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Abstract

Mapping services have become ubiquitous on the Internet in recent years. These services
enjoy a considerable user base. But it is often overlooked that providing a service on a
global scale with virtually millions of users has been the playground of an oligopoly – select
few service providers are able to do so. Unfortunately, the literature on these solutions is
more than scarce. This thesis aims to add a number of building blocks to the literature that
explain how to design and implement a number of features for such services.
The core components of a mapping service are map display, route planning and further

location-based services that answer sophisticated requests by using and expanding existing
data structures and algorithms or by designing new ones. Using simple-minded approaches
yields preliminary results fast, but hits a point of diminishing returns soon. At times it may
be easy to provide these kind of services on a small scale, i.e. for small data sets and a small
number of users. On the other hand, the real algorithmic challenge is scalability. Thus, it is
important to provide data structures and algorithms that scale with two parameters. First,
with the amount of data and second, with the number of users. Scalability can is dependent
by the following properties of any solution:

• Queries should be as fast as possible.

• Algorithms should be able to handle imprecision in the input.

• Preprocessing should be fast with moderate space requirements to be able to reprocess
on a regular basis.

Unfortunately, these requirements can be contradictory and handling only one aspect fine
may not be enough to yield a feasible solution.

Geocode Matching

A mapping service is only as good as the localization mechanism it provides, even with an
excellent routing component. When a user does not know the geographic coordinate of a
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location, he or she is likely to give a textual descriptions. Address data formats vary wildly
across the world, e.g., see [124], and may not even be distinct. In addition, the inherent
fuzziness of natural language descriptions, unintended misspellings or simply omitted in-
formation are reasons why it is hard for computer systems to handle such inputs. On the
other hand users expect the service to handle a certain amount of imprecision. It is this
expectation that a↵ects the user experience. In other words, if the localization feature does
not provide the quality of service that is expected by the user, one may ask what good a
fast routing from a to b is, if it doesn’t know a or b.

Route Planning

The arguably most well-known service is route planning, i.e. point-to-point queries. En-
gineering of shortest path algorithms in road network has seen a large body of research in
academia. Current methods are e�cient and accurate.
The availability of geographic data has improved dramatically over the past decade. For

example, free data sources like OpenStreetMap provide detailed digital maps for certain
parts of the world and the GPS chips in omnipresent smart phones can generate an enormous
stream of information that resembles the current state of the road network, e.g., tra�c jams,
construction sites or closed roads. To reflect this constant change of the road network, it is
important to e�ciently reprocess the road network (or certain parts of it) on a regular basis.

Further Services

Point-to-point queries are most important, but there is also demand for more sophisticated
user requests like alternative routes, detour computation for ride sharing or more general
queries for points of interests. These queries need to exploit the data structures and algo-
rithms of the underlying routing technique to be scalable. These kind of requests have in
common that they need to perform several distance computations at once. The challenge
here is not to just run several distinct distance computations in parallel, but to engineer
a more elegant solution that exploits for example the structure of already existing data or
adds a further preprocessing step.

3



CHAPTER 1

Introduction

We present several building blocks to build a high-performance map-based service. The
order of presentation of the chapters reflects an implementation direction to actually build
an online mapping service with a number of advanced features.

1.1. Main Contributions

We describe each contribution in more detail below:

Geocode Matching. The first main contribution is an e�cient server-based geocode match-
ing engine that allows fast real-time queries. The central idea is to integrate an approximate
dictionary index with the inherent hierarchical nature of location descriptions, e.g., of ad-
dresses. The underlying approximate dictionary index data structure allows to exploit a
space-time tradeo↵. In case that the running time of the query is most important, storage
space can be traded. We also show that the index is robust against the length of queries.
Most importantly, we do not rely on rule-based systems with fixed (locale-dependent) address
formats that have to introduce rules to handle special cases, e.g. [107]. This vastly improves
the maintainability of such a system. Additionally, the system is able to handle ill-formed
queries, i.e. erroneous input with spelling mistakes, without a compromise in query time or
solution quality. The geocode matching applies minimum weight bipartite matching, inverse
document frequency and natural ranking heuristics to yield very good results in practice.
The experimental results show that our approach is at least as good as existing systems,
often outperforming them.
We also introduce a graph based method to disambiguate locations that captures the

notion of nearness without relying on prefixed distance thresholds. We apply concepts
from computational geometry to exploit the inherent hierarchical nature of the descriptions.
Again, we conduct an experimental study to confirm our findings.
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1.1. Main Contributions

Distributed Preprocessing. First, we show how to implement a shared-memory prepro-
cessing of Contraction Hierarchies that has a rather low memory foot-print in practice by
applying a simple but sophisticated hashing scheme. We also show how to apply the result
to build a fast and cache-e�cient key-value store that can be used during preprocessing
and queries of Contraction Hierarchies. The cost of memory access is not uniform across
the memory hierarchy of a modern computer system. It pays o↵ to invest CPU cycles into
computation when random memory accesses (and therefore cache misses) can be saved. The
experimental results confirm our findings.
Another contribution is a distributed preprocessing of Contraction Hierarchies. Although

preprocessing of Contraction Hierarchies is reasonably fast on medium-sized networks, e.g.,
like the size of Western Europe, it bears considerable preprocessing e↵ort if the road network
is augmented with additional information like time-dependency, turn restrictions, or turn
costs in general. This can take hours for planet-wide networks which is a problem for
Internet companies that would like to provide fast turnaround times after an update to
the road network. It turns out that the preprocessing of Contraction Hierarchies can be
e�ciently distributed onto a cluster of cheap commodity machines with good speedups using
the message passing paradigm of parallelization. We are also able to significantly reduce the
memory requirements for every processing node in the cluster. We also show how to e�ciently
perform distributed queries in such a setting with a constant number of communication
rounds. An experimental study on time-dependent road networks of Germany and Western
Europe confirms these results in an experimental evaluation.
We show how to apply our findings to another parallelization paradigm, namely Map-

Reduce. Our findings show that it is technically feasible but su↵ers from overheads that are
inherent to the setting. We develop caching mechanisms that allow us to e�ciently work
with large graphs while keeping only a portion of the graph in main memory.

Taking Advantage of the Contraction Hierarchies Search Data Structure. The search
data structure of Contraction Hierarchies has a number of properties. It is a directed acyclic
graph (DAG) and rather flat. In practice it has a height of roughly 100–150 levels. These
properties can be used to either answer advanced queries or to e�ciently propagate infor-
mation along the entire network.
The next contribution is the e�cient computation of alternative routes and user equilibria

by exploiting these properties. We generate via candidate node sets for feasible alternatives
that are small on average and can be applied to a legacy routing engine. This enables further
features for users without exchanging the algorithmic core. Additionally, we also show how
to compute scorings that are based on the topology of the network and the location of points
of interests, as well as the computation of minimum detours for ride sharing.
Ride sharing is a popular way to save resources while travelling. We show how to engi-

neer a matching algorithm that finds best matches with minimized detours. As a further
improvement, we show how to perform the matching in an augmented setting where o↵ers
(drivers) and requests (riders) are time-dependent. Also, riders are allowed to make transfers
between di↵erent drivers in this setting.
In real life, the duration of a route depends on many factors. One of them is the expected

5



1.2. Related Work

travel time that depends on the volume of tra�c, i.e. daily rush hours. When drivers
switch routes to a route with lower expected costs, the tra�c patterns can change. We
compute user equilibria in road networks, i.e. when unilateral changes would not help any
more, by traversing the directed and acyclic search graph in a topological order to propagate
information along the road network.

Reconsidering Transit Node Routing. Another contribution is the construction of a Tran-
sit Node Routing distance oracle that is solely built on top of Contraction Hierarchies. We
settle the open question if such a distance oracle can be built without additional geometric
information. The key idea, again, is to exploit the special properties of the Contraction Hier-
archies search data structure. Our main insight is that the search spaces are compressible by
using graph Voronoi diagrams, a method known from computational geometry. As a result,
we can e�ciently construct a distance oracle with single-digit microsecond query time that
is proportional to the preprocessing of the road network.

1.2. Related Work

We now give an overview on the work related to this thesis. The presentation is split into
parts to resemble the structure of subsequent chapters.

Approximate Text Dictionaries. The string matching problem is to find matches of an
input pattern in a given text quickly. The problem has a number of applications that range
from spell checking, to DNA processing, to identifying music from small excerpts among
others. Algorithms can be classified into online and o✏ine algorithms. Online algorithms are
allowed to preprocess the input text, while o✏ine algorithms are not. The general problem of
approximately matching words can be further refined into two categories, namely matching
elements from a set of words or matching arbitrary patterns in strings [12]. When a collection
of words is given, the problem is known as dictionary matching.
A well-known method for accelerating exact matches in large texts is to build the su�x

array [90, 132] as a full-text index data structure. It is basically a sorted array of all
su�x indexes in lexicographic increasing order. Naive string sorting yields a worst-case
construction time of O(n2), which is impractical for large texts A well-known and much more
time and space e�cient algorithm is the di↵erence cover algorithm (DC3) of Kärkkäinen and
Sanders [110] that recursively sorts triples and runs in linear time. An altogether di↵erent
principle to construct a su�x array is induced copying, which can also be implemented
to run in linear time [150]. The induced copying based methods heavily depend on fast
random access memory and are inherently sequential. Nevertheless, the currently fastest
implementation divsufsort1, which combines highly engineered parallel string sorting and
induced copying, outperforms all competitors in practice. It is only published partially.
Approximate string matching is a variant of the problem where one searches for locations

of a pattern that allows a number of errors. More precisely, it looks for the location of

1http://code.google.com/p/libdivsufsort/
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1.2. Related Work

approximate occurrences p0 of a pattern p such that the distance between p and p0 is at most
k. The edit distance or Levenshtein metric [125] formalizes this distance into a minimal
number of atomic operations that transform one string into another. The operations are
additions, deletions or exchanges of a single character in a string. Computations of this
metric are rather expensive as its asymptotic running time is O(n ·m) for two input strings
of lengths n and m. Although approximate search in su�x array (and trees) is technically
feasible, e.g. [50], the methods are rather complex and of limited practicability.
For the approximate dictionary matching problem it is natural to find an algorithm that

does not compare the input to the entire dictionary but only a few entries. A so-called filter
represents a criterion to quickly discard large portions of the search space.
The exploitation of the underlying metric space implied by the edit distance [12] is easy.

The set of words is partitioned by the distance of each element to a more or less carefully
chosen and perhaps random pivot element. By computing the distance to the pivot, the
search space is pruned using the triangle inequality. However, this approach has limited
e↵ect, e.g. in natural language dictionaries. Distances of most dictionary elements to the
pivot lie in a small range.
To cope with the limitations, di↵erent schemes were introduced from using multiple pivots

to tree-like data structures. The oldest of such trees is the BK-tree data structure proposed
by Burkhard and Keller [37] which is built recursively. A root is selected whose subtrees
are identified by distance values to the root. The i-th subtree consists of elements of the
dictionary at distance i to the root. The subtrees are recursively built until the number
of elements in a subtree is below some threshold. Again, the triangle inequality is used to
branch into or cut any subtrees. A candidate set of possible matches is built by the union of
all leaves that are reached by the tree traversal. A rather weak result is that BK-trees and
its refinements need O(n↵), 0 < ↵ < 1, comparisons and node traversals on average [12] for
a dictionary of n entries. See Chávez et al.’s publication [44] for a survey.
More practically oriented work has focused on filtering algorithms that take linear space,

but these do not have strong worst case performance guarantees. Kärkkäinen and Na [109]
report on a linear space data structure that supports sub-string search, but has much larger
query times compared to our result. Ukkonnen [182] investigated su�x trees as a building
block to solve the problem. Likewise, Cobbs [49] gives a data structure based on su�x trees
with linear time preprocessing for a fixed size alphabet for searching fixed patterns. Queries
to the data structure can be answered in time O(mq + occ), where m is the length of the
pattern, q  n and occ is the number of occurrences.
A technique involving so called q-grams [181] is popular among practitioners. These q-

grams are sub-words of length q and the q-gram distance (or similarity) is defined by the
number of q-grams two words share. A generalization of this technique are gapped q-grams.
Taking q letters from a word as before and introducing don’t care positions define a pattern
instead of a sub-word. These don’t care positions are called gaps and the entire pattern with
k don’t care positions is called k-gapped q-gram. In [38] it is shown that 1-gapped q-grams
can be extended to obey the edit distance metric. One of the major di�culties of gapped
q-grams is the computation of a threshold which is the smallest number of matching q-grams
between a pattern and a text. Most experimental work focuses on finding this threshold,
e.g. [39, 108].

7



1.2. Related Work

As expected for high dimensional search problems, there is a significant space-time trade-
o↵. Cole et al. [50] give a solution for the dictionary matching problem using O(n logd n)
space and answer a query in O(m · log log n + occ) for a dictionary of size n, query length
m, edit distance d. Here, occ is the number of occurrences of the pattern. Mihov and
Schulz [140] present a sophisticated but complicated method to solve the problem with
universal Levenshtein automata. Russo et al. [166] propose a compressed index that performs
well for d = 1, 2, 3 but needs several seconds to perform queries for larger d. The best
known linear space solution needs O(md�1 log n log log n+ occ) query time [42] for error d �
2. However, this solution is fairly complicated and involves large constant factors, and to
our knowledge there are no implementations yet. Furthermore, any of the general-purpose
approximate string matching algorithms have to be adapted to perform dictionary matching:
Either the query has to be adapted to ensure that only complete words are found, or special
characters have to be introduced to mark the start and end of a dictionary entry. For more
information on approximate string matching we refer the interest reader to the following list
of publications: [89, 109, 130, 131].
To speed up edit distance computation itself in an on-line setting, research focused on

simple and practical bit-vector algorithms [192]. Words of character length n with d or fewer
di↵erences can be matched in O(nmd/w), where w is the word size of the machine an m the
length of a query. This is done by computing the bit representation of the current state-set
of the k-di↵erence automaton. The run time is improved to O(nm/w) and even further
refinements yield an O(dn/w) [146] expected-time algorithm for arbitrary large m.

Geocoding. The aim of geocode matching or geocoding is to automatically translate textual
location descriptions into location codes, i.e. geographical coordinates2. Geocoded data
used to cost several dollars per 1 000 records in the mid-eighties [118] and did not nearly
provide the spatial accuracy of today’s cost-free services. At that time the use of geographic
information systems was limited to professionals only who were aware of the di�culties and
limitations of the geocoding process [162]. Nevertheless, basic solutions to the problem have
been available in geographic information systems for quite some time [51] with applications
for example for route planning, validation of customer addresses [74], or surveillance and
management of disease outbreaks like the yearly wave of influenza [119].
Goldberg et al. [88] give a survey on the state of the art of geocoding and identify four

fundamental components in the process of geocoding: input, output, processing algorithm,
and reference data set. We focus on the processing algorithm in Section 3. The input, i.e.
the query, is the entity the user wishes to have geographically referenced. The description
must contain attributes that have previously been assigned to some datum in the reference
dataset that represents the geographic reference. The output usually ranges from simple
geographic coordinates to two- or three-dimensional geo-spatial entities like line, polygons,
poly-type, or similar.
For example, Goldberg [87] compares eight di↵erent geocoders. However, the evaluated

Californian addresses are all given with high precision including city name, ZIP code, state

2Please note that the term geocoding is also used for referencing satellite images to a given cartographic
projection.
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1.2. Related Work

and street name. User input may be erroneous, incomplete or ill-formatted and improving
the quality of geocoding using approximate string matching is considered desirable in [190],
but subsequently dismissed as too expensive. Nevertheless, any geocoder should return a
result when it finds a perfect match and preferably return also likely matches along with a
rating.
The literature on geocoding algorithms that match user input against a reference data set

is scarce and mostly covers rule-based systems on top of existing database systems. At times
it is just referred to as the algorithm, e.g. [88, 154]. A common approach is the method of
applying perfect matching with a number of ad-hoc rules such as common spelling mistakes
or well-known abbreviations. Karimi and Durcek [107] give a simple rule-based system that
is applied on top of a commercial system. However, there is also a distinction between
deterministic and probabilistic algorithms, e.g. [48, 145]. The first one returns a single an
perfect match, while the latter ranks probable results according to an internal scoring function
that is supposed to reflect the probability of partial matches, e.g. to account for spelling
mistakes. The ranking and aggregation function of the United Stated Census Bureau [154]
have been published more than 35 years ago. Instead of looking for perfect matches, it gives
a scoring function that expresses the probability that a certain entry is a match. Potential
matches that reach a certain threshold are accepted. However, a description of how to find
matches without scanning the entire data set for each query is not given. Murray et al. [145]
report on a hybrid system that is deterministic and combines auxiliary data sources with a
simple rule-based system on top of a commercial data base. Experiments on a data set of
an administrative district give successful matching rates of up to 80%. Christen et al. [48]
apply hidden markov models (HMMs) by automatically learning the structure of Australian
address data. The pre-trained HMM is able to cope with minor spelling mistakes and to
expand common abbreviations, e.g. to expand St. into Street. Approximate matching is
done with a q-gram based index on locality names, i.e. cities only, and the matching is done
by a simple rule-based system. The experimental results show that the method achieves a
successful matching rate of up to 85%.
Most geocoding services reference postal addresses only as they bear an inherent structure.

As it is common in Western countries to locate and navigate by these addresses [71], it is
su�cient for many applications to restrict geocoding to this simplified use-case.
Sengar et al. [172, 173] describe a system that is able to handle ill-formed queries to a

certain extent by applying heuristics on top of data base SQL queries. Their system does
not require any explicit country-specific rule set, but exploits the underlying geometric map
data to produce a language independent representation of the data. This kind of abstraction
is especially useful in areas of the world where formal address formats are non-existing, e.g.,
in India. However, it remains unclear if and how such systems scale to large databases at
truly continental size. Likewise, Joshi et al. [102] use a statistical machine transliteration
system to apply multi-lingual search to a mono-lingual system. Although the results look
promising at first, but it remains unclear how they would scale on large data sets.
A problem that is related to geocoding is the disambiguation of locations. The system

does not only have to find a location that (approximately) matches the input, but has to
disambiguate between potential matches. The given name of a place may simple be not
unique. Does a query for Washington mean Washington, D.C. or the state of Washington.
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The simplest solution is to have fixed order of importance on the set of locations, i.e. larger
cities have precedence over small towns. The problem with this approach is that disambigua-
tion often has to be situation dependent, e.g. Oakland has the biggest population in the Bay
Area, California, but most people associate the area with San Francisco only. Agrawal and
Shanahan [6] apply machine learning techniques to build an automatic classifier from previ-
ous query logs. Earlier work, e.g. [134, 170], focused around fixed rule-based systems that
decided on the assumed importance of a location.
The post-processing algorithms have moved from simple feature assignment to complex

interpolation algorithms using diverse data sources. The quality of geocoding highly depends
on the underlying data set, e.g. for resolving house numbers or for producing highly accurate
output coordinates. Although this has been a major focus of previous literature, e.g. [88], we
view this particular problem as orthogonal since once town and street have been correctly
identified, we are dealing with much more local data and hence much smaller data volumes.
For example, searching an odd house number not present in the database can often be
done by a binary search in a sequence of the known odd house numbers followed by an
interpolation, e.g. [69, 88].

Dijkstra’s Algorithm and Related Speedup Techniques. Finding shortest paths in graphs
has been solved by Dijkstra’s algorithm [65] in the late 1950s and is taught in virtually every
computer science course on data structures and algorithms. It searches radially and in
iterations around the source node and computes the shortest path distance to all nodes.
Note that shortest does not necessarily reflect the spatially shortest path, but depends on
the chosen edge weights, e.g. representing travel time. It is not necessary to run the algorithm
until all distances have been computed for a point-to-point query and thus it can be stopped
as soon as the target node has been settled.
Dijkstra’s algorithm keeps track of the tentative distance for each node. Initially, this

distance is 1 and the algorithm settles the nodes in increasing distance from the source
node. The running time of the algorithm is obviously polynomial, but it does not scale well
on large instances. The algorithm usually relaxes many more nodes than just the nodes on
the shortest path.
A naive implementation scans the tentative distance array to find the current minimum

in each iteration and runs in time O(n2). It is more e�cient to use a priority queue to
keep track of the minimum, though. Much of the theoretical research focuses on priority
queues to speed up Dijkstra’s algorithm. For example, using binary heaps [189] improve
the run time to O(n log n). Fibonacci Heaps [77] improve it to time O(m log log n), while
radix heaps [47] improve it further to expected time O(m + n(logC)

1
3+"), where C is an

upper bound on the weight of any edge. In practice, it often su�ces to use basic priority
queue implementations. This is especially true in the following for the speedup techniques to
Dijkstra’s algorithm that have much smaller queue sizes. A slow-down factor of only 2–3 was
reported earlier by Cherkassky et al. [46] which was later also confirmed by Schultes [171].
Further results have been found for certain graph classes. Linear time algorithms are known
for planar graphs [97] and undirected graphs [180]. Furthermore, linear running time with
high probability is known for graphs with random edge weights that are drawn uniformly at
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random from the [0, 1] interval [85, 139].
Point-to-point queries can be accelerated by bidirectional search. The search is started from

source and target simultaneously until a common node has been settled in both directions.
Then the shortest path distance and a corresponding path can be extracted from the data
in both queues and the tentative distance array [52]. Bidirectional search accelerates the
query in (nearly) planar graphs by roughly a factor of two because of the following reasoning.
Consider the search space to be a circle. A single (unidirectional) circle encompassing source
and target has about twice the area as two circles around source and target respectively that
meet in the middle.
A known heuristic from the artificial intelligence community is A⇤ [95, 156]. Instead of

searching uniformly around source (and target) the search is guided by a heuristic that tries
to explore nodes only that lead closer to the target. It does so by computing a lower bound
on the shortest path distance to the target for each node. Instead of selecting the node
in each iteration with the shortest distance, it selects the node that minimizes the sum of
shortest distance and the lower bound. The method does not give any worst-case guarantees
for general graphs. But moderate speedups are observed in practice. There are also reports
in the literature [86] that this method can lead to slow-downs as well if the heuristic does
not deliver proper guidance.
Route planning in road networks has seen a lot of results from the Algorithm Engineering

community in recent years. A number of techniques have been proposed that preprocess
the static input graph and achieve significant speedups over Dijkstra’s baseline algorithm.
An early technique that provides substantial speedups is arc flags, also called edge flags ;
originally conceived by Lauther [122, 123]; later by Möhring et al. [141] and Köhler et
al. [98, 117]. It is a goal directed technique. The road network is partitioned into cells and
each edge stores flags to indicate if there exists a shortest path over it into a certain region.
The arc flags query is an extension of Dijkstra’s algorithm that checks for each relaxed

edge if the flag for the targets region has been set. One problem of this query is the coning
e↵ect. The arc flags do not provide any guidance once the search reaches the target region
and the entire region is searched. Bidirectional search is able to cope with this e↵ect when
flags for the reverse graph are available. The reasoning is that the two searches are likely to
meet in between before the coning actually happens.
The naive preprocessing algorithm is to run a one-to-all search from every node which

results in an all-pairs shortest path (APSP) computation. For large graphs this is simply
infeasible. A straight-forward improvement is to conduct the one-to-all searches only from
cell boundary nodes, i.e. those nodes that are adjacent to nodes in other cells. While this
is substantially faster, the preprocessing is still beyond any practicability for large graphs.
Hilger et al. [98] provide a Centralized Shortest Path Algorithm that constructs a shortest
path tree for all boundary nodes of a region simultaneously by storing not only a single
label, but a label for each boundary node. The preprocessing is still quite pricey and takes
about 17 hours and much RAM on a graph representing Western Europe with about 18
million nodes. Hilger et al. [98] report on a speedup factor of more than 2 500 over Dijkstra’s
algorithm for the query. Only recently, Delling et al. [58] provide an algorithm that exploits
the hierarchical properties of Contraction Hierarchies (explained in Setion 2.5), that is able
to compute arc flags in a matter of minutes on GPU hardware.
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Searching for shortest paths in a road network has the advantage that the underlying
graph has an inherent hierarchy, i.e. some edges are more important than others. For
example, a segment on a highway carries more tra�c than a dead-end street in a residential
area. This fact is exploited in hierarchical speedup techniques to Dijkstra’s algorithm to
accelerate shortest path computation. Highway Hierarchies (HH) [168] is an exact method
that captures this inherent hierarchy. It was the first technique to e�ciently handle realistic
road networks of continental size. The road network is said to consist of several levels.
However, the importance of nodes and edges in the graph is determined automatically in a
preprocessing step. This step alternates between two basic procedures. First, edge reduction
removes so-called non-highway edges that would only appear on shortest paths close to
source and target. Second, node reduction or contraction replaces nodes with low degree by
inserting shortcut edges that preserve shortest path distances in the remainder of the graph.
The road network shrinks geometrically during the preprocessing while it remains nearly
planar and sparse. The query is essentially a bidirectional Dijkstra run with the exception
that certain edges are pruned from the search when it is su�ciently far away from source
and target. The reported speedups over Dijkstra’s algorithm are substantial with reported
average query times of around 1 millisecond.
Contraction Hierarchies (CH) by Geisberger et al. [84] is a simplification of HH that re-

lies only on node contraction. The nodes are ordered by some measure of importance and
contracted in that order. Here, contracting means that nodes are (temporarily) removed one-
by-one from the graph and replaced by shortcut edges to preserve shortest path distances
in the remainder of the graph. The resulting data structure is the union of the original
edges and the created shortcuts with the property that edges only lead to more important,
i.e. later contracted, nodes. Note that this graph is directed and acyclic. The query is a
bidirectional variant of Dijkstra’s algorithm with the only crucial di↵erence being a modified
stopping criterion. It stops relaxing edges if and only if the tentative distance of a node
exceeds the upper bound that may exist for the shortest path. A detailed description of the
CH preprocessing and query is given in Section 2.5. Bauer et al. [24] investigate combin-
ing goal-directed techniques and hierarchy-based method. The fastest of these methods is
CHASE where the CH query is pruned by arc flags. CHASE queries run in the order of ten
microseconds.
Route planning has been generalized to time-dependent edge-weights that model recurring

events, e.g. rush-hours. The baseline algorithm is a label-correcting version of Dijkstra’s
algorithm [54], that is able to reinsert settled nodes. Delling [56] reports on a combination
of shortcuts and arc flags (SHARC) that achieves speedups of more than 75 depending
on the amount of time-dependent edge weights. Batz et al. [21] give a generalization to
time-dependent Contraction Hierarchies (TCH) that achieve speedups over the label-setting
Dijkstra variant of more than 1 200. The travel-time functions for shortcuts in TCH take
up a considerable amount of space. Batz et al. [20] give a carefully designed approximation
for these functions that uses an order of magnitude less space. Interestingly, shortest path
queries remain exact with only a small slow-down in query time.
The reasons why speedup techniques to Dijkstra’s algorithm perform so well on road

networks is analyzed by Abraham et al. [2]. A graph is said to have low highway dimension
if there exists a sparse set of nodes S

r

for every r > 0 such that every shortest path longer
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than r includes a node from S
r

. Road networks are said to have a low highway dimension,
and a unifying preprocessing algorithm for several speedup techniques is given. We also refer
the reader to a survey by Sommer [176] for an extensive report on the state of shortest path
computation for certain graph classes.

Points of Interests. Searching for points of interest (POIs) is one of the major applications
in location based services (LBS) and has been previously solved by using k-nearest neighbor
point data structures in Euclidean space, e.g. by using 2D-trees [27], quad-trees [167] in
main memory, or R-trees [93, 165] in external memory, among others. These systems search
radially in euclidean space, which is inadequate for distances in a road network, e.g. consider
a river that naturally cuts [60] the road network with bridges being far away. The Euclidean
distance may yield a POI that is just across the river where the network distance may give
entirely di↵erent locations. This is especially an issue when the edge weights in the road
network represent travel times.

Searching for nearest neighbors in a road network can be solved by searching radially
around a given location with a unidirectional Dijkstra, or given unit-distances with a breadth-
first search. Unfortunately, there is no performance guarantee to the number of settled nodes
in these searches, e.g. the entire network is searched if only k � 1 POIs exist in total. Naive
heuristics therefore prune the search when a threshold on the distance has been reached.
Jensen et al. [101] report on a framework to support dynamic k-nearest neighbor queries
of moving objects in a road network. Location information is mapped onto a graph and a
search yields candidates that are subsequently verified. However, shortest path distances
between the nodes of the network are precomputed and the space overhead is infeasible for
large-scale instances. The problem of finding POIs can also be solved by exploiting the
structural properties of a speedup technique to Dijkstra’s algorithm. Geisberger [79] reports
on a natural solution of storing the information of backward search spaces in buckets at
nodes of the graph to allow accelerated nearest neighbor queries in a road network that obey
the actual network distance without searching radially. In this setting, the number of visited
nodes during a POI search does not depend on the distance to the POI but on the search
space size of a node. A more formal introduction is given in Section 5.2. A similar approach
is taken by Abraham et al. [1] with HLDB and applied to relational data base system that
e�ciently stores label sets, i.e. preprocessed search spaces. Union and intersections of search
spaces are identified as the building blocks for most LBS systems available through the
programming API of the data base, e.g. SQL. Queries can be evaluated in a matter of
milliseconds depending on the underlying hardware of the data base system, i.e. traditional
hard drives versus SSDs. However, the data base is rather static as reloading the label poses
a significant overhead and requires preprocessing of the entire road network.

Rice and Tsotras [161] develop an algorithm that finds a shortest path from source to
target that passes through at least one location from each of a predefined set of categories,
e.g. ATMs, gas stations, post boxes, etc. Their general problem is a variant of the well-
known Traveling Salesman Problem and likewise NP-hard. Nevertheless, their algorithm
has running time exponential in the number of categories, which is generally low, and is able
to solve practical instances within a matter of seconds.
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Alternative Routes. Computing alternative routes in road networks has been studied be-
fore for a long time. Yen [196] and Eppstein [73] investigate the k-shortest path algorithm.
Unfortunately, reasonable alternatives are usually not among the first few hundred or thou-
sand shortest paths. Also, these algorithms are not fast enough to be considered practical.
Chen et al. [45] apply the penalty method that iteratively computes shortest paths while
increasing a number of edge weights. Another natural approach is to apply multi-criteria
optimization to combine two or more edge length functions [62, 94, 135]. For example, a vari-
ant of CH provides routes [80] that are optimal with respect to flexible objective functions,
i.e. user preferences, but does not necessarily deliver reasonable alternatives.
Alternative paths that combine two shortest paths over a via node are used by Choice

Routing [40], also called Plateau Method. Shortest path trees are grown from origin node s
and in reverse from target node t. Plateaus hu, . . . , vi running from node u to v are maximal
paths that appear in both trees. They give candidates for natural alternative paths, i.e.
follow the forward tree from s to u, then the plateau, and then the reverse tree from v to t.
Although not entirely published, the plateau method provides alternatives of good quality
in practice. Further discussion on this can be found in the work of Abraham et al. [5].
Bader et al. [11] introduce the generation of alternative graphs, which is an extension of

the penalty method of Chen et al. [45]. Such graphs are a sparse subset of the road network
that encode a number of feasible alternative at once.

Ride Sharing. Previous research on ride sharing focused on multiple areas. Several authors
[66, 96, 151] investigated the socio-economic prerequisites of wide-spread customer adoption
and overall economic potential of ride sharing. For example, Hartwig and Buchmann [96]
analyze the ride sharing business case given that there exists a central service platform that
can be accessed by mobile devices.
Other authors [194, 195] identified the missing spatial resolution of concurrent ride sharing

services and examined a sensor network approach to metropolitan-local ride sharing o↵erings.
Hand-held mobile devices function as nodes of the sensor network and communicate locally
over short distances. Unfortunately, the work focuses on heuristic communication strategies.
Likewise, no performance guarantees are possible and rides are only matched heuristically.
Matching is done greedily and the first ride to go geometrically closer to the destination is
taken. Note that geometric routing might lead to arbitrarily bad routes on a road network
in the worst case.
Xing et al. [195] give an approach to ad-hoc ride sharing in a metropolitan area that is

based on a multi-agent model and show the validity of their approach by simulation on a
rather small metropolitan network. But in its current form the concept does not scale. As
the authors point out it is only usable by a few hundred participants and not by several
thousands or more participants that a real world ride sharing service would have.
Recently, Abraham et al. [1] provide an implementation of the single-hop ride sharing

algorithm of Section 5.3.1 based on hub labeling using a technique called double-hub indexing.
The query time does not depend on the number of o↵ers, but on the square size of the label
set of source and target, which can be asymptotically less work.
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The Tra�c Assignment Problem. The tra�c assignment problem (TAP) has been studied
for several decades. It studies the selection of routes between sources and targets and is a step
in the traditional travel forecasting model. It is therefore an important tool on policy making
and transportation planning. The first mathematical formulation of the TAP is generally
attributed to Beckman et al. [26]. It was first given in 1956 and models the TAP as an
optimization problem that seeks to find an equilibrium. A general behavioral assumption in
the field of transportation science is that each traveller or vehicle in a road network takes a
path that has least cost (or is at least perceived as such). It is further assumed that travel
time is the most significant utility for route choice. We recognize the over-simplification
of this model, but direct the reader to the literature on empirical research of route choice,
i.e. [160].
Travellers on a road network are said to be non-cooperating and seek to minimize travel

time (or any other metric) and can be understood to act as selfish agents. They switch to
better routes if they become aware of it. A state where no driver can find a better route by
a unilateral decision is called an equilibrium. The state of this equilibrium is the aggregate
result of individual decisions and therefore also goes by the name of user equilibrium. It
is generally assumed that under equilibrium conditions all used routes for the same origin-
destination pair have the same costs, e.g. equal travel time. Also, unused routes between
any origin-destination pair have higher costs than used ones.
The method of choice to solve this problem is the Frank-Wolfe-Algorithm [133], which

is also known as the convex combinations algorithm. It was originally invented to solve
quadratic programming problems. Over the years it has been applied to the tra�c assign-
ment problem, mainly because of its rather simple structure. Occurrences in the literature go
back to the late 1960s [34, 144]. The major advantage of the Frank-Wolfe-Algorithm (besides
its simplicity) is its low memory consumption. For example, it does not save any information
on computed routes. It only counts the volume of tra�c on each individual street segment.
This was considered a major advantage in the early days of computation because of limited
memory capabilities. The algorithm alternates between an assignment phase of the tra�c
demand and a minimization step to numerically approximate edge flows.
The textbook of She� [174] gives an overview of the first three decades of research between

1950 and 1980. Most of the solution techniques described are still in use by practitioners
today. Usually they are applied to road networks of small and medium size up to several
hundred or a few thousand edges and often only on sparse subsets of highway networks which
are much smaller than the full road network.
Previous work focusses on speeding up convergence of solving the tra�c assignment prob-

lem by modifying the way tra�c flow is distributed during the computation. For exam-
ple, Bar-Gera [14] presents an algorithm to compute the equilibrium by paired alternative
segments. If flow between two nodes splits into separate sub-paths then flow is shifted
proportionally.
A completely di↵erent model to solve the tra�c assignment problem is to apply game

theory. Rosenthal [163] was the first to consider the problem by a game theoretic approach.
A so-called congestion game is defined by a set of players that compete for one or more shared
resources. It is said to be symmetric if all players chose among the same set of strategies.
Fabrikant et al. [75] show that any symmetric congestion game can be solved in polynomial
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time. Relating to our case the players are travellers that compete for roads and seek to
minimize travel expenses. Edge latencies, i.e. the time it takes to traverse a road segment,
are defined to be non-negative, continuous and non-decreasing functions of the amount of
travellers on that edge. Consider building up a given tra�c flow on a road from zero flow,
one infinitesimal flow path at a time. The potential function is obtained by integrating the
latency experienced by each infinitesimal flow path, using edge latencies that were in e↵ect
at the moment it was routed. This potential can be easily optimized to a (local) minimum
by allowing players to switch their strategy, which is a shortest route in this case. These
switches are called selfish steps. Consider an improving move of one of the players to a
better route. It is easy to see that the potential is lowered and that it can be brought to a
local minimum by subsequent switches until no switch to an improved route for any player
is possible.
Kirschner et al. [113] apply book keeping heuristics to avoid many path computations and

subsequently speed up the rate of convergence on networks with less than a few thousand
nodes and edges. For an excellent survey over the literature for congestion games and
algorithmic game theory in general see the textbook of Nisan et al. [149] and especially
Roughgarden’s seminal work on the Price of Anarchy in routing games [164]. Note that
the game theoretic approach prohibits any precomputation based on the metric of the edge
weights, because edge weights change with every move. A single selfish step might change
the edge weights enough to invalidate the preprocessed data structures and preprocessing
the network for a single query is out of the question. The application of the Frank-Wolfe-
Algorithm as well as the game theoretic solution need a method of path finding. Plain
solutions spend virtually all of the computational e↵ort in path finding.
To the best of our knowledge there is no publication that reports on directly exploiting

inherent properties of a speedup technique to accelerate tra�c assignment computations.

Transit Node Routing. Transit Node Routing (TNR) by Bast et al. [18] is one of the
fastest speedup techniques for shortest path distance queries in road networks. By applying
an additional, second step of preprocessing, TNR yields almost constant-time queries, in the
sense that nearly all queries can be answered by a small number of table lookups. It follows
an intuition: Long distance connections almost always enter an arterial network connecting
a set of important nodes the transit nodes. Once these nodes are identified, a mapping from
each node to its access nodes and pairwise distances between all transit nodes are stored.
Many TNR variants have a common drawback that preprocessing time for TNR is sig-

nificantly longer than for the underlying speedup technique. Another weakness is that the
locality filter requires geometric information on the position of the nodes [16, 17, 84]. The
presence of a geometric component in an otherwise purely graph theoretical method is re-
garded as awkward. There are several examples of geometric ingredients in routing tech-
niques being superseded by more elegant and e↵ective graph theoretical ones, e-g- see [171],
with the locality filter of TNR being the only survivor that is still competitive. Recently,
Abraham et al. [2] give further analysis of TNR in the context of Highway Dimension that
yields a natural locality filter. Further technical details on TNR are given in Section 6.
Geisberger et al. [84] uses CH to define transit node sets and for local searches, but still
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uses a geometric locality filter and relies on Highway Hierarchies [168] for preprocessing. In
lecture slides [15], Bast describes a simple variant of CH-based preprocessing which explores
a larger search space than ours and which also computes a super-set of the access nodes only
because it omits post-search-stalling. No experiments are reported. The geometric locality
filter is not touched. In Section 6.2 we remove all these qualifications and present a simple
fully CH-based variant of TNR which yields surprisingly good preprocessing times and allows
for a very e↵ective fully graph-theoretical locality filter.
A related technique to TNR is Hub Labeling (HL) by Abraham et al. [3] which stores

sorted CH search spaces, intersecting them to obtain the distance. Using sophisticated
tuning measures this can be made significantly faster than TNR since it incurs less cache
faults. However, HL need much more space than TNR then. There exist a number of variants
of HL [3, 4, 61] that each introduce a specific trade-o↵ between preprocessing time, space
and query e�ciency. A hierarchical variant [4] introduces a trade-o↵ between query time and
preprocessing e�ciency as well as overall better space consumption. Recently, a compressed
variant has been published by Delling et al. [61] that further reduces the memory overhead
while having reasonably fast preprocessing times.
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CHAPTER 2

Preliminaries

This Chapter introduces the basic data structures and algorithms alongside the notation
used throughout this thesis.

2.1. Graph Theory

A graph G = (V,E) models relationships between entities. It consists of a finite set of nodes
V and also of a finite set of edges E. An edge e = (u, v) 2 E is a pair of nodes. If this pair
is ordered, then the graph is directed. Otherwise it is undirected. The number of nodes is
denoted by n := |V |, while the number of edges is denoted by m := |E|. As degree deg(v) of
a node v we denote the undirected number of edges incident to node v. deg

in

(v) (deg
out

(v))
gives the number of directed edges leaving at (ending in) v. A graph is said to be sparse if
m = O(n). A reverse graph Ḡ is obtained by replacing every (directed) edge (u, v) 2 E with
(v, u).

