Phospholipids as emulsifiers for micro/nano droplets suitable for biotechnological systems integration

Ellen HILDEBRANDT1, Marcel VRÂNCEANU1,2, Hermann NIRSCHL2 and Gero LENEWEIT*1

1. Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany, ellen.hildebrandt@carus-institut.de, marcel.vranceanu@kit.edu, gero.leneweit@carus-institut.de
2. Karlsruhe Institute of Technology (KIT), Institute of Mechanical Process Engineering and Mechanics (IMM), 76131 Karlsruhe, Germany, hermann.nirschl@kit.edu
* Corresponding author

ABSTRACT. – We studied the emulsifying properties of palmitoyl oleoyl phosphatidylcholine (POPC) using the biocompatible compounds water and squalene as immiscible fluid phases. We tested the solubility limit of POPC in squalene and its equilibrium distribution between bulk phases. POPC is dissolvable in squalene up to 0.3% (w/v) with an ultrasonication procedure. Above this limit, aggregates of >1 µm are formed which are resistant to prolonged ultrasonication in size and quantity. Emulsifying properties of POPC were elaborated by measuring the droplet size ranges of emulsions. Nanofluidics was studied by pressure driven transport of nanometer sized emulsion droplets through defined nanochannels whereby droplet sizes 500 nm can be produced. The mechanical properties of the emulsifying phospholipid monolayer at the water/squalene interface were studied by profile analysis tensiometry (PAT). The dynamic interfacial tension was measured and the adsorption isotherms were established from long-time approximations of the diffusion-controlled adsorption. With PAT a critical aggregation concentration was determined in the same range as the solubility limit, which was measured by dynamic light scattering. The minimum interfacial tension for POPC as emulsifier was found to be below 1 mN/m. Thus, it can be concluded that phospholipids are suitable emulsifiers for microfluidics and produce adsorbed layers of remarkably small interfacial tension.

Key-words: Digital micro and nanofluidics, Adsorption kinetics, Drop profile analysis tensiometry, Oil/water interface, Nanoemulsions

© 2013 EDP Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
bio-compatibility in emulsions. Most recent developments in digital microfluidics increasingly employ phospholipids as emulsifiers [Matosevic and Paegel, 2011; Punnamaraja and Steckl, 2011; Thiam et al., 2012], but have not yet reached the level of full bio-compatibility regarding the oil phase. Therefore, this study focuses on full biotechnological systems integration regarding the choice of all excipients. Emulsion particle size and emulsion stability are greatly dependent on the choice of the oil component in the emulsion as well as on the emulsifier. It is reported that the oil/water interfacial tension and particle size of the emulsion are inversely proportional as studied for squalene and other natural oils [Chung et al., 2001].

Knowledge of the interfacial behavior of phospholipid monolayers at oil/water interfaces is necessary to understand their role as emulsifiers in emulsions and droplet stability. Therefore it is useful to know the maximum film pressure achievable by adsorbing monolayers as well as the critical aggregation concentration of the selected phospholipid in an oil system. The adsorption of these emulsifiers to a fluid interface is commonly studied by determining the dynamic interfacial tension between the two phases by using e.g. profile analysis tensiometry (PAT) [Handa et al., 1989; He et al., 2008; Li et al., 1996a-c; Miller, 1981; Miller et al., 1994; Mitsche et al., 2010]. This tensiometer determines the volume, surface area and interfacial tension of a pendant or buoyant drop from the shape of its axisymmetric profile.

The aim of this work is to study the mechanical properties of the emulsifying phospholipid monolayer at the water/squalene interface for improved conditions of formation and stability of emulsions to be used in biocompatible digital microfluidics.

II. MATERIAL AND METHODS

II.1. Materials

Squalene with a purity ≥ 98% was purchased from Sigma-Aldrich (Taufkirchen, Germany). The phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was obtained from Lipoid (Ludwigshafen, Germany). N-(Lissamine Rhodamine B sulfonyl)1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (LRh-PE), a head group labelled phospholipid, was purchased from Invitrogen (Carlsbad, USA). 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) was obtained from Lipoid (Ludwigshafen, Germany). The lipids were received as a powder and dissolved in ethanol, with an estimated purity of 99%, from AppliChem (Darmstadt, Germany). Because the accuracy of measured physical values depends on the calibration quality of the instrument, the tensiometer was calibrated as described by Loglio et al. [2003] and Vranceanu et al. [2007]. The absence of surface active impurities in water or squalene was tested before each measurement by dynamic surface measurements over long times at 20°C. For the water/air interface a nearly constant value of γ = 72.5 mN/m and for the squalene/air interface a value of γ = 31.4 mN/m was found which are in good concordance with the literature [Shafrin and Zisman, 1967].

