmplitudeVVJJNeutralBase, VBFNLOMEVVJJNeutralBase: Intended
as abstract base classes all for VBF processes with an electromagnetic
neutral-boson final state, such as Zjj or W+W−jj. Convert momenta
from Herwig++ convention to VBFNLO convention. Filter only the relevant
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MatchboxMEBase

MatchboxAmplitudeBase

DiagramContainer

various
dia-

grams

VBFNLOMEBase

VBFNLOMEVVJJNeutralBase

VBFNLOMEPP2hJetJet VBFNLOMEPP2hJetJetJet

VBFNLOMEqg2hqqq VBFNLOMEqq2hqqg

VBFNLOAmplitudeBase

VBFNLOAmplitudeVVJJNeutralBase

VBFNLOAmplitudePP2hJetJet VBFNLOAmplitudePP2hJetJetJet

VBFNLOAmplitudeqg2hqqq VBFNLOAmplitudeqq2hqqg

Figure B.1: Inheritance diagram for the classes that were implemented in Her-
wig++.

subprocess required by Herwig++ from the different flavour dependent
subprocesses which are calculated by VBFNLO for each phase space point.

• VBFNLOAmplitudePP2hJetJet, VBFNLOMEPP2hJetJet: Concrete implemen-
tation of all the qq → hqq-type matrix elements squared. Set up diagrams
and other process dependent information. Call the VBFNLO coupling initial-
isation QQHQQGI and matrix-element implementation QQHQQ. Are capable of
calculating the virtual interference terms by calling the Born matrix elements
with an additional flag requesting the interference.

• VBFNLOAmplitudePP2hJetJetJet, VBFNLOMEPP2hJetJetJet: Abstract base
classes for the two real-emission configurations. Call the VBFNLO coupling
initialisation QQHQQGI and matrix element implementation QQHQQJ.

• VBFNLOAmplitudeqq2hqqg, VBFNLOMEqq2hqqg: Concrete implementation of
all the qq → hqqg-type matrix elements squared. Initialise process-dependent
information such as diagrams and colour flows.

• VBFNLOAmplitudeqq2hqqg, VBFNLOMEqq2hqqg: Same for the qg → hqqq-type
matrix elements.
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• DiagramContainer: Abstract base class for process dependent diagram and
colour flow information which was generated automatically with the help of
output from QGRAF [105].

• Various classes derived from DiagramContainer: Automatically generated
diagrams, one class for each process, t-channel charge flow and initial-state
particle/antiparticle configuration.

For documentational purposes, the subroutines that were interfaced are listed
below in form of their definition within Herwig++.

PROTOCCALLSFSUB0(INITCOUPLINGS,initcouplings)
#define INITCOUPLINGS() CCALLSFSUB0(INITCOUPLINGS,initcouplings)

PROTOCCALLSFSUB9(KOPPLN,koppln,INT,DOUBLE,DOUBLE,DOUBLE,DOUBLE,
DOUBLE,DOUBLE,DOUBLE,DOUBLE)

#define KOPPLN(INFO,e,g2,s,c,z,w,q,g) CCALLSFSUB9(KOPPLN,koppln,
INT,DOUBLE,DOUBLE,DOUBLE,DOUBLE,DOUBLE,DOUBLE,DOUBLE,DOUBLE,
INFO,e,g2,s,c,z,w,q,g)

PROTOCCALLSFSUB8(SETEWPARA,setewpara,PDOUBLE,PDOUBLE,PDOUBLE,
PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE)

#define SETEWPARA(e,g2,s,c,z,w,q,g) CCALLSFSUB8(SETEWPARA,setewpara,
PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,
e,g2,s,c,z,w,q,g)

PROTOCCALLSFSUB1(CTRANS,ctrans,DOUBLE)
#define CTRANS(xmb) CCALLSFSUB1(CTRANS,ctrans,DOUBLE,xmb)

PROTOCCALLSFSUB0(CLEARWIDTHS,clearwidths)
#define CLEARWIDTHS() CCALLSFSUB0(CLEARWIDTHS,clearwidths)