Edge Weights and Functions. Each edge e 2 E is associated with a length, or more
precisely with a non-negative cost l(e): E ! R

0

that indicates how expensive it is to traverse
that edge, e.g., the travel-time necessary to traverse the edge. In static graphs the edge
weight is constant. Note that in undirected graphs the edge weights are symmetric, i.e.
l(u, v) = l(v, u), whereas in directed graphs we can have l(u, v) 6= l(v, u).
Time-dependent network instances do not have static edge weights, but rather a travel

time function f
e

(·) : E ⇥ R ! R. The weight function f
e

(⌧) specifies the travel time at the
endpoint of an edge when the edge is entered at time ⌧ . For our purposes, the edge weight
functions are given as piece-wise linear functions that support three operations:

• Evaluation: Given a function f and a departure time ⌧ , compute f(⌧). A query on a
naive implementation with binary search takes time O(log n), whereas a query on an
implementation with a bucket data structure takes expected time O(1).
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• Linking: Given two adjacent edges e
1

= (u, v) and e
2

= (v, w) with weight functions f
and g compute the linked edge function g � f , i.e. g after f, of the path hu, v, wi. The
resulting function gives g(f(⌧) + ⌧), 8⌧ . This can be computed in O(|f |+ |g|).

• Minimum: Given two parallel edges e
1

and e
2

with weight functions f and g compute
the minimum travel time function f 0 := min{f(⌧), g(⌧)} : 8⌧ that merges these edges
while preserving the shortest paths. This can be computed in O(|f |+ |g|).

Thus, time-dependent edge functions are treated as abstract data types. It is further assumed
that each edge obeys the FIFO property:

(8e 2 E)(8⌧ < ⌧ 0) : ⌧ + l(⌧, e)  ⌧ 0 + l(⌧ 0, e) .

In other words, one can not arrive earlier by starting the journey later. For an in-depth
overview on the modelling of time-dependent networks see the seminal article of Orda and
Rom [153] on the subject.

Paths. A path P = hs, v
1

, v
2

, . . . , ti in G is a sequence of nodes such that there exists an
edge between each node and the next one in P . Let p := hv

1

, . . . , v
k

i (or p := v
1

–v
k

) be a
connected path between nodes v

1

, v
k

2 V with (v
i

, v
i+1

) 2 E, (8i : 1  i < k).
The length of a path l(P ) is the sum its edge weights. A path with minimum cost between

s, t 2 V is called a shortest path and denoted by P
st

with cost µ(s, t). Note that a shortest
path need not be unique. A path P = hv

1

, v
2

, . . . , v
k

i is called covered by a node v 2 V if and
only if v 2 P . A node set V 0 ✓ V covers a set of paths P if and only if P \V 0 6= ; : 8P 2 P .
A graph is said to be strongly-connected if for every pair of nodes s, t 2 V there exists a
path between s and t in G and a directed graph without any cycles is called a DAG. The
hop distance between node u, v 2 V is the minimum number of edges of a path between u
and v. If such a path does not exist, the distance is 1.

Edge-Expansion. An edge-expanded graph is a directed graph that explicitly models all
possible turns (u, v, w). The input graph to an edge-expanded graph is called node-based
graph. A node-based graph resembles roads between junctions, while the edge-expanded
graph resembles turns between roads. Thus, each directed edge of the node-based graph
becomes an edge in the edge-expanded one. Likewise, the edges between edge-expanded
nodes are turns. The construction of an edge-expanded graph is straight-forward. Turn-
costs and turn restrictions can be modelled into the graph by adding them to the edge that
models the turn or by omitting the edge entirely. As as rule of thumb, we note that edge
expansion increases the graph size by about a factor of 3–4. See [185] for a description of
the construction and an experimental results on memory requirements and query e�ciency.

Partitions. A family of blocks, or cells, C = {C
1

, . . . , C
k

} is a partition of V if every node
v 2 V belongs to exactly one element of C. A partition of the graphs node set V is a family
of subsets. The cut of a partition is the number of edges which connect distinct cells, i.e.
edges (u, v) for which u 2 C

i

, v 2 C
j

, i 6= j. A partition of a subset of V is call sub-partition.
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A second-level partition is a family of cells C = {C0, . . . , C l} that exists for each 1  i  k
such that C

i

=
S

0jl

Cj. If defined recursively over several layers, it is called a multi-level
partition. A graph G is said to be bipartite if its node set V := V

1

[ V
2

admits a partition
such that every edge e 2 E connects the two di↵erent cells V

1

and V
2

.

2.2. Further Conventions.

We model a road network as a directed graph G = (V,E). V is a set of nodes, e.g., junctions
in the road network. Edges (v, w) 2 E connect all pairs of nodes v, w for which there is a
direct connection in the road network. Note that nodes need not necessarily be junctions,
but can also be used to model the geometry of the road.
When a logarithm is given without base we assume that it is the logarithm to base 2, i.e.

log n ⌘ log
2

n.

2.3. Data Structures and Algorithms

We now present basic facts about data structures and algorithms that are used throughout
the course of this thesis.

2.3.1. Priority Queues

A priority queue (PQ) is an abstract data type that maintains a set of elements E and each
element e 2 E is associated with a key that resembles the elements importance. The data
structure supports a number of basic operations:

• insert(e, k) inserts element e with priority key k into the PQ.

• min() yields the element with minimum priority.

• delete min() removes the element with minimum priority from the PQ.

• size() returns the current number of elements.

Addressable PQs allow an important additional operation:

• decrease key(k,v) decreases the priority of key k to v.

Note that the min operations can also be implemented as max operations by inverting the
sorting order. And depending on the implementation, there may be further functionality like
bulk insertions, and merging of existing PQs. The implementation of a PQ determines the
asymptotic running time of each of the operations. Naive implementations store the data in
a simple array. If the array is sorted, then delete min and min operations can be done in
O(1), but insertion requires a linear scan through the array, requiring time O(n). Likewise,
storing the data unsorted allows constant time inserts, but searching the minimum element
requires a linear scan.
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More sophisticated implementations keep the data in a partially sorted order. For example,
binary heaps keep the data sorted in heap order [189], i.e. when n elements are stored in an
array h[1 . . . k]:

hbi/2c  h[i], 1 < i  n .

The min operation runs in time O(1), while delete min, decrease key and insert run in
time O(log n) in the worst-case. While there are a number of PQ data structures that have
better asymptotic run times, e.g., like Fibonacci Heaps [77], the simple structure and low
overhead are reasons why binary heaps are used often in practice.

2.3.2. Dijktra’s Algorithm

Dijkstra’s seminal algorithm [65] computes the shortest paths from a given source node s
to all nodes in a directed graph with non-negative edge weights. The algorithm keeps track
of distances in an array, where it stores the label, i.e. the distance from the source, of each
node. It searches radially around the source and stores the current search horizon in a
priority queue. In each iteration, it settles the node u with minimum distance from the
source, i.e. removes the minimum from the queue. The edges (u, v) 2 E are relaxed and if
µ(s, t) + l(u, v) < distance of v the entry in the distance array is updated. If v was entered
into the priority queue previously, its key is decreased, otherwise it is inserted into the queue.
See Listing 2.1 for pseudo-code representing the algorithm, given a global array distances
where all entries are set to 1.
If only the shortest path (distance) from a source node s to a specific target t is sought,

the algorithm can be aborted as soon as t is settled. All distances updated after settling

Listing 2.1: Dijkstra’s Algorithm

1 function dijkstra(s) do
2 distances[s] = 0
3 q.insert(s,0)
4 while (!q.empty ()) do
5 (u,d) = q.delete_min ()
6 for all edges (u, v) 2 E do
7 new_distance = d+mu(u, v)
8 if(new_distance < distances[v]) do
9 bool was_inserted = (distances[v] != 1)

10 distances[v] = new_distance
11 if(was_inserted) do
12 q.decrease_key(v,new_distance)
13 else
14 q.insert(v, new_distance)
15 end
16 end
17 end
18 end
19 end
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t will be higher than distances[t] and therefore not change the result. This is called a
point-to-point (or one-to-one) query. The computation can be accelerated by bidirectional
search [52]. The search is started simultaneously from source and target, where the backward
search runs on the reverse graph. Once a common node is settled in both search directions,
no further edges are relaxed any more and the shortest path can be computed by the already
gained information (inside the queues). A search tree is the tree that is gained by noting
the tree of parent pointers when running a unidirectional search from a node s.
As argued in Section 1.2 most of the theoretical work focused on the implementation of

the priority queue. But road networks are sparse, i.e. m = ⇥(n), while the number of
queue operations Dijkstra’s algorithm is obviously bounded above by O(n+m). Thus, even
binary heaps yield a total asymptotic run time of O(n · log n) for these instances. Speedup
techniques to Dijkstra’s algorithm as introduced in Section 1.2 aim to minimize the number
of queue operations which make the actual implementation of the PQ data structure even
less important.
A⇤ [95] is a heuristic improvement to Dijkstra’s algorithm for point-to-point queries. The

search is guided towards the goal by following the path of lowest expected total cost. Each
node v is associated with two cost functions:

• g(v) is the (tentative) distance from the source.

• h(v) is a lower bound of the distance to the target, also called potential.

Function h(v) must be an admissible heuristic. A node’s potential must not overestimate
the distance to the target, i.e. µ(s, v) + h(v)  µ(s, t), 8v 2 V . The order of the priority
queue is then given by the sum f(v) = g(v) + h(v). An example for such an heuristic is the
euclidean distance which never overestimates the shortest path distance in a road network
(with distance metric).
A⇤ finds the optimal path if it exists, but it does not have strong worst-case guarantees. Its

performance depends on the accuracy of the heuristic. Goldberg and Harrelson [86] report
on a number of variants of a sophisticated potential function, based on landmarks and the
triangle inequality. The observed performance is roughly an order of magnitude higher than
Dijkstra’s algorithm depending on the test instance.

2.3.3. Associative Arrays and Hashing

An associative array [137] stores a set of elements. Each element e is associated with a key
k 2 K from the set of possible keys. The associative array A supports the following basic
functionality:

• A.insert(k, v) adds the value v identified by its key k into A.

• A.find(k) searches if A holds an entry identified by k and returns it.

• A.delete(k) removes the key-value pair identified by k from A.
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A way to implement associative arrays is to use a hash function h : K ! S that maps
the set of keys K to a set of hash values S with |S|  |K| and S := [0, . . . ,m � 1]. This
range is sometimes abbreviated with [m]. A collision occurs when distinct keys get mapped
to the same hash value. The collision has to be resolved. A number of approaches have been
developed to resolve collisions. Hashing with chaining stores data in an array A

c

of linked
lists. The above operations can be implemented easily. Insertions of elements e are done by
adding e to the list of A

c

[h(e)]. This can be done in constant time. Deletions are done by
scanning A

c

[h(e)] until the element is found and then removed from the linked list. The find
operation also scans A

c

[h(e)]. Scanning takes time linear in the size of the linked list, which
is linear in the total number of elements of elements in the worst case. While one could
expect a much better average case in practice this is not better than storing linear lists of
elements in the first place.
Hashing with (Linear) probing stores data directly in an array A

p

of elements (not lists)
and tries to resolve collisions by finding free spots in A

P

instead of managing lists. A simple
variant is the following that we describe for a basic overview of the technique. An element
e is stored at A

p

[h(e)] or at a subsequent position. The implementation of insert() works
similar to find(). Array A

p

is scanned linearly beginning at A
p

[h(e)] until the first free
spot is found. The search can be aborted as soon as a free entry is found. Implementing
the remove() operation is trickier. We describe a rather simple solution to give a sense for
the problem. An entry cannot be simply deleted, because depending on load of the table
and insertion order it may break searching for elements. A simple fix is to mark elements
as previously used, but deleted. Periodic reorganizations help to manage the amount of
free/deleted/used space.

2.4. String Processing

A string s := s
0

, . . . , s
k

, s
i

2 ⌃ of length k is a sequence of characters over an alphabet ⌃ that
is the set of all possible characters. The length of a string s is the number of it characters
and we denote the i-th character of string s by s

i

. An empty string is denoted by ". It is
seen as an abstract data type that allows certain operations to get information on a string
or to transform it.
We define a number of basic operations on strings: Two strings s and t are said to be

equal if |s| = k = |t| and s
i

= t
i

, (8i  k). Character replacement transforms s into s0

and exchanges the i-th character s
i

2 ⌃ of string s by s0
i

2 ⌃ where s
i

6= s0
i

such that
s0 := s

0

, . . . , s
i�1

, s0
i

, s
i+1

, . . . , s
k

. Character deletion transforms s into s0 and removes the
i-th character from s such that s0 := s

0

, . . . , s
i�1

, s
i+1

, . . . , s
k

. Character addition transforms
s into s0 and adds character a 2 ⌃ at position i such that s0 := s

0

, . . . , s
i

, a, s
i+1

, . . . , s
k

.

2.4.1. Tokenizing and Inverted Indices

A text is an ordered set of strings where the strings are delimited by white space or delimiter
characters. Tokenizing a text or input stream means that it is broken up into words or
symbols, e.g., the text of a novel is tokenized by noting all its words. An inverted index is
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a simple index data structure that is useful when tokens appear several times in the text,
e.g., in natural language texts. It is a mapping of tokens to the texts in which they appear.
Consider the following example:

Example 1 (Inverted Index.). Two texts are given:
T[0] = to be or not to be
T[1] = be there or be square
The corresponding inverted index is then given as:
to : {0}
be : {0,1}
or : {0,1}
not : {0}
there : {1}
square : {1}

A full inverted index also stores the occurrences of the token in the text as a pair {textid,
position}. The most common query function of such an index is locate(x) that returns
all texts where token x occurs. The construction principle of an inverted index is straight-
forward. First, a forward index is built that stores lists of words, i.e. tokens, of the texts.
In the next step, this forward index is inverted which lists the texts of a token, i.e. in which
texts a token occurs. A locate query on the forward index would require scanning the texts
sequentially, whereas a query on the inverted index can be done in constant time by resolving
the ID of a token through hashing.

2.4.2. Levenshtein Distance

The minimum edit or Levenshtein distance [125] ed(s, t) is a metric that measures the simi-
larity of two strings s and t. It is the minimum number of character insertions, deletions or
replacements necessary to transform string s into t. Consider m := |s| and n := |t| and the
base cases D

0,0

= 0, D
i,0

= i, 1  i  m, and D
0,j

= j, 1  j  n. The edit distance can be
computed by filling a matrix D of m⇥ n entries.

D
i,j

= min

8
>>><

>>>:

D
i�1,j�1

+0 if s
i

= t
j

D
i�1,j�1

+1 (characterreplacement)

D
i,j�1

+1 (characterinsertion)

D
i�1,j

+1 (characterdeletion)

The minimum number of edit operations can then be found at entry D
m,n

. The asymptotic
run time to compute the edit distance is O(m · n) and the space required is O(min(m,n))
since only access to the previous row is necessary and the entry of the previous column is
stored in the current row. The edit distance of two strings is zero if and only if the two
strings are identical. And it is at least the length di↵erence and at most the length of the
longer of the two strings.
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2.5. Contraction Hierarchies

This section explains Contraction Hierarchies (CH) [84], a very successful speedup technique
to Dijkstra’s algorithm. CH heuristically order the nodes by some priority function and
contract them in this order. Here, contracting means that a node is removed from the graph
and as few edges as possible are inserted to preserve shortest path distances. The original
edges are augmented by the shortcut edges. A query, which is essentially a bidirectional
variant of Dijkstra’s algorithm, only needs to follow edges that lead to more important
nodes. Hence, the data necessary to answer a query forms a directed acyclic graph (DAG).
When a node is contracted, it is (temporarily) removed from the graph and shortcut edges

are inserted to preserve shortest path distances between the remainder of the graph. The
node that is selected next for removal is selected by an online heuristic since it is too expensive
to precompute all priorities before actually contracting any node. In particular, Bauer et
al. [22] show that it is actually NP-hard to compute a hierarchy, i.e. a node ordering, that
minimizes the size of the respective CH data structure.
When a node v is contracted, a local search is conducted to verify if a shortcut for path

hu, v, wi may be omitted. This heuristic is called witness search and essentially runs a
shortest path computation between the pairwise combinations of nodes u and w. Shortcut
edges are omitted if this returns that there is exists a path hu, . . . , wi that is shorter than the
(potential) shortcut, i.e. µ(hu, . . . , wi)  (l(u, v) + l(v, w)). Note that superfluous shortcuts
do not influence the correctness of the constructed data structure, but unnecessarily inflate
the search space of a query. Hence, the witness search is allowed to have a one-sided error,
i.e. false negatives. For example, the witness search can be pruned by an upper bound on
the number of settled nodes, or on a hop distance from the source. We refer the interested
reader for a sound analysis of correctness to [84].
The priority function is a linear combination of a number of terms. While one can think

of all sorts of complicated ingredients to that combination, recent implementations, e.g.,
[128, 129], use rather simple heuristics with great success. Three easy terms have been
identified. First, the so called edge quotient is considered, i.e. the number of edges that are
deleted and added by contracting a certain node. Second, the (related) quotient of original
edges is considered, i.e. how many original edges are represented by a shortcut. And last
but not least, the so-called depth of a node is considered, which represents the maximum
hop distance from a given node to a previously contracted node using only already inserted
shortcuts always leading to earlier contracted nodes. Then, the actual linear combination is
as easy to compute as

↵ · edgeQuotient + � · originalEdgeQuotient + � · nodeDepth, with ↵, �, � 2 N.

Node priorities are recomputed for all neighbours of contracted nodes right after their (tem-
porary) removal from the graph. The preprocessing is parallelized by identifying independent
sets of nodes that can be contracted without interfering with each other. While the remain-
ing graph (containing the nodes not yet contracted) is non-empty, an independent set I of
nodes is identified to be contracted next. Note that any independent node set could be
used in principle, but it is reasonable to approximate the ordering a sequential algorithm
would use, i.e. contract the nodes in roughly the same order of importance. An important
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ingredient to the performance of sequential contraction is to select nodes uniformly, e.g. by
growing (graph) Voronoi regions [84]. Therefore, those nodes that are locally minimal with
respect to a heuristic importance function within their local 2-hop neighbourhood are se-
lected for contraction. Obviously, this hop distance is su�cient to ensure that independent
nodes can be contracted in parallel without interfering with each other. Vetter [184] reports
that this turns out to be a valuable compromise between a low number of iterations and
good approximation of the behaviour of sequential contraction. A distributed variant of the
parallelization approach will be examined in Section 4.

The resulting data structure of the Contraction Hierarchies preprocessing is the union
of the original graph and the set of shortcut edges. A shortest path computation on this
data structure is essentially a bidirectional version of Dijkstra’s algorithm that considers
only edges to more important nodes, i.e. so-called upward edges. Note that this graph
forms a directed acyclic graph (DAG) where edges only lead to more important nodes, i.e.
later contracted nodes. The set of forward edges in this DAG is denoted by G" and the
set of reverse, i.e. backward, edges by G#. The length of a shortest path from node u to v
in the forward (backward) search space is denoted by d"(u, v) (d#(u, v)). The only crucial
di↵erence is the stopping criterion of the bidirectional search that continues adding nodes
into the priority queues when a common node is found in both search spaces, but stop when
tentative distances of added nodes exceed the lower bound that may exist for a shortest
path. A shortest path then goes over a middle node that is settled in both (half-)searches
and for which CH guarantee correct labelling in both search directions. See Figure 2.1 for a
visualization of the CH data structure and its query.

Although the search spaces explored in CH queries are rather small in practice, there is a
simple technique called stall-on-demand [171] that further prunes the search spaces. We use
a simplified version of that technique, which leads to queries as fast as those reported in [84]
but is much simpler and does not need additional data structures. For every node v that is
the end point of a relaxed edge (u, v) it is checked if there exists a reverse edge (w, v), where
the tentative distance of w plus the edge weight of (w, v) is less than the tentative distance
of u plus edge (u, v). This is done by simply scanning the edges incident to node v. If such
a node w exists, edge (u, v) can’t be part of a shortest path and thus v is not added into the
queue. See Figure 2.2 for a visualization of stalling in an exemplary forward search.
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Figure 2.1.: CH Query for Nodes s, t 2 V . Forward and Backward Search Spaces Meet at
Node v.
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Figure 2.2.: Node v is not Inserted into the Priority Queue When the Length of Path
hs, . . . , w, vi is at Most the Length of the Newly Discovered Path hs, . . . , u, vi.

While the resulting distance of a CH query is the same as the distance returned from a
plain unidirectional Dijkstra run on the uncontracted graph, the returned path may consist
of shortcut edges. Thus, these shortcuts need to be unpacked to retrieve the full path. This
is done by a recursive procedure that unpacks a shortcut by splitting it into the two edges
from which the shortcut was built. Note that it is su�cient to store the middle node, i.e.
the contracted node from the creation of each shortcut edge, to unpack every path and that
this information may be omitted in case one is interested in distances only. It is easy to see
that the middle node of a shortcut is less important, i.e. has smaller priority, than any of
its endpoints. See Figure 2.3 for a visualization.

Time-Dependent Preprocessing. We use the same approach as Batz et al. [21] for time-
dependent preprocessing and consider only upper and lower bounds during the witness
searches. We need to create a shortcut if we only find a witness that has a higher max-
imum travel time than the lower bound of our potential shortcut. If we find a witness with
minimum travel time below the lower bound of our potential shortcut, we do not have to
insert a shortcut. The travel time functions of the two input edges are linked to generated
the travel time function of the shortcut. Otherwise, we conduct a profile search on a corridor
of visited nodes during the witness search. We only omit a shortcut if we find a profile that
is a lower bound for our potential shortcut. For further explanation of the inner workings
of the edge weight data type and the witness search, we refer the interested reader to the
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Figure 2.3.: Edge (u, v) is Unpacked into Edges (u, w) and (w, v).
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Figure 2.4.: Nodes of the Backward Search are Marked and Subsequently Explored by the
(Resumed) Forward Search.

publication of Batz et al. [21] and to the brief recapitulation of Section 2.1.

Time-Dependent Query. A bidirectional and time-dependent query has to overcome the
issue that the arrival time is not known. The forward search is easy to adapt as the departure
time is known, though. Each relaxed edge is evaluated for exactly one point in time and
the resulting search is very similar to the time-independent case. We have to solve the
problem of how to conduct a bidirectional search, when the arrival time is unknown. This
is solved by splitting the search from the target into two search phases. First, the backward
search explores the reachable search space by a BFS-like search that marks a corridor of all
potentially reachable nodes. This exploration can be done by an (adapted) static Dijkstra
query and by noting upper and lower bounds for the edge cost functions, we can prune the
search at some nodes, e.g., arriving at a node before actually departing is impossible. Again,
the search space is small on average and the rationale is that only a modest number of nodes
will be marked. Conceptionally, the forward search is resumed in a downward search on
these marked nodes and eventually finds a path. See Figure 2.4 for a visualization of this
query process.

2.5.1. Computing Distance Tables

Computing a table of all pairwise shortest path distance between a set of nodes can be triv-
ially done by running a quadratic number of queries. While this is already significantly faster
with Contraction Hierarchies than with a naive implementation of Dijkstra’s algorithm, this
table can be computed much more e�ciently with the algorithm of Knopp et al. [114] as
they report construction times of a few seconds only even for large tables. The algorithm
was originally conceived for a di↵erent speedup technique to Dijkstra’s algorithm, but its un-
derlying principles are more general and can also be applied to Contraction Hierarchies [84].
The main observation is that when computing a quadratic number of pairwise distances a
recurring set of important nodes gets settled in nearly all searches.
The algorithm basically consists of two phases of half searches. Consider a set of sources

S and a set of targets T . Also, consider an initialized, but empty distance table D, i.e. all
entries set to 1. In the first phase, a simple CH backward search is conducted for each
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node t 2 T . During each of these half searches, the pair
⇥
t, d#(v, t)

⇤
is noted for each settled

node v 2 G#. Thus, the algorithm notes the distances to the target nodes at each and every
potential middle node that is settled during the backward search phase. The information
that is stored at each node v is called a bucket b

v

, which in a technical sense is a simple
unsorted, but dynamic array.
In the second phase of the distance table computation, the forward searches are conducted

for all nodes t 2 S. Whenever a node v is settled at distance d"(s, v), its bucket b
v

is scanned.
Given a bucket element

⇥
t, d#(t, v)

⇤
, the corresponding entry in the distance table D[s, t] is

updated if the following condition holds:

D[s, t] > d"(s, v)| {z }
forw. search

+ d#(v, t)| {z }
bucket entry

.

Note that this condition is tested for each bucket and every entry encountered during the
second phase of the algorithm. The search spaces are small. Hence, the size of the buckets
will be small, as will be the number of nodes that carry a non-empty bucket at all.
For a proof of correctness consider the node pair (s, t) 2 V , with s 2 S and t 2 T . We

show that the meeting node v of a simple CH query for (s, t) is found with correct forward
and backward labels inside the bucket structure. Assume that the |T | backward searches are
finished. Since the backward search for distance tables is the same as for a CH query, it is
easy to see that there exists a bucket entry

⇥
t, d#(v, t)

⇤
with the correct backward distance

for middle node v. The forward search settles the middle node as well by the same argument.
Hence, the forward distance d"(s, v) is also correct. By correctness of the CH query we know
that µ(s, t) := d"(s, v)+d#(v, t) for the correct middle node v. We refer the interested reader
to a much more detailed discussion of the correctness in [114].
Computing such a distance table with the above algorithm is a matter of mere seconds

since only O(|S| + |T |) half searches have to be conducted. The quadratic overhead to
initialize and update the distance table entries is close to none in practice. It is easy to
see, that computing a one-to-many (or many-to-one) query is a special case of the general
algorithm to compute distance tables.
While the algorithm has been available to the Algorithm Engineering community for quite

some time, the fast generation of distance tables has only been recently when it was picked
up by the economic research community [70] to show that travel times and clustering of
businesses correlate on the large scale.

2.6. Test Instances

Table 2.1 lists the test data instances that are used in the experimental evaluations along with
their size, date of origin, as well as a remark. The instances are grouped into time-dependent
and static graphs and sorted within their group by origin and node size.
The test instances come from a number of sources. Dictionary dict-moby is the text of

Melville’s classic novel Moby Dick available from Project Gutenberg [157], dict-town is a
list of town names extracted from OpenStreetMap in February 2009, dict-eng is a list of
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Dictionary Entries avg. length Rf. [MB] Remark

dict-moby 37 924 9 [157] 0.31 Melville’s classic Moby Dick
dict-town 47 339 10 [152] 0.49 German town names
dict-eng 213 557 10 [138] 2.20 Webster’s Dictionary
dict-wiki 1 812 365 9 [187] 17.06 Wikipedia article titles

Adress Data City Tokens Street Tokens Rf. Year Remark

ptv-addr ⇡ 76 000 269 000 [158] 2009 Germany

Graph n m Rf. Year Remark

ptv-europe-td ⇡ 18.0M ⇡ 42.6M [158] 2006 6% time-dependency
ptv-ger-mw-td ⇡ 4.7M ⇡ 10.8M [158] 2006 8% time-dependency, midweek
ptv-ger-sun-td ⇡ 4.7M ⇡ 10.8M [158] 2006 3% time-dependency, sunday

ptv-europe 18 029 721 44 826 256 [64] 2006 Western Europe
ptv-euro-dist 18 029 721 44 826 256 [64] 2006 West. Eur., distance metric
ptv-germany 4 378 446 9 574 514 [64] 2006 Germany
ptv-belgium 463 514 1 093 544 [64] 2006 Belgium

osm-planet 758 206 383 1 842 527 702 [152] 2012 Entire World
osm-germany-4 35 024 256 43 790 686 [152] 2013 Germany
osm-germany-2 33 927 089 86 477 642 [152] 2012 Germany
osm-berlin 288 755 844 550 [152] 2012 Berlin, Germany

osm-germany-3 15 139 753 29 492 546 [152] 2011 Germany
osm-germany-1 6 344 491 13 513 085 [152] 2010 Germany
osm-bay-area ⇡ 355.000 ⇡ 466.000 [152] 2010 Bay Area, California, USA

Table 2.1.: Basic Properties of the Test Instances Used in Benchmarks.

entries from Webster’s Dictionary [138], while dict-wiki is a list of Wikipedia [187] article
from February 2009.
Graphs prefixed with ptv- have been made available by PTV AG [158] for 9th DIMACS

challenge on shortest paths [64]. The length and the respective type out of 13 road categories
are available for each edge segment. The edge cost metric resembles expected travel time
which is derived from the length of an edge and the road category.
Several graph instances are time-dependent. The resolution of the time functions is 15

minutes. Instance ptv-europe-td has about 6% time-dependent edges with an average number
of more than 26 supporting points each. Instance ptv-ger-mw-td reflects average midweek
(Tuesday through Thursday) tra�c for Germany while ptv-ger-sun-td reflects the more quiet
Sunday tra�c patterns. Both data sets were collected from historical data and enriched with
data from tra�c simulations. The German Midweek scenario has about 8% time-dependent
edge weights while the Sunday scenario consists of about 3% time-dependent edges. These
instances are the de-facto standard benchmark instances for a number of time-dependent
shortest path algorithms, e.g., [20, 56, 19, 83].
Graphs prefixed with osm- are extracted from OpenStreetMap. The data of Open-
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StreetMap is freely available for download. While the data set is changing constantly, it
is possible to download the so-call full history dump and extract the database from a given
point in time in the past. A basic tutorial how to extract graphs is covered in Appendix E.
The instances osm-planet, osm-germany-4, osm-germany-2, osm-baden, and osm-berlin

are edge-expanded, i.e. each possible turn is explicitly modelled and U-turns are forbidden,
e.g., [185]. Moreover, existing turn restrictions present in the input data are preserved.
The data set ptv-addr is commercial data from 2009 comprising all German street and

town names provided by PTV AG. It contains about 12 000 cities, 108 000 towns, 80 000 town
names, 76 000 town name tokens, 1 350 000 streets. About 560 000 of the street names contain
the token “Strasse”1. In total, we see about 444 000 distinct street names comprised by
approximately 269 000 street name tokens. A street name consists of 2.5 tokens on average,
while town names consist of 1.1 tokens on average. The raw data set occupies about 30 MiB
of space.

2.7. Machines

The following machines are used in the subsequent chapters to conduct experiments:

Machine A is an Intel Core i7-920 Quad-Core processor running at 2.667 GHz with 12 GB
of main memory and 8 MB of L3 cache. The machine is used in the experiments of
Sections 3.2, 3.3, 5.5, and 6.

Machine B is a cluster of 200 compute nodes. Each node has two Intel Xeon X5355 Quad-
Core processor running at 2.667 GHz with 16 GB of main memory and 2x4 MB of
L3 cache. The nodes are interconnected by an InfiniBand 4XDDR network that has a
latency of less than 2 microseconds and a peak point-to-point bandwidth of more than
1300 MB/s. This machine is used in the experiments of Section 4.3.

Machine C is an AMD Opteron 6212 processor running at 2.60 GHz with 2⇥4 full and 2⇥4
CMT cores, and with 128 GB of main memory as well 8⇥16 KB L1 cache, 4⇥2 MB L2
cache and 16 MB of L3 cache. This machine is used in the experiments of Section 4.2.

Machine D is an Intel Core i7-860 Quad-Core processor running at 2.80 GHz with 16 GB
of main memory and 8 MB of L3 cache. The machine is used in the experiments of
Section 3.4.1.

Machine E is an Intel Xeon X5690 with six cores running at 3.47 GHz, and with 256 GB of
main memory as well as 12 MB of L3 cache. The machine is used in the experiments
of Section 5.2.

Machine F is an AMD Opteron 270 running at 2.0 GHz with 8 GB of main memory and
2⇥1 MB of L2 cache. The machine is used in the experiments of Section 5.3.

1The German word for street.
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Machine G is an AMD Opteron 6168 processor with 4⇥12 cores running at 1.9 GHz, and
with 128 GB of main memory as well as 6 MB of L3 cache. The machine is used in
the experiments of Sections 5.3 and 5.5.

Machine H is an AMD Opteron 8350 processor with 4⇥4 cores running at 2.0 GHz with
64 GB of main memory and 2 MB of L2 cache. The machine is used in the experiments
of Section 5.6.

Machine I is an Intel Xeon X5550 CPU with 8 cores running at 2.667 GHz, and with 48 GB
of main memory as well as 8 MB of L3 cache. The machine is used in the experiments
of Section 3.2.

Note that Machine B is a cluster of 200 compute nodes. We denote a core as a processing
element (PE) throughout this thesis. Appendix D gives a tabulated summary of the machines
used.

Further Reading. We refer the interested reader to the textbook of Mehlhorn and Sanders [137]
for further information on basic algorithms and data structures.
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CHAPTER 3

Geocoding of Locations

3.1. Central Ideas

The process of geocoding is to automatically transform textual location descriptions into geo-
graphical coordinates. This process has been available in geographic information systems for
quite some time [51] with applications in route planning, validating customer addresses [74],
or surveillance and management of disease outbreaks like the yearly wave of influenza [119],
among others.
However, with its ubiquitous use in modern web services, e.g., [29, 91], requirements have

become more severe: Since most of these services are free, geocoding servers must handle
huge streams of queries at very low cost.
The problem has many applications. For example, Google’s ’Did you mean’ feature catches

typos in search queries. But in some settings, the uncertainty is higher and therefore one is
not interested in the best match, but also in other matches which are similar to the query. In
a geocoding setting one wishes to also map misspelled location descriptions to coordinates.
The underlying problem of searching approximate matches in a dictionary arises in many

fields. Most common is the search for the so called best match. Each word in the dictionary is
represented by a string of characters over a finite alphabet ⌃. The Levenshtein distance [125]
ed(a, b) defines a metric between two words a, b 2 ⌃⇤ and is used in this work to compute
the distance between two words.
The most trivial algorithm to solve the problem is scanning sequentially through the

input list and noting the best match(es) at each entry. The running time is obvious and
consists of a linear number of distance computations and searching an entire directory on a
standard desktop computer takes only a few seconds even for dictionaries up to a few hundred
thousand or even a million entries. But in many settings this is too much, because queries
arrive in a high frequency. For example, a web search engine only has a few milliseconds
to process a single request and does not have the time to do exhaustive searching in a
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3.2. Fast Similarity Search

large dictionary. At the same time, users expect instantaneous answers. Finally, inputs are
frequently fragmentary, contain misspelled names or specify combinations of town and street
that are inconsistent with the database. A service is likely to be more popular and useful if
it tolerates such imprecisions.
We focus on the algorithmic aspects of the problem to map information about town and

street to a database entry for the intended street. We assume the input or reference data to
be structured in the following way:

• It consists of strings from a natural language.

• The data has a spatial overlap.

By spatial overlap we mean that elements of our data set correspond to geometric entities
that are either close to each other or have a non-empty intersection. The latter point can be
expressed in layman’s terms that a building (coordinate) is at a street (polyline) in a city
(polygon) belonging to some administrative area (polygon, too), etc. The geometric entities
in this example are either close to each other (building, street) or overlap (street, city).
We aim to exploit the two properties from above to collect a few candidates for further

inspection. While companies o↵ering such services have naturally worked on this problem
intensively, we are not aware of academic work that o↵ers the required combination of low
latency, high throughput, and error-correction for large address data sets. Our original aim
was to make reasonable methods available to a cooperating company and to the academic
community. It turns out that our approach achieves better solution quality than the market
leaders at low costs so that it might also help the industry to improve their services.
The remainder of this chapter is structured as follows. First, we give a description of

our index data structure that e�ciently supports approximate queries in a dictionary. An
experimental evaluation shows the performance of our approach and the accompanying im-
plementation. Second, we apply this index as a basic building block to solve the problem of
geocoding and show the e�ciency of the resulting data structure in an extensive experimental
evaluation on a real-world data set.

References

The contents of the following chapter are based on the following publications: Section 3.2 is
based on joint work with Daniel Karch and Peter Sanders [105, 106]. Sections 3.3 and are
based on joint work with Christian Jung, Daniel Karch [104], Sebastian Knopp and Peter
Sanders [103]. Wordings of these publications are used in this thesis.

3.2. Fast Similarity Search

Deletion Neighborhood. We present a filtering technique for the dictionary matching
problem called Fast Similarity Search (FastSS) [179], which in turn is a generalization of the
single error method proposed by Mor and Fraenkel [142]. For a given integer d and a word
w 2 ⌃⇤ the d-(deletion-)neighborhood N

d

(w) is defined as the set of all sub-words of w with
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3.2. Fast Similarity Search

Listing 3.1: Computing the d-deletion neighborhood of a string s.

1 function d_neighborhood(const d, const s)
2 N 0

d(s) := ;
3 if 0 == d then
4 return N 0

d(s)
5 end
6 for i=0 to |s| do
7 N 0

d(s) [ d neighborhood(d� 1, del(s, i))
8 end
9 return N 0

d(s)
10 end

exactly d deleted positions. Each element of N
d

(w) is called a residual string. Furthermore,
a string w is called originating string for residual r if and only if r 2 N

d

(w). We obtain an
exact filter for a set of words S by pre-computing the d-neighborhoods of strings in S. As
a filtering function, we obtain F (q) = {s 2 S : N

d

(s) \N
d

(q) 6= ;}. The correctness of this
definition follows from the following Lemma:

Lemma 1. If two words u, v 2 ⌃⇤ are within a distance d from each other, then there exists
a word w which has length at least |u|�d and consists of letters from u and v in their original
order. Assume that u is at least as long as v.

We use the concept of Ordered Edit Sequences [131] to show the claim. Our proof is simpler
and more intuitive than the proof from [179].

Proof. Recall that the edit distance is said to be the minimal number of edit operations
to transform one word u 2 ⌃⇤ into another v 2 ⌃⇤. The set of operations available
for any single transformation are op = {ins, del, chg} : ⌃ [ {✏} ! ⌃ [ {✏} with v =
op

d

(op
d�1

(. . . (op
1

(u)) . . .)). The sequence ⇢(u, v) = (op
1

, op
2

, . . . , op
d

) is called edit se-
quence and we call it ordered if the operations are applied from left to right. We de-
fine pos(·) to give the position of an operation within the edit sequence. In other words
8i : (pos(op

i

)  pos(op
i+1

)).
By definition of the edit distance metric there exists an edit sequence of minimal length.

Now, we can show Lemma 1. Since ed(u, v)  d it follows that the length of a minimal
ordered edit sequence is at most d, which means |⇢

min

(u, v)|  d is the length of a minimal
edit sequence. Wlog, we consider string v as the case for u is symmetric. This implies that
v is changed at no more than d positions. By replacing these at most d positions of v with
delete operations, we get a string w, which has length at least |u|�d and preserves the letter
ordering from u and v.

The actual computation of a d-deletion neighborhood can be specified as a recursive proce-
dure as shown in pseudo code in Listing 3.1. It uses a given atomic sub-routine del(s, i)
that removes the i-th character from a string s. The asymptotic runtime of this procedure
is O(|s|d), which is constant in practice for small values of d and |s|).
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Figure 3.1.: Approximate string matching data structure.

Basic Data Structure. A static index data structure is generated in a precomputation
phase that can be queried during an on-line phase. We insert a number of values into a hash
table that is part of our data structure. The structure utilizes store pointers to originating
strings as the values of a hash table entry. If any hash value has more than one originating
dictionary entry then the corresponding pointers are stored in a list. Figure 3.1 sketches the
internal structure of the index.

Query. For an input query q and maximum distance d, the d-neighborhood and its hash
values are computed. If any element of the query’s residuals is also an element of the data
structure then the pointers to the originating dictionary entries give a set of candidates.
Each of those might be an approximate match. Once the candidate set is completely built,
it is searched exhaustively by computing the edit distance of each candidate to the query.
By removing all elements from the candidate set whose distance is larger than the threshold
d we get the set of all dictionary members that are at most a distance d away from query q.
Perhaps there exists an additional order on the candidates stemming from the application.
The algorithm can be adapted to not only return the best match, but also a list of those
candidates that are su�ciently close.
Assume that a dictionary has been precomputed by storing the deletion neighborhood of

every dictionary entry in a key-value storage and that the neighborhood of a key accessible
by fetch(·). The top-k query algorithm is given in Listing 3.2, given a subroutine ed(s

1

, s
2

)
that computes the Levenshtein distance of two strings s

1

and s
2

. Note that this algorithm can
be more e�cient in practice for small values of k than a simple quick-select. The container
top list that holds a tentative result and is implemented as a non-addressable max-priority
queue. The resulting asymptotic run time is

O

0

B@

del. nbh.z}|{
|q|d +

cand.fetchz }| {
max(|N

d

(q)|, |C|)+

verification of candidatesz }| {
|C| · log k ·

X

0i|C|

Ted(q,ci)

1

CA

= O
 
|q|d + |C| · log k ·

P
0i|C|

Ted(q,ci)

!
.
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This asymptotic running time is depends on the number of candidates the fetch(·) operation
yields as well as the time Ted(a,b) it takes to compute the Levenshtein distance for a given pair
of elements. If we assume the strings to be of limited size we can see this cost as constant,
although the asymptotic run time of the Levenshtein distance computation is O(n ·m). The
expected number of candidates is analyzed in a later section.