The main principle of this method is to determine the surface tension of a liquid from the shape of a pendant or sessile drop, which is described by the Young-Laplace equation. During the measurement, the local radii of curvature along the drop profile with their corresponding vertical height with respect to a reference plane were determined from the recorded images. The density difference of the two immiscible liquids and the acceleration due to gravity were defined parameters which determine the local hydrostatic pressure difference across the curved interface. With the PAT fitting software, the model profile is calculated by a fourth-order Runge-Kutta integration algorithm from the Laplace equation [Loglio et al., 2001].

II.3. Size of emulsion droplets

Emulsions were investigated by photon correlation spectroscopy (PCS) using the Nano ZS90 Zetasizer (Malvern Instruments, Worcestershire, UK). A sample of the emulsion was diluted by 1:5 or 1:10 with squalene before thermal equilibration for 5 min at 20°C in the PCS device. The z-average of the size, the polydispersity index (PDI) and the count rate were determined.

II.4. Water/oil interfacial tension

To investigate the adsorbed layers at the water/oil interface, a drop tensiometer technique was used. Dynamic interfacial tension was measured by using the profile analysis tensiometer PAT-1D (Sinterface Technologies, Berlin, Germany). Because the accuracy of measured physical values depends on the calibration quality of the instrument, the tensiometer was calibrated as described by Loglio et al. [2003] and Vranceanu et al. [2007]. The absence of surface active impurities in water or squalene was tested before each measurement by dynamic surface measurements over long times at 20°C. For the water/air interface a nearly constant value of γ = 72.5 mN/m and for the squalene/air interface a value of γ = 31.4 mN/m was found which are in good concordance with the literature [Shafrin and Zisman, 1967].

The main principle of this method is to determine the surface tension of a liquid from the shape of a pendant or sessile drop, which is described by the Young-Laplace equation. During the measurement, the local radii of curvature along the drop profile with their corresponding vertical height with respect to a reference plane were determined from the recorded images. The density difference of the two immiscible liquids and the acceleration due to gravity were defined parameters which determine the local hydrostatic pressure difference across the curved interface. With the PAT fitting software, the model profile is calculated by a fourth-order Runge-Kutta integration algorithm from the Laplace equation [Loglio et al., 2001].
in squalene. The average size, polydispersity index (PDI) and the count rate of the emulsion particles are summarized in Table 1. It is evident that the average sizes of the emulsion droplets were dependent on the volume of the dispersed phase. Emulsions generated with 0.2 vol.-% of the aqueous phase have smaller droplets than those with 2 vol.-% aqueous phase. Additionally, the number of counted droplets increased with increasing volume of the dispersed phase. The PDI, which is an indicator for the distribution of particle sizes, increased as well with higher volume fractions of water, demonstrating an increasingly heterogeneous emulsion. The droplet size of the emulsions with 2 vol.-% of dispersed phase (water) was reduced about half with a single extrusion through 200 nm pores of a polycarbonate membrane. Thereby also the number of counted particle reduced and the distribution of particle size became more homogeneous, which was reflected by smaller PDI values.

III.2. Characterization of POPC at the water/squalene interface by interfacial tension measurement

The adsorption of the biological emulsifier POPC to a water/squalene interface was studied by determining the dynamic interfacial tension between the two bulk phases. For that, a buoyant oil drop was generated at the tip of a capillary in an aqueous medium. Results of the measurements for different concentrations of POPC (c_0) as a function of time are presented in Fig. 1a and 1b, respectively. As can be seen in Fig. 1a, the initial decrease rate of γ increases with c_0 whereas the equilibrium interfacial tension decreases with c_0. However, in Fig. 1b, the decrease rate of γ seems to be lower for $c_0 = 10$ mg/ml than for 5 mg/ml. This artefact stems from the difficulty to start the surface tension measurement immediately after the formation of the o/w interface, since PAT can only be started after the disappearance of drop profile oscillations. Therefore, the start of the PAT measurement fluctuates especially at high c_0 so that only the equilibrium interfacial tension can be extracted from Fig. 1b, but not the decrease rate.

In Fig. 2a-d shapes of a droplet for 0.3 mg/ml POPC and a constant volume of 40 mm³ are shown for different time points. At the beginning of the measurement the droplet was least distorted by buoyancy and the surface tension was at its maximum (Fig. 2a). Over time the surface tension decreased resulting in an enlarged area of the droplet. After 5,000 s the droplet became thinner and maximally stretched and a few seconds after the last image separated from the capillary (Fig. 2d).