PROTOCCALLSFSUB1(DEF_PS_VNJ,def_ps_vnj,INT)
#define DEF_PS_VNJ(bos) CCALLSFSUB1(DEF_PS_VNJ,def_ps_vnj,INT,bos)

PROTOCCALLSFSUB10(QQHQQ,qqhqq,DOUBLEVV,INTV,INT,PDOUBLE,PDOUBLE,
PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,DOUBLEV)

#define QQHQQ(pbar,sign,nlo,uucc,uuss,ddcc,ddss,udsc,ducs,tree)
CCALLSFSUB10(QQHQQ,qqhqq,DOUBLEVV,INTV,INT,PDOUBLE,PDOUBLE,
PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,DOUBLEV,pbar,sign,nlo,uucc,
uuss,ddcc,ddss,udsc,ducs,tree)

PROTOCCALLSFSUB10(QQHQQJ,qqhqqj,DOUBLEVV,INTV,DOUBLEV,INT,PDOUBLE,
PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE)

#define QQHQQJ(pbar,fsign,qbar,gsign,uucc,uuss,ddcc,ddss,udsc,ducs)
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CCALLSFSUB10(QQHQQJ,qqhqqj,DOUBLEVV,INTV,DOUBLEV,INT,PDOUBLE,
PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,PDOUBLE,pbar,fsign,qbar,gsign,
uucc,uuss,ddcc,ddss,udsc,ducs)

PROTOCCALLSFSUB1(QQHQQGI,qqhqqgi,INT)
#define QQHQQGI(bosdec) CCALLSFSUB1(QQHQQGI,qqhqqgi,INT,bosdec)

The Herwig++ definitions of VBFNLO’s common blocks that need to be ac-
cessed are listed in the following:

struct BLIPSIVNJ_DEF{
mutable double RM2,RMG,RM2MIN,RM2MAX,S,M2MIN;
mutable double YJMIN[4],YJMAX[4],PTJMIN[4],EJMIN[4];
mutable int INFOJ[4];

};
#define BLIPSIVNJ COMMON_BLOCK(BLIPSIVNJ,blipsivnj)
COMMON_BLOCK_DEF(BLIPSIVNJ_DEF,BLIPSIVNJ);

struct BKOPOU_DEF{
mutable double CLR[3][5][4],XM2[6],XMG[6],B[6][6][6],V[5][4],A[5][4];

};
#define BKOPOU COMMON_BLOCK(BKOPOU,bkopou)
COMMON_BLOCK_DEF(BKOPOU_DEF,BKOPOU);

struct BKOPIN_DEF{
mutable double ALFAS,XMT,ALFA,XMZ,XMW,SIN2W,XMH,GF,ALFAS_LO;

};
#define BKOPIN COMMON_BLOCK(BKOPIN,bkopin)
COMMON_BLOCK_DEF(BKOPIN_DEF,BKOPIN);

struct QUARKMASSES_DEF{
mutable double XMB,BMASS_H,XMC,CMASS_H,XMTAU;

};
#define QUARKMASSES COMMON_BLOCK(QUARKMASSES,quarkmasses)
COMMON_BLOCK_DEF(QUARKMASSES_DEF,QUARKMASSES);

struct CGLOBALD_DEF{
mutable double ECM;

};
#define CGLOBALD COMMON_BLOCK(CGLOBALD,cglobald)
COMMON_BLOCK_DEF(CGLOBALD_DEF,CGLOBALD);

struct CGLOBALL_DEF{
mutable bool FEYNH_SWITCH,SLHA_SWITCH,EWCOR_SWITCH;
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mutable bool LOOPSQR_SWITCH,LOOPSQR_SWITCHIN;
mutable bool HASNLO,HASFLOOPS;
mutable bool DOBORN,DOVIRTUALS,DOEMISSIONS,DOFLOOPS;
mutable bool INFLOOPS;