Preprocessing. We compute the d-neighborhood of each element of the input dictionary
and insert the resulting information into our index data structure. Doing this preprocess-
ing naively and storing all residual strings in a tree-like search data structure takes up an
enormous amount of space while the number of residual strings grows exponentially with the
distance parameter d. Instead, we use hash function h : s ! N and reduce each element of
the residual neighborhood into an integer number to save space. We insert pointers to the
originating dictionary entries into the hash table at the respective hash values of all residual
strings. Therefore, only constant space is needed per residual string regardless of the length
of that string. Listing 3.3 details the preprocessing of an entire dictionary, given a key-value
data structure D that maps strings of characters to an array of integers. We now present a
generalization of the algorithm that significantly reduces the space overhead by introducing
an tuning parameter.

Algorithmic Generalization. We can further limit the number of elements that are inserted
into the index while still staying exact. To do so, we split long originating strings in half,
compute their residual strings with half the number of errors, and adapt the query algorithm,
which is explained in the remainder of this Section. Instead of generating

�|s|
d

�
hash values

Listing 3.2: Running a top-k query q against the Dictionary D with distance at most d.

1 function match(D, q, d, k)
2 Nd(q) := d neighborhood(d, 0, q)
3 C := ;
4 for i in Nd(q) do
5 { fetch candidates from key -value storage }

6 C := C [ fetch(i)
7 end
8 { initialize empty max -pq }

9 top list := {}
10 for each c in C do
11 if ed(c, q)  top list.max() then
12 if top list.size() � k then
13 top list.pop()
14 end
15 top list.insert(c, ed(c, q))
16 end
17 end
18 return result
19 end
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we insert only ✓ |s|
bd

2

c

◆
+

✓ |s|
dd

2

e

◆

values for a split dictionary entry s. The generalized d-neighborhood of w0 2 ⌃⇤ is the set of
residuals that is found by computing all combinations of dd

2

e deleted characters for the first
and second halves of w0.
The generation of the index works similar to the way the generalization works. But note

that we have to pay some extra care at query time, because insertions and deletions that
transform words can take place at arbitrary positions. As a consequence, we can not rely
on the length of a query q to decide whether it has been split or not. Instead of splitting
a query q of length l at a fixed position, it is split several times in half at positions in the
interval of d l

2

e± dd

2

e. Also, the allowed error is halved to compensate for shorter strings. We
split any dictionary token if it has length greater or equal than a threshold m. If the length
of a query word is within m± d then the index is also searched for the non-split string. See
Section 3.2.1 for an experimental analysis of the threshold value m, which indicates whether
or not to split a word.
Our method is still correct, i.e. does not lose exactness, since we can show the existence of

at least one common residual string for either the prefix or the su�x of a split query word.
Consider the following definitions. Let w 2 ⌃⇤ be an entry of dictionary D and let d be
the maximum allowed error. Furthermore, let u = p(w) and v = s(w) denote the first and
second halves of the split word w. Prefixes u and su�x v are indexed as explained above,
while q is the query. Any query q is split at several positions as explained above and we
define P(w) to be the set of first and S(w) to be the set of second word halves. The following
Lemma formalizes correctness:

Lemma 2. Let q 2 ⌃⇤, w = uv with ed(w, q)  d. Consider P(q) (S(q)) to be the set of dd

2

e
many prefixes (su�xes) of q that are generated for each query to the index by the generalized
neighborhood. Then there exists at least one pair (p0, s0) with p0 2 P(q), s0 2 S(q) and
p0 � s0 = q of prefix-su�x-elements for which either ed (u, p0)  dd/2e or ed (v, s0)  dd/2e.
It su�ces to test the split positions from the interval d |q|

2

e± d |d|
2

e to find that pair.

In other words, we can be always sure that a common residual between any query q and
all index entries e 2 D with maximum error d is found for which ed(q, e)  d holds. The
Lemma follows directly from the pigeon hole principle, but we give a full formal proof here.

Listing 3.3: Precomputation of a dictionary D.

1 for s in S do
2 Nd(s):= compute -neighborhood(d, s);
3 for i in Nd(s) do
4 D[s]. append(i)
5 end
6 end
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Proof. Wlog, consider the set of prefixes of q. If ed(w, q) = d, then there is an element
p 2 P(q) for which ed(u, p) = j  bd/2c. Then there also exists a sequence of operations
op

1

, . . . , op
d

2 {ins, del, chg} such that (op
d

� · · · � op
1

)(w) = q. Wlog, we can assume
that op

1

, . . . , op
j

introduce the j errors in u = p(w). Hence, the su�x v = s(w) remains
untouched after the first j edit operations. Since there remain only d � j  bd/2c edit
operations, it follows that ed

�
v, s|v|(q)

�
 bd/2c. The case for ed (v, s(q)) > bd/2c follows

from symmetry.

Consider the edit sequence S that transforms w into q and that has length at most d, s.t.
ed(w, q)  d. String w is split at position d |w|

2

e into w = p�s. Note that the lengths of p and
s di↵er by at most 1. Sequence S is applied to w = p � s and yields q = p0 � s0. Hence, either
ed(p, p0)  dd

2

e or ed(s, s0)  dd

2

e or both. The algorithm has to split query q exactly into p0

and s0 to guarantee that a match is found. Assume that it doesn’t su�ce to test the interval
d |q|

2

e ± d |d|
2

e to find the correct splitting position. Then p0 is either shorter than dm

2

e � dd

2

e
or longer than dm

2

e+ dd

2

e. Assume |p0| < dm

2

e � dd

2

e. Then we deduce the following:

)|s0| > dm
2
e+ dd

2
e

)|p0|+ dd
2
e < m

2
< |s0|� dd

2
e

,|p0|+ dd
2
e < |s0|� d

2

,|p0| < |s0|� 2 · dd
2
e

,|p0|� |s0| < �2 · dd
2
e

,|s0|� |p0| > 2 · dd
2
e .

This implies that the lengths of s0 and p0 di↵er by more than 2 · dd

2

e. But then edit sequence
S has to be longer than 2 ·dd

2

e operations, because length di↵erence is a lower bound for edit
distance. The other case for |p0| > dm

2

e+ dd

2

e follows by the same line of argumentation.
It is obvious that at least one common residual string is generated for strings w,w0 2 ⌃⇤

when split like described above. For a given constant d the number of entries in the hash
table is linear in the length of each inserted word. Note that in general, for higher (query)
distances than the value used in precomputation, the index is not exact any more.
See the latter part of Section 3.2.1 for an experimental analysis of the generalization

that shows it uses half the space than our implementation of the original algorithm and
maintains stable query performance. Wu and Manber [193] use partitioning into d+1 pieces
to match one of the pieces with no error, while Navarro and Baeza-Yates [148] gave a recursive
partitioning scheme for fast on-line approximate string matching.

Analysis. Our variant of the approximate index makes heavy use of hashing as we argued
before. We analyze the expected performance penalty of our approach coming from hash
collisions to estimate the penalty that is inherent to this approach. First, we consider the
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case that we do not split the input string. Note that this resembles the approach taken by
Bocek et al..
For each dictionary entry of length `, we insert at most

�
`

d

�
constant size entries into

the hash table. The hash table needs O(1) space per element since the bit size of each
entry is of constant size in practice as log(i), i 2 N grows slowly. We obtain overall linear
space consumption for d = 1, because O(`) constant size hash table entries are stored for a
dictionary entry of size `.
The query time obviously depends on the number of identified candidates. We now analyze

an upper bound to the number of dictionary entries that we have to consider for a given
query q of length `. Our model is the following: The dictionary has n entries drawn uniformly
at random from ⌃`, with |⌃| = �. The probability that the i-th residual of q equals the j-th
residual of a given word w of the dictionary is given by

Pr[X] :=
1

�

`�d

= �d�`.

Note that there exist
�

l

l�d

�
distinct originating strings that share such a residual. We apply

the linearity of expectation to get an expected number of

E[X] = n ·
✓

`

`� d

◆
·
✓
`

d

◆
· �`�d = n ·

✓
`

d

◆
2

· �`�d (3.1)

residuals to consider. As a consequence of Equation 3.1, we can expect a speedup over the
naive linear scanning algorithm that is proportional to the size of the dictionary by applying
the Markov bound. More precisely, we get an upper bound of the probability that the
expected number of residuals to consider is not a fraction of n. Let c > 0 be a constant.

P
h
X � n

c

i
 c�1

✓
`

d

◆
2

�d�` . (3.2)

The splitting optimization can be analyzed in the same way, which gives us an expected
value of

E[X
m

] = n

✓
d`/2e
dd/2e

◆
2

�dd/2e�d`/2e

for a dictionary in which every word gets split, as well as

P
h
X � n

c

i
 c�1

✓
d`/2e
dd/2e

◆
2

�dd/2e�d`/2e.

We conclude that the original variant does not su↵er from hash collisions, but that we have
to chose the threshold m carefully. If m is too small, we artificially increase the number of
collisions. See Section 3.2.1, where we experimentally analyze the behavior of the algorithm
for varying splitting parameters.
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Figure 3.2.: Analysis of the Splitting Parameter for d = 2

3.2.1. Experimental Evaluation: Improved Fast Similarity Search

Implementation Details and Methodology. We implement the data structure, the con-
struction and query algorithms in C++ using GCC Compiler version 4.3.2. We hashed all
residual strings with the built-in hash function of the Boost library v1.36 to a 32-Bit Integer
and chained with a simple linear congruence function to get values from a smaller interval.
All of our tests were conducted on a single core of Machine I, running a version 2.6.27 Linux

kernel. We compare the performance of our optimizations against our own implementation
of the basic variant for reasons of fairness as it is significantly faster than the numbers
from literature. The dictionaries used in the experiments are moby dick, town, english, and
wikipedia. All results were averaged over a number of queries of perturbed dictionary entries.
The exhaustive search, i.e. the verification, of a candidate set is done by a simple imple-

mentation of the Levenshtein distance. It computes a band of width 2d + 1 only. This way
we compute the distance exactly only if it is smaller than d and return otherwise as soon as
we get a certificate that the distance is larger than d. Since we need O(1) to fill a cell in
the distance table, we can verify a candidate in O(d · l), where l is the length of the shorter
word. In the experiments it took less than a microsecond to verify any single candidate.

Preprocessing Space. We analyze the amount of distinct residuals that are generated for
each value of m 2 1, . . . , 30 and the average duration of a single query against this index. To
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Figure 3.3.: Analysis of the Preprocessing Depending on the Splitting Parameter m.

do so, we averaged over 1 000 randomized queries. Both value m = 1 and m = 30 resemble
worst cases. We present the results in the plots of Figure 3.2 for edit distance d = 2. Other
distances show similar behavior. Note that we omitted the lower and upper values of m for
clearer arrangement, because for the values 1, . . . , 5 (20, . . . , 30) nearly all (none) strings get
split. We present selected plots that show the experiments. Note the logarithmic scales for
query times. In all the experiments we see that there is a trade-o↵ between the memory
consumption and average query time. The split parameter functions as an adjusting value to
choose between size of the index and query performance. Our analysis shows that the index
size can be halved by degrading the speed of an average query within acceptable limits only.
Especially, when splitting is restricted to those dictionary entries whose length is larger than
the average, we can halve the memory consumption of the index. The query performance is
virtually una↵ected.

Preprocessing Time. We investigated preprocessing times with and without splitting pa-
rameter set. The preprocessing was run for values d = 2, 3, 4 on all of our data sets. Figure 3.3
reports on the numbers. The preprocessing is roughly ten times faster for reasonable values
of the splitting parameter than without any splitting. Mainly this is because we do not store
any additional information besides pointers to dictionary entries.
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dict-moby dict-town dict-eng dict-wiki
d mem proc mem proc mem proc mem proc
0 0.25 0.061 0.46 0.156 2.36 0.886 14.41 7.131
1 1.33 0.320 1.79 0.576 8.55 3.450 55.84 32.287
2 4.57 1.272 6.91 2.483 30.49 12.596 170.79 107.289
3 9.78 4.044 15.18 7.458 61.37 36.309 342.18 270.506
4 16.09 14.647 27.20 28.144 105.75 117.970 603.35 922.521

Table 3.1.: Preprocessing Duration and Index Size Depending on the Maximum Allowed Edit
Distance d.

Query Performance. We conduct experiments on each list for maximum distances of d =
{0, . . . , 4} to test the query performance for varying number of allowed errors. A distance of
d = 3 is already large and even larger distances deliver matches that already look arbitrary
to the human eye for natural languages. During each query we generate the candidate set,
verified each member of the set and reported a best match found. Each test run picks 1 000
elements from the dictionary and introduces up to d errors at random. First x is drawn
uniformly at random from {0 : d}, and then x uniformly chosen operations of insertions,
deletions or replacements are performed. The splitting parameter is set to m = 10. The
query times and search space sizes are averaged. Table 3.1 and Table 3.2 report on these
experiments. Column Mem is the size of the index in [MiB], proc the duration of index
creation in seconds, while query is the average duration of a single query in microseconds,
and cand set gives the average size of the candidate set.

The query column shows the time for the actual query in microseconds and cand set is the
number of elements in the candidate set on average. We see the expected rise in the number
of candidates that have to be verified by the algorithm. We briefly compared the observed
number of collisions against the expected number from our analysis in Section 3.2. The
observed number was always lower as the expected one since our analysis is an overestimate
of the actual collision rate. In some cases we observed the order of a magnitude less collisions

dict-moby dict-town dict-eng dict-wiki
query cand query cand query cand query cand

d [µs] set [µs] set [µs] set [µs] set
0 2 1 0 2 0 1 1 1
1 5 5 8 9 8 6 34 25
2 84 61 99 99 122 46 502 702
3 553 606 644 613 644 502 7 019 9 900
4 2 974 3 376 7 250 3 720 7 250 4 520 55·103 65·103

Table 3.2.: Query E�ciency and Candidate Set Size Depending on Maximum Allowed Edit
Distance d.
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Figure 3.4.: Speedup over The Naive Algorithm Depending on Query Length and Maximum
Allowed Edit Distance d.

than expected.

Next, we look at the speedup that we get compared to the naive algorithm of scanning
the entire dictionary. We run queries with varying length against the dictionaries of our
test instances for a edit distances d 2 {0, . . . , 3}. Each query is a randomly selected from
the dictionary and changed with d random edit operations. The query length are from the
range of [2 : 15]. Figure 3.4 gives the plotted results. Here, we define the speedup to be the
number of candidates as a fraction of the dictionary size. We observe a bit variance of the
speedups, but note that we see the better speedups the bigger the input dictionary is. This
is expected behavior from the analysis of Equation (3.1). We see rather good speedups for
queries of length up to 12. Generally speaking, the less error the dictionary has to cope with,
the better the speedups. And we see best numbers for searching the Wikipedia dictionary
with no error as expected. For queries with length greater than 12 we observe more variance
for the large Wikipedia dictionary. This area is marked in the plot by the background color.
The fluctuation of the speedup has several reasons though. First, queries get rather long,
we expect a number of hash collisions that increase the candidate size. Second, since we are
dealing with a natural language, we cannot expect the data to be as (randomly) benevolent
as in the aforementioned analysis. However, we conclude that we see substantial speedups
in practice over the naive algorithm of linear scanning.
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m = 1 m = 10 Bocek et al. BK-tree
preprocessing [ms] 2 649 349 5–7.5·103 183

avg. query [µs] 114 18 100–200·103 935
total size [MiB] 9.8 1.5 20 0.25

Table 3.3.: Reproducing a Previous Results from Literature on Randomly Generated In-
stance of 10 000 Words. Best Results Printed in Bold.

When comparing our results with previous experiments of Bocek et al. [179] in Table 3.3,
we see that our implementation performs better by about an order of magnitude in all
important areas. Although we know that our numbers are measured on di↵erent hardware,
they give an impression on the performance. For example, we repeat the experiment on a
random dictionary of 10 000 words. Note that the case of m = 1 corresponds to Bocek et
al.’s algorithm. They also propose several improvements that either perform fast or have
low space consumption, but not both at the same time. Since the results of the experiments
are only available as plots we have to estimate the values. We do so in a benevolent way
and compare the best of their values in each category against our implementation with and
without splitting of tokens.

Comparison against BK-Trees. A previous experimental evaluation of the classical BK-
tree data structure and several variants [143] reports on the size of the search space that
is visited depending on the error distance. Those experiments were conducted on a set of
100 000 English words. We see a nearly linear growth of the visited search space for BK-trees
going up from about 5% for edit distance 0 to slightly more than 40% for a distance of 4.
We are able to confirm the high number of candidates reported previously with our own
BK-tree implementation on our smallest and also on our largest test instance. The size of
the visited search space in our experiments is always less than 1% and much less than the
search space size for the best BK-tree variant.
Table 3.4 reports on the results of this experiment in more detail. BK-trees have the

fastest preprocessing and a low memory footprint. On the other hand, our preprocessing
is less than a factor of two slower for a reasonable value of m. The query is more than 50

dict-moby dict-wiki
query cand query cand

d [µs] set [µs] set
1 198 197 1 258 1 184
2 3 586 4 127 94·103 116·103
3 8 722 10·103 374·103 486·103
4 13 083 15·103 862·103 802·103

Table 3.4.: Evaluation of the query performance of BK-trees.
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times faster as the number of candidates in BK-trees is quite high even for small allowed
error distances. Thus, the filtering e↵ect of exploiting the metric space is quite low. Also,
we conclude that simple BK-trees are not suitable for a setting where queries arrive at a
high rate and need to be answered as fast as possible.

Sounding a Note of Caution. We see a potential source of performance problems with our
experiments as we tested on dictionaries of words from a natural language. The elements in
the dictionary are rather short words that also have similar sizes. The higher the allowed
error distance d is, the shorter residual strings get for these rather short words. This leads
to longer indices lists in the hash table, as it is more likely that two distinct words have
common residual strings. This also explains the generally larger number of candidates for
higher values of d in our experiments.

3.3. E�cient Error-Correcting Geocoding

We assume that the reference data for geocoding contains an inherent structure, e.g., streets
belong to towns and districts. Furthermore, we assume that a user is more likely to omit
information then to over-specify a query.

Inverted Indices and Town Lists

We view place and street names as (very short) documents containing a sequence of tokens
separated by white space, commas or hyphens. Thus, we can use methods known from full
text search to support fast geocoding. In particular, we build two inverted indices, i.e. the
town index maps tokens appearing in town names to the towns using that token in their
name and the street index maps tokens appearing in street names to all streets containing
this token.
In addition to the above inverted index, we precompute the set towns(s) of town IDs

containing a street with name s and also a set towns(t) of town IDs with name t. This
translation to town IDs enables us to quickly determine which combinations of town and
street name correspond to actual addresses.

Ignoring Light Tokens. While indexing by token makes the index more convenient to use, it
introduces a serious problem. A street query of the form “New Hollywood Street” returns
every street that matches any of the tokens “New”, “Hollywood”, or “Street”. In fact,
about 25% of all street names in out data set match against the token “Street”1, therefore
we would get a really big candidate set. A simple and naive solution to the problem is the
use of a list of stop words [?], also called negative dictionary, which filters tokens that would
are deemed to be of poor quality. For example, words like and or to are such words for any
text in English literature. They just occur too often to carry meaningful information with
a reasonable likelihood. As such, stop words do not get indexed. The manual generation

1It is actually the German word Straße, which means street in English.
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of stop words is seen as error-prone as it reflects the creators subjective views. Therefore,
the automatic generation of stop word lists has been the focus of research, e.g. [188]. This
approach works with reasonable success, but has limited applicability in our case.
As mentioned above, we view place and street names as very short documents and the

real issue with stop words in our setting is that they are global and apply to the entire
index. But tokens that may be irrelevant for one name may be relevant for another. Thus,
the importance of a token depends on the setting. Consider the following example. Suppose
that our reference data contains two streets named “New Rhododendron Alley” and “Alley
Street”. Then “Alley” is arguably relatively unimportant compared to “Rhododendron”,
but it is more important when compared to “Street”, because it occurs less often. To avoid
this problem, we turn to a concept that does not use a global list stop words, and which is
often used in information retrieval and text mining, e.g. [13, 43, 191]:

Definition 1 (Inverse Document Frequency (IDF)). The inverse document frequency
of a token c with respect to a set M of strings (town or street names in our case) is defined
as

IDF(c):= log

P
x2M | tokens(x)|

| {x 2 M : c 2 tokens(x)} |
where tokens(x) is defined as the set of tokens making up string x.

Tokens that occur very often in the document (such as “Street”) receive a lower IDF weight
than those that appear only infrequently. Tokens that receive a high weight are more helpful
in identifying the correct string, because they match fewer strings in the index.
We use these observations to our advantage by making further assumptions on user behav-

ior: When a user enters an address that they want to have geographically referenced, they
may leave out parts of the address that they deem irrelevant, but they will probably enter
those parts of the query that non-ambiguously defines what they are looking for. In our
example, the user may leave out either “New” or “Street”, but they most definitely won’t
leave out the token “Hollywood”, which is also the token with the highest IDF weight among
those three. If we expect the user to enter the most important part of an address, it is not
necessary to have said address be referenced also by the remaining, unimportant tokens. I.e.
we don’t want to find the street “New Hollywood Street” by the token “Street”, because
we expect that the more descriptive token “Hollywood” is entered anyway. Let

w
t

(s) :=
IDF(t)P

t

02tokens(s) IDF(t
0)

be the relative weight of the token t in the string s. If we decide that the query must contain
tokens that make up a fraction µ of the total weight, then we can ignore the lightest k
tokens, if the sum of their weights is not greater than some tuning parameter µ. Example 2
illustrates the intuition behind the application of IDF.

Example 2 (Application of IDF). Assume the following relative weights for the street
names “New Hollywood Street” and “Alley Street”:

• w
t

(“New00) = 0.26, w
t

(“Rhododendron00) = 0.6, and w
t

(“Alley00) = 0.14, and
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• w
t

(“Alley00) = 0.72, w
t

(“Street00) = 0.28.

For a threshold of µ > 0.4 the tokens “New” and “Alley” is ignored for the first street name,
while “Street” is ignored for the second name only.

Hence, a user searching for “Alley” is presented with “Alley Street” in this simplified
example. Note that this local definition of importance is very di↵erent from the stop words.
Instead of ignoring some tokens entirely, we do so only very selectively.

Token-Based Approximate Indices. We build indices supporting approximate search on
the lists of tokens appearing in town names and street names respectively. Note that we
do not build an index for every separate town city or region. This design decision has two
crucial advantages. First, the dictionaries are much smaller than the full data base as the
data exhibits some redundancy. In particular, our input data set of Germany contains 1.35
million streets but only roughly 219 000 distinct tokens for street names. Thus, we can a↵ord
super-linear space to some extent. Second, token based indices can easily handle queries that
drop part of the town or street name. For example, most users just type “Frankfurt” when
they are looking for “Frankfurt am Main”. In other words, the generally used name may
not be the o�cial/administrative one. The approximate index of Section 3.2 for a token set
M with maximum error d

i

can be queried with a string q and returns a set M
q

✓ M of
tokens that have edit (Levenshtein) distance at most d

i

.

Multi-Field Search

We first concentrate on the case where a query consists of two strings typed into separate
fields for town name and street name. Note that in this case it is easy and largely orthogonal
to allow additional fields for house number or ZIP code. After a normalization step, we
tokenize the query and construct the deletion neighborhood as explained above. We try three
increasingly sophisticated ways to obtain candidate sets CT and CS of towns and streets that
could match against the query. Each of these steps allows an increasing number of errors.
After each of these attempts, we combine the intermediate candidate sets into compatible
candidate addresses from CT ⇥CS . We stop as soon as we have found a satisfying solution.
The following paragraphs explain each of these phases. We detail the individual phases and
give a technical description afterwards in Listing A.1.

Initialization Phase. The input strings are first scanned and transformed into a set Q
of tokens and normalized to lower-case. This is also the place where some culture-specific
preprocessing can be done. In our German implementation, there is only one such speciality:
The German words for “Street”, “Lane”, . . . are sometimes used as a separate word and
sometimes as a su�x and nobody really knows which version is correct in every case. Hence,
compounds with these su�xes are broken into a normal form with separate tokens. This
even works when the su�xes are misspelled or abbreviated.
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x y

x

case 1: case 2:
matched town

“perimeter”

Figure 3.5.: Two Cases of Periphery Search. Matching Districts to City (left) and Matching
of City to one of its Districts (right).

Partially Exact Town Match. Following the successful principle of “make the common
case fast”, we use a simplified special treatment for the case of a partially exact town match
where at least one su�ciently rare token of a town candidate is exactly matched. If this
already yields a plausible result, we stop. For example, in the query “Franfrt am Main,
Römerberg”, “Frankfurt” was misspelled. But the token “Main” is an exact match and
therefore we consider the set of towns that contain this token somewhere in their name before
we look at all possible approximate matches. If we find a street similar to “Römerberg” in
one of the candidate cities, we return it. Note that assume that only relevant city tokens are
in the index since we filter the tokens to insert by IDF.

Periphery Search. Assume that we successfully identified partially exact town matches
during the first phase, but could not match a street in any of these towns with a su�cient
rating. Then we extend the scope of exact search to the periphery : If the input specifies a
city, we try all its districts, if it specifies a district, we try the city it belongs to and all its
districts. We assume that each town is either a principal town, i.e. a city, or a district. If a
candidate x is a city, we search for the street also in all districts of x. If a candidate x is a
district of the city y, we search for the street also in y as well as in all of its districts. See
Figure 3.5 for an illustration of the two cases.
If the town provided by the user is matched against a candidate x which is subsequently

corrected to a town y in the periphery of x, we still calculate the rating for x, because the
name of y generally does not match anything in the query string and would lead to a low
rating. We give a way to automatically construct this proximity information when it is not
available in the input data in Section 3.4.

Approximate Search. When there are no or no good partially exact matches or when even
periphery search does not find a good candidate, additional candidates are computed using
the approximate indices for towns and streets. If a town candidate found specifies a district
x of a city y, we also add y to the candidates. However, we do not do a full scale approximate
periphery search because this could easily yield results that are hard to understand.
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Figure 3.6.: Town candidates are indicated by stars, street candidates by circles. Markers
without geospatial proximity. can be dropped.

Compatible Candidates. After partially exact matching, periphery search, or approximate
search, that all treat towns and streets separately, we generate address candidates where town
and street are compatible with each other, i.e. these candidates either spatially overlap or
are very close. A pair (t, s) 2 CT ⇥ CS is compatible if a street with name s is present in
some town with name t, i.e., we have to compute the set

CT ⇥S := {(t, s) 2 CT ⇥ CS : towns(t) \ towns(s) 6= ;} .

There are various ways to do this more e�ciently than the naive way of computing |CT |⇥|CS |
set intersections. As a first step, we can completely drop a town candidate t 2 CT if no
town with this name contains any street with a name in CS . Vice versa, a street candidate
s 2 CS can be dropped if there is no town with name t 2 CT that has a street with name s.
Figure 3.6 visualizes this process.
While these tests may sound complicated on the first glance, involving a lot of string

comparisons, we can reduce it to operations on precomputed sets of town IDs as follows:
Let towns(C):= [

c2C towns(c) where C = CT or C = CS . We can drop a town can-
didate t if towns(t) \ towns(CS) = ;. Vice versa, we can drop a street candidate s if
towns(s)\ towns(CT ) = ;. The experiments of Section 5.5.3 show that dropping incompati-
ble candidates is very e↵ective and reduces the overall runtime by a factor of 3. In a second
step, we generate the set of compatible candidate pairs

CT ⇥S := {(t, s) 2 CT ⇥ CS : towns(t) \ towns(s) 6= ;} .

Consider dictionaries for the city and street tokens (street index and city index) that
have been preprocessed for a maximum distance d. Also, consider functions tokenize()
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that returns the tokens of a string, normalize() that returns a normalized string, and
get cities() that returns the (indices of) cities where a street name occurs while periphery()
returns the (indices of) cities or rather districts in the vicinity of another city. Assume that
a rating() function evaluates the quality of a potential result. We explain the details of our
rating in the following. Listing A.1 in Appendix A gives the pseudo code of the query.

Single-Field Search

In the previous sections we focused on separate fields for town and street because multi-field
search is easier to program, and one should expect that it reduces errors. From the users
points of view, however, it is more convenient to enter a query into a single text field, with
street and town in arbitrary order, possibly delimited by white-space or a comma.
However, in order to compare multi-field search and single-field search and also in order

to compare our approach with existing Internet services, we have also implemented a simple
version of single-field search with an emphasis on quality. Our solution is based on the
plausible hypothesis that the token sequence resulting from a single-field query resembles
the following two regular expressions:

streetToken⇤townToken+ or townToken+streetToken⇤,

i.e. strings of street and town tokens are contiguous and there is at least one token designating
a town. We exhaustively try all 2m� 1 possible ways to split a token sequence of length m
and call a multi-field search for each of them. Consider the following example to illustrate
the splitting process.

Example 3 (Splitting of “Oxford Street London”).

Town Street
Oxford Street London
Oxford Street London
Oxford Street London

Street London Oxford
London Oxford Street

Only the last line would return a perfect rating as we might have hoped. This query is a
bit lucky though since there is no “London Street” in “Oxford” which, if it existed, would
also receive a perfect rating.

Rating Candidates

After we have dismissed most of the search space, we are left with a hopefully small set of
compatible address candidates (t, s) 2 T ⇥S. These are then rated. The result is interpreted
using two threshold values ⇢ and ⇢. Ratings below ⇢ are considered unsatisfactory. If all
results are unsatisfactory, more extensive search is done (after partially exact matching or
periphery search) or, when everything failed, an empty result is returned. In contrast,
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if a candidate with rating � ⇢ is found, the search returns successfully without further
attempts at refined searching. Depending on the application we can then return the top
ranked candidate or a list of good candidates. To develop a rating heuristic, let us recall the
di↵erent kinds of errors that we want to compensate for:

1. Typing errors

2. Missing or redundant tokens

3. Inconsistent pairing of a street and a town.

Since periphery search and candidate filtering have already dealt with inconsistent candi-
dates, we are left with the first two issues. The first step on the way to a robust rating
heuristic is to align the query to a candidate, i.e. find a good mapping from the tokens in
the query to the tokens in the candidate (see Section 3.3). Based on this mapping, we then
compute the actual rating.
The rating is computed separately for town and street by the same method and combined

by the arithmetic mean afterwards. Hence, the following explanation details the town rating
only. There is one small asymmetry however that we call filter by edit distance: Since there
are usually less candidate towns than candidate streets, we first filter out candidates that
are already unsatisfactory because they do not su�ciently well fit the town description in
the query.

Matching the Query to a Candidate. To match the town tokens q 2 Q given by the users
to the tokens of a candidate town name c 2 C, we solve a minimum weight perfect matching
problem on a bipartite graph. If |Q|  |C| we add |C|� |Q| dummy nodes to Q and obtain
the matching graph G = (Q [ C,Q⇥ C) where the weight of edge (q, c) is the edit distance
between q and c if c is not a dummy node and 0 if c is a dummy node. Edit distances
take misspellings into account and dummy query nodes go a long way to model missing
tokens in the query. Similarly, but perhaps less importantly, if |Q| > |C| we add |Q| � |C|
dummy nodes to C. This matching problem can be solved in time O(n3) in the number of
tokens, e.g. [7, 120]. Moreover, the considered graphs are very small so that solutions can
be computed quickly in practice. See Figure 3.7 for an illustration.

Jersey City, New York

central New York Jersy cty

1 0

0 1

Figure 3.7.: Candidate (top) is Matched Against Query (bottom). Edge Labels Symbolize
the (Pairwise) Edit Distances Between Tokens.
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The Rating Heuristic. Based on the matching, we calculate a rating for each candidate.
The ranking shall define an order on the set of candidates. We assume that the rating can
be expressed by a numeric value. It should take into account the following considerations:

• Each token that matches with at most d errors should be awarded some points. It
makes sense to choose d larger than the error bound d

i

for the approximate index since
space or index access time is no issue for the pairwise distance computations used for
the rating function.

• Tokens that could not be matched with at most d errors should not be awarded points
and may even be punished.

• The user is more likely to omit information (either because they forget it or because
they deem it unnecessary) than to over-specify the query. Therefore, tokens in the
query that don’t match anything in the candidate should be punished higher than
candidate tokens that don’t match anything in the query.

• The rating should be a real number in the interval [0, 1], with one denoting a perfect
match.

• The heuristic should be able to distinguish between tokens that are important and
tokens that do not provide much information.

Rather than directly using the edit distance, we also want to take into account the lengths of
compared words, since the rate of error that can be introduced into a word with a constant
number of changes depends on its length. Consider the following:

Definition 2 (Token Similarity). Given two tokens q and c. Then their similarity is
given as

sim(q, c) :=

(
1� editDistance(q,c)

|c| , if editDistance(q, c) d

0, else
.

We normalize the error rate by the length of c since candidates are entries that are actually
present in our database. In order to take the importance of a candidate token into account,
we use its inverse document frequency.

Let M denote the set of edges (d, c) between query tokens and candidate tokens that were
matched with edit distance  d. Let U denote the set of unmatched query tokens, i.e., those
tokens that could not be matched to any candidate token with at most d errors. We can
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now define our rating function

rating(Q,C):= � ratingQ(Q,C) + (1� �) ratingC(Q,C)

where

ratingQ(Q,C):=

X

(q,c)2M

(sim(q, c))↵ IDF(c)

X

(q,c)2M

IDF(c) + |U | IDF
avg

, and

ratingC(Q,C):=
X

(q,c)2M

IDF(c)/
X

c2C

IDF(c)

where IDF
avg

is the average over the IDF-values of all town tokens. The term |U | IDF
avg

expresses that the unmatched queries should have matched somewhere but we have no idea
where – so we use an average IDF-value. The parameter ↵ is used to adjust how important it
is to have similar matches. Notice that ratingQ is not influenced by the number of unmatched
candidate tokens. This is why we compute a convex combination of ratingQ with ratingC

which penalizes unmatched candidate tokens. The parameter � 2 [0, 1] specifies the relative
weight. Usually we want to give more weight to the matched parts of a query, therefore we
choose � > 1/2.

3.3.1. Experimental Results: Error-Correcting Geocoding

Methodology and Implementation Details. We implement the algorithms and data struc-
tures described above in C++, using GCC’s C++ compiler version 4.3.2 with full optimiza-
tion. The experiments were performed using a single CPU core on Machine A, running Linux
kernel version 2.6.27. Experiments are done on test instance ptv-addr, a commercial data
set from 2009 by PTV AG for this evaluation. The indexed dictionary occupies about 327
MiB of main memory, which is roughly an order of magnitude more than the input data.
The following tuning parameters are chosen: We ignore light tokens comprising up to

40% of the cumulative IDF of a name. The correction limit of the approximate dictionaries
and pairwise edit distance computations is limited to d = d

i

= 2 in order to keep space
consumption low. Candidate matching uses the Hungarian method [7] using the implemen-
tation by [120]. The rating function takes similarities between matched words to the power
↵ := 2. For the convex combination

ratingQ(Q,C) = � · ratingQ(Q,C) + (1� �) · ratingC(Q,C)

we choose � := 3/4. The threshold for a satisfactory rating is ⇢ := 1/2 and a good rating
starts at ⇢ = 4/5.
We use a set of existing, relevant addresses R, and a set of non-existing, irrelevant ad-

dresses I. A relevant address is sampled by first choosing a random street name s and then
picking a random town from towns(s). An irrelevant address is composed of randomly chosen
town and street names such that combination which accidentally occur in the database are
rejected. Ideally, we would like to return correct results for relevant address queries and no
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result for irrelevant address queries. To generate a simple random query, it would be easiest
to just insert, delete or substitute random characters in an existing address. The errors that
are introduced this way, however, are unlikely to resemble the errors that a human would
make while entering a query through a keyboard. We identify several sources of errors to
generate input sets with more realistic errors.
Typing errors are very common and we distinguish between:

• swapped characters

Example: “Frankfurt” ! “Frankfrut”

• missing characters

Example: “Frankfurt” ! “Franfurt”

• superfluous or wrong characters, mostly closely located to the correct character on the
keyboard (here in terms of the German QWERTZ-layout).

Example: “Frankfurt” ! “Frankdfurt” or “Frankdurt”

Depending on the respective language there are several phonetic error sources:

• doubled characters where there should be a single character

Example: “Dublin” ! “Dubblin”

• single character where there should be two of the same

Example: “Cardiff” ! “Cardif”

• The Soundex algorithm, e.g [116] pp. 391–92, identifies classes of characters such
that di↵erent characters from the same class di↵er only slightly in their pronunciation.

Example: z ⌘ s, “Zaragoza” ! “Saragosa”

• Two consecutive vowels that occur in the same syllable are called a diphthong. In
German, for example, several di↵erent diphthongs sound the same or similar:

– ei ⌘ ey ⌘ ay ⌘ ai

– eu ⌘ äu ⌘ oy ⌘ oi

– . . .

Example: Hoyerswerda ! Heuerswerda

Preliminary Experiments. We use several techniques, as described in Section 3.3, to make
sure that the number of candidates stays small and that we don’t have to perform too many
edit distance computations. To see if these techniques are necessary and how each of them
a↵ects the query time, we have performed a number of experiments. The techniques are:

• Filter Incompatible Candidates (FIC): We keep only those town and street candidates
that are geographically compatible.
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ILT FIC FED [ms]
× × × 570.00
× × X 566.00
× X × 199.00
× X X 126.00
X × × 10.68
X × X 10.58
X X × 3.45
X X X 2.09

Table 3.5.: The E↵ect of The Features ILT, FIC and FED on Query E�ciency.

• Filter by Edit Distance (FED): We have an additional filtering stage that drops some
candidates before doing a full rating evaluation. A candidate can eliminated when the
town names are an unsatisfactory match.

• Ignore Light Tokens (ILT): We can ignore some tokens during the construction of the
index due to their weight in comparison to the other tokens. E.g. the candidate “New
Hollywood Street” is represented only by “Hollywood”, because the other two tokens
occur so frequently in the dictionary that they would not be of much help to distinguish
this candidate from others.

As we can see in Table 3.5, disabling ILT absolutely destroys the performance. To see why
this is so, consider the most frequent token in the street dictionary, “street”. If we randomly
choose any street, the probability that it contains the token “street” is about 1/3. Without
ILT, any query that contains the token “street” returns all candidates that contain this
token. Hence, if we randomly choose a candidate and query the index with this candidate,
we expect a candidate set that contains more than 1/9-th of all streets on average. This
amounts to almost 50 000 candidates for our data. In our experiments, the actual number
of candidates was even bigger, as we observe 67 000 candidates on average. The query time
drops by a factor of almost 100 when we enable ILT. FIC gives us another boost of factor 3
and FED makes a di↵erence only when used in conjunction with FIC. None of these features
has a noteworthy e↵ect on the memory requirements of the index, therefore all of them are
enabled by default.

Query Results. In order to introduce k errors into an address, we introduce dk/2e errors
into the street string and bk/2c errors into the town string. To introduce an error, we
first pick a random error class, then a random token, and then a random position. All
distributions are uniform. Here we report experiments on 1 000 relevant and 100 irrelevant
addresses. We classify the results returned by the index as follows:

• True Positive (TP): A relevant address that is correctly identified.

• True Negative (TN): An irrelevant, i.e. inexisting, address that is either not matched
at all, or a correct partial result , e.g., the correct town is matched.
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error relevant irrelevant Time
no. TP FN II TN FP [ms]
0 1 000 0 0 93 7 3.02
1 989 10 1 95 5 2.75
2 988 11 1 94 6 2.44
3 928 66 6 94 6 2.40
4 854 140 6 99 1 1.79
5 557 431 12 97 3 1.59

Table 3.6.: Multi-Field Search Matching Rates and Query E�ciency for Random Addresses
– 1 000 Relevant and 100 Irrelevant Ones.