PAT can be also used to measure the surface area-pressure isotherm at the liquid/liquid interface. The interfacial pressure Π of the phospholipid monolayer is related to the surface tension via the relation

$$\Pi = \gamma_0 - \gamma,$$

where γ_0 indicates the surface tension of the pure fluid.

III.3. Adsorption isotherms of POPC at the water/squalene interface

The determination of adsorption isotherms requires equilibrium adsorption data. In a diffusion controlled process, the equilibrium interfacial tension can be calculated by the extrapolation of the $\gamma(1/\sqrt{t})$ plot to infinite time, based on the long-time approximation for diffusion-controlled measurement immediately after the formation of the o/w interface, since PAT can only be started after the disappearance of drop profile oscillations. Therefore, the start of the PAT measurement fluctuates especially at high c_0 so that only the equilibrium interfacial tension can be extracted from Fig. 1b, but not the decrease rate.

In Fig. 2a-d shapes of a droplet for 0.3 mg/ml POPC and a constant volume of 40 mm³ are shown for different time points. At the beginning of the measurement the droplet was least distorted by buoyancy and the surface tension was at its maximum (Fig. 2a). Over time the surface tension decreased resulting in an enlarged area of the droplet. After 5,000 s the droplet became thinner and maximally stretched and a few seconds after the last image separated from the capillary (Fig. 2d).

PAT can be also used to measure the surface area-pressure isotherm at the liquid/liquid interface. The interfacial pressure Π of the phospholipid monolayer is related to the surface tension via the relation

$$\Pi = \gamma_0 - \gamma,$$

where γ_0 indicates the surface tension of the pure fluid.
adsorption [Fainerman et al., 1994; Miller et al., 1994], which is given by the Hansen-Joos equation

\[
\frac{d\gamma}{d(1/t)} = \frac{RT}{c_0^2} \frac{\pi}{\sqrt{4D}},
\]

where \(\gamma(t)\) denotes the dynamic interfacial tension, \(R\) the gas constant, \(T\) the absolute temperature, \(\Gamma\) the interfacial concentration,
\(c_0\) the emulsifier bulk concentration and \(D\) the diffusion coefficient. Fig. 3 shows the dynamic interfacial tension as a function of \(1/t\) for POPC in squalene at the interface to water. The linear relationship between \(\gamma(t)\) and \(1/t\) is valid only for time periods of \(t > 100\) s. The linear extrapolation and its intercept with the ordinate determines the equilibrium interfacial tension for infinite time. From the extrapolated interfacial tension values, an adsorption isotherm of POPC was obtained according to Gibbs

\[
\Gamma = -\frac{c_0}{RT} \left(\frac{\partial\gamma}{\partial c_0} \right)_{p,T} = -\frac{1}{RT} \left(\frac{\partial\gamma}{\partial\ln c_0} \right)_{p,T},
\]

as shown in Fig. 4 (solid line). The critical aggregation concentration (CAC) appears at about 3 mg/ml where any concentration increase does not result in further changes of the interfacial tension. According to eq. (3), a minimum area per molecule \(A\) at the CAC was obtained with a value of 253 Å² per molecule. The surface area per lipid molecule is given by

\[
A = \frac{1}{N\Gamma},
\]

where \(N\) is the Avogadro number.

To describe the experimental data in a second theoretical model, the Langmuir isotherm was used. The Langmuir adsorption isotherm is the basis for most of the adsorption kinetic models for surfactants and given by

\[
\Gamma = \Gamma_\infty - \frac{c_0}{a_L + c_0},
\]

where \(\Gamma_\infty\) is the maximum interfacial concentration (saturation adsorption) and \(a_L\) the Langmuir adsorption constant, representing the concentration at which half of the interfacial coverage has been reached [Li et al., 1996a]. Using the equation of state of an ideal surface layer [Li et al., 1996c] the interfacial tension in the equilibrium can be calculated. In Fig. 4 the equilibrium interfacial tension (broken line) is presented as a function of initial bulk concentration \(c_0\) of POPC at the water/squalene interface. For the Langmuir adsorption isotherm (eq. 5), an area of 256 Å² per molecule was obtained which coincides reasonably well with the result of the Gibbs adsorption isotherm (eq. 3).
III.4. Diffusion-controlled adsorption model

For the diffusion-controlled adsorption mechanism a linear dependence of γ on t is expected [Thiam et al., 2012] which is represented by the relation

$$\frac{d \gamma}{d t} = -2RTc_0 \frac{D}{\pi}$$

In this case the diffusion coefficient can be obtained by using only the bulk concentration without any knowledge of the adsorption isotherm. Fig. 5 shows a set of experimental curves for different concentrations of POPC. With the obtained diffusion coefficient the surface concentration Γ can be calculated, according to eq. (2).

