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Abstract
In computer science, engineering, and related fields, graph partitioning is a common
technique. For example, in parallel computing good partitionings of unstructured graphs
are very valuable. In this area, graph partitioning is mostly used to partition the under-
lying graph model of computation and communication. Roughly speaking, nodes in this
graph denote computation units, and edges represent communication. This graph needs
to be partitioned such that there are few edges between the blocks (pieces). In particular,
if we want to use k processors we want to partition the graph into k blocks of about equal
size. In this work we focus on a version of the problem that constrains the maximum
block size to (1+ε) times the average block size and tries to minimize the total cut size,
i.e. the number of edges that run between blocks.

A successful heuristic for partitioning large graphs is the multilevel graph partition-
ing approach, where the graph is recursively contracted to create smaller graphs which
should reflect the same basic structure as the input graph. After applying an initial par-
titioning algorithm to the smallest graph, the contraction is undone and, at each level, a
local search method is used to improve the partitioning induced by the coarser level.

Although several successful multilevel partitioners have been developed in the last
two decades, we had the impression that certain aspects of the method are not well
understood. We therefore have built our own graph partitioner KaPPa [87] (Karlsruhe
Parallel Partitioner) with a focus on scalable parallelization. Somewhat astonishingly,
we also obtained improved partitioning quality through rather simple methods. This
motivated us to make a fresh start, putting all aspects of multilevel graph partitioning on
trial. Our focus in this work is on solution quality and sequential speed for large graphs.
We contribute a number of improvements which lead to enhanced partitioning quality.
This includes an integration of several improved coarsening schemes, flow methods,
improved local search, repeated runs similar to the approaches used in multigrid solvers,
a distributed evolutionary algorithm, and a novel algorithm for the highly balanced case.

First we present multilevel graph partitioning algorithms which are bundled in the
framework called KaFFPa (Karlsruhe Fast Flow Partitioner). We compare different
matching-based and algebraic multigrid-inspired coarsening schemes, experiment with
algebraic distance, and demonstrate computational results on several classes of graphs
that emphasize the running time and quality advantages of different coarsening schemes.
We then look at two novel local improvement schemes, i.e. algorithms that move nodes
between the blocks of a partition in order to reduce the cut. The first scheme is, in con-
trast to previous techniques, very localized and the second scheme is based on iterative
max-flow min-cut computations in areas around the cut of a partitioned graph. Overall



this leads to a system that for many common benchmarks achieves both high quality
solutions and favorable tradeoffs between running time and solution quality.

We then present meta-heuristics for the graph partitioning problem. Here, we start
by looking at advanced global search strategies – iterated multilevel algorithms. The V-
cycle scheme has been introduced by Walshaw [162] and can be traced back to multigrid
solvers for sparse systems of linear equations. The main idea is to iterate the coars-
ening and uncoarsening phase. Once the graph is partitioned, edges that are between
two blocks are not contracted. We look at two further strategies and are able to show
that iterated multilevel algorithms are superior to multiple restarts of the multilevel algo-
rithm if a weak local search algorithm is used. Further we contribute a novel distributed
evolutionary algorithm, KaFFPaE (KaFFPaEvolutionary), in order to tackle the prob-
lem. KaFFPaE uses KaFFPa to provide new effective combine and mutation operators.
This is combined with a scalable communication protocol. KaFFPaE is able to compute
partitions that have quality comparable to or better than previous entries in Walshaw’s
benchmark archive within a few minutes for graphs of moderate size. Previous methods
of Soper et al. [157] required running times of up to one week for graphs of that size.

The presented algorithms are able to compute partitions of very high quality in a
reasonable amount of time when some imbalance ε > 0 is allowed. However, they are
not very good for strict balance constraints such as the case ε = 0. In this case, state-of-
the-art local search algorithms are restricted to finding nodes to be exchanged between
a pair of blocks in order to decrease the cut and to maintain balance. We introduce new
techniques that relax the balance constraint for node movements but globally maintain
balance by combining multiple local searches. The combination problem is reduced
to finding negative cycles in a directed graph, exploiting the existence of efficient al-
gorithms for this problem. This is combined with an algorithm to balance unbalanced
solutions and is integrated into our evolutionary algorithm.

The perspective taken in this work is that we develop our graph partitioners KaFFPa,
KaFFPaE, and KaBaPE (Karlsruhe Balanced Partitioner Evolutionary) in a benchmark
driven way, achieving a system that has been able to improve or reproduce most of the
entries reported in the Walshaw benchmark. Another equally valid perspective is that
we have applied the methodology of algorithm engineering to all aspects of the multi-
level graph partitioning approach, achieving improvements in coarsening, local search,
parallelization, global search guidance, and embedding into meta-heuristics.

Our partitioners also work very well on the instances of the 10th DIMACS Imple-
mentation Challenge on Graph Partitioning and Clustering, achieving the best marks
both with respect to quality and running time versus quality among all participants. A
surprising result was obtained for a part of the challenge, where the objective function
was not cut size but a measure of communication volume. This objective function can be
expressed as a hypergraph partitioning problem. Interestingly, KaFFPaE outperformed
dedicated hypergraph partitioners by just changing the fitness function to prefer solutions
with low communication volume – the multilevel algorithm still optimizes cuts. The al-
gorithms developed within this work have been released as an open source project.
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1
Introduction

1.1 Motivation
It is quite fascinating that the problem of dividing a graph into a given number of blocks
having roughly equal size, such that some objective function is minimized, literally has
applications everywhere. For example, solving the graph partitioning problem can help
to balance load and minimize communication in scientific simulations [150, 35, 69], can
speed up Dijkstra’s Algorithm [108, 120], and in general is an useful technique in the
route planning area [111, 100, 48]; it supports VLSI design [7, 8], and also can preserve
sparsity in Gaussian elimination on sparse symmetric positive definite matrices [74].

Probably the best known application of graph partitioning is the numerical so-
lution of partial differential equations on a highly parallel computer. Here, a con-
tinuous simulation space is discretized by a fine mesh. Solving the partial differ-
ential equation then becomes an iterative process. In each iteration, all the mesh
points are updated using neighboring values in the mesh. Outputs from one itera-
tion serve as inputs for the next. Informally speaking, nodes in the mesh denote
computation units and edges represent communication. To achieve high accuracy

Figure 1.1: An example mesh.

of the approximation, the number of
nodes can become quite large, so that ei-
ther the time to solve the system is im-
mense or the mesh does not fit into the
main memory of a single system. There-
fore, to still get an approximation in a
reasonable amount of time, parallel com-
puting and graph partitioning comes into
play. After we have build a graph model
of computation and communication, we
can solve the graph partitioning problem
to equally distribute the work on k available processors of the supercomputer and mini-
mize the communication overhead. By doing so, we get an efficient parallel computation
scheme for approximating the solution of the differential equation.
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What makes the problem even more appealing is the fact that the problem is NP-
complete [90, 73] for most objective functions and that there is no constant factor ap-
proximation on general graphs [34], if the objective is to minimize the number of edges
that run between blocks. Hence, mostly heuristics are used in practice to partition graphs.

These heuristics usually use an astonishingly large set of “easier” graph algorithms
to tackle the problem. For example, algorithms such as weighted matching, spanning
trees, edge coloring, breadth-first search, dominating sets, maximum flows, diffusion,
negative cycle detection, shortest paths, and strongly connected components.

Probably the most successful heuristic for partitioning large graphs is the multilevel
graph partitioning approach which was initially introduced to the graph partitioning field
in the nineties by Barnard and Simon [18] to speed up spectral partitioning techniques.
Later Hendrickson and Leland [85] formulated the multilevel approach as it is known
today. The graph is recursively contracted to create smaller graphs which should reflect
the same basic structure as the input graph. This is achieved by modifying edge and
node weights of the coarser graphs. Often the weight of a coarse node is the number of
the contracted nodes that it represents and the weight of an edge stands for the number
of parallel edges that it replaces. This way, a partitioning of a coarse level creates a
partitioning of the finer graphs having the same objective and balance. After applying
an initial partitioning algorithm to the smallest graph, the contraction is undone and,
at each level, a local search method is used to improve the partitioning induced by the
coarser level. The intuition behind this approach is that a good partition at one level of
the hierarchy will also be a good partition on the next finer level so that local search
converges quickly, i.e. rapidly finds a good solution. On the other hand, local search
has a somewhat global view on the optimization problem on the coarse levels of the
multilevel approach, whereas it has very fine view on the fine levels of the hierarchy.

A few years ago, partly during my diploma thesis [152], we started to build our
own parallel graph partitioner KaPPa (Karlsruhe Parallel Partitioner) [87] since we had
the impression that certain aspects of the multilevel method are not well understood –
although several successful multilevel partitioners have been developed in the last two
decades. Our focus in KaPPa was on scalable parallelization. Somewhat astonishingly,
we also obtained improved partitioning quality through rather simple methods. This
motivated us to make a fresh start, putting all aspects of multilevel graph partitioning on
trial focusing on solution quality and sequential speed for large graphs in this work.

Solution quality is of major importance in applications such as VLSI Design [7, 8]
where even minor improvements in the objective can have a large impact on the pro-
duction costs and quality of a chip. Indeed, high quality solutions are also favorable in
applications where the graph needs to be partitioned only once so that the partition can
be used over and over again and the running time of the graph partitioning algorithms is
only a minor issue [108, 120, 111, 100, 48, 69]. Thirdly, high quality solutions are even
important in areas in which the running time overhead is paramount [157], such as finite
element computations [150] or the direct solution of sparse linear systems [74]. Here,
high quality graph partitions can be useful for benchmarking purposes. However, due
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to the parallelization of our systems, we are able to compute partitions that have qual-
ity comparable to or better than previous entries in Walshaw’s well-known partitioning
benchmark within a few minutes for graphs of moderate size. Previous methods of Soper
et al. [157] required running times of up to one week for graphs of that size. We therefore
believe that in contrast to previous methods, our systems can be very valuable in the area
of high performance computing. Moreover, we believe that many of the improvements
presented in this work are transferable to other combinatorial graph problems, such as
hypergraph partitioning, graph drawing and graph clustering.

1.2 Main Contributions

We start by presenting several advances to the multilevel graph partitioning scheme.
This includes multiple coarsening schemes to create graph hierarchies, algebraic dis-
tance as a measure of connectivity, an initial partitioning algorithm as well as two new
local search algorithms: a very localized local search algorithm and an algorithm that is
based on multiple iterations of max-flow min-cut computations between pairs of blocks
of a given partition. We then contribute several meta-heuristics for the graph partitioning
problem. We start by looking at advanced global search strategies – iterated multilevel
algorithms. The iterated V-cycle scheme has been introduced by Walshaw [162] and can
be traced back to multigrid solvers for sparse systems of linear equations. The main
idea is to iterate the coarsening and uncoarsening phase multiple times. Once the graph
is partitioned, edges that are between two blocks are not contracted. We look at two
further strategies, F-cycles and W-cycles, and show that iterated multilevel algorithms
are superior to multiple restarts of the multilevel algorithm, if a weak local search algo-
rithm is used. We obtain a system, KaFFPa (Karlsruhe Fast Flow Partitioner), that can
be configured to either achieve the best known partitions for many standard benchmark
instances, or to be the fastest available system for some large graphs while still improv-
ing partitioning quality compared to the previous fastest system. Further, we emphasize
the success of the proposed algebraic multigrid coarsening and the algebraic distance
connectivity measure between nodes on highly irregular instances. Our experimental
evaluations of KaFFPa focus mostly on the number of cut edges. However, we also look
at the maximum communication volume and the size of node separators.

To further improve solution quality, we continue by presenting a novel distributed
evolutionary algorithm, KaFFPaE (KaFFPaEvolutionary). In KaFFPaE, we have a gen-
eral combine operator framework, i.e. a partition P can be combined with another par-
tition or an arbitrary clustering of the graph. Inspired by the V-cycle, this is achieved by
running a modified version of KaFFPa that will not contract edges that are cut in one of
the input partitions/clusterings. The framework ensures that the resulting partition is at
least as good as the input partition P and in addition, the local search algorithms can
effectively exchange good parts of the solution on the coarse levels by moving only a few
nodes. We combine this with a scalable communication protocol similar to randomized
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rumor spreading and obtain a system that on the one hand scales well to large networks
and machines and on the other hand is able to improve the best known partitioning results
for many inputs in a short amount of time.

KaFFPa and KaFFPaE also work very well on the instances of the 10th DIMACS Im-
plementation Challenge on Graph Partitioning and Clustering achieving the best marks
– and thus winning the graph partitioning subchallenges – both with respect to partition
quality and running time versus quality among all participants. In this work, we also
present the results obtained during the challenge.

The outlined algorithms are able to compute partitions of very high quality in a rea-
sonable amount of time when some imbalance ε > 0 is allowed. However, they are not
very good for the highly balanced case. In this case, state-of-the-art local search algo-
rithms are more or less restricted to finding pairs of nodes which have to be exchanged
between blocks in order to decrease the cut and to maintain balance. We contribute
novel local search techniques for the highly balanced case, including the perfectly bal-
anced case ε = 0, that from a meta-heuristic point of view increase the neighborhood
of a perfectly balanced solution in which local search is able to find better solutions.
More precisely, these techniques encode local searches that are not restricted to a bal-
ance constraint into a small directed graph allowing us to find combinations of these
searches that maintain balance. Such combinations are found by applying a negative cy-
cle detection algorithm on the graph. We combine these techniques with an algorithm to
balance unbalanced solutions and integrate it into our evolutionary algorithm, KaFFPaE.
Our experiments show that the proposed techniques are also helpful if some imbalance
is allowed. The obtained system, KaBaPE (Karlsruhe Balanced Partitioner Evolution-
ary), has been able to improve or reproduce most of the best known highly balanced
partitioning results reported in the Walshaw benchmark.

We describe multiple algorithmic extensions for our algorithms. For the purpose of
partitioning road networks, we present Buffoon. We use natural cuts by Delling et al.
[49] as a pre-processing technique to obtain a much smaller version of the graph that has
similar cuts as the original road network. Partitions of the smaller graph correspond to
partitions of the original graph so that we use KaFFPaE to partition the smaller version
of the graph. Buffoon computes partitions of road networks that have comparable to
or better quality than those produced by PUNCH [49]. Moreover, we present a pre-
processing technique tailored to partition large social networks with high quality. The
main idea is to compute a size-constrained clustering of the graph, contract it, and then
to apply our previously developed partitioning algorithms on the contracted graph. The
presented algorithm is the first algorithm to partition a social network with billions of
edges on a single machine with 64 GB main memory. In both cases, the smaller graph
is up to orders of magnitude smaller than the input road network which speeds up the
computations our partitioners drastically. Our last algorithmic extension can compute a
k-way separator from a given k-way partition.
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1.3 Outline
We begin in Chapter 2 by presenting preliminaries and basic concepts that are used
throughout this work. We continue by elaborating related work in Chapter 3. Multilevel
algorithms and global search strategies are examined in Chapter 4. Chapter 5 covers
evolutionary graph partitioning techniques. We contribute specialized algorithms for the
highly balanced case of the problem in Chapter 6. Chapter 7 compares our partitioners
against state-of-the-art partitioning libraries, while Chapter 8 covers easy algorithmic
extensions, e.g. for the partitioning of road networks, the partitioning of large social
networks, or a post-processing technique to obtain node separators from a given parti-
tioning. Conclusions are given in the respective chapters and in the last chapter of this
work – Chapter 9. Appendix A evaluates the performance of the algebraic multigrid
inspired coarsening scheme.
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2
Preliminaries

In this chapter, we present the basic concepts that are used in this work.

2.1 Graphs and Related Problems
A weighted (directed) graph G consists of a set of nodes V and a set of edges E ⊂V ×V
to represent relations between the nodes, as well as two cost functions. One function
assigns weights to the nodes c : V → >0 and a second function ω : E → assigns costs
to the edges. In general, we write n for the number of nodes and m for the number
of edges. In an undirected graph an edge (u,v) ∈ E implies an edge (v,u) ∈ E and
that both edge weights are equal. We use the set notation {u,v} ∈ E in the undirected
case. We extend c and ω to sets, i.e. c(V �):= ∑v∈V � c(v) and ω(E �):= ∑e∈E � ω(e). The
set Γ(u):= {v : {u,v} ∈ E} denotes the neighbors of a node u. The degree of a node is
the number of its neighbors. With ∆ we denote the maximum degree of a graph. The
weighted degree of a node is the sum of the weights of its incident edges. A graph is
bipartite if its node set can be divided into two disjoint sets U and V such that {u,v} ∈ E
implies u ∈U and v ∈V or vice versa. A subgraph is a graph whose node and edge set
are subsets of another graph. We call a subgraph induced if it has every possible edge.

A matching M ⊆ E is a set of edges that do not share any common nodes, i.e. the
graph (V,M) has maximum degree one. The weight of a matching is defined as the
weight induced by its edges ω(M). A matching is said to be maximal if there is no edge
that can be added to the matching, and a matching that has maximum weight among all
matchings is called a maximum weight matching. For a graph a subset C ⊆V is a closed
node set if and only if for all nodes u,v ∈ V , the conditions u ∈ C and (u,v) ∈ E imply
v ∈C. In other words, a subset C is a closed node set if there is no edge starting in C and
ending in its complement V \C. A subset D ⊆ V is a dominating set if for each v ∈ V
either v itself or one of its neighbors is contained in D. D is called an independent set if
the nodes of D don’t share an edge.

A sequence of nodes s → · · · → t such that each pair of consecutive nodes is con-
nected by an edge, is called an s-t path. We say that s is the source and t is the target.
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The length of a path is defined by the sum of its edge weights. A shortest s-t path is
a path with the smallest weight among all s-t paths. A path with equal source and tar-
get is called a cycle. It is simple if no node is contained twice. A cycle with negative
weight is also called negative cycle. A directed graph is strongly connected if there is a
u-v path and a v-u path for each pair of nodes u, v. A maximal strongly connected in-
duced subgraph is called strongly connected component. These concepts are transferred
straightforwardly to undirected graphs. However, the term connected component is used
instead. In a directed graph, a linear ordering ≺ of the nodes such that an edge (u,v)∈ E
implies that u ≺ v in the ordering is called a topological order.

In a directed graph with two designated nodes, a source s and a sink t, that has
non-negative edge weights (serving as capacities), a flow is a function f : V ×V →
that satisfies a capacity constraint, a flow conservation constraint and a skew-symmetry
constraint. The capacity constraint demands that the flow value associated is lower
or equal to the capacity ( f (u,v) ≤ ω(u,v)) and the flow conservation constraint re-
quires that each node emits the same amount of flow as it receives – except the
two designated nodes source s and sink t. The skew symmetry constraint requests
f (u,v) =− f (v,u) ∀(u,v) ∈V ×V . f (u,v) denotes the amount of flow on an edge (u,v).
The value of a flow val( f ) is defined as the total amount of flow that is transferred from
the source to the sink. The residual capacity is defined as r f (u,v) = ω(u,v)− f (u,v).
The residual graph for a directed graph G = (V,E) and a flow f is given as G f = (V,E f )
where E f = {(u,v) ∈V ×V | r f (u,v)> 0 and (u,v) ∈ E or (v,u) ∈ E}.

An s-t cut is defined as tuple (S,V \S) with s ∈ S ⊂ V and t ∈ V \S. The weight of
an s-t cut is defined as ∑(u,v)∈E∩S×V\S ω(u,v), i.e. the weight of the edges starting in S
and ending in V \S. A minimum s-t cut has the smallest weight among all s-t cuts. It is
well-known that the value of a maximum s-t flow corresponds to the value of a minimum
s-t cut, and if a maximum s-t flow is given, then a minimum cut is easily computed.

2.2 Partitions and Clusterings
Given a number k ∈ >1 and an undirected graph with non-negative edge weights, the
graph partitioning problem asks for blocks of nodes V1,. . . ,Vk that partition the node set
V , i.e.

1. V1 ∪ · · ·∪Vk =V
2. Vi ∩Vj = /0 ∀i �= j.

A balance constraint demands that all blocks have about equal size. More precisely,
it requires that, ∀i ∈ {1..k} : |Vi|≤ Lmax:= (1+ε)�|V |/k� for some imbalance parameter
ε ∈ ≥0 in the case that the cost function of the nodes is identical to one. In the case of
ε = 0, we also use the term perfectly balanced. A block Vi is underloaded if |Vi|< Lmax
and overloaded if |Vi|> Lmax. A clustering is also a partition of the nodes, however k is
usually not given in advance and the balance constraint is removed. Note that a partition
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is also a clustering of a graph. In both cases, the goal is to minimize or maximize a
particular objective function. We introduce two well-known objective functions for the
partitioning problem in the next section. A node v ∈Vi that has a neighbor w ∈Vj, i �= j,
is a boundary node. An edge that runs between blocks is also called cut edge. The set
Ei j:=

�
{u,v} ∈ E : u ∈Vi,v ∈Vj

�
is the set of cut edges between two blocks Vi and Vj.

An abstract view of the partitioned graph is the so called quotient graph, where nodes
represent blocks and edges are induced by connectivity between blocks, i.e. there is an
edge in the quotient graph if there is an edge that runs between the blocks in the original,
partitioned graph. An example is given in Figure 2.1. Given two clusterings C1 and
C2, the overlay clustering is the clustering where each block corresponds to a connected
component of the graph GE = (V,E\E ) where E is the union of the cut edges of C1 and
C2, i.e. all edges that run between blocks in either C1 or C2.

A

B

C

A

C

B

Figure 2.1: A graph that is partitioned into three blocks of size four on the left and its
corresponding quotient graph on the right. There is an edge in the quotient graph if there
is an edge between the corresponding blocks in the original graph.

2.3 Objective Functions
In practice, we often seek to find a partition that minimizes (or maximizes) an objective.
Probably the most prominent objective function is to minimize the total cut

∑
i< j

ω(Ei j).

It is well-known that there are more realistic (and more complicated) objective functions
involving also the block that is worst and the number of its neighboring nodes [84],
but minimizing the cut size has been adopted as a kind of standard, since it is usually
highly correlated with the other formulations. We believe that the results presented in
this work are adaptable to other objective functions and also to other settings such as
graph clustering. Hence, by default we minimize the total cut.

The second objective that we investigate, has a closer look at the communication
volume and was used in a subchallenge of the 10th DIMACS Challenge on Graph Parti-
tioning and Graph Clustering [16]. For a block Vi, the communication volume is defined
as comm(Vi) := ∑v∈Vi c(v)D(v), where D(v) denotes the number of different blocks in
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which v has a neighbor node, excluding Vi. The maximum communication volume is
then defined as maxi comm(Vi), which should be minimized.

Thirdly, we look at the size of node separators. The node separator problem asks to
find three subsets A,B and S, such that there are no edges between A and B. The objective
is to minimize the size of the separator S or depending on the application the weight of
its nodes c(S) while A and B are balanced. Note that removing the set S from the graph
results in at least two connected components.

The expansion of a not necessarily balanced, non-trivial cut (V1,V2) is defined as

ω(E12)

min(c(V1),c(V2))
.

Similarly, the conductance of such a cut is defined as

ω(E12)

min(vol(V1),vol(V2))
,

where vol(S) := ∑v∈S d(v) denotes the volume of the set S. Note that the problem that
asks to find a non-trivial cut with minimum conductance or expansion, does not directly
enforce a balanced cut as in the balanced graph partitioning problem.

2.4 Instances
Throughout this work we present experiments on various kinds of graphs. In this section,
we summarize the main properties, the source, and the area of application of the graphs.
The graphs stem from different applications: finite element methods (FEM), street net-
works, geometric graphs, sparse matrices, social networks and web graphs. Table 2.2
presents the properties of the graphs. All of the graphs presented here have unit edge
and node weights. Our default value for the allowed imbalance is 3%, since this is one
of the values used in the Walshaw benchmark [157] and the default value in Metis [95].
When reporting average values of different algorithm configurations, we report the geo-
metric mean of the average results on the instances (graph, k) under consideration.

2.4.1 Graph Families
rggX is a random geometric graph with 2X nodes where nodes represent random
points in the unit square and edges connect nodes whose Euclidean distance is below
0.55

�
lnn/n. This threshold was chosen in order to ensure that the graph is almost

connected. The largest graph of this class is rgg24. The graphs are taken from [87] and
are available for download at the 10th DIMACS Implementation Challenge [16].

DelaunayX is the Delaunay triangulation of 2X random points in the unit square. The
largest graph of this class is del25. The graphs are taken from [87] and are available for
download at the 10th DIMACS Implementation Challenge [16].
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graph n m Rf. graph n m Rf.
Random Geometric Graphs Delaunay Triangulations

rgg15 215 160 240 [17] delaunay15 215 98 274 [17]
rgg16 216 342 127 [17] delaunay16 216 196 575 [17]
rgg17 217 728 753 [17] delaunay17 217 393 176 [17]
rgg18 218 ≈1.5M [17] delaunay18 218 786 396 [17]
rgg20 220 ≈6.9M [17] delaunay20 220 ≈3.1M [17]

Graphs from Numeric Simulations Social Networks
3elt 4 720 13 722 [161] p2p-gnu04 6 405 29 215 [109]
4elt 15 606 45 878 [161] PGPgcomp 10 680 24 316 [109]
fe_sphere 16 386 49 152 [161] email-EuAll 16 805 60 260 [109]
cti 16 840 48 232 [161] as-22july06 22 963 48 436 [46]
cs4 33 499 43 858 [161] slashdot0902 28 550 379 445 [109]
fe_pwt 36 519 144 794 [161] loc-brightkite 56 739 212 945 [109]
fe_body 45 087 163 734 [161] loc-gowalla 196 591 950 327 [109]
t60k 60 005 89 440 [161] coAutCiteseer 227 320 814 134 [17]
wing 62 032 121 544 [161] wiki-talk 232 314 ≈1.5M [109]
finan512 74 752 261 120 [161] citCiteseer 268 495 ≈1.2M [17]
fe_tooth 78 136 452 591 [161] coAutDBLP 299 067 977 676 [17]
fe_rotor 99 617 662 431 [161] coPapCiteseer 434 102 ≈16.0M [17]
598a 110 971 741 934 [161] coPapDBLP 540 486 ≈15.2M [17]
fe_ocean 143 437 409 593 [161] as-skitter 554 930 ≈5.8M [109]
144 144 649 ≈1.1M [161] Road Networks
wave 156 317 ≈1.1M [161] uk 4 824 6 837 [161]
m14b 214 765 ≈1.7M [161] luxemburg 114 599 119 666 [17]
auto 448 695 ≈3.3M [161] bel 463 514 591 882 [51]
m6 ≈3.5M ≈10.5M [17] nld 893 041 ≈1.1M [51]
as365 ≈3.8M ≈11.3M [17] deu ≈4.4M ≈10.9M [51]
nlr ≈4.2M ≈12.5M [17] great-britain ≈7.7M ≈8.2M [17]
htric00 ≈6.6M ≈9.9M [17] asia ≈12.0M ≈12.7M [17]
hbubbl10 ≈18.3M ≈27.5M [17] eur ≈18.0M ≈44.4M [51]

VLSI Graphs Web Graphs
memplus 17 758 108 384 [161] web-google 356 648 ≈2.1M [109]
g3circuit ≈1.6M ≈3.0M [46] uk-2002 ≈18.5M ≈262M [104]

Sparse Matricies uk-2007-05 ≈106M ≈3.3BN [104]
bcsstk29 13 992 605 496 [161] Kronecker Graphs
bcsstk32 44 609 ≈2.0M [161] k500-s-log17 131 072 ≈5.1M [17]
af_shell9 504 855 ≈8.5M [46] k500-s-log21 ≈2.1M ≈91.0M [17]
af_shell10 ≈1.5M ≈25.6M [46] Erdös Rényi Graph
kktpower ≈2.1M ≈6.5M [46] er-f1.5-s23 ≈8.4M ≈100M [17]
nlpkkt160 ≈8.4M ≈110M [46]

Table 2.2: Basic properties of the graphs from our benchmark set (m number of undi-
rected edges). The instances are grouped roughly by their application area. Within their
groups, the graphs are sorted by the number of nodes.
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2.4.2 Sources
The graphs in Table 2.2 stem from different sources: the 10th DIMACS Implementation
Challenge [17, 16], the Florida Sparse Matrix Collection [46], the Laboratory of Web
Algorithms [104], the Stanford Large Network Dataset Collection [109] and the Wal-
shaw Benchmark [161]. Most of the graphs are available for download at the website of
the 10th DIMACS Implementation Challenge [17, 16] in the same graph format that is
used by Chaco [83], Metis [95] and Scotch [127].

2.5 Machines
We now describe the machines that are used in the following chapters.

Machine A is a cluster with 200 nodes where each node is equipped with two Intel
Xeon X5355 Quad-Core processors which run at a clock speed of 2.667 GHz. Each
node has 16 GB local memory and 2x4 MB of L3-Cache. All nodes are attached to an
InfiniBand 4X DDR interconnect which is characterized by its very low latency of below
2 microseconds and a point to point bandwidth between two nodes of more than 1300
MB/s. This machine is used in Chapter 4, Chapter 5 and Chapter 6. This machine has
been replaced at the end of 2012 by machine B.

Machine B is a cluster with 400 nodes where each node is equipped with two Intel
Xeon E5-2670 Octa-Core processors (Sandy Bridge) which run at a clock speed of 2.6
GHz. Each node has 64 GB local memory, 20 MB L3-Cache and 8x256 KB L2-Cache.
All nodes have local disks and are connected by an InfiniBand 4X QDR interconnect
which is characterized by its very low latency of about 1 microsecond and a point to
point bandwidth between two nodes of more than 3700 MB/s. This machine is used in
Chapter 7 and Chapter 8.

Machine C has two Quad-Core Intel Xeon X5550 processors which run at a clock
speed of 2.67 GHz. It has 48 GB local memory 2x4 MB L3-Cache and 4x256 KB
L2-Cache. This machine is used in Chapter 6 and Chapter 8.
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Related Work

In this chapter we give a brief overview of the work that has been done on graph par-
titioning. There has been a huge amount of research on graph partitioning so that we
refer the reader to [70, 150, 23] for most of the material. Hence, in this chapter we
try to focus on selected related work and recent coordinate free techniques that have
not yet been covered by these papers. There are further methods like space-filling
curves [130, 131, 76, 149], methods that handle graphs having geometrical information
[22, 76, 82, 119, 134], simulated annealing [92] and ant-colony optimization [103, 44]
or parallel approaches to graph partitioning [94, 167, 164, 41, 42, 87, 136] which are not
discussed here. Moreover, at this place we restrict ourselves to the techniques that we
did not integrate into our systems or only present an abstract view. Techniques that we
integrated into our systems are explained in detail in the corresponding chapters.

For historic reasons the chapter is organized as follows: we start by outlining local
search algorithms such as the Kernighan-Lin and the Fiduccia-Mattheyses algorithm in
Section 3.1. We continue in Section 3.2 with the illustration of methods to obtain an ini-
tial partition and explain the multilevel method in Section 3.3. Evolutionary algorithms
are covered in Section 3.4, and we elaborate on more advanced concepts such as flow-
based methods for improving conductance or expansion cuts in Section 3.5. We continue
with an overview of hardness and approximation results in Section 3.6 and exact meth-
ods in Section 3.7. Section 3.8 reports the rules of the well-known Walshaw Benchmark.
We finish this chapter with a description of available software packages in Section 3.9.

3.1 Local Search
In general, given a partition of a graph, a local search algorithm aims to improve an
objective function (such as the number of edges that run between blocks) by moving
nodes between the blocks. With the application of improving the paging properties of
computer programs in mind, Kernighan and Lin [98] were probably the first that de-
fined the graph partitioning problem and worked on local improvement methods for this
problem. In his PhD thesis [99] from 1969, Kernighan states “A program [...] can be



26 Chapter 3. Related Work

thought of as [...] a set of connected entities. The entities might be subroutines, [...].
The connections between the entities might represent [...] references by one entity to an-
other. The problem is to assign the objects to “pages” (of a given size) to minimize the
number of references between objects which lie on different pages.” and defines meth-
ods to find and improve a partition of a graph. The main idea of Kernighan and Lin was
that, given a balanced partition of a graph into two blocks V1 and V2, there are subsets
A ⊂ V1 and B ⊂ V2 such that the partition that is created when moving the nodes in A
to V2 and the nodes in B to V1, is globally optimal. Kernighan and Lin then contributed
a method to find “good” sets A and B to reduce the cost of a partition. We explain the
method in the next section. One major drawback of the method is that it is expensive
in terms of asymptotic running time. The worst case running time for one iteration of
the Kernighan-Lin algorithm is O

�
n2 logn

�
. Dutt [59] has shown how to improve this

to O(mmax(logn,∆)) time. A major breakthrough has been achieved by Fiduccia and
Mattheyses [66] in 1982. Fiduccia and Mattheyses modified the algorithm and present
data structures such that the asymptotic running time of their local search algorithm was
reduced to linear time O(m). The modifications made and the data structures used are
explained in Section 3.1.2. Karypis and Kumar [96] further improved the running time
by stopping the algorithm of Fiduccia and Mattheyses, when it did not decrease the edge
cut for x node moves. x is usually much smaller than the number of nodes.

All three algorithms allow a node to be moved at most once during one iteration of
the algorithm. More expensive local search algorithms such as Tabu Search weaken this
restriction, i.e. a node can be moved multiple times during one iteration. We explain Tabu
Search at the end of Section 3.1.3. However, today most of the methods for improving a
given partition are variations of the Fiduccia-Mattheyses algorithm.

3.1.1 Kernighan-Lin Algorithm
As mentioned earlier, the Kernighan-Lin algorithm [98] tries to improve a given
partition by finding subsets A ⊂ V1, B ⊂ V2 and then moving the nodes in A
and B to the respective opposite block. Indeed, there are optimal choices for A
and B, but finding them is also NP-hard [98]. Hence, Kernighan and Lin devel-
oped a heuristic approach to find “good” sets. One pass of the Kernighan-Lin
algorithm consists of finding these sets and exchanging the corresponding nodes.

V1 V2
Figure 3.1: A node with gain one.

The Kernighan-Lin algorithm repeatedly finds
such sets A, B to be exchanged until it reaches a
local optimum, i.e. exchanging the sets does not
decrease the number of edges cut.

We now explain how Kernighan and Lin per-
form a single pass. Before we start, we introduce
the definition of a node’s gain. Let the input graph
G be partitioned into two blocks V1 and V2. The
gain of a node v ∈V1 is defined as g(v) = ω({(v,w) | w ∈ Γ(v)∩V2})−ω({(v,w) | w ∈
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Γ(v)∩V1), i.e. the reduction in the cut when v is moved from block V1 to block V2. The
notion of gain is used analogously for nodes in block V2. Thus, when g(v) > 0 we can
decrease the cut by g(v) by moving v to the opposite block. Figure 3.1 gives an example.
Since the partition should stay balanced, the Kernighan-Lin algorithm searches for pairs
of nodes to be exchanged. For v ∈V1 and w ∈V2 let g(v,w) denote the gain of exchang-
ing v and w between V1 and V2. Analogously, if v and w are not adjacent, then the gain
is g(v,w) = g(v)+g(w). If v and w are adjacent, then g(v,w) = g(v)+g(w)−2ω(v,w)
since the edge between v and w will still be a cut edge after the nodes are exchanged.
Now a pass works as follows. First of all, a node can have two states: marked and
unmarked. At the beginning of a pass each node is unmarked. Then, the following pro-
cedure is repeated p times where p = min(|V1|, |V2|). Find an unmarked pair v ∈V1 and
w ∈V2 for which g(v,w) is maximum. Note that g(v,w) is not necessarily positive. Mark
v and w and update the gain values of all the remaining unmarked nodes as if we had
exchanged v and w. Only the gain values of the neighbors of v and w must be updated,
since only these values could have changed. The step of finding a pair such that g(v,w)
is maximum can be implemented in O(n logn) time.

After this procedure is done, we have an ordered list L of node pairs (vi,wi), i =
1, . . . , p. To output the sets A and B, we first find the smallest index k ∈ {0, . . . , p}
such that ∑k

i=1 g(vi,wi) is maximum. The sets are then defined as A := ∪k
i=1{vi} and

B := ∪k
i=1{wi}. If k is not zero, then the cut will be reduced if A and B are exchanged.

In this case, the exchange is done and a new pass is started. Note that the algorithm has
the ability to climb out of local minima to a certain extent due to the way in which the
sets A and B are created. This is one of the key features of the algorithm.

3.1.2 Fiduccia and Mattheyses
Over time there have been many improvements made to the Kernighan-Lin algorithm.
The most important improvement is a slight modification of the algorithm and the reduc-
tion in running time that was provided by Fiduccia and Mattheyses [66] in 1982. They
reduce the complexity for a single pass to O(m) by using novel data structures. Like
the Kernighan-Lin method, the Fiduccia-Mattheyses method performs passes in which
each node is moved at most once, and the best bisection observed during an iteration (if
the corresponding reduction in the number of edges cut is positive) is used as input for
the next iteration. However, instead of selecting pairs of nodes, the Fiduccia-Mattheyses
method selects single nodes for movement.