• False Positive (FP): An irrelevant, i.e. inexisting, address where the index does return
a result.

• False Negative (FN): A relevant address where the index does return a result.

• Incorrectly Identified (II): A relevant address that returns an incorrect result, i.e. an-
other relevant address.

The matching rates, along with the query times, are shown in Tables 3.6 and 3.7. Multi-
field search works extremely well, both with respect to result quality and query time. Only
at five errors, when three errors are introduced into the street name, we see a sharp increase
of false negative results. At this point, the approximate street index often fails to find the
right result because its error limit is set to d

i

= 2. Interestingly, query times decrease with
the number of errors. The reason is that we have to check a smaller number of candidates
both in the approximate index and when rating candidates.
Single-field search for relevant addresses works almost as well as multi-field search. The

only noticable di↵erence is that a small fraction of the false negative results mutates into
incorrectly identified results. For irrelevant addresses, our current implementation seems to
be too aggressive though because it returns a significant number of false positives. On the
first glance it looks paradoxical that we get a larger number of output errors when there

error relevant irrelevant Time
no. TP FN II TN FP [ms]
0 1 000 0 0 52 48 26.07
1 989 10 1 63 37 23.33
2 986 13 1 74 26 19.72
3 927 66 7 75 25 18.44
4 856 125 19 80 20 16.69
5 560 414 26 86 14 14.31

Table 3.7.: Single-Field Search Matching Rates and Query E�ciency for Random Addresses
– 1 000 Relevant and 100 Irrelevant Ones.

57



3.3. E�cient Error-Correcting Geocoding

d Bing Google Ours
0 87 97 100
1 78 54 98
2 71 3 98
3 59 3 94
4 55 2 86

Table 3.8.: Rate of Resolved Queries for Several Geocoder APIs.

are no spelling errors in the input. But the reason is simple: without spelling errors we
obtain higher ratings for the generated candidates and thus it becomes more likely that the
result is accepted. This indicates that the result quality could be improved by increasing the
threshold for accepting a result. Single-field query times are an order of magnitude larger
than for multi-field search. This is not surprising, since our current implementation naively
factors a single-field search into several multi-field searches.
Figure 3.8 shows the distribution of query times for the same set of 5 ⇥ 1 100 queries.

90% of all multi-field queries finish in less than 5 ms. The maximum query time observed is
106 ms. Note that for the server scenario we are considering, we want very low average query
time to achieve high throughput and low cost. Occasional slower queries are no problem as
long as they do not lead to noticeable delays for the user. Also, a duration of 100 ms is
well below the delays users are accustomed to experience due to network latencies anyway.
Although single-field search is an order of magnitude slower on the average, this slow-down
does not translate into a proportional increase of the slowest query times – we still remain
below 406 ms. This indicates that the query times of the generated multi-field sub-queries
are not strongly correlated.
We also compared against existing geocoding services2. To do so, we took the first 100

relevant queries from the above query set and ran them against the publicly available APIs
of Bing and Google Maps. Table 3.8 reports on the number of true positive results. Google

2Experiments run on March 29th, 2013.
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Figure 3.8.: Query Times of Single-Field (left) and Multi-Field (right) Search Depending on
the Numbers of Distortions.
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3.3. E�cient Error-Correcting Geocoding

works very well for undistorted inputs – the three remaining errors could perhaps be at-
tributed to di↵erences in the input data. But already for a single error, the recognition rate
drops to 54 % and completely collapses for d � 2. Bing already has significant deficits at
d = 2 but fails more gracefully for distorted inputs. Still, the number of failed answers is
an order of magnitude larger than for our system. It should be noted that the subjective
performance of Google with interactive use on Google-Maps is much better than over the
API. In particular, the auto-completion mechanism works very well but is obviously not
applicable to the API.

Real-world Queries. To get an impression of the quality of the results, we also did exper-
iments with real-world input, i.e. actual queries that have been provided by users of the
existing geocoder of PTV AG. The test data consists of 1 383 multi-field queries that were
logged from the users of PTV AG. The results were pre-classified by the company into five
categories. We briefly describe the categories.

• Exact: Queries where each token can be matched without errors to a token in the
result. The di↵erences allowed between query and result are those that are handled by
a normalization phase.

Example: “london tally road” ! “London, Tally Road”

• Partially Exact: Queries where each token occurs in the result, but not each token of
the result string occurs in the query.

Example: “london tally” ! “London, Tally Road”

• High/Medium/Low: Queries that contain errors. The labels High, Medium, and Low
were assigned depending on the confidence of the existing system to have a correct
interpretation of the input.

Example: “Lodon; Tall Rd” ! “London, Tally Road” is Medium.

We tested our address search with these queries checking correctness of our result manually.
The results are classified into three categories:

• Strong Match (s): A result that is unquestionably correct. In many cases the query
was non-ambiguous and easy to verify.

• Weak Match (w): A result that is not correct, but has successfully identified parts of
the query, e.g., the town.

• No Match (n): Either a result that is definitely incorrect, or no result at all.

In total, the test data consists of 1 383 queries, classified into 844 Exact, 357 Partially Exact,
125 High, 41 Medium, and 16 Low queries. Since they had to be verified by hand, we picked
random samples of at most 100 queries per class. To make the comparison fair, we removed
a number of queries that were not resolvable, because our index does not contain points of
interest, e.g., shopping malls, water parks, etc. There remained 100 exact and 99 partially
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Bing Google Ours
category # s w n s w n s w n
Exact 100 81 5 24 100 0 0 100 0 0
Partial 99 77 20 2 96 2 1 99 0 0
High 81 60 16 5 65 10 6 77 2 2
Medium 34 7 1 26 16 11 7 27 6 1
Low 15 1 1 12 9 4 2 13 1 1

Table 3.9.: The Match Rates of Several Geocoding APIs on Real-World Queries.

exact queries, as well as 81, 34 and 15 queries classified as high, medium and low. The
results are shown in Table 3.9.
We run the queries against the public APIs of Google and Bing. 3 Our system outperforms

the Google and Bing API in all categories. As with the real world inputs, Google is similarly
good for (partially) exact queries but looses ground for erroneous inputs. For example, for
category High our system returns correct results for all but 4 of the inputs whereas Google
fails for 16 inputs – a factor four in the failure rate. An interesting di↵erence to the random
inputs is that now Google consistently outperforms Bing – also for the inputs with errors.

3.4. Neighborhood Graph

In most countries, city names are not unique. For example, Wikipedia knows 41 Springfields,
5 of them in Wisconsin. We present an e�cient data structure here that can be used to find
plausible nearby cities for disambiguation. Applications could either use the data structure
to propose disambiguating places or they could match them to inputs of the user such as
“Springfield near Kansas City”.
What makes a certain city a plausible match? It should be large, and it should be close

to the city it is supposed to disambiguate. Hence, we are facing a bi-criteria optimization
problem. A save way to handle such a situation is to consider all cities that are not dominated
by any other city.

Definition 3 (City Dominance). City x dominates y with respect to city t if it is both
closer to t than y and larger than y.

This problem is known under several names: Finding Pareto optima, vector maxima [121], or
a skyline [31]. If the cities are sorted by size, it is easy to solve the problem with a full scan
of all cities – outputting a city if it is closer than all previously inspected ones. However,
looking at all cities may still be too slow on large data sets for a practical application.
We encode the required information into a graph. Assume the cities are numbered 1 to n

by decreasing size. There is no need to store all towns, only those cities big enough to serve
as a reference place. A convenient way to define the size of a city here is to just count the

3 Originally, this was done in June 2011 and we reran them prior to finishing the thesis. We did not observe
significantly di↵erent results but noticed that the API of Bing has become sensitive to semicolons in the
input.

60



3.4. Neighborhood Graph

Listing 3.4: Finding Pareto optimal cities in the neighborhood graph D

⇤.

1 function pareto_optima(q)
2 do
3 output u

4 for each neighbor v of u in D

⇤, with u < v in increasing order do
5 if ||q � position(v)||2 < ||q � position(u)||2 then
6 u := v

7 break
8 end
9 end

10 while no closer node found
11 end

number of streets. Let D
i

:= ({1, . . . , i} , E
i

) denote the Delaunay triangulation [28] of the i
largest cities4.
Then we consider the neighborhood graph D⇤:= ({1, . . . , i} ,[n

i=1

E
i

). Depending on the
application, we may interpret D⇤ as a directed acyclic graph where all edges go from smaller
to larger indices (downward) or vice versa (upward). The intuition here is that the Delau-
nay triangulation encodes a natural concept of proximity. Directing the edges upward, i.e.,
towards larger cities allows us to find such cities. Obviously, it is not enough to just consider
the Delaunay triangulation D

n

of all n cities since we would usually end up in a dead end
of a medium sized cities whose neighbors are all smaller. The following theorem states that
the union D⇤ of n Delaunay triangulation solves this problem very e↵ectively:

Theorem 1. Consider any map position (x, y). The Pareto optima with respect to city size
and closeness to position (x, y) forms a downward path from node 1 to the city closest to
(x, y). This path can be found with the simple greedy algorithm depicted in Listing 3.4.

Proof. By induction from 1 to n, analogous to the work of Birn et al. [30].

Of course it is important how long it takes to construct D⇤ and how much space it takes. If
the size of a city is assumed to be independent from its position, the problem is the same
as in randomized incremental construction of a Delaunay triangulation [92] – we get a linear
number of edges in time O(n log n).
In case, the importance of places is unknown, there exists a simple generalization of the

above method. We construct a Voronoi diagram of the entire set of places and run an adapted
BFS query on the corresponding graph. All query candidates are inserted into the queue
with hop distance 0 and then a BFS is run. It prunes the search when a predetermined
threshold on the hop distance has been reached. For each settled node that corresponds to
an acceptable match, we compute a ranking that can be based on hop distance and probably
a number of other features and return a ranked list of the top k matches.

4Note that for convenience we work with Euclidean geometry here.
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Description Count
city 87
town 2 404
village 37 850
hamlet 34 850
isolated
dwelling 927

farm 580
suburb 8 424
neighborhood 1
Total 85220

Table 3.10.: Extracted Place Features. Hierarchically Sorted from Top to Bottom.

3.4.1. Experimental Evaluation: Neighborhood Graph

We implement the hierarchical neighborhood graph in C++ using GCC’s C++ compiler
version 4.7.2. The implementation uses the incremental Voronoi diagram construction al-
gorithm of the CGAL5 library version 4.02. The (informal) OpenStreetMap mapping rules
define a hierarchy of places6 that resembles the size of the place. Experiments were run on
Machine D, running Linux kernel version 3.5.0. Table 3.10 gives an overview of the number
of extracted features and in the order of the hierarchy of importance.
We build a neighborhood graph D⇤ for all 85 220 places in our input. The construction

takes 2.58 seconds, including initial sorting. The resulting graph consists of 255 635 directed
edges, i.e. about 3 directed edges per node which is similar to what we would expect for
random city sizes. About 25 nodes are reachable from a city on average, saving a factor
3400 compared to a full scan of the city table, even if we do not fully use Theorem 1.

5http://www.cgal.org – accessed February, 25th 2013
6http://wiki.openstreetmap.org/wiki/Key:place – accessed February, 25th 2013

Figure 3.9.: Example From the Experiments: Town of Alzenau (marker) is Close to the City
of Frankfurt am Main. (Image © OpenStreetMap Contributors, CC-BY-SA).
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Viability of Computational Results. We also performed a small user study to test how
reasonable the results of our modelling are. We randomly picked 48 towns from a map of
Germany and asked a non-expert in the field of geography or computer science to attribute
a larger reference town to the one we picked. In 46 of these cases, a pareto-optimal reference
town was chosen. Therefore, we conclude that the results are reasonable. Figure 3.9 shows
an example from the experiments.

3.5. Concluding Remarks

Improved Fast Similarity Search. We improved a method for approximate string matching
in a dictionary. We developed algorithmic optimizations that provide a tuning parameter to
choose between space consumption and running time while having overall lower preprocessing
duration. Additionally, the performance has been validated experimentally by comparison
against BK-trees and the baseline version of FastSS.
We see possibilities to speed up the verification of the candidate set using a more sophis-

ticated implementation with bit-parallelism [99] and SIMD instructions. This technique has
been successfully used by [78]. However, only about half of the time of the algorithm is actu-
ally spent in the verification phase with the computation of the edit distance. Likewise there
might be opportunities to speed up the precomputation, in particular, using fast, incremen-
tal computations of hash functions and using parallelization. Also, it might be interesting
to use data compression techniques to further reduce the storage requirements.

Error-Correcting Geocoding. We presented algorithms and data structures for error cor-
recting geocoding that yield instantaneous answers at costs negligible compared to the over-
heads for displaying maps answers, etc. over the Internet. Perhaps most surprising is that
we still have a high match rate with as much as four errors and this is much better than
current web geocoders. Another pleasant surprise was that our combination of powerful data
structures and general rating functions yields a considerably simpler solution than several
rule-based industrial solutions we have heard about.
Although our experiments have so far focused on commercial German road data, we believe

that they are easy to adapt to other Western industrial countries. In particular, these
countries have similar address systems and language conventions. Points of interest (POI)
like gas stations or restaurants can be incorporated by treating them like a street, town or
house number depending on the context. Finding street intersections is relatively easy once
we have geocoded the two intersecting streets.
The basic ingredients – fast approximate dictionary search, token matching and scoring

functions might also help in other settings like in countries with more complicated addresses
or less structured reference data. However in that case we should expect more errors, longer
query times, and the need for further heuristics. In the future, work should focus on speeding
up the query speed of single-field search, too, as it is the most obvious use case in practice.
From an implementation point of view, we see further possibilities in applying highly tuned
sub algorithms for matching, edit distance, and integer set intersection. An interesting
challenge would be to have dynamic data structures that handle data sets which evolve over
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time. For example, it is a higher incentive for the individual to contribute crowd-sourced
data sets, like OpenStreetMap, when the times are low that it takes a change to appear in
a service.

Neighborhood Graph. Our concept of neighborhood graph is a promising approach to
disambiguate queries involving frequent town names. Proximity is not determined by a
predefined threshold, but by the input data itself. It captures the fact that certain areas a
more densely populated than others.
The experimental evaluation as well as the user study show its potential. Scoring functions

could even improve the quality of matches. In particular, we may want to restrict the set
of reported cities to those in the same “region” (e.g., county, state, or nation) as the query
town. Since Delaunay triangulations encode neighbors in all directions, we suspect that with
appropriately defined “locally well behaved region shapes” the desired output still consists of
nodes reachable in D⇤. Another interesting aspect is that the set of nodes reachable through
the neighborhood graph D⇤ may contain further “interesting” nodes.
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CHAPTER 4

Distributed Preprocessing of Road Networks with Contraction
Hierarchies

4.1. Central Ideas

Dijkstra’s seminal algorithm solves the shortest path problem in polynomial time, but it does
not scale well in practice to large instances. For example, a query for a shortest path on a
continental-sized network can take several seconds to complete even on the fastest currently
available hardware. Contraction Hierarchies is a speedup technique to Dijkstra’s algorithm.
In general, server based route planning in road networks is powerful enough to find shortest
paths in a matter of milliseconds, even if detailed information on time-dependent travel times
is taken into account, e.g., [21, 56, 84, 147]. However, this requires considerable amounts of
memory on each query server and hours of preprocessing for large-scale road networks. This
setting is problematic since Internet services with global coverage would like to work with
transcontinental networks, detailed models of intersections, and regular re-preprocessing that
takes the current tra�c situation into account.
Preprocessing algorithms for speedup techniques to Dijkstra’s shortest path algorithm

were shown to be fast enough to be used in practice in a server-based scenario [129]. Ever
bigger networks are available with crowd-source data sets like OpenStreetMap. Services may
want to o↵er a seamless coverage of transcontinental networks such as EurAsiAfrica or the
Americas. Second, one would like to move to more and more detailed network models with an
ever increasing fraction of time-dependent edge weights and perhaps even multi-node models
for every road intersection that allow to model turn-penalties, tra�c-light delays, and even
more. First studies indicate that detailed turn modelling increases memory requirements
by a factor of 3–4 [185]. On top of this, one would also like to recompute the preprocessed
information frequently in order to take information on current tra�c (e.g. tra�c jams or
temporary road closure) into account. Preprocessing large networks such as the road network
of entire world takes a considerable amount of time.
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4.2. Preprocessing With Constant Space per Core

The preprocessing of Contraction Hierarchies is very local. Decisions whether to select
a node for contraction and whether to insert a particular shortcut are made by inspecting
a tiny portion of the network only. For example, it su�ces to look at only 2 000 nodes in
a network of millions of nodes and edges to decide if a shortcut is necessary as well as to
inspect a 2-hop neighborhood around a node to decide if it should be selected for contraction.
We use this locality to our advantage to devise data structures used during preprocessing
that require space that is sub-linear in the number of nodes of the input graph without
virtually any impact on the quality. We achieve much better cache locality that uses the
fact that memory access is not uniform across the memory hierarchy of caches and main
memory. Distributing the work load to a cluster of machines enables the preprocessing of
large networks with a economically justifiable budget since the cost of purchase of several
smaller computers is less than the cost of a single machine with equivalent performance.
Also, we can distribute the processing of queries onto a cluster of machines. This lowers
the computational load on computers e↵ectively, and therefore allows one to use cheap
commodity hardware for computation intensive tasks.

This Chapter is structured as follows. Section 4.2 exploits the locality of the witness search
during Contraction Hierarchies preprocessing. We apply build an time and space e�cient
key-value storage for the priority queue that is able to achieve a space consumption that
is sub-linear in the number of compute processes. We apply this technique to construct
an e�cient tie-breaking mechanism with performance guarantees. Section 4.3 shows how
to conduct CH preprocessing on a cluster of cheap machines using the message passing
paradigm of parallelization.

References

The contents of the sections in this chapter are based on the following publications: Sec-
tion 4.2 is based on joint work with Dennis Schieferdecker [128]. Section 4.3 is based on joint
work with Tim Kieritz [111], Peter Sanders and Christian Vetter [112]. Wordings of these
publications are used in this thesis. The author especially expresses his appreciation of the
work of Veit Batz [21] who provided much of the infrastructure code used in Section 4.3, but
humbly declined co-authorship of the subsequent publication [112].

4.2. Preprocessing With Constant Space per Core

The contribution of this section is twofold. First, it describes a shared-memory parallel
implementation of the Contraction Hierarchies preprocessing that uses constant space per
witness search and per core in practice. Second, we apply the result to tie-breaking to
construct a fast and space e�cient tie-breaking oracle for independent set selection. An
experimental analysis of each approach shows how well-engineered data structures and al-
gorithms are able to deliver better performance by consequently exploiting caching e↵ects
while executing a larger number of CPU operations.
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4.2.1. Engineering of the Witness Search Heuristic

We build on the introduction to Contraction Hierarchies preprocessing as given in Section 2.5.
Recall that the subgraphs that are explored during witness searches are rather small com-
pared to the entire graph instance. For example, the implementation at hand prunes witness
searches at 1 000 nodes for simulations and at 2 000 nodes for actual contractions. The par-
allel preprocessing obviously needs a priority queue per thread which (internally) stores its
content in some table. The easiest implementation is an array of size linear in the number
of nodes of the graph. But this array has to be instantiated for every preprocessing thread
t 2 T and thus the overall space requirement would be O(n · T ) which becomes easily in-
feasible on current multi-core architectures. Likewise, any solution to save memory must
show good scalability, i.e. any solution with constant factor slowdown essentially wastes (a
portion) of the available processing power.
Tabulation hashing is a simple hashing scheme that dates back to as early as the late

1960s when first published by Zobrist [197] and the late 1970s when rediscovered by Carter
and Wegmann [41]. It uses simple table lookups and exclusive or (XOR) operations. Later
Patrascu and Thorup [155] gave a theoretical analysis of the scheme. Tabulation hashing
interprets input keys as a string of c characters x

1

, . . . , x
k

. For each of the possible character
positions a random table T

i

, 1  i  k of size 2c/k is initialized and the following hash
function is used:

h(x) = T
1

[x
1

]� . . .� T
c

[x
c

].

The probability of a hash collision is small, e.g. Carter and Wegmann [41] show that tabula-
tion hashing is 3-independent which is a strong property given the simplicity of the approach.

Implementation Details. Our variant of tabulation hashing splits inputs of size 32 bits
into two words of size 16 bit, i.e. the most and least significant halves. Thus, two lookup
tables with 216 entries have to be filled with pairwise distinct random numbers. This is
done by initializing the tables consecutively with numbers 0, . . . , 216�1 and then applying a
random shu✏e. Hashing any input is done as follows. Input x is assumed to be 32 bits wide.
x is split into the most and least significant halves, a lookup is performed for each half and
then combined by a XOR operation. The work necessary to perform a query is constant. The
overhead of initializing these arrays can be neglected, since this has to be done only once and
the associated work is linear in the size (and number) of the lookup tables. See Figure 4.1
for an illustration of the tabulation hashing scheme. Note that we assume input words that
are 32 bits wide. However, an extension to 64 or even 128 bits is easy to implement.
The range of the hash function is 216 which is obviously of much larger cardinality than

the set of at most 2 000 explored nodes. The number of expected collisions is tiny as shown
in the analysis. The observed rate of collisions in practice is less than 10�5. Nevertheless,
it is necessary to use a collision resolution strategy, since a hash function points only to a
records location and not to the record itself. It seems obvious to use linear probing [115] as
resolution strategy for the following two reasons. First, the expected number of collisions
is small and so is the expected number of cells in the hash tables that have a non-vacant
neighbour. Second, the next cells are very likely to lie in the same cache line as the original
cell and therefore linear probing is virtually cost-free.
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Figure 4.1.: Schematic Visualization of the Tabulation Hashing Scheme.

The implementation is straight-forward from the description. The queue implementation
at hand is a binary heap that maintains a partially sorted heap of the keys along-side an
index into a key-value store, where the actual elements reside. In the simplest case this key-
value store is a simple array that has the size of the maximum number of distinct elements
that could be inserted. We replace this simple storage array with a smaller sized array that
has the range of the hash function. A hash value is generated for each input key and its
value is stored at the corresponding index of the storage array. Collisions, i.e. when the cell
is not empty, are resolved by linear probing. After each witness search the storage table of
the priority queue is reinitialized. While this seems non-obvious at first sight, one has to pay
special attention for the reinitialization of the storage array. Resetting an array to initial
values is expensive as it either involves a reallocation or a sweep over the memory or even
both. Therefore each cell has a local time stamp that indicates the time when it was written
last. Initially, the global time stamp is zero and incremented each time the storage table is
cleared. This way, it is not necessary to actually zero out any memory every time, and it
su�ces to do a simple comparison during collision resolution. The zeroing step has to be
done only in the case that the timestamp overflows which happens every four billion times
when using a 32 bit integer. The amortized overhead is negligible. The implementation
uses 4 bytes each for key and value as well as for the time stamp which yields cell sizes of
12 bytes and therefore an overall memory consumption of 384 kilobytes per queue for the
storage table. We even halved the size of the table to store only 32 768 = 215 entries, which
is half the range of the hash function. Preliminary experiments show that the collision rate
was virtually una↵ected by decrease while the memory consumption halved.
It is not necessary to implement an explicit deletion operation for our use-case. Elements

that have been inserted into the queue simply do not get deleted from the queues underlying
key-value store until the entire queue is flushed. Therefore, it has not been implemented.
We briefly experimented with a replacement strategy to do collision resolution, too. The

data element that we keep in the storage array is essentially the (tentative) weight of a node.
Consider an insertion of an element e and that h(e) = h(f) for some already inserted element
f . Instead of searching for a new position to insert an element e, we replace the entry at
h(e) with the maximum of the tentative distances of e and f . This is feasible in our case
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duration [s]
ptv-germany ptv-europe osm-germany-2 osm-planet

boost 397.00 1384.42 1876.40 47 978.80
google 175.97 643.02 1215.67 22 278.10
plain 68.10 278.93 822.21 21 873.58
xor-witness 116.65 363.86 827.48 16 030.90

Table 4.1.: Comparison Against Several Hash Table Implementations.

since the purpose of the witness search is not to find actual paths but to indicate if there
exists some path between nodes u and w that is shorter than the one over the middle node
v. The witness searches are allowed to have a one-sided error, i.e. we are allowed to have
false negatives: If it indicates that it didn’t find a shorter path than the one over the middle
node, then this must not be true. We just add too many shortcuts in this case, but do not
break the correctness of the CH search graph. We observe essentially the same experimental
results for this variant within the margin of error.

Experimental Evaluation of the Constant-Sized Heap Storage. We implement the al-
gorithm in C++ using the GCC compiler version 4.6.1 with full optimizations. Experiments
are done on 12 cores of Machine C, running Linux kernel version 3.0.0. The graph instances
used are osm-planet, osm-germany-2, ptv-europe, and ptv-germany. Recall that the osm-
graphs are edge-expanded. The implementation of CH already includes the tabulation hash
based tie breaker from above. Preprocessing was run for the same instances as before and
compared against two standard hash table implementations. The first one is an implemen-
tation from the Boost1 C++ library version 1.4.6, namely boost::unordered map. This
hash table is said to be close to the implementation of GCC C++11 standard hash table
implementation. The second implementation is Google’s sparsehash2 library version 1.10,
namely google::dense hash map3. This hash table has the reputation of being among the
fastest hash table implementations. Note, we also use the tabulation hashed tie-breaker for
the google and boost variants. The presented numbers are averaged over three runs.
Table 4.1 gives the results from the experiments on a number of input graphs where

xor-witness denotes the implementation of our approach. The reference values of the plain
implementation are given in line plain. Best values are printed in bold font. First, we see
that the performance of the (general purpose) boost hash library is not competitive. It is
the slowest among the implementations and has a slowdown of about 3–5 compared to the
fastest solution. Next, we observe that the Google hash library is indeed fast as its slowdown
becomes less the larger the graph instance are. Compared to xor-witness we see a slowdown
of about 30% in instance osm-planet- Compared to the plain it has a slowdown of about 2%
on that instance.

1http://boost.org – accessed April, 1st 2013
2http://code.google.com/p/sparsehash – accessed April, 1st 2013
3The library naming reflects implementation details, but we note the irony.
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Next, we see that our approach works the better the larger the test instance is. We
observe that the results of the plain implementation and xor-witness are virtually identical
on instance osm-germany-2 and on osm-planet our solution is faster by 25–30%. This is
a strength of our approach as it appears to scale better with ever-growing data sets like
OpenStreetMap. Google’s hash table implementation fare quite all-right compared to the
plain implementation as it is slightly slower on instance osm-planet by about 2%. Again,
the boost solution is not competitive any more.

4.2.2. Tie-Breaking in Constant Time and Space

The application of tabulation hashing is not limited to be applied to the witness searches
of preprocessing. As mentioned briefly before, the role of tie-breaking is to facilitate the
decision which node to contract only when neighbouring nodes have equal priorities during
the selection of the independent set. A tie-breaking mechanism cannot be an arbitrary
decision process but has to fulfil certain properties as the following paragraph shows.

Definition 4 (Node Ordering and Tie-Breaking). Consider two nodes u 6= v 2 V . A
node u is smaller than node v from the k-neighbourhood if p(u) < p(v) or if u � v in case
p(u) = p(v), where � defines an order on the nodes. The order (or tie-breaker) is called
consistent if and only if u � v = ¬(v � u).

One can show that the property of consistency is an essential property of any correct Con-
traction Hierarchies implementation. Consider the contraction of a single node to be a basic
operation during the preprocessing.

Lemma 3. Contraction Hierarchies preprocessing with an inconsistent tie-breaker does not
terminate for all inputs.

It su�ces to show that there exists an input graph and an inconsistent tie-breaker for which
no node is selected during an iteration.

Proof. Consider a triangle of three nodes a, b, c each of degree two with equal priority. Further
assume that the tie-breaker is inconsistent with x � y = 0, 8x, y 2 {a, b, c}. No node will
be selected to be an element of the independent set that is to be contracted. Thus, the
contraction does not terminate.

The easiest implementation of a consistent tie-breaker is a random permutation of the node
IDs and a subsequent renumbering of the graph. A random shu✏e of node IDs implies
linear work in the number of nodes and edges. We call this tie-breaker a bias array From
a theoretical point of view, one could argue that this is as good as it gets since the work
is constant per decision. On the other hand, the constants associated with such a scheme
may render it impractical. Doing a random shu✏e and a subsequent renumbering on the
nodes of a large graph, e.g., for the entire planet, can be prohibitively expensive in practice.
Preliminary experiments preceding show that this can take as long as contracting the first
20–25% of the nodes. Running a parallel shu✏ing algorithm may help, but a general a
disadvantage of random shu✏ing is that it breaks any inherent cache-e�ciency that the
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data has. Also, we note that such an implementation still has O(n) space requirements. In
real-world data sets node IDs are given in the order in which they are created, i.e. consecutive
numbering of the nodes of an entire street when it is added into the data set. There are
conflicting interests for the numbering of the nodes. On one hand, the strength of CH is
that its data structure is quite di↵erent from the intuition of a hierarchy of road types.
And thus, one would want a preprocessing that is independent from any existing ordering
or presentation of the input data. On the other hand, the preprocessing mostly consists of
small graph searches and one would like the data to display a certain amount of locality, i.e.
close-by nodes have close-by IDs, to leverage caching e↵ects.
The bias array can be found in the implementations of [112, 184]. Array A is populated

with numbers 0, . . . , n�1 and randomly shu✏ed at the beginning of the preprocessing. This
yields a precomputed pairwise distinct random number for each node v in the graph. When
a tie-break is necessary for nodes i and j then the values of A[i] and A[j] are compared. We
look at the situation that comparison of any two elements is based on the input ordering
and define the following:

Definition 5 (Self-Reliance of Tie-Breaking). A tie-breaking ordering is called self-reliant,
if its outcome is irrespective of any input numbering. An ordering is said to be "-self-reliant
from the node ordering, if the comparison of any two elements is independent from the input
ordering with high probability, i.e. the probability is at most 1� ✏.

The above straight-forward implementation of tie-breaking has one major disadvantage
in practice that is a direct result of its simplicity. While one expects this tie-breaker to be
fast, the number of cache misses is large. The bias array is much larger than any cache size
even for medium-sized graphs and one must expect an expensive cache miss for each call to
the tie-breaking rule, even if the data exhibits some locality preserving node numbering. A
preliminary experiment with a memory debugging tool revealed that most of the accesses to
the bias array were actually cache faults, and the number of clock cycles wasted in a single
cache miss easily amount to a few hundred [67].

4.2.3. A Fast Self-Reliant Tie-Breaker With High Probability

The following tabulation hashing-based scheme gives the basis of a tie-breaking mechanism
that takes constant time to evaluate and uses constant space only. It is not only independent
with high probability, but surprisingly fast in practice and even faster than the above simple
schemes. We build a tie-breaker for two nodes a, b 2 V in the following way. The hash values
h(a), h(b) of a and b are compared and in the (unlikely) event of a hash collision, a and b
are compared directly. More formalized we have:

Definition 6 (Tie-Breaking by Tabulation Hashing). Given a (tabulation) hash func-
tion h : U ! [m] and two elements a, b 2 U , then the boolean expression

a � b := [h(a) < h(b)] _ [(p(a) ⌘ p(b)) ^ (a < b)]

obviously defines an order on the elements of U .
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We want the probability of hash collision less or equal than " to achieve best results. For
fixed keys x

1

. . . , x
k

2 U and a randomly drawn hash function h 2 H, the hash values
h(x

1

), . . . , h(x
k

) are independent random numbers. Recall that tabulation hashing is 3-
independent. Thus, the probability of a hash collision is less than 2�k and thus the order it
defines is random with high probability. Only in the rare case, of a collision the ordering is
derived from the IDs of the nodes.

Implementation Details. A query to the tie-breaking oracle is straight-forward to imple-
ment by reusing the implementation of the witness search heuristic of Section 4.2.1. It is
expanded into the following tie-breaking algorithm by implementing Definition 6. Consider
the code fragment of Listing 4.1. The entire tie-breaking mechanism, including hashing, uses
as few as 22 assembly instructions on an X86 CPU in practice, when letting the compiler
optimize the code. See Appendix B for the actual assembly listing. Most interestingly, it is
possible to evaluate the if-statement without any branching by using conditionally set flags
in the register4. We note that the optimization is compiler dependent and that a conditional
jump would pose no serious performance penalty as one would expect it to be almost always
predicted correctly by the CPU. On Machine C (AMD Opteron 6212, Bulldozer v1 archi-
tecture) the code of Listing 4.1 takes approximately 350 cycles to be evaluated. The space
requirement for this tie-breaking mechanism is 256 KB of RAM, which fits into the L2 cache
of any recent X86 processor, and L2 cache latency is approximately ten cycles. Table 4.2
gives the results of experiments of running times of CH preprocessing either with bias-array
based tie-breaking or tabulation hash-based tie-breaking.

4.2.4. Experimental Evaluation

The experiments on the performance of the tabulation hash based tie-breaker have been
evaluated on Machine C using the same methodology as the previous experiments.
Table 4.2 reports on the impact of the hashing scheme on the duration of the preprocessing.

Line plain gives the result for the bias-array based and xor-witness denotes the preprocessing
of the previous section. Best values are given in bold font, again.
The performance of the xor-break is the fastest in all experiments. The experiments show

that a tie-breaking mechanism based on tabulation hashing not only reduces the memory

4X86 assembly instruction setg

Listing 4.1: Tabulation-based Tie-Breaker

1 function bias(const NodeID a, const NodeID b)
2 unsigned short hasha = h(a);
3 unsigned short hashb = h(b);
4 if(hasha != hashb)
5 return hasha < hashb;
6 return a < b;
7 end
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duration [s]
ptv-germany ptv-europe osm-germany-2 osm-planet

plain 68.10 278.93 822.21 21 873.58
xor-witness 116.65 363.86 827.48 16 030.90
xor-break 65.86 259.85 628.96 15 815.10

Table 4.2.: Results for the Tabulation Hash-Based Tie-Breaking Scheme.

requirements, but also that it pays o↵ to trade some processing cycles for much better cache
e�ciency. An extended profile run was conducted on the smaller edge-expanded instance
osm-berlin. This was done using the cachegrind plug-in of Valgrind5, a tool for (memory
usage) debugging and profiling. Examining larger instances is impractical since the tool
entirely simulates the cache hierarchy of a modern processor, which takes orders of magnitude
longer than running on real hardware. However, the experiment revealed that while the
overall instruction count increased by less than 1%, the number of (simulated L1 and LL)
cache misses dropped significantly by more than 20%.
The benefits of tabulation hash based tie-breaking are twofold. The speedup is only minor

for the node-based graphs, but grows with the size of the graph and its complexity, i.e., for
the edge-expanded graphs. Generally, we see that the larger graph, the better the e�ciency
of the tabulation hash based methods. Variant xor-break is the fastest in all experiments.
This is in contrast to the experiments of the previous section where we observed best results
of tabulation hash based methods only for the largest of the instances. The larger the graph
the more cache faults occur for the plain variant because the storage table of the priority
queue grows linear in the number of nodes. And here, the gap between plain and xor-
break becomes larger the larger the graph gets. Contrary, the gap between xor-witness and
xor-break decreases as the road networks grow in size. We see that the tabulation hashing
approach is especially e↵ective to limit the space requirement of the witness search.

4.3. Distributed Preprocessing by Message-Passing

We lift existing bottlenecks of CH preprocessing by giving a distributed memory paralleliza-
tion of (time-dependent) Contraction Hierarchies (TCH). Storage requirements are critical
because TCHs introduce many additional edges which represent long paths with complex
travel-time function. Furthermore, TCH queries have small search spaces mostly concen-
trated around source and target node and hence exhibit a degree of locality. It is this degree
of locality that makes it attractive for a distributed implementation.
In this chapter, these issues are addressed by describing an approach that distributes both

preprocessing and query computation to a cluster of inexpensive machines, each equipped
with limited main memory. The available large cumulative memory allows large networks
while the cumulative processing power allows fast preprocessing and accelerated query through-
put. For example, on a medium sized network, 64 processes accelerate TCH preprocessing

5http://www.valgrind.org – accessed April, 6th 2013
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by a factor of 28 to mere 160 seconds, reduce per process memory consumption by a factor
of 10.5 and increase query throughput by a factor of 25. The distributed implementation of
time-dependent Contraction Hierarchies (DTCH) of this Chapter is based on Batz’ sequential
time-dependent Contraction Hierarchies (TCH) [21].

4.3.1. Distributed Node Ordering and Contraction

Consider the shared-memory parallel Contraction Hierarchies preprocessing that identifies
independent sets as described in Section 2.5. We generalize this approach to a distributed
memory parallel preprocessing that we describe in the following. We use the following
notation. We compute a partition of the input graph nodes where each cell C

i

is associated
with a process i 2 {1, . . . , p} with the aim to optimize for cells of roughly equal size as well
as minimizing the number of cut edges. Process k is said to be authoritative for all nodes in
cell C

k

. The authoritative process for node v is denoted by A(v).
During the preprocessing, the following invariant is maintained: Every process stores its

local partition cell C
i

plus the nodes within a certain neighbourhood, s.t. every witness path
of hop length h is contained within the cell and its neighborhood. This neighbourhood is
also called halo H

i

of cell i.

Lemma 4 (Halo Size of Cell i). A halo which contains every node with hop distance less
of equal than ` := bh/2c+1 su�ces in an undirected graph such that all witness paths of hop
length h can be found within C

i

[H
i

.

To show the claim, we look at the maximum hop distance of a node k on a witness path.
Furthermore, we show that all witness paths explored during the contraction of node v with
at most h hops do not leave the halo.

Proof. Consider node v that is next to be contracted and that witness searches are conducted
for each path p := hu, v, wi in the (remaining) graph. Now, consider a path p where v 2 C

i

and u, v 2 H
i

as well as a witness path p0 to p that does not include any nodes from C
i

.
Now, there exists a node k on path p0 that has maximum hop distance to v. When limiting

all witness paths p0 to a hop distance of at most h, we see that node k can be at most bh/2c+1
hops away (from v by either going through u or w). Hence, all witness paths of length at
most h are covered by a halo of ` hops.

Figure 4.2 gives a visualization of the argument. Lemma 4 can be extended to directed
graphs by considering edges independent of their direction. In other words, node v is in the
`-neighbourhood of some node set C

i

if there is either a (directed) path with at most ` edges
from v to a node in C

i

or a directed path with at most ` edges from a node in C
i

to v.
While the remaining graph (containing the nodes not yet contracted) is non-empty, an

independent set I of nodes is identified to be contracted next. It su�ces to inspect the
nodes in a 2-hop neighborhood to check for independence and every cluster node obviously
stores enough halo information to check the nodes under its authority. The nodes within
the independent set I can be contracted in any order without a↵ecting the final outcome.
Therefore, the contraction of the nodes in an independent set can be obviously conducted
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Figure 4.2.: Node k is at most ` hops away from node v.

in a distributed system. While any independent set could be used in principle, nodes should
be contracted in increasing order of importance, as argued in Section 2.5.

If the halo information is available for all nodes of an independent set, node contraction
can be performed completely independently on each process, possibly using shared-memory
parallelism. When this is done, all newly generated shortcuts (u, w) are communicated to
the authoritative processes of u and w which in turn forward them to processes with a copy
of u or w in a halo. Note that this implies bookkeeping and that messages between the same
pair of processes can be joined into a single message in an actual implementation. This way,
two global communication phases su�ce to exchange information on new shortcuts. Then,

Listing 4.2: Distributed Procedure halo repair

1 function halo_repair(i, max_dist)
2 do
3 U := ;;
4 MPI_Recv( new edges ECi incident to Ci);
5 for (u, v) in ECi do
6 if (hop(v) < max_dist) and (hop(v) < h[v]) then h[v] = hop(v); U = U [ v; end
7 if (hop(u) < max_dist) and (hop(u) < h[u]) then h[u] = hop(u); U = U [ u; end
8 end
9 for u in U do

10 MPI_Send(request all edges incident to u 2 U from process A(v));
11 end
12 while(U 6= ;);
13 end
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Listing 4.3: Distributed Procedure contract(v)

1 function contract(i)
2 U := all bordering nodes of v;
3 n := |Cp|
4 MPI_Send(request all edges incident to u 2 U from process i);
5 for j in 0 .. n do
6 update_priority(j);
7 end
8 while (n > 0) do
9 halo_repair ();

10 Vp := identify_independent_set ();
11 for v in Vp do
12 contract(v);
13 end
14 n := n� |Vp|
15 MPI_Send(edges (u,w) to A(u) and A(w));
16 MPI_Send(remove edges (u, v) and (v, w))
17 end
18 end

the halo-invariant has to be repaired since new shortcuts may result in new nodes reachable
within the hop limit. This is done in an approach with two phases. First, a local search from
the border nodes in C

i

establishes the current distances of nodes in the halo. Here, bordering
nodes of cell C

i

are those nodes that have a neighbour outside C
i

. Then, nodes in the halo
with a new hop distance < ` request information on their neighbours using a single global
message exchange. This process is iterated until the full `-hop halo information is available
again, i.e. there is no node any more whose hop distance got decreased in the previous step.
Obviously, this repair operation takes at most ` global communication phases.