III.5. Solubility of POPC in squalene

The phospholipid POPC was solubilized completely in 1 ml squalene as described in section 2.2. After ultrasonication for 30 min the sample was measured by PCS. For further dissolution of aggregates, the sample was treated with prolonged sonication procedure in the water bath until a considerable decrease of aggregates could be detected. Table 2 presented the particle sizes, sonication time as well as the PDI and the count rate for every sample before and after the additional treatment. For concentrations $c_0 \leq 3$ mg/ml the count rate can be in the same range as for pure squalene, provided mixing is initiated by suitable conditions, i.e. formation of a thin lipid film produced by evaporation of a solvent (ethanol). For $c_0 \geq 3$ mg/ml extended ultrasonication did not lead to a considerable decrease in the count rate of particles. Therefore, the critical aggregation concentration (CAC) assessed by PAT is in the range of $c_0 = 3$ mg/ml.

IV. CONCLUSIONS

In digital microfluidics two-phase systems like water in oil emulsions are increasingly widespread to enable a multitude of functions based on discretisation and compartmentalisation in liquid processes. Up to now, conventional, detergent based emulsifiers or organic solvents are added to the system which often cause negative effects like denaturation of the analysed proteins or adsorption to the phase interface. Instead of these currently employed emulsifiers, phospholipids or mixtures of different phospholipids, who represent natural emulsifiers, can be applied for the two-phase systems to avoid these undesired concomitants and to enable full biotechnological system integration.

The presented results demonstrate that dynamic interfacial tension is a suitable method to assess the interfacial adsorption of bio-surfactants in natural oils [Dopierala et al., 2011]. Phospholipids are an interesting and promising emulsifier for microfluidic or nanofluidic multiphase flow systems. They are especially interesting for biotechnological systems integration. The summarized results evidence the benefits of using phospholipids, but also point out open questions and challenges on the way for broader use in microflows in biological (nano)systems integration and bioengineering.

V. NOMENCLATURE

$\gamma(t)$ dynamic interfacial tension, Γ interfacial concentration of emulsifier, Γ_{\max} maximum interfacial concentration, a_L Langmuir adsorption constant, A area per molecule, c_e bulk concentration of emulsifier, CAC critical aggregation concentration, D diffusion coefficient, PAT profile analysis tensiometry, PDI polydispersity index, POPC palmitoyl-

Table 2: PCS measurements for the determination of the solubility limit of POPC in squalene. Mean values of particle size, PDI and count rate were calculated from 3 independent experiments of solubility and the respective samples.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>C_e (mg/ml)</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Count rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure squalene</td>
<td>-</td>
<td>4.4</td>
<td>0.44</td>
<td>3.1</td>
</tr>
<tr>
<td>Thin POPC film (after rotary evaporation)</td>
<td>3.0</td>
<td>285.4</td>
<td>1.00</td>
<td>26.8</td>
</tr>
<tr>
<td>dissolved in squalene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ after 2 hours sonication</td>
<td>3.0</td>
<td>376.9</td>
<td>0.66</td>
<td>11.1</td>
</tr>
<tr>
<td>POPC as bulk lipid dissolved in squalene</td>
<td>3.0</td>
<td>1686.0</td>
<td>0.51</td>
<td>160.0</td>
</tr>
<tr>
<td>+ after 6 hours sonication</td>
<td>3.0</td>
<td>877.5</td>
<td>0.71</td>
<td>24.3</td>
</tr>
<tr>
<td>Thin POPC film (after rotary evaporation)</td>
<td>10.0</td>
<td>3196.0</td>
<td>0.86</td>
<td>867.4</td>
</tr>
<tr>
<td>dissolved in squalene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ after 12 hours sonication</td>
<td>10.0</td>
<td>1486.0</td>
<td>0.35</td>
<td>553.7</td>
</tr>
</tbody>
</table>

Figure 5: Dynamic interfacial tension as a function of \sqrt{t} for POPC in squalene at the interface with water for different concentrations c_0: (□) 0.0001mg/ml, (×) 0.001mg/ml, (○) 0.01mg/ml, (+) 0.015mg/ml, (▲) 0.3mg/ml.

Table 2: PCS measurements for the determination of the solubility limit of POPC in squalene. Mean values of particle size, PDI and count rate were calculated from 3 independent experiments of solubility and the respective samples.
oleoyl phosphatidylcholine, w/o water in oil, R gas constant, t time, T absolute temperature, p pressure.

VI. ACKNOWLEDGMENTS AND THANKS

We gratefully acknowledge funding provided by the German Federal Ministry of Economics, ZIM KF2066607SB0.

VII. REFERENCES