};
#define CGLOBALL COMMON_BLOCK(CGLOBALL,cgloball)
COMMON_BLOCK_DEF(CGLOBALL_DEF,CGLOBALL);

struct CGLOBALI_DEF{
mutable int EWAPPROX,MODEL,HIGGSTYPE,EWSCHEME,FLOOPS;
mutable int SECTOR,MHLOOPS,PROCID;
mutable int N_ITERATIONS1,N_ITERATIONS2;
mutable int N_POINTS[7];
mutable int N_P,N_V;
mutable int SIGN1,SIGN2,NLO_LOOPS,PS_DIMENSION;
mutable int PARTICLE_IDS[10];
mutable int PS_LOOPS,SUB_NUMBER,LOOPS_SUB_LO,LOOPS_SUB_NLO;

};
#define CGLOBALI COMMON_BLOCK(CGLOBALI,cglobali)
COMMON_BLOCK_DEF(CGLOBALI_DEF,CGLOBALI);

struct CGLOBAL2_DEF{
mutable int N_KIN,N_QED;

};
#define CGLOBAL2 COMMON_BLOCK(CGLOBAL2,cglobal2)
COMMON_BLOCK_DEF(CGLOBAL2_DEF,CGLOBAL2);

struct ANOM_SWITCH_DEF{
mutable bool WITH_ANOM;

};
#define ANOM_SWITCH COMMON_BLOCK(ANOM_SWITCH,anom_switch)
COMMON_BLOCK_DEF(ANOM_SWITCH_DEF,ANOM_SWITCH);

struct ANOMHIGGS_DEF{
mutable bool WITH_ANOMHIGGS;

};
#define ANOMHIGGS COMMON_BLOCK(ANOMHIGGS,anomhiggs)
COMMON_BLOCK_DEF(ANOMHIGGS_DEF,ANOMHIGGS);

struct KK_SWITCH_DEF{
mutable bool WITH_KK;

};
#define KK_SWITCH COMMON_BLOCK(KK_SWITCH,kk_switch)
COMMON_BLOCK_DEF(KK_SWITCH_DEF,KK_SWITCH);

117



APPENDIX B. INTERFACE BETWEEN HERWIG++ AND VBFNLO

struct CSCALES_DEF{
mutable double MUFSQ[25][2],MURSQ[25][2],ALS[25][3],XIR,XIF;
mutable double MUR_USER,MUF_USER;
mutable int ID_MUR,ID_MUF;

};
#define CSCALES COMMON_BLOCK(CSCALES,cscales)
COMMON_BLOCK_DEF(CSCALES_DEF,CSCALES);

struct BRANCH_DEF{
mutable double BWNE,BWUD,BWTB,BZNN,BZEE,BZUU,BZDD,BZTT;
mutable double BHWW,BHZZ,BHGG,BHTT,BHBB,BHCC,BHTAU,BHMU;
mutable double BHGAM, BHGAMZ, XGW, XGZ, XGH, GAMT;

};
#define BRANCH COMMON_BLOCK(BRANCH,branch)
COMMON_BLOCK_DEF(BRANCH_DEF,BRANCH);

struct SPLITCB_DEF{
mutable bool PRINTOUTPUT, ALLSUBPROCS;
mutable int SUBPROCID,PARTICLEID[10],IHACK,SUBPROCCOUNTER,GLUONID;

};
#define SPLITCB COMMON_BLOCK(SPLITCB,splitcb)
COMMON_BLOCK_DEF(SPLITCB_DEF,SPLITCB);

struct CQQHQQA_DEF{
mutable double FCPLA[2][6][4],FCPLA1[2][4][4],FCPLA2[2][4][4],FCPLA3[2][4][4];
mutable int V2INI1[4],V3INI1[4],V2INI2[4],V3INI2[4],V2INI3[4],V3INI3[4];

};
#define CQQHQQA COMMON_BLOCK(CQQHQQA,cqqhqqa)
COMMON_BLOCK_DEF(CQQHQQA_DEF,CQQHQQA);

struct LHCOUP_DEF{
mutable double TREEFACW,TREEFACZ,LOOPFAC;

};
#define LHCOUP COMMON_BLOCK(LHCOUP,lhcoup)
COMMON_BLOCK_DEF(LHCOUP_DEF,LHCOUP);
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