Consider a function hop(·) that computes the hop distance of a given node from the
border of a cell and h[v] gives the currently stored hop distance for a given node v. If the
distance has not been computed before or the node is not part of the halo then we set
hop(v) := 1 = h[v]. Listing 4.2 gives pseudo-code for the halo repair algorithm, where ECi
is initialized with the border nodes of cell C

i

in the first iteration and max dist is an upper
bound to the hop distance.

Next, consider the function contract(·) that contracts a single node as well as utility func-
tions update priority(·) and identify independent set(). The first function updates
the priority of a node by evaluating its (local) `-hop neighbourhood, while the latter one
identifies a contractable independent node set in C

i

by a number of local searches. Listing 4.3
gives the pseudo code for the distributed contraction step.

At the time of completion of the contraction phase, each compute process not only stores
the nodes in C

i

, but also the nodes reachable from a node within region C
i

using upward
edges only, i.e. the forward and backward search spaces. Note that these upward edges may
be in both directions, forward as well as backward. Forward or backward search for a node
in C

i

can be done locally using this data structure as is explained in the next section.
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4.3.2. Distributed Query

The distributed a query reuses the same partition of the nodes of the graph that was also
used previously during the preprocessing. In addition to the nodes of cell C

i

, each process
also keeps track of forward and backward search spaces of its nodes in the CH data structure.
A time-independent query for this distributed system is easy to conceive. A request enters

the system at possibly any process and is sent to the authoritative process for s. If that
process is the authority to node t as well, the entire query can be answered locally by a
single process. If not forward and backward search spaces are computed on the respective
authoritative compute nodes and a search space intersection is performed after aggregating
the information. A node with minimum sum of forward and backward distance in the
intersection is the middle node of a shortest path between source and target.
A distributed time-dependent earliest arrival query works in a similar way. Otherwise a

time-dependent forward search is conducted starting at node s in G"(s) on process A(s).
The arrival time at all reached nodes by this search is sent to process A(t) which has all
the information needed to complete the query. As in the sequential time-dependent query
algorithm, A(t) marks a corridor of edges in the backward search space in G#(t). Finally,
the forward search is resumed at the nodes in the corridor reached by the forward search.
It needs only to explore marked edges of the corridor. Note that the searches can eliminate
some nodes that cannot be on a shortest path using the search space pruning technique of
stall-on-demand [84].
The backward search can be made goal directed, too. When the BFS-like backward

exploration, as explained in Section 2.5, marks reachable nodes it stores with them upper
and lower bounds of the arrival time at these nodes. The lower bounds can be recycled to
give an admissible heuristic for A* search, since it never overestimates the arrival time.

4.3.3. Experimental Evaluation

Implementation Details and Methodology. We implement the aforementioned algorithms
and data structures in C++ using Intel’s C++ compiler version 10.1 with full optimization,
and OpenMPI 1.3.3 as implementation of the message passing paradigm. The experiments
are performed on a varying number of PEs on Machine B. Note that PEs are on separate
compute nodes on purpose to minimize internal communication. Experiments are done on
test instances ptv-europe-td, ptv-ger-mw-td, and ptv-ger-sun-td. The partitioning of the input
graphs is done by the same partitioner as SHARC [23], which is kindly provided by Daniel
Delling. The running time for graph partitioning is not included but negligible in our setting.

Distributed Contraction

Figure 4.3 shows the numbers of speedups and execution times obtained in the experimental
evaluation. Please note the logarithmic y

1

scales of the plots. The speedup of the distributed
implementation is compared to the sequential variant. Interestingly, for the case of the
German road network, the sequential code from [21] yields very similar values on Machine
B. Since the European road network cannot be contracted on less than 4 nodes, because of
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Figure 4.3.: Running Time and Speedup of Distributed Contraction Depending on the Num-
ber of PEs.

memory requirements, this execution time is used as a baseline.

For the German midweek road network the implementation scales well up to 16 processes.
Indeed, a slight super-linear speedup can be observed which in turn can be attributed to a
larger overall capacity of cache memory. The speedup achieved depending on the number of
processes rapidly declines for more than 32 processes. We observe this point of diminishing
returns and observe as well that running the distributed preprocessing on more than 64
processes does not make sense any more. The experimental results for the German Sunday
network show a similar behaviour although both overall execution times and speedups are
smaller. This is expected behaviour since the limited time-dependence on just 3% of the edges
incurs less overall work during the contraction. It is also expected behaviour that the larger
the networks become, the better observed scalability is. Hence, for the European network
scalability is better than for the German network. We see a good to reasonable speedup
for up to 32 processes that still shows some improvement when increasing the number of
processes from 64 to 128.
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Figure 4.4.: Duration of the Contraction Step Depending on the Number of PEs.

Time Spent in each Iteration of the Contraction

Figure 4.4 gives the time spent to conduct witness searches and to actually contract nodes.
The plot indicates that the execution times per iteration exhibits a certain level of variance
for the European network. Closer inspection indicates that this is due to partitions that are
(at least in some iterations) much more di�cult to contract than others. Figure 4.5 then
shows the overhead it takes to find the independent node set in each iteration depending
on the number of PEs used. Note the logarithmic scale on the y-axis and that we only give
plots for two of three instances because the third one shows a very similar behavior. We
observe that the running time approaches a minimum which is reached at about 32 processes
for the German instances and at about 64 processes for the European test instance. The
time needed to process the European graph instance is about an order of magnitude larger
as the instance has a bigger graph. We also observe that the time spent depends on the
number of PEs and approaches a minimum, which is quite stable for the latter third of the
iterations. One would expect the time to keep decreasing more significantly as the graphs
only get smaller, but we see the following reason for these rather stable timings when looking
at the raw numbers. Most of the nodes are contracted in the first dozen iterations. The
graph that has to be inspected does not shrink significantly for later iterations from one to
the next. Thus, the impact on the time needed to find an independent set is less significant
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4.3. Distributed Preprocessing by Message-Passing

for later iterations.
Next, we analyze the memory requirements for each process that is necessary to distribute

queries. Note that memory requirements during contraction time are much lower in the
implementation since edges incident to contracted nodes are written out to disk. As explained
above, there is an overhead mainly because every process holds the complete search space for
each node under its authority. In Figure 4.6 the memory consumption is visualized in two
ways. First, the maximum memory required for any single process is analysed. Second, it is
analysed how this maximumm compares to the sequential memory requirements s by looking
at the ratio of p · m/s which quantifies the blow-up of the overall memory requirements.
The first observation is that although the maximum m decreases, the memory blowup only
remains in an acceptable range for around 16–32 processes. It shows that a blow-up factor of
around 2 is common. Although both implementations have a relatively small set of important
nodes that show up in many queries, the main di↵erence is that the weight functions of
edges incident to this small set of nodes bears highly complex travel-time functions. This is
somewhat expected behaviour since shortcuts created at the end of the contraction resemble
a large number of original edges.
Batz et al. [20] have solved this problem by an approximation of the piece-wise linear

functions based on the algorithm of Imai and Iri [100]. The edge weight functions of shortcuts
are replaced with less complex upper and lower bounds, while edge weight functions that
resemble an original edge at one point in time keep their exact time-dependency. The query
computes a corridor of candidates that is guaranteed to contain a path from source to target
with earliest arrival time. The packed corridor is traversed by a BFS and unpacked. Thus the
corridor has correct time-dependent edge weights. Subsequently a time-dependent Dijkstra
finds the actual shortest path in the corridor. The speed of a query is only moderately
slower by a factor of 1.2–8.2 on average but the space consumption is decreased by a factor
of 2.3–8.4 depending on the input instance.
We6 note that the query can be partially simplified and accelerated, because the forward

6The author thanks Veit Batz for the fruitful discussion on the topic.
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and backward portions of the corridor are DAGs. Recall that computing shortest paths
in a DAG can be done by traversing the DAG in a topological sorting order. We propose
to traverse the corridor with a DFS (instead of the BFS) that settles a node once all it
predecessors are settled and unpack shortcuts in this order. Note that this is similar to the
unpack on demand improvement of Batz et al.. When the target node of an unpacked edge
is settled, we can propagate the minimum of all predecessor travel time label of the sources
to the target node.

Distributed Query

The running times for earliest arrival queries are averaged over a test set of 100 000 queries
that were precomputed using a plain label-correcting time-dependent Dijkstra. For each
randomly selected start and destination node, a random departure time was selected. The
length of a resulting shortest path was saved for verification purposes. The query and its
running times can be evaluated in two distinct settings. The first setting is batched, also
called parallel setting, where the distributed system is loaded with all queries and the time is
measured until all queries have been answered. Here, queries have to wait in a queue when a
processor is busy. The second setting is single query performance, also called serial setting.
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Figure 4.7.: Average Run Time [ms] of a Single Query in a Batch Run of 100 000 Queries
Depending on the Number of PEs on the German road networks

The distributed system processes queries on after another.
Figure 4.7 shows the speedup obtained for performing all 100 000 queries in the batched

setting. This figure is relevant for measuring system throughput and, thus, the cost of the
servers. Scalability for the German networks is even better than for the contraction phase
with e�ciency near 50 % for up to 32 processors.
When looking at raw time that is spent in search space exploration we observe a super-

linear speedup in all experiments. Notably, only the experiments on the European network
even show super-linear speedup in the plot of Figure 4.7. We attribute this behavior to
two reasons. First, there are cache e↵ects combined with complex travel time functions.
The European graph is large and the resulting travel time functions on higher levels of the
hierarchy are rather complex. The more processes are used the higher the cache locality of
the search spaces that are stored on each process. The reason for not experiencing super-
linear speedup for batched queries on the German networks might is that the super-linear
speedups on the smaller data set is dominated by communication and idle overhead on the
German instances. Still, the amount of super-linear speedup remains astonishing and shows
that a small portion of the overall data is used in many queries. Second, the distribution
of the randomized work load is unbalanced for the experiments on the European graph, i.e.
some processors finish sooner than others. This e↵ect becomes less significant, the more

82



4.3. Distributed Preprocessing by Message-Passing

0.
2

0.
5

1.
0

2.
0

Dijkstra Rank

Q
ue

ry
 T

im
e 

[m
s]

ptv−ger−mw−td

24 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

Figure 4.8.: Rank Plot for Queries on Instance ptv-ger-mw-td with 16 PEs

processors work on the batched queries, which may be due to the quality of the partition
and also due to network latency anomalies that appear from time to time with the MPI
implementation.

Next, the single query behaviour is analysed. It is measures how much time each indi-
vidual distributed shortest path query takes. To do so, a detailed look into the query time
distribution of Figure 4.8, 4.9 and 4.10 is conducted using the well-established methodol-
ogy of Sanders and Schultes [168]. It shows a plot of the individual query times of 100 000
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randomly chosen distributed queries on each of the road networks with the property that a
plain label-correcting time-dependent Dijkstra settles 2i nodes, rounded down to the next
smallest power of two. We report on an exemplary experiment using 16 processors only.
Note that the results for other numbers of processors are similar.

The graph depicting the German Midweek Scenario shows a typical distribution of query
times as shown in Figure 4.8. Most of the queries are answered in much less than two
milliseconds on average except for a few outliers. The result of the experiments on the
German Sunday network are given in Figure 4.9. The limited time-dependency of this
particular instance is reflected in the much faster query times. The queries are answered
well below a five milliseconds excluding a few outliers. Again, the European network shows
a slightly di↵erent behaviour. Results are shown in Figure 4.10. The overall query latencies
of roughly 2 milliseconds are good. See Appendix C for a combined rank plot. We do no
see any drastic outlier in any of the experiments, which we observe as good maximum query
time behavior.

The average message length is also measured over all queries and amounts to roughly 3–4
kilobytes depending on the test instance. This is the amount of data needed to communicate
the result of the forward search phase. It is a somewhat expected size since the search spaces

query message
instance [ms] [byte]
ptv-ger-sun-td 0.79 2796
ptv-ger-mw-td 1.13 3732
ptv-europe-td 3.21 4312

Table 4.3.: Average Query Performance and Message Overhead on 16 PEs.
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sizes are rather small and consist of a few hundred nodes. Batz et al. [21] give a number of 520
settled nodes in total for an earliest-arrival query on average for the German test instance.
We note that the experiments are done on a cluster with a fast InfiniBand interconnection
network. But we expect a similar performance on a cluster with slower, but cheaper network
hardware. For example, Gigabit Ethernet is a commercial o↵-the-shelf product standard and
has a latency of about 100–150 microseconds and a bandwidth of 80–90 MB per second, in
practice. Transferring 4 KB of data should therefore take only about 150-200 microseconds.
When we compare that to the average query times on 16 PEs of our instances given in
Table 4.3, we see that the expected slow-down is bearable.
A parallel system exhibits somewhat larger query times because of inevitable latencies.

But these latencies are still negligible compared to the latencies common to the Internet
which are at least an order of magnitude larger and often amount to dozens of milliseconds.
But local queries may constitute a significant part of the queries seen in practice. Therefore,
we conclude that our average, as well as maximum query times are more than suitable for
an online service.

4.4. Concluding Remarks

Preprocessing With Constant Space per Core. We presented an algorithmic tuning pa-
rameter between preprocessing e�ciency and space requirements. Carefully chosen and
engineered data structures and associated algorithms allow for greater flexibility during the
preprocessing of large real-world road network instances. The high performance of the tab-
ulation hashing applications is attributed to much better cache locality. This has been
leveraged during data structure design and implementation. Applying tabulation to the
witness search e↵ectively decreases the memory requirements per core with performance im-
provements for very large graphs. Applying it to tie-breaking gives a reasonable speedup in
preprocessing e�ciency. If memory is of essence and preprocessing time is less important,
then only the tabulation hash based storage for the witness search may be applied. Or if
time is limited even both may be applied.
In the future, we would like to look into further space-time trade-o↵s that can be used by

the heuristics that are used in the Contraction Hierarchies preprocessing phase. For example,
we see opportunities to move the witness search into a witness oracle that does not actually
compute shortest paths for a given metric, but rather exploits the (metric-independent)
topology of the underlying graph of the road network.

Distributed Preprocessing by Message Passing. We gave a description of a distributed-
memory parallel CH variant and successfully demonstrated how to distribute time-dependent
Contraction Hierarchies to a cluster of machines with medium sized main memory. The
description as well as the experimental evaluation include the necessary algorithms and
data structures for preprocessing and query. For large networks we approach two orders of
magnitude in reduction of preprocessing time and at least a considerable constant factor in
required local memory size. With respect to the targeted applications, we are certain that
reduced turnaround times for including up-to-date tra�c information are realistic.
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For future work, we believe that there is considerable room for further improvement:
Reducing per cluster node memory requirements and more adaptive node contraction that
is able to interrupt PEs that take much longer in an iteration than others. We would also
look into the impact of improved graph partitions with a better size of the cut, e.g. as
reported by [59, 169]. For example, partitioning a graph into a high number cells that can
be preprocessed independently may yield an even better scalability of the preprocessing.
Extending our approach to further parallelization paradigms like Map-Reduce seems to be
a challenging field of work, too.
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CHAPTER 5

Taking Advantage of the Hierarchy

5.1. Central Ideas

Today’s requirements for routing services, be it in-car or as a web-service, ask for more than
just computing the shortest or quickest paths. These additions are more complex queries on
the preprocessed network that can answer requests for alternative routes, evaluations of a
location based on the network topology or compute matchings for a ride sharing application.

The search spaces of the CH search graph are small on average and can be e�ciently
preprocessed by exploring the search graph. Preprocessed search spaces can be easily tested
for non-empty intersection and corresponding paths can be evaluated. These are the basic
building blocks in this chapter for the aforementioned complex queries on the road network
that previously either took too long or were infeasible.

The most common queries are point-to-point queries already explained in Section 2.5,
many-to-one queries and many-to-many queries that can be answered e�ciently with Con-
traction Hierarchies by precomputing search spaces. As we see later, one-to-many queries
are a special case of many-to-many queries. This is applied in Section 5.2, where a search
for points of interest and subsequently a walkability index is developed. Precomputed search
spaces are also used in Section 5.3 that reports on a ride sharing application.

We present a fast algorithm with preprocessing in Section 5.5 for computing multiple good
alternative routes in road networks. Our approach is based on single via node routing on top
of Contraction Hierarchies and achieves superior quality and e�ciency compared to previous
methods. The algorithm has negligible memory overhead.

Sweeping the CH search data structure is presented in Section 5.6. We allocate information
on a vast set of paths in the road network without explicitly touching every single road
segment during path assignment. The information is propagated only once through the
entire network, independent of the number of paths.
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References

The contents of this chapter are based on the following publications: Section 5.2 is based on
joint work with Fletcher Foti and Paul Waddell [76]. The single hop ride sharing approach of
Section 5.3 is based on joint work with Robert Geisberger, Peter Sanders, Sabine Neubauer
and Lars Volker. The work started as a student research project [81] and was later reimple-
mented by Geisberger [82] to run additional experiments. The multi-hop approach is based
on joint work with Florian Drews [?]. The experimental evaluation was conducted as part
of a bachelor thesis [68]. Section 5.5 is based on joint work with Dennis Schieferdecker [127]
and Section 5.6 is based on joint work with Peter Sanders [126]. The description of POI
index generation are given for sake of completeness, as well as single-hop ride sharing of
Section 5.3 which was presented in [79], too. Wordings of the above publications are used in
this thesis.

5.2. Points of Interest and Walkability

Assume that points of interests (POIs) are located at the nodes of a graph. For sake of
simplicity we describe the case of a single category of POIs only, but the description is easily
transferable to multiple categories. Querying the k-nearest (or all) POIs for a given location
can be done naively by running an unidirectional variant of Dijkstra’s algorithm on the
graph. While this is technically feasible, this method does not scale well in practice, because
most explored nodes are not POIs and especially in rural areas, the searches may have to
cover rather large areas. Instead, we enrich the search graph data with preprocessed search
spaces for the nodes that correspond to POIs and show how to conduct an e�cient query
for the nearest k POIs using CH.
We now describe the natural method of (conceptually) storing information from backward

search spaces in buckets at the nodes of the graph. To index the POIs, the backward CH
search space G#

pi
of each POI p

i

node is explored. Each node holds a bucket that keeps track
of the nearest POIs from these searches. More precisely for each POI p

i

we do the following:
The backward search space is explored. For each settled node v the entry [p

i

, d#(p
i

, v)] is
inserted into the respective bucket if its backward distance belongs to the smallest k entries.
Note that k entries su�ce.
To search for the set of the k nearest POIs for a given node s, the forward search space G"

s

is explored. Consider the settled nodes v0 of this search with their forward distances d"(s, v0).
The search keeps track of the k nearest entries by scanning the bucket of v0 and updating
its list of candidates C such that it contains up to k entries with smallest total distance.

C := min
k

d"(s, v0)| {z }
forw. search

+ d#(v0, p
i

)| {z }
bucket entry

.

The search can be pruned as soon as the furthest POI in the candidate set is closer to the
source node than the node that would be fetched next from the priority queue of the search.
It is easy to see, that this method can be adapted to store multiple categories of POIs by
introducing further buckets at the nodes. The correctness of the search follows by the same
argument as given in Section 2.5.1 for the many-to-many query algorithm.
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5.3. Ride Sharing

Recently, walkability scores have become popular among estate agents to capture the
ability to conduct daily routine duties by walking. The most prominent example isWalkscore
by FrontSeat Software1 that expresses a location’s walkability score by a number between
0 and 100. The walk score methodology has been published before [175] and it is mainly
a weighted average of about two dozen POI queries for roughly 10 distinct POI categories.
For example, it considers the distances to the first grocery store, the first 10 restaurants, 2
co↵ee shops among others. Contrary to the work of Rice and Tsotras [161] one is not looking
for the distance of a path that covers all nearest POIs, but rather looks at the shortest path
distance from a location to all the points of interest.

Experimental Evaluation. We implement the above algorithm in C++ using GCC’s C++
compiler with full optimizations. The experiments are done on Machine E and the test
instance is osm-bay-area. The road network has been extracted from OpenStreetMap data
as have been the POIs. The ratio of POIs to network nodes is roughly 1 to 10. POIs that
were not connected to the road network are mapped to their nearest node.
First, we compute the CH search graph and then process the hierarchy to hold additional

POI information as explained above for each of the categories and for the upper bounds on the
number of nearest POIs as defined from the queries. The query algorithm has been adapted
to query for all categories simultaneously since distinct queries would essentially repeatedly
explore the same search space. Since the data structure is read-only, we distribute the queries
onto all of our cores and expect nearly linear speedup. Computing the score for all nodes in
the network can be done in 1.2 seconds on 12 cores and an individual query aggregates 23
variables each in roughly 50µs, which also includes the actual computation of the score.

5.3. Ride Sharing

The full results on the results of single-hop ride sharing in the following section, which was
originally done in cooperation, are already presented by Geisberger [79]. The presentation
at hand is a recapitulation that focuses on this author’s contribution while highlighting the
overall results.

5.3.1. Single-Hop Ride Sharing

Today’s ride sharing services still mimic a better billboard that list o↵ers and allow to
search for the origin and destination city, sometimes enriched with radial search. Finding
connections is possible between a small set of designated places only. We overcome this
limitation by implementing a dynamic many-to-many route planning algorithm that builds
on Contraction Hierarchies and is able to handle a massive amount of distance computations.
Finding a connection between big cities is quite easy as these places can be easily looked up
from a small list of designated cities. But when you want to go from a small town to another
small town you may run into problems that the places are not available.

1http://www.walkscore.com – accessed July 21st, 2012
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s

s0

t

t0

Figure 5.1.: Request (s0, t0) and matching o↵er (s, t) by allowing a detour.

We solve this interesting problem by presenting a fast algorithm that computes the o↵ers
with the smallest detours with respect to a request. Our experiments show that the prob-
lem is e�ciently solvable in times suitable for a web service implementation. For realistic
database sizes we achieve real-time lookup durations, which on average is less than a mi-
crosecond per single distance. We are able to further reduce running times by a factor of
three under certain behavioral assumptions that allow us to prune the search space.
For many services an o↵er only fits a request if and only if origin and destination locations

and the possibly fixed route of driver and rider are identical. We call such a situation a
perfect fit. Some services o↵er an additional radial search around origin and destination and
fixed way-points along the route. Usually, only the driver is able to fix the route in advance.
The existence of these additions shows the demand for better route matching techniques that
allow a small detour and intermediate stops. We call that kind of matching a reasonable fit.
However, previous approaches used only compute the perfect fits.
We present an algorithmic solution to the situation at hand that leads to better results

independent of the user’s level of cooperation or available database systems. For that, we lift
the restriction of a limited set of origin and destination points. Unfortunately, the probability
of perfect fits is close to zero in this setting. But since we want to compute reasonable fits,
our approach considers intermediate stops where driver and passenger might meet and depart
later on. More precisely, we adjust the drivers route to pick up the passenger by allowing an
acceptable detour.

Definition 7. We say that an o↵er o = (s, t) and a request g = (s0, t0) form a reasonable
fit if there exists a path P = hs, . . . , s0, . . . , t0, . . . , ti in G with l(P )  µ(s, t) + " · µ(s0, t0),
with " > 0.

Figure 5.1 visualizes the described situation. The solid lines symbolize the distances that
are driven, while the dashed one stands for the shortest path of the driver that is actually
not driven at all in a matched ride.
If we model a rider’s detour having the same cost as a driver’s detour, then the situation is

symmetrical. The " in Definition 7 depicts the maximal detour that is reasonable. Applying
the ✏ to the rider’s path gives the driver an incentive to pick up the rider. We look at a simple
pricing scheme from algorithmic game theory. The so-called fair sharing rule [149] states
that players who share a ride split costs evenly for the duration of the ride. Additionally, we

90



5.4. Algorithmic Details

say that drivers get compensated for their detours directly by riders using the savings from
the shared ride. Implicitly, we give the driver an incentive to actually pick the passengers
up at their start s0 and to drop them o↵ at their destination t0. Formally, we have that a
match is economically worthwhile if and only if there exists an " for which

µ(s, s0) + µ(s0, t0) + µ(s0, t0) + µ(t0, t)� µ(s, t)  " · µ(s0, t0) . (5.1)

It is easy to see that any reasonable passenger will not pay more for the drivers detour than
the gain for the shared ride, which is at most 1

2

·µ(s0, t0). Otherwise, it would be cheaper for
the passenger not to join the ride at all.

5.4. Algorithmic Details

For a dataset of k o↵ers o
i

= (s
i

, t
i

), i=1..k, and a single request g = (s0, t0), we need to
compute the 2k + 1 shortest path distances µ(s0, t0), µ(s

i

, s0) and µ(t0, t
i

). The detour for
o↵er o

i

is then µ(s
i

, s0) + µ(s0, t0) + µ(t0, t
i

)� µ(s
i

, t
i

).
We adapt the algorithm of Knopp et al. [114] for distance table computation and solve

our problem by computing for each s
i

the forward search space G"(s
i

) in advance and store
it. More precisely, we do not store each G"(s

i

) separately, but we store forward buckets

B"(u) := {(i, d")|(u, d") 2 G"(s
i

)} (5.2)

with each potential meeting node u. To compute all µ(s
i

, s0) for the request, we compute
G#(s0), then scan the bucket of each node in G#(s0) and compute all µ(s

i

, s0) simultaneously.
We have an array of tentative distances for each µ(s

i

, s0). Initially, the distances are 1, and
we decrease them while scanning the buckets. The decrease happens along the lines of the
decrease of a key during the run of Dijkstra’s algorithm:

µ(s
i

, s0) = min
u2V

= {d" + d#|(i, d") 2 B"(u), (u, d#) 2 G#(s0)} (5.3)

Symmetrically, we compute backward buckets B#(u) := {(i, d#)|(u, d#) 2 G#(s
i

)} to accelerate
the computation of all µ(t0, t

i

). Computing distances is very space- and cache-e�cient,
because it stores plain distances and scans consecutive pieces of memory. The single distance
µ(s0, t0) is computed separately.

Adding and Removing O↵ers. To add or remove an o↵er o = (s, t), we only need to
update the forward and backward buckets. To add the o↵er, we first compute G"(s) and
G#(t). We then add these entries to their corresponding forward/backward buckets. Note
that this is very similar to the preprocessing of distance tables or POI indices in Section 5.2.
Entries of a bucket are stored unordered and to remove the o↵er, we need to remove

its entries from the forward/backward buckets. This makes adding an o↵er very fast, but
removing it requires scanning the buckets. Scanning all buckets for a request is prohibitively
slow as there are too many entries. Instead, it is faster to compute G"(s) and G#(t) again to
obtain the set of meeting nodes whose buckets contain an entry about this o↵er. We then
just need to scan those buckets and remove the entries.
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Assume that " is given, then we exploit the fact that we need to obtain G"(s0) and G#(t0)
for the computation of µ(s0, t0). For (u, d") in G"(s0) holds d" � µ(s0, u) and (u, d#) in G#(t0)
holds d# � µ(u, t0). We compute the distance µ(s0, t0) first, and temporarily keep G"(s0) and
G#(t0) that we obtained during this search.

Experimental Evaluation. We implement the above data structures and algorithms in
C++ using the GCC Compiler 4.3.2 with full optimizations. The experiments are done on
Machine F, running Linux kernel 2.6.27. The test graph instance is osm-germany-1.
To test our algorithm, we obtained a dataset of real-world ride sharing o↵ers from Germany

available on the web. We match the data against a list of cities, islands, airports and the
like, and ended up with about 450 unique places. We test the data and checked that the
lengths of the journeys are exponentially distributed. This validates assumptions from the
field of transportation science. We assume that requests would follow the same distribution
and chose our o↵ers from that dataset as well.
To extend the data set to our approach of arbitrary origin and destination locations, we

perturbe node locations of the data set. For each source node s we unpack the forward
search space G"(s) up to a distance of 3 000 seconds of travel time. From that unpacked
search space we randomly select a new starting point. Likewise we unpack the backward
search space of each destination node up to the distance and pick a new destination node.
Distorting the location in this way preserves the distance distribution of the original data.
The results of the experiments are given in Table 5.1. Column type specifies the input data

type as described above, #o↵ers gives the number of o↵ers that are used in the experiment,
while bucket size gives the space overhead in addition to the underlying CH. Columns add
o↵er and rem. o↵er give the average duration how long it takes to either add or remove
an o↵er. The columns under the heading match request show how long it takes to match a
request against the data set for varying lengths of detours. Note that the detour is given
relatively with respect to the length of the shortest path of the request.
The size of the occupied space scales linearly with the number of o↵ers in the data set.

This is expected behavior since the number of buckets touched is independent of the number

# bucket add rem. match request [ms]
o↵ers size o↵er o↵er " =

type [MiB] [ms] [ms] 0.0 0.1 0.2 0.3 0.4 0.5 1 1
pert. 104 28 0.24 0.29 0.9 1.1 1.3 1.5 1.6 1.8 2.7 4.1
pert. 105 279 0.24 0.30 4.4 6.1 8.1 10.2 12.1 14.0 25.1 43.4

unpert. 104 32 0.26 0.32 1.1 1.3 1.6 1.7 1.9 2.1 2.8 4.3
unpert. 105 318 0.27 6.26 5.6 7.9 10.4 12.4 14.5 16.1 26.3 44.6

random 104 31 0.25 0.30 1.1 1.3 1.5 1.7 1.9 2.1 3.5 4.3
random 105 306 0.26 0.32 6.0 7.8 10.1 12.6 15.4 18.5 34.9 45.1

Table 5.1.: Performance of our Algorithm for Depending on Types of O↵ers, Requests, Num-
ber of O↵ers as well as Varying values for ".
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# max. detour " =
o↵ers 0.0 0.1 0.2 0.3 0.4 0.5
103 0.00 0.70 0.90 0.98 0.99 1.0
104 0.00 0.94 0.99 0.99 1.0 1.0
105 0.00 0.99 1.0 1.0 1.0 1.0

Table 5.2.: Matching Rates Depending on Allowed Detour and Data Set Size.

of o↵ers. It depends only on the underlying speedup technique. We see that adding and
removing o↵ers does not depend on the number of o↵ers in the data set, which is also
expected behavior since the algorithms do not depend on the size of a bucket. The duration
of matchings grows with the allowed detour. For realistic amounts of o↵ers, this time grows
to as much as 45 milliseconds which is acceptable for an online service where one would like
answers that are perceived as instant. Additionally, we observe the robustness of our method
because all three types of data behave similarly in the experiments.
Next, we have a look at the matching rates that our algorithm achieves. Table 5.2 gives

the results of an experiment, where we note the fraction of requests for which we found a
match by varying detour and data base size. Note that " = 0 resembles the case of city to
city routing only. We see that the allowed detour is a tuning parameter to increase matching
rates when the number of o↵ers is small. A moderate detour of 20% allows to match about
nine out of ten requests for 103 o↵ers. For a larger number of o↵ers, the detour can be even
smaller and still nearly all requests find a match. Users will measure the quality of a match
by the detour. In other words, the smaller the detour for the driver the better the match
and the identified tuning parameter allows to increase this quality indicator with a growing
number of o↵ers in the system.

5.4.1. Multi-Hop Ride Sharing

We like to give users of a ride sharing system even greater flexibility. Instead of allowing
the riders to join one and only one driver, we allow them to transfer between drivers, i.e.
ride with one driver for some time and then transfer to another one. The algorithm of
Section 5.3.1 can be extended to handle more than one hop by checking more distances, but
this leads to a combinatorial explosion for all the pairwise distances that must be checked.
But multiple hops may lead to connections that would have been impossible otherwise.

Modelling Multiple Hops. As a first step to allow more realistic transfers, o↵ers are now
associated with a departure time and implicitly with an arrival time, too. To reduce com-
plexity, we define a su�ciently high number of stations in the road network where riders
switch the car, i.e. perform the hop. Therefore, multi-hop o↵ers as well as multi-hop requests
are represented by triples hs, t, ⌧i, where s is a start station, t a target station, and ⌧ the
time of departure. The earliest arrival time at t is given by ⌧ 0 := ⌧ + µ(s, t). Note that
travel times on the road network are time-independent, whereas ride sharing on top of this
network is modelled with time-dependency.
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For now, we say that a driver has only one empty seat to share but that a rider can make
several transfers. We note that a rider and driver may have to wait for some time to actually
join a ride. We denote the waiting time at station s

i

for a given match m by !
m

(s
i

) and the
duration of path P := hs

0

, s
1

, . . . , s
t

i by

d(m) = d(P ) :=
tX

i=0

(!
m

(s
i

) + µ(s
i

, s
i+1

)) .

The raw travel time (without any waiting) µ(s
1

, s
t

) :=
P

i

µ(s
i

, s
i+1

) is the sum of the
individual travel times. As we are dealing with a scenario that accounts for departure and
arrival times, we have to account for the fact that waiting periods must not be infinite. The
rider should not have to wait too long for pick up. And the driver is usually already taking
a detour to pick up the rider as argued previously. Thus, waiting times should be limited
by a factor � � 0. It models the maximum percentage of time relative to the shortest path
distance o↵er (request) that rider (or driver) are willing to wait in order to share the ride.
We define reasonable delays for rider and driver:

Definition 8 (Reasonable Delay). A match m is said to have reasonable driver’s delay
if the waiting does not exceed a relative threshold, i.e.

�
d

� d(P )� d(P )� µ(s, t)

µ(s, t)
=

d(P )

µ(s, t)
� 1. (5.4)

Let r = (s0, t0, ⌧, �
r

) be a request for a set of o↵ers O and P := hs
1

, . . . , s
n

i a path where the
potential (sub-)rides m

i

= (s
i

, s
i+1

, ⌧
i

), fit together such that ⌧
i

+ d(g
i

)  ⌧
i+1

is called a fit.
Likewise, a ride m is said to have reasonable rider’s delay �

r

if the waiting does not exceed
a relative threshold, i.e.

�
r

� d(P )� µ(s
1

, s
t

)

µ(s
1

, s
t

)
=

d(P )

µ(s
1

, s
t

)
� 1. (5.5)

It is called a reasonable fit if the driver and rider have reasonable delays and if the drivers
detour is reasonable, too, as modelled in Equation 5.1 of the previous section.

In other words, a fit is a sequence of rides, that allows the rider to travel from the origin to
the destination via (potentially) multiple hops. A fit that minimizes the rider’s delay �

r

is
called best fit. Figure 5.2 gives a visualization. The rider waits 5 minutes at s

1

and reaches
the destination with a relative delay of �

r

= 1/3.

Slotted Time-Expanded Graph. Our approach to ride-sharing and to finding a best fit has
striking similarities to the problem of finding fastest train connections in a railway/timetable
network. The drivers provide time-dependent connections between station through their
o↵ers, but note that the underlying road network is assumed to have static travel times.
We adapt the common technique of (simplified) time-expanded graphs [159] (TEGs). Such

a graph models the timetable information into its topology. There exists a node for every
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i.

event in the timetable, i.e., one node for every departure or arrival of a train. For every
connection, there exists a train edge which connects a departure node of station S

1

with
an arrival node of station S

2

at time ⌧ . Each edge is associated with a weight that is
the travel time. Note that stations S =: {s

1

, . . . , s
k

} are represented by sets of nodes and
not by single nodes and the set of nodes is sorted according to the time of the event they
represent. So-called transfer edges connect the time-ordered nodes of a station by edges to
model waiting within the station. Our idea is to build a TEG that resembles a super set to
all potentially reasonable fits which are induced by the set of o↵ers. By potentially we mean
that we insert an edge if there could be some later request for which it might be reasonable.
We will give a more detailed explanation in the following sections. A best multi-hop fit can
then be computed by an earliest-arrival query in the resulting graph. A TEG is a directed
and acyclic graph (DAG) since edges move forward in time. On one hand, it su�ces to run
a graph traversal like BFS on the graph to discover shortest paths. On the other hand, we
prune the search space by a goal-directed graph search as we show in the following.
Travel itineraries are generally error-prone. Unexpected events like tra�c conditions,

accidents, severe weather, etc. make it hard to predict travel times with certainty. Shared
rides are especially frail to delays as they are mostly organized between private partners
that are all but bound to a service level agreement. Thus, one may not assume exact travel
times for our ride sharing approach. For that reason, we adapt the TEG concept to what we
call a Slotted Time-Expanded Graph (STEG). Our idea is to introduce time-slots which chop
continuous time into discrete and equal-sized ranges. We postpone departure and arrival
events until the end of any time-slot. As a consequence, we are inserting waiting periods
at the stations. This waiting period is a backup to compensate for unexpected delays while
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still being able to make a transfer. We formalize this description by the following definition:

Definition 9 (Slotted Time-Expanded Graph (STEG)). A STEG is a directed acyclic
graph G = (V,E) which maintains a time range of t

r

= s
l

· s
c

, where s
l

2 N
+

is the length
of a time-slot and s

c

2 N
+

is the total number of slots. A node u := (w, i) 2 V resembles
station w at time-slot i. Directed edges e := (u, v, o) 2 E, where u := (a, i) and v := (b, j),
resemble (potential) rides with o↵er o going from station a to b with respect to the corre-
sponding time-slots, i.e. i = b⌧

a

/s
l

c and j = d⌧
b

/s
l

e for departure time ⌧
a

and arrival time
⌧
b

. Transfer edges model waiting at the station such that a time-slot node of a station is
connected to the next slot in time.

Adding an edge into a STEG implies that some waiting time may be added to an o↵er
and we notice that rides that may have been reasonable without waiting may be rendered
unreasonable, while the driven detour may still be perfectly fine. On one hand, this approach
delays traveling by design, but on the other hand, it adds some reliability to making transfers
and thus reflects an arguably more realistic scenario.

Adding and Removing O↵ers. Initially, we model an empty system with some set of
stations S that will be formalized below. The STEG holds a node for each time slot per
station and all transfer edges are present. When an o↵er is added to the system, we insert
a number of edges into the STEG. An edge e = (u, v, o) has to be added if the driver of
o↵er o could take some rider from u to v with reasonable detour and delay. While this could
result in |S|�1 outgoing edges for each o↵er’s departure node, we add only those edges that
represent potentially reasonable routes. More precisely, we omit those edges that violate the
driver’s delay and detour constraints.
Therefore, we introduce (hopefully smaller) sets S

1

and S
2

which resemble candidate sets.
The sets exploit the triangle inequality and are defined as follows:

Definition 10 (Reasonable Station Candidates). Consider an o↵er o = (s, t, ⌧, �, ")
that specifies source, target, departure time, as well as upper bounds for delay and detour.
Consider the set of all reasonable rides G := {(s0, t0, ⌧ 0)|s0, t0 2 S} for o↵er o. A super set of
the source stations from which reasonable routes depart for an o↵er o is given by

S
1

:= {s0 2 S | µ(s, s0) + µ(s0, t)  (1 + �) · µ(s, t)} .

A super set of the target stations at which reasonable routes arrive is given by

S
2

:= {t0 2 S | µ(s, t0) + µ(t0, t)  (1 + �) · µ(s, t)} .