In the perfectly balanced case, a pass of the Fiduccia-Mattheyses method works as
follows. The algorithm starts by setting the state of every node to unmarked. In each step
an unmarked node v with maximum gain value is alternately selected from the blocks
V1 and V2. The node is then marked and the gain values of its unmarked neighbors are
updated. This leads to two ordered sequences (v1, . . . ,vp) and (w1, . . . ,wp) with vi ∈V1
and wi ∈V2. The algorithm then searches for the smallest index k ∈ {0, . . . , p} such that
∑k

i=1 g(vi)+g(wi) is maximized. If the resulting sum is positive, the algorithm performs
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∆

pmax

−∆

|V |

Figure 3.2: Bucket priority queue used in the Fiduccia-Mattheyses algorithm.

the movements and starts the next pass. Otherwise, the algorithm stops. If a reasonable
amount of imbalance is allowed, then instead of alternately selecting the blocks, the
balance criterion is used for the selection of the block. Note that both, the Kernighan-
Lin and the Fiduccia-Mattheyses algorithm, do not stop when the corresponding sums
are negative and thus are able to climb out of local minima to a certain extent.

In comparison to the Kernighan-Lin algorithm, there are two major modifications.
First, nodes are selected independently for exchange so that computation of the gain
values can be done efficiently. On the other hand, Fiduccia and Mattheyses provide a
data structure such that the node with the best gain and the update of the gain values
of the neighbors of a moved node can be done in constant time if the edge weights
are non-negative integers. The data structure that is used to achieve this is a bucket
priority queue. We now briefly outline this data structure since we also use it in our local
search algorithms. Figure 3.2 gives an illustration. Let us assume that the graph has
unit edge weights (integer weights are introduced straightforwardly). First, observe that
the largest gain that a node can have is smaller than or equal to the maximum degree
of a node (a similar argument holds for the smallest gain value that a node can have).
Hence, one needs at most 2∆+ 1 buckets to order and to maintain all nodes sorted by
their gain. Now, one needs two such specialized bucket queues, one for each block. Let
the buckets be numbered/ordered in the following way: [−∆, . . . ,∆]. In the ith bucket
a doubly linked list1 stores all nodes that have gain i. Furthermore, for each node the
position within the linked list of its bucket and a pointer pmax to the largest/maximum
non-empty bucket is stored separately. Clearly, removing a node from and inserting a
node into its bucket can be done in constant time. Hence, if the gain of a node changes,
then the position of the node in the bucket queue is also updated in constant time. The
pointer to the maximum element is updated in constant time if a node is inserted into the
queue and the gain is larger than the current maximum. When trying to remove a node

1we use arrays in our implementation
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v with maximum gain, one might have to update the pointer to the maximum non-empty
bucket by decreasing the pointer until one has found the largest non-empty bucket since
the pointer is not updated when a node is removed. This can also be done in amortized
constant time. To see this, let v and w be two subsequent max gain nodes selected for
movement by the Fiduccia-Mattheyses algorithm that are initially in the same block. The
cost for updating the pointer pmax can be at most O(d(v)+d(w)) (this is the case when
g(v) = d(v) and g(w) =−d(w)). However, this is amortized, since the gain values of all
neighbors of both maximum elements have to be updated. Hence, the total running time
of one pass of the Fiduccia-Mattheyses algorithm is in O(m). It is worth mentioning that
Bob Darrow was the first who implemented the Fiduccia-Mattheyses algorithm (he is
mentioned only in the acknowledgements of the paper of Fiduccia and Mattheyses [66]).

On small randomly generated graphs, the quality of the partitions produced by
the Fiduccia-Mattheyses algorithm is slightly worse than the quality produced by the
Kernighan-Lin algorithm [92]. The graphs used had about five hundred nodes and a
random initial partition of the graph was used as starting point of the algorithms.

3.1.3 Further Improvements
Karypis and Kumar [96] successfully improved the algorithm further by introducing the
following modifications. First of all, only boundary nodes are kept in the priority queues
and the moves are done right away. After local search has stopped, they undo the node
movements until they are at the best partition found during the iteration. On the other
hand, their variant of the algorithm terminates when the edge cut does not decrease after
x node moves. Terminating the Fiduccia-Mattheyses pass in this fashion significantly re-
duces the running time. However, note that all boundary nodes are used for initialization.
In Chapter 4, we will introduce a variant of the algorithm that is highly localized, i.e. the
priority queue is initialized with a single boundary node. This version of the algorithm is
able to find partitions with improved quality compared to the Fiduccia-Mattheyses algo-
rithm being initialized with all boundary nodes, and it can still be implemented in linear
time.

The third modification that has been done by Karypis and Kumar is the following.
First note that the Fiduccia-Mattheyses algorithm is dependent on the order in which the
gain values are inserted into the priority queue, and a random tie-breaking mechanism is
used if there are multiple nodes with equal gain. Hence, an additional pass of the algo-
rithm can yield an improved cut even if a previous pass did not yield an improvement.
Karypis and Kumar used multiple restarts of the algorithm to improve solution quality.

The Fiduccia-Mattheyses algorithm leaves the algorithm designer with the freedom
to choose the block from which a node shall be moved to the opposite block. Indeed, one
has to take the balance constraint into account. However, if the imbalance parameter is
not too small, there are a number of possibilities. In Sanders et al. [87], we implemented
three different block selection strategies which improved the quality of the output par-
tition. The first strategy selects nodes with maximum gain from the blocks alternately,
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the second strategy always selects the block with maximum size, and the third strategy
always uses the block where the node has the larger gain value (with respect to the bal-
ance constraint). Note that the first strategy does not alter the balance of a partition, the
second strategy may improves the balance and the third strategy may worsen the balance
of the input partition but stays within the balance constraint.

Helpful Sets by Diekmann et al. [53, 121], introduce a more sophisticated neighbor-
hood relation for the exchange of nodes in the bipartitioning case. These algorithms are
inspired by a proof technique of Hromkovič and Monien [89] for proving upper bounds
on the bisection width of a graph. Instead of migrating single nodes, whole sets of nodes
are exchanged between the blocks to improve the cut. Selecting such node sets is based
on the notion of helpfulness. The helpfulness of a node set is the reduction in the cut
if the node set is moved to the opposite block. More precisely, a node set is called �-
helpful if it reduces the cut by �. One round of the algorithm works as follows. First,
the algorithms tries to find an �-helpful set in one block of the partition. Then the algo-
rithm tries to find a balancing set in the opposite block. A balancing set has the same
cardinality as the found �-helpful set and is at least −�+ 1 helpful. If such sets can be
found, the movements are performed, and the algorithm proceeds with the next round.
Otherwise, the algorithm stops. The running time of the algorithm is comparable to the
Kernighan-Lin algorithm while solution quality is often better than other methods [121].

Extension to k-way Local Search
A common method to create a k-partition is recursive bisection [99]. The graph is recur-
sively divided into two blocks (this includes two-way local search) until the number of
blocks is reached, i.e. a bisection algorithm is used to split the graph into two blocks. The
same is done on the graphs induced by the two created blocks until the desired number of
blocks is reached. More algorithms to obtain a k-partition are described in Section 3.2.
It has been shown by Simon and Teng [156] that, due to the lack of global knowledge,
recursive bisection can create partitions that are very far away from the optimal partition
so that there is a need for k-way local search algorithms.

There are multiple ways of extending the Fiduccia-Mattheyses algorithm to get a
local search algorithm that can improve a k-partition. Given a k-partition of a graph, the
first obvious idea is to use a two-way local search algorithm between all pairs of blocks
that share a non-empty boundary, i.e. blocks that are connected by at least one edge. This
is a general concept that enables us to extend flow-based methods that are presented in
Chapter 4 to improve a k-partition.

One early extension of the Fiduccia-Mattheyses algorithm to k-way local search was
described by Sanchis [140] as well as Hendrickson and Leland [85]. The algorithm
makes use of k(k− 1) priority queues, one for each type of move (source block, target
block). A single node movement is done as follows. First, all queues maximizing the
gain are found. Then the movement with the highest gain that preserves or improves the
balance is performed. Roughly speaking, a node is moved to a block A which maximizes
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the reduction in the cut when the node is moved. However, the running time of this algo-
rithm is significantly higher than the running time of the two-way Fiduccia-Mattheyses
algorithm.

Karypis and Kumar [96] present a k-way version of the Fiduccia-Mattheyses algo-
rithm that runs in linear time O(m). Instead of k(k − 1) priority queues, Karypis and
Kumar use one global priority queue for all types of moves. The priority used is the
maximum local gain, i.e. the maximum reduction in the cut when the node is moved to
one of its neighboring blocks. The node that is selected for movement yields the max-
imum improvement for the objective and maintains or improves upon the balance con-
straint. To improve the running time, the priority queue only contains boundary nodes,
i.e. nodes that have an external degree greater than zero, and local search is stopped after
x movements that did not decrease the overall cut.

A more expensive k-way local search algorithm is based on tabu search [77, 78],
which has been applied to graph partitioning by [137, 21, 19, 20, 72]. We briefly outline
the method reported by Galinier et al. [72]. Instead of moving a node only once per
pass, as in the traditional versions of the Kernighan-Lin/Fiduccia-Mattheyses algorithms,
specific types of moves are excluded only for a number of iterations. The number of
iterations that a move (v, block) is excluded depends on an aperiodic function f and the
current iteration i. The algorithm always moves a non-excluded node with the highest
gain. If the node is in block A, then the move (v,A) is excluded for f (i) iterations after
the node is moved to the block yielding the highest gain, i.e. the node cannot be put back
to block A for f (i) iterations.

3.2 Obtaining Partitions
The quality of the presented local search algorithms highly depends on the quality of
the input partition. Indeed there are multiple ways to obtain initial partitions of a graph.
For example, Kernighan and Lin [99, 98] used random bipartitions of a graph as starting
point for their Kernighan-Lin local search.

Keeping in mind that recursive bisection [99, 98] can be used to obtain a k-partition
of a graph, we start to elaborate on two methods for bisecting a graph: namely, spectral
partitioning and greedy graph growing. Then we look at frameworks that can be used
to directly derive a k-partition. It is worth mentioning that the techniques presented in
this section are nowadays most often combined with the multilevel approach, i.e. they
are only used as algorithms to obtain a partition of the coarsest graph in the multilevel
hierarchy.

3.2.1 Spectral Partitioning
The first method to split a graph into two blocks, spectral bisection, is still used
today by many researchers. Spectral techniques were first used by Donath et al.
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[56, 57] and Fiedler [67], and have been improved subsequently by several researchers
[29, 132, 155, 86, 18]. We try to outline the basic idea of spectral bisection2. The spectral
bisection method infers global information of the connectivity of a graph by computing
the eigenvector corresponding to the second lowest eigenvalue of the Laplacian matrix
L of the graph. This eigenvector is also known as Fiedler vector, and the associated
eigenvalue is called algebraic connectivity [67] due to the relation to the connectivity
in the graph. The Laplacian matrix is defined as L = D−A where D is the diagonal
matrix expressing node degrees and A is the adjacency matrix. It is well-known that the
smallest eigenvalue of L is 0 and that = (1, . . . ,1) is the corresponding eigenvector.
The differences of the entries in the Fiedler vector provide information about the dis-
tance between the associated nodes. Hence, the spectral bisection method sorts nodes of
the graph with respect to entries in the second eigenvector, and then divides the sorted
set into two halves. An interesting observation of Fiedler [67] is that at least one of the
blocks created by this method is connected if the input graph is connected.

The main idea of the spectral bisection algorithms used today is the following [67].
First of all, notice that xT Lx = ∑(u,v)∈E(xu − xv)2 holds. Let us assume that we have a
partition of the graph into two blocks V1 and V2. Furthermore, if v∈V1, then let xv be −1,
otherwise let xv be 1. If C is the set of cut edges, then clearly xT Lx = ∑(u,v)∈C(xu − xv)2.
Hence, xT Lx = 4|C| and it is useful to define the following optimization problem.

min
�

xT Lx
�� xT = 0, xT x = n, x ∈ {−1,1}n�

The first constraint ensures that the nodes are balanced between the blocks. The objective
is to minimize the cut. When the integrality constraint is dropped, one can use Lagrange
Multipliers to solve the relaxed problem and then infer a perhaps suboptimal solution
for the original problem. Lagrange’s optimality conditions give us Lx−λ1 −λ2x = 0,
xT x = n and xT = 0. By the definition of the Laplacian matrix, we have T L = 0
and hence λ1 = 0. Thus Lx = λ2x and x must be an eigenvector. Furthermore, xT Lx

n =
λ2 and x �= so that x must be the eigenvector corresponding to the second smallest
eigenvalue. Hence, we have a connection of the cut of a partition and an eigenvalue
problem involving the graph Laplacian of a graph.

The second eigenvector can be computed using a modified Lanczos algorithm [105].
However, this method is expensive in terms of running time. Barnard and Simon [18] use
a multilevel method to obtain a fast approximation of the Fiedler vector. The structure is
similar to the multilevel method which is explained in full detail in Section 3.3. However,
the graph is coarsened using maximal independent sets instead of edge contractions. The
nodes of the maximal independent set form the nodes of the next coarser graph. We do
this analogously in the AMG-inspired coarsening scheme that we introduce in Chapter 4.
On the coarsest level the Fiedler vector is computed using the Lanczos algorithm. The
vector is then projected to the next finer level by setting the entries to their associated
coarse nodes, if they exist, and by averaging over their neighbors in the current fine

2Parts of the formulations have been taken from [88]
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graph, otherwise. On each level the current vector is refined using a Rayleigh quotient
iteration [125, 126], since it can take advantage of a good initial approximation.

Hendrickson and Leland [86] extend the spectral method to partition a graph into
more than two blocks by using multiple eigenvectors which are computationally inex-
pensive to obtain. The method produces better partitions than recursive bisection, but
is only useful for the partitioning of a graph into four or eight blocks. The authors also
extended the method to graphs with node and edge weights.

3.2.2 Graph Growing
The second method for obtaining a bisection of a graph is called graph growing [95].
Its simplest version works as follows. Starting from a random node v, the blocks are
assigned using a breadth-first search starting at v. All nodes touched during the breadth-
first search are assigned to block V1. The search is stopped after half of the original node
weights are assigned to this block and V2 is set to V\V1. The computed partitions have a
rather large cut because breadth-first search does not care about cut edges at all. Hence,
the authors use a local search algorithm to improve the partition. Moreover, the method
depends heavily on the chosen start node v, so that the method must be repeated several
times to get a good solution.

There are two variations of this algorithm. An algorithm called greedy graph grow-
ing [95] takes the resulting cut into account. Instead of performing a simple breadth-first
search, the algorithm always adds the node to the block that results in the smallest in-
crease in the cut. This can be implemented similar to the Fiduccia-Mattheyses algorithm,
i.e. using the same data structures.

A variant of the algorithm by George et al. [75] first searches for two nodes that are
“far” away from each other. Such nodes are called pseudo peripheral nodes. To find
such nodes one first chooses a random node v. Starting at v one performs a breadth-first
search that explores the whole graph. The last node w touched by the breadth-first search
then serves as new start node for the next round. This is repeated a few times. When the
process is stopped, one hopes to have two nodes that have a large distance in the graph.
These nodes serve as seed nodes for the assignment of blocks. To obtain a partition

Figure 3.3: Visualisation of graph bisection. First two pseudoperipheral nodes are found
and then two breadth-first search are performed alternately to assign nodes to blocks.
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of the graph, two breadth-first searches, one for each node, are started and performed
alternately. The nodes touched by the first breadth-first search are assigned to block one
and the nodes touched by the second breadth-first search are assigned to block two. An
example is shown in Figure 3.3.

3.2.3 Bubble Framework

The spectral and the graph growing method are able to bisect a graph into two parts. With
the idea in mind to optimize the shape of a partition, a center-based method to directly
compute a k-partition has been proposed by Diekmann et al. [54]. A similar idea has
been used before by Walshaw et al. [166] for the selection of nodes for migration in a
dynamic graph partitioning setting, i.e. the graph is modified over time using node and
edge insertions, and the partition has to be updated.

The bubble framework by Diekmann et al. [54] can be seen as an extension of graph
growing and is related to Lloyd’s k-means algorithm [110]. Instead of growing blocks
using one or two breadth-first searches around the seed nodes, one uses k seed/center
nodes and k simultaneous breadth-first searches to find the blocks. To find k initial seed
nodes that are fairly distributed over the graph, Diekmann et al. [54] do the following.
The initial seed is found by performing a breadth-first search from a node v with min-
imum degree which in case of finite element meshes is usually a corner of the mesh.
The first seed node v1 is then the node that is farthest away from v, e.g. the last node
touched by the breadth-first search. The second seed node is the node that is farthest
away from v1, the third seed node the node that is farthest away from v1 and v2 and so
on. Hence, an additional seed node is always found by performing a breadth-first search
that is initialized with all previously found seed nodes. Overall, k breadth-first searches
are performed to find the seed nodes.

Figure 3.4: The three steps of the bubble framework. Black nodes indicate the seed
nodes. On the left hand side, seed nodes are found. In the middle, a partition is found by
performing breadth-first searches around the seed nodes and on the right hand side new
seed nodes are found.
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Once the seed nodes are found, the blocks are grown around the nodes – again using
breadth-first searches. The breadth-first searches are scheduled such that always the
smallest block receives the next node. Hence, the algorithm ensures that the resulting
blocks of the partition are connected but not necessarily balanced. The authors use local
search algorithms to balance the load of the blocks and to improve the cut of the resulting
partition, but this can result in unconnected blocks.

The third step of the algorithm is to find new seed nodes for the next round. The new
center of a block is defined as the node that minimizes the sum of the distances to all
other nodes within its block. To avoid the expensive computation, the authors compute
this value only for the initial seed of a block and all its neighboring nodes. Among those,
the node with the smallest value is used as a new seed node. The second and the third step
of the algorithm are iterated until either the seed nodes stop changing or no improved
partition was found for more than 10 iterations. One drawback of the algorithm is its
computational complexity O(km). Figure 3.4 illustrates the three steps of the algorithm.

Subsequently, this approach has been used and improved by [148, 117, 116, 115,
114]. For example, Schamberger [148] introduced the usage of diffusion as a growing
mechanism around the initial seeds and extended the method to weighted graphs. This
enables the authors to use the method within the multilevel framework. The main idea
of diffusion in the graph partitioning area is that the load that is distributed using the
diffusion process spreads faster in areas of the graphs that are densely connected than in
areas that are only sparsely connected. A modification of the diffusion scheme enhances
the balance of the partition computed in the second step of the framework.

Because these algorithms still have a large execution time, approaches using alge-
braic multigrid techniques were used to improve the running time of the algorithm by
Meyerhenke et al. [116]. To do so the diffusion process was modified to a disturbed dif-
fusion process. The disturbed diffusion process has the advantage that it does not result
in a fully balanced load situation upon convergence and that it can be solved by solving
a system of linear equations. Hence, algebraic multigrid (AMG) is used to solve the
sparse linear system, and the hierarchy created is reused by the partitioning algorithm.

This approach has been further improved by Meyerhenke et al. [115] by combining
it with a faster diffusion process that is restricted to local areas of the graph. The cor-
responding graph partitioner is called DibaP. The AMG scheme is used on the coarse
levels of the multilevel scheme, and the faster scheme is used on the finer levels of the
hierarchy. The approach computes partitions of very high quality and has been able
to obtain many entries in the Walshaw Benchmark [157]. While the approach is much
faster than the initial version of the algorithm, it still has worst-case complexity O(km).
It remains an open problem to have a fast and high quality direct k-partitioning scheme.

Pellegrini [128] uses diffusion only between pairs of blocks during recursive bisec-
tion and only in an area around the initial cut of a partition to speed up the computation.
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3.3 Multilevel Approach
The basic idea of multilevel graph partitioning can be traced back to multigrid solvers for
solving systems of linear equations [158], but more recent practical methods are based
on mostly graph theoretic aspects, in particular edge contraction and local search. As
already mentioned, the method was initially introduced to the graph partitioning area by
Barnard and Simon [18] to speed up spectral partitioning techniques. Hendrickson and
Leland [85] formulated the multilevel approach as it is known today. Already a decade
earlier, Bui et al. [33] remarked that a two level approach, i.e. randomly contracting
edges, improves the result of a partitioning algorithm if it is applied on the coarse graph.

Before we outline the multilevel approach, we need to define the notion of edge
contractions. Contracting an edge {u,v} means to replace the nodes u and v by a new
node x connected to the former neighbors of u and v. We set c(x) = c(u)+ c(v) so that
the weight of a node at each level is the number of nodes it is representing in the original
graph. If replacing edges of the form {u,w}, {v,w} would generate two parallel edges
{x,w}, a single edge with ω({x,w}) =ω({u,w})+ω({v,w}) is inserted. Uncontracting
an edge e undoes its contraction. In order to avoid tedious notation, G will denote the
current state of the graph before and after a (un)contraction unless we explicitly want to
refer to different states of the graph.

The multilevel approach to graph partitioning consists of three main phases. It is
outlined in Figure 3.5. In the contraction (coarsening) phase, a hierarchy of graphs is
created. There are multiple ways to do that. The most common way is to iteratively iden-
tify matchings M ⊆ E and contract the edges in M. Contraction should quickly reduce
the size of the input and each computed level should reflect the global structure of the
input network. An example matching that is contracted is shown in Figure 3.6. Contrac-
tion is stopped when the graph is sufficiently small to be directly partitioned using some
expensive other algorithm which were described in the previous sections such as spec-
tral partitioning, graph growing or bubbling. In the local improvement (or uncoarsening)
phase, the matchings are iteratively uncontracted. Note that due to the way that the con-
traction is defined, a partitioning of the coarse level creates a partitioning of the finer
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Figure 3.5: The multilevel approach to graph partitioning. Source: [143]2.
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Figure 3.6: A example matching highlighted in red and contraction of matched edges.
Source: [123].

graph having the same objective and balance. After uncontracting a matching, a local
improvement algorithm moves nodes between blocks in order to improve the cut size or
balance. Usually variants of the Fiduccia-Mattheyses algorithm are used. The intuition
behind this approach is that a good partition at one level will also be a good partition on
the next finer level, so that local search will quickly find a good solution. Moving a node
on a coarse level hierarchy usually corresponds to the movement of a whole set of node
movements of the finest level of the hierarchy. Intuitively, the multilevel scheme has a
global view on the optimization problem on the coarse levels of the hierarchy and a very
local view on the finest levels with respect to the original graph.

It is worth mentioning that there are recursive partitioning approaches that use the
multilevel approach for the bisection of a graph by Karypis et al. [95], and that they
were the first who had a linear time O(m) implementation of this scheme to obtain a k-
partition [96] (using recursive multilevel bisection only on the coarsest level and a direct
k-way local search algorithm).

An interesting variant of the multilevel algorithm has been proposed by Sanders and
Osipov [122]. Their n-level approach is based on the extreme idea of contracting only
one single edge between two consecutive levels of the multilevel hierarchy. During
uncoarsening, local search is done highly localized around the uncontracted edge. Us-
ing sophisticated data structures their algorithm requires sublinear time on real-world
graphs.

3.4 Evolutionary Algorithms
For a general overview of genetic/evolutionary algorithms tackling the graph partitioning
problem, we refer the reader to the overview paper by Kim et al. [101]. In this section
we focus on the description of hybrid evolutionary approaches that combine evolutionary
ideas with the multilevel graph partitioning framework [157, 19, 20]. Other approaches
such as Probe by Chardaire et al. [37], which can be viewed as a genetic algorithm
without selection, and Fusion Fission by Bichot et al. [24], which is inspired by nuclear
processes, are not covered here. Hybrid algorithms are usually able to compute partitions

2Sources of images in this work correspond to our papers or the associated conference talks.
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with considerably better quality than those that can be found by using a single execution
of a multilevel algorithm.

Evolutionary approaches that are combined with local search heuristics are called
memetic algorithms. The first approach that combined evolutionary ideas with a mul-
tilevel partitioner was by Soper et al. [157]. The authors define two main operations,
a combine and a mutation operation. Both operations modify the edge weights of the
graph depending on the input partitions and then use the multilevel partitioner Jostle,
which uses the modified edge weights to obtain a new partition of the original graph.
The combine operation works as follows (the mutation operation is done in a similar
way). The algorithm first computes node biases and then uses those to compute per-
turbations of the edge weights. However, node biases are not an input to the multilevel
graph partitioner. Given two partitions of the graph, a node is assigned a random value
in [0,0.01] if the node is a boundary node in both input partitions and a larger bias of
0.1 plus a random value in the same range, otherwise. For an edge, the perturbed weight
is then defined as one plus the biases of its incident nodes. Note that the perturbed edge
weights are chosen such that the local search is guided to mimic the input partitions. The
algorithm uses a fixed population size of fifty and, to obtain a new generation, creates
fifty new individuals using a ratio of 7:3 of combine and mutation operations. A new
generation is then defined as the best fifty partitions out of the current generation and
the fifty newly created ones. While producing partitions of very high quality, the authors
report running times of up to one week. In their paper the authors introduce the well-
known Walshaw benchmark, which is presented in the next section. A similar approach
based on edge weight perturbations is used by Delling et al. [49].

A multilevel memetic algorithm for the perfectly balanced graph partition problem,
i.e. ε = 0, was proposed by Benlic et al. [19, 20]. The main idea of their algorithm
is that among high quality solutions a large number of nodes will always be grouped
together. In their work the partitions represent the individuals. We briefly sketch the
combination operator for the case that two partitions are combined. First the algorithm
selects two individuals/partitions from the population using a λ -tournament selection
rule, i.e. choose λ random individuals from the population and select the best among
those if it has not been selected previously. Let the selected partitions be P1 =(V1, . . . ,Vk)
and P2 = (W1, . . . ,Wk). Then sets of nodes that are grouped together within the partitions
are computed:

B :=

�
k�

j=1
{Vj ∩Wσ( j)}

�

such that the number of nodes that are grouped together, ∑k
j=1 |Vj ∩Wσ( j)|, is maximum

among all permutations σ of {1, . . . ,k}. An offspring is created as follows. Nodes in B
will be grouped within a block of the offspring. That means if a node is in the set B, then
it is assigned to the same block to which it was assigned to in P1. Otherwise, it is assigned
to a random block, such that the balance constraint remains fulfilled. Local search is
then used to improve the computed offspring before it is inserted into the population. In
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Benlic et al. [20] the authors combine their approach with tabu search. Their algorithms
produce partitions of very high quality, but cannot guarantee that the output partition
fulfills the desired balance constraint.

3.5 Flow-Based Approaches
Ford and Fulkerson [71] presented their well-known max-flow min-cut theorem in 1956.
While it can be used to separate two nodes in a graph by computing a maximum flow and
hence a minimum cut between them, it completely ignores balance, and it is unclear how
it could directly be applied to the balanced graph partitioning problem. However, the
algorithm is often used as a subroutine to solve related max-flow problems, e.g. to bisect
regular graphs by Bui et al. [33], to improve a given partition when quality is measured
by expansion or conductance by Lang and Rao [107] and Andersen and Lang [9], or as
a pre-processing technique for road network partitioning by Delling et al. [49]. Note
that the problem that asks to find a non-trivial cut (V1,V2) with minimum conductance or
expansion, does not necessarily yield a balanced cut as in the balanced graph partitioning
problem. In Chapter 4 we define a flow-based algorithm that improves a given balanced
partition when quality is measured using the edge-cut metric.

Bui et al. [33] define an algorithm for bisecting r-regular graphs. To do so, the
authors define a larger neighborhood Nd(v) of a node v, which consists of all nodes
within distance d of v. For two nodes u, v a flow problem is constructed by replacing
Nd(v) by an infinite capacity source and Nd(u) by an infinite capacity sink where the
parameter d depends on the input graph. Edges connecting nodes in Nd(u) with nodes
in Nd(v) are replaced by edges that directly connect the source and the sink. This flow
problem is solved for all pairs of nodes u, v in the graph and, for r-regular graphs. If the
smallest cut happens to be a bisection, the authors are able to show that the algorithm
has found an optimal partition. The algorithm solves n2 flow problems on graphs that
have rn edges (for r-regular graphs) and gives guarantees only for r-regular graphs.
Hence the algorithm will not scale to large graphs and it is unclear whether one could
create balanced bisections of real-world graphs. The algorithm can be seen as a rather
theoretical approach.

Max-flow Quotient-cut Improvement (MQI) by Lang and Rao [107] and Improve by
Andersen and Lang [9] are flow-based methods for improving graph bipartitions when
cut quality is measured by quotient-style metrics such as expansion or conductance. In
this case, the balance constraint is dropped, since the measures directly optimize cut
vs. balance of the partition. Given a partition V1, V2 of the graph, MQI constructs a
flow problem such that the output partition is the best improvement among all partitions,
where V �

1 is a strict subset of V1 w.r.t. the quotient-style metric. The flow problem is
constructed as follows. Let V1 be the smaller block, c be the number of cut edges and a
the number of nodes in V1. First, the construction completely discards all nodes in V2.
Each undirected edge in V1 is replaced by two directed edges with capacity a, one in each
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direction. Then a source and a sink are inserted. Each node in V1 is connected to the sink
by a directed edge with capacity c and the source is connected to all boundary nodes in V1
via a directed edge with capacity a. Solving this flow problem, the authors can construct
a new partition having best quotient cut score among all partitions (V �

1,V
�
2), where V �

1 is
a strict subset of V1 if one exists. Improve [9] solves a slightly different flow problem
that takes both blocks into account and is able to always outperform or tie MQI. Since
both approaches need a pre-partition of the graph, the authors combine their algorithms
with Metis [95] and have been able to improve some of the bipartitions in the Walshaw
Benchmark.

Delling et al. [49] use a flow-based method as a pre-processing technique for the
partitioning of road networks. Here, a clustering of the graph is computed by multiple
max-flow min-cut computations to identify natural cuts and dense regions of the graph.
The resulting clustering is then contracted to obtain a smaller representation of the graph,
which still contains small cuts. Often this graph is up to two orders of magnitude smaller
than the input graph which drastically reduces the running time of a partitioning algo-
rithm. Moreover, the cuts found are much better than when applying a partitioning
algorithm to the original graph. Since we adopt this technique for the partitioning of
road networks, we describe it in more detail in Chapter 5.

3.6 Hardness Results

That the problem of partitioning a graph into k blocks of roughly equal size, such that the
cut metric is minimized, is NP-complete has been shown by Hyafil and Rivest [90] and
Garey et al. [73]. Andreev and Räcke [10] have shown that there is no constant factor
approximation for the perfectly balanced version (ε = 0) of this problem on general
graphs. If ε ∈ (0,1], then an O

�
log2 n

�
factor approximation can be achieved. If an even

larger imbalance ε > 1 is allowed, then an approximation ratio of O(logn) is possible
[60]. The minimum weight k-cut problem, asks for a partition of the nodes into k non-
empty blocks without enforcing a balance constraint. Goldschmidt et al. [80] proved
that, for a fixed k, this problem can be solved optimally in O

�
nk2

�
. Moreover, the

problem is NP-complete [80] if k is not part of the input.
For the unweighted minimum bisection problem, Feige et al. [62] have shown that

there is an O
�
log1.5 n

�
approximation algorithm and an O(logn) approximation mini-

mum bisection on planar graphs. The bisection problem is efficiently solvable if the
balance constraint is dropped – in this case it is the min cut problem. Wagner et al. [160]
have shown that the minimum bisection problem becomes harder the more the balance
constraint is tightened towards the perfectly balanced case. More precisely, if the block
weights are bounded from below by a constant, i.e. |Vi| ≥ C, then the problem is solv-
able in polynomial time. The problem is NP-hard if the block weights are constrained
by |Vi| ≥ αnδ for some α,δ > 0 or if |Vi| = n

2 . The case |Vi| ≥ α logn for some α > 0
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is open. Note that the case |Vi| ≥ αnδ also implies that the general graph partitioning
problem with similar lower bounds on the block weights is NP-hard.

If the balance constraint of the problem is dropped and one uses a different objec-
tive function such as sparsest cut, then there are better approximation algorithms. The
sparsest cut objective combines cut and balance into a single objective function. For
general graphs and the sparsest cut metric, Arora et al. [14, 13] achieve an approxima-
tion ratio of O

�√
logn

�
in Õ(n2) time. Using multiple max-flow min-cut computations,

Leighton et al. achieve an approximation ratio of O(logn).
Being of high theoretical importance, most of the approximation algorithms are not

implemented, and the approaches that implement approximation algorithms are too slow
to be used for large graphs or are not able to compete with state-of-the-art graph parti-
tioners. Hence, mostly heuristics are used in practice.

3.7 Exact Methods
There is a large amount of literature on methods that solve the graph partitioning problem
optimally. This includes methods dedicated to the bipartitioning case [32, 93, 64, 153,
11, 12, 50, 52, 63] and some methods that solve the general graph partitioning problem
[65, 154]. Most of the methods rely on the branch-and-bound framework [106].

Bounds are derived using various approaches: Karisch et al. [93] and Armbruster
et al. [11] use semi-definite programming, and Sellman et al. [153] and Sensen [154]
employ multi-commodity flows. Linear programming is used by Brunetta et al. [32],
Ferreira et al. [65] and by Armbruster et al. [12], and quadratic programming is adopted
by Hager et al. [81]. Felner et al. [64] and Delling et al. [50, 52] utilize combinatorial
bounds. Depending on the method used, the bounds derived can be very good and yield
small branch-and-bound trees, but are hard to compute or the bounds are somewhat
weaker and yield larger trees but are faster to compute. The latter is the case when
using combinatorial bounds. On finite connected subgraphs of the two dimensional grid
without holes, the bipartitioning problem can be solved optimally in O

�
n4� time [63].

All of these methods typically can only solve very small problems while having very
large running times, or if they can solve large bipartitioning instances using a moderate
amount of time [50, 52], highly depend on the bisection width of the graph. Methods
that solve the general graph partitioning problem [65, 154] have immense running times
for graphs with up to a few hundred nodes. Moreover, the experimental evaluation of
these methods only considers small block numbers k ≤ 4.
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3.8 Walshaw Benchmark
The Walshaw benchmark3 was created in 2000 by Soper, Walshaw and Cross [157] as
part of a research project into very high quality partitions. This public domain archive
is maintained by Chris Walshaw and contains 34 real-world graphs stemming from ap-
plications such as finite element computations, matrix computations, VLSI Design and
shortest path computations as well as the best partitions of these graphs found so far.
Everyone can submit partitions applying the rules used there, i.e. running time is not
an issue, but one wants to achieve minimal cut values for k ∈ {2,4,8,16,32,64} and
balance parameters ε ∈ {0,0.01,0.03,0.05}. Currently, the solutions of over forty dif-
ferent algorithms are submitted to the archive. It is the most popular graph partitioning
benchmark in the literature.

3.9 Software Packages
There are a number of software packages that implement the described algorithms. One
of the first publicly available software packages called Chaco is due to Hendrickson [83].
Like most of the publicly available software packages, Chaco implements the multilevel
approach outlined in Chapter 2 and basic local search algorithms. Moreover, they im-
plement spectral partitioning techniques. Probably the fastest and best known system
is Metis [95, 96] by Karypis and Kumar. ParMetis is a widely used parallel implemen-
tation of their algorithm [94]. Scotch [127, 41, 42] is a graph partitioning framework
by Pellegrini. It uses recursive multilevel bisection and includes sequential as well as
parallel partitioning techniques. Jostle [165, 163] is a well-known sequential and paral-
lel graph partitioner developed by Chris Walshaw. The commercialised version of this
partitioner is known as NetWorks. It has been able to hold most of the records in the
Walshaw Benchmark for a long period of time. If a model of the communication net-
work is available, then Jostle and Scotch are able to take this model into account for
the partitioning process. Party [54, 121] implements the bubble/shape-optimized frame-
work and the helpful sets algorithm described within this chapter. The software package
DibaP by Meyerhenke [115] builds upon Party and implements the bubble framework
using diffusion and AMG-based techniques. Zoltan [27] is a project for parallel parti-
tioning, load balancing and data-management services. It provides interfaces to various
graph partitioning packages such as ParMetis and Scotch.

3



4
Multilevel Graph Partitioning

When we started to build our own parallel multilevel graph partitioner, KaPPa [87], with
focus on scalable parallelization we also obtained improved partitioning quality through
rather simple methods. This motivated us to make a fresh start by putting all aspects of
multilevel graph partitioning in a sequential setting on trial. Hence, in this chapter our
focus is on the different components of the multilevel graph partitioning scheme. We
start by describing different coarsening schemes, such as matching and AMG-inspired
coarsening techniques in Section 4.1. After shortly outlining the initial partitioning al-
gorithm that we use in Section 4.2, we explain novel local improvement techniques in
Section 4.3. Here, we look at two novel local search algorithms. The first algorithm is
based on iterated max-flow min-cut computations and the second algorithm is a highly
localized version of the Fiduccia-Mattheyses algorithm. We then look at global search
strategies in Section 4.4 and conclude this chapter with an extensive experimental eval-
uation in Section 4.5.

References. This chapter is based on the publications [143, 146] which were published
together with Peter Sanders. The parts on AMG-inspired coarsening and algebraic dis-
tance stem from the conference paper [139] which was published together with Ilya
Safro and Peter Sanders. Our own initial partitioning has not been published before.