The definitions for both sets are very similar and it is easy to see that this superset covers all
reasonable fits. The needed distances can be computed easily by two one-to-many queries
on the underlying road network. If there exists a distance table for all pairwise distances
between the stations then a one-to-many query boils down to a column (line) scan. Note that
not all combinations in S

1

⇥S
2

are feasible for every o↵er. Therefore, we have to verify each
candidate before actually adding the edge. The complete algorithm is given as pseudo-code
in Listing 5.1.
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Listing 5.1: Adding a Multi-Hop O↵er

1 function add_offer(o := (s, t, ⌧, �, ")) do
2 S1,S2 = {}
3 foreach s

0
, t

0 2 S do
4 if µ(s, s0) + µ(s0, t)  (1 + �) · µ(s, t) then
5 S1 := S1 [ s

0

6 end
7 if µ(s, t0) + µ(t0, t)  (1 + �) · µ(s, t) then
8 S2 := S2 [ s

0

9 end
10 end
11

12 { insert an edge for each potentially reasonable ride }

13 foreach Station s

0 2 S1 do
14 foreach Station t

0 2 S2 do
15 g := (s0, t0, ⌧)
16 ⌧

0 := ⌧ + µ(s0, t0)
17 P := hs, s0, t0, ti
18 if is_reasonable(g, P, �, ") then
19 u := (s0, b⌧/slc)
20 v := (t0, d⌧ 0/sle
21 insert_edge(u, v, o)
22 end
23 end
24 end
25 end

Removing o↵ers is necessary when a ride has been matched or in case a driver wishes to
retract the o↵er. Scanning for edges to delete is cost intensive as it has to scan the outgoing
edge lists of |S| stations. Instead we do a lazy delete, which means that we mark the o↵er
itself as deleted and simply ignore its edges. The deletion of edges is done during queries
where edges get scanned anyway and, thus, the cost is amortized over later operations. We
note that mutual exclusion is necessary during deletion in a multi-threaded system.

Matching. We compute a best fit for a given request by running an earliest arrival query
using Dijkstra’s algorithm on the STEG as briefly mentioned before. Note that we can
still use the label setting variant of Dijkstra’s algorithm. Consider that distances on the
underlying road network are available upon request. The query can be pruned at all nodes
that violate delay constraints. First, for every edge that is relaxed during the search, we get
a (tentative) value for the target node of the edge. We do not insert nodes into the priority
queue that violate any threshold, called pruning rule 1. But we can also apply a second, more
stricter pruning by using the underlying road network. For each settled node v, we compute
the shortest path distance µ(v, t0) in the road network graph. These distances can be looked
up in constant time in a table of all pairwise distances between stations. We assume that
we could leave v right away by a direct connection to the target. Obviously, this straight
connection is a lower bound to the actual distance, i.e. an optimistic estimate. If this lower
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bound path violates our constraints, we do not relax any edges of v, called pruning rule 2.
It is easy to see that both pruning approaches only discard non-optimal nodes. Inter-

estingly, the second approach is an admissible heuristic for goal-directed search with A⇤

as it never over-estimates the costs. We use this finding in our implementation and its
experimental evaluation in the following section.

Experimental Evaluation. We implement the above data structures and algorithms in
C++ using the GCC Compiler version 4.3.2 with full optimizations. The experiments are
done on a single core of Machine G. The test graph instance is osm-germany-3. We preprocess
the road network using the shared-memory parallel Contraction Hierarchies processing of
Vetter [184]. A binary heap is used as the priority queue data structure. In addition we
compute a distance table for all pairwise distances between the stations used for pruning.
This table is computed with the algorithm of Knopp et al. [114] as described in Section 2.5.1.
In absence of realistic test data, we define rider and driver to split costs evenly and to have

equal preferences for detour and delay, i.e. � := �
r

= �
d

. We generate 10 000 stations for our
data set. The locations of stations are selected uniformly at random with the assumption
that node density strongly correlates with population density. Source and target locations
for our trips are then drawn uniformly at random from the stations. According to a case
study conducted by the Federal Ministry of Transport, Building and Urban Development of
Germany [35] the vast majority of trips take place during the day between 6 am and 8 pm.
We pick the departure time of any trip to be from this interval to simulate a single day. The
length of a time slot in the STEG is 30 minutes. This gives an expected waiting time of 15
minutes at the station which we see as reasonable. Since the starting time of all slots are
synchronous, it su�ces to represent edge weights by a multiple of the slot length.
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Figure 5.4.: Matching Rates Depending on Tuning Parameters (left) and on Number of Hops
for a Fixed Delay of � = 0.2 (right).

We present three experimental results. First, we evaluate the number of edges inserted
into the STEG depending on reasonable values for the delay factor � and for the detour factor
". We add 1 000 random o↵ers and average over the number of inserted edges. Figure 5.3
gives a plot of the results. Note the logarithmic scale of the y-axis. We observe on the left
hand side of Figure 5.3 that varying " has a significant e↵ect on the number of edges even
when the allowed delay is high. On the right hand side, we observe that there is a point
where further increasing the delay � hardly increases the number of inserted edges. This
appears to be true for all curves, i.e., all plotted maximum detours. As a rule of thumb we
can say that it happens when maximum detour and delay thresholds are equal (� ⇡ ").

Second, we experiment on the matching rate against a given set of requests. We insert
10 000 random o↵ers into the STEG. We vary the thresholds for allowed detour and delay,
while we look into the impact of a threshold on the number of hops as well. Again, we assume
that driver and rider have a common interest and share the same delay and detour factors.
Figure 5.4 reports on these experiments. We observe that the matching rate depends on
the maximum allowed delay as a larger threshold makes less attractive rides reasonable. The
higher the threshold, the more edges are inserted into the STEG and finding a suitable path
in a dense graph is more likely than in a sparse one. As expected, we see the best matching
rates at � = 0.5. We see a steep increase in the fraction of matched rides when increasing
from � = 0.1 to 0.2 and after that increases are not as significant.

On the right hand side of Figure 5.4 we fixed the delay to the reasonable value � = 0.2
and look at the matching rate depending on the number of allowed hops. Results for other
values of � are similar. We manage a hop counter that is increased only when sharing a ride.
It is not increased for transfer edges. (Nodes are not inserted into the priority queue if their
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Figure 5.5.: Time to Compute a Match (left) and Time to Add an O↵er (right) Depending
on Tuning Parameters.

hop count exceeds h 2 {1, 2, 3, 4,1} in the respective experiment.) We see a significant
increase in the matching rate when going from one hop to two hops, but we do not see any
significant changes when further increasing the hop count. This means that searching for
shared rides with three or more hops does not give significantly better results on average.
We are surprised by the negligible improvements of more hops.

Third, we evaluate the performance of o↵er insertion as well as matching of queries.
Removing an o↵er takes constant time as it just sets a flag in the list of o↵ers and removes its
edges in subsequent query operations, when they are encountered. We insert 10 000 randomly
generated o↵ers into an empty STEG and run the same amount of random queries against
it without removing matched rides. Note that the space of the STEG has been preallocated
to avoid costly resizes of the underlying basic data structures. The expected number of
inserted edges per inserted o↵er is known from the previous experiment and we reserve 25%
more space to be on the safe side. We implement Dijkstra’s algorithm for comparison. Our
implementation prunes the search such that it does not insert any nodes into the queue that
violate the delay constraints by pruning rule 1. Our implementation of A⇤ on the other hand
uses a distance table of all stations to look up lower bounds for goal direction and also prunes
the search when it reaches a node that can be proven as sub-optimal by pruning rule 2.

Figure 5.5 reports on these experiments, where the query is run with A⇤. On the left hand
side of the figure, we observe that there is a significant di↵erence between the results for
� = 0.1 and � = 0.2 with respect to query time. The query time seems to be rather stable
for lowest delay threshold independent of the detour, while the query time rises significantly
for larger threshold values of detour and delay. But this is expected behavior as the search
space of the shortest path query is small for � = 0.1. On the other hand, it is significantly
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Dijkstra A⇤

Edges #sett. #scan. Query #sett. #scan. Query
� = " [109] [103] [106] [s] [103] [106] [s] speedup
0.1 0.1 17 9 0.14 0.035 0.05 0.001 140
0.2 1.2 24 98 3.54 0.121 0.82 0.047 75
0.3 3.8 23 285 13.50 0.112 2.02 0.173 78
0.4 7.9 22 562 31.32 0.089 3.39 0.332 94
0.5 13.6 22 947 58.55 0.085 5.31 0.564 103

Table 5.3.: Query Performance of Our Algorithm.

larger for higher values of � and we also see an amplification e↵ect: The number of inserted
edges is higher and the search is pruned at later distances. One e↵ect adds to the other. On
the right hand side of Figure 5.5, we see the time necessary to add an o↵er on average. We
observe that the times are mostly independent of the maximum detour " but that it depends
on the value of �. This is expected behavior the number of edges per o↵er depends on " and
most of the work that is done during insertion operations is to add edges into the graph.
Table 5.3 reports on the experiment that compares path searches with Dijkstra’s algorithm

versus our A⇤ variant with pruning by lower bounds on the distance. As we preprocess the
distance table beforehand, getting a lower bound for a distance to a target requires just one
memory access and is virtually for free during the search process. We observe speedups over
Dijkstra’s algorithm of 75–140. This is about an order of magnitude more than what we
would expect from previous work, e.g., [25, 55] report factors of 7.0–8.5, when evaluating the
performance of uniALT on a long distance timetable network. The speedups vary, because
the graph remains relatively sparse at first, i.e. � = " = 0.1. Increasing to � = " = 0.2 infers
more than order of magnitude more of scanned edges for our A⇤ variant. This is due to
the amplification e↵ect explained before. When further increasing the threshold value, the
graph becomes even more dense and as a result the goal direction of our algorithm becomes
more e�cient. The query times of our search are at most just above half a second in all
experiments, which can be arguably seen as fast enough for an online service in practice.
This is especially true for tighter constraints. We conclude that the selection of parameters
is a tuning parameter that gives a trade-o↵ between query time, size of the data structure
and achievable matching rates.

Practical Considerations. Note that we expect users of such a system to attribute them-
selves to a number of nearby stations within their reach. Generally, fixed source and target
stations are replaced by small sets of sources and targets that are close to the drivers real lo-
cation(s). These sets are generated by one-to-many queries, e.g., by the one from Section 5.2
or more realistically by a multi-modal, multi-criteria one-to-many search, e.g., by adapting
the algorithm of Delling et al. [57]. When generating sets S

1

and S
2

we adapt the pruning
to include feasible stations and in the subsequent pairwise verification, we adapt the check if
a pair is reasonable. For a rider, we adapt our path search by starting simultaneously from
a set of sources and stop once a reasonable target station has been settled. The search is
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then started from these nodes simultaneously and the stopping criterion must be adapted
to stop the search once a suitable target station has been settled. The pruning during the
path search is adapted likewise.
Time-dependency of the underlying road network can be handled as well. For example,

the time-dependent variant of Contraction Hierarchies by Batz et al. [21] is able to serve
(nearly) as a drop-in replacement for the underlying speedup-technique. We note that the
edge-weights between stations in the STEG must be computed with the time-dependent
routing, but an approximated time-dependent distance table that only stores distances for
the departure times, i.e. end of time-slots, is easy to compute. This approximated and
time-dependent distance table can then also serve to compute the lower bounds that are
necessary for A⇤ pruning.
It is also possible to model more than one rider per driver. In this case, a driver has a

certain capacity that is associated with an o↵er. Once a rider joins in, we remove this o↵er
from the system and add two new o↵ers with adjusted thresholds for detour and delay, and
with decreased capacity. The first o↵er resembles the path from the drivers source to the
first pickup point, while the second o↵er resembles the ride from the drop-o↵ location of the
rider to the drivers target location. Note that the thresholds must be set relative the already
matched ride.
Minimum waiting times at a station can be modelled for the driver by choosing a later

target node when inserting an edge. It is also easy to model such waiting times for the rider
by adapting the search.

5.5. Candidate Sets for Alternative Routes

The following section is structured as follows. We show how to engineer previous algorithms
to provide reasonable alternative paths with better e�ciency. Then, we build on the results
and introduce the notion of candidate via nodes to further speed up the computation by
an order of magnitude. We show how to perform query variants and how to conduct the
preprocessing e�ciently. Finally, we conduct an experimental study on the performance and
quality of our method.

5.5.1. The Baseline Algorithm

Abraham et al. [5] define a class of admissible single via node alternative paths. For a given
s–t-pair and via node v the (via) path P

v

is a concatenation of the two shortest paths s–v
and v–t. The shortest path between s and t is called P

opt

and the length of a path P
v

is
denoted by l(P

v

). A via path P
v

has to be reasonable to be considered as a viable alternative
and thus must obey three heuristic, but natural properties:
First, P

v

has to be significantly di↵erent from P
opt

. This states that the total length of the
edges both paths share must only be a fraction of the length of the optimal path. Second, P

v

has to be T -locally optimal (T-LO), which means that every su�ciently short subpath P 0 of
P
v

must be a shortest path. In other words, every local decision along the alternative path
must be reasonable. This is formalized by two properties. Every su�ciently short subpath
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P 0 ✓ P
v

with l(P 0)  T has to be a shortest path. If P 0 is a subpath of P
v

and P 00 is obtained
by removing endpoints of P 0 then P 0 must also be a shortest path if l(P 0) > T ^ l(P 00) < T
holds. Third, the alternative path needs to have limited stretch. A path P

v

is said to have
(1 + ") uniformly bound stretch (UBS) if every subpath P 0 ✓ P

v

has stretch of at most
(1 + "). As such, every alternative should only be a fraction longer than a shortest path.
Given parameters 0 < ↵ < 1, 0  �  1, and " � 0 as well as the above properties, we
formalize the description as:

Definition 11 (Admissible path). A single via node alternative path P
v

between s and t
is an admissible alternative if it satisfies the following three conditions:

a) l(P
opt

\ P
v

)  � · l(P
opt

) (limited sharing),

b) P
v

is T -locally optimal for T = ↵ · l(P
opt

) (local optimality), and

c) P
v

has (1 + ")-UBS (uniformly bounded stretch).

These measures require a quadratic number of shortest path queries to be verified, which is
not feasible for a real-time setting. Thus, more practical algorithms are needed that have a
more narrow focus on easy computability. There exists a quick 2-approximation (T -test) for
T -local optimality. Given a via path P

v

and a parameter T , let x be the closest node on s–v
that is at least T away from both v and s. Likewise, y is the closest node on v–t that is also
at least T away from s. A path P

v

is said to pass the T -test if the portion of P
v

between x
and y is a shortest path.
Abraham et al. [5] give a practical solution based on a bidirectional Dijkstra (BD), called X-

BDV, to compute single via paths that are reasonable and good alternatives. The algorithm
incorporates ideas from the plateau method. An Exploration Dijkstra identifies potential
alternative paths: A (forward) shortest path tree is grown from s, and another (backward)
tree from t, until all nodes are settled that are not farther than (1 + ") · l(P

opt

) away from
the root of their respective tree. Note that no admissible path can be any longer. Each node
v that is settled in both search trees becomes a via node candidate and three measurements
are computed in linear time: l(P

v

), the length of via path P
v

, �(P
v

), the amount of sharing
of P

v

with the optimal route, and pl(P
v

), the length of a longest plateau containing v.
Note that if pl(P

v

) > T , the T -test is always successful. These more practical measures
are used to sort all candidates in non-decreasing order according to the priority function
f(P

v

) = 2 · l(P
v

) + �(P
v

) � pl(P
v

). The first path P
v

is returned that is approximately
admissible for which the following definition holds:

Definition 12 (Approximately Admissible). A path P
v

between s and t is approxi-
mately admissible if the following three conditions hold:

1. �(P
v

) < � · l(P
opt

) (limited sharing),

2. successful T -test for T = ↵ · l(P
v

\P
opt

) (local optimality), and

3. l(P
v

\P
opt

) < (1 + ") · l(P
opt

\P
v

) (small stretch).
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Local optimality and stretch are defined with respect to the detour of the alternative. The
above method yields the algorithm X-CHV [5] when combined with Contraction Hierarchies.
The forward and backward (CH) search spaces of nodes s and t are explored. Nodes v in the
forward search space are reached with a forward distance l"(P

sv

) and nodes in the backward
search space with a backward distance l#(P

vt

). For nodes v that occur in both search spaces
a preselection is run. Nodes are discarded, if the sum of forward and backward distance
is longer than a certain fraction of the length of the shortest path: l"(P

sv

) + l#((P
vt

) <
(1 + ") · l(P

opt

). Note that these distances are not necessarily correct but upper bounds.
It is tested if the approximated overlap �apx(P

v

) is no longer than a certain fraction of the
length of the shortest path: �apx(P

v

) < (1+ ") · l(P
opt

). Additionally, the following condition
concerning the stretch must hold:

l"(P
sv

) + l#(P
vt

)� �apx(P
v

) < (1 + ") · (l(P
opt

)� �apx(P
v

)).

Remaining candidates are ranked according to the priority function of X-BDV. The exact
path hs..v..ti is computed for nodes v in that order. The first node for which the properties
of Definition 12 hold is selected as via node.
The success rate of X-CHV is inferior to X-BDV since search spaces are much narrower.

To cope with the smaller success rate, Abraham et al. [5] introduce a relaxed exploration
phase: The exploration query is allowed to search more nodes than the plain CH query. Let
p
i

(u) be the i-th ancestor of u in the search tree. The x-relaxed X-CHV query prunes an
edge (u, v) if and only if v precedes all vertices u, p

1

(u), . . . , p
x

(u) in the order of the CH.
Note, the x-relaxed variant of X-CHV, with x 2 {0, 3}, is the baseline of our work. This
section ends the recap of previous work.

5.5.2. Engineering the Baseline Algorithm

We now build on top of the baseline algorithm. Recall that it is a two step approach. A bidi-
rectional Exploration (CH) Dijkstra searches for via node candidates that are subsequently
tested for admissibility using a number of point-to-point shortest path queries, which we call
Target (CH) Dijkstras. A natural approach to apply engineering is to handle the Target Di-
jkstras by faster methods than the Contraction Hierarchies query algorithm: We use CHASE
that computes these queries by exploiting additional arc flags [24]. This does not apply to
Exploration Dijkstras, because search spaces would be too narrow. Storing all shortcuts
pre-unpacked speeds up path computation as well. Both optimization have equal impact
and result in an algorithm with query times of less than half of plain X-CHV. We refer to
this straight-forward engineered baseline algorithm by X-CHASEV.
The analyses of Abraham et al. [2] show that speedup-techniques to Dijkstra’s algorithm

work especially well on certain classes of graphs in which all shortest paths out of a region
are covered by a small node set. This theoretical analysis leads to the following assumption:

Assumption 1 (limited number of alternative paths). If the number of shortest paths
between any two su�ciently far away regions of a road network is small, so is the number of

104



5.5. Candidate Sets for Alternative Routes

plateaus for Choice Routing [40]. Likewise the number of admissible paths of the algorithm
of Abraham et al. [5] is small and can be covered by a small number of nodes.

Single-Level Via Node Candidates We partition the graph and apply bootstrapping to
generate via node candidate sets for pairs of partition cells. Here, bootstrapping means that
the query algorithm which is used later on to actually compute an alternative path is used
during preprocessing as well.
Assume that for each pair of non-neighboring cells, we have computed a set of via node

candidates. Computing an alternative path for a given s–t-query now becomes straight-
forward. We loop over all nodes v in the via node candidate set of the pair of cells of s
and t. For each v we check whether P

v

is approximately admissible using the properties of
Definition 12. The first approximately admissible path found is returned as the result. If no
candidate is viable or if the size of the candidate set is zero, no alternative path is returned.
In an s–t query between neighboring cells or within a single cell we perform X-CHASEV

as fallback instead. The reason for this is that the number of candidates between those pairs
of cells and within a single one can be numerous. It is faster to use the fallback algorithm
than to check preprocessed node sets in most of these cases.
Preprocessing via node candidates starts with a partition of the underlying road network.

A number of such schemes have been proposed before. We do not focus on that sub-problem
but refer to [60, 169] instead. A set of via node candidates is generated greedily for each
pair of cells by generating alternative paths for all pairwise combinations of their border
nodes. For each cell pair, we keep a tentative via node set that keeps track of the candidates
identified during preprocessing so far. When an admissible alternative can be found over a
node of the tentative set, we continue to the next pair of border nodes. If on the other hand
no admissible alternative is found over the nodes of the tentative set, we run X-CHASEV as
bootstrapping to identify one. Whenever such a fallback run results in a new via node, it is
inserted into the set of tentative via nodes. This continues until all border node combinations
have been tried.

Multi-Level Via Node Candidates The above method works well when source and target
node are in distinct and non-neighboring cells. Preprocessing candidate sets for source and
target nodes within the same cell would inevitably lead to either rather large sets. Therefore,
we propose a multi-level partition to compute via node candidates for neighboring pairs of
cells as well as within a single cell. The graph is further partitioned into an order of magnitude
more cells. The finer partition respects the coarser one in the sense that the nodes of a fine
cell belong to one and only one of the coarse cells. We do not run full preprocessing for all
pairs of fine cells. This would induce a number of additional preprocessing steps, which is
quadratic in the number of cells. We run the same preprocessing algorithm as before but
only on the following subset of all fine cell pairs. We run it on the pairs for which origin and
destination are too close together to get a small enough via node candidate set, i.e. in the
same coarse cell or in neighboring ones. Note, we preprocess each non-neighboring fine cell
pair that either belongs to the same or to a pair of neighboring coarse cells. This implies
only an amount of additional preprocessing work that is linear in the number of fine cells
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for reasonable partitions.
Consider that via node candidates have been preprocessed as outlined above. A query

recurses to the multi-level partition for nodes of two neighboring coarse cells or when search-
ing a path between nodes of the same coarse cell. When origin and destination are within
the same or in neighboring fine cell, plain X-CHASEV is run as fallback. The cells of the
fine partition are smaller, and origin and destination are generally close to each other, which
leads to fast fallback query times.
We use a partition of 128 cells for the arc flags of X-CHASEV and explain why more cells

do not deliver significantly further improved results: The number of explored nodes during
a CHASE query that do not belong to the shortest path is negligible as reported by Bauer
et al. [24]. Hence, we do not see any benefit of investing time into the generation of arc flags
for 1 024 cells.

Further Engineering

The preprocessing is easily adaptable to shared-memory parallelism by preprocessing all cell
pairs of a partition independently. This parallelization scales almost linearly with the num-
ber of processors until the memory bandwidth is reached. Most preprocessing runs verify
the existence of a via node, i.e. reproduce a previously identified via node. Sampling e↵ec-
tively decreases the preprocessing time when the sample is of reasonable size. Preliminary
experiments show that running such a sampled preprocessing on 1/16 of all of the pairs of
boundary nodes for each cell pair results in only slightly inferior query performance.
Much e↵ort during preprocessing is spent in search space exploration. The search space of

each boundary node is required repeatedly. This can be hastened by about a factor of three
by storing the search spaces of boundary nodes. Another tuning parameter is the order in
which the nodes are stored in the tentative sets. We order by the number of how often a
node occurs as a via node during preprocessing. This order is not necessarily the best of all
orders. It depends on the order in which the pairs of boundary nodes are visited. Computing
a best among all possible sorting orders, independent of the visiting order, is feasible and
leads to slightly superior query times, but is computationally expensive. Note that selecting
a via node greedily is of course faster since the first viable node is used, while selecting the
via node that yields a best quality alternative is more expensive. Queries can be further
accelerated by storing (forward and backward) search spaces of the via node candidate sets
and also by storing the shortcuts preunpacked, as mentioned before.

5.5.3. Experimental Evaluation

We implement the above algorithms in C++ using GCC’s compiler with full optimizations.
The experiments are conducted on two separate machines. Queries are processed on a single
core of Machine A, running Linux kernel version 2.6.34. Parallel preprocessing is done on
Machine C, running Linux kernel version 2.6.38. Machine C and has roughly half the single-
core performance of Machine A. Timings are done using the clock cycle counter available in
virtually all 64-bit x86-based CPUs.
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performance path quality
time success UBS[%] sharing[%] locality[%]

p algorithm [ms] rate[%] avg max avg max avg min
1 X-BDV 11 451.5 94.5 9.4 52.5 42.7 79.9 77.0 26.2

X-CHV 1.2 75.5 9.2 48.1 44.7 80.0 74.8 26.3
X-CHASEV 0.5 75.5 9.2 48.1 44.7 80.0 74.8 26.3

2 X-BDV 12225.8 80.6 11.5 43.0 60.0 80.0 78.6 27.0
X-CHV 1.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0
X-CHASEV 0.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0

3 X-BDV 13330.9 59.5 13.2 52.9 68.1 80.0 76.2 25.9
X-CHV 2.3 14.2 10.0 33.4 65.0 79.9 84.3 30.9
X-CHASEV 1.0 14.2 10.0 33.4 65.0 79.9 84.3 30.9

Table 5.4.: Query Performance of Algorithms for Alternatives p = 1, 2, 3.

Our test instance is ptv-europe and we partition the graph into 128 cells using the algorithm
of Sanders and Schulz [169], yielding an average edge cut of 6 360 and 91.8 boundary nodes
per cell. Note that their partitioner does not necessarily yield connected partitions. On
average each cell is adjacent to 5.2 neighboring ones. Our finer partition into 1 024 cells
has an edge cut of 25 715 with an average of 46.5 boundary nodes and 5.3 neighbors. All
figures are based on 10 000 random but fixed queries, unless otherwise stated. To compare
against the results of [5], we use the same quality parameter values. Minimum (detour based)
local-optimality is set to ↵ = 0.25, maximum sharing to � = 0.8, and maximum stretch to
" = 0.25. We test the performance of our algorithm in terms of both e�ciency and quality
according to Definition 11 in the following experiments.

Engineered Baseline Algorithm. We compare the performance of our engineered baseline
algorithm, X-CHASEV, against X-BDV and X-CHV. The results of Table 5.4 report on the
query performance and path quality of the engineered baseline algorithm. As described in
Section 5.5.2 the engineered baseline algorithm is faster by a factor of two than the other
algorithms. We reimplemented both X-BDV and X-CHV algorithms. A direct comparison

candidate sets
p=1 p=2 p=3

time size empty avg. empty avg. empty avg.
x level [h] [kiB] [%] size [%] size [%] size
0 single 1.1 859 2.6 4.4 12.7 5.1 30.5 4.4

multi 1.7 3 669 6.2 6.1 17.4 5.9 36.9 4.2

3 single 2.3 1 742 1.4 6.7 3.0 10.2 10.8 11.5
multi 4.3 8 909 1.1 12.2 4.9 15.0 11.6 14.2

Table 5.5.: Performance of Unrelaxed (x = 0) and 3-relaxed (x = 3) Preprocessing.
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performance path quality
time success UBS[%] sharing[%] locality[%]

p algorithm [ms] rate [%] avg max avg max avg min
1 X-CHASEV 0.5 75.5 9.2 48.1 44.7 80.0 74.8 26.3

single 0.1 80.7 9.8 48.1 48.5 80.0 75.8 26.3
multi 0.1 81.2 9.9 48.1 48.6 80.0 75.8 26.3

2 X-CHASEV 0.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0
single 0.3 50.8 10.7 40.4 57.1 80.0 80.3 26.3
multi 0.3 51.2 10.7 40.4 57.0 80.0 80.4 26.3

3 X-CHASEV 1.0 14.2 10.0 33.4 65.0 79.9 84.3 30.9
single 0.4 24.8 10.7 41.0 59.9 79.9 82.5 27.9
multi 0.4 25.0 10.7 41.0 59.8 79.9 82.6 27.9

Table 5.6.: Query Performance with Preprocessed Candidate Sets.

against the numbers of Abraham et al. [5] is unfair, since the heuristics of the underlying CH
are di↵erent. X-BDV has the highest success rate and, of course, the highest query times
by several orders of magnitude. This makes X-BDV unsuitable for any practical setting in
which speed is a factor. The success rates of all three algorithms drop with the number
of alternatives. The average path quality measures are very similar for all algorithms and
identical for X-CHV and X-CHASEV by design. This is expected behavior.

Preprocessed Candidate Sets. Table 5.5 reports on the performance of the preprocessing
required for the single- and multi-level algorithms. Preprocessing is run in parallel for up to
three alternatives with relaxation either o↵ (x = 0) or set to x = 3. Row multi-level denotes
the results of adding a finer partition compared to just the single-level approach. Numbers
are listed for alternative p = 1, 2, 3 and only pertain to candidate sets of non-neighboring,

candidate sets
v.cand. fallb. avg.

p algorithm [%] [%] tested
1 X-CHASEV - - -

single 92.4 4.9 1.9
multi 96.5 0.6 2.0

2 X-CHASEV - - -
single 91.6 2.6 2.8
multi 93.8 0.3 2.9

3 X-CHASEV - - -
single 88.7 1.1 3.8
multi 89.7 0.1 3.8

Table 5.7.: Candidate Set Quality Depending on Number of Alternatives.
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p=1 p=2 p=3
time success avg. time success avg. time success avg.

level [ms] rate[%] tested [ms] rate[%] tested [ms] rate[%] tested
X-BDV 11 451.5 94.5 - 12 225.8 80.6 - 13 330.9 59.5 -

X-CHV 3.4 88.5 - 4.3 64.7 - 5.3 38.0 -
X-CHASEV 2.7 88.5 - 3.2 64.7 - 3.8 38.0 -

single 0.2 90.0 2.22 0.4 70.2 3.8 0.6 44.0 5.6
multi 0.1 90.0 2.3 0.3 70.4 4.0 0.5 44.2 5.8

Table 5.8.: Query Performance of Multiple Algorithms with 3-relaxation.

non-equal pairs of cells. We note that preprocessing can be done on server hardware in a few
hours for all of the experiments. The relative speedup on 48 cores is only about 28 due to the
memory-bandwidth bottleneck, which is about 60% of the perfect linear speedup. The space
overhead is more or less negligible. Even for relaxation with x = 3 and multi-level partition
the amount of additionally data is less than 9 MiB. Multi-level preprocessing shows a higher
average number of candidates per cell pair as only pairs close to each other are processed.
Fewer candidate sets remain empty using the relaxed algorithm.
X-CHASEV without candidate sets is compared to single- and multi-level candidate sets.

Table 5.6 gives basic performance numbers. Algorithms with preprocessed candidate sets
have query times well below 0.5 ms on average even for the third alternative, which is more
than practical. We see that the multi-level optimization even improves the success rate,
while the path quality remains at high level. Fallback rates to the baseline are generally low,
95% of the queries are covered by preprocessed via node candidates. We tested on omitting
the fallback entirely for this setting and observe that results do not degrade noticeably. A
third partition level would not give any significant further improvements to the performance
of the query. Results of the 3-relaxed variant of the query are given in Table 5.8. Numbers
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Figure 5.6.: Success Rates Depending on Dijkstra rank: Unrelaxed (x = 0, left) and 3-relaxed
Algorithm (x = 3, right). Each Data Point Represents 1 000 Queries.
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for X-BDV and X-CHV are shown for reference. We omit path quality since it is virtually
una↵ected and remains high. The success rate further improves especially for the second and
third alternative. Using precomputed candidate sets is faster by an order of magnitude than
X-CHASEV and naturally much faster than the original method. We identify two reasons.
A) an expensive (relaxed) Exploration Dijkstra has to be done only in the rare case when
a fallback is needed. B) the average number of nodes to be tested as via node candidates
is small and always less than half a dozen. Our single- and multi-level approaches deliver
consistently higher success rates than the (engineered) baseline with the more speedup the
more relaxation is applied.
The Dijkstra rank of node v with respect to a node s is i if v is the i-th node removed

from the priority queue of a unidirectional Dijkstra started at s. Figure 5.6 shows success
rates with varying Dijkstra ranks to test performance for local and long range queries alike.
Success rates (left) are consistently equal or better for our algorithms than for the baseline.
With relaxation (right) the numbers get even closer to the rates of X-BDV. The di↵erence
is less than 10%. Success rates are compared to X-BDV as the quality “gold standard” even
though its computation is prohibitively high.

5.6. Hierarchy Decomposition: Accelerated User Equilibria

The following section is structured as follows. First, we give an introduction into the basic
concept of tra�c equilibria. Then, we formulate an optimization problem and show how
to solve that problem with the help of Contraction Hierarchies. Finally, we conduct an
experimental study on the performance of our approach.

5.6.1. Tra�c Equilibria

The road tra�c of an entire day for a certain region can be understood as a flow with sources
and sinks on the road network. Tra�c has the tendency to evade regularly clogged roads
and other bottlenecks, especially with modern on-board navigation devices that are able to
interpret tra�c information. Assuming perfect knowledge for all drivers, one might suspect
tra�c to shape itself in a way such that all used routes between any two points on the road
network have equal latency. Although these tra�c patterns rarely occur in real life, they are
a handy tool to predict the general tra�c situation. For small networks, these patterns can
be easily computed, but road networks that model entire countries are still a hurdle because
Dijkstra’s algorithm does not scale. Thus, the known techniques have only been applied to
either small networks or small extracts of a much larger network. We solve this problem
for country-sized road networks by combining a gradient descent method for the problem
with current research on fast route planning by exploiting the special properties of CH. The
computation of the gradient needs a large number of shortest paths computations on the
same weighted graph, which means that the expense for preprocessing can be amortized if
the number of shortest paths computations is su�ciently large. This leads to a significant
overall speedup compared to running Dijkstra’s algorithm for each demand pair. Also, our
study shows the robustness of CH on road networks at equilibrium state.
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Tra�c is often seen as a mere stream of cars. Consider the following picture: On a
typical day of work, tra�c flows from the suburbs into inner cities in the morning and
back from them in the evening. Or on national holidays, a stream of cars and buses flows
perhaps to resort towns or recreation areas close to the metropolitan areas. Naturally, some
roads are more crowded than others since tra�c is not equally distributed over the road
network. As a matter of fact, tra�c has a natural tendency to shift itself to alternatives
if it is more convenient for a driver to take another route. Drivers seek to minimize travel
time (or any other metric) and can be understood to act as selfish agents. They switch to
better routes if they become aware of it. Assuming all drivers have full knowledge one is
interested in how the tra�c distributes itself over the road network. This problem is known
as the tra�c assignment problem and is a major application in the field of transportation
planning. Visually speaking, it is the process that finds edge latencies in a road network that
are the result of many individuals competing for transportation. We assume travellers to
take least cost or (under some metric) shortest paths between their origins and destinations.
The problem at hand has been the subject of research since the early 1950s. Wardrop’s [186]
first principle states the properties for a so-called user equilibrium state, which resembles the
natural tendency of tra�c to take a way of least resistance.

Definition 13 (Wardrop’s User Equilibrium). A set of flows along the edges of a road
network is said to be in a user equilibrium state (UE) when the two conditions of the following
definition are met.

1. If two or more paths between the origin s and the destination t are actually travelled,
then the cost of each path between s and t actually used must be the same.

2. There does not exist any path between s and t that is of less cost and unused.

Finding a tra�c pattern for which the above conditions hold is called tra�c assignment
problem. Solutions to this problem have a wide range of applications, for example in trans-
portation management or in traveller information systems. Also, the real-time computation
of equilibria states can be used as tra�c forecasts and for tra�c steering. Basic tra�c jam
avoidance is a feature of nowadays navigation devices.
Unfortunately, this feature is not as well-developed in practice as it is advertised. Consider

an example: A tra�c jam is reported for a certain highway and drivers are advised to leave
their route by switching to an alternate road nearby. When many drivers leave the highway,
the road nearby is also clogged. This is not an academic example, but happens every day.
Germany’s biggest auto-mobile club ADAC2 reports in a large scale study [183] that most
towns close to a highway su↵er from increased pass-through tra�c because of jam evaders.
Unfortunately, today’s jam evading features of navigation devices is limited. ADAC also

reports a field study [33] that shows the inferiority of current approaches for tra�c jam
evasion. Not only the current tra�c situation has to be considered to give better guidance
around tra�c jams, but also how the tra�c will evolve. Routing on a road network that is at
equilibrium could solve this problem as it is said to be a good estimate of routes that make
not only economical sense but are also perceived as good alternatives to a clogged route.

2Germany’s and Europe’s largest auto-mobile club: http://adac.de – access March, 31st 2013

111



5.6. Hierarchy Decomposition: Accelerated User Equilibria

5.6.2. Problem Formulation

As usual, we model a road network as a graph G = (V,E) where V is a set of nodes and
E ✓ V ⇥V is a set of directed edges or less formally the set of street segments. Additionally,
each edge carries a certain amount of tra�c that we call flow. Each edge e is labelled with an
edge weight that is the volume of tra�c v

e

on e, also called flow, and an edge cost function
f
e

. Given |V | nodes in a network, let nodes 1, . . . , p, p  |V | be a subset of nodes which are
either origin or destination of a so-called demand set.
We view the nodes of the graph as the places where tra�c passes by, enters or leaves the

system. We define the set of demands D as a set of triples (i, j, k), where i, j 2 V and k 2 N.
The nodes i and j indicate origin and destination nodes and k the number of units that
demand to flow between these nodes. Flow on a certain road segment is said to be the ratio
of the current and maximum number of vehicles on that segment at a given average speed.

An Optimization Problem. In [174] it has been shown that the tra�c assignment prob-
lem can be solved as a minimization problem. The objective function of the underlying
optimization problem is based on total edge flows and the resulting edge weights. Assume
that their exists a solution tra�c flow x = (x

0

, . . . , x
m

) that indicates the flow on each edge
e 2 E under equilibrium conditions, i.e x

e

is the flow on edge e. The following mathematical
program defines the optimization problem by minimizing the sum of the integrals of the edge
weight function under a given flow assignment.

min z(x) =
X

e2E

Z
xe

0

f
e

(x
e

) dv
e

(5.6)

with the following constraints that the sum over all observed flows between any two nodes
equals the total demand between those nodes. For k paths between any to nodes , v 2 V
and q many trips between u and v
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holds, whereby �uv
e,p

is an indicator variable that is 1 if edge e is on a path p = hu, . . . , ui
from u to v. Note that there is no incentive to make a unilateral switch of paths under such
an assignment. As She� [174], pp. 60, notes, “this function does not have any intuitive (...)
interpretation. It should be viewed as a strictly mathematical construct”. This minimization
problem can be solved by applying the Frank-Wolfe-Algorithm [133, 174]. In each step of
the algorithm the approximation of the solution is replaced by a new approximation that is
obtained by gradient descent towards the optimum. We now explain this algorithm.

Initialization and Iterative Improvement. The initialization is an all-or-nothing assign-
ment of the demand set where each demand is assigned to the edges of the shortest paths
using free flow speed on the edges. In other words, travellers choose the routes that would be
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best if they were the only travellers on the road network. These free flow usages are counted
and edge weights are re-evaluated with respect to the flow on the edges and these edge
weights are taken as the initial solution X0. In each iteration, a next (tentative) assignment
Y i is computed and combined with the previous solution to get a better approximation.
More formally, the n-th iteration starts with an update of edge weights by evaluating

f
e

(v
e

) for each edge. Next, an all-or-nothing assignment distributes the so-called auxiliary
flow Y n = (yn

1

, . . . yn|E|) on the network. The new approximation in the n+ 1-th iteration

Xn+1 = Xn + ↵n · (Y n �Xn)

is obtained by computing a scaling factor ↵n that minimizes Equation (5.6). Note that
computing Y n is straight-forward one ↵n has been identified asXn is known from the previous
iteration. We solve

↵n = min
0↵1

X

e2E

Z
v

n
e +↵(y

n
e �v

n
e )

0

f
e

(v
e

) dv
e

(5.7)

at each iteration. The series of solutions X i, i � 0, is known to converge to the solution
of the tra�c assignment problem. Once we reach an equilibrium state the edge’s weight
di↵erence between iterations will be zero by definition. We are trying to approximate this
situation by searching for a scaling factor ↵n that minimizes the sum of edge weight changes
between the iterations. Since we know the derivative of Equation 5.7, we can solve that step
with a search strategy to find a minimum of the derivative. This is also known as line search.
The search for ↵n is solved with a certain error threshold by the bisection method of

Bolzano. It approximates the zero of a continuous function by binary search. For a given
interval [a, b] and c = (b+a)/2 we examine if our solution is either in [a, c] or [c, b] and descent
recursively until we have reached a certain accuracy. The method is easy to implement.
Again, we refer the reader to the textbook of She� [174] for in-depth explanations and for
the correctness of the method.