4.1 Coarsening
We start with the presentation of two different coarsening schemes. First we explain
matching based coarsening schemes, the matching algorithm that we use and the concept
of edge ratings that was introduced in KaPPa [87]. Today, the matching based scheme is
used in most graph partitioning algorithms due to its simplicity and speed. We also look
at a new edge rating that uses algebraic distance as a measure of connection strength
between nodes. This is followed by an AMG-inspired coarsening scheme that works in
particular very well on highly unstructured networks, e.g. social networks.
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4.1.1 Matching Based Coarsening
The general matching based coarsening scheme has already been explained in Chapter 3.
Using this scheme a coarse graph is constructed by contracting edges of a matching that
has been computed by a matching algorithm. Although a maximum matching can be
computed in polynomial time, optimal algorithms are too slow to be used in a multilevel
framework. In practice heuristic matching algorithms are fast, produce good matchings
and also can give an approximation guarantee.

Before we explain the matching algorithms used in our system, we present the two-
phase approach which we already used in KaPPa [87]. The two-phase approach makes
contraction more systematic by separating two issues: A rating function and a matching
algorithm. A rating function indicates how much sense it makes to contract an edge
based on local information. A matching algorithm tries to maximize the sum of the rat-
ings of the contracted edges looking at the global structure of the graph. While the rating
function allows a flexible characterization of what a “good” contracted graph is, the sim-
ple, standard definition of the matching problem allows to reuse previously developed
algorithms for weighted matching.

Edge Ratings

To explain the concept of edge ratings, we have to characterize the properties of “good”
matchings for the purpose of contraction in a multilevel algorithm for graph partition-
ing. Intuitively, a matching should contain large edge weights since we want to solve
the problem on the coarsest level and our main objective is to find a small cut. On the
other hand a matching should contain a large number of edges, e.g. being maximal, so
that there are only few levels in the hierarchy and the algorithm can converge quickly.
In order to represent the input on the coarser levels, we want to find matchings such that
the graph after contraction has somewhat uniform node weights and small node degrees.
Uniform node weights are also helpful to achieve a balanced partition on the coarser lev-
els and makes local search algorithms more effective. Using the edge weight as a rating
function has been done before and takes care of the first two requirements. However, the
edge weight completely ignores the two latter properties of a good matching.

The perspective taken in KaPPa [87] is to encode these properties into a single scalar
edge rating function. Then an approximate weight matching algorithm is applied that
tries to find a matching which maximizes the sum of the ratings. The matching algo-
rithm used is the Global Paths Algorithm (GPA) by Maue et al. [112] which is also used
in KaFFPa and explained below. The default configurations of KaFFPa employ combi-
nations of the ratings

expansion∗2({u,v}) := ω({u,v})2/c(u)c(v), and
innerOuter({u,v}) := ω({u,v})/(Out(v)+Out(u)−2ω(u,v)),

where Out(v) is set to Out(v):= ∑x∈Γ(v)ω({v,x}), since they yielded the best results in
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KaPPa [87]. For the purpose of partitioning unstructured networks, we also look at a
rating based on algebraic distance as a measure of connectivity between the nodes.

The notion of algebraic distance has been introduced by Safro et al. [138, 38] and
is based on the principle of obtaining low-residual error components [30]. This princi-
ple was used for linear ordering problems to distinguish between local and global edges
[138]. A local edge e is characterized by having a small distance between its end nodes
after e is removed. In contrast to a local edge, a non-local or global edge is defined via
a large distance of its end nodes in the graph after e is removed. The main difference
between the graph partitioning problem and linear ordering problems is the balance con-
straint. Thus, we introduce a node weight normalized algebraic distance to ensure that
the node weights do not get too non-uniform during coarsening.

Given the Laplacian of a graph L = D−W , where W is a weighted adjacency ma-
trix of a graph and D is the diagonal matrix with entries Dvv = d(v), we define its
node weight normalized version by L̃ = D̃−W̃ based on the normalized edge weights
ω̃(e = {v,w}) := ω(e)/

�
c(v)c(w). We then define an iteration matrix H̃ for Jacobi

over-relaxation as
H̃ = (1−α)I +αD̃−1W̃ ,

where 0 ≤ α ≤ 1. Note that the original matrix HJOR = (1−α)I +αD−1W is basically
the JOR-matrix to solve the system Lx = 0. For α = 1/2 the matrix is also known as a
lazy random-walk matrix. However, instead of solving the system (which has the trivial
solutions x = 0 and x = ) one uses a few iterations of a process used to solve the linear
system

xk = H̃xk−1 = H̃kx0,

where x0 is a random vector sampled over [−1/2,1/2]. Intuitively, the process assim-
ilates the random values in a neighborhood of a node. This is repeated R times using
different random start vectors. The algebraic distance is then defined by averaging over

Figure 4.1: Algebraic distance can be used as a measure of connectivity strength. Left:
a 12x40 grid with random initialized coordinates. A non-local edge is highlighted in
red. Right: the same grid. Coordinates of the nodes have been updated using 15 JOR
iterations on each coordinate. The length/distance of the red edge is larger than the
length of the local edges. Source: [139].
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the result vectors. More precisely, let x(k,r) be the result of the process of the rth try. In
[38] it is conjectured that if |xk

i − xk
j| > |xk

u − xk
v|, then the connectivity between u and v

is larger than the connectivity between i and j. Hence, for an edge e ∈ E the 2-normed
algebraic distance coupling ρe is then defined as

ρ{u,v} =

�
R

∑
r=1

|x(k,r)u − x(k,r)v |2.

If e �∈ E, then the algebraic distance coupling is set to zero. In our experimental settings
we use α = 0.5, R = 5, and k = 20. Figure 4.1 gives an intuition on why ρ can be
used as a measure of connectivity strength. Recall that if ρe is small then its end nodes
are strongly coupled and otherwise loosely coupled. Having this in mind, we define an
advanced edge rating function

ex_alg(e) := expansion∗2(e)/ρe.

This rating function prefers edges for contraction that are strongly coupled with respect
to algebraic distance. Note that the iterative process, usually a sparse matrix vector
multiplication, can be parallelized easily. We will see in Appendix A that this particular
edge rating function is especially helpful for partitioning unstructured graphs.

Matching Algorithms

We use two different matching algorithms within our system. The first strategy aims
for partitioning quality, whereas the latter is used in situations where running time is
paramount. We start by explaining the Global Paths Algorithm and then a combination
of this algorithm with the most simple random matching algorithm.

Global Paths Algorithm. The Global Paths Algorithm (GPA), was proposed by Maue
et al. [112] as a synthesis of Greedy and Path Growing algorithms by Drake et al. [58].
The greedy algorithm sorts the edges by descending weight (or rating) and then scans
them. If an edge {u,v} and its end points are not matched yet, it is put into the matching.

Similar to the Greedy approach, GPA scans the edges in order of decreasing weight
(or rating); but rather than immediately building a matching, it first constructs a collec-
tion of paths and even length cycles. To be more precise, these paths initially contain no
edges. While scanning the edges, the set is extended by successively adding applicable
edges. An edge is called applicable if it connects two endpoints of different paths or the
two endpoints of an odd length path. Afterwards, optimal solutions/matchings are com-
puted for each of these paths and cycles using dynamic programming. Both algorithms
achieve a half-approximation in the worst case, but empirically, GPA gives considerably
better results [112]. The first algorithm that achieved a half-approximation was given by
Preis [133]. In the context of graph partitioning it has been shown that the GPA algo-
rithm is a good choice when focusing on partitioning quality [87], so that we also use
this algorithm in our system.
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RandomGPA Algorithm. The most simple random matching algorithm traverses the
nodes in a random order and if the current node is not already matched, it chooses a
random unmatched neighbor for the matching. RandomGPA is a synthesis of the most
simple random matching algorithm and the GPA algorithm. Depending on the level of
the multilevel scheme either the random algorithm is used (on the large graphs of the
hierarchy) or the GPA algorithm is used (on the small graphs of the hierarchy). The
choice of the matching algorithm further depends on the number of blocks that a graph
has be partitioned in. We go into more detail when we configure our algorithms. If the
random matching algorithm is used, then no edge rating will be computed.

4.1.2 AMG-inspired Coarsening
When one wants to solve a system of linear equations, one of the most traditional ap-
proaches to creating hierarchies in Algebraic Multigrid (AMG) is the Galerkin operator
[159], which projects a fine system of equations to a system of coarser scale. In the
context of graphs this projection is defined as

Lc = PL f PT ,

where L f and Lc are the Laplacians of fine and coarse graphs G f = (Vf ,E f ) and Gc =
(Vc,Ec), respectively and P is the projection matrix. The (u,J)th entry of the projection
matrix P represents the strength of the connection between a fine node u and a coarse
node J. The entries of P are called interpolation weights. They describe both the coarse-
to-fine and fine-to-coarse relations between nodes.

The coarsening begins by selecting a dominating set of coarse (or seed) nodes C ⊂Vf
such that all other fine nodes in F =Vf \C are strongly coupled to C. These nodes will
serve as nodes of the next coarser level. The remaining nodes will be split among those
nodes using the interpolation matrix P. The whole process is illustrated in Figure 4.2.
The selection of the seed nodes can be done by traversing all nodes, moving nodes from
F to C until the following equation is satisfied for all nodes u in F (initially F =Vf , and
C = /0)

∑
v∈C∩N(u)

1/ρuv ≥ Θ · ∑
v∈N(u)

1/ρuv,

where Θ∈ (0,1) is a parameter of coupling strength which is usually set to 0.5. Note that
initially the constraint is not fulfilled. Moreover, C is a dominating set if the constraint
is fulfilled and the graph does not contain singletons. To see this assume that there is a
node in F that is only adjacent to nodes in the same set. In this case, the left hand side
of the equation is zero which means that the constraint cannot be fulfilled.

We now have found the seed nodes for the next coarser level and start to explain how
the projection matrix P is constructed. The projection matrix controls how fractions of a
node from F are assigned to the seed nodes of the coarser level. The construction differs
from other AMG-based approaches for combinatorial optimization problems since the
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compute projection matrix P

and build coarse graph

Figure 4.2: (a) Left: begin by selecting a dominating set C (circled nodes), these nodes
will serve as nodes of the coarse graph. Compute a projection matrix to estimate the
weight of the edges connecting the coarse nodes and to split fine nodes between incident
seed nodes. Right: the resulting coarse graph using the dominating set as coarse nodes.
The weights of the nodes are also updated.

graph partitioning problem demands balanced blocks and graphs should stay sparse on
coarse levels of the hierarchy. To achieve this, we avoid too heavy coarse nodes and
limit the number of fractions that a node from F can be divided to. In our algorithm the
number of fractions is limited to at most two (the two strongest connections).

More precisely, the construction works as follows. The entries Pvv of seed nodes v
are set to one. For a node v ∈ F that is not a seed node for the coarse level, we try to
find two neighboring seed nodes that maximize the connection strength (1/ρe1 +1/ρe2)
to v and that do not become overloaded when v is split among them. Here, we only
look at the κ strongest connections. If we do not succeed to find such a pair, we find the
strongest connection, w.r.t 1/ρe, to a neighboring seed node such that it does not become
overloaded if v is assigned to this seed node. It might still happen that we do not find
such a node. In this case, we make v a seed node, i.e. we put it into C. The different
stages of the algorithm are sketched in Figure 4.3.

Having found the nodes S ⊂C that v is split among, we set the entry in the projection
matrix Pvc depending on the connection strength to 1/ρvc

∑k∈S 1/ρvk
for c ∈ S. The weight of

a coarse node is set to c(q ∈ C) := ∑v c(v)Pv,q and the weight of an edge between two
coarse nodes is (according to the projection equation) ω(c1,c2) :=∑u�=v Pu,c1ω(u,v)Pv,c2 .

The algorithm can be viewed as a simplified version of the algorithm presented in
[30] with the additional restriction on the size of coarse nodes and the possibility to
adaptively control the number of fractions that a node can be split in. Puq thus represents
the likelihood of i belonging to the qth aggregate. We emphasize the adaptivity of the
seed set C, which is updated if seed nodes would become too heavy.

We now discuss the differences between our scheme and the weighted aggregation
(WAG) scheme by Chevalier et al. [43]. Both schemes assign fine F-nodes to their coarse
C-neighbors. However, algebraic distance is missing which is responsible for the seed
sets and the number of fractions a fine node is split into. The projection matrix P is
constructed as in classical AMG schemes. Moreover, the WAG scheme produces dense
coarse graphs, which we avoid by splitting a node into at most two coarse nodes.
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(a) (b) (c) (d)

Figure 4.3: Different cases for the construction of interpolation weights P. Seed nodes
are surrounded by a circle. (a) For seed nodes v, we set Pvv = 1. (b) The algorithm
first tries to split a node between two seed nodes such that the seed nodes will not be
overloaded when the grey node is split among them. (c) If this is not successful, the al-
gorithm tries to find a seed node that is not overloaded when the grey node is aggregated
with it. (d) If (b) and (c) are not successful, then the grey node is added to the set of seed
nodes. Source: [139].

4.2 Initial Partitioning
The contraction is stopped when the number of remaining nodes is below
max(60k,n/(60k)). The graph is then small enough to be initially partitioned, i.e. as-
signing the coarsest nodes to blocks. For historic reasons, some of the experiments in our
experimental sections have been obtained using the graph partitioning packages Scotch
and Metis as initial partitioning algorithms (we clearly mark these experiments).

To gain independence from external software packages, we also implemented our
own initial partitioning algorithms. We use the multilevel recursive bisection scheme to
perform this task. More precisely, we perform recursive bisection to obtain a k-partition
of the graph. Each bisection step itself uses a multilevel algorithm that stops as soon as
the number of nodes is below 120. Greedy graph growing is used on the coarsest level to
obtain a bipartition. The multilevel recursive bipartitioning technique has already been
described in Chapter 3. We combine it with the local search techniques described within
this chapter. If k is not even, we split the graphs into two blocks, V1 and V2, such that
c(V1) ≤ (1+ ε)� k

2��
c(V )

k � and c(V2) ≤ (1+ ε)� k
2��

c(V )
k �. Block V1 will be recursively

partitioned in � k
2� blocks and block V2 will be recursively partitioned in � k

2� blocks. Note
that allowing ε imbalance in each bipartition step can result in k-partitions having a larger
imbalance. If the desired number of blocks is greater than two, we allow an imbalance
of 1% in each bipartitioning step to ensure that the imbalance of the k-partition is not too
far away from the default value of 3% imbalance. Since initial partitioning is very fast it
is repeated several times using different random seeds. The exact number of repetitions
depends on the specific algorithm configuration.
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4.3 Uncoarsening
We now look at local improvement methods. We present two novel local improvement
methods. The first method is based on max-flow min-cut computations between pairs of
blocks, i.e. an algorithm to improve a given bipartition. Roughly speaking, this method
is applied between all pairs of blocks that share a non-empty boundary. In contrast to
previous flow-based methods our objective is the edge cut, whereas previous systems
improve conductance or expansion. The second method is called multi-try FM. It is a
highly localized k-way search that is repeatedly initialized with a single boundary node.
Previous methods use all boundary nodes for the initialization of the algorithm. At the
end of the section, we show how pairwise local searches can be scheduled and how multi-
try FM local search can be incorporated. Before we explain these algorithms, we look
at different methods for the transfer of a partition from a coarse level to the next finer
level in a multilevel algorithm. There are two different schemes, one for each coarsening
algorithm that we have seen so far.

4.3.1 Projection
Recall that once a partition of a coarse graph is transfered to a partition of the next finer
graph in the multilevel hierarchy, local improvement methods try to reduce the cut size.
In the matching case the projection is easily done by assigning the node to the block
of its coarse representative. For the AMG-inspired coarsening scheme the projection
is more sophisticated. In particular, we have to choose a block to which a fine node is
assigned to. This is due to the fact that fractions of it can be assigned to different coarse
nodes and hence to different blocks. We assign a fine node v to the block that minimizes
cutB · pB(v), where cutB is the cut after v would be assigned to block B and pB(v) is a
penalty function to avoid blocks that are heavily overloaded. To be more precise, after
some experiments we fixed the penalty function to

pB(v) = 2max(0,100 c(B)+c(v)
Lmax ),

where Lmax is the upper bound for the block weight. Note that slight imbalances (e.g.
overloaded blocks), can usually be fixed by our local search algorithms. Also observe
that when using the AMG-inspired coarsening scheme, the cuts and balance of partition
of a coarse level are not the same as the cut and balance of the partition on the next finer
level after projection. This is in contrast to the matching based scheme.

4.3.2 Max-Flow Min-Cut Based Search
We now explain how maximum flows can be employed to improve a balanced partition
of two blocks V1,V2 without violating the balance constraint. Informally speaking, we
want to find an area around the initial cut of the partition such that each s-t cut in this area
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Figure 4.4: The construction of a flow problem F is shown on the left hand side. Each
cut within B induces a cut within the balance constraint in the original graph. A min cut
in this area is shown on the right hand side. Source: [143].

corresponds to a balanced cut of the input graph. That yields a local improvement algo-
rithm which can be used in a multilevel framework. First we introduce a few notations.
Given a set of nodes B ⊂V , we define its border ∂B := {u ∈ B | ∃(u,v)∈ E : v �∈ B}. The
set ∂1B := ∂B∩V1 is called left border of B and the set ∂2B := ∂B∩V2 is called right
border of B. A B induced flow problem F is the node induced subgraph G[B] using the
edge weights of G as capacities, plus two nodes s, t that are connected to the border of B.
More precisely, s is connected to all left border nodes ∂1B and all right border nodes ∂2B
are connected to t. These new edges get the capacity ∞. Note that the additional edges
are directed. F has the cut property if each (s,t)-cut induces a feasible cut in G.

The basic idea is to construct a flow problem F having the cut property. Each min-
cut will then yield a feasible improved cut within the balance constraint in G. By per-
forming two breadth-first searches we can find such a set B. Each node touched during
these searches belongs to B. The first breadth-first search is initialized with the bound-
ary nodes in V1 and is only expanded into V1. As soon as the weight of the area found
by this breadth-first search would exceed (1+ ε)c(V )/2− c(V2), we stop the search.
The second breadth-first search is done analogously for V2. The constructed flow prob-
lem has the cut property since the worst case new weight of V2 is lower or equal to
c(V2)+(1+ ε)c(V )/2−c(V2) = (1+ ε)c(V )/2. The same holds for the worst case new
weight of V1. Figure 4.4 explains the construction, an example is shown in Figure 4.5.

There are multiple ways to improve this method. This includes repeated usage of the
method, larger areas B in which the flow problem is solved and the search for better bal-
anced cuts using the information already provided by the max-flow computation. First, if
we found an improved cut, we can apply the method again since the initial boundary has
changed, i.e. the set B will also have changed. Secondly, we can adaptively control the
size of the flow problem by dropping the feasibility constraint. This enables us to search
for cuts that fulfill the balance constraint in a larger subgraph. If the found min-cut in
F � (using ε � = αε with α > 1 for construction) fulfills the balance constraint in G, we
accept it and increase α to min(2α,α �) where α � is an upper bound for α . Otherwise,
the cut is not accepted and we decrease α to max(α

2 ,1). This method is iterated until a
maximal number of iterations is reached or if the computed cut yields a feasible partition
without a decreased cut. We call this method adaptive flow iterations.
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Figure 4.5: Top left: An example grid that is partitioned into two blocks. Top right: The
constructed flow problem. Bottom left: The minimum cut in this area. Bottom right: The
final partition corresponding to the minimum cut of the flow problem. Source: [143].

Most Balanced Minimum Cuts

The third idea to improve this method is to use the information already provided
by the max-flow computation to extract a cut that has better balance. Picard and
Queyranne [129] have shown that one (s, t)-max-flow contains information about all
minimum (s,t)-cuts in the graph. We present a heuristic that, given a max-flow, aims to
output a better balanced minimum cut with respect to the balance of the induced biparti-
tion in G. Having an algorithm at hand that not only outputs one minimum cut but also a
cut with good balance makes the idea to search for feasible cuts in larger subgraphs even
more attractive. Recall, for a graph G = (V,E) a set C ⊆V is a closed node set iff for all
nodes u,v ∈V , the conditions u ∈C and (u,v) ∈ E imply v ∈C. In other words, there is
no edge starting in C and ending in V\C. An example can be found in Figure 4.6. We
now formulate the Lemma of Picard and Queyranne:

Lemma 4.1 (Picard and Queyranne [129]) Each closed node set containing s in the
residual graph of a maximum (s, t)-flow yields a minimum (s, t)-cut.
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Figure 4.6: Left: the set C = {a,d,e, f} is a closed node set since no edge is starting
in C and ending in V\C. Right: using a reverse topological ordering of a DAG one can
output multiple closed node sets. Source: [143].

Specifically, given a closed node set C of the residual graph containing s, the corre-
sponding min-cut is (C,V\C). Note that distinct maximum flows may produce different
residual graphs but the closed node sets remain the same. We now show how the residual
graph can be compactified and explain our heuristic to compute closed node sets induc-
ing better balanced min-cuts with respect to balance of the bipartition in the original
graph.

Observe that a cycle in the residual graph cannot contain a node of both, a closed
node set and its complement. Hence, to enumerate all minimum cuts of a graph, Picard
and Queyranne [129] contract the strongly connected components of the residual graph
which results in a weighted, directed acyclic graph (DAG). We refer to this DAG as
minimum cut representation. That the problem of finding the most balanced minimum
cut is still NP-hard has been shown by Bonsma [28]. Note that each closed node set of
the minimum cut representation induces a minimum cut and that we still can compute all
minimum cuts using the compactified representation. Hence, we can search for closed
node sets containing the component S that contains the source s in the minimum cut
representation. We do that by using the following heuristic which is repeated a few
times using different random seeds for initialization.

The basic idea is that using a topological order yields closed node sets quite easily.
Therefore, we first compute a random topological order by using a randomized depth
first search1. We sweep through the reverse topological order and sequentially add the
components to the closed node set. By doing so we compute closed node sets each
inducing a min-cut having a different balance. We use the best balanced minimum cut
with respect to the original bipartition found. The closed node set with the best balance
occurred using different random topological orders is returned by the algorithm. Note
that this procedure can still find cuts that are not feasible in oversized subgraphs, e.g. if
there is no feasible minimum cut. Therefore the algorithm is combined with the adaptive
strategy from above. We call this method balanced adaptive flow iterations.

1We also tried an algorithm that iteratively removes nodes having outdegree zero to compute a topo-
logical order. Improvements obtained by using this algorithm were negligible.
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4.3.3 FM Local Search
We will see in the experimental evaluation of this section that the combinations of local
search with the flow-based method is beneficial. We implemented two kinds of FM local
improvement schemes within our framework. The first scheme is so called quotient
graph style refinement [87]. On each pair of blocks that share a non-empty boundary
we can apply a two-way local improvement method which only moves nodes between
the current two blocks. The second scheme is so called global k-way local search. This
method has a more global view since it is not restricted to moving nodes between two
blocks only. Concretely, we look at two methods – classical k-way search and multi-try
k-way search.

Two-way Local Search. The two-way local search algorithm used within our frame-
work is similar to the method used in KaPPa [87]. We present it here for completeness.
It is basically the FM-algorithm [66] already presented in Chapter 3: for each of the two
blocks A, B under consideration, a priority queue of nodes eligible to move is kept. The
priority is based on the gain, i.e. the decrease in edge cut when the node is moved to the
other side. Each node is moved at most once within a single local search. The queues
are initialized randomly with the partition boundary. After a node is moved, its unmoved
neighbors become eligible.

There are different possibilities to select a block from which a node shall be moved.
The classical FM-algorithm [66] alternates between both blocks. We employ the Top-
Gain strategy from KaPPa which selects the block with the largest gain and breaks ties
randomly if the gain values are equal. In order to achieve a good balance, TopGain
adopts the exception that the block with larger weight is used when one of the blocks
is overloaded. After a stopping criterion is applied, we roll back to the best feasible cut
found (among ties we choose the partition that has better balance).

To balance imbalanced blocks we have two strategies. A soft balancing algorithm
always selects a node for movement from the block having larger weight and uses the
same roll back mechanism as before, i.e. the cut of a partition cannot increase. A hard
rebalancing allows increased cuts. It also selects nodes for movement from the block
having larger weight, but the roll back mechanism recreates the partition having the best
balance (among ties we choose the partition having the smaller cut).

The two-way method is applied between all adjacent pairs of blocks. A sophisticated
algorithm to schedule two-way searches is used to save running time in areas where local
search has been repeatedly unsuccessful. We explain it in Section 4.3.4.

k-way Local Search. Our variant of k-way local search uses only one priority queue P
which is initialized with the complete partition boundary in a random order. The priority
is based on the max gain g(v) =maxP gP(v) where gP(v) is the decrease in edge cut when
moving v to block P. Again each node is moved at most once and after a node is moved,
its unmoved neighbors become eligible. Ties are broken randomly if there is more than
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Figure 4.7: On the left hand side a typical k-way local search that is initialized with all
boundary nodes is illustrated. On the right hand side Multi-try FM is shown. Multiple
k-way searches that are initialized with single boundary nodes are started. In both cases,
each node is moved at most once during a round. Source: [143].

one block yielding the same maximum gain. Local search then repeatedly looks for the
highest gain node v. However, a node v is not moved if the movement would lead to
an unbalanced partition. The k-way local search is stopped if the priority queue P is
empty (i.e. each node was moved once) or a stopping criterion described below applies.
Afterwards local search is rolled back to the lowest cut fulfilling the balance criterion that
occurred. This procedure is then repeated until no improvement is found or a maximum
number of iterations is reached.

Multi-try k-way Local Search. Recent results in KaSPar [122] and KaPPa [87] in-
dicate that localization of local search yields increased partition quality. Hence, we
introduce a localized variant of the k-way local search algorithm described above. Previ-
ous k-way methods were initialized with all boundary nodes, i.e. all boundary nodes are
eligible for movement at the beginning. In contrast, our method is repeatedly initialized
with a single boundary node. Intuitively, this introduces a larger amount of diversifi-
cation compared to the classical method that is restricted to move the boundary node
having the largest gain.

Multi-try FM is organized in rounds. A round works as follows. Instead of putting all
boundary nodes directly into a priority queue, we put the boundary nodes of the current
block pair under consideration into a todo list T . Subsequently, we begin a k-way local
search starting with a single random node v of T . However, local search is only started
if v was not touched by a previous localized k-way search in this round. Either way, v
is removed from the todo list. We stress that a localized k-way search is restricted to
the movement of nodes that have not been touched by a previous local search during the
round. This assures that at most n nodes are touched during a round of the algorithm
and that the algorithm can be implemented in linear time. Figure 4.7 illustrates the
differences to the global k-local search algorithm.
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Figure 4.8: An example illustrating why localization helps to find better partitions. –
stands for a node with negative gain, + stands for a node with positive gain. Source:
[123].

To understand why localization of local search is helpful to create partitions of higher
quality, consider the example depicted in Figure 4.8. We see a 4-partition of a graph that
is a local optimum in the sense that at least two node movements are necessary until
moving a node with positive gain is possible. Recall that classical k-way local search is
initialized with all boundary nodes (in this case all of them have negative gain). It then
starts to move nodes with negative gain at multiple places of the graph. When it finally
moves nodes with positive gain (+) the partition is already much worse than the input
partition. Hence, the movement of the positive gain nodes does not yield an improvement
with respect to the given input partition. On the other hand, a localized local search that
starts close to the nodes with positive gain, can find the positive gain nodes by moving
only a small number of nodes with negative gain. Since it did not move as many negative
gain nodes as the classical k-way search, it may still finds an improvement with respect
to the input partition.

Stopping Criterion. We adopt the stopping criterion proposed in KaSPar by Osipov
and Sanders [122] for both k-way local search algorithms. This stopping rule is derived
using a random walk model. Gain values in each step are modelled as identically dis-
tributed, independent random variables whose expectation µ and variance σ2 is obtained
from the previously observed p steps since the last improvement. Osipov and Sanders
[122] derived that it is unlikely for the local search to produce a better cut if

pµ2 > ασ2 +β

for some tuning parameters α and β . The parameter β is a base value that avoids stop-
ping just after a small constant number of steps that happen to have small variance. As
in KaSPar, we set it to β := lnn.
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4.3.4 Scheduling Pair-Wise Local Search
Our algorithm to schedule two-way local searches on pairs of blocks is called active
block scheduling. The main idea is that local search should be done in areas in which
change still happens. The algorithm begins by setting every block of a partition active.
The scheduling algorithm is organized in rounds. In each round, the algorithm tries to
improve all adjacent pairs of blocks that have at least one active block in a random order.
If changes occur during this search, both blocks are marked active for the next round of
the algorithm. In this case, local improvement between pairs of blocks can be both,
two-way local search and/or flow-based improvement, depending on the configuration.
After each pair-wise improvement a multi-try k-way local search is started. Note that the
multi-try search is not restricted to moving nodes only between the current block pair
(A,B) under consideration. More precisely, if a node is incident to another block than
A or B, it can potentially be moved to this block. The todo list T is initialized with the
boundary nodes of the current pair of blocks. Each block that changed during this search
is also marked active for the next round. The algorithm stops if no active block is left.
Pseudocode for the algorithm can be found in Algorithm 1.

Algorithm 1 Active Block Scheduling
procedure activeBlockScheduling

set all blocks active
while there are active blocks

L := �edge (A,B) in quotient graph : A active or B active�
set all blocks inactive
permute L randomly
for each (A,B) ∈ L do

pairwiseLocalImprovement(A, B)
multi-try FM search starting with boundary of A and B
if anything changed during local search then

activate blocks that have changed

4.4 Global Search
A common approach to obtain high quality partitions is to use a multilevel algorithm
multiple times using different random seeds for initialization of the coarsening and local
search algorithms. One can then simply use the best partition that has been found.

When using a matching based coarsening scheme, an improvement of this method
are Iterated Multilevel Algorithms (V-cycles) which were introduced by Walshaw [162].
The main idea is to iterate coarsening and local search several times, again using different
seeds for random tie breaking. However, instead of performing a full restart, one can use
the information/partition that has already been obtained. More precisely, after the first
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Figure 4.9: An illustration of iterated V-cycles. In this case, the multilevel scheme
is iterated two times. During the coarsening of the second iteration, cut edges are not
contracted and the input partition is used as initial partition of the coarsest graph. Source:
[143].

iteration of the multilevel scheme is done, one performs additional iterations such that
cut edges are not contracted. Thus a given partition can be used as initial partition of
the coarsest graph (having the same balance and cut as the partition of the finest graph).
This ensures non-decreasing partition quality, if the local search algorithm guarantees
no worsening. The concept of iterated V-cycles is illustrated in Figure 4.9. Note that our
local search algorithms have, to some extent, the ability to climb out of local minima
and due to the randomization of the coarsening, the hierarchies created in later cycles
are different. That introduces further diversification for local search.

In multigrid linear solvers, Full-Multigrid methods are preferable to simple V -cycles
[31]. Therefore, we now introduce two novel global search strategies namely W-cycles
and F-cycles for graph partitioning. A W-cycle works as follows: on each level we per-
form two recursive calls using different random seeds for contraction and local search.
As soon as the graph is partitioned, edges that are between blocks are not contracted.
An F-cycle works similar to a W-cycle with the difference that further recursive calls
are only made the second time that the algorithm reaches a particular level. Figure 4.10
gives an abstract view of W- and F-cycles.

In most cases, the partitions of the coarsest graph obtained in a second iteration of
the V-cycle by an initial partitioner are much worse than the partition that is used on
the coarsest graph (the partition of the finest graph that is given). In other words, in a
second iteration of a V-cycle the initial partitioner is not able find better partitions of the
coarsest graph than the one that is applied. Therefore no further initial partitioning is
used as soon as the graph is partitioned. Experiments in Section 6.4 show that all cycle
variants are more efficient than simple restarts of the algorithm.

In order to bound the execution time of the more sophisticated schemes, we introduce
a level split parameter d such that further recursive calls are only performed every dth
level. We go into more detail after we have analyzed the running time of the global
search strategies. Our default value of d is set to two.
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Figure 4.10: An abstract view of F-cycle (left) and W-cycle (right). Edges that run
between blocks are not contracted as soon as the graph is partitioned. Source: [143].

Analysis. We now roughly analyse the running time of the different global search
strategies under a few assumptions. In the following the shrink factor a names the factor
that the graph shrinks (nodes and edges uniformly) during one coarsening step.

Theorem 4.2 If the time for coarsening and uncoarsening is Tcr(n) := bn and a constant
shrink factor a ∈ [1/2,1) is given, then:

TW (n)






≤ 1
1−2ad TV (n) if 2ad < 1

∈ Θ(n logn) if 2ad = 1
∈ Θ(nlogd log1/a 2) if 2ad > 1

TF(n)≤
1

1−ad TV (n),

where TV is the time for a single V-cycle and TW ,TF are the time for a W-cycle and
F-cycle with level split parameter d.

Proof. The running time of a single V-cycle is given by

T �
V (n) =

�

∑
i=0

Tcr(ain) = bn
�

∑
i=0

ai = bn
1−a�+1

1−a
,

where � is the number of levels of the cycle. The running time of a W-cycle with level
split parameter d is given by the time for d coarsening and uncoarsening steps plus the
time for the two recursive calls on the coarsest of the just created graphs. For the case
2ad < 1, we get

T �
W (n) = bn

d−1

∑
i=0

ai +2TW (adn) = bn
�/d

∑
k=0

2k
d−1

∑
i=0

ak·dai

= bn
d−1

∑
i=0

ai
�/d

∑
k=0

(2ad)k ≤ T �
V (n)

∞

∑
k=0

(2ad)k

=
1

1−2ad T �
V (n).
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The other two cases for the W-cycle follow directly from the master theorem for ana-
lyzing divide-and-conquer recurrences. To analyse the running time of an F-cycle, we
observe that

T �
F(n) ≤

�

∑
i=0

T i
V(a

i·dn) =
�

∑
i=0

bai·dn
1−ai+1

1−a
=

bn
1−a

�

∑
i=0

ai·d(1−ai+1)

≤ bn
1−a�+1

1−a

∞

∑
i=0

(ad)i =
1

1−ad T �
V (n).

This completes the proof of the theorem.

4.5 Experimental Evaluation

4.5.1 Preliminaries
Structure. This section is organized as follows. First we define three different con-
figurations of KaFFPa – KaFFPaStrong, Eco and Fast. We then use a matching based
scheme to evaluate the local and global search techniques presented within this chapter.
We compare ourselves against state of the art partitioning tools and have a closer look at
the size of node separators in Chapter 7. Algebraic distance and the algebraic multigrid
schemes presented in this chapter are evaluated in Appendix A.

Methodology. In our experimental evaluation we perform two types of experiments,
normal tests and tests for effectiveness. Using normal tests we can compare average cut
values. To obtain fair comparisons of the different methods, we also use tests for effec-
tiveness of the algorithms. Effectiveness tests create a setting in which the algorithms
that are compared have approximately the same amount of time to create a partition.
This is necessary because different configurations and components of the algorithm can
consume different amounts of running time. Both test schemes are described below.
Normal Tests: We perform ten repetitions on the networks under consideration and report
the average of computed cut size, running time and the best cut found. When further
averaging over multiple instances, we use the geometric mean in order to give every
instance the same influence on the final score. 2

Effectiveness Tests: Each algorithm is allotted the same amount of time to compute a
partition in order to create fair comparisons of the methods. First, for each graph and k
each configuration is executed once. Let t be the largest running time that occurred. Now
each algorithm gets time 3t to compute a good partition, i.e. we take the best partition
out of repeated runs. If a configuration can perform a next run depends on the remaining

2Because we have multiple repetitions for each instance (graph, k), we compute the geometric mean
of the average (Avg.) edge cut values for each instance or the geometric mean of the best (Best.) edge cut
value occurred. The same is done for the running time t.
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time, i.e. we flip a coin with corresponding probabilities such that the expected time
over multiple runs is 3t. This is repeated five times. The final score is computed as
above using these values.

Instances. In this section, we use the following instances for the experimental evalua-
tion of the proposed algorithms: rgg17, rgg18, delaunay17, delaunay18, bcsstk29, 4elt,
cti, memplus, cs4, bcsstk32, body, pwt, sphere, t60k, wing, finan512, rotor, bel, nld and
af_shell9. Basic properties of these graphs can be found in Chapter 2.4.

Implementation. We have implemented the algorithms described above using C++.
Priority queues for the local search are based on binary heaps and bucket queues. Hash
tables use the library (extended STL) provided with the GCC compiler. The flow prob-
lems are solved using Andrew Goldbergs Network Optimization Library HIPR [40]
which is integrated into our code. The AMG coarsening was implemented in a sepa-
rate framework (using the LEDA library) by Ilya Safro based on [138] and was used
to create the multilevel hierarchies for KaFFPa in the AMG case. Experiments that are
presented in this chapter have been performed on machine A.
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4.5.2 Configuring the Algorithm

We define three configurations of our algorithm: Strong, Eco and Fast. The Strong
configuration has been able to achieve the best known partitions for many standard
benchmark instances, the Eco version is a good tradeoff between quality and speed
and the Fast version of KaFFPa is the fastest system for some large graphs while still
improving partitioning quality to the previous fastest system. All configurations use the
FM algorithm. The Strong configuration further employs flows, k-way multi-try FM
and global search. The Eco configuration also employs flows. We now describe the
different configurations of the algorithm.

KaFFPaStrong: The aim of KaFFPaStrong is to achieve the best known partitions for
many standard benchmark instances. It uses the GPA algorithm as a matching algorithm
combined with the rating function expansion∗2. We employ innerOuter on the first level
to infer structural information of the graph since the rating function expansion∗2 has
the disadvantage that it evaluates to one on the first level of an unweighted graph. We
perform 64/ logk initial partitioning attempts using our initial partitioning algorithm.
The local search phase first employs k-way FM local search (since it converges very
fast). It uses the adaptive search strategy from KaSPar [122] with α = 10 and is stopped
as soon as one round/iteration of the algorithm did not find an improvement or if the
number of performed iterations exceeds ten. We continue by performing quotient-graph
style refinement. We use the active block scheduling algorithm combined with the
multi-try k-way local search as described in Section 4.3.4 (using α = 10). A pair of
blocks is refined as follows: We start with a pairwise FM search which is followed by
the max-flow min-cut algorithm (including the most balancing cut heuristic). The FM
search is stopped if more than 5% of the number of nodes in the current block pair have
been moved without yielding an improvement. The upper bound factor for the flow
region size is set to α � = 8. We use two F-cycles as global search strategy.

KaFFPaEco: The aim of KaFFPaEco is to obtain a graph partitioner that is fairly
fast and is able to compute partitions of high quality. This configuration uses the
RandomGPA matching strategy, i.e. it matches the first max(2,7− logk) levels using a
random matching algorithm. The remaining levels are matched using the GPA algorithm
employing the edge rating function expansion∗2. It then performs min(4,16/ logk)
initial partitioning using our initial partitioning algorithm. Local search is configured
as follows: again we start with k-way local search as in KaFFPaStrong. In KaFFPaEco
the number of k-way rounds/iterations is bounded by min(5, logk). We then apply
quotient-graph style refinements as in KaFFPaStrong using slightly different parameters.
The two-way FM search is stopped if 1% of the number of nodes in the current block
pair have been unsuccessfully moved. The flow region upper bound factor is set to
α � = 2. We use a single V-cycle in order to be competitive regarding running time.
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KaFFPaFast: The aim of KaFFPaFast is to get a very fast system for large graphs
while still improving partitioning quality to the fastest system. KaFFPaFast matches
the first four levels using a random matching algorithm. It then continues by using the
GPA algorithm equipped with expansion∗2 as a rating function. We perform exactly one
initial partitioning attempt using our initial partitioning algorithm. Local search works
as follows: for k ≤ 8 we only perform quotient-graph refinement. Each pair of blocks
is refined exactly once using the pair-wise FM algorithm. Pairs of blocks are scheduled
randomly. For k > 8 we only perform one k-way local search round. In both cases,
local search is stopped as soon as 15 steps have been performed without yielding an
improvement. Again, we do not apply flow-based local search or a more sophisticated
global search strategy in order to be competitive regarding running time.

4.5.3 Insights about Flows

In this section we evaluate max-flow min-cut based improvement algorithms. We define
a basic FM configuration to compare with as follows. The basic configuration uses the
GPA algorithm as a matching algorithm and performs five initial partitioning attempts
using Scotch as initial partitioner. It further employs the active block scheduling algo-
rithm equipped with the two-way FM algorithm. The FM algorithm stops as soon as
5% of the number of nodes in the current block pair have been moved without yielding
an improvement. Edge rating functions are used as in KaFFPaStrong. During this test
our main focus is the evaluation of flows. Hence, we don’t use k-way local search or
multi-try FM search.

The basic configuration is extended by specific components to evaluate the perfor-
mance of flow-based local search algorithms. A configuration that uses FM (L)ocal
search, the (M)ost balanced cut heuristics and (F)lows will be indicated by (+L, +M,
+F). Table 4.11 indicates that a multilevel algorithm that only uses flow-based local
search techniques obtains cuts and running times which are on average worse than those
of the basic FM configuration. Partitioning quality improves if the areas in which min-

Variant (-L, -M, +F ) (-L, +M, +F) (+L, -M, +F) (+L, +M, +F)
α � Avg. t[s] Avg. t[s] Avg. t[s] Avg. t[s]
1 −19.58 0.76 −17.09 0.80 1.64 1.19 1.74 1.22
2 −11.86 0.90 −9.16 0.96 3.66 1.31 4.17 1.39
4 −4.86 1.24 −2.20 1.29 5.27 1.62 6.21 1.76
8 −2.30 2.11 0.41 2.07 5.99 2.41 7.06 2.72
16 −1.88 4.17 0.81 3.92 6.14 4.30 7.21 5.01
Ref. (+L, -M, -F) 2 974 1.13

Table 4.11: The final score of different algorithm configurations. α � is the flow region
upper bound factor. Shown are improvements relative to the basic configuration in %.
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imum cuts are found are enlarged, i.e. using larger factors α �, and if the most balanced
minimum cut heuristic is enabled. When using the most balanced minimum cut heuristic
and a factor α � = 8, partitioning quality is comparable to the basic configuration. The
running time, however, is still worse compared to the basic configuration that only em-
ploys FM local search. Intuitively, the lack of partition quality by flows on its own and
the combination of flows with the most balanced cut heuristic is due to the inability of
the method to accept suboptimal cuts. This steers the algorithm to solve only small flow
problems and hence yields bad cuts.

As a consequence, we also combined both methods with FM local search. Con-
cretely, we use the same FM local search algorithm as in the basic configuration before
we apply the flow-based improvement algorithm. This way our algorithm can get close
to good cuts and we can use flow-based methods to get the best cut close to this cut.
Table 4.11 shows that the combination produces up to 6.14% better cuts on average than
the basic configuration. If the most balancing cut heuristic is enabled, cuts are on average
7.21% lower than the cuts produced by the basic configuration.

In general, one hopes that a combination of different local search algorithms im-
proves solution quality. Such combinations come with increased running time which
makes comparisons more difficult. To obtain a fair comparison of the methods, we now
turn to effectiveness tests. This test gives both algorithm configurations roughly the
same amount of time to compute a solution. Table 4.12 shows that the combinations
are more effective than repeated executions of the basic FM configuration. The most
effective configuration is the basic FM configuration using flows with α � = 8 combined
with the most balanced cut heuristic. It yields 4.74% lower cuts than the basic configu-
ration in the effectiveness test. We conclude that the combination of flow-based methods
with classical local search is a very useful method to obtain high quality graph partitions
which cannot be found as effectively by classical local search algorithms on its own.

Effectiveness (-L, +M,+F) (+L,-M, +F) (+L,+M,+F)
Avg. Avg. Avg.

α � = 1 −16.41 1.62 1.65
2 −8.26 3.02 3.36
4 −3.05 4.04 4.63
8 −1.12 4.16 4.74
16 −1.29 3.70 4.28
(+L, -M, -F) 2 833 2 831 2 827

Table 4.12: Three effectiveness tests each one with six different algorithm configura-
tions. Shown are improvements relative to the basic configuration in %.
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4.5.4 Insights about Global Search Strategies
We now compare different global search strategies. Our baseline configuration is a rel-
atively fast configuration of our algorithms since we want to evaluate the performance
of the different global search strategies. The configuration uses the GPA matching algo-
rithm and performs one initial partitioning attempt using Scotch. Local search employs
k-way local search followed by quotient graph style refinements without flow-based lo-
cal search algorithms. In this test we use this basic configuration and vary the global
search strategy. All of our global search algorithms use the level split parameter d = 2.

In Table 4.13 we summarize the results of this experiment. Clearly, more sophis-
ticated global search strategies decrease the cut since different levels of the multilevel
hierarchy are visited multiple times using different random seeds for coarsening and lo-
cal search. But they also increase the running time of the algorithm. The effectiveness
results in Table 4.13 indicate that repeated executions of more sophisticated global search
strategies are always superior to repeated executions of a single V-cycle. We also used
Wilcoxon’s signed paired rank test (using a 5% significance level) to estimate whether
the difference in the performance of the algorithms is statistically significant or not. It
turns out that the three strongest configurations yield significantly better cuts than the
four weaker configurations.3 Moreover, all more sophisticated global search strategies
yield significantly better cuts than the single V-cycle. The increased effectiveness is due
to different reasons. By using a given partition of the finest graph in later iterations, we
obtain a very good initial partition of the coarsest graph. Consider the case where two
consecutive V-cycles are performed. After the first iteration of the V-cycle, cut edges are
not contracted and we use the input partition of the finest level as initial partition of the
coarsest graph. This partition is usually not found by an initial partitioning algorithm
even though cut edges haven’t been contracted. On the other hand, time is saved by
using the active block strategy which converges very quickly in later cycles.

Variant Avg. t[s] Eff. Avg.
2 F-cycle 2.69 2.31 2 806
3 V-cycle 2.69 2.49 2 810
2 W-cycle 2.91 2.77 2 810
1 W-cycle 1.33 1.38 2 815
1 F-cycle 1.09 1.18 2 816
2 V-cycle 1.88 1.67 2 817
1 V-cycle 2 973 0.85 2 834

Table 4.13: Results for different global search strategies. Improvements are shown in %
relative to the basic configuration.

3It is worth mentioning that there are graph classes on which two F-cycles are preferable to three V-
cycles. For example, when partitioning the largest random geometric graph (rgg24) into 64 blocks, two
F-cycles are about 20% percent faster than three V-cycles and yield smaller cuts on average.
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4.5.5 Removal / Knockout Tests
We use two different experiments to evaluate interactions and relative importance of our
algorithmic improvements. Removal tests use KaFFPaStrong and remove algorithmic
components step by step yielding weaker and weaker variants of the algorithm. During
knockout tests only one component is removed at a time, i.e. each variant is exactly the
same as KaFFPaStrong minus the specified algorithmic component. In both cases we
use Scotch as initial partitioning algorithm. Table 4.14 summarizes the results.

We shortly summarize the main results. First, in order to achieve high quality par-
titions we don’t need to perform classical global k-way local search. The changes in
solution quality are negligible and both configurations (Strong without global k-way and
Strong with global k-way) are equally effective. However, the global k-way local search
algorithm speeds up the overall running time of the algorithm; hence we included it
into KaFFPaStrong. In contrast, removing the multi-try FM algorithm increases average
cuts by almost two percent and decreases the effectiveness of the algorithm. As soon as
a component is removed from KaFFPaStrong (except for the global k-way search) the
algorithm gets less effective.

Variant Avg. t[s] Eff. Avg.
Strong 2 683 8.93 2 636
-KWay −0.04 9.23 0.00

-Multitry 1.71 5.55 1.21
-GSearch 2.42 3.27 1.25

-MB 3.35 2.92 1.82
-Flow 9.36 1.66 6.18

Variant Avg. t[s] Eff. Avg.
Strong 2 683 8.93 2 636
-KWay −0.04 9.23 0.00

-Multitry 1.27 5.52 0.83
-MB 0.26 8.34 0.11

-Flow 1.53 6.33 0.87

Table 4.14: Left hand side, removal tests: each configuration is the same as its prede-
cessor minus the component shown in the first column. All average cuts are shown as
increases in cut (%) relative to the values obtained by KaFFPaStrong. Right hand side,
knockout tests: each configuration is the same as KaFFPaStrong minus the component
shown in the first column. All average cuts are shown as increases in cut (%) relative
to the values obtained by KaFFPaStrong. Legend: KWay (classical k-way local search),
Multitry (Multi-try k-way local search), GSearch (global search strategy, F-cycle), MB
(most balanced minimum cut heuristic), Flow (Max-Flow Min-Cut based search).

4.5.6 Graph Families
In this section, we investigate the behaviour of our algorithms when the graph size in-
creases. Detailed comparisons of our algorithm configurations against other graph par-
titioning packages can be found in Chapter 7. Here we perform tests on two graph
families (rgg, delaunay). Details about the graphs can be found in Chapter 2.4. We
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used machine A for the experiments and repeated them ten times using different random
seeds for initialization. Scotch was used as initial partitioning algorithm. Figures 4.15
and 4.16 summarize the results. As soon as the graphs have more than 219 nodes, KaFF-
PaFast outperforms kMetis in terms of speed and quality. In general the speed up of
KaFFPaFast relative to kMetis increases with growing graph size. The largest difference
is obtained on rgg24 graph where kMetis has 70% larger running times than our Fast
configuration which still produces 2.5% smaller cuts.
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Figure 4.15: Results for Random Geometric Graphs. Source: [143].
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Figure 4.16: Results for Delaunay Graphs. Source: [143].

4.5.7 Walshaw Benchmark
We applied KaFFPaStrong with Scotch as initial partitioner to Walshaw’s benchmark
archive [157] applying the rules used there, i.e. running time is no issue, but we
want to achieve minimal cut values for k ∈ {2,4,8,16,32,64} and balance parameters
ε ∈ {0,0.01,0.03,0.05}. We excluded the case ε = 0 since flows are not designed for
this case. Note that the partitioning benchmark is very competitive. Over time many
researchers submitted their solutions to the archive. Hence, throughout this work when
referring to the number of records obtained by a particular system, we refer to the num-
ber of records achieved at time of submission. At submission time, KaFFPa computed
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317 partitions which are better that previous best partitions reported there: 99 for 1%,
108 for 3% and 110 for 5%. Moreover, it reproduced equally sized cuts in 118 of the 295
remaining cases. After the partitions were accepted, we ran KaFFPaStrong as before and
took the previous entry as input. Now overall in 560 out of 612 cases we were able to
improve a given entry or have been able to reproduce the current result (in the first run).
The complete list of improvements is available in the technical report [141].

4.6 Concluding Remarks
Review. In this chapter we looked carefully at different components of the multilevel
graph partitioning scheme. An outcome of the chapter is the graph partitioning frame-
work KaFFPa which is highly configurable to either achieve the best marks in the Wal-
shaw Benchmark, to be a good trade-off between quality and running time, or to be the
fastest system on some graphs while still improving partitioning quality compared to
the previous fastest system. This is achieved through several improvements of the mul-
tilevel algorithm that lead to enhanced partitioning quality. In particular, we looked at
two coarsening schemes – matching and AMG-inspired. On social networks the AMG-
inspired coarsening scheme has a clear advantage, whereas both schemes produces sim-
ilar results on graphs that are less unstructured (see Appendix A). Moreover, we looked
at two novel local search techniques – max-flow min-cut based local search and a very
localized local search algorithm. Our experimental evaluation emphasized that max-flow
min-cut based techniques produce superior partitions compared to classical local search,
if the search space is expanded and if they are combined with advanced techniques such
as classical two-way local search algorithm and a heuristic that given a max-flow can
find better balanced minimum cuts. Experimental results also suggest that localization
of local search is helpful and that the global search techniques – V-, F- and W-cycle –
are superior to repeated starts of the multilevel algorithm.

All of the contributed local and global search techniques presented within this chap-
ter come with an increased running time overhead. Experiments in which compared
algorithms get roughly the same amount of time to compute a partition indicate that the
proposed local and global search techniques are more effective than previous algorithms.

Future Work. It would be very valuable to go back to parallelization. The integra-
tion of flow-based local search techniques as well as the global search techniques could
be easily integrated into a distributed memory parallel partitioner such as KaPPa. The
global search techniques presented in this chapter will even be more effective in a dis-
tributed parallel setting where each processor is responsible for one block of the parti-
tion. This is due to the following reasons: during the coarsening of a distributed parallel
partitioner a matching algorithm is usually used to the match local edges and edges that
run between the blocks, i.e. between the processors. To match edges that run between
processors communication is required. Since in later cycles of a global search strategy
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cut edges are not eligible for the matching algorithm there will be much less communica-
tion needed. An additional step towards a faster distributed memory parallel partitioner
has been done in the diploma thesis of Marcel Birn [25]. In his thesis, Marcel Birn de-
veloped a scalable and very fast, parallel matching algorithm. On the other hand, the
number of available cores in a desktop increases drastically nowadays. For this reason a
shared memory parallelization of the proposed techniques is also highly desirable.

There are multiple directions to continue research in the multilevel graph partitioning
scheme. Regarding the max-flow min-cut local search technique, it would be interesting
to use diffusion to find the areas in which the max-flow min-cut problems are solved.
Another interesting idea would be to integrate the presented techniques into the n-level
scheme by Osipov and Sanders [122]. The AMG-inspired coarsening scheme is very
likely to be improved if one uses a node rating function for the selection of the dominat-
ing/seed set similar to the concept of edge ratings.

Indeed, it will be interesting to transfer the ideas presented within this chapter to
other combinatorial problems such has hypergraph partitioning, graph drawing and
graph clustering, or to look at other objective functions. In his bachelor thesis, Flo-
rian Ziegler [168] already started to transfer some ideas presented in this work to the
hypergraph bipartitioning problem.

The idea of using edge ratings during coarsening has been proposed in KaPPa [87]
and has been extended in this work. However, it remains to have a well understood and
unified rating function. A first step towards this direction has been in the bachelor thesis
of Maximilian Schuler [151].
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5
Evolutionary Graph Partitioning

In the Walshaw benchmark, KaFFPa was beaten mostly for small graphs that combine
the multilevel approach with an evolutionary strategy. Hence, we develop an improved
evolutionary algorithm that also employs coarse grained parallelism in this chapter.

Roughly speaking, KaFFPaE (KaFFPaEvolutionary) uses KaFFPa to create parti-
tions and modifies the coarsening phase to provide new effective combine operations.
These novel mutation and combine operators do not need random perturbations of edge
weights in contrast to previous methods that use a graph partitioner by Soper et al. [157]
and Delling et al. [49]. In fact, we show in Section 6.4 that using edge weight per-
turbations decreases the overall quality of the underlying graph partitioner. Due to the
parallelization, our system is able to compute partitions that have quality comparable to
or better than previous entries in Walshaw’s well-known partitioning benchmark within
a few minutes for graphs of moderate size. Previous methods such as Soper et al. [157]
required running times of up to one week for graphs of that size. We therefore believe
that in contrast to previous methods, our method is very valuable in the area of high
performance computing. We go into more detail at the end of this chapter.

The chapter is organized as follows. We begin with the general structure of an evolu-
tionary algorithm in Section 5.1. We then describe our combine and mutation operations
in Section 5.2 and Section 5.3. The parallelization of our evolutionary system is pre-
sented in Section 5.4. Experiments in Section 5.5 then look at scalability and quality of
the produced partitions of the proposed system.

References. The chapter is based on the conference papers [144, 146] that have been
published together with Peter Sanders.

5.1 Evolutionary Algorithms
The general idea behind evolutionary algorithms is to use mechanisms which are highly
inspired by biological evolution such as selection, mutation, recombination and survival
of the fittest. An evolutionary algorithm starts with a population of individuals and
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evolves the population into different populations over several rounds. In each round, the
evolutionary algorithm uses a selection rule based on the fitness of the individuals of the
population to select good individuals and combine them to obtain improved offspring
[79]. There are many rules for the selection of individuals from the population. One
possibility that has proven to be effective is the tournament selection rule by Miller et al.
[118]. Here, the fittest out of two distinct random individuals from the population is
selected.

When an offspring is generated, an eviction rule is used to select a member of the
population and replace it with the new offspring. In general one has to take both into
consideration, the fitness of an individual and the distance between individuals in the
population [15]. There are multiple possibilities to generate offsprings during the course
of one generation. One possibility is to only generate one offspring per generation.
Such an evolutionary algorithm is called steady-state [47]. A typical structure of an
evolutionary algorithm is depicted in Algorithm 2.

For an evolutionary algorithm it is of major importance to keep the diversity in the
population high [15], i.e. the individuals should not become too similar, in order to avoid
a premature convergence of the algorithm. In other words, to avoid getting stuck in local
optima, a procedure is needed that randomly perturbs the individuals. In classical evo-
lutionary algorithms, this is done using a mutation operator. It is also important to have
operators that introduce unexplored search space to the population. In the next section
we introduce more elaborate diversification strategies through a new kind of combine
and mutation operators that allow us to explore the search space more effectively.

Interestingly, Inayoshi et al. [91] noticed that good local solutions of the graph parti-
tioning problem tend to be close to one another. Boese et al. [26] showed that the quality
of the local optima overall decreases as the distance from the global optimum increases.
We will see in the following that our combine operators can exchange good parts of
solutions quite effectively especially if they have a small distance.

Algorithm 2 A classical general steady-state evolutionary algorithm.
procedure steady-state-evolutionary-algorithm

create initial population P
while stopping criterion not fulfilled

select parents p1, p2 from P
combine p1 with p2 to create offspring o
mutate offspring o
evict individual in population using o

return the fittest individual that occurred
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5.2 Framework for Combine Operations
We now describe the general combine operator framework. This is followed by three
instantiations of this framework. In contrast to previous methods that use a multilevel
framework, our combine operators do not need perturbations of edge weights since we
integrate the operators into our partitioner and do not use it as a complete black box.

Furthermore, all of our combine operators assure that the partition quality of the
offspring is at least as good as the best of both parents. Roughly speaking, the combine
operator framework combines an individual/partition P = V P

1 , ...,V P
k (which has to

fulfill a balance constraint) with a clustering C = V C
1 , ...,V C

k� . Note that the clustering
does not necessarily fulfill a balance constraint and k� is not necessarily given in advance.
All instantiations of this framework use a different kind of clustering or partition. The
partition and the clustering are both used as input for our multilevel graph partitioner
KaFFPa in the following sense. Let E be the set of edges that are cut edges, i.e. edges
that run between two blocks, in either P or C . All edges in E are blocked during
the coarsening phase, i.e. they are not contracted during the coarsening phase. In other
words, these edges are not eligible for the matching algorithm used during the coarsening
phase and therefore are not part of any matching computed. Figure 5.1 illustrates this
kind of coarsening.

The stopping criterion of the multilevel partitioner is modified such that it stops when
no contractable edge is left. Note that the coarsest graph is now exactly the same as the
quotient graph Q� of the overlay clustering of P and C of G (see Figure 5.2 gives an
example). Hence nodes of the coarsest graph correspond to the connected components
of GE = (V,E\E ) and the weight of the edges between nodes corresponds to the sum of
the edge weights running between those connected components in G.

As soon as the coarsening phase is stopped, we apply the partition P to the coarsest
graph and use this as initial partitioning. This is possible since we did not contract any
cut edge of P . Note that due to the specialized coarsening phase and this specialized
initial partitioning, we obtain a high quality initial solution on a very coarse graph which
is usually not discovered by conventional partitioning algorithms. Since our local search
algorithms guarantee no worsening of the input partition and use random tie breaking,
we can assure nondecreasing partition quality. Note that local search algorithms can

match contract

Figure 5.1: A graph G with two partitions, the dark and the light line, are shown. Cut
edges are not eligible for the matching algorithm. Contraction is done until no matchable
edge is left. The best of the two given partitions is used as initial partition. Source: [144].
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effectively exchange good parts of the solution on the coarse levels by moving only a
few nodes. Figure 5.2 gives an example.

Also note that this combine operator can be extended to be a multi-point combine
operator, i.e. the operator would use p instead of two parents. However, during the course
of the algorithm a sequence of two point combine steps is executed which somehow
"emulates" a multi-point combine step. Therefore, we restrict ourselves to the case p= 2.
When the offspring is generated we have to decide which solution should be evicted
from the current population. We evict the solution that is most similar to the offspring
among those individuals in the population that have a cut worse or equal to the cut of the
offspring itself. The difference of two individuals is defined as the size of the symmetric
difference between their sets of cut edges. This ensures some diversity in the population
and hence makes the evolutionary algorithm more effective.

5.2.1 Classical Combine using Tournament Selection
The first instantiation of the combine framework corresponds to a classical evolution-
ary combine operator C1. It takes two individuals P1,P2 of the population and performs
the combine step described above. In this case, P corresponds to the partition having
the smaller cut and C corresponds to the partition having the larger cut. Random tie
breaking is used if both parents have the same cut. The selection process is based on the
tournament selection rule by Miller et al. [118], i.e. P1 is the fittest out of two random
individuals R1,R2 from the population. The same is done to select P2. Note that in con-
trast to previous methods the generated offspring will have a cut smaller than or equal
to the cut of P . Due to the fact that our multilevel algorithms are randomized, a com-
bine operation performed twice using the same parents can yield a different offspring.
Figure 5.2 illustrates this combine operation.

5.2.2 Cross Combine
In this instantiation of the combine framework C2, the clustering C corresponds to a
partition of G. But instead of choosing an individual from the population, we create a
new individual in the following way. We choose k� uniformly at random in [k/4,4k] and
ε � uniformly at random in [ε,4ε]. We then use KaFFPa to create a k�-partition of G ful-
filling the balance constraint maxi c(Vi)≤ (1+ ε �)c(V )/k�. In general larger imbalances
reduce the cut of a partition which then yields good clusterings for our combine oper-
ation. To the best of our knowledge there has been no genetic algorithm that performs
operations combining individuals from different search spaces. One can extend the idea
to combine a partition with an arbitrary graph clustering that fits a specific optimization
domain.
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a) b)

contract

c) d) e)

f) g) h)

Figure 5.2: An example combine operation of two partitions a), b) of a random geomet-
ric graph. In the overlay of these partitions c), only edges that run within the same block
can be contracted. The multilevel coarsening phase d) stops as soon as there is no con-
tractable edge left. The resulting graph is the quotient graph of the overlay e). Partition
b is applied to this graph f). Local search is applied on all levels of the hierarchy g). We
end up with a graph that has the “good” cuts of both input partitions h). Source: [144].
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5.2.3 Natural Cuts

Delling et al. [49] introduced the notion of natural cuts as a pre-processing technique for
the partitioning of road networks. The pre-processing technique is able to find relatively
sparse cuts close to denser areas. We use the computation of natural cuts to provide
another combine operator, i.e. combining a k-partition with a clustering generated by the
computation of natural cuts.

We closely follow their description of this technique: the computation of natural cuts
works in rounds. Each round picks a center node v and grows a breadth-first search
(BFS) tree. The BFS is stopped as soon as the weight of the tree, i.e. the sum of the node
weights of the tree, reaches αU , for some parameters α and U . The set of the neighbors
of T in V\T is called the ring of v. The core of v is the union of all nodes added to T
before its size reached αU/ f where f > 1 is another parameter.

The core is then temporarily contracted to a single node s and the ring into a single
node t to compute the minimum s-t-cut between them using the given edge weights
as capacities. To assure that every node eventually belongs to at least one core, and
therefore is inside at least one cut, the nodes v are picked uniformly at random among
all nodes that have not yet been part of any core in any round. The process is stopped
when there are no such nodes left.

In the original work by Delling et al. [49] each connected component of the graph
GC = (V,E\C), where C is the union of all edges cut by the process above, is contracted
to a single node. Since we do not use natural cuts as a pre-processing technique at this
place, we don’t contract these components. Instead we build a clustering C of G such
that each connected component of GC is a block.

This technique yields the third instantiation of the combine framework C3 which is
divided into two stages, i.e. the clustering used for this combine step is dependent on
the stage we are currently in. In both stages the partition P used for the combine step
is selected from the population using tournament selection. During the first stage we

v

Figure 5.3: Left: the computation of a natural cut. A BFS Tree which starts from v is
grown. The gray area is the core. The dashed line is the natural cut. It is the minimum cut
between the contracted versions of the core and the ring (shown as the solid line). During
the computation several natural cuts are detected in the input graph (right). Source:
[144].



5.3. Mutation Operators 77

choose f uniformly at random in [5,20], α uniformly at random in [0.75,1.25] and we
set U = |V |/3k. Using these parameters, we obtain a clustering C of the graph which is
then used in the combine framework described above. This kind of clustering is used
until we reach an upper bound of ten calls to this combine step. When the upper bound
is reached, we switch to the second stage. In this stage we use the clusterings computed
during the first stage, i.e. we extract elementary natural cuts and use them to quickly
compute new clusterings. An elementary natural cut (ENC) consists of a set of cut
edges and the set of nodes in its core. Moreover, for each node v in the graph, we store
the set of ENCs N(v) that contain v in their core. With these data structures it is easy to
pick a new clustering C (see Algorithm 3) which is then used in the combine framework
described above.

Algorithm 3 computeNaturalCutClustering
unmarked all nodes in V
for each v ∈V in random order do

if v is not marked then
pick a random ENC C in N(v)
output C
mark all nodes in C’s core

5.3 Mutation Operators
We define two mutation operators, an ordinary and a modified F-cycle. Both mutation
operators use a random individual from the current population. The main idea is to iterate
coarsening and uncoarsening several times using different seeds for random tie breaking.
The first mutation operator M1 can assure that the quality of the input partition does not
decrease. It is basically an ordinary F-cycle which is an algorithm used in KaFFPa
(see Chapter 4 for more details). Edges between blocks are not contracted. The given
partition is then used as initial partition of the coarsest graph. In contrast to KaFFPa, we
now can use the partition as input to the algorithm in the very beginning. This ensures
non-decreasing quality since our local search algorithms guarantee no worsening.

The second mutation operator M2 works quite similar with the small difference that
the input partition is not used as initial partition of the coarsest graph. That means we
obtain very good coarse graphs but we cannot assure that the final individual has a higher
quality than the input individual. In both cases, the resulting offspring is inserted into
the population using the eviction strategy described above.
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5.4 Putting Things Together and Parallelization
We now explain the parallelization and describe how everything is put together. Each
processing element (PE) basically performs the same operations using different random
seeds (see Algorithm 4). First we estimate the population size S: each PE performs a
partitioning step and measures the time t spend for partitioning. We then choose S such
that the time for creating S partitions is approximately ttotal/ f where the fraction f is
a tuning parameter and ttotal is the total running time that the evolutionary algorithm is
given in advance to produce a partition of the graph. Each PE then builds its own popula-
tion, i.e. KaFFPa is called several times to create S individuals/partitions. Afterwards the
algorithm proceeds in rounds as long as time is left. With corresponding probabilities,
mutation or combine operations are performed and the new offspring is inserted into the
population.

We choose a parallelization/communication protocol that is quite similar to random-
ized rumor spreading by Doerr et al. [55]. Let p denote the number of PEs used. A
communication step is organized in rounds. In each round, a PE chooses a communi-
cation partner and sends her the currently best partition P of the local population. The
selection of the communication partner is done uniformly at random among the eligible
PEs. For a PE, a communication partner p� is called eligible if P has not been sent to
p� in a previous round. Afterwards, a PE checks if there are incoming individuals and
inserts them into the local population using the eviction strategy described above. If P
is improved, all PEs are again eligible. This is repeated log p times. The principle is
visualized in Figure 5.4.

Note that the algorithm can be implemented completely asynchronously, i.e. there is
no need for a global synchronisation. The process of creating individuals is parallelized
as follows: Each PE makes s� = |S|/p calls to KaFFPa using different seeds to create s�
individuals. Afterwards we do the following S−s� times: the root PE computes a random
cyclic permutation of all PEs and broadcasts it to all PEs. Each PE then sends a random
individual to its successor in the cyclic permutation and receives an individual from its
predecessor in the cyclic permutation. We call this particular part of the algorithm quick
start.

Figure 5.4: Islands of the evolutionary algorithm. Each PE has its own population and
performs combine and mutation operations using different random seeds. From time to
time the locally best partition is send to other PEs. Source: [144].
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Algorithm 4 LocallyEvolve
estimate population size S
while time left

if elapsed time < ttotal/ f then
create individual
insert into local population

else
flip coin c with corresponding probabilities
if c shows head then

perform a mutation operation
else

perform a combine operation
insert offspring into population if possible

communicate according to communication protocol

The ratio c
10 : 10−c

10 of mutation to combine operations yields a tuning parameter c.
As we will see in Section 5.5.1 the ratio 1 : 9 is a good choice. After some experiments,
we fixed the ratio of the mutation operators M1 : M2 to 4 : 1 and the ratio of the combine
operators C1 : C2 : C3 to 3 : 1 : 1. Note that the communication step in the last line
of the algorithm could also be performed only every x-iterations (where x is a tuning
parameter) to save communication time. Since the communication network of our test
system is very fast (see experimental section), we perform the communication step in
each iteration.
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5.5 Experimental Evaluation
Methodology. We mostly present two kinds of data: average values and plots that
show the evolution of solution quality (convergence plots). In both cases, we perform
multiple repetitions. The number of repetitions is dependent on the test that we perform.
Average values over multiple instances are obtained as follows: for each instance (graph,
k), we compute the geometric mean of the average edge cut values for each instance. We
now explain how we compute the convergence plots. We start explaining how we com-
pute them for a single instance I: whenever a PE creates a partition it reports a pair (t,
cut), where the timestamp t is the currently elapsed time on the particular PE and cut
refers to the cut of the partition that has been created. When performing multiple repeti-
tions, we report average values (t, avgcut) instead. After the completion of KaFFPaE we
are left with P sequences of pairs (t, cut) which we now merge into one sequence. The
merged sequence is sorted by the timestamp t. The resulting sequence is called T I . Since
we are interested in the evolution of the solution quality, we compute another sequence
T I

min. For each entry (in sorted order) in T I , we insert the entry (t,mint �≤t cut(t �)) into
T I

min. Here, mint �≤t cut(t �) is the minimum cut that occurred until time t. NI
min refers to

the normalized sequence, i.e. each entry (t, cut) in T I
min is replaced by (tn, cut) where

tn = t/tI and tI is the average time that KaFFPa needs to compute a partition for the
instance I. To obtain average values over multiple instances we do the following: for
each instance we label all entries in NI

min, i.e. (tn, cut) is replaced by (tn, cut, I). We then
merge all sequences NI

min and sort by tn. The resulting sequence is called S. The final
sequence Sg presents event based geometric averages values. We start by computing the
geometric mean cut value G using the first value of all NI

min (over I). To obtain Sg, we
basically sweep through S: for each entry (in sorted order) (tn,c, I) in S, we update G ,
i.e. the cut value of I that took part in the computation of G is replaced by the new value
c, and insert (tn,G ) into Sg. Note, c can be only smaller than or equal to the old cut value
of I.

Instances. In this section, we tune the parameters and look at the scalability of our
algorithms on the following graphs: rgg15, rgg16, delaunay15, delaunay16, uk, lux-
emburg, 3elt, 4elt, fe_sphere, cti and fe_body. Different combine operators are com-
pared using larger instances: rgg17, rgg18, delaunay17, delaunay18, bel, nld, t60k,
wing, fe_tooth, fe_rotor and memplus. Basic properties of these graphs can be found
in Chapter 2.4.

Implementation. We have implemented the algorithms described in this chapter using
C++. We use KaFFPaStrong as base case partitioner (with Scotch as initial partitioning
algorithm). Experiments in Section 5.5.1 and Section 5.5.2 have been performed on
machine A and experiments in Section 5.5.3 have been conducted on machine C.
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5.5.1 Parameter Tuning
We now tune the fraction parameter f and the ratio between mutation and combine
operations using KaFFPaStrong as a partitioner. We do this on the small testset because
running times for a single graph partitioner call are not too large. To save running time,
we focus on k = 64 for tuning the parameters. For each instance we gave KaFFPaE ten
minutes and 16 PEs to compute a partition. The quick start option is disabled.

We start by tuning the fraction parameter f . For this test the flip coin parameter c is
set to one. In Figure 5.5 we can see that the algorithm is not too sensitive about the exact
choice of this parameter. However, larger values of f speed up the convergence rate and
improve the result achieved in the end. Since f = 10 and f = 50 are the best parameter
in the end, we choose f = 10 as our default value. For tuning the ratio c

10 : 10−c
10 of

mutation and combine operations, we set f to ten. We can see that for smaller values of
c the algorithm is not too sensitive about the exact choice of the parameter. However, if
c exceeds 8 the convergence speed slows down which yields worse average results in the
end. We choose c = 1 because it has a slight advantage in the end.
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Figure 5.5: Convergence plots for the parameter tuning of the fraction parameter f using
c = 1 (top) and the flip coin parameter c using f = 10 (bottom). Source: [144].
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5.5.2 Scalability
In this section we study the scalability of our algorithm. We do the following to obtain a
fair comparison: basically each configuration has the same amount of computing time,
i.e. when doubling the number of PEs used, we divide the time that KaFFPaE has to
compute a partition per instance by two. To be more precise, when we use one PE,
KaFFPaE has t1 = 15360s to compute a partition of an instance. When KaFFPaE uses p
PEs, then it gets time tp = t1/p to compute a partition of an instance. For all the following
tests the quick start option is enabled. To save running time, we fix k to 64. We perform
five repetitions per instance. We can see in Figure 5.6 that using more processors speeds
up the convergence speed and up to p = 128 also improves the quality in the end (in
these cases the speedups are optimal in the end). This might be due to island effects
[6]. For p = 256 results are worse compared to p = 1. This is because the algorithm
is barely able to perform combine and mutation steps, due to the very small amount of
time given to KaFFPaE (60 seconds). On the largest graph of the testset (delaunay16)
we need about 20 seconds to create a partition into k = 64 blocks.