Edge Cost Function. If the travel time between any two nodes was a constant independent
of the flow in between then we could solve the problem easily. It would su�ce to compute
the shortest path for each element of the demand set. Of course, this view neglects reality
and the e↵ect that flow, or in other words dense tra�c, has to the average speed on a road
segment. The denser the tra�c gets the more careful drivers have to be not to cause an
accident by running into a decelerating car in front. Likewise, the denser the tra�c the more
cars are a↵ected by one’s own driving manoeuvres [178].
To model the situation more realistically, the edge cost function has to be increasing, con-

tinuous and non-linear. Several good edge cost functions have been proposed. A simplified
function is the Bureau of Public Roads [36] function (BPR). This function was derived from
empiric observation and takes road length, speed limit and capacity as parameters. Although
it is easy to compute, its curves are not asymptotic to any maximum capacity value, which
is in stark contrast to reality. To overcome this shortage Davidson [53] proposed a family of
functions that is based on queuing theory. It is defined as

t
e

= t0
e

·

1 + J · x

e

c
e

� x
e

�
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where t0
e

denotes the travel time at zero usage, c
e

the capacity of the street segment and
x
e

the current usage. J is a tuning parameter to control the shape of the curve. Other
classes of road functions have been proposed, too, e.g. the class of conical volume-delay
functions [177]. For an earlier survey on edge cost functions see [32]. But on the other
hand the Davidson function models basic relationships between usage and resulting travel
times and it is easy to compute. From a computational point of view, any of these edge cost
functions work similarly.

Convergence Criterion. Convergence can be based on a number of criteria. Clearly, one
would like to stop once the edge weights do not change any more between iterations. The
easiest choice is to stop after a fixed number of iterations, but this entirely neglects solution
quality. A natural choice would be to use the change of the objective function as convergence
test. This might be misleading, since the lengths of individual paths might di↵er significantly
while the sum of the lengths is relatively stable. Therefore, the stopping criterion is based
on how much the path length for each demand di↵ers between two iterations.

C := max
d2D

����
µn(d)� µn�1(d)

µn�1(d)

���� (5.8)

where D is the set of demands and µn(d) is the length (cost) of the path in iteration n
for demand d. This stopping criterion indicates the quality of the approximation of the
equilibrium much better from a behavioral point of view than a simple sum of all edge
weights. Furthermore it ensures that the computation is only stopped once the weights of
all edges have settled down. We will look at the impact of choosing the maximum over the
average in the experimental evaluation of Section 5.6.4.

5.6.3. Integration into Contraction Hierarchies

To solve the optimization function with the Frank-Wolfe-Algorithm, as explained in Sec-
tion 5.6.2, it needs a number of shortest path computations on the same weighted graph
to assign tra�c flow to edges. A naive implementation of the optimization algorithm is
technically easy and straight-forward with any algorithm that computes shortest paths, i.e.
Dijkstra’s algorithm. A more e�cient approach is explained below.
Note that a shortest path computed by the bidirectional CH query consists of shortcuts.

Although the length of any shortest path is optimal, it has to be unpacked to retrieve the
edges of the original graph. Usually, unpacking is done by a recursive method. The edges
of the packed path are pushed onto a stack and while the stack is non-empty an edge is
popped. If it is a shortcut then the two edges forming that shortcut are pushed onto the
stack. Otherwise the popped edge is inserted into the resulting unpacked path. The recursive
unpacking runs fast in time linear in the length of the unpacked path. When compared to a
plain Dijkstra’s algorithm, using a CH black box with path unpacking is still several orders
of magnitude faster. We can do better with the following method, which has a running time
independent of the size of the demand set. The method is not recursive and relies only on
the number of shortcuts in the hierarchy.
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Figure 5.7.: Flow f is distributed through dashed edges to all underlying edges of a shortcut.

If paths are unpacked at each time they get computed then the heavily traversed edges
would be touched many, many times to increase usage counters. We modify the CH path
computation to do a hierarchy decomposition in which each shortcut is unpacked only once
in a certain order. At first, we do not unpack the paths at all, but count the volume of flows
of on edges of the packed path without unpacking any shortcuts. To do so, each original and
shortcut edge is equipped with a counter to record the number of times it is part of a shortest
path. This number is incremented during the path computation each time an (shortcut) edge
appears in a path. The computational e↵ort to do so is low as each path usually consists
of a few shortcuts only. Since we do not need to keep track of the routes actually chosen
by travellers, we just count the number of times each individual edge or shortcut is used.
After all paths have been computed the hierarchy is decomposed by unpacking all shortcuts
and assigning the load to the (shortcut) edges that lie underneath. See Figure 5.7 for an
illustration of the process of hierarchy decomposition. The only prerequisite to the correctness
of this approach is to decompose the shortcuts in a topological sorting order of the CH search
graph: A shortcut edge e = (u, v, w) is unpacked if and only if any other shortcut in which
it may appear as first or second segment has been unpacked previously. We do so in the
opposite order in which the shortcuts were created during the preprocessing of the hierarchy,
but note that orderings that are based on DFS, like the one used in PHAST [58], could also
be used to propagate the information in parallel.

Another simple solution would be to decompose the DAG level by level and to use a FIFO
queue that stores the shortcuts to be unpacked in the current iteration. In each iteration,
the queue holds the shortcuts discovered by unpacking the previous levels

It is obvious from the order of decomposition (and from the fact that the CH data structure
is a directed acyclic graph) that no shortcut needs to be unpacked more than once and no
edge usage is lost. The order of shortcut creation is easy to record during preprocessing and
takes up a negligible amount of space only. The reverse order of insertion defines the order
of the decomposition. Note that the order can also be determined by a topological search.

There exist speedup techniques to Dijkstra’s algorithm that support dynamic updates.
But they are no feasible options here because the number of edge weight changes is too high.
Our resulting algorithm performs very well as we see in Section 5.6.4. The additional space
overhead for shortcut order and edge usage counters is rather small.
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Figure 5.8.: Value of Stopping Criterion Depending on the Number of Iterations for the
Belgian (left) and German (right) Road Network.

5.6.4. Experimental Evaluation

We implement our algorithm and data structures in C++ using GCC v4.3.2 compiler and
full optimizations. All tests are done on a single core of Machine H, running Linux kernel
version 2.6.27. The evaluation was done on test instances ptv-germany and ptv-belgium. The
free flow speeds have been derived from category and length of an edge. Capacity is implied
by the category of an edge, which is an oversimplification but unavoidable because of lack
of realistic data sets.
We pre-generate randomized lists of origin-destination pairs, also called the set of demands

or demands for short. To the best of our knowledge we are not aware of any high resolution
trip generation algorithms coming from transportation science that cover entire countries. A
simple trip generation model is presented that generates tra�c demand realistic enough to
show the validity of the technical approach. During a personal conversation with an ADAC
representative we were told that the distances actually travelled are geometrically distributed
with an expected distance of 40 kilometres. This number is roughly confirmed by [35] which
states that only 2% of all tra�c is over distances longer than 100 kilometres. We conjecture
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Figure 5.9.: Running times for Belgian network.

that the population density correlates strongly with the density of a road network. Therefore,
we choose the starting points uniformly and at random from the set of all nodes. Since we
know the travel distance distribution, we draw a geometrically distributed distance. A ball
is grown around each starting node s using a unidirectional Dijkstra search. When an edge
is relaxed we check the distance its end node has from the source. If the distance of the end
node is equal to or more than the travel distance that was drawn before, we accept the node
as the target t of s and insert the triple (s, t, 1) into the demand set. Each demand is given
equal weight, i.e. it resembles a single unit of flow.
Note we also implemented a simpler iterated all-or-nothing assignment. The method
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Figure 5.10.: Running times for German network.

starts with a feasible flow on the network. Then edge costs are recalculated for the flow,
which is observed on each edge. The flow is reassigned to the changed network and the
process is reiterated until a specified number of iterations is completed. We did not observe
any convergence with this technique even for large numbers of iterations. In contrast, we
observed oscillation of route choice and quickly deemed the approach infeasible. Likewise,
an incremental loading where a subset of the demands is assigned proved infeasible as well.
Again, convergence did not occur.
We pre-generated lists of 105, 106 and 107 demands for the networks of Belgium and Ger-

many and in addition also a list of 108 demands for the road network of Germany to reflect
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the larger size of the graph. There are reports [35] of an average of 2.8 ·108 trips taking place
daily Germany in 2008, but not necessarily all by car. We computed the user equilibria for
all demand sets on the respective graphs. The line search approximation parameter was set
to 10�10 and the dampening factor J of the Davidson edge cost function to 0.25.

See Figure 5.8 for the results on the development of the stopping criterion depending on
the number of iterations for several sizes of demand sets. We naturally determine the value
of the stopping criterion in each iteration and check if it meets the threshold. Although,
Equation 5.8 only calls for the computation of a maximum, we also compute the average for
reference. The stopping value is quickly approached in each of the experiments. We observe
that the stopping value of less than 0.001% is approached for each of the demand sets in
a similar way while the average error drops significantly with larger demand set sizes. The
average value of the stopping criterion approaches threshold values much more quickly than
the maximum. This confirms our decision that the average is too optimistic: There are still
significant changes in the volume of tra�c flow for some of the edges, and the average does
not report them. The number of iterations is smaller when using the average as stopping
criterion, but the total number for the maximum criterion is within reasonable limits.

The tra�c assignment changes the edge weights of the underlying graph. This is a direct
consequence of Wardrop’s User Equilibrium from Definition 13. Hence under equilibrium
state all used routes for a certain origin-destination pair have equal travel times. This flattens
the natural hierarchy of the road network that is exploited during the contraction phase. Less
shortcut edges can be omitted from the search data structure, because for many shortcuts
there is now a shortest path that actually lies on it. Thus, the preprocessing should take
longer as it is harder to decide if a certain shortcut is needed or not. Likewise, the query
times should rise. But surprisingly, this e↵ect is not significant. We observe CH to be robust
on road networks at equilibrium state.

The larger the graph and the demand set, the more evident this phenomenon gets. The
larger the numbers of queries, the less important preprocessing and the road network size
gets, which can be seen in Figures 5.9 and 5.10. We observe that the preprocessing dominates
the query phase so strongly on the Belgian test set with 105 demands that it is not visible
in the plot at all. Likewise, the preprocessing time for the 108 case on the German data set
is not visible. We conclude that preprocessing times are more than bearable for su�ciently
large demand sets. We also conclude that it make sense for large demand sets to switch
to a di↵erent speedup-technique to Dijkstra’s algorithm that may have higher preprocessing
times, but better query e�ciency. For example, the variant of Transit Node Routing of
Section 6 may be such a candidate to speed up queries by an order of magnitude while the
preprocessing takes only twice as long. The query time of Transit Node Routing should be
even less a↵ected than CH by the flattened hierarchy under equilibrium. For small demand
sets, on the other hand, the speedup technique of Customizable Route Planning [59] may be
interesting. The graphs node set is partitioned once and the edge weights can be updated in
near real-time even for continental sized networks. The query is still reasonably fast. Recent
improvements [63] further accelerate the time needed for customizations of road networks.
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5.7. Concluding Remarks

Points of Interest and Walkability. We showed how to build a POI index based on CH and
how to apply it to aggregate scorings based on the road network. The resulting algorithm
is fast enough to run as a real-time online service that answers a stream of queries one by
one and close to near-interactive speeds for entire metropolitan areas. In addition to that
the POI index is independent of the weighting of the scoring function and thus it allows to
tailor the scores to more specific user defaults.
A visual comparison by Foti et al. [76] of the distribution of scores on a plotted map of the

Bay Area reveals that it is nearly identical to a similar one published on walkscore.com,
which shows its good applicability, too. In the future we would like to explore a dynamic
setting where POIs change over time, e.g. they are added or deleted from the data set or
valid for a certain time only. Likewise, we would like to move away from a static scoring
function but allow the user to provide a personalized scoring. This reflects the fact that
certain POIs are not important for certain users and the other way round.

Ride Sharing. We developed an algorithmic solution to e�ciently compute detours to
match ride sharing o↵ers and request for single hop ride sharing. This improves the matching
rate for the current city-to-city scenario. In the new scenario for arbitrary starting and
destination points, our algorithm is the first one feasible in practice, even for large datasets.
We introduced a modeling of multi-hop ride sharing where users travel between a number

of stations that is related to timetable networks for public transportation. We developed
data structures and algorithms to e�ciently compute matches in this model that allow a
rider to reach a destination via a number of transfers. We evaluate the practicability of the
algorithm with respect to the influence of tuning parameters. One interesting result of our
algorithm is that increasing the number of transfers does not lead to significantly superior
results in practice. Our algorithms are suitable for a web service with potentially a large
number of daily users. Our approaches increase the quality of matches compared to present-
day services, and thus, increase user satisfaction. This could foster the habit of ride sharing
in general beyond the obvious incentive of low costs for traveling.
In the future we would like to explore an augmented multi-modal scenario that does not

feature a single mode of transport but multiple ones. For example, we would like to integrate
not only car sharing, but car rental as well as public transportation, which is important in
metropolitan areas.

Candidate Sets for Alternative Routes. We introduced via node candidate sets. We
showed their compact size, their e�cient precomputation on large-scale networks and report
one order of magnitude faster queries. We also show that success rates are higher than for
previous algorithms with negligible memory overhead. As a result of our extensive exper-
imental evaluation, we conclude that our assumption holds that the number of admissible
single via node alternative routes between regions is small. There are a number of interest-
ing directions for future work. We would like to explore the amount of preprocessing that
is necessary to match the success rates of X-BDV. Also, we would like to explore if there
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are tradeo↵s between preprocessing or query time and success rates. We are interested to
see if the via node candidate sets can be reduced without loss of quality by either applying
further refinement to the existing techniques or by developing new preprocessing techniques.
Further, we want to look into possibilities on how to generate the same candidate sets in
reasonable time that using X-BDV during preprocessing would give.

Accelerated User Equilibria. We showed the feasibility of large scale tra�c assignment on
graphs that cover entire countries. We presented an application of sweeps on the CH search
graph as a building block for a large scale optimization problem. Our algorithm exploits the
special properties of the search data structure of CH which enables us to solve the problem
with better e�ciency than pure path computation with unpacking of each computed path.
As an interesting side-e↵ect, we observe that CH shows a certain robustness against the
weight changes during the iterations. It appears that the hierarchical properties of the road
network are not violated.
Tra�c steering is an application that may use a road network at equilibrium as input.

Likewise, we would like to look into a road network at equilibrium state as input to the
generation of alternative routes as well as alternative route graphs. Also, we would like to
move beyond a single mode of transport. Related to that is the integration of a multi-modal
speedup-technique to Dijkstra’s algorithm, which would enable us to incorporate the modal
split of everyday tra�c into one single black box of path computation.
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CHAPTER 6

Transit Node Routing Based on Contraction Hierarchies

6.1. Central Ideas

Routing in road networks has applications that go beyond the computation of single shortest
paths. For example, computing user equilibria on a road network requires the batched
assignment of an entire set of shortest paths over a number of iterations, as briefly mentioned
in Section 5.6. Depending on the number of paths to compute, it makes sense to invest more
time into preprocessing the road network if subsequently the query time is lowered. We
present such a technique in the following.
Transit Node Routing (TNR) captures the notion that routes will (almost) always enter

the arterial network if origin and destination are su�ciently far away. The entrance into the
arterial network is made through a set of important nodes – the transit nodes. The set of these
entrances for a particular node is small on average. Once the transit nodes are identified,
which will be explained below, a mapping from each node to its access nodes into the arterial
network and pairwise distances between all transit nodes are stored. Preprocessing needs to
compute additional information for a further building block, the so-called locality filter. The
filter indicates whether the shortest path might not cross any transit nodes, requiring an
additional local path search. By preprocessing the graph even further than other speedup
techniques, it yields almost constant-time queries, in the sense that almost all queries can be
answered exactly by a small number of table lookups. A small fraction of queries is answered
by a fallback algorithm, which is also cheap on average.
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6.2. Contraction Hierarchies Based Transit Node Routing

TNR in itself is not a complete algorithm, but a framework. A concrete instantiation has to
find solutions to the following degrees of freedom: It has to identify a set of transit nodes.
It has to find access nodes for all nodes. And is has to deal with the fact that some queries
between nearby nodes cannot be answered via the transit nodes set. In the remainder of this
section, we define and introduce the minimal ingredients for the generic TNR framework,
conceive a concrete instantiation and then discuss an e�cient implementation.

Definition 14. Formally, the generic TNR framework consists of

1. A set T ✓ V of transit nodes.

2. A distance table DT : T ⇥T ! R+

0

of shortest path distances between the transit nodes.

3. A forward (backward) access node mapping A" : V ! 2T (A# : V ! 2T ). For any
shortest s–t-path P containing transit nodes, A"(s)

�
A#(t)

�
must contain the first (last)

transit node on P .

4. A locality filter L : V ⇥ V ! {true, false}. L(s, t) must be true when no shortest path
between s and t is covered by a transit node. False positives are allowed, i.e., L(s, t)
may sometimes be true even when a shortest path contains a transit node.

Note that we use a simplified version of the generic TNR framework. A more detailed
description can be found in Schultes’ Ph.D. dissertation [171]. We outline a generalization
to multiple layers of transit nodes in Section 6.4. During preprocessing T , DT , A", A#,
and some information su�cient to evaluate L is precomputed. An s–t-query first checks the
locality filter. If L is true, then some fallback algorithm is used to handle the local query.
Otherwise,

µ(s, t) = µT (s, t) := min
as2A"

(s)

at2A#
(t)

{d
A

"(s, a
s

) +DT (as, at) + d
A

#(a
t

, t)}. (6.1)

Our TNR variant (CH-TNR) is based on CH and does not require any geometric information.
We start by selecting a set of transit nodes. Local queries are implicitly defined and we find a
locality filter to classify them. For simplicity, we assume that the graph is strongly connected.
In Section 6.4 we discuss what needs to be done to handle the general case.

Selection of Transit Nodes. CH order the nodes in such a way that nodes occurring in
many shortest paths are moved to the upper part of the hierarchy. Hence, CH is a natural
choice to identify a small node set which covers many shortest paths in the road network. We
choose a number of transit nodes |T | = k and select the highest k nodes from the CH data
structure. This choice of T also allows us to exploit valuable structural properties of CHs.
A distance table of pairwise distances is built on this set with a CH-based implementation
of the many-to-many algorithm of Knopp et al. [114].
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Finding Access Nodes. We only explain how to find forward access nodes from a node s.
The computation of backward access nodes works analogously. We show that the following
simple and fast procedure works: Run a forward CH query from s. Do not relax edges
leaving transit nodes. When the search runs out of nodes to settle, report the settled transit
nodes.

Lemma 5. The transit nodes settled by the above procedure find a superset of the access
nodes of s together with their shortest path distance from s.

Proof. Consider a shortest s–t-path P := hs, . . . , ti that is covered by a node u 2 T . Fur-
thermore, assume that u is the highest transit node on P . A fundamental property of CHs
is that we can assume P to consist of upward edges leading up to u followed by downward
edges to t. Moreover, the forward search of a CH query finds the shortest path to u otherwise
the path would lead over another transit node and thus u would not be the highest. Thus,
a CH query also finds a shortest path to the first transit node v on P . It remains to show
that the pruned forward search of CH-TNR preprocessing does not prune the search before
settling v. This is the case since pruning only happens when settling transit nodes and we
have defined v to be the first transit node on P .

The resulting superset of access nodes is then reduced using post-search-stalling [171]: For
all nodes t

1

, t
2

2 A"(v), if µ(v, t
1

) +DT (t1, t2)  µ(v, t
2

), discard access node t
2

.

Lemma 6. Post-search-stalling yields a set of access nodes that is minimal in the sense that
it only reports nodes that are the first transit node on some shortest path starting on s.

Proof. Consider a transit node u that is found by our search which is not an access node for
s, i.e., there is an access node v on every shortest path from s to t. By Lemma 5, our pruned
search found the shortest path to v but did not relax edges out of v. Hence, the only way u
can be reported is that it is reported with a distance larger than the shortest path length.
Hence, u will be removed by post-search-stalling.

6.2.1. Omninode Based Locality Filter.

Intuitively, nodes which are close to each other in the graph share (a subset of) access nodes.
While this is often the case, it is not true in general. The problem is that access nodes are
not projectable: If a non-transit node z is found during the search space exploration from
node u, the access nodes of z do not have to be access nodes of u.
In order to make the node set projectable, we build a super set of the access nodes, so-

called omninodes � : V ! 2T . This super set is the set of first transit nodes that are
reachable from a node if all edges in the hierarchy were bidirectional. In other words, as if
the forward and backward search starting both at node v would settle exactly the same set
of nodes. To compute the omninodes, we explore the graph, treating it as undirected: For
every node u, run an upward exploration which scans both forward and backward edges and
adds settled transit nodes to �(u). It does not even matter in which order the search space
is traversed, as long as it traverses all nodes of the search space. In preliminary experiments
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depth-first search (DFS) runs slightly faster than a breadth-first search (BFS). Note that
DFS, BFS, and a CH half-search without stalling return in the same sets of omninodes.
Definition 15 defines the locality filter L� by set intersection:

Definition 15. L�(s, t) :() �(s) \ �(t) 6= ;

The above construction returns a projectable node set, which is easy to see: Assume a node
z is in the explored space of a node u. Then the space explored if starting at z is a subset
of the space of u. This implies that in that case �(z) is a subset of �(u).

Lemma 7. L�(s, t) fulfils Definition 14.

Proof. First we state that for all u 2 V \T , �(u) is obviously non-empty: There is a path
from u to an arbitrary transit node a and the first transit node on that path is an omninode
for u. The proof of the Lemma is then done by contra position. Let, for s, t 2 V \T ,
µ(s, t) 6= µT (s, t), thus µ(s, t) < µT (s, t). Then the meeting point of a CH-query from s to
t, m, cannot be a transit node. As m is found from both s and t with a CH-search, it is also
found with a full upward exploration. Hence, �(m) ⇢ �(s) and �(m) ⇢ �(t), therefore
�(m) ⇢ (�(s) \ �(t)), and in conclusion �(s) \ �(t) 6= ;.

We could also generalize the computation of the omninodes by projecting transit nodes
similar to the sweeping technique of PHAST [58]. The l levels of the hierarchy are swept
through from level l down to level 1. For each node u in the current level, if u is a transit
node, we set �(u) = u. In the other case, we set �(u) as the union of the omninode sets of
node u. We use a k-way merge for the merging step, resulting in sorted arrays of omninode
sets. For real world data sets, this algorithm runs already in only a few seconds, as opposed
to several minutes for the naive approach. To conclude, we have now reduced the locality
filter to the test whether two sorted sets are disjoint. This test can be accomplished in linear
time with a simple sweeping step: Start by comparing the first values of both arrays. If they
are not equal, the lower element is compared to the next element in the other array. Proceed
until either the end of one array is reached (and return empty) or two elements compare
equal (and return not empty). Unfortunately, this method yields an average omninode set
of more than 70 nodes. We show in the following section how to construct a locality filter
that requires an order of magnitude less overhead.

6.2.2. Search Space Based Locality Filter.

Consider a shortest path query from s to t. Let S"(s) denote the sub-transit node search
space considered by a CH query from s, i.e., those nodes v settled by the forward search from
s which are not transit nodes. Analogously, let S#(t) denote the sub-transit-node CH search
space backwards from t. If these two node sets are disjoint, all shortest up-down-paths from s
to tmust meet in the transit node set and hence, we can safely set L(s, t) = false. Conversely,
if the intersection is non-empty, there might be a meeting node below the transit nodes
corresponding to a shortest path not covered by a transit node. Thus, a very simple locality
filter can be implemented by storing the sub-transit node search spaces which are computed
for finding the access nodes anyway, and then computing L(s, t) = S"(s) \ S#(t) 6= ;.
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Lemma 8. The locality filter described above fulfils Definition 14.

Proof. We assume for s, t 2 V \T , the distance µ(s, t) 6= µT (s, t) and thus µ(s, t) < µT (s, t).
Then, the meeting node m of a CH-query is not a transit node, and it has to be in the
forward search space for s, §"(s) and in the backward search space for t, S#(t). Hence,
S"(s) \ S#(t) 6= ;.

The average size of these search spaces are much smaller than the full search spaces, e.g., 32
instead of 112 in the main test instance from Section 6.2.3. For the locality filter, only node
IDs need to be stored. Compared to (uncompressed) hub labelling which has to store full
search spaces and also distances to nodes, this already saves an significant amount of space.
If we are careful to number the nodes in such a way that nearby nodes usually have nearby

numbers, the node numbers appearing in a search space will often come from a small range.
We precompute and store these values in order to facilitate the following interval check :
When [min(S̄"(s)),max(S"(s))] \ [min(S#(t)),max(S#(t))] = ;, we immediately know that
the search spaces are disjoint. As the sole locality filter, this range compression would yield
too many false positives, but it works su�ciently often to drastically reduce the average
overhead for the locality filter. In the following we discuss a much more accurate lossy
compression of the search space bases locality filter that results in a remarkably e�cient
filter that is also easy to implement.

Graph Voronoi Label Compression. Note that the locality filter remains correct when we
add nodes to the search spaces. We do this by partitioning the graph into regions and define
the extended search space as the union of all regions that contain a search space node. This
helps compression since we can represent a cell using a single ID, e.g., the ID of a node
representing the region. This also speeds up the locality filter since instead of intersecting
the search spaces explicitly, it now su�ces to intersect the (hopefully smaller) sets of cell
ids. Hence, we want partitions that are large enough to lead to significant compression, yet
small and compact enough to keep the false positive rate small. Our solution is a purely
graph theoretical adaptation of a geometric concept. Our cells are graph Voronoi regions of
the transit nodes. Formally,

Vor(v) := {u 2 V : 8w 2 T \ {v} : µ(u, v)  µ(u, w)}

for v 2 T with ties broken arbitrarily. The intuition behind this is that a positive result
of the locality filter means that the search spaces of start and destination are somewhat
close to each other. Computing the Voronoi regions is easy, using a single Dijkstra run with
multiple sources on the reversed input graph, as shown by Mehlhorn [136]. We call this filter
the graph Voronoi filter.

6.2.3. Experimental Evaluation

We implement our algorithms and data structures in C++ using GCC’s compiler version
4.6.1 with full optimizations. The tests are done on Machine A, running Linux kernel version
2.6.34 The test instance is ptv-germany.
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Our CH variant implements the shared-memory parallel preprocessing algorithm of Vet-
ter [184] with a hop limit of 5 or 1 000 settled nodes for witness searches and 7 hops or 2 000
settled nodes during the actual contraction of nodes. The priority function is

2 ⇤ edgeQuotient + 4 ⇤ originalEdgeQuotient + nodeDepth.

Results for further instances can be found in Section 6.2.6. The following experiments are
conducted with a transit node set of size 10 000, if not mentioned otherwise, because key
results from previous work were based on the same number of transit nodes, e.g. [17].
The following design choices are used in our experiments. Forward and backward search

spaces are merged into one set for the locality filter. Forward and backward access node sets
are also merged into one set. Note that these two sets are distinct in our implementation.
As the ID of a node does not contain any particular information, node IDs can be changed

to gain algorithmic advantages. This renumbering is done by applying a bijective permu-
tation on the IDs, in order to ensure that each ID stays unique. We alter the labels of the
nodes in V so that T = {0, . . . , k� 1}. By proceeding this way, we can easily determine if a
node v is a transit node or not (during further preprocessing and during the query): v 2 T
if and only if v < k.

Node Renumbering. We examine renumbering strategies separately for the transit nodes
set T and for the remaining part of the CH search graph V \T . We follow two aims for
renumbering here. One is to make table lookups faster for non-local queries, while the other
aim is to make local queries as fast as possible. Therefore, we treat both parts of our data
structure with di↵erent strategies. If the access node IDs of a node are from a more compact
interval, the cache e�ciency of the table lookups is increased. Consider a number of access
nodes |A"(s)| = a and |A"(t)| = b for source and target nodes respectively. The obvious
worst case is a · b cache misses, while the best case is min(a, b) misses only. This happens
when all max(a, b) entries are in one cache line.
The lower, non-transit node portion of the CH search graph is renumbered. It is used for

local queries only and thus it has no e↵ect on non-local queries. It also does not influence
the preprocessing in our experiments and we attribute that to the fact that search spaces
are similar when nodes are close to each other and the fact that input ordering already
exhibits a good locality. Table 6.1 gives results on di↵erent renumbering strategies that we

Query
Local

Duration Search Total
Preprocessing Strategy [s] [µs] [µs]
(greedy) DFS Increasing 16.9 27.4 1.38
(greedy) DFS Decreasing 16.9 32.2 1.41
Input Level Ordering 8.9 38.4 1.45

Table 6.1.: Di↵erent Renumbering Strategies for the Remainder of the Graph V \ T . The
Transit Node Set T is in Input Order.
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Preprocessing Query
Exploration Voronoi Total LS LS Total

Hops [s] |S| |S| [byte / node] [%] [µs] [µs]
0 301 93.0 29.3 296 2.36 30.4 2.15
1 149 31.8 8.0 211 0.58 27.4 1.38
2 446 28.1 6.3 204 0.41 26.0 1.35
3 3237 27.9 6.1 203 0.40 25.7 1.32

Table 6.2.: Preprocessing E�ency Depending on Di↵erent Hop Depths for Stall-on-Demand.

detail in the following. The (greedy) DFS orderings renumber the graph according to a
(modified) depth-first graph traversal (DFS), while the input level ordering preserves the
partial ordering of the levels as described above for the transit node set. For every node
an upward DFS is conducted that relaxes edges in the CH search graph leading to more
important nodes. More specifically nodes in V \ T , which are not yet renumbered, are
explored. The actual renumbering happens during the backtracking step, i.e. we renumber
a node if and only if all of its successors are already renumbered. The actual IDs can be
assigned in increasing (k, . . . , n) or decreasing order (n, . . . , k). Column Duration gives the
duration of the renumbering while Local Search gives the average running time of a local
search. Column Total gives the average running time over all TNR queries. We see from
the results that the DFS strategy with increasing IDs show best e�ciency of local queries.
During the search for the access nodes, stalling of nodes is used to decrease the search

space sizes. We tested di↵erent variants, varying in the number of hops the stalling does
look ahead to find a witness for a wrong distance. A higher number of hops on the one hand
increases preprocessing time, but on the other hand decreases the search spaces, speeding up
the locality filter construction. Table 6.2 shows that while an increase of the hop depths from
1 to 2 manages to decrease space overhead and query times, a further increase from 2 to 3 is
inadvisable: Preprocessing is about 43 minutes longer, and yields only have better results.
Local searches take less time with higher hop depths. This is an interesting observation
because the stalling during preprocessing should not a↵ect local searches. An explanation is
that the omitted local searches (due to a more exact locality filter) have a higher distance.
T is renumbered with the so-called input-level strategy, while V \T is ordered by the

(greedy) DFS Increasing strategy. The interval check accelerates the average running time
of the locality filter. Prior to running the sweeping step, we check in constant time if the
two intervals overlap or not with the interval check.

Scalability. We test the scalability of parallel preprocessing for a varying number of cores
in Table 6.3. The raw results of parallelizable parts (preprocessing, distance table generation
and exploration) show a quite high variance of about 10%. Hence, we measured the prepro-
cessing five times and averaged over all runs. The values reported in column Total are the
sum of the respective averages. Column Cores gives the numbers of cores used. Columns
CH, Dist. Table, Exploration measure time, speedup and e�ciency of the respective parts.
The bottom line reports on four CPUs with activated hyper-threading (HT).
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CH Distance Table Exploration Total

Cores [s] Spdp E↵. [s] Spdp E↵. [s] Spdp E↵. [s] Spdp. E↵.
1 513 1 1 9.0 1 1 500 1 1 1046 1 1
2 281 1.83 0.91 5.1 1.74 0.88 287 1.74 0.87 596 1.75 0.88
3 203 2.53 0.84 3.9 2.23 0.76 202 2.48 0.83 432 2.42 0.81
4 160 3.20 0.80 2.9 3.16 0.79 145 3.43 0.86 334 3.13 0.78
4 (HT) 137 3.75 0.47 2.2 4.01 0.50 101 4.93 0.62 265 3.95 0.49

Table 6.3.: Scalability of Preprocessing Depending on the Number of Cores. The Transit
Nodes Set has Size 10 000 in Each Experiment.

We see that the total preprocessing time is only about a factor of two larger than plain CH
preprocessing. Most additional work is due to search space exploration from each node. We
see that the di↵erent parts of the algorithm scale well with an increasing number of cores.
The total e�ciency is slightly lower than the e�ciency of the individual parts, as it includes
about 23.6 seconds of non-parallelized work due to the Voronoi computation. On average a
non-local query takes 1.22 µs, while a local query takes 28.6 µs on average. This results in
an overall average query time of 1.38 µs and the space overhead amounts to 147 Bytes per
node. The rate of local queries is only 0.58 %. It does not reflect the performance of real
cores, but HT comes virtually for free with modern commodity processors.

Comparison Against the Literature. We compare to previous approaches for our test
instance. Some of these implementations were tested on an older AMD CPU [171], i.e.
Machine F, that was still available for running the queries1. Table 6.4 shows Original values
as given in the respective publications denoted by From, while columns Compared give
preprocessing and running times either done on or normalized to the aforementioned AMD

1Note that a current o↵-the-shelf commodity machine is about 2–3 times faster.

Preprocessing Query
Reported Compared Overhead Original Scaled

Method From [hh:mm] [hh:mm] [byte] [µs] [µs]
CH - 00:03 00:05 24 103 246

Grid-TNR [17] ⇡20:00 ⇡20:00 21 63 63
HH-TNR-eco [171] 00:25 00:25 120 11 11
HH-TNR-gen [171] 01:15 01:15 247 4.30 4.30
TNR+AF [24] 03:49 03:49 321 1.90 1.90
HL-0 local [4] 00:03 00:35 1341 0.70 1.34 ?
HL-1 global [4] 06:12 ⇡120:00 1055 0.25 0.49 ?
HLC [61] 00:30 00:59 100 2.99 5.74 ?
CH-TNR - 00:05 00:34 147 1.38 3.27

Table 6.4.: Comparison of Various Distance Oracles to Our Algorithm.
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Method From |T | Local False
[%] [%]

Grid-TNR [17] 7 426 2.6 -
Grid-TNR [17] 24 899 0.8 -
LB-TNR [72] 27 843 - -
HH-TNR-eco [171] 8 964 0.54 81.2
HH-TNR-gen [171] 11 293 0.26 80.7
CH-TNR - 10 000 0.58 73.6
CH-TNR - 24 000 0.17 72.1
CH-TNR - 28 000 0.14 72.1

Table 6.5.: Comparison of Locality Filter Quality Against Several TNR Variants from the
Literature.

machine using one core. Therefore, similar to the methodology in [24], a scaling factor of
1.915 is determined by measuring preprocessing and query times on both machines using a
smaller graph (of Germany). Scaled numbers are indicated by a star symbol: ?. Values for
CH were measured with our implementation.

The simplest TNR implementation is GRID-TNR that splits the input graph into grid
cells and computes a distance table between the cells border nodes. Note that the numbers
for GRID-TNR were computed on a graph of the USA, but the characteristics should be
similar to our test instance. Preprocessing is prohibitively expensive while the query is about
20 times slower than ours. The low space consumption is due to the fact that it is trivial to
construct a locality filter for grid cells. For HH-TNR [171] and TNR+AF [24], preprocessing
is single-threaded. The corresponding scaling factor for preprocessing is 3.551 and the fastest
HH based TNR variant is still slower by about a factor of two for preprocessing and queries.
Note that the HH-based methods all implement a highly tuned TNR variant with multiple
levels that is much more complex than our method. While TNR+AF has faster queries by
about 25%, the (scaled) preprocessing is about an order of magnitude slower and the space
overhead is twice as much. Also, TNR+AF requires a sophisticated implementation with a
partitioning step and the computation of arc flags.

While the hub labeling based methods achieve superior query times, the reader should
note the high space overhead incurred by these methods. Even the most space e�cient HL
needs more than seven times more space. HL-0 local reports faster preprocessing than our
method with nine times higher space overhead. It should be noted that these experiments
were done on three times as many cores with 20% faster clock speed of 3.2 GHz and 50%
larger L3 cache of 16 MiB. Single core preprocessing for HL-O local takes 17.9 minutes while
our approach is slightly faster with 17.4 minutes on a slower machine. We observe that even
HL with the fastest preprocessing has faster queries than ours by about a factor of 2–3.
On the other hand, only the space requirement of HLC has relevance in practice but it has
slower queries than ours on average.

The quality of our locality filter is compared to other TNR implementations in Table 6.5.
These variants di↵er in the number of transit nodes and in the graph used to determine
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them. Nevertheless, the graphs are all road networks that exhibit similar characteristics.
The number of transit nodes for CH-TNR is chosen to resemble data from the literature.
We see that the fraction of local queries of our variant is lower than or on par with the
numbers from the literature. Also, the rate of false positives is much lower than previous
work. Most noteworthy, the recent method of LB-TNR applies sophisticated optimization
techniques, but does not produce a transit node set with superior locality as the rate of
correctly computed global queries matches our locality filter.

6.2.4. Impact of |T | on Query E�ciency

Figure 6.1 gives a row-stacked plot that details the contributions of each part of the query
to the average total query time depending on the transit node set size. We see that most of
the query time is spent in table lookups and that this portion stays relatively stable over the
entire parameter space. We attribute that to two reasons. First, the number of access nodes
is relatively stable. It drops from roughly 8.5 to just below 7. Hence, the number of table
lookups is also relatively stable. Second, the table lookups are mostly dominated by cache
misses and it appears that our renumbering e↵ort is successful in that it already minimizes
the number of cache misses across the board.
In the following, preprocessing running times are reported for 4 threads. As reported

before, the size of the transit node set is a tuning parameter. We look into the impact of
varying the size of this set in the following experiments. Especially, we explore the e↵ect of
transit node set size on the fraction of local queries, space overhead and query time.
Table 6.6 reports on these experiments. Column |T | gives the size of the transit node set,

while column Prepoc. reports on the duration of the preprocessing. Columns (Non-)Local
give the fraction of (non-)local queries and the respective query times. Column Amortized
reports amortized query times. The results of the experiment support the results from the
previous section that the number of local queries decreases with an increasing transit node
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Figure 6.1.: Average Query Duration Depending on the Number of Transit Nodes. Time for
Local Queries is Averaged over the Total Number of Queries.

131



6.2. Contraction Hierarchies Based Transit Node Routing

Preproc. Non-Local Local Amortized
|T | [min] [%] [µs] [%] [µs] [µs]
7000 6.1 99.12 1.225 0.88 32.661 1.501
14000 5.5 99.62 1.229 0.38 25.187 1.320
21000 5.2 99.79 1.198 0.21 21.977 1.243
28000 5.1 99.86 1.189 0.14 21.728 1.218

Table 6.6.: Average Query E�ciency, Preprocessing Time, and Space Overhead Depending
on the Number of Transit Nodes using 4 cores. 100 000 Queries in Total.

set. Furthermore, we see a decrease in total preprocessing time. There is a trade-o↵ between
transit node set size and duration of search space exploration. Likewise, the amortized query
time decreases as the number of local queries drops. This is also reflected in the absolute
numbers of Table 6.7 in which 100 000 random queries are performed.

The decrease in local queries is not uniform across all Dijkstra ranks. There appears to
be a threshold after which the fraction of performed local queries falls sharply. Table 6.8
reports on the fraction of local queries that are performed depending on the Dijkstra rank.
Increasing the transit node set size e↵ectively lowers the rank at which the locality filter
detects roughly half of the queries as local queries. These values are given in bold. The
threshold rank decreases by several orders of magnitude over the parameter space.

A closer look at the query performance according to Dijkstra rank is given in Figure 6.2.
Note the log scale. We see that the query time is dominated by the rather expensive fall-back
algorithm for short-range queries in all the experiments. Also, we see that the query time
falls sharply for medium to long range queries once the shortest paths get covered by the
transit node set. Beyond this threshold the time approaches the bare minimum needed for
running the locality filter and the table lookups, which is constant in practice. Additionally,
we see that increasing the transit node set size has an e↵ect on the threshold when queries
are not local any more. This is also supported by the results of Table 6.8. It is a tuning
parameter that allows us to select a trade-o↵ between transit node set size and query time.

Local Searches
Time Amortized

|T | #Performed [µs] [µs]
7 000 8 798 31.4 0.277
14 000 3 820 24.0 0.092
21 000 2 128 20.8 0.044
28 000 1 441 20.5 0.029

Table 6.7.: Rate of Local Queries and Corresponding Amortized Query Duration Depending
on the Transit Node Set Size. 100 000 Queries in Total.
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|T |  29 210 211 212 213 214 215 216 217 218 219 220 � 221

7 000 100 100 99 98 96 88 74 56 34 15 5 1 0
14 000 100 99 98 95 86 68 47 28 12 4 1 0 0
21 000 100 99 96 89 73 51 29 14 5 1 0 0 0
28 000 100 97 93 81 61 38 19 8 2 1 0 0 0

Table 6.8.: Rate of Local Queries Depending on Dijkstra Rank. Bold Values Indicate the
Approximate 50% Threshold.
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Figure 6.2.: Rank Plot Depending on Size of Transit Node Set for ptv-europe.