We now define the notion of pseudo speedup Sp(tn) which is a measure for speedup
at a particular normalized time tn compared to the configuration using one PE. Let cp(tn)
be the mean minimum cut that KaFFPaE has computed using p PEs until normalized
time tn. The pseudo speedup is then defined as Sp(tn) = c�1(tn)/c�p(tn), where c�i(tn) =
minci(t �)≤c1(tn) t �. If c�p(t) > c�1(tn) for all t, we set Sp(tn) = 0 (in this case the parallel
algorithm is not able to compute the result computed by the sequential algorithm at
normalized time tn; this is only the case for p = 256). We can see in Figure 5.6 that after
a short amount of time we reach super linear pseudo speedups in most cases.
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Figure 5.6: Scalability of our algorithm: (left) a normal convergence plot, (right) pseudo
speedup Sp(tn). Source: [144].
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5.5.3 Quality of Combine Operators
We now look into the effectiveness of our combine operator C1. We conduct the fol-
lowing experiment: we compare the best result of three repeated executions of KaFFPa
(K3R) against a combine step (KC), i.e. after creating two partitions we report the result
of the combine step C1 combining both individuals. The same is done using the combine
operator of Soper et al. [157] (SC), i.e. we create two individuals using perturbed edge
weights as in [157] and report the cut produced by the combine step proposed there (the
best out of the three individuals). For more information on this particular combine op-
eration see Chapter 3. We also present best results out of three repetitions when using
perturbed edge weights as in Soper et al. (S3R). Since our partitioner does not support
double type edge weights, we computed the perturbations and scaled them by a factor
of 10 000 (for S3R and SC). We performed ten repetitions on the middle sized testset.
Results are reported in Table 5.7. A table presenting absolute average values and com-
paring the running time of these algorithms can be found in the Appendix. We can see
that for large k our new combine operator yields improved partition quality in compara-
ble or less time (KC vs. K3R). Most importantly, we can see that edge biases decrease
the solution quality (K3R vs. S3R). This is due to the fact that edge biases may make
edge cuts optimal that are not close to optimal in the unbiased problem. For example
on 2D grid graphs, we have straight edge cuts that are optimal. Random edge biases
make bended edge cuts optimal. However, these cuts are not close to optimal cuts of
the original graph partitioning problem. Moreover, local search algorithms (Flow-based,
FM-based) work better if there are a lot of equally sized cuts.

Algo. S3R K3R KC SC
k Avg. improvement %
2 591 2.4 1.6 0.2
4 1 304 3.4 4.0 0.2
8 2 336 3.7 3.6 0.2

16 3 723 2.9 2.0 0.2
32 5 720 2.7 3.3 0.0
64 8 463 2.8 3.0 −0.6

128 12 435 3.6 4.5 0.0
256 17 915 3.4 4.2 −0.1

Table 5.7: Comparison of quality of different algorithms relative to S3R.
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5.5.4 Walshaw Benchmark
As we did in Chapter 4, we also applied KaFFPaE [144] to Walshaw’s benchmark
archive [157]. We focus on ε ∈ {1%,3%,5%} since KaFFPaE (more precisely KaFFPa)
is not made for the case ε = 0. At submission time, KaFFPaE computed 300 partitions
which are better than previous best partitions reported there: 91 for 1%, 103 for 3% and
106 for 5%. Moreover, it reproduced equally sized cuts in 170 of the 312 remaining
cases. The complete list of improvements is reported in the technical report [142]. Over-
all our systems (including KaPPa, KaSPar, KaFFPa, KaFFPaE) improved or reproduced
the entries in 550 out of 612 cases (for ε ∈ {0.01,0.03,0.05}) at submission time of
KaFFPaE’s solutions.

5.6 Concluding Remarks
Review. In this chapter we integrated our multilevel graph partitioner KaFFPa into
an evolutionary strategy. More precisely, the coarsening phase was modified such that
KaFFPa could provide effective combine and mutation operations. Intuitively, the com-
bine operations assemble good parts of solutions into a single partition. The presented
combine operation framework is very flexible so that a partition can be combined with
an arbitrary domain specific graph clustering. We believe that this framework could be
of more general interest to the genetic algorithm community.

The resulting partitioner, KaFFPaE, uses scalable coarse grained parallelism to speed
up computations. Due to the scalable parallelization, KaFFPaE is able to compute the
best known partitions for many standard benchmark instances in only a few minutes,
whereas previous evolutionary algorithms that combined the multilevel idea with evolu-
tionary ideas by perturbation of the edge weights needed up to one week per instances.
Hence, KaFFPaE could be still helpful in the area of high performance computing.

More precisely, the running time of KaFFPaFast, e.g. on a continental size road net-
work such as europe, is within a factor three of the running time of Dijkstra’s algorithm.
While the running time of KaFFPaEco and KaFFPaStrong is larger (all of them can
be used as base case partitioner within the evolutionary framework), the time actually
needed for partitioning the graph by the evolutionary algorithm is small compared to the
execution time of a numeric simulation or pre-processing technique.

Future Work. It would be interesting to integrate other partitioners if they implement
the possibility to block edges during coarsening and to use the given partitioning as ini-
tial solution. The current implementation of the parallelization is very coarse grained.
Yet again it would be interesting to add further parallelization, e.g. use a parallel graph
partitioner to provide the combine operations. On the other hand, it would be interesting
to try other domain specific combine operators, e.g. on social networks it could be inter-
esting to use a modularity clusterer to compute a clustering for the combine operation.



6
Highly Balanced Graph Partitioning

In the previous chapters, we have developed an improved multilevel algorithm KaFFPa
and based on that an improved evolutionary algorithm, KaFFPaE. Both of these algo-
rithms compute partitions of very high quality in a reasonable amount of time when
some imbalance ε > 0 is allowed. However, they are not yet very good for small val-
ues of ε , in particular for the perfectly balanced case ε = 0. Hence, we develop new
techniques that work well for small values of ε in this chapter.

State-of-the-art local search algorithms exchange nodes between blocks of the parti-
tion trying to decrease the cut size while also maintaining balance. This highly restricts
the set of possible improvements. In this chapter, we introduce new techniques that relax
the balance constraint for node movements but globally maintain balance by combining
multiple local searches. We reduce the combination problem to finding negative cycles
in a directed graph, exploiting the existence of efficient algorithms for this problem.
We also provide balancing variants of these techniques that are able to make infeasible
partitions feasible. This makes our partitioner the only current system which is able to
guarantee any balance constraint. From a meta-heuristic point of view, our techniques
are an example for a local improvement technique that vastly increases the size of the
neighborhood by efficiently combining many highly localized infeasible improvements
into a feasible one.

We begin this chapter in Section 6.1 by describing the very basic idea that allows us
to find combinations of simple node movements. We then explain directed local searches
and extend the basic idea to a complex model containing more node movements. This is
followed by a description on how these techniques are integrated into KaFFPaE in Sec-
tion 6.2. We shortly present further algorithms in Section 6.3. A summary of extensive
experiments done to evaluate the performance of the proposed algorithms is presented
in Section 6.4.

References. This chapter is based on the conference paper [147] which has been pub-
lished together with Peter Sanders.
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6.1 Globalized Local Search
In this section we describe our local search and balancing algorithms for strictly balanced
graph partitioning. Roughly speaking, all of our algorithms consist of two components.
The first component are local searches on pairs of blocks that share a non-empty bound-
ary, i.e. all edges in the quotient graph. These local searches are not restricted to the
balance constraint of the graph partitioning problem and are undone after they have been
performed. The second component uses the information gathered in the first compo-
nent. That means we build a model using the node movements performed in the first
step enabling us to find combinations of those node movements that maintain balance.

We begin by describing the very basic algorithm and go on by presenting an ad-
vanced model which enables us to combine complex local searches. This is followed by
a description on how local search and balancing algorithms are put together.

6.1.1 Basic Idea – Using A Negative Cycle Detection Algorithm
We start with a very simple case where the first component only moves single nodes. A
node in the graph G can have two states marked and unmarked. By default a node is
unmarked. It is called eligible if it is not adjacent to a previously marked node. We now
build the model of the underlying partition of the graph G, Q = ({1, . . . ,k},E ), where
(A,B) ∈ E if there is an edge in G that runs between the blocks A and B. We define
edge weights ωQ : E → in the following way: for each directed edge e = (A,B) ∈
E in a random order, find an eligible boundary node v in block A having maximum
gain gmax(A,B), i.e. a node v that maximizes the reduction in cut size when moving it
from block A to block B. If there is more than one such node, we break ties randomly.
Node v is then marked. The weight of e is then ωQ(e) :=−gmax(A,B), i.e. the negative
gain value associated with moving v from A to B. Note that, in general, ωQ((A,B)) �=
ωQ((B,A)). An example for this basic model is shown in Figure 6.1. Observe that the
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Figure 6.1: Left: an example graph that is partitioned into three parts (A, B and C)
of four nodes each. Possible candidates for movement are highlighted. Middle: the
corresponding model is shown and one negative cycle is highlighted. Right: the updated
partition after the node movements associated with the cycle are performed is shown.
Moved nodes are highlighted. The reduction in the number of edges cut is equal to the
weight of the cycle. Source: [147].
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basic model is a directed and weighted version of the quotient graph and that the selected
nodes form an independent set of the input graph G.

Note that each cycle in this model defines a set of node movements and furthermore
when the associated nodes of a cycle are moved, then each block contains the same
number of nodes as before. Also the weight of a cycle in the model is equal to the
reduction in the cut when the associated node movements are performed. However, the
most important aspect is that a negative cycle in the model corresponds to a set of node
movements that will decrease the overall cut and maintain the balance of the partition.

To detect a negative cycle in this model, we introduce a node s and connect it to all
nodes in Q. The weight of the inserted edges is set to zero. We can apply a standard
shortest path algorithm [39] that can handle negative edge weights to detect a negative
cycle. If the model contains a negative cycle, we can perform a set of node movements
that will not alter the balance of the blocks since each block obtains and emits a node.

We can find additional useful augmentations by connecting underloaded blocks to s
by a zero weight edge. Now, negative cycles containing s change some block weights
but will not violate any additional balance constraints. Indeed, when the node following
s is overloaded initially, this overload will be reduced.

An interesting observation is that the algorithm can be seen as an extension of the
classical FM algorithm that swaps nodes between two adjacent blocks (two at a time)
which is basically a negative cycle of length two in our model if the gain of the two node
movements is positive. If there is no negative cycle in the model, we have to think about
diversification and balancing strategies which is done in the following sections.

Diversification by Zero Gain Cycle Moves

A zero weight cycle in the basic model is associated with a set of node movements
that keep the cut unchanged and the block weights constant. After such a movement is
performed, it might be possible to find further negative cycles in the basic model since
candidates for movements and gain values may have changed. Hence these cycles can
be useful to introduce some diversification.

Nonetheless, on general graphs it is NP-complete to decide whether a weighted graph
contains a simple cycle that has weight zero [102], i.e. the sum of the edge weights of
this cycle is zero. However, we will see that if a graph does not contain a negative cycle,
we can decide whether it contains a cycle of weight zero in polynomial time and output
one if one exists. This can be done by using the following technique. As soon as the
model described above does not contain negative cycles, we compute a shortest path
tree starting at s. By doing this we can define node potentials Π : {1, . . . ,k}→ as the
shortest path distances from s to all other nodes. We then define modified edge weights
�Q(e = (A,B)) := ωQ(e)+Π(A)−Π(B). It is quite easy to see that the weight of a cycle
in Q does not change when we use �Q instead of ωQ. In particular cycles that have
weight zero w.r.t ωQ will have weight zero w.r.t. �Q. Another important observation is
that �Q is a non-negative function. Hence, in order to detect a zero weight cycle we can
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evict all edges e with �Q(e) > 0 since they cannot be a part of a cycle having weight
zero. After this is done, we compute all strongly connected components of this graph.
If there is a strongly connected component that contains more than one node, then the
graph contains a cycle that has weight zero. To output one zero weight cycle, we pick a
random node N out of the components having more than one node. Starting at this node
we perform a random walk in its component until we find a node that we have already
seen M (which is not necessarily N). It is then fairly simple to output the respective cycle
starting at M. Note that if the component contains j nodes then the random walk will
stop after at most j iterations. As soon as we have found a cycle of weight zero, we can
perform the node movements that are associated with the edges of the cycle.

6.1.2 Advanced Model
We now integrate advanced local search algorithms. Each edge in the advanced model
stands for a set of node movements found by a local search. Hence, a negative cycle
corresponds to a combination of local searches with positive overall gain that maintain
balance or that can improve balance. Before we build the advanced model, we perform
directed local search on each pair of blocks that share a non-empty boundary, i.e. each
pair of blocks that is adjacent in the quotient graph. A local search on a directed pair of
blocks (A,B) is only allowed to move nodes from block A to block B. The order in which
the directed local search between a directed pair of blocks is performed is random. That
means we pick a random directed adjacent pair of blocks on which local search has not
been performed yet and perform local search as described below. This is done until local
search was done between all directed adjacent pairs of blocks once.

Directed Local Search

We now explain how we perform a directed local search between a pair of blocks (A,B).
A directed local search between two blocks A and B is very localized akin to the multi-try
method used in Chapter 4. However, a directed local search between A and B is restricted
to moving nodes from block A to block B. It is similar to the FM-algorithm: we start with
a single random eligible boundary node of block A having maximum gain gmax(A,B) and
put this node into a priority queue. The priority queue contains nodes of the block A that
are valid to move. The priority is based on the gain, i.e. the decrease in edge cut when
the node is moved from block A to block B. We always move the node that has the
highest priority to block B. After a node is moved, its eligible neighbors that are in block
A, are inserted into the priority queue. We perform at most τ steps per directed local
search, where τ is a parameter. Note that during a directed local search we only move
nodes that are not incident to a node moved during a previous directed local search. This
restriction is necessary to keep the model described below accurate. Thus we mark all
nodes touched during a directed local search after it was performed which also implies
that each node is moved at most once. In addition, all moved nodes are moved back to
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their origin, since these movements would make the partition imbalanced. We stress that
all nodes incident to nodes that have been moved during a directed local search are not
eligible for any later local search during the construction since this would make the gain
values computed imprecise.

The Model Graph

The advanced model allows us to find combinations of directed local searches such that
the balance of the given partition is at least maintained. The challenge here is that, in
contrast to movements of single nodes, we cannot combine arbitrary local searches since
they do not all move the same number of nodes. Hence, we specify a more sophisticated
graph with the property that a negative cycle maintains feasibility.

The local search process described above yields, for each pair of blocks e = (A,B)
in the quotient graph, a sequence of node movements Se and a sequence of gain values
ge. The dth value in ge corresponds to the reduction in the cut between the pair of blocks
(A,B) when the first d nodes in Se are moved from their source block A to their target
block B. By construction, a node v ∈V can occur in at most one of the sequences created
and in its sequence only once.

Generally speaking, the advanced model consists of τ layers. Essentially each layer
is a copy of the quotient graph. An edge starting and ending in layer d of this model
corresponds to the movement of exactly d nodes. The weight of an edge e = (A,B) in
layer d of the model is set to the negative value of the dth entry in ge. In other words,
it encodes the negative value of the gain, when the first d nodes in Se are moved from
block A to block B. Hence, a negative cycle whose nodes are all in layer d will move
exactly d nodes between each of the respective block pairs contained in the cycle and
results in an overall decrease in the edge cut. We add additional edges to the model
such that it contains more possibilities in presence of underloaded blocks. To be more
precise, in these cases we want to get rid of the restriction that each block sends and
obtains the same number of nodes. To do so, we insert forward edges between all con-
secutive layers, i.e. block k in layer d is connected by an edge of weight zero to block
k in layer d + 1. These edges are not associated with node movements. Furthermore,
we add backward edges as follows: for an edge (A,B) in layer d, we add an edge with
the same weight between block A in layer d and block B in layer d − � if block B can
take � nodes without becoming overloaded. The newly inserted edge is associated with
the same node movements as the initial edge (A,B) within layer d. This way we encode
movements in the model where a block can emit more nodes then it gets and vice versa
without violating the balance constraint. Additionally, we connect each node in layer
d back to s, if the associated block can take at least d nodes without becoming over-
loaded. Again this means that the model might contain cycles through s which stand for
paths in the quotient graph being associated with movements that decrease the overall
cut. An example advanced model is shown in Figure 6.2. Note that zero weight cycle
diversification can be used as in the basic model.
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Figure 6.2: On top a graph that is partitioned into three parts (|A| = 14, |B| = 12, |C| =
14). Directed local searches on each directed pair of blocks are highlighted (τ = 3).
The corresponding advanced model is shown on the bottom. Each layer is a copy of the
quotient graph of the partition. Edges within layer d represent node movements consist-
ing of d nodes that have been found previously using directed local search. Node s is
connected to all nodes (most of the edges are not shown), edges back to s are inserted if
the corresponding block can take some nodes without becoming overloaded (in this ex-
ample block B), backward edges between layers are inserted if the block can take nodes
without becoming overloaded, forward edges between the layers are inserted in any case.
Within layer 3, a negative cycle is highlighted (red/dark dashed) which corresponds to
the movement of the nine red/dark nodes on top. Another negative cycle is highlighted
in yellow/light grey dashed. It corresponds to the movement of the five yellow/light gray
nodes on top. The weight of both cycles is -2. After these movements are performed the
block weights are |A|= 14, |B|= 13, |C|= 13. Source: [147].

There is an interesting connection between the advanced algorithm and the helpful
set algorithm by Diekmann et al. [53, 121]. Given a bipartition of a graph, a set is
called �-helpful if moving the nodes to the opposite block reduces the cut by �. Recall
that the helpful set algorithm tries to find an �-helpful set in one block of the partition.
Afterwards it attempts to find a balancing set that has the same cardinality as the found
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�-helpful set and is at least −�+ 1 helpful. If this attempt is successful, it performs the
node movements and starts the next round. We call such node movements positive gain
�-exchange. Our advanced algorithm can be seen as an extension of this algorithm. More
precisely, in the bipartition case our algorithms starts by finding a set of node movements
in block A and afterwards in the opposite block B (very localized in both cases). If there
exists a positive gain ��-exchange, using subsets of the node movements performed, then
our algorithm will find one and performs the corresponding node movements. Moreover,
the advanced algorithm extends this idea to k-way partitioning and to the exchange of
node sets that not necessarily have the same cardinality.

Multiple Directed Local Searches

The algorithm can be further improved by performing multiple directed local searches
(MDLS) between each pair of blocks that share a non-empty boundary. More precisely,
after we have computed node movements on each pair of blocks e = (A,B), we start
again using the nodes that are still eligible. This is done µ times. The model is then
slightly modified in the following way: for the creation of edges in the model that cor-
respond to the movement of d nodes from block A to block B, we use the directed local
search on e = (A,B) from the process above with the best gain when moving d nodes
from block A to block B (and use this gain value for the computation of the weight of
corresponding edges).

Conflicts

The advanced model can contain conflicting cycles that cannot be used. We now explain
how we handle such cycles. There are two types of conflicting cycles that are due to the
edges that run between the layers.

First, the model can contain cycles that do not correspond to a simple cycle in the
quotient graph. Such a cycle is problematic because it contains the same edge e = (A,B)
in the quotient graph multiple times. An example is given in Figure 6.3. Let us assume
that one associated edge runs in layer d and one in layer � with � < d. The associated
node movements cannot be performed fully since the edges correspond to subsets of the
same directed local search. This is due to the fact that the edge in layer � corresponds
to the movement of the first � nodes in Se. These movements are a subset of the node
movements associated with the edge in layer d, which corresponds to movement of the
first d nodes in Se. In other words, when we want to move the nodes associated with the
edge in layer d then they are already in block B, if the node movements of the edge in
layer � have been performed before and vice versa depending on the order of execution.
This means that for at least one of those two edges its weight does not correspond to the
reduction in the cut of the underlying node movements. Hence, the weight of the cycle
does not reflect the reduction in the number of edges cut.
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Figure 6.3: The first type of conflict that can occur in the advanced model. In this
example two layers of the advanced model corresponding to graph in Figure 6.2 are
shown. Only the edges of a conflicting cycle are drawn. The problem of the cycle are
the highlighted edges running in layer two and three from the nodes representing block
B to the nodes representing block C. They are associated with node movements where
subsets are equal. The drawn cycle does not correspond to a simple cycle in the quotient
graph. Source: [147].

Secondly, since we have both, edges between the layers and edges back to s, a cycle
in the model can lead to node movements that overload a block. An example is given
in Figure 6.4. A conflict can only occur if we have edges running between the layers.
Our experiments indicate that conflicts do not occur very often. Furthermore, a conflict
is easily detected. We can simply check if the cycle in the model is a simple cycle
in the quotient graph or if one block would get overloaded when performing the node
movements of that cycle. If our algorithm returns a cycle that contains a conflict, we
remove a random edge of the cycle in the model and start the negative cycle detection
strategy again. Note that if we remove all edges in the model that run between the
layers, then the model is conflict-free but encodes less possible combinations of node
movements.

6.1.3 Balancing

As we will see in Section 6.2, to create highly balanced partitions we start our algorithm
with an ε-balanced partition, i.e. a partition where larger imbalance is allowed. Hence,
to achieve perfect balance we have to think about balancing strategies. A balancing step
will only be applied if the model does not contain a negative cycle (see next section
for more details). We can modify the advanced model such that we can find a set of
node movements that will decrease the total number of overloaded nodes by at least
one and minimize the increase in the number of edges cut. Specifically, we introduce a
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Figure 6.4: The second type of conflict that can occur in the advanced model. In this
example two layers of the advanced model from Figure 6.2 are drawn. Only the edges of
a conflicted cycle are shown. The edge in layer one from the node representing block B
back to s was created because block B can take one node without becoming overloaded
(|B| = 12, |V |/k = 13). For the same reason there is the edge between the layers from
the node representing block A in layer two to the node representing block B in layer
one. In the model there is no edge from block B in layer two back to s since block two
can only take one node without becoming overloaded. However, when performing the
associated node movements block B receives two nodes from block A and is overloaded
afterwards. Source: [147].

second node t. Now instead of connecting s to all nodes, we connect it only to nodes
representing overloaded blocks, i.e. |Vi| > �|V |/k�. Additionally, we connect a node in
layer � to t if the associated block can take at least � nodes without becoming overloaded.
Since the underlying model does not contain negative cycles, we can apply a shortest
path algorithm to find a shortest path from s to t. We use a variant of the algorithm
of Bellman and Ford since edge weights might still be negative (for more details see
Section 6.4). It is now easy to see that a shortest path in this model yields a set of node
movements with the smallest increase in number of cut edges and that the total number
of overloaded nodes decreases by at least one. If τ is set to one, we call this algorithm
basic balancing otherwise advanced balancing.

However, we have to make sure that there is at least one s-t path in the model. Let
us assume for now that the graph is connected. If the graph is connected, then the di-
rected version of the quotient graph is strongly connected. Hence an s-t path exists in
the model if we are able to perform local search between all pairs of blocks that share
a non-empty boundary. Because a directed local search can only start from an eligible
node, we might not be able to perform directed local search between all adjacent pairs
of blocks, e.g. if there is no eligible node between a pair of blocks left. We try to ensure
that there is at least one s-t path in the model by doing the following. Roughly speaking,
we try to integrate an s-t path into the model by changing the order in which directed
local searches are performed. First, we perform a breadth-first search (BFS) in the quo-
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tient graph which is initialized with all nodes that correspond to overloaded blocks in
a random order. We then pick a random node in the quotient graph that corresponds to
a block A that can take nodes without becoming overloaded. Using the BFS-forest we
find a path P = B → . . .→ A from an overloaded block B to A. We now first perform
directed local search on all consecutive pairs of blocks in P . Here, we use τ = 1 for the
number of node movements to minimize the number of non-eligible nodes. If this was
successful, i.e. we have been able to move one node between all directed pairs of blocks
in that path, we perform directed local searches as before on all pairs of blocks that
share a non-empty boundary. Otherwise, we undo the searches done (every node is eli-
gible again) and start with the next random block that can take a node without becoming
overloaded.

In some rare cases the algorithm fails to find such a path, i.e. each time we look at
a path we have one directed pair of blocks where no eligible node is left. An example
is shown in Figure 6.5. In this case, we apply a fallback balance routine that guarantees
to reduce the total number of overloaded nodes by one if the input graph is connected.
Given the BFS-forest of the quotient graph from above, we look at all paths in it from
an overloaded block to a block that can take a node without becoming overloaded. At
this point, there are at most order of k such paths in our BFS-forest. Concretely, for a
path P = Z →Y → X → · · ·→ A we select a node having maximum gain gZ,Y in Z and
move it to Y . We then look at Y and do the same with respect to X and so on until we
move a node to block A. Note that this time we can ensure to find nodes because after
a node has been moved it is not blocked for later movements. After the operations have
been performed they are undone and we continue with the next path. In the end we use
the movements of the path that resulted in the smallest number of edges cut.

If the graph contains more than one connected component, then the algorithms de-

w

z

v

B C

A

C AB

Figure 6.5: On top an example graph that is partitioned into three parts and on bottom
a BFS-tree in the quotient graph starting in overloaded block B. It is not possible to
integrate this path into the model since after directed local search is done on the pair
(B,C), v will be marked and hence there is no eligible node left for the local search on
the pair (C,A). A similar argument holds if local search is done on the pair (C,A) first.
Source: [147].
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scribed above may not work. For example if there is a non-perfectly balanced block in
the input partition that is the union of some of the graphs connected components. More
precisely, when we want to integrate a path into the model we detect at some point that
there is no path in the quotient graph that contains this block and that can yield a bal-
ance improvement, e.g. if the block corresponds to a singleton in the quotient graph. To
reduce the total number of overloaded nodes by one we do the following: if the block is
overloaded, we move a random node from this block to an underloaded block; otherwise
we move a random node from an overloaded block to this block. Note that the advanced
balancing model can contain conflicts, too. This is again because of the edges that run
between the layers. We handle potential conflicts in paths analogously to the conflicts in
the advanced model case.

6.1.4 Putting Things Together

In practice we start our algorithms with an unbalanced input partition (see Section 6.2 for
more details). We define two algorithms, basic and advanced, depending on the models
used. Both, the basic and the advanced algorithm operate in rounds. In each round we
iterate the negative cycle based local search algorithm until there are no negative cycles
in the corresponding model (basic or advanced). After each negative cycle local search
step we try to find zero weight cycles in the model to introduce some diversification. In
Section 6.4.1 we also use a variant of the basic algorithm that does not use zero weight
cycle diversification. Since we have random tie breaking at multiple places we iterate
this part of the algorithm. If we do not succeed to find an improved cut using these two
operations for λ iterations, we perform a single balancing step if the partition is still
unbalanced, otherwise we stop. The parameter λ basically controls how fast the unbal-
anced input partition is transformed into a partition that satisfies the balance constraint.
After the balancing operation, the total number of overloaded nodes is reduced by at
least one depending on the balancing model. In the basic algorithm we use the basic
balancing model (τ = 1) and in the advanced algorithm we use the advanced balancing
model. Since the balance operation can introduce new negative cycles in the model we
start the next round.

6.2 Integration into KaFFPaE

We now describe how we integrate our new algorithms into our distributed evolutionary
algorithm. Recall that KaFFPaE starts with a population of individuals (in our case
partitions of the graph) and evolves the population into different populations over several
rounds. In each round, the evolutionary algorithm uses a selection rule based on the
fitness of the individuals (in our case the edge cut) of the population to select good
individuals and combine them to obtain improved offspring.
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It is well-known that allowing temporarily larger imbalance is useful to create good
partitions [163, 156]. Hence, we adopt this idea. To obtain perfectly balanced partitions,
we modify the create and combine operations as follows: each time we perform such an
operation, we randomly choose an imbalance parameter ε � ∈ [0.005, ε̂] where ε̂ is an up-
per bound for the allowed imbalance (a tuning parameter). This imbalance is then used
to perform the operation, i.e. after the operation is performed, the offspring/partition has
blocks with size at most (1+ ε �)�|V |/k�. Giving a larger imbalance to the operation
yields smaller cuts and makes local search more effective since the combine and create
operations use the multilevel graph partitioner KaFFPa. After the respective operation is
performed, we apply our advanced balancing and advanced negative cycle local search
(including zero weight cycle diversification and the packing approach) to obtain a parti-
tion of the graph that is perfectly balanced. This individual is the final offspring created
by the performed create or combine operation and inserted into the population using the
techniques of KaFFPaE. Note that at all times each individual in the population of the
evolutionary algorithm is perfectly balanced. Also note that allowing larger imbalance
enables us to use previously developed techniques that otherwise would not be applica-
ble, e.g. max-flow min-cut based local search methods. We call the overall algorithm
Karlsruhe Balanced Partitioner Evolutionary (KaBaPE). As experiments will show in
Section 6.4 the new kind of local search is also helpful if some imbalance is allowed.
When we use KaBaPE to create ε-balanced partitions we choose ε � ∈ [ε +0.005,ε + ε̂]
for the combine and create operations. The created individual is then transformed into
a partition where each block has size at most (1+ ε)�|V |/k� using our balancing and
negative cycle local search strategies.

6.3 Miscellanea

We also tried to integrate the negative cycle detection strategies into the multilevel
scheme of KaFFPa. However, experiments did not indicate large improvements and
furthermore the running time increased drastically. This is due to the fact that the size
of the model of the negative cycle detection strategies depends heavily on the sum of
the weights of the nodes moved (the number of layers in the model is the maximum of
the sum of the weights moved between a pair of blocks during construction of the di-
rected local searches). Also recall that a multilevel graph partitioning algorithm creates
a sequence of smaller graphs, e.g. by computing matchings and contracting matched
edges. This kind of compression is not helpful for our model in the strictly balanced
local search scheme.

Additionally, we looked at an algorithm which iteratively uses random cycles in the
quotient graph. In each round, a random cycle is found by performing a breadth-first
search (BFS) in the quotient graph starting at a random node. We use a cycle that is
created by adding a random non-tree edge to the BFS-tree. Let C = a → b → ... → a
be that cycle. We then proceed in transactions. A transaction has the property that after
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it is performed the weights of the blocks are the same as before. In each transaction
each block in the cycle sends a node having maximum gain towards its successing block
in the cycle. Note that if the input partition is perfectly balanced then the partition
is still perfectly balanced after a transaction is performed. This is repeated until no
improvement was found for several transactions and roll back complete transactions to
the best partition found. We then proceed with the next random cycle or stop if no
improvement was found for several rounds.

This greedy algorithm did not perform as well as the basic negative cycle detection
strategies described above. Also it is not clear how this algorithm could be extended to
graphs having node weights, or to more complex node movements in case of an imbal-
anced input partition. We therefore do not include further elaborations on this algorithm.

6.4 Experimental Evaluation
Implementation. We have implemented the algorithms described within this chapter
using C++. We implemented negative cycle detection with subtree disassembly and
distance updates as described in [39]. The implementation of the balanced local search
algorithms has about 3 400 lines of code.

Parameters. After an extensive evaluation of the parameters, we fixed the number of
multiple directed local searches to µ = 20 (larger values of µ , e.g. iterating until no
boundary node is eligible did not yield further improvements). The maximum number
of node movements per directed local search is set to τ = 15 for k ≤ 8 and to τ = 7 for
k > 8 since this turned out to be a good tradeoff between quality and running time. The
number of unsuccessful iterations until we perform a balancing step λ is set to three.
When using KaBaPE to create perfectly balanced or ε-balanced partitions, we choose
random values around the parameters above for each create or combine operation. To be
more precise, each time we perform a create or combine operation, we pick a random
number of node movements per directed local search τ ∈ [1,30], a random number of
multiple directed local searches µ ∈ [1,20] and λ ∈ [1,10] and use these parameters for
the balancing and negative cycle detection strategies.

6.4.1 Walshaw Benchmark
As in the previous chapters, we apply our techniques to all graphs in Chris Walshaw’s
benchmark archive [157]. We start to look at the performance of the different algorithms
if the previous record is used as an input and we compute new records from scratch.
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Improving Existing Partitions

When we started to look at highly balanced partitioning, we counted the number of per-
fectly balanced partitions in the benchmark archive that contain nodes having positive
gain, i.e. nodes that could reduce the cut when being moved to a different block. Aston-
ishingly, we found that 55% of the perfectly balanced partitions in the archive contain
nodes with positive gain (some of them have up to 1400 of such nodes). These nodes
usually cannot be moved by simple local search due to the balance constraint. Therefore,
we now use the existing perfectly balanced partitions from the benchmark archive and
use them as input to our local search algorithms. This experiment has been performed
on machine C and for all configurations of the algorithm we used λ = 20 for the number
of unsuccessful tries. Table 6.6 shows the relative number of partitions that have been
improved by different algorithm configurations and k (in total there are 34 graphs per
number of blocks k).

It is somewhat surprising that already the most basic variant of the algorithm, i.e.
negative cycle detection without the zero weight cycle diversification mechanism, can
improve 47% of the existing entries. All of the algorithms have a tendency to improve
more partitions when the number of blocks k increases. Less surprisingly, more ad-
vanced local searches and models increase this percentage further. When applying the
advanced algorithm with multiple directed local searches enabled (the most expensive
configuration of the algorithm), we are able to improve 128 partitions, i.e. 63% of the
entries. Note that it took overall roughly two hours to compute these entries using one
core of machine C. This is very affordable considering the fact that some of the previous
approaches, such as Soper et al. [157], have taken many days to compute one entry to the
benchmark tables. Of course in practice we want to find high quality partitions without
using input partitions generated by other algorithms. We therefore compute partitions
from scratch in the next section.

k Basic +ZeroGain Advanced +MDLS
2 0% 0% 0% 0%
4 18% 24% 41% 44%
8 38% 50% 64% 74%
16 64% 68% 71% 79%
32 76% 76% 88% 91%
64 82% 82% 79% 88%
sum 47% 50% 57% 63%

Table 6.6: Relative number of improved instances in the Walshaw Benchmark. Con-
figurations: Basic (Most Basic Negative Cycle Improvement), +ZeroGain (As Before
Plus Zero Weight Cycle Diversification), Advanced (Advanced Model, Directed Local
Searches and Zero Weight Cycle Diversification), +MDLS (As Before Plus MDLS En-
abled)
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Computing Partitions from Scratch

We now compute perfectly balanced partitions from scratch, i.e. we do not use existing
partitions as input to our algorithm. We use machine A and run KaBaPE with a time
limit tk = 225 · k seconds using 32 cores (four nodes of the cluster) per graph and k > 2.
On the eight largest graphs of the archive, we gave KaBaPE a time limit of t̂k = 4 · tk
seconds per graph and k > 2. For k = 2, we gave KaBaPE one hour of time and 32 cores.
ε̂ was set to 4% for the small graphs and to 3% for the eight largest graphs in the archive.
We summarize the results in Table 6.7 and report the complete list of results obtained in
the technical report [145]. At submission time of [147], we have been able to improve
or reproduce 86% of the entries reported in this benchmark. In the bipartition case we
mostly reproduced the entries reported in the benchmark (instead of improving). This is
not surprising since the models presented in this chapter can contain only trivial cycles
of length two in this case and our previous algorithms have shown the same behaviour
for larger imbalance values ([87, 122, 143, 144]). Also recently it has been shown by
Delling et al. [52] that some of the perfectly balanced bipartitions reported there are
optimal.

We also applied our algorithm for larger imbalances, i.e. 1%, 3% and 5%, in the Wal-
shaw Benchmark. For the case ε = 1%, we run our algorithm KaBaPE on all instances
using the same parameters ε̂ and tk as in the perfectly balanced case. Doing so we have
been able to improve or reproduce the cut in 160 out of 204 cases. Tables reporting
detailed results can be found in [147]. Afterwards we performed additional partitioning
trials on all instances where our systems (including [87], [122], [143], [144]) currently
not have been able to reproduce or improve the entry reported there using different pa-
rameters and different machines. Doing so our systems improved or reproduced 98%,
99%, 99%, 99% of the entries reported there for the cases ε = 0,1%,3%,5% respec-
tively at submission time. These numbers include the entries where we used the current
record as an input to our algorithms and improved this input partition. They contribute
roughly 4%, 7%, 11%, 9% for the cases ε = 0,1%,3%,5% respectively.

k 2 4 8 16 32 64 ∑
< 4 19 24 25 30 29 64%
≤ 29 31 27 27 31 30 86%

Table 6.7: Number of improvements (from scratch) for ε = 0.
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6.4.2 Costs for Perfect Balance
It is hard to perform a meaningful comparison to other partitioners since publicly avail-
able tools such as Scotch [127], Jostle [165] and Metis [95] are either not able to take the
desired balance as an input parameter or are not able to guarantee perfect balance. This
is a major problem for the comparison with these tools since allowing larger imbalances,
i.e. ε = 3%, decreases the number of edges cut significantly [156]. However, we will
show in Chapter 7 that KaFFPa produces better partitions compared to other partitioning
packages, such as Scotch and Metis. Hence, we have a look at the number of edges
cut by our algorithm when perfect balance is enforced, i.e. the increase in the number
of edges cut when we seek a perfectly balanced partition. To do so, we use machine
A and KaFFPaStrong to create partitions having an imbalance of ε = 1% and then cre-
ate perfectly balanced partitions using our advanced negative cycle model and advanced
balancing. For each instance (graph, k), we repeat the experiment ten times using dif-
ferent random seeds. We then compare the final cuts of the perfectly balanced partitions
to the number of edges cut before the balancing and negative cycle search started, i.e.
when ε = 1% imbalance is allowed. We use the same instances as in Chapter 4 for this
experiment.