6.2.5. Impact of |T | on Space Overhead

The e↵ect of transit node set size on space requirements is examined next. Besides the
underlying contraction hierarchy, the distance table, and access nodes, as well as the locality
filter contribute to the space consumption.
The average numbers of nodes in the search space, Voronoi representatives and access

nodes per node are plotted against varying sizes of T . For all values, the average of the
respective forward and backward sizes is given since the values are virtually identical. We
observe that these numbers fall – as expected – the larger the transit node set gets. The
results are plotted in Figure 6.3. Obviously, the raw size of the CH is independent of |T |
while the distance table grows quadratically. Space for access nodes slowly decreases with
|T | since the average number of access nodes decreases with smaller local search spaces. The
same applies to the Voronoi locality filter – it needs less space and gets more e↵ective at the
same time.
Figure 6.4 shows the relation between memory requirements and transit node set size.

Note that the implementation in this experiment does not merge (Voronoi) search spaces or
access node sets to give a clearer picture of the memory consumption of each part of our
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Figure 6.3.: Depending on the Size of the Transit Node Set: Average Size of Search Space
and Voronoi Filter (left), and Average Number of Access Nodes (right).

method. We see that the main driver here is the size of the distance table which depends
quadratically on the size of the transit node set. Although, the average access node set
decreases with an increasing transit node set size, it is not enough to compensate for the
distance table. We note that the space requirement of the search spaces is more or less
constant over the entire parameter space.
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6.2.6. Results for Further Instances

Further experiments are done with two additional instances with di↵erent characteristics
and which are di�cult for CH, ptv-euro-dist and osm-germany-4. The first one has the
same topology as ptv-europe with distance metric edge-weights. The second one explicitly
models turn restrictions from the data and uses travel-time metric. The experiments on
osm-germany-4 were performed on the slightly slower Machine I because it has more RAM.
We determine scaling factors to compare the outcomes by running instance ptv-europe on
that machine. The factors are 0.804 and 0.960 for preprocessing and query, respectively.
The results of our experiments are scaled accordingly to the speed of the faster machine.

We see that the average number of access nodes as well as the average number of Voronoi
representatives decrease with an increasing size of the transit node set. Although, it takes
longer to preprocess the distance table, the impacted is minor when compared to CH graph
preprocessing. Most nodes during a CH search are relaxed in the most upper portions of
the hierarchy. The decrease in preprocessing duration is caused by likewise decreased search
spaces in the sub-transit node portion of the hierarchy.

The same holds true for the query. The larger the transit node set, the faster the queries
become. This is expected behavior because of two reasons. First, search spaces below the
transit node set become smaller as argued above. Second, the number of local fallback queries
decreases because even more of the queries can be answered by table lookups. Unfortunately,
the distance table of the transit node set grows quadratically with the number of nodes.
Therefore, the overall space consumption increases again at some point when the quadratic
increase of the distance table can not be compensated by the falling average number of access
nodes and Voronoi representatives. We attribute this behavior to the fact that most edge
relaxations during CH query happen in the highest portions of the hierarchy. So, there is
a point of diminishing returns when the transit node set covers this dense portion of the
hierarchy. Note that the results shown in Table 6.9 are selected to reflect this observation.

Instance osm-germany-4 is not strongly connected, it may be that we end up with an
empty set of forward or backward access nodes for some nodes. In that case the minimum in
Equation 6.1 minimizes over an empty set. We define this minimum as1 correctly indicating
non-reachability in case of a non-local query. Similarly, non-existing paths between pairs of

Graph |T | |A| |S| Byte / time query
node [min] [µs]

ptv-euro-dist 10 000 18.0 22.1 440 32.4 6.717
15 000 17.1 18.7 424 28.9 4.678
25 000 14.5 14.7 456 26.1 3.317

osm-germany-4 20 000 9.11 14.66 278 18.9 2.669
40 000 7.78 11.85 383 16.9 2.518
50 000 7.37 11.01 476 16.6 2.678

Table 6.9.: Experiments on Further Graphs. Timings of the Second Graph are Scaled to
Match the Same Hardware.
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Figure 6.5.: Rank Plot Depending on Size of Transit Node Set for ptv-europe-dist.

transit nodes will be detected during the precomputation and are indicated by a distance
of 1, too. The search assigning Voronoi representatives may not reach all nodes and any
unreached nodes are assigned to a dummy Voronoi region.

Next, we turn to ptv-euro-dist. As to be expected from previous work, we see that switching
to distance metric is costly. The number of access nodes doubles and accordingly space
overhead also doubles. Since the number of table lookups is quadratic in the number of
access nodes, the query time nearly quadruples. On the positive side, the detailed model
of osm-germany-4, which is perhaps closest to state of the art routing applications, behaves
similar to euro-time. The number of access nodes increases only slightly, and considering
the larger graph size, the preprocessing time also remains moderate. This is an important
di↵erence to plain CHs where switching to a detailed graph model leads to significantly
increased query time.

Figure 6.5 shows the rank plot for the ptv-euro-dist instance for varying sizes of the
transit node set. Again, we observe that the parameter influences the threshold from which
on shortest paths are covered by access nodes. Also, we see the trade-o↵ between query
time and transit node set size. Figure 6.6 shows the result for the same experiment on the
edge-expanded graph of Germany, instance osm-germany-4. Note that we experimented on
a much higher number of transit nodes on this instance, because it is much larger than
the other instances. Again, we observe a sharp cut-o↵ from which on paths are covered by
access nodes and that the value of |T | is a tuning parameter when this cut-o↵ occurs. Most
interestingly, the queries seem to have a greater variance in the sense that there are outliers
that have rather low query time.
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Figure 6.6.: Rank Plot Depending on Size of Transit Node Set for osm-germany-4.

6.3. Further Improvements

In addition to the previous experiments we identify a number of additional enhancements
and use cases of our method. Each of the following sub-sections is work in progress at the
time of writing. Thus, the results shall be treated as preliminary.

6.3.1. Pruning with Arc Flags

The experimental evaluation of Section 6.2.3 shows that the majority of the query time is
spent in table lookups and only to a lesser extent in the locality filter. Here, we analyze how
further pruning using arc flags could be applied to achieve a sub-microsecond distance oracle
on a fictive 2 GHz CPU. Thus, while the following numbers are encouraging, they have to
be taken with a grain of salt. First, we briefly explain the layout of the query and reach
for previous work by Bauer et al. [24], Delling [55] and Abraham et al. [58] to conduct the
preprocessing. Second, we note that the cost of a L1 cache miss is about 2–10 cycles and the
cost of a L3 cache miss is about 100 cycles on a modern memory architecture. A L1 cache
hit is accounted for by a single nano-second. On a 2 GHz machine this amounts to 5 and
50 nanoseconds, respectively. These numbers were determined experimentally by Luxen and
Schieferdecker [128] when researching the cost associated with low-level memory accesses.
The TNR query can be sped up by using arc flags as previously reported, e.g. [24]. It is

very similar to traditional arc flags. Instead of partitioning the entire input graph, only the
core induced by the transit nodes is preprocessed. Before running the table lookups for each
and every pairwise combination of access nodes, a small set of extra data in cache is queried,
if a table lookup and the possibly associated expensive cache miss is needed at all.
If we partition the overlay network induced by the transit nodes into 48 regions, like [55],

this would require 96 bits (uncompressed) for each node to store forward and backward flags.
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This totals in less than 120 kBytes of additional information for the exemplary 10 000 transit
nodes from Section 6.2.3 which easily fits into the L2 cache of any modern processor. The
entire arc flag information cannot be scanned sequentially, but only a cache line of 32 bytes
at a time. We assume that the access nodes for each node have been sorted previously. Since
the data is sorted, it is fair to assume that six fetch operations into L2 cache su�ce to get
all transit nodes. This accounts to our fictive runtime with about 5 nanoseconds for each
L1 cache miss and a single nanosecond for each AND-operation to get the information if a
transit node can be discarded.
The following numbers are exemplary for the euro-time graph. If we have 6.1 Voronoi

access nodes on average, we expect to check 6.1 ⇥ 6.1 pruning flags in total. As Bauer et
al. [24] report, the remaining number of table lookups for TNR-AF is 3.1 which costs us
a L3 cache miss in the worst case. Thus, we account for an additional 55 nanoseconds for
each such access. If a local query CHASE query costs 6.1 microseconds on average [58]
and is conducted for 0.581% of all queries, then the local searches account for roughly 100
nanoseconds on average. This amounts to an expected total query time on a fictive 2 GHz
CPU of

250ns + 6 · 5ns + (6.1)2 · 1ns + 3.1 · 55ns + 100ns ' 590ns,

assuming that a single Voronoi-Locality filter invocation costs about 250 nanoseconds. This
is a conservative estimate since it does not account for any SIMD tuning opportunity.
For CHASE preprocessing, recent work of Abraham et al. [58] gives an e�cient algorithm

to compute arc flags on our test instance in mere minutes of preprocessing including CH
construction. The additional memory overhead amounts to roughly 600 MB. Further, we
make the (simplifying) assumption that computing the arc flags for the transit node overlay
graph can be computed without much additional cost. Thus, we conclude that it is possible
to construct a sub-microsecond distance oracle in less than 30 minutes.

6.4. Concluding Remarks

We have shown that a very simple implementation of CH-TNR yields a speedup technique
for route planning with an excellent trade-o↵ between query time, preprocessing time, and
space consumption. In particular, at the price of twice the (quite fast) preprocessing time
of Contraction Hierarchies, we get two orders of magnitude faster query times. Our purely
graph theoretical locality filter outperforms previously used geometric filters. To the best
of our knowledge, this eliminates the last remnant of geometric techniques in competitive
speedup techniques for route planning. This filter is based on intersections of CH search
spaces, and thus, exhibits an interesting relation to the hub labelling technique.
When comparing speedup techniques one can view this as a multi-objective optimization

problem along the dimensions query time, preprocessing time, space consumption, and sim-
plicity. Any pareto-optimal, i.e. non-dominated, method is worthwhile considering and good
methods should have a significant advantage with respect to at least one measure without
undue disadvantages for the other dimensions. In this respect, CH-TNR fares very well.
Only hub labelling achieves significantly better query times but at the price of much higher
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space consumption, in particular when comparable preprocessing times are desired. More-
over, simple variants of hub labelling have even worse space consumption and less clear
advantages in query time. When looking for clearly simpler techniques than CH-TNR, plain
CHs come into mind but at the price of two orders of magnitude larger query time and a
surprisingly small gain in preprocessing time.
CH-TNR also has significant potential for further performance improvements. Our variant

of CH-TNR focuses on maximal simplicity except for the Voronoi filter which is needed for
space e�ciency. There are many further improvements that won’t drastically change the
position of CH-TNR in the landscape of speedup techniques but that could yield noticeable
improvements with respect to query time, preprocessing time, or space at the price of a more
complicated implementation. We now outline some of these possibilities:

Query time. Arz et al. [9] outline a number of improvements on top of CH-TNR. In [17, 171]
local queries are handled fast by introducing additional layers of secondary and tertiary
transit nodes. Our local queries are faster than Highway Hierarchies, but at least a secondary
layer would be useful to further reduce the query times.
As given in Section 6.3.1, we expect about twice faster queries by combining CH-TNR

with arc flags for an additional sense of goal direction. Preprocessing time could be much
smaller than in [24] by new CH based methods for fast one-to-all shortest paths [58].
Furthermore, a fast many-to-one search can be based on CH-TNR. The idea is to precom-

pute v–t-distances for all transit nodes v 2 T and to store them in a separate array T . This
can be done using |A#(v)| · |T | table lookups accessing only |A#(t)| rows of the distance table.
Array T is likely to fit into cache. For a tuned locality filter, we also precompute µ(s, t) for
all source nodes s which require a local query. The method looks promising. Unfortunately,
reliable results are not yet available.

Preprocessing time. Besides CH construction the most time consuming part of our pre-
processing is the exploration of the sub-transit node CH search spaces. This can probably
be accelerated by a top-down computation as in [4]. Note that using post-search-stalling
we still get optimal sets of access nodes. Finding Voronoi regions might be parallelizable to
some extent since it explores a very low diameter graph.

Space. There are a number of relatively simple low level tuning opportunities here. For
example, we can more aggressively exploit overlaps between forward/backward access nodes
and search space representatives. These “dual use” nodes need to be stored only in the
access nodes set together with a flag indicating that they are also a region representatives.
We could also encode backward distances to access nodes as di↵erences to forward distances.
As in HH-TNR we could also encode access nodes of most nodes as the union of the access
nodes of their neighbors. The region representatives stored by our graph Voronoi filter are
virtually identical to the access nodes so that we only need to store a flag indicating whether
an access node is also a region representative plus the few region representatives that are
not access nodes also. In our experiments this would reduce space consumption by another
⇡ 15 bytes per node.
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CHAPTER 7

Discussion

We presented a number of building blocks for scalable mapping services. To do so, we
systematically followed the paradigm of Algorithm Engineering. We described the design
and the analysis of our algorithms in detail and conducted experimental evaluations on
real-world data sets to emphasize the practical relevance of the solutions. Likewise, the
experiments validated the e�ciency of our algorithms.
We looked into the problem of geocode matching and provided an approximate dictio-

nary index as a building block. We applied this approximate index to build an e�cient
and error-correcting geocoder. This was the first thorough algorithmic solution to the prob-
lem. Additionally, we looked at the sub-problem location disambiguation and introduced a
neighborhood graph that is able to find important cities in the vicinity independent of any
manually chosen distance thresholds.
We saw that the witness search of shared memory parallel Contraction Hierarchies pre-

processing can be adapted to practically use only constant space per preprocessing core
by applying tabulation hashing. Moreover, we saw that the approach can also be used to
construct an e�cient tie-breaking oracle that is used for independent set selection in the
contraction phase. Then, we introduced distributed memory parallel preprocessing of Con-
traction Hierarchies on a cluster of machines. The problem of preprocessing a distributed
graph is solved by introducing communication phases that synchronize graph changes among
the nodes of a compute cluster. Besides that, we showed how to conduct queries in such a
distributed cluster of machines.
To build further scalable services, we exploited the properties of the search data structure

of Contraction Hierarchies. We gave a way to compute location scores in a road network by
using an index data structure for points of interest. We introduced multi-hop ride sharing,
in addition to single-hop ride sharing, as a way to enhance the features of a ride sharing
platform. Here, passengers are allowed to possibly transfer between possible rides during a
journey as opposed to sticking only with a single driver. We observed speedups that were
an order of magnitude higher than what could have been expected from literature. Next,
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we looked at the e�cient generation of alternative routes. An additional preprocessing step
introduces an e↵ective and e�cient way to compute admissible alternative routes over a
single via node. Also, we showed how to compute user equilibria on road networks that is
an important step when doing tra�c simulations.
We did not only introduce algorithm to advanced routing queries, we also looked into how

to e�ciently construct a distance oracle that is easy to implement. We presented the first
instantiation of Transit Node Routing that solely builds on Contraction Hierarchies. Notably,
our variant is the first to not rely on any geometric information (or otherwise embedding) to
build a locality filter that identifies local queries. The additional preprocessing e↵ort of the
distance oracle takes about the same time as the construction of the underlying hierarchy.
The oracle provides distances in the order of a single microsecond on average.
We see the applicability of our algorithms and data structures in practice. A number of

features have already been implemented in the open source routing engine Project OSRM,
e.g. the space e�cient witness search for Contraction Hierarchies, and the computation of
an admissible alternative route. There is considerable interest from outside the scientific
research community in such scalable mapping services. This is reflected by the fact that the
publicly available routing service1 of Project OSRM is seeing 30-50 000 routing queries at
the time of writing per day. Likewise, the municipality of Copenhagen, Denmark is planning
to roll out an o�cially endorsed bicycle route planner based on Project OSRM by Summer
of 2013.

Future Work. We see a number of directions for future work. Geographical data sets in
general and road networks in particular moved away from static data that was compiled
by a vendor every other quarter of the year. It has moved to crowd-sourced data sets that
literally change by the minute. Most notably, OpenStreetMap adds around 250 000 road
segment to its data base per day. Designing algorithms and data structures that are able to
e�ciently handle this dynamics is an interesting future challenge for research.
This thesis can be seen as a starting point to work on further building blocks of features of

a scalable mapping service. As such, there is a number of further building blocks that are still
waiting to be looked at. We are especially thinking of more personalized features and features
that handle a stream of changes to the underlying data set. For example, the generation of
flexible route descriptions that are able to increase (or decrease) the level of detail of the
description for parts of the route on the fly without resorting to full re-computation is a
challenging feature. This way, the description is able to reflect local knowledge of a user.
Yet another interesting challenge of making services more dynamic is the integration of live
tra�c feeds into a mapping service. This integration, for example, shall deliver alternatives
to a route that has smallest detour under given tra�c conditions

1http://map.project-osrm.org
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[99] Heikki Hyyrö, Kimmo Fredriksson, and Gonzalo Navarro. Increased Bit-Parallelism for
Approximate String Matching. ACM Journal of Experimental Algorithmics, 10:1–27,
2005.

[100] H. Imai and Masao Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):159–162, 1987.
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[149] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorith-
mic Game Theory. Cambridge University Press, 2007.

[150] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear Su�x Array Construction by Almost
Pure Induced-Sorting. In Data Compression Conference (DCC ’09), pages 193–202.
IEEE, 2009.

[151] Masyuku Ohta, Kosuke Shinoda, Yoichiro Kumada, Hideyuki Nakashima, and Itsuki
Noda. Is Dial-a-Ride Bus Reasonable in Large Scale Towns? — Evaluation of Us-
ability of Dial-a-Ride Systems by Simulation. In Multiagent for Mass User Support
(MAMUS’03), volume 3012 of LNCS, pages 105–119. Springer, 2004.

[152] OpenStreetMap. http://osm.org – accessed March 29th, 2013.

[153] Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Algorithms in
Networks with Time-Dependent Edge-Length. Journal of the ACM, 37(3):607–625,
1990.

[154] R. Thomas O’Reagan and Alan Saalfeld. Geocoding Theory and Practice at the Bureau
of the Census. Technical report, United States Census Bureau, 1987.

153



Bibliography

[155] Mihai Patrascu and Mikkel Thorup. The Power of Simple Tabulation Hashing. In
ACM Symposium on Theory of computing (STOC ’11), pages 1–10. ACM, 2011.

[156] Ira Pohl. Heuristic Search Viewed as Path Finding in a Graph . Artificial Intelligence,
1(3):193–204, 1970.

[157] Project Gutenberg. http://www.gutenberg.org/ – accessed March 29th, 2013.

[158] PTV AG. http://www.ptv.de – accessed February, 25th 2013.

[159] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Experimen-
tal Comparison of Shortest Path Approaches for Timetable Information. In Workshop
on Algorithm Engineering and Experiments (ALENEX’04), pages 88–99. SIAM, 2004.

[160] Scott M. Ramming. Network Knowledge and Route Choice. PhD thesis, Massachusetts
Institute of Technology, 2002.

[161] John A. Rice and Vassilis Tsotras. Exact Graph Search Algorithms for Generalized
Traveling Salesman Path Problems. In International Symposium on Experimental Al-
gorithms (SEA’12), volume 7276 of LNCS, pages 344–355. Springer, 2012.

[162] Duangduen Roongpiboonsopit and Hassan A. Karimi. Comparative evaluation and
analysis of online geocoding services. International Journal of Geographical Informa-
tion Science, 24:1081–1100, 2010.

[163] R. W. Rosenthal. The Network Equilibrium Problem in Integers. Networks, 3:53–59,
1973.

[164] Tim Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.

[165] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest Neighbor Queries.
ACM SIGMOD Record, 24(2):71–79, 1995.

[166] Luis M. S. Russo, Gonzalo Navarro, Arlindo L. Oliveira, and P. Morales. Approximate
String Matching with Compressed Indexes. Algorithms 2, 3:1105–1136, 2009.

[167] Hanan Samet and Robert E. Webber. Storing a Collection of Polygons using Quadtrees.
ACM Transactions on Graphics, 4(3):182–222, 1985.

[168] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies. ACM Journal
of Experimental Algorithmics, 17(1):1–40, 2012.

[169] Peter Sanders and Christian Schulz. Engineering Multilevel Graph Partitioning Al-
gorithms. In European Symposium on Algorithms (ESA’11), volume 6942 of LNCS,
pages 469–480, 2011.

[170] Mark De Berg Sanderson and Janet Kohler. Analyzing Geographic Queries. In Work-
shop on Geographic Information Retrieval (SIGIR’04). ACM, 2004.

154



Bibliography

[171] Dominik Schultes. Route Planning in Road Networks. PhD thesis, Universität Karl-
sruhe, Fakultät für Informatik, 2008.

[172] Vibhuti Sengar, Tanuja Joshi, Joseph Joy, Samarth Prakash, and Kentaro Toyama.
Robust Location Search From Text Queries. In ACM SIGSPATIAL International
Symposium on Advances in Geographic Information Systems (GIS’07), pages 24:1–
24:8. ACM, 2007.

[173] Vibhuti Sengar, Tanuja Joshi, Joseph M. Joy, and Samarth Prakash. Building a Global
Location Search Service. In ACM SIGMOD International Conference on Management
of Data (SIGMOD’08), pages 1243–1246. ACM, 2008.

[174] Yosef She�. Urban Transportation Networks: Equlibrium Analysis with Mathematical
Programming. Prentice-Hall, Inc Englewood Cli↵s, NJ 07632, 1982.

[175] Front Seat Software. Walk Score Methodology, 2010. http://blog.walkscore.com/
wp-content/uploads/2010/12/WalkScoreMethodology.pdf.

[176] Christian Sommer. Shortest-Path Queries in Static Networks, 2012. submitted.
Preprint available at http://www.sommer.jp/spq-survey.htm.

[177] Heinz Spiess. Technical Note–Conical Volume-Delay Functions. Transportation Sci-
ence, 24(2):153–158, 1990.

[178] Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro Nakayama,
Katsuhiro Nishinari, Shin ichi Tadaki, and Satoshi Yukawa. Tra�c jams without
bottlenecks – experimental evidence for the physical mechanism of the formation of a
jam. New Journal of Physics, 10(3):033001, 2008.

[179] Burkhard Stiller Thomas Bocek, Ela Hunt. Fast Similarity Search in Large Dictio-
naries. Technical Report ifi-2007.02, Department of Informatics, University of Zurich,
2007. http://fastss.csg.uzh.ch/.

[180] Mikkel Thorup. Undirected Single Source Shortest Paths with Positive Integer Weights
in Linear Time. Journal of the ACM, 46(3):362–394, 1999.

[181] Esko Ukkonen. Approximate String-Matching with q-grams and Maximal Matches.
Theoretical Computer Science, 92(1):191–211, 1992.

[182] Esko Ukkonen. Approximate String Matching over Su�x Trees. In Symposium on
Combinatorial Pattern Matching (CPM’93), volume 684 of LNCS, pages 228–242.
Springer, 1993.

[183] Unknown Authors. TMC-Stauumfahrung:Verkehrsprobleme durch Stauverlagerungen?
Technical report, ADAC e.V., 2010.

[184] Christian Vetter. Parallel Time-Dependent Contraction Hierarchies. Technical report,
Karlsruhe Institute of Technology, Fakultät für Informatik, 2009. http://algo2.iti.
kit.edu/download/vetter_sa.pdf.

155



Bibliography

[185] Lars Volker. Route Planning in Road Networks with Turn Costs, 2008. Universität
Karlsruhe, Fakultät für Informatik, Student Research Project. http://algo2.iti.
uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf.

[186] John Glen Wardrop. Some Theoretical Aspects of Road Tra�c Research. In Institute
of Civil Engineers: Engineering Divisions, volume 1, pages 325–378, 1952.

[187] Wikipedia. http://wikipedia.org – accessed March, 29th 2013.

[188] W. John Wilbur and Karl Sirotkin. The Automatic Identification of Stop Words.
Journal of Information Science, 18:45–55, 1992.

[189] J.W.J. Williams. Algorithm 232: Heapsort. Journal of the ACM, 7(6):347–348, 1964.

[190] William E. Winkler. Approximate String Comparator Search Strategies for very Large
Administrative Lists. Technical report, Statistical Research Division, U.S. Census
Bureau, 2005.

[191] Ho Chung Wu, Robert Wing Pong Luk, Kam F. Wong, and Kui L. Kwok. Inter-
preting TF-IDF Term Weights as Making Relevance Decisions. ACM Transactions on
Information Systems, 26(3):1–37, 2008.

[192] Sun Wu and Udi Manber. Agrep – a Fast Approximate Pattern-Matching Tool. In
USENIX Technical Conference, pages 153–162, 1992.

[193] Sun Wu and Udi Manber. Fast Text Searching: Allowing Errors. Communications of
the ACM, 35(10):83–91, 1992.

[194] Yun Hui Wu, Lin Jie Guan, and Stephan Winter. Peer-to-Peer Shared Ride Systems.
In GeoSensor Networks, volume 4540 of LNCS, pages 252–270. Springer, 2006.

[195] Xin Xing, Tobias Warden, Tom Nicolai, and Otthein Herzog. SMIZE: A spontaneous
Ride-Sharing System for Individual Urban Transit. In Multiagent System Technologies
(MATES’09), volume 5774 of LNCS, pages 165–176. Springer, 2009.

[196] Jin Y. Yen. Finding the k Shortest Loopless Paths in a Network. Management Science,
17(11):712–716, 1971.

[197] Albert Lindsey Zobrist. A New Hashing Method with Application for Game Play-
ing. Technical Report 88, Computer Sciences Department, University of Wisconsin,
Madison, 1969.

156



APPENDIX A

Pseudo-Code of Geocoding Query

Listing A.1: Error-Correcting Geocoding Query

1 function geocode(street , city , d)
2 street_tokens = tokenize(normalize(street))
3 city_tokens = tokenize(normalize(city))
4 street_candidates = match(street_tokens , street_index , d, 1)
5 partial_city_candidates = match(city_tokens , city_index , 0, 1)
6 for s in street_candidates do
7 matched_city = (cities(s) \ partial_city_candidates)
8 if matched_city 6= ; do
9 if rating ((s, matched_city)) � threshold do

10 return (s, matched_city) end
11 end
12 end
13 for c in partial_city_candidates do
14 periphery_city_candidates = periphery(c)
15 matched_city = (cities(s) \ periphery_city_candidates)
16 if (matched_city 6= ;) and (rating ((s, matched_city)) � threshold) do
17 return (s,matched_city) end
18 end
19 city_candidates = match(city_tokens , city_index , 2, 1)
20 street_cities = ;
21 CT ⇥S := {(t, s) 2 city_candidates⇥street_candidates : t 2 cities(s) 6= ;}
22 for candidate in CT ⇥S do
23 matched_city = (cities(s) \ periphery_city_candidates)
24 if rating(candidate) � threshold do
25 return candidate end
26 end
27 end
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APPENDIX B

Assembly Code of Tabulation Hash Based Tie-Breaker

Listing B.1: X86 Assembly Code of Tabulation Hash Bias Function

1 bias(unsigned int , unsigned int):
2 mov rdx , QWORD PTR table1[rip]
3 mov rax , QWORD PTR table2[rip]
4 mov r8d , edi
5 shr r8d , 16
6 movzx ecx , di
7 movzx r9d , si
8 movzx r8d , r8w
9 movzx ecx , WORD PTR [rdx+rcx*2]

10 movzx edx , WORD PTR [rdx+r9*2]
11 xor cl , BYTE PTR [rax+r8*2]
12 mov r8d , esi
13 shr r8d , 16
14 movzx r8d , r8w
15 xor dl , BYTE PTR [rax+r8*2]
16 cmp edi , esi
17 movzx ecx , cl
18 setb al
19 movzx edx , dl
20 cmp cx , dx
21 setb sil
22 cmp cx , dx
23 cmovne eax , esi
24 ret

This is the actual assembly code generated by GCC 4.6.3 and has only three instructions
more than the code for a tie-breaker based on a simple linear congruence like a mod p+ b.
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APPENDIX C

Combined Rankplot for Distributed Contraction
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Figure C.1.: Combined Rankplot from [112] of Distributed Queries for all Three Test In-
stances on 16 PEs.
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APPENDIX D

Machine Table

Frequency RAM Cache
CPU Type [GHz] Cores [GB] [MB] Sections

A Core i7-920 2.667 4 12 8, L3 3.2, 3.3, 5.5, 6
B Xeon X5355 2.667 8 16 8, L3 4.3

(200 cluster nodes with InfiniBand interconnection network)
C Opteron 6212 2.600 6 128 16, L3 4.2
D Core i7-860 2.800 4 16 8, L3 3.4.1
E Xeon X5690 3.470 12 256 12, L3 5.2
F Opteron 270 2.000 1 8 2, L2 5.3
G Opteron 6168 1.900 12 128 6, L3 5.3, 5.5
H Opteron 8350 2.000 1 64 2, L2 5.6
I Xeon X5550 2.667 8 48 8, L3 3.2

Table D.1.: List of Machines Used in the Experiments.
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APPENDIX E

Extracting Graphs from OpenStreetMap

We explain how to generate the graphs from OpenStreetMap (OSM) that were used in thesis
from raw data. The description is given for a Unix/Linux based operating system, but the
steps should work very similarly on other operating systems. First, we show how to obtain
the data, and second, we show how extract a graph. Third, the graph data file format is
briefly explained.
The data comes in two di↵erent file format. One format is plain XML, the other is an

equivalent packed binary format, called pbf. Both formats are supported by the tool chain
used here. OSM Data literally changes by the minute and can be obtained from di↵erent
sources on the Internet. Geofabrik1 provides daily extracts of certain areas of the world, i.e.
select continents, countries, or select federal states.
The data of OSM is also available as a full history dump2, that contains every revision

of each object in the database. Revisions that existed at a given timestamp can be gen-
erated from this dump with a tool set called Osmium3 which is written in C++ and runs
on all major platforms. The code is open source and freely available. The program in
file examples/osmium range from history.cpp handles the generation. It generates the
history for a range of time and if start and end UNIX timestamp of that range equal, it
generates the planet file for that particular timestamp. These timestamps are set in code by
changing the values of variable time1 and time2 to valid UNIX timestamps:

Osmium :: Handler :: RangeFromHistory <Osmium :: Output ::Handler > range_handler
(out , time1 , time2);

After compiling the planet file can be extracted with:

1http://download.geofabrik.de
2http://planet.osm.org/planet/full-history/
3wiki.osm.org/wiki/Osmium
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E. Extracting Graphs from OpenStreetMap

$ ./ osmium_range_from_history infile.osm.pbf outfile.osm.pbf

Once an .osm.{xml/pbf} file has been generated or downloaded, it can be processed with
the routines of Project OSRM. Using the default car profile this is done by the following
command line: The result of this step is a generated graph file (file.osrm) and a list of turn

$ ./osrm -extract file.osm.pbf

restrictions (file.osrm.restrictions). We now describe the graph format:T The first four
bytes give the number of node, then a list of nodes is given. This is followed by four bytes
that give the number of edge and then a list of edges.

struct Node {
unsigned lat; // multiplied with 100.000

unsigned lon; // multiplied with 100.000

unsigned id; // original OSM ID

bool isBarrier; //cars cannot pass this node

bool isTrafficLight;
};
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struct Edge {
unsigned sourceID; // original OSM ID

unsigned targetID; // original OSM ID

int distance; // in [m]

short direction; // 0 = bidir , 1 = oneway

unsigned category; //see profile

short maxSpeed; // for cars

unsigned nameID; //ID for street name

bool isRoundabout; // indicates if edge is part of roundabout

bool ignoreInGrid; // indicates of edge shall be ignored in NN lookup

bool accessRestricted; // indicates if access is restricted

};

struct Restriction {
unsigned viaNode; // original OSM ID

unsigned sourceNode; // original OSM ID

unsigned targetNode; // original OSM ID

struct Bits { // mostly unused

Bits() : isOnly(false), unused1(false), unused2(false),
unused3(false), unused4(false), unused5(false),
unused6(false), unused7(false) {}

char isOnly :1; // indicates if the restriction is a only -restriction

or a no -restriction

char unused1 :1;
char unused2 :1;
char unused3 :1;
char unused4 :1;
char unused5 :1;
char unused6 :1;
char unused7 :1;
} flags;

};
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Deutsche Zusammenfassung

Kartendienste sind in den vergangenen Jahren im Internet allgegenwärtig geworden. Diese
Dienste erfreuen sich großer Beliebtheit. Dabei wird allerdings häufig übersehen, dass es
nur einige wenige global agierende Anbieter gibt, die den Löwenanteil des Markts unter
sich aufteilen. Dazu kommt, dass auch nur einige wenige Anbieter in der Lage sind im
sprichwörtlichen Sinne Millionen an Benutzern am Tag e�zient bedienen zu können. Leider
ist die verfügbare Literatur über diese Lösungen dünn gesät. Die vorliegende Arbeit stellt
einzelne Bausteine vor, wie verschiedene Feature eines Kartendienst e�zient zu Designen
und zu Implementieren sind.
Die o↵ensichtlichsten Kernkomponenten eines Kartendienstes sind die Anzeige von Karten,

die Routenplanung und weitere sogenannte Location Based Services, die komplexere Be-
nutzeranfragen beantworten. Sie tun dies indem sie bestehende Algorithmen und Daten-
strukturen nutzen oder neue zu diesem Zwecke entworfen werden. In der Regel ist es so,
dass einfache Lösungen, die ad-hoc entworfen und implementiert werden, schnell Ergeb-
nisse zeitigen. Allerdings kommen diese Ad-Hoc-Lösungen schnell an die Grenze ihrer Leis-
tungsfähigkeit. Es kann sein, dass diese Verfahren für kleine Datensätze und eine niedrige
Nutzerzahl zufrieden stellend funktionieren.
Das echte Problem bei Kartendiensten im Internet ist allerdings die Skalierbarkeit des

Dienstes. Es ist daher wichtig Algorithmen und Datenstrukturen zu nutzen, die auf zweierlei
Art skalieren. Zum einen müssen sie mit der Menge der zugrunde liegenden Daten skalieren
und zum anderen mit der Zahl der Benutzer. Damit eine Dienst wirklich skaliert, muss er
folgende Probleme e�zient lösen:

• Anfragen müssen so schnell wie möglich beantwortet werden.

• Die Algorithmen des Dienstes müssen robust gegen etwaige Ungenauigkeiten der Eingabe
sein.

• Vorberechnungen müssen gegebenfalls schnell sein, dabei aber mit moderaten Spe-
icherverbrauch zu recht kommen. Zudem soll es möglich sein sich ändernde Daten
regelmäßig neu vorauszuberechnen.
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Die vorliegende Arbeit untersucht Datenstrukturen und Algorithmen für Teilservices eines
Kartendienstes, die die oben genannten Punkt erfüllen.

Ergebnisse

Diese Arbeit untersucht neue und erweiterte Algorithmen und Datenstrukturen, die ver-
schiedene Aspekte eines Kartendienstes skalierbar implementieren. Diese Entwürfe folgen
dabei dem Paradigma des Algorithm Engineering. Neben dem Entwurf und er theoretischen
Analyse wird auch experimentell die Leistungsfähigkeit Lösungsansätze untersucht. Dies
heißt, dass die hier vorgestellten Verfahren implementiert und experimentell ausgiebig mit
realistischen Daten untersucht werden. Die vorliegende Arbeit untersucht Datenstrukturen
und Algorithmen für die folgenden Probleme:

Geokodierung. Ein Kartendienst ist immer nur so gut wie sein Lokalisierungsmechanis-
mus. Es kann sein, dass ein Benutzer nicht die Geokoordinaten zu einem Ort, aber dafür
eine Textbeschreibung, bspw. eine Adresse, kennt. Eine exzellente Routingkomponente
wird in diesem Sinne nur als exzellent wahr genommen, wenn Start- und Zielorte sinnvoll
zugewiesen werden. Beschreibungen, also Adressformate im weiteren Sinne, sind allerdings
nicht einheitlich in allen Regionen der Welt [124] und selbst dann können Ortsangaben auch
durchaus mehrdeutig sein. Schreibfehler das Problem nicht einfacher.
Zuerst wird ein fehlertoleranter Textindex untersucht. Dieser ist in der Lage Anfragen

an ein Wörterbuch approximativ zu beantworten. Anschaulich gesprochen werden einige
Schreibfehler toleriert. Der Schwerpunkt liegt hier auf der Analyse eines Tuning-Parameters,
der es erlaubt Rechenzeit gegen Speicherplatz zu tauschen und umgekehrt. Im weiteren
Verlauf wird dieser Textindex als Baustein benutzt um einen e�zienten Geokodierer zu
entwerfen. Dieser Geokodierer kann in Echtzeit Textbeschreibungen von Orten in sinnvolle
Ortsreferenzen auflösen. Auch hier werden verschiedene Parameter experimentell untersucht.

Routenplanung. Der Teildienst mit der größten Außenwirkung ist zweifelsfrei die Routen-
planung. Die Arbeit untersucht wie ein bestehendes und erfolgreiches Verfahren der schnellen
Routenplanung, Contraction Hierarchies, e�zient auf modernen Rechnern vorberechnet wer-
den kann. Dabei werden zwei Ansätze verfolgt. Zum einen wird gezeigt, wie sich die Vor-
berechnung auf mehreren CPU-Kernen eines Computers mit wenig Speicherplatz implemen-
tieren lässt. Dazu werden bestehende Heuristiken angepasst und sogenannte Speicherhierar-
chien ausgenutzt. Zum Anderen wird die Vorberechnung auf einen Cluster vieler Computer
mit mittlerer Leistungsfähigkeit verteilt. Es wird gezeigt, wie die Vorberechnung von Con-
traction Hierarchies auf solch einem Cluster durchgeführt wird. Zusätzlich wird untersucht,
wie sich auch Anfragen der Benutzer auf einen Cluster verteilen lässt.

Weitere Location Based Services. In diesem Teil der Arbeit werden grundlegende Eigen-
schaften der Suchdatenstruktur von Contraction Hierarchies ausgenutzt um mehrere Loca-
tion Based Services im weiteren Sinne zu konstruieren. Zum einen werden bestehende Tech-
niken soweit adaptiert, dass Punkten in einem Straßennetzwerk eine Bewertung zugewiesen
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werden kann, bspw. wie gut die Dinge des täglichen Lebens von diesen Punkten aus zu
erledigen sind. Anschließend wird untersucht wie bei Mitfahrgelegenheiten die Zuweisung
von Angeboten und Nachfragen algorithmisch gelöst werden kann. Beispielsweise werden
nicht nur perfekte Zuweisungen gesucht, sondern auch sinnvolle, die einen kleinen Umweg
enthalten. Analog dazu wird untersucht, wie sinnvolle Alternativrouten in einem Straßen-
netzwerk schnell und e�zient berechnet werden können. Dies ist wichtig um eventuelle Staus
zu umfahren. Im letzten Teil dieses Abschnitts der Arbeit wird ein Verfahren vorgestellt,
dass schnell und e�zient eine Verkehrsumlegung berechnen kann. Dies ist wichtig bei der
Verkehrssimulation um aus gegebenen Verkehrmustern Voraussagen ableiten zu können. Alle
diese Verfahren werden experimentell untersucht und der Einfluss gegebener Parameter her-
ausgearbeitet.

Distanzorakel. Im letzten und innovativsten Teil dieser Arbeit wird ein sehr schnelles
Distanzorakel auf Basis von Contraction Hierarchies konstruiert. Es wird gezeigt, dass
es möglich ist in (nahezu) konstanter Zeit Distanzanfragen auf einem Straßennetzwerk zu
beantworten ohne auf geometrische Informationen zurückzugreifen. Dies war ein länger o↵en
stehendes Problem. Die Korrektheit des Verfahrens wird theoretisch gezeigt. Zudem gibt
es eine ausgiebige experimentelle Analyse. Diese zeigt, wie sich der Aufwand für die Kon-
struktion des Orakels in Abhängigkeit von den vorhandenen Parameter verhält und welche
Parameterkombinationen beste Ergebnisse liefern.
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