Table 6.8 summarizes the results of the experiment. On average the number of edges
cut increased by roughly 5% when enforcing perfect balance and the running time of
the negative cycle local search and balancing strategies is comparable with the average
running time of KaFFPaStrong. Note that the running time of the algorithm increases
with growing k. This is due to the fact that directed local searches are repeatedly per-
formed between all adjacent pairs of blocks in each round of the algorithm. Moreover,
the running time of the algorithm depends on the number of nodes that have to be moved
from an overloaded block to an underloaded block. This number can grow if the number
of blocks is increased.

k 2 4 8 16 32 64
Rel. Cut 9.0% 7.1% 4.7% 5.3% 3.6% 2.6%
Rel. Time t 12.0% 56.4% 98.8% 107.6% 133.6% 163.4%

Table 6.8: Costs for perfect balance, relative to KaFFPaStrong when ε = 1% imbalance
is allowed. Rel. Cut reports the average increase in the cut after the 1% partitions
have been balanced and Rel. Time reports the average time used by our local search
algorithms relative to the running time of KaFFPaStrong.
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6.5 Concluding Remarks
Review. In this chapter we presented novel algorithms to tackle the balanced graph
partitioning problem, including the case of perfect balance when the maximal block size
is bounded by the average block size. The techniques relax the balance constraint for
node movements, but globally maintain balance by combining multiple local searches.
This is done by reducing the combination problem to finding negative cycles in a graph,
exploiting the existence of efficient algorithms for this problem. Experiments indicate
that previous algorithms have not been able to find such rather complex movements. We
also provide balancing variants of these techniques that are able to make infeasible par-
titions feasible. In contrast to previous algorithms such as Scotch [127], Jostle [165] and
Metis [95], our algorithms are able to guarantee that the output partition is feasible. An
integration into our parallel multilevel evolutionary algorithm has been able to improve
or reproduce most of the entries reported at submission time in the Walshaw Benchmark
using a reasonable amount of time.

Future Work. An open question is whether it is possible to define a conflict-free model
that encodes the same kind of node movements as our advanced model. In future work,
it could be interesting to see if one can integrate other types of local searches from
KaFFPa, such as multi-try FM or max-flow min-cut based local search, into our mod-
els. The multiple directed local search algorithm can be improved such that it finds the
best combination of the computed local searches. Currently, only boundary nodes can
serve as candidates for movements. The neighborhood relation of local search could be
increased if all nodes of a block would be eligible nodes for this kind of local search.

It will be interesting to see whether our techniques are useful for other problems
where local search is restricted by constraints, e.g. hypergraph partitioning or multi-
constraint graph partitioning. For example the proposed techniques might be useful in a
setting where a graph needs to be repartitioned, e.g. the structure of the graph has been
changed slightly so that the balance constraint is violated. Such problems arise in the
area of adaptive partial differential equations where the mesh is adaptively refined in
areas with large errors.

Shortly after we submitted our results to the benchmark archive, we lost entries
to an implementation of [72] by Frank Schneider (the original work does not provide
perfectly balanced partitions). However, we are still able to improve more than half
of these entries when using those as input to KaBaR. Furthermore, we integrated the
techniques of Galinier et al. [72] into our system, i.e. the proposed combine operator and
tabu search, and again have been able to improve many entries. We conclude that the
algorithms presented in this chapter are still very useful.
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7
Comparison to Other Systems

In the previous chapters, we already compared ourselves to other graph partitioners by
reporting the results achieved by our partitioners in the Walshaw benchmark (currently
there are over forty reported submissions to this benchmark). In this chapter, we care-
fully compare our algorithms against other publicly available tools. This includes the
packages DibaP [114], hMetis [97], KaSPar [122], kMetis [95] and Scotch [127]. We
start by comparing the edge cut values produced by all of these tools on a large set of
instances in Section 7.1. Since the running times of the various tools can be quite dif-
ferent, Section 7.2 compares the quality of solutions in a setting where algorithms get
roughly the same amount of time to compute a partition. The results that KaFFPa and
KaFFPaE achieved in the 10th DIMACS Implementation Challenge on Graph Clustering
and Graph Partitioning are presented in Section 7.3.

References. The chapter is based on the conference papers [143, 144, 146, 147] that
have been published together with Peter Sanders. However, in contrast to the results in
the publications, we use our own partitioning algorithm for the experimental evaluation
(except for the results that have been achieved during the 10th DIMACS Implementation
Challenge). The description of the rules of the 10th DIMACS Implementation Challenge
in Section 7.3 has been taken from [1]. We included them here for completeness.

7.1 Partitioning Packages
We now compare ourselves to other state-of-the-art graph partitioning libraries. To do
so, we use the following twenty-two large graphs from our instances section: 144, 598a,
PGPgiantcompo, af_shell10, as-22july06, asia, auto, delaunay20, deu, email-EuAll, eu-
rope, fe_ocean, fe_tooth, g3circuit, great-britain, htric00, loc-brightkite, nlr, p2p-gnu04,
rgg20, slashdot0902 and wave. These graphs are random geometric graphs, delaunay
graphs, graphs from numeric simulations, sparse matrices, road networks and social
networks. Basic properties of these graphs can be found in Chapter 2.4. Experiments
have been performed on machine B. For the comparisons we used DibaPFull 2.0.229,
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Algorithm large graphs
best avg. t[s]

KaFFPaStrong 7691 7894 102.74
KaSPar +6% +5% 92.27
hMetis +9% +8% 103.61
KaFFPaEco +12% +13% 5.72
Scotch +20% +23% 1.77
KaFFPaFast +29% +33% 0.94
kMetis +35% +48% 0.48

Table 7.1: Averaged quality and running times of the different partitioning algorithms
(relative to KaFFPaStrong) on our large benchmark set which includes graphs from nu-
meric simulations, sparse matrices, road networks and social networks. Comparisons
with DibaP on graphs from numeric simulations can be found in Table 7.2.

DibaPLite 0.3.230, hMetis 2.0 (p1), KaSPar, kMetis 5.0 (p2), and Scotch 5.1.9. We run
each of the partitioners ten times using different random seeds for initialization. We used
the k-way variant of hMetis when computing partitions with hMetis. A fair comparison
with hMetis is difficult, due to the fact that the partitions created by hMetis are very often
imbalanced. We gave hMetis 1% of allowed imbalance to obtain partitions with up to
3% imbalance more often. Still many of the created partitions are not within a balance
constraint of 3% imbalance and in some case the partitions produced hMetis have up to
12% imbalance. As recommended by Henning Meyerhenke, DibaPFull was run with
3 bubble repetitions, 10 FOS/L consolidations and 14 FOS/L iterations. The same pa-
rameters where used for DibaPLite. When computing partitions with KaSPar, we used a
slightly stronger parameter α = 20 since it improves the average cut and results in bal-
anced partitions more often. In general, most of the partitioners (except KaFFPa) have
sometimes trouble to compute feasible partitions, especially on social networks, which
yields an advantage for our competitors.

For comparisons with other partitioners we have the following rules. In general, we
excluded the case k = 64 for the european road network since hMetis runs out of memory
for this case (it required more than 64 GB of memory). Since DibaP is built for graphs
that have a mesh like structure and cannot handle graphs with more than one connected
component, we focused on graphs from numeric simulations and sparse matrices for
the comparison with DibaP. Hence, we restricted ourselves to use the following graphs
in this case: 144, 598a, g3circuit, af_shell10, auto, delaunay_n20, fe_ocean, fe_tooth,
htric00, nlr, wave. Table 7.1 summarizes the main results on all instances from our
benchmark set. For the comparison with DibaP, we present the results on graphs from
numeric simulations and sparse matrices in Table 7.2. Detailed per instance results can
be found in the Appendix. On our large benchmark set, kMetis produces about 48%
larger cuts than KaFFPaStrong. KaSPar, hMetis and Scotch produce 5%, 8% and 23%
larger cuts than KaFFPaStrong respectively. The running time of hMetis is comparable
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Algorithm meshes
best avg. t[s]

KaFFPaStrong 15477 15726 91.02
Kaspar +2% +2% 76.92
KaFFPaEco +5% +6% 4.43
hMetis +11% +12% 136.89
Scotch +12% +13% 2.63
DibaPFull +10% +14% 4.46
DibaPLite +14% +15% 16.04
kMetis +19% +20% 0.46
KaFFPaFast +17% +21% 0.58

Table 7.2: Averaged quality and running times of the different partitioning algorithms
(relative to KaFFPaStrong) on graphs from numeric simulations and sparse matrices.

to the running time of KaFFPaStrong. On graphs from numeric simulations hMetis is
50% slower than KaFFPaStrong and yields 12% worse cuts. On the other hand, KaFF-
PaEco is a factor thirty faster than hMetis and produces 6% smaller cuts on average
on this benchmark set. Moreover, hMetis has trouble to return partitions that are feasi-
ble on many graphs which yields an advantage for hMetis. Even with this advantage,
we conclude that hMetis is outperformed by KaFFPa on average. The running time of
DibaPFull is comparable to the running time of KaFFPaEco. However, DibaPFull em-
ploys shared memory parallelism, i.e. when partitioning a graph into k blocks it uses
k threads for partitioning (the machine used for the experiments had 16 cores). More-
over, the edge cut produced by DibaPFull is about 9% larger compared to KaFFPaEco.
DibaPLite performs slightly worse than DibaPFull and, since it is not parallelized, needs
about a factor 3.5 more time on average. Hence, on average DibaP is dominated by
KaFFPaEco in terms of quality and running time.

Figure 7.3 compares solution quality of KaFFPaStrong for different graph classes
using scatterplots. More precisely, we plot four graph classes: graphs from numeric
simulations (this includes delaunay and random geometric graphs), social networks, ma-
trices and road networks. It is worth noting that KaFFPaStrong outperforms hMetis,
kMetis and Scotch for all values of k on all graphs from numeric simulations and ma-
trices. KaSPar performs much better on these networks and on road networks computes
sometimes better partitions than KaFFPaStrong, in particular for small values of k. On
the other hand, kMetis and Scotch perform very poorly on road networks. The parti-
tions produced by kMetis are sometimes up to a factor 5 worse than those computed by
KaFFPaStrong and those created by Scotch are sometimes up to a factor 2 worse. Note
that we introduce specialized techniques for road networks in Chapter 8 which improve
the cut on such networks even more. The results of KaFFPaStrong on social networks,
compared to kMetis and Scotch, are more or less similar to the results on graphs from
numeric simulations and matrices. Compared to KaSPar, KaFFPaStrong has a clear ad-
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Figure 7.3: Scatterplots: average cuts of different algorithms (KaSPar, kMetis, hMetis,
Scotch) for different graph classes relative to KaFFPaStrong.

vantage on these networks. The partitions of social networks computed by hMetis are
sometimes better than those created by KaFFPaStrong.

We still have to argue about the quality vs. time tradeoff. One can see in Table 7.1
and Table 7.2 that the average and minimum cuts out of ten repetitions of the different
algorithms are usually not too far apart. That means that it is usually not possible to
use a simple method and repeat it several times to obtain cuts that are as good as those
computed by KaFFPaStrong. For example, on our large benchmark set the average cuts
of KaFFPaStrong are 3% smaller than the best cuts computed by KaSPar. Note that
this yields a clear running time advantage (roughly a factor nine) for KaSPar. The same
argument holds for KaFFPaEco against Scotch. Here, KaFFPaEco produces 3% smaller
average cuts than the best cuts of Scotch. In the next section, we compare KaFFPa,
Scotch and Metis against our evolutionary algorithms using an experimental setup in
which all methods get the same amount of time to compute a partition.
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7.2 Convergence Partitioning
In this section we compare KaFFPa, KaFFPaE, KaBaPE, Metis and Scotch in a setting
where all algorithms get the same (fairly large) amount of time to compute a partition.
We do this on the following subset of the graphs from our benchmark section: rgg17,
rgg18, delaunay17, delaunay18, bel, nld, t60k, wing, fe_tooth, fe_rotor and memplus.
Basic properties of these graphs can be found in Chapter 2.4. We perform two tests: first
we compare KaFFPa, KaFFPaE, Scotch and Metis using ε = 3% imbalance as input to
the partitioners. We then compare KaFFPa, KaFFPaE and KaBaPE using ε = 0% im-
balance as input to our partitioners since KaBaPE was designed for small values of ε .
Note that we do not include a comparison with Scotch and Metis for perfectly balanced
case since the imbalance parameter is not configurable in those packages (3% imbal-
ance is the default value in Scotch and Metis). Also note that, in contrast to KaBaPE,
KaFFPa and KaFFPaE cannot ensure that the output partition is perfectly balanced which
yields a slight advantage for those algorithms (larger imbalances yield smaller cuts). We
use 16 cores of machine B (basically one node of the cluster) and two hours of time
per instance when we use KaFFPaE and KaBaPE to create partitions. We parallelized
repeated executions of KaFFPa, Metis and Scotch (embarrassingly parallel, different
seeds) and also gave them 16 PEs and two hours of time to compute a partition. We look
at k ∈ {2,4,8,16,32,64,128,256} and performed three repetitions per instance.

To see how the solution quality of the different algorithms evolves over time, we
use convergence plots which were introduced in Chapter 5.5. Figure 7.6 and Figure 7.7
show all convergence plots for the case ε = 3%. Table 7.4 presents more data for this
case. As expected the improvements of KaFFPaE relative to repeated executions of
KaFFPa increase with growing k. The largest improvement is obtained for k = 128.
Here, KaFFPaE produces partitions that have a 4.2% smaller cut value than plain restarts
of KaFFPa. Moreover, the best partitions of Scotch and Metis are 13.9% and 19.0%
larger on average compared to best partition of our evolutionary algorithm KaFFPaE.

k/Algo. KaFFPaE. KaFFPa Scotch Metis
Avg. Avg. Avg. Avg.

2 568 +0.5% +13.6% +16.2%
4 1 214 +1.0% +18.7% +22.3%
8 2 165 +2.1% +20.0% +23.3%

16 3 483 +2.6% +18.9% +23.5%
32 5 308 +3.7% +19.4% +24.8%
64 7 892 +3.6% +17.0% +24.3%

128 11 472 +4.2% +15.7% +23.7%
256 16 653 +3.9% +13.0% +20.4%

overall 3 882 +2.7% +13.9% +19.0%

Table 7.4: Different algorithms after two hours of time on 16 PEs (ε = 3%).
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We have seen in the previous Section that the running times of single executions
of Scotch and Metis are much faster than the running times of a single executions of
KaFFPaStrong. On the other hand, KaFFPaStrong computes much better partitions. The
results of our experiments performed in this section emphasize that one cannot sim-
ply take the best result out of multiple repetitions of a faster algorithm to achieve the
same quality as KaFFPaStrong (or even KaFFPaE). We can strengthen the argument by
comparing the average result of KaFFPa after one partitioner call to the best results of
repeated executions of Metis and Scotch using 32 hours of sequential running time. Note
that this yields a large running time advantage for Metis and Scotch. For example, the
average result of KaFFPa after one partitioner call for the case k = 64 is 17.9% and
10.8% smaller than the best cuts after 32 hours of Metis and Scotch, respectively.

Figure 7.8 shows the convergence plots and Table 7.5 presents more data for the
second experiment in the section, the perfectly balanced case. In this case, KaBaPE
clearly outperforms KaFFPa and KaFFPaE for all values of k. For larger values of k,
the quality gap between KaBaPE and KaFFPa or KaFFPaE increases with more time
invested. On average the partitions produced by KaBaPE have 32.4% and 51.1% smaller
cuts compared to KaFFPaE and KaFFPa. Note that KaFFPa and KaFFPaE have a slight
advantage since they do not necessarily produce perfectly balanced partitions.

k/Algo. KaBaPE. KaFFPaE KaFFPa
Avg. Avg. Avg.

2 587 +46.9% +56.4%
4 1 266 +45.5% +70.6%
8 2 282 +46.5% +71.1%

16 3 713 +33.6% +55.7%
32 5 733 +32.0% +50.3%
64 8 541 +21.7% +40.0%

128 12 518 +18.5% +36.4%
256 18 036 +14.7% +28.2%

overall 4030 +32.4% +51.1%

Table 7.5: Different algorithms after two hours of time on 16 PEs (perfectly balanced
case, ε = 0%).



7.2. Convergence Partitioning 109

1 5 50 500

57
0

58
0

k=2

normalized time tn 

m
ea

n
 m

in
 c

u
t Repetitions

KaFFPaE

1 5 50 500

6
6

0
7

0
0

7
4

0

k=2

normalized time tn 

m
e
a

n
 m

in
 c

u
t Metis

Scotch

1 5 50 500 5000

12
20

12
50

12
80

k=4

normalized time tn 

m
ea

n
 m

in
 c

u
t Repetitions

KaFFPaE

1 5 50 500 5000

1
4

5
0

1
5

5
0

1
6

5
0

k=4

normalized time tn 

m
e
a

n
 m

in
 c

u
t Metis

Scotch

1 5 50 50021
60

22
20

22
80

k=8

normalized time tn 

m
ea

n
 m

in
 c

u
t Repetitions

KaFFPaE

1 5 50 500

2
6

0
0

2
7

5
0

2
9

0
0

k=8

normalized time tn 

m
e
a

n
 m

in
 c

u
t Metis

Scotch

1 5 50 500

35
00

36
00

k=16

normalized time tn 

m
ea

n
 m

in
 c

u
t Repetitions

KaFFPaE

1 5 50 500

4
2

0
0

4
4

0
0

4
6

0
0

k=16

normalized time tn 

m
e
a

n
 m

in
 c

u
t Metis

Scotch

Figure 7.6: Convergence plots for the comparison of solution quality of KaFFPaE with
repeated executions of KaFFPa, Scotch and Metis (over time) (k ∈ {2, . . . ,16}, ε = 3%).
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Figure 7.7: Convergence plots for the comparison of solution quality of KaFFPaE with
repeated executions of KaFFPa, Scotch and Metis (over time) (k ∈ {32, . . . ,256}, ε =
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Figure 7.8: Convergence plots for the comparison of solution quality of KaBaPE with
KaFFPaE and with repeated executions of KaFFPa (over time) (k ∈ {2, . . . ,256}, per-
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7.3 10th DIMACS Implementation Challenge

There have been numerous DIMACS Implementation Challenges on interesting com-
binatorial problems such as the shortest path problem, the travelling salesman problem
or nearest neighbor search. A DIMACS Challenge is usually focused on a particular
problem with the goal to compare state-of-the-art algorithms and to estimate algorithm
performance when a worst case analysis is not available or very pessimistic. The 10th
DIMACS Implementation Challenge was on Graph Partitioning and Graph Clustering
[16] – it has been co-organized by David Bader, Henning Meyerhenke, Peter Sanders
and Dorothea Wagner. We also participated in the challenge using our graph partitioners
KaFFPa and KaFFPaE. In this section we shortly outline the challenge rules and de-
scribe how we obtained the challenge results. Moreover, we evaluate the performance of
kMetis 5.0 (p2) and Scotch 5.1.9 on these graphs in the Pareto subchallenge.

Challenge Rules. We now describe the challenge rules used in the 10th DIMACS
Challenge on Graph Clustering and Graph Partitioning. We closely follow the descrip-
tion of [1]: there have been two challenges on graph partitioning, one Quality Challenge
and one Pareto Challenge. The rationale of the Pareto Challenge is to take the work
into account an algorithm requires to compute a solution. Hence, the two dimensions
have been considered here: quality and work. Since not all submissions have been run
on the same (or at least similar) hardware, a measure to account for different execution
speeds has been used. In the challenge a graph-based benchmark was provided (based
on breadth-first searches) to be executed to measure the system performance. Work is
then normalized with respect to the machine performance, measured by this benchmark.

Within each challenge two objective functions have been taken into account, the edge
cut (EC) and the maximum communication volume (CV). Both objective functions are
described in Chapter 2. We now describe the scoring rules that have been used in the
challenge. For each challenge instance result (EC and CV results are counted as one
instance each), points are given to the best ranks based on the Formula 1 scoring rules
used between 1991 and 2002. This means that the first six ranks receive a descending
number of points (10, 6, 4, 3, 2, 1). The solver with the highest total number of points
wins the Quality Challenge. The Formula 1 scoring scheme is also used in the Pareto
Challenge. It is slightly different from the scoring scheme used in the Quality Challenge.
Recall that the two dimensions considered here are quality and work. For each challenge
instance result, each algorithm gets a Pareto dominance count, which expresses by how
many other algorithms it has been Pareto-dominated; then algorithms are ranked by this
number (lower count = better) and receive points according to the Formula 1 scoring
scheme. Overall there have been 90 instances (graph, k) that had to be partitioned such
that the edge cut metric is minimized and such that the communication volume metric is
minimized. Hence, a complete submission contained 180 partitions. The instances are
presented in Table 7.6.
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Pareto Challenge. For this particular challenge we run all configurations of KaFFPa
– KaFFPaStrong, KaFFPaEco, KaFFPaFast – and KaFFPaE, kMetis 5.0 (p2) and Scotch
5.1.9 on machine A. To compute a partition for an instance (graph, k), we repeatedly
run the corresponding partitioner (except KaFFPaE) using different random seeds until
the resulting partition is feasible. We stopped the process after one day of computation
or after one hundred repetitions yielding unbalanced partitions. In this subchallenge the
resulting partition was used for both parts of the challenge, i.e. optimizing for edge cut
and optimizing for maximum communication volume. The running time of each iteration
was added if more than one iteration was needed to obtain a feasible partition. KaFFPaE
was given four nodes of machine A and a time limit of eight hours for each instance.
When optimizing the maximum communication volume, we simply altered the fitness
function to this objective. This ensures that individuals having a smaller maximum com-
munication volume are more often selected for a combine operation and the individual
with the smallest maximum communication volume in the population is the final re-

Graph Values of k
hugebubbles-00010 4 32 64 256 512
hugetric-00000 2 4 32 64 256
er-fact1.5-scale23 16 32 64 128 256
krong500-simple-logn17 2 4 8 16 32
krong500-simple-logn21 64 128 256 512 1024
delaunayn15 8 16 32 64 128
coAuthorsCiteseer 4 8 16 32 64
uk-2007-05 8 16 32 64 128
asia.osm 64 128 256 512 1024
great-britain.osm 32 64 128 256 1024
M6 2 8 32 128 256
NLR 8 32 128 256 512
AS365 64 128 256 512 1024
auto 64 128 256 512 1024
rggn218s0 8 16 32 64 128
G3circuit 2 4 32 64 256
kktpower 16 32 64 256 512
nlpkkt160 4 8 16 32 64

Table 7.6: The ninety instances that have been used in the Graph Partitioning subchal-
lenges of the DIMACS Implementation Challenge on Graph Clustering and Graph Par-
titioning. The graphs are available at [16]. Each instance had to be partitioned to a)
optimize the edge cut and b) minimize the maximum communication volume. Hence,
a complete submission had 180 partitions. In both cases, the balance parameter ε was
required to be 3%. Basic properties of these graphs can be found in Chapter 2.4.
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sult of the evolutionary algorithm. Using this methodology KaFFPaStrong, KaFFPaEco,
KaFFPaFast, KaFFPaE, Metis and Scotch were able to solve 136, 150, 170, 130, 146
and 110 instances respectively. The resulting points achieved in the Pareto challenge
can be found in Table 7.7. Note that KaFFPaFast gained more points than KaFFPaEco,
KaFFPaStrong and KaFFPaE. Since it is much faster than the other KaFFPa configura-
tions it is almost never dominated by them and therefore scores a lot of points in this
particular challenge. For some instances the partitions produced by Metis always ex-
ceeded the balance constraint by exactly one node. We assume that a small modification
of Metis would increase the number of instances solved and most probably also the score
achieved.

Solver Points
KaFFPaFast 1372
Metis 1265
KaFFPaEco 1174
KaFFPaE 1134
KaFFPaStrong 1085
UMPa [36] 624
Scotch 361
Mondrian [61] 225

Solver Points
KaFFPaFast 1680
KaFFPaEco 1305
KaFFPaE 1145
KaFFPaStrong 1106
UMPa [36] 782
Mondrian [61] 462

Table 7.7: Pareto challenge results including Metis and Scotch (left hand side) and orig-
inal Pareto challenge results (right hand side).

Quality Challenge. Our quality submission KaPa (Karlsruhe Partitioners) assembles
the best solutions of the partitions obtained of our partitioners in the Pareto challenge. On
road networks we also run Buffoon, which is described in Chapter 8, to create partitions.
The resulting points achieved in the quality challenge are reported in Table 7.8.

Solver Points
KaPa 1574
UMPa [36] 1066
Mondrian [61] 616

Table 7.8: Original quality challenge results.
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7.4 Concluding Remarks
Review. In this chapter, we compared our algorithms against other publicly available
graph partitioning packages. We performed two kinds of experiments. We started by
comparing the edge cut values produced by all of these tools on a large set of instances
in Section 7.1. Here, we used a large subset of our benchmark graphs from Chapter 2.4,
including graphs from numeric simulations, road networks, sparse matrices, random ge-
ometric graphs, delaunay graphs and social networks. We have shown that the partitions
of KaFFPaStrong are on average superior in terms of quality compared to the competi-
tors. Moreover, we argued that the partitions created by KaFFPa yield a good quality
vs. time tradeoff. Our second experiment in Section 7.2, gave KaFFPa, KaFFPaE and
KaBaPE as well as Metis and Scotch about 32 hours time (work) to compute a partition.
We were able to show that the partitions produced by KaFFPaE are superior to repeated
executions of KaFFPa. Additionally, KaFFPaE and KaFFPa compute much better par-
titions than Metis and Scotch. The best cuts of KaFFPaE are on average 13.9% smaller
than the best partition of computed by Scotch and 19% smaller than the best partition
computed by Metis. This emphasized that one cannot simply take the best result out of
multiple repetitions of a faster algorithm to achieve the same quality as KaFFPaStrong or
KaFFPaE. In the perfectly balanced case, KaBaPE clearly outperformed KaFFPaE and
KaFFPa, although KaFFPaE and KaFFPa had a slight imbalance advantage since they
cannot guarantee that the output partition is perfectly balanced.

The third section in this chapter presented the results of the graph partitioning sub-
challenges of the 10th DIMACS Implementation Challenge on Graph Partitioning and
Graph Clustering. Our partitioners, KaFFPa and KaFFPaE, won the graph partitioning
subchallenges, i.e. they achieved the best marks among all participants in both graph par-
titioning subchallenges: the quality subchallenge in which partition quality was the main
objective and the Pareto subchallenge in which the running time versus quality tradeoff
is paramount. A surprising result was obtained for a part of the challenge where the ob-
jective function was not cut size but a measure of communication volume which can be
expressed as a hypergraph partitioning problem. Interestingly, KaFFPaE outperformed
dedicated hypergraph partitioners by just changing the fitness function to prefer solutions
with low communication volume – the multilevel algorithm still optimized cuts.
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8
Algorithmic Extensions

In this chapter, we evaluate two pre-processing techniques and one post-processing tech-
nique. The first pre-processing technique is tailored to road networks and presented in
Section 8.1 and the second technique, explained in Section 8.2, is useful when it comes
to the partitioning of large social networks or web graphs. Moreover, we evaluate a post-
processing technique to obtain node separators from a given partition in Section 8.3.

References. The chapter is based on the conference papers [144, 146] that have been
published together with Peter Sanders. Results on social networks are joint work with
Peter Sanders and are unpublished. The results on node separators are also unpublished.

8.1 Partitioning Road Networks
In Chapter 5, we explained the notion of natural cuts which has been introduced by
Delling et al. [49]. We used natural cuts to obtain another instantiation of our combine
operator framework. In this section, we are focused on the partitioning of road networks.
Hence, we adopt the technique of Delling et al. [49]. That is we use natural cuts as a pre-
processing technique to obtain a clustering of the graph and build the contracted version
of the graph as in the original work.

Recall, that the computation of natural cuts works in rounds. In each round we pick a
center node v and grow a breadth-first search tree. The breadth-first search is stopped as
soon as the weight of the tree, i.e. the sum of the node weights of the tree, reaches αU ,
for some parameters α and U . The set of the neighbors of T in V\T is called the ring of
v. The core of v is the union of all nodes added to T before its size reached αU/ f where
f > 1 is another parameter.

The core is then temporarily contracted to a single node s and the ring into a single
node t to compute the minimum s-t-cut between them using the given edge weights as ca-
pacities. To assure that every node eventually belongs to at least one core, and therefore
is inside at least one cut, the nodes v are picked uniformly at random among all nodes
that have not yet been part of any core in any round. The process is stopped when there
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Figure 8.1: The coarse graph that is obtained from a natural cut clustering. A partition
of the coarse graph corresponds to a partition of the original graph.

are no such nodes left. Note that the shared memory parallelization of this algorithm is
quite simple – each flow problem can be constructed and solved independently.

Now, each connected component of the graph GC = (V,E\C), where C is the union
of all edges cut by the process above, induces a block of a clustering C of the graph.
As in the original work by Delling et al. [49], we contract each block of the clustering
into a single node. More precisely, the contracted graph is constructed as follows. First,
each block of the clustering is contracted into a single node. The weight of the node is
set to the number of nodes in the original block. There is an edge between two nodes
in the contracted graph if there is connectivity between the corresponding blocks in the
clustering. The weight of a particular edge (A,B) is set to the number of edges that run
between block A and block B in the clustering.

It is easy to see that a partition of the coarse graph corresponds to a partition of the
input graph. Hence, we use our (shared memory) parallelized version of natural cut
pre-processing to obtain a coarse version of the graph and use KaFFPaE to partition the
coarse graph. The contracted graph is often two orders of magnitude smaller than the
input network and hence drastically speeds up the performance of the partitioning al-
gorithm. Delling et al. [49] also only partition the contracted version of the graph. In
contrast to the technique used by Delling et al. [49], KaFFPaE is not tailored to the par-
titioning of road networks. The overall algorithm is called Buffoon. Our pre-processing
uses slightly different parameters than PUNCH (using the notation of Delling et al. [49],
we use C = 2, U = (1+ ε) n

2k , f = 10, α = 1).

8.1.1 Experiments
We apply Buffoon on two road networks (germany and europe) which are frequently
used in the route planning community and compare ourselves to PUNCH [49]. We
gave KaFFPaE teur,k = k×3.75 min on europe and tger,k = k×0.9375 min on germany,
to compute a partition after pre-processing was done. In both cases, we used all 16
cores (hyperthreading active) of machine C for pre-processing and for KaFFPaE. When
KaFFPaE used KaFFPa to create the initial population/partition, Scotch was employed
as initial partitioning algorithm. The experiments were repeated ten times. A summary
of the results is shown in Table 8.2. The results obtained by PUNCH are taken from [49].
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grp, k algorithm/running time t
ger. Pbest ttotal Bavg tavg Bbest

2 164 83 161 6 161
4 400 96 394 6 393
8 711 102 694 9 693

16 1 144 83 1 148 16 1 137
32 1 960 71 1 928 31 1 898
64 3 165 83 3 164 62 3 143

eur. Pbest ttotal Bavg tavg Bbest
2 129 423 149 39 129
4 309 358 313 39 310
8 634 293 693 47 659

16 1 293 252 1 261 73 1 238
32 2 289 217 2 259 130 2 240
64 3 828 241 3 856 248 3 825

Table 8.2: Results on road networks: best results of PUNCH (P) out of 100 repetitions
and total time [m] needed to compute these results; average and best cut results of Buf-
foon (B) as well as average running time [m] (including pre-processing).

Interestingly, on germany already our average values are smaller than or equal to the best
result out of 100 repetitions obtained by PUNCH. Overall in 9 out of 12 cases we com-
pute a best cut that is better or equal to the best cut obtained by PUNCH. Note that for
obtaining the best cut values, we invest significantly more time than PUNCH. However,
their machine is about a factor two faster (12 cores running at 3.33GHz compared to 8
cores running at 2.67GHz) and KaFFPaE is not tuned for road networks. We also run
KaFFPa, KaSPar, Scotch and Metis on these networks. The number of cut edges are 9%,
12%, 93% and 288% larger on average respectively.

Figure 8.3 shows example partitionings into 64 blocks of the european road network
created by Metis and Buffoon. In this case, the cut produced by Metis is roughly a
factor 2.5 worse compared to the partition produced by Buffoon. Apparently, Metis
is not able to find natural structures such as mountains or national borders. On the
other hand, Buffoon (and PUNCH) can successfully find such natural structures, e.g.
the border between germany and denmark or the Pyrenees. Moreover, in contrast to
the result produced by Buffoon, the visual impression of the blocks created by Metis is
already bad.
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Figure 8.3: A partition of the road network of europe into 64 blocks created by Metis
(top). A partition of the same graph into 64 blocks created by Buffoon (bottom).
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8.2 Partitioning Large Social Networks
The second pre-processing technique that we look at, is tailored to the partitioning of
large social networks or large web-graphs. The algorithm that we propose roughly works
as follows: first we compute a clustering of the graph using a fast clustering algorithm,
then we contract the obtained clustering such that a partitioning of the contracted graph
corresponds to a partitioning of the input network. As we will see, the size of the con-
tracted graph is much smaller than the size of the input graph. We then use KaFFPa to
compute a partition of the contracted graph. This is followed by transfering the partition
to the input graph and performing a refinement step which uses ideas from the clustering
algorithm that was applied in the first step of the algorithm.

The intuition behind this technique is that a clustering of the graph, one hopes, con-
tains many edges running inside the clusters and only a few edges running between the
clusters. Thus the contracted graph will have good properties to be partitioned. Experi-
ments in Section 8.2.2 indicate that the number edges per node of the contracted graph
is smaller than the number of edges per node of the input network. On the other hand,
the clustering algorithm that we use is very fast and the contracted graph is usually much
smaller than the input network. This enables us to partition the largest publicly available
web-graph with about 3 billion edges into 16 blocks using one core of a machine with
only 64GB RAM in roughly twenty-five minutes.

8.2.1 Label Propagation with Size Constraints
The label propagation clustering algorithm was proposed by Raghavan et al. [135]. It
is a very fast, near linear time, cut based graph clustering algorithm. We shortly outline
the algorithm. Initially, each node is in its own cluster/block. The algorithm then works
in rounds. In each round, the graph is traversed in a random order. When a node v is
visited, it is moved to the cluster that most of its neighbors are in, i.e. it is moved to the
cluster Vi that maximizes |N(v)∩Vi|. This is similar to the concept of the gain of a node
that is used within this work. Ties are broken randomly. The process is repeated until
each node is in a block that most of its neighbors are in. Here, we perform � iterations
of the algorithm where � is a tuning parameter. Note that one round of the algorithm can
be implemented in O(n+m) time.

In contrast to the original clustering algorithm [135], we have to ensure that each
cluster fulfills a size-constraint. To see this, consider a clustering of the graph in which
one cluster would have more than (1+ ε) |V |

k nodes. In this case, it would be impossible
to find a partition of the contracted graph that fulfills the balance constraint. We ensure
the cluster size constraint by introducing an upper bound U ≥ 1 to size of the clusters.
Clearly, when the algorithm starts this constraint is fulfilled since each of the clusters
contains exactly one node. A cluster Vi is called underloaded if |Vi| < U . Now when
we visit a node, we move it to an underloaded cluster that most of its neighbors are
in. Hence, after moving a node, the size of each cluster is still smaller than or equal
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to U . One round of the modified version of the algorithm can still be implemented in
linear time by using an array of size |V | to store the sizes of the clusters. Note that
the algorithm without size constraint on the blocks can be easily parallelized (shared
memory, distributed memory). Furthermore, there is a MapReduce implementation of
this algorithm by Ovelgönne [124].

After we computed a clustering, we contract it and use our multilevel graph parti-
tioner KaFFPa to partition the contracted graph. Contracting the clustering works as
follows: each block of the clustering is contracted into a single node. The weight of the
node is set to the number of nodes in the original block. There is an edge between two
nodes in the contracted graph if there is connectivity between the corresponding blocks
in the clustering. The weight of a particular edge (A,B) is set to the number of edges
that run between block A and block B in the clustering. We are now ready to apply our
partitioning algorithms to the contracted graph.

After the contracted graph is partitioned, we project its partition onto the input graph,
i.e. each node of the input graph is assigned to the block of its coarse representative.
To improve the partition after the projection is done, we apply r iterations of the label
propagation algorithm with size constraints as local search algorithm (setting U = (1+
ε) |V |

k ).

8.2.2 Experiments

Our experiments in this section focus on the three web-graphs (which have up to 3 billion
edges) and on the three largest social networks (with up to 16 million edges) from our
benchmark set in Chapter 2.4. To save running time, our experiments focus on the

graph tP[s] tLPSC[s] tCP[s] tPLS[s] ttotal[s] n/n� m/n m�/n�

coP.Cites. 41.2 1.5 4.2 1.0 6.7 44.3 36.9 4.6
webgoogle 26.7 0.8 2.8 0.3 3.9 19.9 5.9 4.5
coP.DBLP 92.1 2.1 12.0 1.2 15.3 41.3 28.2 7.8
as-skitter 960.5 1.5 13.7 0.6 15.8 30.2 10.4 4.7
uk-2002 2 453.7 24.4 117.4 13.4 155.2 52.7 14.1 4.4
uk-2007-05 * 217.2 1 123.9 119.6 1 460.7 80.9 31.2 2.7

Table 8.4: Running times on large social networks of our algorithms and average degree
of the input graphs and its contracted versions. tP is the running time needed by KaFFPa
when applied on the input graph. tLPSC refers to the running time of the label propagation
algorithm with size constraints and contraction, tCP refers to the time needed by KaFFPa
to partition the contracted graph and tPLS refers to the running time needed for projection
and local search on the finest level, ttotal = tLPSC+ tCP+ tPLS. n is the number of nodes of
the input graph and n� the number of nodes of the contracted graph (m and m� are defined
similarly for the number of edges).
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KaFFPa LPSC+KaFFPa
graph avg. avg. initial cut avg. final cut
coP.Cites 1 131 172 1 083 546 1 072 971
webgoogle 35 056 32 181 30 723
coP.DBLP 2 113 903 1 884 510 1 865 401
as-skitter 1 301 532 1 353 862 1 268 961
uk-2002 4 402 424 2 383 411 2 307 339
uk-2007-05 * 5 858 770 4 574 302

Table 8.5: Average edge cut results on large social networks. KaFFPa avg. reports the
average cut that KaFFPa produced when applied on the input graph, LPSC+KaFFPa
avg. initial cut reports the average cut produced by KaFFPa on the contracted graph,
LPSC+KaFFPa avg. final cut reports the final cut produced by the label propagation
algorithm with KaFFPa after projection and local search.

Eco and Fast configurations of KaFFPa (using our own initial partitioning algorithm)
and k = 16. More precisely, we used KaFFpaFast for all partitionings involving the
two largest web-graphs and KaFFPaEco in all other cases. All experiments have been
done using one core of one node of machine B (which has 64GB RAM). Experiments
have been repeated ten times using different random seeds for initialization. After some
experiments, we fixed the upper bound for this case to U = |V |/4k and use four label
propagation iterations in pre-processing as well as in post-processing.

Table 8.4 and Table 8.5 summarize the results. Interestingly, already the initial cut
obtained by KaFFPa on the contracted graph is almost always better than the cut pro-
duced by KaFFPa when it is applied on the input graph. When comparing the final
cut value obtained, then the new method always produces partitions that are better than
those computed by pure KaFFPa. The improvements achieved by the new algorithm
range from 2.5% on as-skitter to 90.8% on uk-2005. On the other hand, the new al-
gorithm is much faster than KaFFPa itself. We achieve speed ups between 6 and 90
compared to KaFFPa being applied on the input network. There are more observations
in Table 8.4 that are worth mentioning. For example, the contracted graph is on average
a factor 45 smaller than the input network. This number can be increased if one increases
the cluster upper bound U . However, increasing U can potentially result in imbalanced
partitions. Moreover, the average degree of the contracted graph is always much smaller
than the average degree of the input network. Figure 8.6 shows the degree distribution
of uk-2002 before and after contraction.

KaFFPaFast has not been able to partition uk-2007 since it required too much mem-
ory (even on a different machine with 512GB RAM). Note that this is due to the fact that
the matching base contraction cannot reduce the size of the graph significantly – in con-
trast to the label propagation pre-processing technique presented in this chapter. We also
tried to partition uk-2007 using Metis on the machine with 512GB memory. However,
Metis also crashes when trying to partition this graph.
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8.3 Node Separators

The node separator problem asks to partition the node set of a graph into three sets A,B
and S such that the removal of S disconnects A and B. A common way to obtain a node
separator is the following. First, we compute a partition of the graph into two sets V1 and
V2. Clearly, the boundary nodes in V1 would yield a feasible separator and so would the
boundary nodes in the opposite block V2. Since we are interested in a small separator,
we could simply use the smaller set of boundary nodes.

We can do better by using the method of Pothen et al. [132] which employs the set
of cut edges of the partition. As in the original work, we use this method as a post-
processing step to compute a node separator from a set of cut edges. The method com-
putes the smallest node separator that can be found by using a subset of the boundary
nodes. The main idea is to compute a subset S of the boundary nodes such that each cut
edge is incident to at least one of the nodes in S. Such a set called a vertex cover. It is
easy to see that S is a node separator since the removal of S eliminates all cut edges.

We are interested in a minimum vertex cover of the bipartite graph induced by the
boundary nodes and the set of cut edges. A minimum vertex cover of a bipartite graph is
obtained by solving a max-flow min-cut problem [5] that is similar to the max-flow min-
cut problem used to find a maximum matching in a bipartite graph. For completeness,
we shortly sketch the construction. First, a source s and a sink t are inserted. The
source is connected to all boundary nodes in block V1 and all boundary nodes in block
V2 are connected to the sink t. The capacity of these edges is set to one. The edges
between B[V1] and B[V2] are directed towards B[V2] and their capacity is set to ∞. Now, a
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Figure 8.6: Unweighted degree distribution of uk-2002 before and after contraction.
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Figure 8.7: The flow problem to find a minimum vertex cover in the bipartite graph
induced by the boundary nodes and the set of cut edges. This minimum vertex cover is
the smallest separator that can be obtained from the set of cut edges. Cut edges have
capacity ∞, all other capacities are set to one.

minimum s-t cut (C,C̄) defines a minimum vertex cover S = (B[V1]\C)∪ (B[V2]∩C) of
the bipartite graph [5]. Figure 8.7 illustrates the construction and relates it to the original
edge separator in the graph. It is worth mentioning that the method can also be used
to obtain a k-way node separator, i.e. k blocks V1, . . . ,Vk and a set S such that after the
removal of the nodes in S there no edge running between the blocks V1, . . . ,Vk. This
can be done computing a k-partition and then by applying the described flow problem
between all pairs of blocks that share a non-empty boundary. All pair-wise separators
together can then be used as a k-way separator. Indeed, also the simple algorithm, which
takes the smaller boundary node set as a node separator, can be used in this framework to
compute a k-way separator. However, the advanced method always computes a separator
which has less or an equal amount of nodes compared to the separator produced by the
simple method.

8.3.1 Experiments
We now compare the performance of the advanced flow-based algorithm to construct
a node separator against the performance of the simple algorithm. The algorithms de-
scribed above have been implemented using C++ within the KaFFPa framework. In this
section, we don’t compare ourselves against other software packages. This is due to the
fact that none of the software packages used in Chapter 7 directly provides a method
to output a node separator. Instead, the node separator methods are usually used inter-
nally to compute block orderings of sparse matrices which are represented as graphs.
We use the same set of instances that we utilized in Chapter 7 to compare the perfor-
mance of KaFFPa against other state-of-the-art graph partitioning software packages.
The instances are 144, 598a, PGPgiantcompo, af_shell10, as-22july06, asia, auto, de-
launay20, deu, email-EuAll, europe fe_ocean, fe_tooth, g3circuit, great-britain, htric00,
loc-brightkite, nlr, p2p-gnu04, rgg20, slashdot0902 and wave. Basic properties of these
graph can be found in Chapter 2.4. Experiments were performed using one core of one
node of machine B.
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In our experiments, we use KaFFPa to create partitions with at most 3% imbalance
and then use both methods on this partition to create a k-way node separator. The ex-
periments were repeated ten times. Table 8.8 summarizes the main results. The running
time of the advanced algorithm to compute a separator is very small. It is roughly a fac-
tor twenty smaller than the running time of KaFFPaFast. On average the produced node
separators by the advanced algorithm are 15% smaller than the separators computed by
the simple method. The largest improvements are obtained on the graph as-22july06
which is an internet topology graph. Here, the advanced algorithm computes node sep-
arators that are more than a factor two smaller compared to the size of the separators of
the simple method.

k 2 4 8 16 32 64 overall
KaFFPaFast 13.1% 15.6% 14.7% 14.1% 15.5% 16.1% 14.8%
KaFFPaEco 9.8% 13.3% 12.6% 14.4% 15.5% 16.8% 13.7%
KaFFPaStrong 15.4% 16.0% 16.6% 18.2% 18.3% 17.7% 17.0%

Table 8.8: Average improvements over the simple method to create a node separator for
different values of k. Different configurations of KaFFPa where used to create partitions
as starting point for both algorithms.

8.4 Concluding Remarks
Review. In this chapter, we looked at three algorithmic extension of our framework.
The first extension is Buffoon, a specialized graph partitioner for road networks that
relies on the notion of natural cuts by Delling et al. [49]. Using our shared memory
parallel version of natural cuts, we obtain a clustering of the graph which is contracted.
The contracted version is then partitioned by KaFFPaE. Experiments in this chapter
show that the quality achieved by Buffoon on road networks is comparable to or better
than PUNCH [49] and much better than the partitions created by Metis and Scotch.

The second algorithmic extension is tailored to the partitioning of large social net-
works or large web-graphs. These graphs usually have a very irregularly structure which
makes it hard for a matching algorithm to compute “good” matchings that are used for
contraction in a multilevel algorithm. By applying a very fast, cut based clustering al-
gorithm with constraints on the cluster sizes, one can obtain a clustering which is inter-
nally dense and, one hopes, has not many edges between the clusters. As in the previous
method, the clustering is contracted and the contracted graph is then partitioned using
our graph partitioning framework. This pre-processing technique drastically reduces the
size of the graph that needs to be partitioned and also reduces the number of edges per
node. Hence, the running time of the partitioning algorithm is also reduced. This exten-
sion enabled us to partition the web graph of the uk in 2007 with roughly 3 billion edges
using a single core of a machine with only 64GB RAM in roughly twenty-five minutes.
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The last algorithmic extension presented in this chapter was a post-processing tech-
nique that can be used to obtain a node separator from a set of cut edges. Moreover, the
method can be used to obtain k-way separators. We have seen that on average the size of
the node separators is about 15% percent smaller compared to the simplest method that
uses the smaller set of boundary nodes as a separator.

Future Work. The partitions produced by Buffoon are not necessarily connected.
However, in some applications involving road networks this is a desirable property.
Modifying the objective function of the evolutionary algorithm to f (P) = cut(P)+
|E| blocks are not connected already helps to increase the cases where each block of output
partition is connected, but cannot ensure this property. On the other hand, one can mod-
ify the partitioning problem such that k is not directly a part of the input in the sense that
it is not required to output exactly k blocks, but one wants to find a clustering such that
each cluster fulfills |Vi| ≤ (1+ ε) |V |

k . In this case, the output partition of Buffoon can
be “reinterpreted” such that each connected component induced by a block becomes a
block in the final partition.

It will be interesting to implement a parallel version of the social network pre-
processing technique and to test the method on larger real-world graphs. Nowadays,
a single computer can have 1TB of RAM and many cores so that the method can be used
to obtain partitions of huge web-graphs in a very short amount of time. In general, the
technique could be extended to become a general multilevel algorithm – by applying the
clustering and contraction algorithm on each level of the hierarchy and in reverse, using a
refinement algorithm on each level. Moreover, it could be valuable to employ the notion
of algebraic distance as a measure of connectivity strength for the movements of nodes
during the course of the label propagation algorithm and to employ the AMG-inspired
coarsening, introduced in Chapter 4, for the partitioning of the contracted graph.

Nowadays, block orderings of sparse matrices which are represented by graphs are
obtained by recursively computing node separators. In general, direct k-way methods
yield superior graph partitioning quality compared to recursive bisection techniques. In
this chapter, we proposed a method to obtain a k-way separator from a given k-way parti-
tion. It would be interesting to see whether a method using k-way separators could yield
better node orderings. Moreover, the most balancing minimum cut heuristic presented
in Chapter 4 could be used to derive a node separator with better balanced blocks.

One of the key features of the multilevel graph partitioning scheme is that in case of
edge cut minimization the value of the objective function on a coarse graph is the same
as on the finest graph. We are not aware of a coarsening scheme that has this property if
the objective is to minimize the size of node separators.
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9
Discussion

9.1 Conclusion
In this work we looked at the balanced graph partitioning problem. We focused mostly
on the minimization of the edge cut metric with the constraint that the sum of the node
weights in each block is smaller than or equal to (1+ε) times the average block weight.
Figure 9.1 gives an overview over the techniques that have been partly developed to-
gether with Manuel Holtgrewe, Ilya Safro and Peter Sanders. The parallel graph parti-
tioner KaPPa [87] was developed together with Manuel Holtgrewe and Peter Sanders,
partly during my diploma thesis [152], and is not a part of this work.

Throughout this work we looked at various local and global search techniques, dif-
ferent coarsening strategies as well as serveral meta-heuristics to tackle the graph parti-
toning problem. In many cases, the algorithms developed in advanced chapters of this
work build upon the methods from earlier chapters. For example, we developed novel
multilevel algorithms in Chapter 4 which provide new combine operations for our evo-
lutionary algorithms in Chapter 5, and the techniques developed in Chapter 6, to tackle
the highly balanced case, are integrated into this evolutionary framework.

Concretely, we started by carefully looking at the different components of the multi-
level graph partitioning scheme in Chapter 4. KaFFPa, which is a framework developed
in that chapter, is highly configurable to either achieve the best marks in the Walshaw
Benchmark, to be a good trade-off between quality and running time, or to be the fastest
system on some graphs while still improving partitioning quality compared to the pre-
vious fastest system. This has been achieved through several improvements of the mul-
tilevel algorithm that lead to enhanced partitioning quality. In particular, we looked at
two coarsening schemes – matching and AMG-inspired – as well as the notion of alge-
braic distance for graph partitioning. On social networks the AMG-inspired coarsening
scheme has a clear advantage, whereas both schemes produce similar results on graphs
that are less unstructured (see Appendix A). Moreover, we looked at two novel local
search techniques in that chapter – max-flow min-cut based local search and a very lo-
calized local search algorithm. Our experimental evaluation emphasized that max-flow
min-cut based techniques produce superior partitions if the search space is expanded and
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if they are combined with advanced techniques such as classical two-way local search
algorithm and a heuristic that can find better balanced minimum cuts. Experimental re-
sults also suggest that localization of local search is highly helpful and that the global
search techniques – V-, F- and W-cycle – are superior to repeated starts of the multilevel
algorithm.

In the Walshaw benchmark, KaFFPa was beaten mostly for small graphs that com-
bine the multilevel approach with an evolutionary strategy. Hence, we integrated our
multilevel graph partitioner KaFFPa into an evolutionary strategy in Chapter 5. The
coarsening phase was modified such that KaFFPa could provide effective combine and
mutation operations. Intuitively, the combine operations assemble good parts of solu-
tions into a single partition. The presented combine operation framework is very flexible
so that a partition can be combined with an arbitrary domain specific graph clustering.
Due to a scalable coarse grained parallelization, KaFFPaE is able to compute the best
known partitions for many standard benchmark instances in only a few minutes. The
time needed for partitioning the graph by the evolutionary algorithm is small compared
to the execution time of a numeric simulation yielding the graph. Hence, we believe that
KaFFPaE will still be helpful in the area of high performance computing and also that
this framework could be of more general interest to the genetic algorithm community.
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KaFFPa and KaFFPaE compute partitions of very high quality when some imbalance
ε > 0 is allowed. However, they are not very good for small values of ε , in particular
for the perfectly balanced case. Hence, in Chapter 6 we developed new techniques for
the graph partitioning problem with strict balance constraints, that work well for small
values of ε including the perfectly balanced case. The techniques relax the balance con-
straint for node movements, but globally maintain balance by combining multiple local
searches. This is done by reducing the combination problem to finding negative cycles in
a directed graph, exploiting the existence of efficient algorithms for this problem. From
a meta-heuristic point of view the proposed algorithms increase the neighborhood of a
strictly balanced solution in which local search is able to find better solutions. More-
over, we provide efficient ways to explore this neighborhood. Experiments indicate that
previous algorithms have not been able to find such rather complex movements. We also
provided balancing variants of these techniques that are able to make infeasible parti-
tions feasible. In contrast to previous algorithms such as Scotch [127], Jostle [165] and
Metis [95], our algorithms are able to guarantee that the output partition is feasible.

Throughout this work, we extensively compared our algorithms to many other parti-
tioners by submitting our partitions to Chris Walshaw’s Benchmark archive and also per-
formed direct comparisons with publicly available partitioning packages such as DibaP,
hMetis, KaSPar, kMetis and Scotch. We have shown that the partitions of KaFFPaStrong
are on average superior in terms of quality compared to the competitors. For example,
the edge cuts created by KaFFPaStrong are on average 48% smaller than those com-
puted by Metis. In an experiment in which partitioning packages had the same (fairly
large) amount of time to create a partition, we could show that the partitions produced by
our algorithms were much better than the best partitions computed by Metis and Scotch.
This emphasized that one cannot simply take the best result out of multiple repetitions of
a faster algorithm to achieve the same quality as KaFFPaStrong or KaFFPaE and hence
the importance of the algorithms developed in this work.

Moreover, our partitioners KaFFPa and KaFFPaE, won the graph partitioning sub-
challenge of the 10th DIMACS Implementation Challenge on Graph Partitioning and
Graph Clustering. That means that our partitioners achieved the best marks among all
participants in both graph partitioning subchallenges: the quality subchallenge in which
partition quality was the main objective and the Pareto subchallenge in which the running
time versus quality tradeoff is paramount. A surprising result was obtained for a part of
the challenge where the objective function was not cut size, but a measure of communica-
tion volume which can be expressed as a hypergraph partitioning problem. Interestingly,
KaFFPaE outperformed dedicated hypergraph partitioners by just changing the fitness
function to prefer solutions with low communication volume – the multilevel algorithm
still optimized cuts.

Another outcome of this work are algorithmic extensions to partition continental-
sized road networks as well as large social networks and webgraphs, and an algorithm
to derive a k-way separator from a given k-partition. Buffoon, is a specialized graph
partitioner for road networks that relies on the notion of natural cuts which have been
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introduced by Delling et al. [49]. Natural cuts are used as a pre-processing technique be-
fore KaFFPaE is applied. Experiments have shown that the quality achieved by Buffoon
on road networks is comparable to or better than PUNCH [49]. The second algorithmic
extension is tailored to the partitioning of large social networks or large web-graphs. It
drastically reduces the size of the graph that needs to be partitioned by contracting a
size constrained clustering of the input graph. The method improves partition quality
for these graphs and drastically speeds up the computations. For example, the technique
enabled us to partition the web graph of the uk in 2007 which has roughly 3 billion edges
using a single core of a machine with only 64GB RAM in roughly twenty-five minutes.

The perspective taken in this work is that we developed our graph partitioners in a
benchmark driven way achieving a system that has been able to improve or reproduce
most of the entries reported in the Walshaw benchmark. Another equally valid per-
spective is that we applied the methodology of algorithm engineering to all aspects of
the multilevel graph partitioning approach, achieving improvements in coarsening, local
search, parallelization, global search guidance, and embedding into meta-heuristics as
well as the strictly balanced case.

Although the problem is NP-hard and hard to approximate on general graphs, an as-
tonishingly large set of “easier” graph algorithms are used to tackle the problem which
makes the problem even more interesting. This includes problems such as weighted
matching, breadth-first search, dominating sets, maximum flows, strongly connected
components in Chapter 4, distributed evolutionary algorithms, maximum flows and ran-
domized rumor spreading in Chapter 5 and problems such as shortest paths, negative and
zero weight cycle detection in Chapter 6.

9.2 Outlook and Future Work
We summarize the future work discussed at the end of Chapters 4–8 and add some gen-
eral ideas. In nearly every chapter of this thesis it would be very valuable to go back
to parallelization. For example the integration of flow-based local search techniques as
well as the global search techniques could be easily integrated into a distributed mem-
ory parallel partitioner such as KaPPa. The global search techniques presented in this
chapter will even be more effective in a distributed parallel setting where each processor
is responsible for one block of the partition. A step towards a faster distributed mem-
ory parallel partitioner has been done in the diploma thesis of Marcel Birn [25]. In his
thesis, Marcel Birn developed a scalable and very fast, parallel matching algorithm. An-
other point of parallelization showed up in Chapter 5 where it would be interesting to
use a parallel graph partitioner providing the combine operations (instead of the sequen-
tial KaFFPa). More precisely, each population of the evolutionary algorithm would be
improved by using combine operations that would also be parallel. Since the number of
available cores in a desktop increases drastically nowadays a shared memory paralleliza-
tion of the proposed techniques is also highly desirable.
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Partitioning a model of computation and communication is just one part of the story
of high performance computing using modern systems. High performance clusters can
have a very complex communication network with varying communication speeds be-
tween the different processing elements. Intuitively, one wants to embed the partition
of the graph into this communication network such that the time spent for communi-
cation is minimized. In particular, one has to find a “good” mapping of the blocks of
the partition to the processors of the system. Algorithms that tackle the problem often
need perfectly balanced partitionings of the underlying communication network. The
techniques presented in Chapter 6 could be very useful to achieve this. An integration of
such techniques into our algorithms and perhaps interleaving methods that approximate
the problem with the multilevel scheme of KaFFPa for partitioning would be valuable.

A part of the 10th DIMACS Challenge revealed that changing the fitness function
of the evolutionary algorithm to communication volume, while the multilevel algorithm
still optimizes cut, is already helpful to minimize the maximum communication volume.
While this is a first step towards other objective functions, it remains to have specialized
techniques. An open problem arises when the objective is to minimize the size of a node
separator. One of the key features of the multilevel graph partitioning scheme is that, in
case of edge cut minimization, the value of the objective function on a coarse graph is
the same as on the finest graph. We are not aware of a coarsening scheme providing this
property if the objective is to minimize the size of node separators. Connectedness of
blocks is an important issue in some applications and currently not directly enforced by
our algorithms.

The idea of using edge ratings during coarsening has been proposed in KaPPa [87]
and has been extended in this work. However, it remains to have a well understood and
unified rating function. A first step towards this direction has been done at our institute
in the bachelor thesis of Maximilian Schuler [151].

Transferring ideas of this work to problems such as graph clustering, graph drawing,
or to look at other objective functions will be interesting. In particular, localization of
local search and global search techniques from Chapter 4 or the strictly balanced local
search techniques from Chapter 6 if local search is limited by constraints, might be
helpful. Global search techniques may help independently of the objective function if
local searches assure nondecreasing quality. One example can be multilevel algorithms
for graph clustering with the objective to optimize modularity. The strictly balanced
local search techniques from Chapter 6 might be useful in a setting where a graph needs
to be repartitioned, e.g. the structure of the graph has been changed slightly so that
the balance constraint is violated. Such problems arise in the area of adaptive partial
differential equations where the mesh is adaptively refined in areas with large errors. In
his bachelor thesis, Florian Ziegler [168] already started to transfer some ideas presented
in this work to the hypergraph bipartitioning problem.

The partitioning algorithms presented in this work or partitions created by them have
already been used in multiple projects. They have been used to partition coarse models
of communication and computation [69, 68], to speed up parallel multigrid methods
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for Maxwell’s equations [45, 113], in a parallel Lattice Boltzmann solver [3], for the
partitioning of matrices arising in the Dantzig-Wolfe decomposition context [4] and to
partition graphs from VLSI design [2]. Additionally, the algorithms have been used
for alternative route planning [111] and in multiple student projects aiming to speed
up Dijkstra’s algorithm. Moreover, with this work the algorithms presented herein are
released as an open source release.
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A
AMG-inspired Coarsening

A.1 Experimental Evaluation
The AMG coarsening was implemented separately based on the coarsening for linear
ordering solvers from Safro et al. [138] and was used to create the multilevel hierarchies
for KaFFPa [143]. The computational experiments have been performed with five con-
figurations of KaFFPa (see Table A.1). We concentrate on two groups of algorithms con-
figurations, fast versions (ECO, ECO-ALG, AMG-ECO) and strong versions (STRONG,
AMG). Since the main goal of this section is to evaluate the performance of the AMG-
inspired coarsening scheme, most of the comparisons will be AMG vs. respective non-
AMG ratios (between corresponding averages over 10 trials for each configuration). All
experiments are performed with fixed imbalance ε = 3%.

ECO KaFFPaEco configuration, Scotch as initial partitioner
STRONG KaFFPaStrong configuration, Scotch as initial partitioner, no F-cycles
ECO-ALG coarsening using GPA algorithm on each level, edge rating function

ex_alg(e) := expansion∗2(e)/ρe, local search as in KaFFPaEco
AMG-ECO AMG-inspired coarsening, local search as in KaFFPaEco
AMG AMG-inspired coarsening, local search as in STRONG

Table A.1: Description of the five configurations used for the experiments.

Walshaw’s Partitioning Archive. In this section, we compare our algorithms using
all 34 graphs of Walshaw’s Benchmark archive. In contrast to the next section, the
comparison of our methods has not demonstrated surprisingly new results. Overall, we
observed that uncoarsening performance of fast versions (ECO, ECO-ALG, AMG-ECO)
are more or less similar to each other and algebraic distance can improve the quality.
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k ECO
ECO-ALG

ECO-ALG
AMG-ECO

STRONG
AMG

2 1.03 1.03 1.01
4 1.05 1.02 1.00
8 1.02 1.02 1.00
16 1.02 1.01 1.00
32 1.01 1.02 1.00
64 1.00 1.01 1.00

Table A.2: Computational comparison on graphs from the Walshaw Benchmark. Each
number corresponds to the ratio of averages of final cuts for the pair of methods shown
in the column title and the number of blocks k given in the row.

Scale-free Graphs. The node degree distribution in scale-free graphs follows asymp-
totically the power-law distribution. These types of networks often contain irregular
parts and long-range links that can confuse both contraction and AMG-inspired coars-
ening. Since Walshaw’s benchmark does not contain such graphs, we use the following
instances for the comparison of the different algorithms: as-22july06, as-skitter, citCite-
seer, coAutCiteseer, coAutDBLP, coPapDBLP, email-EuAll, loc-brightkite, loc-gowalla,
p2p-gnu04, PGPgcomp, slashdot0902, web-google, wiki-talk, coPapCiteseer. The main
properties of the graphs are summarized in Chapter 2.4. Because of the large running
time of the strong configurations on these graphs, we compare only the fast versions of
AMG-inspired and matching-based coarsenings.

The results of the comparison on scale-free graphs are presented in Figure A.3 and
Table A.4. In Figure A.3 each plot corresponds to a different number of blocks k. The
horizontal axes represent graphs from our test set. The vertical axes shows ratios repre-
senting average values for a pair of methods. Each graph corresponds to one quadruple
of bars. The first, second, third and fourth bar represent averages of ratios ECO/AMG-
ECO, ECO-ALG/AMG-ECO after local search on the finest level, ECO/AMG-ECO,
ECO-ALG/AMG-ECO before local search on the finest level, respectively.

ECO
ECO-ALG

ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

k quality full time uncoarsening time quality uncoarsening time
2 1.38 0.77 1.62 1.16 3.62
4 1.24 1.32 1.85 1.11 2.14
8 1.15 1.29 1.45 1.07 1.94
16 1.09 1.27 1.33 1.06 1.69
32 1.06 1.18 1.23 1.00 1.60
64 1.06 1.13 1.13 1.01 2.99

Table A.4: Computational comparison for scale-free graphs.
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Figure A.3: Comparison of coarsening schemes on scale-free graphs. Figures (a)-(f)
contain results of comparison for k= 2, 4, 8, 16, 32, and 64, respectively. Each quadruple
of bars correspond to one graph. First, second, third and fourth bars represent averages
of ratios ECO/AMG-ECO, ECO-ALG/AMG-ECO after local search, ECO/AMG-ECO,
and ECO-ALG/AMG-ECO before local search, respectively.
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The role of algebraic distance. In this section, we emphasized the importance of the
algebraic distance as a measure of connectivity strength. The price for improvements is
the additional running time for the Jacobi over-relaxation to compute the distances. This
can be implemented by using the most suitable (parallel) matrix-vector multiplication
method. In cases of strong configurations and/or large irregular instances, the difference
in the running time becomes less influential due to the amount of work that is spend in
the uncoarsening phase.

Does AMG-inspired coarsening help? The positive answer to this question is given
mostly by the results on scale-free graphs that contain relatively complex and irregular
instances. This result is in contrast to graphs from the Walshaw Benchmark, in which
we did not observe any particular class of graphs that corresponded to a difference in
favor of one of the methods. We did not present exact comparison of coarsening running
times because their underlying algorithm implementations are very different.

A.2 Concluding Remarks
Both matching and AMG-inspired coarsening schemes have been compared using fast
and strong configurations of local search. As the main conclusion of this chapter, we
emphasize the success of the proposed AMG-inspired coarsening and the algebraic dis-
tance connectivity measure between nodes demonstrated on highly irregular instances.
One still has to take the trade-off between increased running time when using algebraic
distance and improved quality of the partitions into account. The increased running time
becomes less tangible with growth of graph size compared with the complexity of the
uncoarsening phase.



Detailed per Instance Results

KaFFPaStrong KaFFPaEco KaFFPaFast hMetis
graph k Best Avg t Best Avg t Best Avg t Best Avg t
144 2 6 456 6 488 7.93 6 543 6 562 0.65 6 844 7 965 0.17 6 744 6 801 43.14
144 4 15 586 15 784 17.36 16 806 16 928 1.56 16 494 17 480 0.20 16 450 16 665 45.81
144 8 25 466 25 855 30.01 26 266 26 641 2.32 27 460 29 463 0.26 26 995 27 367 46.62
144 16 38 083 38 510 52.44 39 950 40 979 2.70 41 767 43 120 0.32 41 321 41 723 48.30
144 32 56 934 57 290 79.28 59 235 60 037 3.76 62 079 62 584 0.44 60 301 60 974 54.14
144 64 79 109 79 899 117.46 82 756 83 663 4.25 86 371 87 620 0.65 84 798 85 040 66.26
598a 2 2 367 2 370 4.75 2 383 2 387 0.35 2 475 2 593 0.13 2 459 2 481 25.58
598a 4 7 854 7 973 9.25 8 043 8 067 0.96 8 471 9 354 0.16 8 264 8 360 30.18
598a 8 15 909 16 254 15.46 16 389 16 964 1.30 17 390 19 075 0.21 16 882 17 077 32.19
598a 16 26 183 26 641 28.95 26 678 27 063 1.89 28 226 28 831 0.28 27 822 28 220 34.28
598a 32 39 287 40 017 46.76 40 230 41 490 2.55 43 422 43 742 0.39 42 286 42 533 39.34
598a 64 57 655 58 007 84.30 59 872 60 449 3.36 63 697 64 191 0.62 60 756 61 331 49.51
g3circuit 2 1 071 1 071 47.25 1 412 1 412 1.69 1 334 1 430 0.54 1 223 1 274 260.70
g3circuit 4 2 483 2 651 87.22 2 717 2 776 3.48 2 894 3 035 0.55 3 109 3 179 279.42
g3circuit 8 4 685 4 787 119.52 4 737 4 887 7.84 5 545 5 740 0.58 5 443 5 634 284.56
g3circuit 16 7 690 7 868 180.48 7 945 8 188 5.75 9 337 9 845 0.63 9 246 9 475 288.13
g3circuit 32 11 635 11 779 214.81 12 687 13 194 7.67 14 085 14 786 0.71 14 028 14 314 292.46
g3circuit 64 18 408 18 698 248.59 19 998 20 373 9.28 22 445 23 125 0.85 21 637 22 262 307.32
PGPgcomp 2 362 382 0.90 565 612 0.12 497 536 0.04 357 368 0.43
PGPgcomp 4 646 670 1.29 831 889 0.19 881 1 001 0.05 661 681 0.59
PGPgcomp 8 995 1 024 2.35 1 182 1 305 0.24 1 377 1 591 0.07 1 018 1 032 1.02
PGPgcomp 16 1 507 1 560 5.04 1 610 1 699 0.40 1 912 2 191 0.08 1 541 1 568 1.84
PGPgcomp 32 2 091 2 143 8.03 2 313 2 391 0.58 2 626 2 753 0.12 2 122 2 148 4.01
PGPgcomp 64 2 823 2 863 10.74 3 090 3 207 0.66 3 363 3 495 0.16 2 811 2 822 6.08
af_shell10 2 26 225 26 225 206.07 28 700 28 700 4.04 30 500 30 860 1.28 26 425 27 295 459.99
af_shell10 4 53 075 53 207 560.90 54 175 54 512 20.60 57 300 57 600 1.32 58 725 59 342 588.56
af_shell10 8 94 150 97 640 922.59 100 875 111 697 26.74 114 500 119 004 1.32 108 550 110 247 612.76
af_shell10 16 153 650 156 167 1 100.65 163 725 165 822 21.20 184 300 187 535 1.38 173 400 175 655 648.02
af_shell10 32 235 075 241 002 1 137.77 255 500 258 745 29.43 284 050 289 532 1.46 269 650 272 200 652.43
af_shell10 64 349 275 357 653 1 044.50 381 575 385 817 25.47 426 675 432 763 1.60 397 000 401 635 672.15
as-22july06 2 3 722 3 938 72.98 5 177 5 378 5.90 5 365 5 653 1.43 3 517 3 518 3.60
as-22july06 4 7 557 7 730 65.83 9 491 9 833 11.69 9 629 10 579 2.71 7 413 7 454 5.94
as-22july06 8 11 031 11 285 66.84 13 131 14 068 12.22 13 832 14 463 2.73 10 759 10 816 9.63
as-22july06 16 13 961 14 165 124.61 16 437 17 090 13.63 17 555 18 382 3.01 13 584 13 673 14.82
as-22july06 32 16 505 16 857 254.91 19 644 20 200 14.61 19 983 20 936 2.97 16 433 16 506 21.36
as-22july06 64 20 061 20 420 262.23 22 693 23 458 11.63 23 534 24 480 3.08 19 606 19 694 27.77
asia 2 7 7 111.01 14 15 8.17 19 21 4.26 7 7 791.77
asia 4 19 22 255.25 22 33 12.82 31 40 4.28 19 20 830.16
asia 8 50 56 287.79 62 67 11.74 67 87 4.25 56 59 902.43
asia 16 124 134 306.83 149 162 13.30 191 206 4.27 131 134 981.14
asia 32 284 292 350.22 326 341 15.86 396 419 4.24 288 299 1 000.93
asia 64 521 533 324.81 581 631 18.60 692 725 4.41 572 588 1 085.00
auto 2 9 682 9 768 37.71 9 985 10 012 2.35 10 556 17 155 0.59 10 429 10 643 201.27
auto 4 25 937 26 814 79.86 26 349 26 570 7.08 28 817 34 607 0.65 28 654 29 137 215.55
auto 8 44 806 46 064 119.62 47 179 48 873 9.72 51 354 55 386 0.73 49 243 49 934 220.48
auto 16 76 348 77 421 193.85 78 530 79 207 13.49 83 611 87 513 0.89 83 145 83 896 222.09
auto 32 120 291 121 999 283.34 125 989 126 944 12.87 133 231 135 454 1.15 130 084 131 321 228.39
auto 64 172 247 173 788 375.68 181 231 182 690 13.16 189 865 191 579 1.50 186 656 187 952 242.99
delaunay20 2 1 680 1 686 31.50 1 692 1 727 1.68 2 023 2 038 0.57 1 832 1 888 185.62
delaunay20 4 3 346 3 376 66.78 3 387 3 413 3.79 3 918 4 044 0.59 3 710 3 751 186.60
delaunay20 8 6 183 6 279 92.04 6 296 6 545 5.79 7 497 7 864 0.60 6 834 7 049 187.22
delaunay20 16 9 968 10 108 123.74 10 355 10 447 6.44 11 821 12 069 0.64 11 060 11 279 191.79
delaunay20 32 15 697 15 862 157.06 16 111 16 271 7.24 18 955 19 156 0.70 17 637 17 886 195.21
delaunay20 64 23 568 23 826 183.10 24 373 24 689 7.92 27 981 28 383 0.80 25 919 26 260 203.48
deu 2 161 162 112.38 166 169 5.58 236 261 2.53 170 173 473.82
deu 4 395 404 176.32 408 450 10.88 660 694 2.53 441 456 502.41
deu 8 712 749 196.99 820 848 13.21 1 094 1 187 2.57 815 832 524.13
deu 16 1 255 1 313 274.12 1 360 1 423 14.19 1 751 1 926 2.56 1 355 1 412 531.58
deu 32 2 051 2 135 404.52 2 311 2 353 14.94 2 892 3 053 2.60 2 226 2 336 536.14
deu 64 3 388 3 469 479.46 3 753 3 856 16.12 4 785 4 891 2.73 3 642 3 752 549.63
email-EuAll 2 617 739 31.51 827 940 1.93 831 1 602 0.46 658 676 3.55
email-EuAll 4 2 569 2 624 25.34 2 722 2 880 3.24 2 971 3 835 0.81 3 497 3 729 6.68
email-EuAll 8 9 208 9 757 31.91 12 484 12 960 3.93 12 566 14 024 0.90 13 640 14 209 11.57
email-EuAll 16 19 860 20 377 34.92 23 161 23 664 4.34 23 311 24 056 1.01 21 128 21 247 17.50
email-EuAll 32 26 231 26 410 71.61 29 660 30 433 5.17 31 015 31 659 1.10 27 689 27 839 24.27
email-EuAll 64 32 076 32 676 109.02 35 091 35 635 4.82 36 822 37 384 1.29 33 305 33 489 33.74

Table A.5: Detailed per instance results of KaFFPa and hMetis. The experiments have
been repeated ten times. Best shows the edge cut of the best partition that occured. Avg.
shows the average edge cut of the partitions created, t denotes the average running time.



KaFFPaStrong KaFFPaEco KaFFPaFast hMetis
graph k Best Avg t Best Avg t Best Avg t Best Avg t
eur 2 130 143 517.73 256 292 35.13 458 559 12.61 142 153 2 323.86
eur 4 346 413 977.92 454 603 66.58 656 1 092 12.37 335 378 2 460.65
eur 8 745 791 1 204.99 875 1 039 88.32 1 510 1 773 12.37 754 817 2 652.47
eur 16 1 375 1 523 1 436.04 1 743 1 873 91.02 2 478 2 665 12.25 1 569 1 653 2 729.56
eur 32 2 481 2 575 1 704.70 2 699 2 816 89.14 3 901 4 108 12.30 2 693 2 825 2 746.53
eur 64 4 364 4 427 1 818.93 4 768 4 917 115.51 6 408 6 702 13.33
fe_ocean 2 311 311 2.88 311 311 0.13 373 373 0.06 416 434 13.08
fe_ocean 4 1 697 1 778 5.68 1 800 1 811 0.38 2 046 2 185 0.07 2 004 2 054 17.94
fe_ocean 8 3 946 4 056 8.82 4 615 4 862 0.51 5 671 6 045 0.09 4 747 4 920 18.81
fe_ocean 16 7 903 8 120 15.54 8 599 9 022 0.71 10 303 10 603 0.14 9 276 9 796 21.19
fe_ocean 32 12 805 13 036 24.87 14 824 15 098 1.15 16 302 16 827 0.22 14 487 15 656 25.33
fe_ocean 64 20 447 20 701 56.95 22 515 22 793 1.90 24 363 24 975 0.37 23 174 24 329 36.36
fe_tooth 2 3 789 4 017 3.28 4 174 4 222 0.14 4 319 4 703 0.08 4 093 4 139 13.37
fe_tooth 4 6 819 7 012 8.82 6 954 7 328 0.88 7 670 8 214 0.09 7 333 7 589 13.82
fe_tooth 8 11 418 11 681 12.59 12 094 12 293 1.02 12 897 13 477 0.13 12 335 12 588 14.46
fe_tooth 16 17 541 17 850 19.28 18 698 19 034 1.22 20 183 20 534 0.16 18 793 19 026 16.25
fe_tooth 32 25 373 25 847 31.23 26 535 27 162 1.59 28 507 29 028 0.24 26 920 27 246 20.96
fe_tooth 64 35 490 35 804 49.75 37 247 37 776 2.01 38 950 39 527 0.39 37 714 37 876 30.56
great-britain 2 82 84 159.16 82 87 9.93 118 118 3.52 84 85 604.80
great-britain 4 217 221 229.86 226 241 16.21 294 324 3.53 227 234 681.65
great-britain 8 389 403 290.73 404 451 16.58 561 587 3.54 432 441 716.38
great-britain 16 643 668 334.59 707 735 16.84 867 919 3.53 685 699 793.61
great-britain 32 1 169 1 196 431.02 1 253 1 336 16.55 1 539 1 593 3.58 1 226 1 273 781.94
great-britain 64 1 925 1 954 433.05 2 111 2 169 17.79 2 432 2 564 3.63 2 074 2 107 803.92
htric00 2 978 978 255.86 1 057 1 066 8.08 1 330 1 406 2.43 1 167 1 227 1 092.37
htric00 4 2 611 2 713 464.44 2 672 2 876 29.37 3 943 4 150 2.47 3 074 3 277 1 117.07
htric00 8 4 903 5 058 727.15 5 116 5 398 38.97 6 456 6 809 2.53 6 020 6 187 1 119.45
htric00 16 7 693 7 821 1 083.87 8 011 8 177 40.46 9 394 9 988 2.63 9 253 9 434 1 124.69
htric00 32 11 838 11 979 1 231.94 12 148 12 391 33.42 14 466 15 058 2.70 14 004 14 216 1 129.34
htric00 64 17 656 17 883 1 530.36 17 932 18 258 30.50 21 577 21 963 2.88 20 128 20 590 1 161.32
loc-brightkite 2 17 887 18 172 41.82 29 168 29 497 7.02 30 118 30 342 1.69 17 860 17 992 11.30
loc-brightkite 4 33 319 34 569 63.58 56 684 59 672 12.81 58 824 61 528 2.97 33 640 34 193 14.48
loc-brightkite 8 45 309 46 250 138.03 76 100 77 906 14.05 80 369 82 123 3.40 45 082 45 374 19.02
loc-brightkite 16 53 572 54 069 321.37 82 379 85 100 15.45 91 550 93 754 3.58 53 248 53 506 26.74
loc-brightkite 32 61 438 62 116 730.97 85 499 87 043 16.43 102 871 104 979 3.91 63 329 63 473 37.51
loc-brightkite 64 70 473 71 051 1 856.11 90 596 91 310 19.91 109 071 111 791 3.66 73 354 73 470 58.29
nlr 2 3 543 3 543 244.46 3 551 3 603 13.12 4 250 4 487 4.02 3 965 4 050 1 250.23
nlr 4 7 775 7 838 610.41 7 868 7 930 28.56 9 012 9 321 4.07 8 763 8 950 1 250.84
nlr 8 13 744 13 918 754.45 14 254 14 580 38.83 16 633 17 090 4.08 15 773 16 308 1 266.14
nlr 16 22 067 22 243 943.16 22 740 23 041 45.45 25 792 26 804 4.19 25 452 26 004 1 282.67
nlr 32 34 215 34 402 975.52 34 836 35 216 44.43 41 003 41 409 4.27 39 704 40 133 1 298.60
nlr 64 50 789 51 222 982.09 52 091 52 663 43.56 59 975 60 502 4.48 58 255 59 355 1 305.62
p2p-gnu04 2 7 172 7 260 6.75 8 130 8 396 0.38 10 160 10 186 0.11 7 163 7 268 2.38
p2p-gnu04 4 11 755 11 833 14.80 12 997 13 363 1.83 14 794 15 189 0.51 11 880 11 914 3.83
p2p-gnu04 8 14 609 14 724 16.22 15 897 16 103 2.10 16 994 17 214 0.55 14 868 14 927 5.33
p2p-gnu04 16 16 787 16 908 23.60 17 422 17 718 2.84 18 141 18 490 0.52 17 125 17 184 8.41
p2p-gnu04 32 18 100 18 200 48.97 18 534 18 659 4.07 19 486 19 565 0.56 18 592 18 618 11.69
p2p-gnu04 64 18 992 19 048 86.86 19 507 19 574 3.96 20 374 20 444 0.52 19 673 19 712 13.04
rgg20 2 2 088 2 101 52.07 2 139 2 178 2.50 2 932 2 968 0.63 2 163 2 294 276.48
rgg20 4 4 157 4 248 90.73 4 300 4 377 6.19 5 770 5 967 0.65 4 346 4 565 284.51
rgg20 8 7 676 7 824 111.87 8 255 8 481 7.89 10 969 11 551 0.66 8 307 8 632 292.18
rgg20 16 12 454 12 836 130.28 13 437 13 672 8.42 18 006 18 379 0.70 13 797 14 153 293.56
rgg20 32 19 945 20 428 145.08 21 545 22 131 8.87 27 513 28 491 0.76 21 693 22 130 296.72
rgg20 64 31 058 31 336 160.63 33 207 33 683 9.38 41 735 42 663 0.88 32 400 32 951 304.92
slashdot0902 2 67 694 68 601 28.26 104 978 105 272 3.83 118 515 118 732 0.58 97 287 97 357 77.71
slashdot0902 4 137 647 141 842 147.34 212 334 212 532 3.81 212 174 212 820 1.67 172 444 172 941 93.26
slashdot0902 8 205 785 209 595 311.76 268 923 269 392 8.00 269 409 269 883 3.24 222 297 223 124 136.28
slashdot0902 16 248 441 250 348 566.81 291 493 292 641 17.41 301 186 301 655 2.77 255 779 257 580 175.62
slashdot0902 32 274 898 276 147 1 271.27 301 431 303 125 39.98 318 435 318 879 3.48 280 489 281 176 205.69
slashdot0902 64 293 791 294 320 3 415.84 311 628 312 230 98.99 325 601 325 946 4.62 298 067 298 715 247.89
wave 2 8 623 8 663 8.49 8 848 9 090 0.51 9 219 10 972 0.16 8 986 9 039 39.91
wave 4 16 781 17 043 18.09 18 717 20 010 1.96 20 152 23 203 0.19 17 707 18 391 41.66
wave 8 28 750 29 105 37.88 31 028 31 505 2.99 32 910 34 761 0.25 30 654 31 346 44.85
wave 16 42 629 43 232 65.02 44 720 45 692 3.60 48 233 49 019 0.31 45 399 46 376 47.54
wave 32 62 237 62 618 103.68 64 495 65 473 4.08 68 752 69 444 0.42 66 225 66 710 52.65
wave 64 85 401 86 225 154.80 88 767 89 960 4.83 94 218 95 040 0.64 91 443 91 820 65.95

Table A.6: Detailed per instance results of KaFFPa and hMetis. The experiments have
been repeated ten times. Best shows the edge cut of the best partition that occured. Avg.
shows the average edge cut of the partitions created, t denotes the average running time.



KaSPar Scotch kMetis DibaP-Lite DibaPFull
graph k Best Avg t Best Avg t Best Avg t Best Avg t Best Avg t
144 2 6 458 6 483 9.11 6 562 6 657 0.47 6 865 7 480 0.15 7 182 7 182 1.75 6 678 7 124 1.59
144 4 15 253 15 567 22.88 16 768 16 946 1.04 17 507 17 828 0.16 15 627 16 252 3.80 16 225 16 548 2.01
144 8 25 368 25 559 39.67 27 814 28 247 1.60 28 143 28 671 0.16 26 400 27 948 6.85 26 095 26 340 2.23
144 16 37 808 38 357 65.60 42 099 42 683 2.23 42 175 43 048 0.17 38 799 40 504 12.19 38 888 39 227 2.60
144 32 56 771 57 387 109.67 62 217 62 890 3.00 62 318 63 006 0.18 58 925 59 751 23.74 57 081 58 106 3.41
144 64 80 084 80 948 163.77 87 653 88 144 3.85 86 740 87 409 0.21 82 548 83 226 45.82 81 026 81 808 6.69
598a 2 2 376 2 382 4.41 2 417 2 433 0.28 2 464 2 489 0.10 2 430 2 430 1.26 2 452 2 800 1.87
598a 4 7 900 7 925 9.05 8 175 8 236 0.68 8 340 8 556 0.11 8 189 8 195 2.67 8 320 8 416 2.09
598a 8 15 873 15 987 21.30 16 850 17 036 1.15 17 143 17 573 0.12 16 497 16 803 5.20 16 116 16 418 2.31
598a 16 25 899 26 205 38.94 28 081 29 173 1.68 28 530 29 180 0.12 26 983 28 312 9.58 26 459 26 944 2.55
598a 32 39 575 40 162 66.64 43 421 43 896 2.29 43 793 43 942 0.13 41 830 42 537 18.98 39 865 40 430 3.92
598a 64 58 220 58 799 101.06 62 968 63 518 2.94 62 549 62 764 0.15 59 672 60 364 36.54 58 617 59 218 6.29
g3circuit 2 1 098 1 111 124.92 1 245 1 320 0.85 1 468 1 523 0.87 1 388 1 388 4.36 1 181 1 181 2.92
g3circuit 4 2 622 2 690 95.49 3 069 3 152 1.79 3 372 3 703 0.89 3 655 4 089 8.51 3 735 4 075 3.77
g3circuit 8 4 872 5 025 130.33 5 473 5 669 2.76 6 041 6 446 0.89 6 149 6 976 16.55 5 575 5 965 4.06
g3circuit 16 7 978 8 110 130.06 9 068 9 543 3.88 10 394 10 835 0.92 10 601 11 150 33.40 8 156 9 701 5.29
g3circuit 32 11 792 11 893 152.52 13 606 14 036 5.08 16 342 16 342 0.93 15 337 16 095 64.26 13 782 14 523 8.49
g3circuit 64 18 942 19 134 213.99 21 375 21 960 6.79 24 715 25 208 0.96 22 374 22 974 138.57 20 743 21 349 15.08
PGPgcomp 2 367 385 0.61 471 564 0.05 405 426 0.01
PGPgcomp 4 670 713 1.02 936 998 0.10 851 895 0.01
PGPgcomp 8 1 100 1 158 1.49 1 204 1 378 0.13 1 261 1 337 0.01
PGPgcomp 16 1 725 1 808 2.29 1 780 1 899 0.17 1 799 1 877 0.01
PGPgcomp 32 2 511 2 572 2.83 2 401 2 478 0.20 2 467 3 610 0.02
PGPgcomp 64 3 438 3 837 3.56 3 127 3 246 0.23 3 540 3 616 0.03
af_shell10 2 26 225 26 225 135.83 26 225 29 072 2.44 28 125 28 755 1.83 26 225 26 225 6.08 26 225 26 225 2.86
af_shell10 4 54 725 55 450 102.50 56 425 57 397 4.80 60 750 62 077 1.83 69 975 70 205 10.33 57 900 57 945 3.00
af_shell10 8 97 309 100 505 97.41 108 800 110 562 7.66 114 075 119 062 1.84 114 475 116 270 15.39 107 000 108 010 3.33
af_shell10 16 163 100 166 031 138.12 171 225 172 557 10.64 186 125 190 017 1.85 184 875 191 665 30.18 167 250 170 367 4.21
af_shell10 32 249 888 254 475 144.87 270 150 272 470 13.85 290 400 290 565 1.85 289 200 292 211 54.24 255 950 258 510 7.10
af_shell10 64 374 677 378 555 180.91 399 950 401 950 17.63 426 933 430 767 1.88 421 307 427 531 129.33 383 650 387 313 12.36
as-22july06 2 3 515 3 530 10.38 4 573 4 871 0.03 3 672 3 898 0.08
as-22july06 4 7 802 7 835 17.34 9 393 9 625 0.06 8 091 9 029 0.11
as-22july06 8 11 798 12 000 23.72 12 699 12 978 0.08 11 689 12 394 0.15
as-22july06 16 14 854 15 028 25.13 15 611 16 040 0.10 14 326 14 722 0.15
as-22july06 32 17 578 17 789 31.17 18 167 18 412 0.11 16 997 20 549 0.51
as-22july06 64 20 769 21 010 40.58 21 046 21 122 0.13 23 447 23 819 0.25
asia 2 7 7 3 788.12 7 17 4.49 78 1 520 7.97
asia 4 19 19 1 650.24 33 47 8.70 45 381 7.69
asia 8 50 51 1 856.76 78 101 12.56 295 295 7.58
asia 16 127 131 1 031.91 200 218 16.15 434 601 7.48
asia 32 294 304 753.96 352 402 19.67 807 1 091 7.72
asia 64 587 600 407.27 700 744 22.59 1 435 1 812 7.83
auto 2 9 723 9 759 30.61 10 225 10 307 1.08 10 806 10 830 0.47 12 324 12 324 4.41 10 027 10 845 4.14
auto 4 25 924 26 094 52.36 27 940 28 443 2.41 27 950 30 664 0.50 27 340 28 019 9.44 26 601 26 634 5.62
auto 8 45 161 45 285 84.70 48 512 49 544 3.71 51 747 52 769 0.50 48 922 49 365 13.83 48 140 48 201 5.31
auto 16 76 113 76 596 154.86 82 454 83 682 5.37 84 981 87 570 0.53 80 899 82 968 24.60 78 658 79 852 6.77
auto 32 121 047 121 727 272.09 130 269 131 706 7.38 132 339 134 179 0.56 126 748 128 344 42.21 124 359 124 786 9.31
auto 64 173 818 174 453 416.10 189 304 191 308 9.63 189 180 189 950 0.59 178 406 179 868 75.82 173 527 175 207 14.30
delaunay20 2 1 700 1 728 80.22 1 956 2 048 0.77 2 204 2 204 0.63 2 138 2 362 2.92 1 912 2 779 2.55
delaunay20 4 3 412 3 447 56.17 3 891 4 014 1.46 4 060 4 156 0.64 4 061 4 061 4.44 3 960 4 015 2.60
delaunay20 8 6 280 6 325 72.54 7 170 7 368 2.18 7 865 7 865 0.64 7 341 7 485 9.55 6 908 7 025 2.66
delaunay20 16 10 186 10 225 54.70 11 583 11 737 2.90 12 123 12 545 0.67 11 833 11 985 27.06 11 220 11 311 3.33
delaunay20 32 15 973 16 055 77.56 17 801 18 146 3.72 18 587 19 052 0.66 18 305 18 498 59.49 17 130 17 386 6.12
delaunay20 64 23 891 23 969 91.07 26 634 26 900 4.65 28 081 28 264 0.67 27 353 27 674 155.82 25 871 26 043 10.96
deu 2 172 174 142.15 242 278 2.03 262 284 2.84
deu 4 415 427 132.60 636 699 4.07 748 751 2.82
deu 8 749 766 132.38 1 144 1 248 6.00 1 212 1 317 2.81
deu 16 1 296 1 323 133.82 1 945 2 028 7.98 2 086 2 187 2.82
deu 32 2 182 2 216 154.25 3 119 3 228 9.89 3 183 3 387 2.83
deu 64 3 594 3 646 200.22 4 776 4 930 11.94 5 128 5 173 2.85
email-EuAll 2 1 246 1 665 3.26 909 910 0.04 1 796 3 667 0.03
email-EuAll 4 3 642 4 279 4.07 3 452 5 737 0.08 6 317 9 557 0.04
email-EuAll 8 14 128 16 202 11.59 10 058 11 724 0.11 23 137 25 271 0.08
email-EuAll 16 24 603 25 826 17.90 19 721 20 347 0.13 38 587 39 553 0.12
email-EuAll 32 32 003 33 273 28.12 27 896 28 300 0.16 39 277 40 146 0.14
email-EuAll 64 37 393 38 822 37.28 33 600 34 077 0.17 39 591 41 080 0.17

Table A.7: Detailed per instance results of KaSPar, Scotch, kMetis and DibaP. The ex-
periments have been repeated ten times. Best shows the edge cut of the best partition
that occured. Avg. shows the average edge cut of the partitions created, t denotes the
average running time.



KaSPar Scotch kMetis DibaP-Lite DibaPFull
graph k Best Avg t Best Avg t Best Avg t Best Avg t Best Avg t
eur 2 137 148 617.00 444 502 8.28 269 424 15.43
eur 4 396 410 595.16 765 945 16.20 919 1 508 15.38
eur 8 764 782 579.65 1 385 1 535 24.13 1 858 2 599 15.49
eur 16 1 425 1 465 565.10 2 608 2 693 31.99 3 262 7 362 15.98
eur 32 2 618 2 651 583.25 4 184 4 380 39.85 5 611 7 609 15.70
eur 64 4 484 4 537 683.97 6 688 6 856 47.36 13 075 13 566 16.23
fe_ocean 2 317 318 3.02 389 400 0.12 519 546 0.08 396 396 1.09 332 1 256 0.81
fe_ocean 4 1 723 1 795 7.13 1 943 1 990 0.29 2 142 2 186 0.08 1 969 1 969 1.77 1 963 2 071 0.85
fe_ocean 8 4 026 4 070 14.19 4 414 4 721 0.55 5 306 5 556 0.09 4 975 5 327 3.77 4 965 5 232 0.90
fe_ocean 16 7 808 8 096 25.34 8 886 9 200 0.87 10 013 10 319 0.09 9 329 9 460 6.91 9 419 9 516 1.09
fe_ocean 32 13 181 13 370 42.52 13 786 14 941 1.26 16 353 16 820 0.10 15 675 16 029 15.18 16 346 16 580 1.64
fe_ocean 64 21 231 21 664 72.64 21 800 22 764 1.72 24 256 24 427 0.11 24 340 24 554 30.94 24 379 24 799 2.96
fe_tooth 2 3 796 3 894 4.77 3 943 4 092 0.25 4 160 4 369 0.06 4 460 4 545 1.07 4 672 5 067 1.28
fe_tooth 4 6 934 7 012 8.08 7 338 7 817 0.49 7 871 8 189 0.06 7 417 7 417 1.78 7 738 8 228 1.29
fe_tooth 8 11 465 11 577 13.92 12 418 12 669 0.76 13 157 13 160 0.07 12 219 12 594 3.62 12 064 12 285 1.39
fe_tooth 16 17 581 18 000 22.82 18 958 19 272 1.11 19 543 20 252 0.07 18 458 19 178 7.13 18 305 18 605 1.56
fe_tooth 32 25 849 26 303 36.70 27 200 27 605 1.49 28 598 28 776 0.08 26 950 27 819 13.86 26 608 26 882 2.53
fe_tooth 64 36 144 36 604 53.54 37 537 38 060 1.90 39 116 39 360 0.09 37 476 38 078 33.04 36 813 37 103 3.90
great-britain 2 82 84 1 852.55 119 129 3.59 141 155 5.12
great-britain 4 217 220 1 054.88 308 337 6.91 360 1 359 5.15
great-britain 8 385 394 732.33 565 625 9.93 689 1 088 5.11
great-britain 16 652 662 743.91 951 1 007 12.71 1 053 1 323 5.13
great-britain 32 1 194 1 213 504.69 1 598 1 653 15.31 1 863 2 037 5.01
great-britain 64 2 021 2 046 412.96 2 533 2 604 17.79 2 953 3 084 4.96
htric00 2 1 088 1 106 768.16 1 188 1 275 3.03 1 353 1 477 4.29 1 209 1 209 17.40 1 254 1 915 11.36
htric00 4 2 835 2 888 844.19 3 277 3 400 5.99 3 381 3 514 4.30 3 146 3 146 29.42 3 265 3 457 12.89
htric00 8 5 330 5 414 586.27 5 936 6 308 8.79 6 676 6 691 4.36 6 126 6 329 60.44 6 057 6 271 15.24
htric00 16 8 379 8 413 433.17 9 132 9 438 11.19 10 037 10 196 4.34 9 131 9 380 113.03 8 957 9 158 19.31
htric00 32 12 663 12 778 386.54 13 590 14 036 13.49 14 586 14 891 4.39 13 897 14 040 208.77 13 194 13 511 31.71
htric00 64 19 021 19 083 488.04 20 186 20 433 15.72 21 591 21 844 4.38 19 921 20 308 530.64 19 673 19 887 55.37
loc-brightkite 2 17 755 18 088 93.48 22 602 26 219 0.52 19 801 20 918 0.13
loc-brightkite 4 35 312 36 111 234.95 40 679 42 173 0.87 37 103 37 224 0.16
loc-brightkite 8 49 854 51 017 479.86 55 079 57 028 1.16 48 835 49 698 0.18
loc-brightkite 16 59 072 60 881 782.96 64 053 65 710 1.39 56 304 56 626 0.21
loc-brightkite 32 71 135 72 466 1 162.00 73 323 75 172 1.59 65 345 65 951 0.31
loc-brightkite 64 82 979 83 738 1 460.56 82 802 84 325 1.77 76 069 76 377 0.49
nlr 2 3 631 3 643 705.74 3 937 4 110 5.79 4 136 4 275 4.01 4 029 4 050 19.09 4 224 4 290 13.26
nlr 4 7 952 7 994 358.67 8 767 8 935 10.50 9 211 9 664 4.03 9 046 9 132 27.73 8 666 9 170 14.60
nlr 8 13 996 14 070 435.25 16 118 16 403 14.40 17 301 17 682 4.03 15 880 16 099 49.37 15 113 15 285 15.81
nlr 16 22 361 22 469 349.37 25 269 25 823 17.97 27 106 27 529 4.05 25 378 25 950 88.56 24 312 24 604 19.44
nlr 32 34 674 34 786 295.19 38 843 39 402 21.18 40 799 41 677 4.08 38 808 39 523 180.84 37 178 37 288 30.08
nlr 64 51 654 51 893 323.96 56 952 57 758 24.44 59 964 60 097 4.14 57 999 58 508 380.38 55 782 56 120 47.78
p2p-gnu04 2 7 100 7 172 9.86 7 097 7 163 0.03 7 597 7 817 0.01
p2p-gnu04 4 12 479 12 648 18.70 11 940 12 016 0.05 12 099 12 276 0.02
p2p-gnu04 8 15 982 16 273 28.90 15 113 15 172 0.07 15 033 15 204 0.03
p2p-gnu04 16 18 023 18 221 38.28 17 394 17 450 0.08 17 056 17 142 0.04
p2p-gnu04 32 19 470 19 582 43.44 18 878 18 917 0.09 18 427 18 480 0.06
p2p-gnu04 64 20 497 20 833 34.37 19 926 19 978 0.11 19 496 19 509 0.07
rgg20 2 2 179 2 214 81.69 2 719 2 848 0.96 3 119 3 341 0.86
rgg20 4 4 298 4 363 58.54 5 839 6 104 1.89 5 983 6 303 0.85
rgg20 8 7 793 7 913 54.32 11 125 11 463 2.87 11 178 11 651 0.87
rgg20 16 12 633 12 808 53.45 17 190 17 437 3.83 17 255 18 207 0.88
rgg20 32 20 273 20 539 74.38 26 775 27 479 5.01 28 419 28 918 0.88
rgg20 64 30 965 31 135 91.37 38 640 39 906 6.24 41 229 42 735 0.90
slashdot0902 2 89 698 92 926 291.47 58 990 63 657 2.29 97 931 98 258 0.16
slashdot0902 4 199 345 205 069 593.89 138 702 141 969 2.79 182 859 188 298 0.17
slashdot0902 8 256 043 257 595 1 117.12 199 656 201 154 3.04 224 801 226 926 0.22
slashdot0902 16 286 802 288 152 1 826.87 244 799 246 440 3.22 259 601 260 434 0.31
slashdot0902 32 305 169 305 818 2 818.33 276 634 277 676 3.37 281 543 282 657 0.61
slashdot0902 64 316 627 318 042 4 451.21 297 892 299 037 3.42 301 519 301 519 1.06
wave 2 8 657 8 690 11.62 8 909 9 059 0.60 9 030 9 337 0.14 9 120 9 338 1.66 8 894 8 986 1.64
wave 4 16 847 16 955 26.29 18 672 19 693 1.24 18 885 19 246 0.15 17 594 19 167 3.20 17 383 18 672 1.80
wave 8 28 742 28 878 46.37 32 007 33 015 1.88 33 993 34 704 0.16 31 093 32 058 5.83 30 000 30 938 1.72
wave 16 42 810 43 053 76.31 47 917 48 919 2.55 47 462 49 020 0.16 44 287 45 755 10.51 43 550 44 446 2.10
wave 32 62 538 63 129 118.64 68 617 69 442 3.36 67 402 67 943 0.17 64 176 65 194 20.95 63 702 64 489 2.75
wave 64 86 683 87 444 168.74 94 703 95 447 4.27 92 808 93 039 0.19 89 070 90 384 42.39 86 899 88 211 5.80

Table A.8: Detailed per instance results of KaSPar, Scotch, kMetis and DibaP. The ex-
periments have been repeated ten times. Best shows the edge cut of the best partition
that occured. Avg. shows the average edge cut of the partitions created, t denotes the
average running time.



Zusammenfassung
Viele Anwendungen der Informatik beinhalten die Verarbeitung und Partitionierung von
großen Graphen z.B. die Finite Element Methode, Digitaler Schaltkreisentwurf, Rou-
tenplanung, Analyse des Webgraphen oder die Analyse von Sozialen Netzwerken. Ein
bekanntes Beispiel, in der gute Partitionierungen von unstrukturierten Graphen benötigt
werden, ist die Parallelverarbeitung. In diesem Gebiet wird Graphpartitionierung häufig
verwendet, um ein zugrundeliegendes Modell von Kommunikation und Berechnung zu
partitionieren. Grob gesagt reflektieren Knoten in diesem Modell Berechnungseinheiten
und Kanten Kommunikationseinheiten. Dieser Graph muss nun so partitioniert werden,
dass möglichst wenig Kanten zwischen den Blöcken verlaufen, da Kommunikation in
der Parallelverarbeitung teuer ist. Wenn man dazu k Prozessoren verwenden möchte,
muss der Graph in k ungefähr gleich große Blöcke aufgeteilt werden. In dieser Arbeit
wird die Variante des Graphpartitionierungsproblems untersucht, in der die Blockgrößen
auf (1+ ε) mal der durchschnittlichen Blockgröße beschränkt werden und Anzahl der
Schnittkanten minimiert werden soll.

Da das allgemeine Problem NP-schwer ist, werden in der Praxis häufig Heuristiken
verwendet um Partitionen von Graphen zu erzeugen. Eine sehr erfolgreiche Heuristik
ist das Mehrschichtverfahren, welches ausgehend vom Eingabegraphen zunächst durch
Kontraktion von z.B. Matchings eine Hierarchie von immer kleineren Graphen erzeugt.
Diese kleineren Graphen haben in der Regel ähnliche Eigenschaften wie der Eingabe-
graph. Der kleinste Graph in dieser Folge wird dann mithilfe einer Heuristik initial par-
titioniert, d.h. die Knoten des Graphen werden Blöcken zugewiesen. Anschließend wird
die Kontraktion schrittweise rückgängig gemacht, in dem eine Partitionierung auf die
nächste, feinere Ebene in der Hierarchie übertragen wird und jeweils anschließend ein
lokaler Verfeinerungsalgorithmus benutzt wird, um den Kantenschnitt auf der aktuellen
Stufe zu verbessern.

Obwohl in den letzten zwei Jahrzehnten schon mehrere Mehrschicht Graphpartitio-
nierer entwickelt wurden, hatten wir den Eindruck, dass viele Aspekte des Mehrschicht-
verfahrens nicht gut verstanden wurden. Daher hatten wir angefangen unseren eigenen
Graphpartitionierer KaPPa (Karlsruhe Parallel Partitioner) [87], mit Fokus auf Skalier-
barkeit, zu entwickeln. Überraschenderweise gelang es uns, durch verhältnismäßig ein-
fache Methoden, ebenfalls verbesserte Lösungsqualität zu erhalten. Dies hat uns moti-
viert, jede einzelne Komponente des Mehrschichtverfahrens auf den Prüfstand zu stellen.
Unsere Ziele in dieser Arbeit sind zum einen hohe Partitionierungsqualität und zum an-
deren schnelle sequentielle Ausführungszeit für große Graphen. Wir präsentieren eine
Reihe von Verfahren, die zu verbesserter Lösungsqualität führen. Dies beinhaltet ver-
schiedene Kontraktionsheuristiken, flussbasierte Methoden, verbesserte lokale Suchen,
wiederholte Versuche ähnlich zu Verfahren, die in Mehrgitterlösern verwendet werden,
einen verteilt evolutionären Algorithmus und einen neuen Algorithmus für den Fall, dass
stark balancierte Partitionen benötigt werden.



Die Arbeit beschäftigt sich zunächst mit dem Mehrschichtverfahren. Wir vergleichen
verschiedene Matching und Mehrgitter-inspirierte Vergröberungsverfahren und experi-
mentieren mit algebraischer Distanz zwischen Knoten. Weiterhin schauen wir uns zwei
neue lokale Verbesserungsheuristiken an, also Algorithmen die Knoten zwischen den
Blöcken bewegen, um den Kantenschnitt zu reduzieren. Das erste Verfahren ist im Ver-
gleich mit existierenden Ansätzen stark lokalisiert und das zweite Verfahren basiert auf
der mehrmaligen Verwendung von Max-Flow Min-Cut Berechnungen in Bereichen um
den Schnitt eines schon partitionierten Graphens.

Darauf aufbauend liefern verschiedene Meta-Heuristiken einen weiteren Beitrag die-
ser Arbeit. Zunächst schauen wir uns fortgeschrittene globale Suchstrategien an, soge-
nannte iterierte Mehrschichtverfahren. Der iterierte V-Zyklus wurde von Soper et al.
[157] eingeführt und kann auf Mehrgitterlöser für das Lösen von linearen Gleichungs-
systemen zurückgeführt werden. Die Hauptidee ist es, die Vergröberungs- und Verfeine-
rungsphase des Mehrschichtverfahrens mehrfach zu durchlaufen. Sobald der Graph par-
titioniert ist, werden Schnittkanten nicht mehr kontrahiert. Wir schauen uns zwei weitere
Strategien an, den F- und den W-Zyklus, und evaluieren experimentell, dass diese Algo-
rithmen einen signifikanten Vorteil gegenüber mehrfachen Neustarts des Multilevelver-
fahrens haben, falls ein verhältnismäßig schwacher Verfeinerungsalgorithmus verwendet
wird. Insgesamt erhalten wir ein System, das zum einen für viele bekannte Benchmar-
kinstanzen zu besserer Lösungsqualität führt und zum anderen zu einem guten Tradeoff
zwischen Laufzeit und Lösungsqualität.

Im Walshaw Benchmark wurde KaFFPa auf kleinen Graphen geschlagen. Die besse-
ren Ergebnisse wurden von einem Partitionierer berechnet, der ein Mehrschichtverfahren
mit einer evolutionären Strategie verbinden. Daher ist ein weiterer Beitrag dieser Arbeit
ein neuer verteilter evolutionärer Partitionierungsalgorithmus, KaFFPaE (KaFFPaEvo-
lutionary). KaFFPaE verwendet KaFFPa, um neue effektive Kombinations- und Mutati-
onsoperationen bereitzustellen. Dies wird mit einem skalierbaren Kommunikationspro-
tokoll kombiniert, das ähnlich zu einer Technik namens Randomized Rumor Spreading
funktioniert. Insgesamt erhalten wir einen Algorithmus, der für viele Graphen in sehr
kurzer Zeit Partitionierungen mit sehr hoher Qualität berechnen kann.

Die bisher präsentierten Algorithmen berechnen sehr gute Partitionen in einem an-
gemessenen Zeitrahmen, wenn eine gewisse Unbalanciertheit ε > 0 erlaubt ist. Aller-
dings sind diese Algorithmen für den Fall von stark balancierten Partitionen noch nicht
sehr gut, insbesondere im perfekt balancierten Fall ε = 0. Unter dieser Einschränkung
sind Verfeinungsalgorithmen bisher gezwungen Knoten zwischen genau zwei Blöcken
auszutauschen, um einerseits den Schnitt zu verbessern und andererseits die Balance-
bedingung dabei nicht zu verletzen. Wir entwickeln daher spezialisierte Methoden, die
die Nachbarschaftsrelation von lokalen Suchen, für den Fall von sehr strengen Balance-
bedingungen, stark vergrößern. Diese Techniken versuchen mehrere lokale Suchen zwi-
schen verschiedenen Blöcken zu kombinieren, so dass die Balance der Partition nicht
verschlechtert wird. Das Finden solcher Kombinationen kann auf Suchen von negati-
ven Kreisen in einem gerichteten Graphen zurückgeführt werden. Wir erweitern den



Algorithmus durch Verfahren, die auch unbalancierte Lösungen balancieren können und
integrieren die Techniken in unseren evolutionären Algorithmus.

Weiterhin präsentieren wir in dieser Arbeit verschiedene algorithmische Erweiterun-
gen unserer Verfahren, z.B. zum effizienten Partitionieren von kontinental großen Stra-
ßennetzwerken, großen sozialen Netzwerken oder Webgraphen, sowie ein Verfahren um
k-Wege Knotenseparatoren aus einer gegebenen k-Partition zu berechnen.

Die Partitionierer in dieser Arbeit wurden Benchmark-getrieben entwickelt. Insge-
samt haben wir so ein System erstellt, das die meisten Einträge im Walshaw Benchmark
verbessern oder reproduzieren konnte. Eine andere Perspektive ist die Verwendung der
Algorithm Engineering Methodik auf alle Aspekte der Mehrschicht Graphpartitionie-
rung. Hierdurch wurden Verbesserungen in den Bereichen der Vergröberungs- und Ver-
feinerungsmethoden, global gesteuerter Suchen und im Bereich der Meta-Heuristiken
erzielt.

Unsere Partitionierer funktioneren auch auf Instanzen des 10ten DIMACS Imple-
mentierungs Wetterbewerbs zum Clustern und Partitionieren von Graphen sehr gut. Im
Teilwettbewerb Graphpartitionierung erreichten wir die besten Ergebnisse unter allen
Teilnehmern in der Kategorie Lösungsqualität und in der Kategorie Laufzeit vs. Lö-
sungsqualität. Ein überraschendes Ergebnis erhielten wir in dem Teil des Wettbewerbs,
in dem die Zielfunktion nicht die Schnittgröße, sondern das tatsächliche Kommunikati-
onsvolumen war. Dieses Problem kann als Hypergraph Partitionierungsproblem formu-
liert werden. Interessanterweise konnte KaFFPaE spezialisierte Hypergraphpartitionier
schlagen, in dem nur die Fitnessfunktion des evolutionären Algorithmus auf diese Ziel-
funktion, Kommunikationsvolumen, geändert wurde – der eigentliche Mehrschichtalgo-
rithmus optimierte immer noch die Anzahl der Schnittkanten.
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